blob: 7d31de4d741dabfc8edde56a7e7330e211ab85cf [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattnerf43e9742005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattnerc0f58002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000025#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/PostOrderIterator.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/Statistic.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000030#include "llvm/IR/Constants.h"
31#include "llvm/IR/DerivedTypes.h"
32#include "llvm/IR/Function.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instructions.h"
35#include "llvm/IR/IntrinsicInst.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000036#include "llvm/Pass.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000037#include "llvm/Support/CFG.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000038#include "llvm/Support/Debug.h"
Chris Lattnerf72ce6e2009-03-31 22:13:29 +000039#include "llvm/Support/ValueHandle.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000040#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000041#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000042#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000043using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000044
Chris Lattner79a42ac2006-12-19 21:40:18 +000045STATISTIC(NumChanged, "Number of insts reassociated");
46STATISTIC(NumAnnihil, "Number of expr tree annihilated");
47STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000048
Chris Lattner79a42ac2006-12-19 21:40:18 +000049namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000050 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000051 unsigned Rank;
52 Value *Op;
53 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
54 };
55 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
56 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
57 }
Chris Lattner4c065092006-03-04 09:31:13 +000058}
Chris Lattner1e506502005-05-07 21:59:39 +000059
Devang Patel702f45d2008-11-21 21:00:20 +000060#ifndef NDEBUG
Chris Lattner4c065092006-03-04 09:31:13 +000061/// PrintOps - Print out the expression identified in the Ops list.
62///
Chris Lattner38abecb2009-12-31 18:40:32 +000063static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000064 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000065 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000066 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000067 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000068 dbgs() << "[ ";
Chandler Carruthd48cdbf2014-01-09 02:29:41 +000069 Ops[i].Op->printAsOperand(dbgs(), false, M);
David Greened17c3912010-01-05 01:27:24 +000070 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000071 }
Chris Lattner4c065092006-03-04 09:31:13 +000072}
Devang Patelcb181bb2008-11-21 20:00:59 +000073#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000074
Dan Gohmand78c4002008-05-13 00:00:25 +000075namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000076 /// \brief Utility class representing a base and exponent pair which form one
77 /// factor of some product.
78 struct Factor {
79 Value *Base;
80 unsigned Power;
81
82 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
83
84 /// \brief Sort factors by their Base.
85 struct BaseSorter {
86 bool operator()(const Factor &LHS, const Factor &RHS) {
87 return LHS.Base < RHS.Base;
88 }
89 };
90
91 /// \brief Compare factors for equal bases.
92 struct BaseEqual {
93 bool operator()(const Factor &LHS, const Factor &RHS) {
94 return LHS.Base == RHS.Base;
95 }
96 };
97
98 /// \brief Sort factors in descending order by their power.
99 struct PowerDescendingSorter {
100 bool operator()(const Factor &LHS, const Factor &RHS) {
101 return LHS.Power > RHS.Power;
102 }
103 };
104
105 /// \brief Compare factors for equal powers.
106 struct PowerEqual {
107 bool operator()(const Factor &LHS, const Factor &RHS) {
108 return LHS.Power == RHS.Power;
109 }
110 };
111 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000112
113 /// Utility class representing a non-constant Xor-operand. We classify
114 /// non-constant Xor-Operands into two categories:
115 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
116 /// C2)
117 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
118 /// constant.
119 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
120 /// operand as "E | 0"
121 class XorOpnd {
122 public:
123 XorOpnd(Value *V);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000124
125 bool isInvalid() const { return SymbolicPart == 0; }
126 bool isOrExpr() const { return isOr; }
127 Value *getValue() const { return OrigVal; }
128 Value *getSymbolicPart() const { return SymbolicPart; }
129 unsigned getSymbolicRank() const { return SymbolicRank; }
130 const APInt &getConstPart() const { return ConstPart; }
131
132 void Invalidate() { SymbolicPart = OrigVal = 0; }
133 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
134
135 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
136 // The purpose is twofold:
137 // 1) Cluster together the operands sharing the same symbolic-value.
138 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
139 // could potentially shorten crital path, and expose more loop-invariants.
140 // Note that values' rank are basically defined in RPO order (FIXME).
141 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
142 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
143 // "z" in the order of X-Y-Z is better than any other orders.
Shuxin Yang331f01d2013-04-08 22:00:43 +0000144 struct PtrSortFunctor {
145 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
146 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000147 }
148 };
149 private:
150 Value *OrigVal;
151 Value *SymbolicPart;
152 APInt ConstPart;
153 unsigned SymbolicRank;
154 bool isOr;
155 };
Chandler Carruth739ef802012-04-26 05:30:30 +0000156}
157
158namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000159 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000160 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000161 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000162 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000163 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000164 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000165 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000166 Reassociate() : FunctionPass(ID) {
167 initializeReassociatePass(*PassRegistry::getPassRegistry());
168 }
Devang Patel09f162c2007-05-01 21:15:47 +0000169
Chris Lattner113f4f42002-06-25 16:13:24 +0000170 bool runOnFunction(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000171
172 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner820d9712002-10-21 20:00:28 +0000173 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000174 }
175 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000176 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000177 unsigned getRank(Value *V);
Duncan Sands78386032012-06-15 08:37:50 +0000178 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000179 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000180 Value *OptimizeExpression(BinaryOperator *I,
181 SmallVectorImpl<ValueEntry> &Ops);
182 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000183 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
184 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
185 Value *&Res);
186 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
187 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000188 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
189 SmallVectorImpl<Factor> &Factors);
190 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
191 SmallVectorImpl<Factor> &Factors);
192 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000193 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000194 void EraseInst(Instruction *I);
195 void OptimizeInst(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000196 };
197}
198
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000199XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000200 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000201 OrigVal = V;
202 Instruction *I = dyn_cast<Instruction>(V);
203 SymbolicRank = 0;
204
205 if (I && (I->getOpcode() == Instruction::Or ||
206 I->getOpcode() == Instruction::And)) {
207 Value *V0 = I->getOperand(0);
208 Value *V1 = I->getOperand(1);
209 if (isa<ConstantInt>(V0))
210 std::swap(V0, V1);
211
212 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
213 ConstPart = C->getValue();
214 SymbolicPart = V0;
215 isOr = (I->getOpcode() == Instruction::Or);
216 return;
217 }
218 }
219
220 // view the operand as "V | 0"
221 SymbolicPart = V;
222 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
223 isOr = true;
224}
225
Dan Gohmand78c4002008-05-13 00:00:25 +0000226char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000227INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000228 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000229
Brian Gaeke960707c2003-11-11 22:41:34 +0000230// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000231FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000232
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000233/// isReassociableOp - Return true if V is an instruction of the specified
234/// opcode and if it only has one use.
235static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
236 if (V->hasOneUse() && isa<Instruction>(V) &&
237 cast<Instruction>(V)->getOpcode() == Opcode)
238 return cast<BinaryOperator>(V);
239 return 0;
240}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000241
Chris Lattner9f284e02005-05-08 20:57:04 +0000242static bool isUnmovableInstruction(Instruction *I) {
Jakub Staszakd4d94062013-07-22 23:38:16 +0000243 switch (I->getOpcode()) {
244 case Instruction::PHI:
245 case Instruction::LandingPad:
246 case Instruction::Alloca:
247 case Instruction::Load:
248 case Instruction::Invoke:
249 case Instruction::UDiv:
250 case Instruction::SDiv:
251 case Instruction::FDiv:
252 case Instruction::URem:
253 case Instruction::SRem:
254 case Instruction::FRem:
Chris Lattner9f284e02005-05-08 20:57:04 +0000255 return true;
Jakub Staszakd4d94062013-07-22 23:38:16 +0000256 case Instruction::Call:
257 return !isa<DbgInfoIntrinsic>(I);
258 default:
259 return false;
260 }
Chris Lattner9f284e02005-05-08 20:57:04 +0000261}
262
Chris Lattner113f4f42002-06-25 16:13:24 +0000263void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000264 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000265
266 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +0000267 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000268 ValueRankMap[&*I] = ++i;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000269
Chris Lattner113f4f42002-06-25 16:13:24 +0000270 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000271 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000272 E = RPOT.end(); I != E; ++I) {
273 BasicBlock *BB = *I;
274 unsigned BBRank = RankMap[BB] = ++i << 16;
275
276 // Walk the basic block, adding precomputed ranks for any instructions that
277 // we cannot move. This ensures that the ranks for these instructions are
278 // all different in the block.
279 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
280 if (isUnmovableInstruction(I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000281 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000282 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000283}
284
285unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000286 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner17229a72010-01-01 00:01:34 +0000287 if (I == 0) {
288 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
289 return 0; // Otherwise it's a global or constant, rank 0.
290 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000291
Chris Lattner17229a72010-01-01 00:01:34 +0000292 if (unsigned Rank = ValueRankMap[I])
293 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000294
Chris Lattnerf43e9742005-05-07 04:08:02 +0000295 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
296 // we can reassociate expressions for code motion! Since we do not recurse
297 // for PHI nodes, we cannot have infinite recursion here, because there
298 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000299 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
300 for (unsigned i = 0, e = I->getNumOperands();
301 i != e && Rank != MaxRank; ++i)
302 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000303
Chris Lattner6e2086d2005-05-08 00:08:33 +0000304 // If this is a not or neg instruction, do not count it for rank. This
305 // assures us that X and ~X will have the same rank.
Duncan Sands9dff9be2010-02-15 16:12:20 +0000306 if (!I->getType()->isIntegerTy() ||
Owen Andersonbb2501b2009-07-13 22:18:28 +0000307 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000308 ++Rank;
309
David Greened17c3912010-01-05 01:27:24 +0000310 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerb25de3f2009-08-23 04:37:46 +0000311 // << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000312
Chris Lattner17229a72010-01-01 00:01:34 +0000313 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000314}
315
Chris Lattner877b1142005-05-08 21:28:52 +0000316/// LowerNegateToMultiply - Replace 0-X with X*-1.
317///
Duncan Sands3293f462012-06-08 20:15:33 +0000318static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Owen Anderson5a1acd92009-07-31 20:28:14 +0000319 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattner877b1142005-05-08 21:28:52 +0000320
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000321 BinaryOperator *Res =
322 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Duncan Sands3293f462012-06-08 20:15:33 +0000323 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000324 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000325 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000326 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000327 return Res;
328}
329
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000330/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
331/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
332/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
333/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
334/// even x in Bitwidth-bit arithmetic.
335static unsigned CarmichaelShift(unsigned Bitwidth) {
336 if (Bitwidth < 3)
337 return Bitwidth - 1;
338 return Bitwidth - 2;
339}
340
341/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
342/// reducing the combined weight using any special properties of the operation.
343/// The existing weight LHS represents the computation X op X op ... op X where
344/// X occurs LHS times. The combined weight represents X op X op ... op X with
345/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
346/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
347/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
348static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
349 // If we were working with infinite precision arithmetic then the combined
350 // weight would be LHS + RHS. But we are using finite precision arithmetic,
351 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
352 // for nilpotent operations and addition, but not for idempotent operations
353 // and multiplication), so it is important to correctly reduce the combined
354 // weight back into range if wrapping would be wrong.
355
356 // If RHS is zero then the weight didn't change.
357 if (RHS.isMinValue())
358 return;
359 // If LHS is zero then the combined weight is RHS.
360 if (LHS.isMinValue()) {
361 LHS = RHS;
362 return;
363 }
364 // From this point on we know that neither LHS nor RHS is zero.
365
366 if (Instruction::isIdempotent(Opcode)) {
367 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
368 // weight of 1. Keeping weights at zero or one also means that wrapping is
369 // not a problem.
370 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
371 return; // Return a weight of 1.
372 }
373 if (Instruction::isNilpotent(Opcode)) {
374 // Nilpotent means X op X === 0, so reduce weights modulo 2.
375 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
376 LHS = 0; // 1 + 1 === 0 modulo 2.
377 return;
378 }
379 if (Opcode == Instruction::Add) {
380 // TODO: Reduce the weight by exploiting nsw/nuw?
381 LHS += RHS;
382 return;
383 }
384
385 assert(Opcode == Instruction::Mul && "Unknown associative operation!");
386 unsigned Bitwidth = LHS.getBitWidth();
387 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
388 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
389 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
390 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
391 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
392 // which by a happy accident means that they can always be represented using
393 // Bitwidth bits.
394 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
395 // the Carmichael number).
396 if (Bitwidth > 3) {
397 /// CM - The value of Carmichael's lambda function.
398 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
399 // Any weight W >= Threshold can be replaced with W - CM.
400 APInt Threshold = CM + Bitwidth;
401 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
402 // For Bitwidth 4 or more the following sum does not overflow.
403 LHS += RHS;
404 while (LHS.uge(Threshold))
405 LHS -= CM;
406 } else {
407 // To avoid problems with overflow do everything the same as above but using
408 // a larger type.
409 unsigned CM = 1U << CarmichaelShift(Bitwidth);
410 unsigned Threshold = CM + Bitwidth;
411 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
412 "Weights not reduced!");
413 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
414 while (Total >= Threshold)
415 Total -= CM;
416 LHS = Total;
417 }
418}
419
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000420typedef std::pair<Value*, APInt> RepeatedValue;
421
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000422/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000423/// nodes in Ops along with their weights (how many times the leaf occurs). The
424/// original expression is the same as
425/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000426/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000427/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
428/// op
429/// ...
430/// op
431/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
432///
Duncan Sandsac852c72012-11-15 09:58:38 +0000433/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000434///
435/// This routine may modify the function, in which case it returns 'true'. The
436/// changes it makes may well be destructive, changing the value computed by 'I'
437/// to something completely different. Thus if the routine returns 'true' then
438/// you MUST either replace I with a new expression computed from the Ops array,
439/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000440///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000441/// A leaf node is either not a binary operation of the same kind as the root
442/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
443/// opcode), or is the same kind of binary operator but has a use which either
444/// does not belong to the expression, or does belong to the expression but is
445/// a leaf node. Every leaf node has at least one use that is a non-leaf node
446/// of the expression, while for non-leaf nodes (except for the root 'I') every
447/// use is a non-leaf node of the expression.
448///
449/// For example:
450/// expression graph node names
451///
452/// + | I
453/// / \ |
454/// + + | A, B
455/// / \ / \ |
456/// * + * | C, D, E
457/// / \ / \ / \ |
458/// + * | F, G
459///
460/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000461/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000462///
463/// The expression is maximal: if some instruction is a binary operator of the
464/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
465/// then the instruction also belongs to the expression, is not a leaf node of
466/// it, and its operands also belong to the expression (but may be leaf nodes).
467///
468/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
469/// order to ensure that every non-root node in the expression has *exactly one*
470/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000471/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000472/// RewriteExprTree to put the values back in if the routine indicates that it
473/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000474///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000475/// In the above example either the right operand of A or the left operand of B
476/// will be replaced by undef. If it is B's operand then this gives:
477///
478/// + | I
479/// / \ |
480/// + + | A, B - operand of B replaced with undef
481/// / \ \ |
482/// * + * | C, D, E
483/// / \ / \ / \ |
484/// + * | F, G
485///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000486/// Note that such undef operands can only be reached by passing through 'I'.
487/// For example, if you visit operands recursively starting from a leaf node
488/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000489/// which requires passing through a phi node.
490///
491/// Note that this routine may also mutate binary operators of the wrong type
492/// that have all uses inside the expression (i.e. only used by non-leaf nodes
493/// of the expression) if it can turn them into binary operators of the right
494/// type and thus make the expression bigger.
495
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000496static bool LinearizeExprTree(BinaryOperator *I,
497 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000498 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000499 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
500 unsigned Opcode = I->getOpcode();
501 assert(Instruction::isAssociative(Opcode) &&
502 Instruction::isCommutative(Opcode) &&
503 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000504
505 // Visit all operands of the expression, keeping track of their weight (the
506 // number of paths from the expression root to the operand, or if you like
507 // the number of times that operand occurs in the linearized expression).
508 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
509 // while A has weight two.
510
511 // Worklist of non-leaf nodes (their operands are in the expression too) along
512 // with their weights, representing a certain number of paths to the operator.
513 // If an operator occurs in the worklist multiple times then we found multiple
514 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000515 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
516 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
517 bool MadeChange = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000518
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000519 // Leaves of the expression are values that either aren't the right kind of
520 // operation (eg: a constant, or a multiply in an add tree), or are, but have
521 // some uses that are not inside the expression. For example, in I = X + X,
522 // X = A + B, the value X has two uses (by I) that are in the expression. If
523 // X has any other uses, for example in a return instruction, then we consider
524 // X to be a leaf, and won't analyze it further. When we first visit a value,
525 // if it has more than one use then at first we conservatively consider it to
526 // be a leaf. Later, as the expression is explored, we may discover some more
527 // uses of the value from inside the expression. If all uses turn out to be
528 // from within the expression (and the value is a binary operator of the right
529 // kind) then the value is no longer considered to be a leaf, and its operands
530 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000531
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000532 // Leaves - Keeps track of the set of putative leaves as well as the number of
533 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000534 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000535 LeafMap Leaves; // Leaf -> Total weight so far.
536 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
537
538#ifndef NDEBUG
539 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
540#endif
541 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000542 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000543 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000544
545 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
546 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000547 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000548 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
549 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
550
551 // If this is a binary operation of the right kind with only one use then
552 // add its operands to the expression.
553 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
554 assert(Visited.insert(Op) && "Not first visit!");
555 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
556 Worklist.push_back(std::make_pair(BO, Weight));
557 continue;
558 }
559
560 // Appears to be a leaf. Is the operand already in the set of leaves?
561 LeafMap::iterator It = Leaves.find(Op);
562 if (It == Leaves.end()) {
563 // Not in the leaf map. Must be the first time we saw this operand.
564 assert(Visited.insert(Op) && "Not first visit!");
565 if (!Op->hasOneUse()) {
566 // This value has uses not accounted for by the expression, so it is
567 // not safe to modify. Mark it as being a leaf.
568 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
569 LeafOrder.push_back(Op);
570 Leaves[Op] = Weight;
571 continue;
572 }
573 // No uses outside the expression, try morphing it.
574 } else if (It != Leaves.end()) {
575 // Already in the leaf map.
576 assert(Visited.count(Op) && "In leaf map but not visited!");
577
578 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000579 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000580
Duncan Sands56514522012-07-26 09:26:40 +0000581#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000582 // The leaf already has one use from inside the expression. As we want
583 // exactly one such use, drop this new use of the leaf.
584 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
585 I->setOperand(OpIdx, UndefValue::get(I->getType()));
586 MadeChange = true;
587
588 // If the leaf is a binary operation of the right kind and we now see
589 // that its multiple original uses were in fact all by nodes belonging
590 // to the expression, then no longer consider it to be a leaf and add
591 // its operands to the expression.
592 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
593 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
594 Worklist.push_back(std::make_pair(BO, It->second));
595 Leaves.erase(It);
596 continue;
597 }
Duncan Sands56514522012-07-26 09:26:40 +0000598#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000599
600 // If we still have uses that are not accounted for by the expression
601 // then it is not safe to modify the value.
602 if (!Op->hasOneUse())
603 continue;
604
605 // No uses outside the expression, try morphing it.
606 Weight = It->second;
607 Leaves.erase(It); // Since the value may be morphed below.
608 }
609
610 // At this point we have a value which, first of all, is not a binary
611 // expression of the right kind, and secondly, is only used inside the
612 // expression. This means that it can safely be modified. See if we
613 // can usefully morph it into an expression of the right kind.
614 assert((!isa<Instruction>(Op) ||
615 cast<Instruction>(Op)->getOpcode() != Opcode) &&
616 "Should have been handled above!");
617 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
618
619 // If this is a multiply expression, turn any internal negations into
620 // multiplies by -1 so they can be reassociated.
621 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
622 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
623 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Duncan Sands3293f462012-06-08 20:15:33 +0000624 BO = LowerNegateToMultiply(BO);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000625 DEBUG(dbgs() << *BO << 'n');
626 Worklist.push_back(std::make_pair(BO, Weight));
627 MadeChange = true;
628 continue;
629 }
630
631 // Failed to morph into an expression of the right type. This really is
632 // a leaf.
633 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
634 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
635 LeafOrder.push_back(Op);
636 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000637 }
638 }
639
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000640 // The leaves, repeated according to their weights, represent the linearized
641 // form of the expression.
642 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
643 Value *V = LeafOrder[i];
644 LeafMap::iterator It = Leaves.find(V);
645 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000646 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000647 continue;
648 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000649 APInt Weight = It->second;
650 if (Weight.isMinValue())
651 // Leaf already output or weight reduction eliminated it.
652 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000653 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000654 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000655 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000656 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000657
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000658 // For nilpotent operations or addition there may be no operands, for example
659 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
660 // in both cases the weight reduces to 0 causing the value to be skipped.
661 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000662 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000663 assert(Identity && "Associative operation without identity!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000664 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
665 }
666
667 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000668}
669
Chris Lattner1e506502005-05-07 21:59:39 +0000670// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000671// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000672void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000673 SmallVectorImpl<ValueEntry> &Ops) {
674 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000675
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000676 // Since our optimizations should never increase the number of operations, the
677 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000678 // from the original expression tree, without creating any new instructions,
679 // though the rewritten expression may have a completely different topology.
680 // We take care to not change anything if the new expression will be the same
681 // as the original. If more than trivial changes (like commuting operands)
682 // were made then we are obliged to clear out any optional subclass data like
683 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000684
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000685 /// NodesToRewrite - Nodes from the original expression available for writing
686 /// the new expression into.
687 SmallVector<BinaryOperator*, 8> NodesToRewrite;
688 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000689 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000690
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000691 /// NotRewritable - The operands being written will be the leaves of the new
692 /// expression and must not be used as inner nodes (via NodesToRewrite) by
693 /// mistake. Inner nodes are always reassociable, and usually leaves are not
694 /// (if they were they would have been incorporated into the expression and so
695 /// would not be leaves), so most of the time there is no danger of this. But
696 /// in rare cases a leaf may become reassociable if an optimization kills uses
697 /// of it, or it may momentarily become reassociable during rewriting (below)
698 /// due it being removed as an operand of one of its uses. Ensure that misuse
699 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
700 /// leaves and refusing to reuse any of them as inner nodes.
701 SmallPtrSet<Value*, 8> NotRewritable;
702 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
703 NotRewritable.insert(Ops[i].Op);
704
Duncan Sands3c05cd32012-05-26 16:42:52 +0000705 // ExpressionChanged - Non-null if the rewritten expression differs from the
706 // original in some non-trivial way, requiring the clearing of optional flags.
707 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
708 BinaryOperator *ExpressionChanged = 0;
Duncan Sands514db112012-06-27 14:19:00 +0000709 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000710 // The last operation (which comes earliest in the IR) is special as both
711 // operands will come from Ops, rather than just one with the other being
712 // a subexpression.
713 if (i+2 == Ops.size()) {
714 Value *NewLHS = Ops[i].Op;
715 Value *NewRHS = Ops[i+1].Op;
716 Value *OldLHS = Op->getOperand(0);
717 Value *OldRHS = Op->getOperand(1);
718
719 if (NewLHS == OldLHS && NewRHS == OldRHS)
720 // Nothing changed, leave it alone.
721 break;
722
723 if (NewLHS == OldRHS && NewRHS == OldLHS) {
724 // The order of the operands was reversed. Swap them.
725 DEBUG(dbgs() << "RA: " << *Op << '\n');
726 Op->swapOperands();
727 DEBUG(dbgs() << "TO: " << *Op << '\n');
728 MadeChange = true;
729 ++NumChanged;
730 break;
731 }
732
733 // The new operation differs non-trivially from the original. Overwrite
734 // the old operands with the new ones.
735 DEBUG(dbgs() << "RA: " << *Op << '\n');
736 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000737 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
738 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000739 NodesToRewrite.push_back(BO);
740 Op->setOperand(0, NewLHS);
741 }
742 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000743 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
744 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000745 NodesToRewrite.push_back(BO);
746 Op->setOperand(1, NewRHS);
747 }
748 DEBUG(dbgs() << "TO: " << *Op << '\n');
749
Duncan Sands3c05cd32012-05-26 16:42:52 +0000750 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000751 MadeChange = true;
752 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000753
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000754 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000755 }
Chris Lattner1e506502005-05-07 21:59:39 +0000756
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000757 // Not the last operation. The left-hand side will be a sub-expression
758 // while the right-hand side will be the current element of Ops.
759 Value *NewRHS = Ops[i].Op;
760 if (NewRHS != Op->getOperand(1)) {
761 DEBUG(dbgs() << "RA: " << *Op << '\n');
762 if (NewRHS == Op->getOperand(0)) {
763 // The new right-hand side was already present as the left operand. If
764 // we are lucky then swapping the operands will sort out both of them.
765 Op->swapOperands();
766 } else {
767 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000768 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
769 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000770 NodesToRewrite.push_back(BO);
771 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000772 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000773 }
774 DEBUG(dbgs() << "TO: " << *Op << '\n');
775 MadeChange = true;
776 ++NumChanged;
777 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000778
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000779 // Now deal with the left-hand side. If this is already an operation node
780 // from the original expression then just rewrite the rest of the expression
781 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000782 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
783 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000784 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000785 continue;
786 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000787
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000788 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000789 // the left-hand side. If there are no nodes left then the optimizers made
790 // an expression with more nodes than the original! This usually means that
791 // they did something stupid but it might mean that the problem was just too
792 // hard (finding the mimimal number of multiplications needed to realize a
793 // multiplication expression is NP-complete). Whatever the reason, smart or
794 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000795 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000796 if (NodesToRewrite.empty()) {
797 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000798 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
799 Undef, Undef, "", I);
800 } else {
801 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000802 }
803
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000804 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000805 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000806 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000807 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000808 MadeChange = true;
809 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000810 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000811 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000812
Duncan Sands3c05cd32012-05-26 16:42:52 +0000813 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000814 // starting from the operator specified in ExpressionChanged, and compactify
815 // the operators to just before the expression root to guarantee that the
816 // expression tree is dominated by all of Ops.
817 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000818 do {
Duncan Sands3c05cd32012-05-26 16:42:52 +0000819 ExpressionChanged->clearSubclassOptionalData();
820 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000821 break;
Duncan Sands514db112012-06-27 14:19:00 +0000822 ExpressionChanged->moveBefore(I);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000823 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000824 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000825
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000826 // Throw away any left over nodes from the original expression.
827 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000828 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000829}
830
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000831/// NegateValue - Insert instructions before the instruction pointed to by BI,
832/// that computes the negative version of the value specified. The negative
833/// version of the value is returned, and BI is left pointing at the instruction
834/// that should be processed next by the reassociation pass.
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000835static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattnerfed33972009-12-31 20:34:32 +0000836 if (Constant *C = dyn_cast<Constant>(V))
837 return ConstantExpr::getNeg(C);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000838
Chris Lattner7bc532d2002-05-16 04:37:07 +0000839 // We are trying to expose opportunity for reassociation. One of the things
840 // that we want to do to achieve this is to push a negation as deep into an
841 // expression chain as possible, to expose the add instructions. In practice,
842 // this means that we turn this:
843 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
844 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
845 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000846 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000847 //
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000848 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
849 // Push the negates through the add.
850 I->setOperand(0, NegateValue(I->getOperand(0), BI));
851 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000852
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000853 // We must move the add instruction here, because the neg instructions do
854 // not dominate the old add instruction in general. By moving it, we are
855 // assured that the neg instructions we just inserted dominate the
856 // instruction we are about to insert after them.
857 //
858 I->moveBefore(BI);
859 I->setName(I->getName()+".neg");
860 return I;
861 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000862
Chris Lattnerfed33972009-12-31 20:34:32 +0000863 // Okay, we need to materialize a negated version of V with an instruction.
864 // Scan the use lists of V to see if we have one already.
865 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif782f6242010-07-12 12:03:02 +0000866 User *U = *UI;
867 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000868
869 // We found one! Now we have to make sure that the definition dominates
870 // this use. We do this by moving it to the entry block (if it is a
871 // non-instruction value) or right after the definition. These negates will
872 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000873 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000874
875 // Verify that the negate is in this function, V might be a constant expr.
876 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
877 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000878
Chris Lattnerfed33972009-12-31 20:34:32 +0000879 BasicBlock::iterator InsertPt;
880 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
881 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
882 InsertPt = II->getNormalDest()->begin();
883 } else {
884 InsertPt = InstInput;
885 ++InsertPt;
886 }
887 while (isa<PHINode>(InsertPt)) ++InsertPt;
888 } else {
889 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
890 }
891 TheNeg->moveBefore(InsertPt);
892 return TheNeg;
893 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000894
895 // Insert a 'neg' instruction that subtracts the value from zero to get the
896 // negation.
Dan Gohman5476cfd2009-08-12 16:23:25 +0000897 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000898}
899
Chris Lattner902537c2008-02-17 20:44:51 +0000900/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
901/// X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000902static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000903 // If this is a negation, we can't split it up!
Owen Andersonbb2501b2009-07-13 22:18:28 +0000904 if (BinaryOperator::isNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000905 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000906
Chris Lattner902537c2008-02-17 20:44:51 +0000907 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000908 // subtract or if this is only used by one.
909 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
910 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000911 return true;
Chris Lattnera70d1382008-02-17 20:51:26 +0000912 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5f08ec82008-02-17 20:54:40 +0000913 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000914 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000915 if (Sub->hasOneUse() &&
Chris Lattnera70d1382008-02-17 20:51:26 +0000916 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
917 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000918 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000919
Chris Lattner902537c2008-02-17 20:44:51 +0000920 return false;
921}
922
Chris Lattnerf43e9742005-05-07 04:08:02 +0000923/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
924/// only used by an add, transform this into (X+(0-Y)) to promote better
925/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000926static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattnera5526832010-01-01 00:04:26 +0000927 // Convert a subtract into an add and a neg instruction. This allows sub
928 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000929 //
Chris Lattnera5526832010-01-01 00:04:26 +0000930 // Calculate the negative value of Operand 1 of the sub instruction,
931 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000932 //
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000933 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000934 BinaryOperator *New =
Gabor Greife1f6e4b2008-05-16 19:29:10 +0000935 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000936 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
937 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000938 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000939
940 // Everyone now refers to the add instruction.
941 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000942 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000943
David Greened17c3912010-01-05 01:27:24 +0000944 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000945 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000946}
947
Chris Lattnercea57992005-05-07 04:24:13 +0000948/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
949/// by one, change this into a multiply by a constant to assist with further
950/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000951static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
952 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
953 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000954
Duncan Sands3293f462012-06-08 20:15:33 +0000955 BinaryOperator *Mul =
956 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
957 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
958 Mul->takeName(Shl);
959 Shl->replaceAllUsesWith(Mul);
960 Mul->setDebugLoc(Shl->getDebugLoc());
961 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000962}
963
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000964/// FindInOperandList - Scan backwards and forwards among values with the same
965/// rank as element i to see if X exists. If X does not exist, return i. This
966/// is useful when scanning for 'x' when we see '-x' because they both get the
967/// same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +0000968static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +0000969 Value *X) {
970 unsigned XRank = Ops[i].Rank;
971 unsigned e = Ops.size();
972 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
973 if (Ops[j].Op == X)
974 return j;
Chris Lattner0c59ac32010-01-01 01:13:15 +0000975 // Scan backwards.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000976 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
977 if (Ops[j].Op == X)
978 return j;
979 return i;
980}
981
Chris Lattner4c065092006-03-04 09:31:13 +0000982/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
983/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000984static Value *EmitAddTreeOfValues(Instruction *I,
985 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +0000986 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000987
Chris Lattner4c065092006-03-04 09:31:13 +0000988 Value *V1 = Ops.back();
989 Ops.pop_back();
990 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greife1f6e4b2008-05-16 19:29:10 +0000991 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattner4c065092006-03-04 09:31:13 +0000992}
993
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000994/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattner4c065092006-03-04 09:31:13 +0000995/// multiplication sequence, and if this sequence contains a multiply by Factor,
996/// remove Factor from the tree and return the new tree.
997Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
998 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
999 if (!BO) return 0;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001000
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001001 SmallVector<RepeatedValue, 8> Tree;
1002 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001003 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001004 Factors.reserve(Tree.size());
1005 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1006 RepeatedValue E = Tree[i];
1007 Factors.append(E.second.getZExtValue(),
1008 ValueEntry(getRank(E.first), E.first));
1009 }
Chris Lattner4c065092006-03-04 09:31:13 +00001010
1011 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001012 bool NeedsNegate = false;
1013 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001014 if (Factors[i].Op == Factor) {
1015 FoundFactor = true;
1016 Factors.erase(Factors.begin()+i);
1017 break;
1018 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001019
Chris Lattner0c59ac32010-01-01 01:13:15 +00001020 // If this is a negative version of this factor, remove it.
1021 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1022 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1023 if (FC1->getValue() == -FC2->getValue()) {
1024 FoundFactor = NeedsNegate = true;
1025 Factors.erase(Factors.begin()+i);
1026 break;
1027 }
1028 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001029
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001030 if (!FoundFactor) {
1031 // Make sure to restore the operands to the expression tree.
1032 RewriteExprTree(BO, Factors);
1033 return 0;
1034 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001035
Chris Lattner0c59ac32010-01-01 01:13:15 +00001036 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001037
Chris Lattner1d897942009-12-31 19:34:45 +00001038 // If this was just a single multiply, remove the multiply and return the only
1039 // remaining operand.
1040 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001041 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001042 V = Factors[0].Op;
1043 } else {
1044 RewriteExprTree(BO, Factors);
1045 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001046 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001047
Chris Lattner0c59ac32010-01-01 01:13:15 +00001048 if (NeedsNegate)
1049 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001050
Chris Lattner0c59ac32010-01-01 01:13:15 +00001051 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001052}
1053
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001054/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1055/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001056///
1057/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001058static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001059 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001060 const SmallVectorImpl<ValueEntry> &Ops) {
1061 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1062 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001063 Factors.push_back(V);
1064 return;
1065 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001066
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001067 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001068 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1069 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001070}
1071
Chris Lattner5f8a0052009-12-31 07:59:34 +00001072/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1073/// instruction. This optimizes based on identities. If it can be reduced to
1074/// a single Value, it is returned, otherwise the Ops list is mutated as
1075/// necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001076static Value *OptimizeAndOrXor(unsigned Opcode,
1077 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001078 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1079 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1080 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1081 // First, check for X and ~X in the operand list.
1082 assert(i < Ops.size());
1083 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1084 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1085 unsigned FoundX = FindInOperandList(Ops, i, X);
1086 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001087 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001088 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001089
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001090 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001091 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001092 }
1093 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001094
Chris Lattner5f8a0052009-12-31 07:59:34 +00001095 // Next, check for duplicate pairs of values, which we assume are next to
1096 // each other, due to our sorting criteria.
1097 assert(i < Ops.size());
1098 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1099 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001100 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001101 Ops.erase(Ops.begin()+i);
1102 --i; --e;
1103 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001104 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001105 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001106
Chris Lattner60c2ca72009-12-31 19:49:01 +00001107 // Drop pairs of values for Xor.
1108 assert(Opcode == Instruction::Xor);
1109 if (e == 2)
1110 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001111
Chris Lattnera5526832010-01-01 00:04:26 +00001112 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001113 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1114 i -= 1; e -= 2;
1115 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001116 }
1117 }
1118 return 0;
1119}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001120
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001121/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1122/// instruction with the given two operands, and return the resulting
1123/// instruction. There are two special cases: 1) if the constant operand is 0,
1124/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1125/// be returned.
1126static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1127 const APInt &ConstOpnd) {
1128 if (ConstOpnd != 0) {
1129 if (!ConstOpnd.isAllOnesValue()) {
1130 LLVMContext &Ctx = Opnd->getType()->getContext();
1131 Instruction *I;
1132 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1133 "and.ra", InsertBefore);
1134 I->setDebugLoc(InsertBefore->getDebugLoc());
1135 return I;
1136 }
1137 return Opnd;
1138 }
1139 return 0;
1140}
1141
1142// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1143// into "R ^ C", where C would be 0, and R is a symbolic value.
1144//
1145// If it was successful, true is returned, and the "R" and "C" is returned
1146// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1147// and both "Res" and "ConstOpnd" remain unchanged.
1148//
1149bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1150 APInt &ConstOpnd, Value *&Res) {
1151 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1152 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1153 // = (x & ~c1) ^ (c1 ^ c2)
1154 // It is useful only when c1 == c2.
1155 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1156 if (!Opnd1->getValue()->hasOneUse())
1157 return false;
1158
1159 const APInt &C1 = Opnd1->getConstPart();
1160 if (C1 != ConstOpnd)
1161 return false;
1162
1163 Value *X = Opnd1->getSymbolicPart();
1164 Res = createAndInstr(I, X, ~C1);
1165 // ConstOpnd was C2, now C1 ^ C2.
1166 ConstOpnd ^= C1;
1167
1168 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1169 RedoInsts.insert(T);
1170 return true;
1171 }
1172 return false;
1173}
1174
1175
1176// Helper function of OptimizeXor(). It tries to simplify
1177// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1178// symbolic value.
1179//
1180// If it was successful, true is returned, and the "R" and "C" is returned
1181// via "Res" and "ConstOpnd", respectively (If the entire expression is
1182// evaluated to a constant, the Res is set to NULL); otherwise, false is
1183// returned, and both "Res" and "ConstOpnd" remain unchanged.
1184bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1185 APInt &ConstOpnd, Value *&Res) {
1186 Value *X = Opnd1->getSymbolicPart();
1187 if (X != Opnd2->getSymbolicPart())
1188 return false;
1189
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001190 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1191 int DeadInstNum = 1;
1192 if (Opnd1->getValue()->hasOneUse())
1193 DeadInstNum++;
1194 if (Opnd2->getValue()->hasOneUse())
1195 DeadInstNum++;
1196
1197 // Xor-Rule 2:
1198 // (x | c1) ^ (x & c2)
1199 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1200 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1201 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1202 //
1203 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1204 if (Opnd2->isOrExpr())
1205 std::swap(Opnd1, Opnd2);
1206
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001207 const APInt &C1 = Opnd1->getConstPart();
1208 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001209 APInt C3((~C1) ^ C2);
1210
1211 // Do not increase code size!
1212 if (C3 != 0 && !C3.isAllOnesValue()) {
1213 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1214 if (NewInstNum > DeadInstNum)
1215 return false;
1216 }
1217
1218 Res = createAndInstr(I, X, C3);
1219 ConstOpnd ^= C1;
1220
1221 } else if (Opnd1->isOrExpr()) {
1222 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1223 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001224 const APInt &C1 = Opnd1->getConstPart();
1225 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001226 APInt C3 = C1 ^ C2;
1227
1228 // Do not increase code size
1229 if (C3 != 0 && !C3.isAllOnesValue()) {
1230 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1231 if (NewInstNum > DeadInstNum)
1232 return false;
1233 }
1234
1235 Res = createAndInstr(I, X, C3);
1236 ConstOpnd ^= C3;
1237 } else {
1238 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1239 //
Shuxin Yang04a4fd42013-04-27 18:02:12 +00001240 const APInt &C1 = Opnd1->getConstPart();
1241 const APInt &C2 = Opnd2->getConstPart();
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001242 APInt C3 = C1 ^ C2;
1243 Res = createAndInstr(I, X, C3);
1244 }
1245
1246 // Put the original operands in the Redo list; hope they will be deleted
1247 // as dead code.
1248 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1249 RedoInsts.insert(T);
1250 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1251 RedoInsts.insert(T);
1252
1253 return true;
1254}
1255
1256/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1257/// to a single Value, it is returned, otherwise the Ops list is mutated as
1258/// necessary.
1259Value *Reassociate::OptimizeXor(Instruction *I,
1260 SmallVectorImpl<ValueEntry> &Ops) {
1261 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1262 return V;
1263
1264 if (Ops.size() == 1)
1265 return 0;
1266
1267 SmallVector<XorOpnd, 8> Opnds;
Shuxin Yang331f01d2013-04-08 22:00:43 +00001268 SmallVector<XorOpnd*, 8> OpndPtrs;
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001269 Type *Ty = Ops[0].Op->getType();
1270 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1271
1272 // Step 1: Convert ValueEntry to XorOpnd
1273 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1274 Value *V = Ops[i].Op;
1275 if (!isa<ConstantInt>(V)) {
1276 XorOpnd O(V);
1277 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1278 Opnds.push_back(O);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001279 } else
1280 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1281 }
1282
Shuxin Yang331f01d2013-04-08 22:00:43 +00001283 // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
1284 // It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
1285 // the "OpndPtrs" as well. For the similar reason, do not fuse this loop
1286 // with the previous loop --- the iterator of the "Opnds" may be invalidated
1287 // when new elements are added to the vector.
1288 for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
1289 OpndPtrs.push_back(&Opnds[i]);
1290
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001291 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1292 // the same symbolic value cluster together. For instance, the input operand
1293 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1294 // ("x | 123", "x & 789", "y & 456").
Shuxin Yang331f01d2013-04-08 22:00:43 +00001295 std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001296
1297 // Step 3: Combine adjacent operands
1298 XorOpnd *PrevOpnd = 0;
1299 bool Changed = false;
1300 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
Shuxin Yang331f01d2013-04-08 22:00:43 +00001301 XorOpnd *CurrOpnd = OpndPtrs[i];
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001302 // The combined value
1303 Value *CV;
1304
1305 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1306 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1307 Changed = true;
1308 if (CV)
1309 *CurrOpnd = XorOpnd(CV);
1310 else {
1311 CurrOpnd->Invalidate();
1312 continue;
1313 }
1314 }
1315
1316 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1317 PrevOpnd = CurrOpnd;
1318 continue;
1319 }
1320
1321 // step 3.2: When previous and current operands share the same symbolic
1322 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1323 //
1324 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1325 // Remove previous operand
1326 PrevOpnd->Invalidate();
1327 if (CV) {
1328 *CurrOpnd = XorOpnd(CV);
1329 PrevOpnd = CurrOpnd;
1330 } else {
1331 CurrOpnd->Invalidate();
1332 PrevOpnd = 0;
1333 }
1334 Changed = true;
1335 }
1336 }
1337
1338 // Step 4: Reassemble the Ops
1339 if (Changed) {
1340 Ops.clear();
1341 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1342 XorOpnd &O = Opnds[i];
1343 if (O.isInvalid())
1344 continue;
1345 ValueEntry VE(getRank(O.getValue()), O.getValue());
1346 Ops.push_back(VE);
1347 }
1348 if (ConstOpnd != 0) {
1349 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1350 ValueEntry VE(getRank(C), C);
1351 Ops.push_back(VE);
1352 }
1353 int Sz = Ops.size();
1354 if (Sz == 1)
1355 return Ops.back().Op;
1356 else if (Sz == 0) {
1357 assert(ConstOpnd == 0);
1358 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1359 }
1360 }
1361
1362 return 0;
1363}
1364
Chris Lattner5f8a0052009-12-31 07:59:34 +00001365/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1366/// optimizes based on identities. If it can be reduced to a single Value, it
1367/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001368Value *Reassociate::OptimizeAdd(Instruction *I,
1369 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001370 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner60b71b52009-12-31 19:24:52 +00001371 // can simplify the expression. X+-X == 0. While we're at it, scan for any
1372 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001373 //
1374 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1375 //
Chris Lattner5f8a0052009-12-31 07:59:34 +00001376 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001377 Value *TheOp = Ops[i].Op;
1378 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001379 // instances of the operand together. Due to our sorting criteria, we know
1380 // that these need to be next to each other in the vector.
1381 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1382 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001383 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001384 do {
1385 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001386 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001387 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001388
Chris Lattnered189172009-12-31 19:25:19 +00001389 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001390 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001391
Chris Lattner60b71b52009-12-31 19:24:52 +00001392 // Insert a new multiply.
1393 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1394 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001395
Chris Lattner60b71b52009-12-31 19:24:52 +00001396 // Now that we have inserted a multiply, optimize it. This allows us to
1397 // handle cases that require multiple factoring steps, such as this:
1398 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Duncan Sands3293f462012-06-08 20:15:33 +00001399 RedoInsts.insert(cast<Instruction>(Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001400
Chris Lattner60b71b52009-12-31 19:24:52 +00001401 // If every add operand was a duplicate, return the multiply.
1402 if (Ops.empty())
1403 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001404
Chris Lattner60b71b52009-12-31 19:24:52 +00001405 // Otherwise, we had some input that didn't have the dupe, such as
1406 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1407 // things being added by this operation.
1408 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001409
Chris Lattner60c2ca72009-12-31 19:49:01 +00001410 --i;
1411 e = Ops.size();
1412 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001413 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001414
Chris Lattner5f8a0052009-12-31 07:59:34 +00001415 // Check for X and -X in the operand list.
Chris Lattner60b71b52009-12-31 19:24:52 +00001416 if (!BinaryOperator::isNeg(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001417 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001418
Chris Lattner60b71b52009-12-31 19:24:52 +00001419 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattner5f8a0052009-12-31 07:59:34 +00001420 unsigned FoundX = FindInOperandList(Ops, i, X);
1421 if (FoundX == i)
1422 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001423
Chris Lattner5f8a0052009-12-31 07:59:34 +00001424 // Remove X and -X from the operand list.
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001425 if (Ops.size() == 2)
Chris Lattner5f8a0052009-12-31 07:59:34 +00001426 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001427
Chris Lattner5f8a0052009-12-31 07:59:34 +00001428 Ops.erase(Ops.begin()+i);
1429 if (i < FoundX)
1430 --FoundX;
1431 else
1432 --i; // Need to back up an extra one.
1433 Ops.erase(Ops.begin()+FoundX);
1434 ++NumAnnihil;
1435 --i; // Revisit element.
1436 e -= 2; // Removed two elements.
1437 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001438
Chris Lattner177140a2009-12-31 18:17:13 +00001439 // Scan the operand list, checking to see if there are any common factors
1440 // between operands. Consider something like A*A+A*B*C+D. We would like to
1441 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1442 // To efficiently find this, we count the number of times a factor occurs
1443 // for any ADD operands that are MULs.
1444 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001445
Chris Lattner177140a2009-12-31 18:17:13 +00001446 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1447 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001448 unsigned MaxOcc = 0;
1449 Value *MaxOccVal = 0;
1450 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001451 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1452 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001453 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001454
Chris Lattner177140a2009-12-31 18:17:13 +00001455 // Compute all of the factors of this added value.
1456 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001457 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001458 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001459
Chris Lattner177140a2009-12-31 18:17:13 +00001460 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001461 SmallPtrSet<Value*, 8> Duplicates;
1462 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1463 Value *Factor = Factors[i];
1464 if (!Duplicates.insert(Factor)) continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001465
Chris Lattner0c59ac32010-01-01 01:13:15 +00001466 unsigned Occ = ++FactorOccurrences[Factor];
1467 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001468
Chris Lattner0c59ac32010-01-01 01:13:15 +00001469 // If Factor is a negative constant, add the negated value as a factor
1470 // because we can percolate the negate out. Watch for minint, which
1471 // cannot be positivified.
1472 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerb1a15122011-07-15 06:08:15 +00001473 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001474 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1475 assert(!Duplicates.count(Factor) &&
1476 "Shouldn't have two constant factors, missed a canonicalize");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001477
Chris Lattner0c59ac32010-01-01 01:13:15 +00001478 unsigned Occ = ++FactorOccurrences[Factor];
1479 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1480 }
Chris Lattner177140a2009-12-31 18:17:13 +00001481 }
1482 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001483
Chris Lattner177140a2009-12-31 18:17:13 +00001484 // If any factor occurred more than one time, we can pull it out.
1485 if (MaxOcc > 1) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001486 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001487 ++NumFactor;
1488
1489 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1490 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001491 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001492 // RemoveFactorFromExpression on successive values to behave differently.
1493 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Bill Wendling274ba892012-05-02 09:59:45 +00001494 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001495 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001496 // Only try to remove factors from expressions we're allowed to.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001497 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1498 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001499 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001500
Chris Lattner177140a2009-12-31 18:17:13 +00001501 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001502 // The factorized operand may occur several times. Convert them all in
1503 // one fell swoop.
1504 for (unsigned j = Ops.size(); j != i;) {
1505 --j;
1506 if (Ops[j].Op == Ops[i].Op) {
1507 NewMulOps.push_back(V);
1508 Ops.erase(Ops.begin()+j);
1509 }
1510 }
1511 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001512 }
1513 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001514
Chris Lattner177140a2009-12-31 18:17:13 +00001515 // No need for extra uses anymore.
1516 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001517
Chris Lattner177140a2009-12-31 18:17:13 +00001518 unsigned NumAddedValues = NewMulOps.size();
1519 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001520
Chris Lattner60b71b52009-12-31 19:24:52 +00001521 // Now that we have inserted the add tree, optimize it. This allows us to
1522 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001523 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001524 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001525 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001526 if (Instruction *VI = dyn_cast<Instruction>(V))
1527 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001528
1529 // Create the multiply.
Duncan Sands3293f462012-06-08 20:15:33 +00001530 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001531
Chris Lattner60c2ca72009-12-31 19:49:01 +00001532 // Rerun associate on the multiply in case the inner expression turned into
1533 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001534 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001535
Chris Lattner177140a2009-12-31 18:17:13 +00001536 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1537 // entire result expression is just the multiply "A*(B+C)".
1538 if (Ops.empty())
1539 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001540
Chris Lattnerac615502009-12-31 18:18:46 +00001541 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001542 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001543 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001544 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1545 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001546
Chris Lattner5f8a0052009-12-31 07:59:34 +00001547 return 0;
1548}
Chris Lattner4c065092006-03-04 09:31:13 +00001549
Chandler Carruth739ef802012-04-26 05:30:30 +00001550namespace {
1551 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1552 struct IsValueInMap {
1553 const DenseMap<Value *, unsigned> &Map;
1554
1555 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1556
1557 bool operator()(const ValueEntry &Entry) {
1558 return Map.find(Entry.Op) != Map.end();
1559 }
1560 };
1561}
1562
1563/// \brief Build up a vector of value/power pairs factoring a product.
1564///
1565/// Given a series of multiplication operands, build a vector of factors and
1566/// the powers each is raised to when forming the final product. Sort them in
1567/// the order of descending power.
1568///
1569/// (x*x) -> [(x, 2)]
1570/// ((x*x)*x) -> [(x, 3)]
1571/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1572///
1573/// \returns Whether any factors have a power greater than one.
1574bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1575 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001576 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1577 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001578 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001579 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1580 Value *Op = Ops[Idx-1].Op;
1581
1582 // Count the number of occurrences of this value.
1583 unsigned Count = 1;
1584 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1585 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001586 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001587 if (Count > 1)
1588 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001589 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001590
Chandler Carruth739ef802012-04-26 05:30:30 +00001591 // We can only simplify factors if the sum of the powers of our simplifiable
1592 // factors is 4 or higher. When that is the case, we will *always* have
1593 // a simplification. This is an important invariant to prevent cyclicly
1594 // trying to simplify already minimal formations.
1595 if (FactorPowerSum < 4)
1596 return false;
1597
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001598 // Now gather the simplifiable factors, removing them from Ops.
1599 FactorPowerSum = 0;
1600 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1601 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001602
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001603 // Count the number of occurrences of this value.
1604 unsigned Count = 1;
1605 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1606 ++Count;
1607 if (Count == 1)
1608 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001609 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001610 Count &= ~1U;
1611 Idx -= Count;
1612 FactorPowerSum += Count;
1613 Factors.push_back(Factor(Op, Count));
1614 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001615 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001616
Chandler Carruth739ef802012-04-26 05:30:30 +00001617 // None of the adjustments above should have reduced the sum of factor powers
1618 // below our mininum of '4'.
1619 assert(FactorPowerSum >= 4);
1620
Chandler Carruth739ef802012-04-26 05:30:30 +00001621 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1622 return true;
1623}
1624
1625/// \brief Build a tree of multiplies, computing the product of Ops.
1626static Value *buildMultiplyTree(IRBuilder<> &Builder,
1627 SmallVectorImpl<Value*> &Ops) {
1628 if (Ops.size() == 1)
1629 return Ops.back();
1630
1631 Value *LHS = Ops.pop_back_val();
1632 do {
1633 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1634 } while (!Ops.empty());
1635
1636 return LHS;
1637}
1638
1639/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1640///
1641/// Given a vector of values raised to various powers, where no two values are
1642/// equal and the powers are sorted in decreasing order, compute the minimal
1643/// DAG of multiplies to compute the final product, and return that product
1644/// value.
1645Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1646 SmallVectorImpl<Factor> &Factors) {
1647 assert(Factors[0].Power);
1648 SmallVector<Value *, 4> OuterProduct;
1649 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1650 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1651 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1652 LastIdx = Idx;
1653 continue;
1654 }
1655
1656 // We want to multiply across all the factors with the same power so that
1657 // we can raise them to that power as a single entity. Build a mini tree
1658 // for that.
1659 SmallVector<Value *, 4> InnerProduct;
1660 InnerProduct.push_back(Factors[LastIdx].Base);
1661 do {
1662 InnerProduct.push_back(Factors[Idx].Base);
1663 ++Idx;
1664 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1665
1666 // Reset the base value of the first factor to the new expression tree.
1667 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001668 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1669 if (Instruction *MI = dyn_cast<Instruction>(M))
1670 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001671
1672 LastIdx = Idx;
1673 }
1674 // Unique factors with equal powers -- we've folded them into the first one's
1675 // base.
1676 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1677 Factor::PowerEqual()),
1678 Factors.end());
1679
1680 // Iteratively collect the base of each factor with an add power into the
1681 // outer product, and halve each power in preparation for squaring the
1682 // expression.
1683 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1684 if (Factors[Idx].Power & 1)
1685 OuterProduct.push_back(Factors[Idx].Base);
1686 Factors[Idx].Power >>= 1;
1687 }
1688 if (Factors[0].Power) {
1689 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1690 OuterProduct.push_back(SquareRoot);
1691 OuterProduct.push_back(SquareRoot);
1692 }
1693 if (OuterProduct.size() == 1)
1694 return OuterProduct.front();
1695
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001696 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001697 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001698}
1699
1700Value *Reassociate::OptimizeMul(BinaryOperator *I,
1701 SmallVectorImpl<ValueEntry> &Ops) {
1702 // We can only optimize the multiplies when there is a chain of more than
1703 // three, such that a balanced tree might require fewer total multiplies.
1704 if (Ops.size() < 4)
1705 return 0;
1706
1707 // Try to turn linear trees of multiplies without other uses of the
1708 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1709 // re-use.
1710 SmallVector<Factor, 4> Factors;
1711 if (!collectMultiplyFactors(Ops, Factors))
1712 return 0; // All distinct factors, so nothing left for us to do.
1713
1714 IRBuilder<> Builder(I);
1715 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1716 if (Ops.empty())
1717 return V;
1718
1719 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1720 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1721 return 0;
1722}
1723
Chris Lattner4c065092006-03-04 09:31:13 +00001724Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001725 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001726 // Now that we have the linearized expression tree, try to optimize it.
1727 // Start by folding any constants that we found.
Duncan Sandsac852c72012-11-15 09:58:38 +00001728 Constant *Cst = 0;
Chris Lattner4c065092006-03-04 09:31:13 +00001729 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001730 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1731 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1732 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1733 }
1734 // If there was nothing but constants then we are done.
1735 if (Ops.empty())
1736 return Cst;
1737
1738 // Put the combined constant back at the end of the operand list, except if
1739 // there is no point. For example, an add of 0 gets dropped here, while a
1740 // multiplication by zero turns the whole expression into zero.
1741 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1742 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1743 return Cst;
1744 Ops.push_back(ValueEntry(0, Cst));
1745 }
1746
1747 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001748
Chris Lattner9039ff82009-12-31 07:33:14 +00001749 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001750 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001751 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001752 switch (Opcode) {
1753 default: break;
1754 case Instruction::And:
1755 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001756 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1757 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001758 break;
1759
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001760 case Instruction::Xor:
1761 if (Value *Result = OptimizeXor(I, Ops))
1762 return Result;
1763 break;
1764
Chandler Carruth739ef802012-04-26 05:30:30 +00001765 case Instruction::Add:
Chris Lattner177140a2009-12-31 18:17:13 +00001766 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001767 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001768 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001769
1770 case Instruction::Mul:
1771 if (Value *Result = OptimizeMul(I, Ops))
1772 return Result;
1773 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001774 }
1775
Duncan Sands3293f462012-06-08 20:15:33 +00001776 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001777 return OptimizeExpression(I, Ops);
1778 return 0;
Chris Lattnere1850b82005-05-08 00:19:31 +00001779}
1780
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001781/// EraseInst - Zap the given instruction, adding interesting operands to the
1782/// work list.
1783void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001784 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1785 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1786 // Erase the dead instruction.
1787 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001788 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001789 I->eraseFromParent();
1790 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001791 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001792 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1793 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1794 // If this is a node in an expression tree, climb to the expression root
1795 // and add that since that's where optimization actually happens.
1796 unsigned Opcode = Op->getOpcode();
Duncan Sands78386032012-06-15 08:37:50 +00001797 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1798 Visited.insert(Op))
Duncan Sands3293f462012-06-08 20:15:33 +00001799 Op = Op->use_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001800 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001801 }
1802}
1803
1804/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1805/// instructions is not allowed.
1806void Reassociate::OptimizeInst(Instruction *I) {
1807 // Only consider operations that we understand.
1808 if (!isa<BinaryOperator>(I))
1809 return;
1810
1811 if (I->getOpcode() == Instruction::Shl &&
1812 isa<ConstantInt>(I->getOperand(1)))
1813 // If an operand of this shift is a reassociable multiply, or if the shift
1814 // is used by a reassociable multiply or add, turn into a multiply.
1815 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1816 (I->hasOneUse() &&
1817 (isReassociableOp(I->use_back(), Instruction::Mul) ||
1818 isReassociableOp(I->use_back(), Instruction::Add)))) {
1819 Instruction *NI = ConvertShiftToMul(I);
1820 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001821 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001822 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00001823 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00001824
Owen Andersonf4f80e12012-05-07 20:47:23 +00001825 // Floating point binary operators are not associative, but we can still
1826 // commute (some) of them, to canonicalize the order of their operands.
1827 // This can potentially expose more CSE opportunities, and makes writing
1828 // other transformations simpler.
Duncan Sands3293f462012-06-08 20:15:33 +00001829 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
Owen Andersonf4f80e12012-05-07 20:47:23 +00001830 // FAdd and FMul can be commuted.
Duncan Sands3293f462012-06-08 20:15:33 +00001831 if (I->getOpcode() != Instruction::FMul &&
1832 I->getOpcode() != Instruction::FAdd)
Owen Andersonf4f80e12012-05-07 20:47:23 +00001833 return;
1834
Duncan Sands3293f462012-06-08 20:15:33 +00001835 Value *LHS = I->getOperand(0);
1836 Value *RHS = I->getOperand(1);
Owen Andersonf4f80e12012-05-07 20:47:23 +00001837 unsigned LHSRank = getRank(LHS);
1838 unsigned RHSRank = getRank(RHS);
1839
1840 // Sort the operands by rank.
1841 if (RHSRank < LHSRank) {
Duncan Sands3293f462012-06-08 20:15:33 +00001842 I->setOperand(0, RHS);
1843 I->setOperand(1, LHS);
Owen Andersonf4f80e12012-05-07 20:47:23 +00001844 }
1845
1846 return;
1847 }
1848
Dan Gohman1c6c3482011-04-12 00:11:56 +00001849 // Do not reassociate boolean (i1) expressions. We want to preserve the
1850 // original order of evaluation for short-circuited comparisons that
1851 // SimplifyCFG has folded to AND/OR expressions. If the expression
1852 // is not further optimized, it is likely to be transformed back to a
1853 // short-circuited form for code gen, and the source order may have been
1854 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00001855 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00001856 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001857
Dan Gohman1c6c3482011-04-12 00:11:56 +00001858 // If this is a subtract instruction which is not already in negate form,
1859 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00001860 if (I->getOpcode() == Instruction::Sub) {
1861 if (ShouldBreakUpSubtract(I)) {
1862 Instruction *NI = BreakUpSubtract(I);
1863 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001864 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001865 I = NI;
1866 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00001867 // Otherwise, this is a negation. See if the operand is a multiply tree
1868 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00001869 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1870 (!I->hasOneUse() ||
1871 !isReassociableOp(I->use_back(), Instruction::Mul))) {
1872 Instruction *NI = LowerNegateToMultiply(I);
1873 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001874 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001875 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00001876 }
1877 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00001878 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00001879
Duncan Sands3293f462012-06-08 20:15:33 +00001880 // If this instruction is an associative binary operator, process it.
1881 if (!I->isAssociative()) return;
1882 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001883
1884 // If this is an interior node of a reassociable tree, ignore it until we
1885 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00001886 unsigned Opcode = BO->getOpcode();
1887 if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
Dan Gohman1c6c3482011-04-12 00:11:56 +00001888 return;
1889
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001890 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00001891 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00001892 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1893 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00001894 return;
1895
Duncan Sands3293f462012-06-08 20:15:33 +00001896 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00001897}
Chris Lattner1e506502005-05-07 21:59:39 +00001898
Duncan Sands78386032012-06-15 08:37:50 +00001899void Reassociate::ReassociateExpression(BinaryOperator *I) {
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001900
Chris Lattner60b71b52009-12-31 19:24:52 +00001901 // First, walk the expression tree, linearizing the tree, collecting the
1902 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001903 SmallVector<RepeatedValue, 8> Tree;
1904 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001905 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001906 Ops.reserve(Tree.size());
1907 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1908 RepeatedValue E = Tree[i];
1909 Ops.append(E.second.getZExtValue(),
1910 ValueEntry(getRank(E.first), E.first));
1911 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001912
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00001913 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1914
Chris Lattner2fc319d2006-03-14 07:11:11 +00001915 // Now that we have linearized the tree to a list and have gathered all of
1916 // the operands and their ranks, sort the operands by their rank. Use a
1917 // stable_sort so that values with equal ranks will have their relative
1918 // positions maintained (and so the compiler is deterministic). Note that
1919 // this sorts so that the highest ranking values end up at the beginning of
1920 // the vector.
1921 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001922
Chris Lattner2fc319d2006-03-14 07:11:11 +00001923 // OptimizeExpression - Now that we have the expression tree in a convenient
1924 // sorted form, optimize it globally if possible.
1925 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00001926 if (V == I)
1927 // Self-referential expression in unreachable code.
1928 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00001929 // This expression tree simplified to something that isn't a tree,
1930 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00001931 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00001932 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001933 if (Instruction *VI = dyn_cast<Instruction>(V))
1934 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00001935 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001936 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00001937 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00001938 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001939
Chris Lattner2fc319d2006-03-14 07:11:11 +00001940 // We want to sink immediates as deeply as possible except in the case where
1941 // this is a multiply tree used only by an add, and the immediate is a -1.
1942 // In this case we reassociate to put the negation on the outside so that we
1943 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1944 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1945 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1946 isa<ConstantInt>(Ops.back().Op) &&
1947 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner38abecb2009-12-31 18:40:32 +00001948 ValueEntry Tmp = Ops.pop_back_val();
1949 Ops.insert(Ops.begin(), Tmp);
Chris Lattner2fc319d2006-03-14 07:11:11 +00001950 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001951
David Greened17c3912010-01-05 01:27:24 +00001952 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001953
Chris Lattner2fc319d2006-03-14 07:11:11 +00001954 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00001955 if (Ops[0].Op == I)
1956 // Self-referential expression in unreachable code.
1957 return;
1958
Chris Lattner2fc319d2006-03-14 07:11:11 +00001959 // This expression tree simplified to something that isn't a tree,
1960 // eliminate it.
1961 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001962 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1963 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00001964 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00001965 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00001966 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001967
Chris Lattner60b71b52009-12-31 19:24:52 +00001968 // Now that we ordered and optimized the expressions, splat them back into
1969 // the expression tree, removing any unneeded nodes.
1970 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00001971}
1972
Chris Lattner113f4f42002-06-25 16:13:24 +00001973bool Reassociate::runOnFunction(Function &F) {
Duncan Sands3293f462012-06-08 20:15:33 +00001974 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00001975 BuildRankMap(F);
1976
Chris Lattner1e506502005-05-07 21:59:39 +00001977 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00001978 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1979 // Optimize every instruction in the basic block.
1980 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1981 if (isInstructionTriviallyDead(II)) {
1982 EraseInst(II++);
1983 } else {
1984 OptimizeInst(II);
1985 assert(II->getParent() == BI && "Moved to a different block!");
1986 ++II;
1987 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00001988
Duncan Sands3293f462012-06-08 20:15:33 +00001989 // If this produced extra instructions to optimize, handle them now.
1990 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001991 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00001992 if (isInstructionTriviallyDead(I))
1993 EraseInst(I);
1994 else
1995 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001996 }
Duncan Sands3293f462012-06-08 20:15:33 +00001997 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00001998
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001999 // We are done with the rank map.
2000 RankMap.clear();
2001 ValueRankMap.clear();
2002
Chris Lattner1e506502005-05-07 21:59:39 +00002003 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002004}