blob: 1f343136e532126e4fde2fca4897a1ee45e0604e [file] [log] [blame]
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattnerf3ebc3f2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattnera5526832010-01-01 00:04:26 +000011// to promote better constant propagation, GCSE, LICM, PRE, etc.
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattnerf43e9742005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattnerc0f58002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000025#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/PostOrderIterator.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SetVector.h"
29#include "llvm/ADT/Statistic.h"
30#include "llvm/Assembly/Writer.h"
Chandler Carruth9fb823b2013-01-02 11:36:10 +000031#include "llvm/IR/Constants.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000037#include "llvm/Pass.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000038#include "llvm/Support/CFG.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000039#include "llvm/Support/Debug.h"
Chris Lattnerf72ce6e2009-03-31 22:13:29 +000040#include "llvm/Support/ValueHandle.h"
Chris Lattnerb25de3f2009-08-23 04:37:46 +000041#include "llvm/Support/raw_ostream.h"
Chandler Carruthed0881b2012-12-03 16:50:05 +000042#include "llvm/Transforms/Utils/Local.h"
Chris Lattner1e506502005-05-07 21:59:39 +000043#include <algorithm>
Chris Lattner49525f82004-01-09 06:02:20 +000044using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000045
Chris Lattner79a42ac2006-12-19 21:40:18 +000046STATISTIC(NumChanged, "Number of insts reassociated");
47STATISTIC(NumAnnihil, "Number of expr tree annihilated");
48STATISTIC(NumFactor , "Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000049
Chris Lattner79a42ac2006-12-19 21:40:18 +000050namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +000051 struct ValueEntry {
Chris Lattner1e506502005-05-07 21:59:39 +000052 unsigned Rank;
53 Value *Op;
54 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
55 };
56 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
57 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
58 }
Chris Lattner4c065092006-03-04 09:31:13 +000059}
Chris Lattner1e506502005-05-07 21:59:39 +000060
Devang Patel702f45d2008-11-21 21:00:20 +000061#ifndef NDEBUG
Chris Lattner4c065092006-03-04 09:31:13 +000062/// PrintOps - Print out the expression identified in the Ops list.
63///
Chris Lattner38abecb2009-12-31 18:40:32 +000064static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner4c065092006-03-04 09:31:13 +000065 Module *M = I->getParent()->getParent()->getParent();
David Greened17c3912010-01-05 01:27:24 +000066 dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattnerbc1512c2009-12-31 07:17:37 +000067 << *Ops[0].Op->getType() << '\t';
Chris Lattner57693dd2008-08-19 04:45:19 +000068 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
David Greened17c3912010-01-05 01:27:24 +000069 dbgs() << "[ ";
70 WriteAsOperand(dbgs(), Ops[i].Op, false, M);
71 dbgs() << ", #" << Ops[i].Rank << "] ";
Chris Lattner57693dd2008-08-19 04:45:19 +000072 }
Chris Lattner4c065092006-03-04 09:31:13 +000073}
Devang Patelcb181bb2008-11-21 20:00:59 +000074#endif
Bill Wendlingc94d86c2012-05-02 23:43:23 +000075
Dan Gohmand78c4002008-05-13 00:00:25 +000076namespace {
Chandler Carruth739ef802012-04-26 05:30:30 +000077 /// \brief Utility class representing a base and exponent pair which form one
78 /// factor of some product.
79 struct Factor {
80 Value *Base;
81 unsigned Power;
82
83 Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
84
85 /// \brief Sort factors by their Base.
86 struct BaseSorter {
87 bool operator()(const Factor &LHS, const Factor &RHS) {
88 return LHS.Base < RHS.Base;
89 }
90 };
91
92 /// \brief Compare factors for equal bases.
93 struct BaseEqual {
94 bool operator()(const Factor &LHS, const Factor &RHS) {
95 return LHS.Base == RHS.Base;
96 }
97 };
98
99 /// \brief Sort factors in descending order by their power.
100 struct PowerDescendingSorter {
101 bool operator()(const Factor &LHS, const Factor &RHS) {
102 return LHS.Power > RHS.Power;
103 }
104 };
105
106 /// \brief Compare factors for equal powers.
107 struct PowerEqual {
108 bool operator()(const Factor &LHS, const Factor &RHS) {
109 return LHS.Power == RHS.Power;
110 }
111 };
112 };
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000113
114 /// Utility class representing a non-constant Xor-operand. We classify
115 /// non-constant Xor-Operands into two categories:
116 /// C1) The operand is in the form "X & C", where C is a constant and C != ~0
117 /// C2)
118 /// C2.1) The operand is in the form of "X | C", where C is a non-zero
119 /// constant.
120 /// C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
121 /// operand as "E | 0"
122 class XorOpnd {
123 public:
124 XorOpnd(Value *V);
125 const XorOpnd &operator=(const XorOpnd &That);
126
127 bool isInvalid() const { return SymbolicPart == 0; }
128 bool isOrExpr() const { return isOr; }
129 Value *getValue() const { return OrigVal; }
130 Value *getSymbolicPart() const { return SymbolicPart; }
131 unsigned getSymbolicRank() const { return SymbolicRank; }
132 const APInt &getConstPart() const { return ConstPart; }
133
134 void Invalidate() { SymbolicPart = OrigVal = 0; }
135 void setSymbolicRank(unsigned R) { SymbolicRank = R; }
136
137 // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
138 // The purpose is twofold:
139 // 1) Cluster together the operands sharing the same symbolic-value.
140 // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
141 // could potentially shorten crital path, and expose more loop-invariants.
142 // Note that values' rank are basically defined in RPO order (FIXME).
143 // So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
144 // than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
145 // "z" in the order of X-Y-Z is better than any other orders.
146 struct PtrSortFunctor {
147 bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
148 return LHS->getSymbolicRank() < RHS->getSymbolicRank();
149 }
150 };
151 private:
152 Value *OrigVal;
153 Value *SymbolicPart;
154 APInt ConstPart;
155 unsigned SymbolicRank;
156 bool isOr;
157 };
Chandler Carruth739ef802012-04-26 05:30:30 +0000158}
159
160namespace {
Chris Lattner2dd09db2009-09-02 06:11:42 +0000161 class Reassociate : public FunctionPass {
Chris Lattner17229a72010-01-01 00:01:34 +0000162 DenseMap<BasicBlock*, unsigned> RankMap;
Craig Topper6e80c282012-03-26 06:58:25 +0000163 DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
Shuxin Yangc94c3bb2012-11-13 00:08:49 +0000164 SetVector<AssertingVH<Instruction> > RedoInsts;
Chris Lattner1e506502005-05-07 21:59:39 +0000165 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000166 public:
Nick Lewyckye7da2d62007-05-06 13:37:16 +0000167 static char ID; // Pass identification, replacement for typeid
Owen Anderson6c18d1a2010-10-19 17:21:58 +0000168 Reassociate() : FunctionPass(ID) {
169 initializeReassociatePass(*PassRegistry::getPassRegistry());
170 }
Devang Patel09f162c2007-05-01 21:15:47 +0000171
Chris Lattner113f4f42002-06-25 16:13:24 +0000172 bool runOnFunction(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000173
174 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner820d9712002-10-21 20:00:28 +0000175 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +0000176 }
177 private:
Chris Lattner113f4f42002-06-25 16:13:24 +0000178 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000179 unsigned getRank(Value *V);
Duncan Sands78386032012-06-15 08:37:50 +0000180 void ReassociateExpression(BinaryOperator *I);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000181 void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner38abecb2009-12-31 18:40:32 +0000182 Value *OptimizeExpression(BinaryOperator *I,
183 SmallVectorImpl<ValueEntry> &Ops);
184 Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000185 Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
186 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
187 Value *&Res);
188 bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
189 APInt &ConstOpnd, Value *&Res);
Chandler Carruth739ef802012-04-26 05:30:30 +0000190 bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
191 SmallVectorImpl<Factor> &Factors);
192 Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
193 SmallVectorImpl<Factor> &Factors);
194 Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +0000195 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Duncan Sands3293f462012-06-08 20:15:33 +0000196 void EraseInst(Instruction *I);
197 void OptimizeInst(Instruction *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000198 };
199}
200
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000201XorOpnd::XorOpnd(Value *V) {
Shuxin Yang6662fd02013-04-01 18:13:05 +0000202 assert(!isa<ConstantInt>(V) && "No ConstantInt");
Shuxin Yang7b0c94e2013-03-30 02:15:01 +0000203 OrigVal = V;
204 Instruction *I = dyn_cast<Instruction>(V);
205 SymbolicRank = 0;
206
207 if (I && (I->getOpcode() == Instruction::Or ||
208 I->getOpcode() == Instruction::And)) {
209 Value *V0 = I->getOperand(0);
210 Value *V1 = I->getOperand(1);
211 if (isa<ConstantInt>(V0))
212 std::swap(V0, V1);
213
214 if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
215 ConstPart = C->getValue();
216 SymbolicPart = V0;
217 isOr = (I->getOpcode() == Instruction::Or);
218 return;
219 }
220 }
221
222 // view the operand as "V | 0"
223 SymbolicPart = V;
224 ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
225 isOr = true;
226}
227
228const XorOpnd &XorOpnd::operator=(const XorOpnd &That) {
229 OrigVal = That.OrigVal;
230 SymbolicPart = That.SymbolicPart;
231 ConstPart = That.ConstPart;
232 SymbolicRank = That.SymbolicRank;
233 isOr = That.isOr;
234 return *this;
235}
236
Dan Gohmand78c4002008-05-13 00:00:25 +0000237char Reassociate::ID = 0;
Owen Andersona57b97e2010-07-21 22:09:45 +0000238INITIALIZE_PASS(Reassociate, "reassociate",
Owen Andersondf7a4f22010-10-07 22:25:06 +0000239 "Reassociate expressions", false, false)
Dan Gohmand78c4002008-05-13 00:00:25 +0000240
Brian Gaeke960707c2003-11-11 22:41:34 +0000241// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +0000242FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000243
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000244/// isReassociableOp - Return true if V is an instruction of the specified
245/// opcode and if it only has one use.
246static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
247 if (V->hasOneUse() && isa<Instruction>(V) &&
248 cast<Instruction>(V)->getOpcode() == Opcode)
249 return cast<BinaryOperator>(V);
250 return 0;
251}
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000252
Chris Lattner9f284e02005-05-08 20:57:04 +0000253static bool isUnmovableInstruction(Instruction *I) {
254 if (I->getOpcode() == Instruction::PHI ||
Bill Wendlingfa0ebcd2012-05-04 04:22:32 +0000255 I->getOpcode() == Instruction::LandingPad ||
Chris Lattner9f284e02005-05-08 20:57:04 +0000256 I->getOpcode() == Instruction::Alloca ||
257 I->getOpcode() == Instruction::Load ||
Chris Lattner9f284e02005-05-08 20:57:04 +0000258 I->getOpcode() == Instruction::Invoke ||
Dale Johannesenfb1caf32009-03-06 01:41:59 +0000259 (I->getOpcode() == Instruction::Call &&
260 !isa<DbgInfoIntrinsic>(I)) ||
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000261 I->getOpcode() == Instruction::UDiv ||
Reid Spencer7e80b0b2006-10-26 06:15:43 +0000262 I->getOpcode() == Instruction::SDiv ||
263 I->getOpcode() == Instruction::FDiv ||
Reid Spencer7eb55b32006-11-02 01:53:59 +0000264 I->getOpcode() == Instruction::URem ||
265 I->getOpcode() == Instruction::SRem ||
266 I->getOpcode() == Instruction::FRem)
Chris Lattner9f284e02005-05-08 20:57:04 +0000267 return true;
268 return false;
269}
270
Chris Lattner113f4f42002-06-25 16:13:24 +0000271void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000272 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000273
274 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +0000275 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000276 ValueRankMap[&*I] = ++i;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000277
Chris Lattner113f4f42002-06-25 16:13:24 +0000278 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000279 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000280 E = RPOT.end(); I != E; ++I) {
281 BasicBlock *BB = *I;
282 unsigned BBRank = RankMap[BB] = ++i << 16;
283
284 // Walk the basic block, adding precomputed ranks for any instructions that
285 // we cannot move. This ensures that the ranks for these instructions are
286 // all different in the block.
287 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
288 if (isUnmovableInstruction(I))
Chris Lattnerf72ce6e2009-03-31 22:13:29 +0000289 ValueRankMap[&*I] = ++BBRank;
Chris Lattner9f284e02005-05-08 20:57:04 +0000290 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000291}
292
293unsigned Reassociate::getRank(Value *V) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000294 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner17229a72010-01-01 00:01:34 +0000295 if (I == 0) {
296 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument.
297 return 0; // Otherwise it's a global or constant, rank 0.
298 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000299
Chris Lattner17229a72010-01-01 00:01:34 +0000300 if (unsigned Rank = ValueRankMap[I])
301 return Rank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000302
Chris Lattnerf43e9742005-05-07 04:08:02 +0000303 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
304 // we can reassociate expressions for code motion! Since we do not recurse
305 // for PHI nodes, we cannot have infinite recursion here, because there
306 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000307 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
308 for (unsigned i = 0, e = I->getNumOperands();
309 i != e && Rank != MaxRank; ++i)
310 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000311
Chris Lattner6e2086d2005-05-08 00:08:33 +0000312 // If this is a not or neg instruction, do not count it for rank. This
313 // assures us that X and ~X will have the same rank.
Duncan Sands9dff9be2010-02-15 16:12:20 +0000314 if (!I->getType()->isIntegerTy() ||
Owen Andersonbb2501b2009-07-13 22:18:28 +0000315 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
Chris Lattner6e2086d2005-05-08 00:08:33 +0000316 ++Rank;
317
David Greened17c3912010-01-05 01:27:24 +0000318 //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
Chris Lattnerb25de3f2009-08-23 04:37:46 +0000319 // << Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000320
Chris Lattner17229a72010-01-01 00:01:34 +0000321 return ValueRankMap[I] = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000322}
323
Chris Lattner877b1142005-05-08 21:28:52 +0000324/// LowerNegateToMultiply - Replace 0-X with X*-1.
325///
Duncan Sands3293f462012-06-08 20:15:33 +0000326static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Owen Anderson5a1acd92009-07-31 20:28:14 +0000327 Constant *Cst = Constant::getAllOnesValue(Neg->getType());
Chris Lattner877b1142005-05-08 21:28:52 +0000328
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000329 BinaryOperator *Res =
330 BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Duncan Sands3293f462012-06-08 20:15:33 +0000331 Neg->setOperand(1, Constant::getNullValue(Neg->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000332 Res->takeName(Neg);
Chris Lattner877b1142005-05-08 21:28:52 +0000333 Neg->replaceAllUsesWith(Res);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000334 Res->setDebugLoc(Neg->getDebugLoc());
Chris Lattner877b1142005-05-08 21:28:52 +0000335 return Res;
336}
337
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000338/// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
339/// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
340/// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
341/// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
342/// even x in Bitwidth-bit arithmetic.
343static unsigned CarmichaelShift(unsigned Bitwidth) {
344 if (Bitwidth < 3)
345 return Bitwidth - 1;
346 return Bitwidth - 2;
347}
348
349/// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
350/// reducing the combined weight using any special properties of the operation.
351/// The existing weight LHS represents the computation X op X op ... op X where
352/// X occurs LHS times. The combined weight represents X op X op ... op X with
353/// X occurring LHS + RHS times. If op is "Xor" for example then the combined
354/// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
355/// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
356static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
357 // If we were working with infinite precision arithmetic then the combined
358 // weight would be LHS + RHS. But we are using finite precision arithmetic,
359 // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
360 // for nilpotent operations and addition, but not for idempotent operations
361 // and multiplication), so it is important to correctly reduce the combined
362 // weight back into range if wrapping would be wrong.
363
364 // If RHS is zero then the weight didn't change.
365 if (RHS.isMinValue())
366 return;
367 // If LHS is zero then the combined weight is RHS.
368 if (LHS.isMinValue()) {
369 LHS = RHS;
370 return;
371 }
372 // From this point on we know that neither LHS nor RHS is zero.
373
374 if (Instruction::isIdempotent(Opcode)) {
375 // Idempotent means X op X === X, so any non-zero weight is equivalent to a
376 // weight of 1. Keeping weights at zero or one also means that wrapping is
377 // not a problem.
378 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
379 return; // Return a weight of 1.
380 }
381 if (Instruction::isNilpotent(Opcode)) {
382 // Nilpotent means X op X === 0, so reduce weights modulo 2.
383 assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
384 LHS = 0; // 1 + 1 === 0 modulo 2.
385 return;
386 }
387 if (Opcode == Instruction::Add) {
388 // TODO: Reduce the weight by exploiting nsw/nuw?
389 LHS += RHS;
390 return;
391 }
392
393 assert(Opcode == Instruction::Mul && "Unknown associative operation!");
394 unsigned Bitwidth = LHS.getBitWidth();
395 // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
396 // can be replaced with W-CM. That's because x^W=x^(W-CM) for every Bitwidth
397 // bit number x, since either x is odd in which case x^CM = 1, or x is even in
398 // which case both x^W and x^(W - CM) are zero. By subtracting off multiples
399 // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
400 // which by a happy accident means that they can always be represented using
401 // Bitwidth bits.
402 // TODO: Reduce the weight by exploiting nsw/nuw? (Could do much better than
403 // the Carmichael number).
404 if (Bitwidth > 3) {
405 /// CM - The value of Carmichael's lambda function.
406 APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
407 // Any weight W >= Threshold can be replaced with W - CM.
408 APInt Threshold = CM + Bitwidth;
409 assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
410 // For Bitwidth 4 or more the following sum does not overflow.
411 LHS += RHS;
412 while (LHS.uge(Threshold))
413 LHS -= CM;
414 } else {
415 // To avoid problems with overflow do everything the same as above but using
416 // a larger type.
417 unsigned CM = 1U << CarmichaelShift(Bitwidth);
418 unsigned Threshold = CM + Bitwidth;
419 assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
420 "Weights not reduced!");
421 unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
422 while (Total >= Threshold)
423 Total -= CM;
424 LHS = Total;
425 }
426}
427
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000428typedef std::pair<Value*, APInt> RepeatedValue;
429
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000430/// LinearizeExprTree - Given an associative binary expression, return the leaf
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000431/// nodes in Ops along with their weights (how many times the leaf occurs). The
432/// original expression is the same as
433/// (Ops[0].first op Ops[0].first op ... Ops[0].first) <- Ops[0].second times
Nadav Rotem465834c2012-07-24 10:51:42 +0000434/// op
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000435/// (Ops[1].first op Ops[1].first op ... Ops[1].first) <- Ops[1].second times
436/// op
437/// ...
438/// op
439/// (Ops[N].first op Ops[N].first op ... Ops[N].first) <- Ops[N].second times
440///
Duncan Sandsac852c72012-11-15 09:58:38 +0000441/// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000442///
443/// This routine may modify the function, in which case it returns 'true'. The
444/// changes it makes may well be destructive, changing the value computed by 'I'
445/// to something completely different. Thus if the routine returns 'true' then
446/// you MUST either replace I with a new expression computed from the Ops array,
447/// or use RewriteExprTree to put the values back in.
Chris Lattner1e506502005-05-07 21:59:39 +0000448///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000449/// A leaf node is either not a binary operation of the same kind as the root
450/// node 'I' (i.e. is not a binary operator at all, or is, but with a different
451/// opcode), or is the same kind of binary operator but has a use which either
452/// does not belong to the expression, or does belong to the expression but is
453/// a leaf node. Every leaf node has at least one use that is a non-leaf node
454/// of the expression, while for non-leaf nodes (except for the root 'I') every
455/// use is a non-leaf node of the expression.
456///
457/// For example:
458/// expression graph node names
459///
460/// + | I
461/// / \ |
462/// + + | A, B
463/// / \ / \ |
464/// * + * | C, D, E
465/// / \ / \ / \ |
466/// + * | F, G
467///
468/// The leaf nodes are C, E, F and G. The Ops array will contain (maybe not in
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000469/// that order) (C, 1), (E, 1), (F, 2), (G, 2).
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000470///
471/// The expression is maximal: if some instruction is a binary operator of the
472/// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
473/// then the instruction also belongs to the expression, is not a leaf node of
474/// it, and its operands also belong to the expression (but may be leaf nodes).
475///
476/// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
477/// order to ensure that every non-root node in the expression has *exactly one*
478/// use by a non-leaf node of the expression. This destruction means that the
Duncan Sands3c05cd32012-05-26 16:42:52 +0000479/// caller MUST either replace 'I' with a new expression or use something like
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000480/// RewriteExprTree to put the values back in if the routine indicates that it
481/// made a change by returning 'true'.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000482///
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000483/// In the above example either the right operand of A or the left operand of B
484/// will be replaced by undef. If it is B's operand then this gives:
485///
486/// + | I
487/// / \ |
488/// + + | A, B - operand of B replaced with undef
489/// / \ \ |
490/// * + * | C, D, E
491/// / \ / \ / \ |
492/// + * | F, G
493///
Duncan Sands3c05cd32012-05-26 16:42:52 +0000494/// Note that such undef operands can only be reached by passing through 'I'.
495/// For example, if you visit operands recursively starting from a leaf node
496/// then you will never see such an undef operand unless you get back to 'I',
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000497/// which requires passing through a phi node.
498///
499/// Note that this routine may also mutate binary operators of the wrong type
500/// that have all uses inside the expression (i.e. only used by non-leaf nodes
501/// of the expression) if it can turn them into binary operators of the right
502/// type and thus make the expression bigger.
503
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000504static bool LinearizeExprTree(BinaryOperator *I,
505 SmallVectorImpl<RepeatedValue> &Ops) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000506 DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000507 unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
508 unsigned Opcode = I->getOpcode();
509 assert(Instruction::isAssociative(Opcode) &&
510 Instruction::isCommutative(Opcode) &&
511 "Expected an associative and commutative operation!");
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000512
513 // Visit all operands of the expression, keeping track of their weight (the
514 // number of paths from the expression root to the operand, or if you like
515 // the number of times that operand occurs in the linearized expression).
516 // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
517 // while A has weight two.
518
519 // Worklist of non-leaf nodes (their operands are in the expression too) along
520 // with their weights, representing a certain number of paths to the operator.
521 // If an operator occurs in the worklist multiple times then we found multiple
522 // ways to get to it.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000523 SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
524 Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
525 bool MadeChange = false;
Chris Lattner1e506502005-05-07 21:59:39 +0000526
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000527 // Leaves of the expression are values that either aren't the right kind of
528 // operation (eg: a constant, or a multiply in an add tree), or are, but have
529 // some uses that are not inside the expression. For example, in I = X + X,
530 // X = A + B, the value X has two uses (by I) that are in the expression. If
531 // X has any other uses, for example in a return instruction, then we consider
532 // X to be a leaf, and won't analyze it further. When we first visit a value,
533 // if it has more than one use then at first we conservatively consider it to
534 // be a leaf. Later, as the expression is explored, we may discover some more
535 // uses of the value from inside the expression. If all uses turn out to be
536 // from within the expression (and the value is a binary operator of the right
537 // kind) then the value is no longer considered to be a leaf, and its operands
538 // are explored.
Chris Lattner1e506502005-05-07 21:59:39 +0000539
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000540 // Leaves - Keeps track of the set of putative leaves as well as the number of
541 // paths to each leaf seen so far.
Duncan Sands72aea012012-06-12 20:26:43 +0000542 typedef DenseMap<Value*, APInt> LeafMap;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000543 LeafMap Leaves; // Leaf -> Total weight so far.
544 SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
545
546#ifndef NDEBUG
547 SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
548#endif
549 while (!Worklist.empty()) {
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000550 std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000551 I = P.first; // We examine the operands of this binary operator.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000552
553 for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
554 Value *Op = I->getOperand(OpIdx);
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000555 APInt Weight = P.second; // Number of paths to this operand.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000556 DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
557 assert(!Op->use_empty() && "No uses, so how did we get to it?!");
558
559 // If this is a binary operation of the right kind with only one use then
560 // add its operands to the expression.
561 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
562 assert(Visited.insert(Op) && "Not first visit!");
563 DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
564 Worklist.push_back(std::make_pair(BO, Weight));
565 continue;
566 }
567
568 // Appears to be a leaf. Is the operand already in the set of leaves?
569 LeafMap::iterator It = Leaves.find(Op);
570 if (It == Leaves.end()) {
571 // Not in the leaf map. Must be the first time we saw this operand.
572 assert(Visited.insert(Op) && "Not first visit!");
573 if (!Op->hasOneUse()) {
574 // This value has uses not accounted for by the expression, so it is
575 // not safe to modify. Mark it as being a leaf.
576 DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
577 LeafOrder.push_back(Op);
578 Leaves[Op] = Weight;
579 continue;
580 }
581 // No uses outside the expression, try morphing it.
582 } else if (It != Leaves.end()) {
583 // Already in the leaf map.
584 assert(Visited.count(Op) && "In leaf map but not visited!");
585
586 // Update the number of paths to the leaf.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000587 IncorporateWeight(It->second, Weight, Opcode);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000588
Duncan Sands56514522012-07-26 09:26:40 +0000589#if 0 // TODO: Re-enable once PR13021 is fixed.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000590 // The leaf already has one use from inside the expression. As we want
591 // exactly one such use, drop this new use of the leaf.
592 assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
593 I->setOperand(OpIdx, UndefValue::get(I->getType()));
594 MadeChange = true;
595
596 // If the leaf is a binary operation of the right kind and we now see
597 // that its multiple original uses were in fact all by nodes belonging
598 // to the expression, then no longer consider it to be a leaf and add
599 // its operands to the expression.
600 if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
601 DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
602 Worklist.push_back(std::make_pair(BO, It->second));
603 Leaves.erase(It);
604 continue;
605 }
Duncan Sands56514522012-07-26 09:26:40 +0000606#endif
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000607
608 // If we still have uses that are not accounted for by the expression
609 // then it is not safe to modify the value.
610 if (!Op->hasOneUse())
611 continue;
612
613 // No uses outside the expression, try morphing it.
614 Weight = It->second;
615 Leaves.erase(It); // Since the value may be morphed below.
616 }
617
618 // At this point we have a value which, first of all, is not a binary
619 // expression of the right kind, and secondly, is only used inside the
620 // expression. This means that it can safely be modified. See if we
621 // can usefully morph it into an expression of the right kind.
622 assert((!isa<Instruction>(Op) ||
623 cast<Instruction>(Op)->getOpcode() != Opcode) &&
624 "Should have been handled above!");
625 assert(Op->hasOneUse() && "Has uses outside the expression tree!");
626
627 // If this is a multiply expression, turn any internal negations into
628 // multiplies by -1 so they can be reassociated.
629 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op);
630 if (Opcode == Instruction::Mul && BO && BinaryOperator::isNeg(BO)) {
631 DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
Duncan Sands3293f462012-06-08 20:15:33 +0000632 BO = LowerNegateToMultiply(BO);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000633 DEBUG(dbgs() << *BO << 'n');
634 Worklist.push_back(std::make_pair(BO, Weight));
635 MadeChange = true;
636 continue;
637 }
638
639 // Failed to morph into an expression of the right type. This really is
640 // a leaf.
641 DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
642 assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
643 LeafOrder.push_back(Op);
644 Leaves[Op] = Weight;
Chris Lattner877b1142005-05-08 21:28:52 +0000645 }
646 }
647
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000648 // The leaves, repeated according to their weights, represent the linearized
649 // form of the expression.
650 for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
651 Value *V = LeafOrder[i];
652 LeafMap::iterator It = Leaves.find(V);
653 if (It == Leaves.end())
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000654 // Node initially thought to be a leaf wasn't.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000655 continue;
656 assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000657 APInt Weight = It->second;
658 if (Weight.isMinValue())
659 // Leaf already output or weight reduction eliminated it.
660 continue;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000661 // Ensure the leaf is only output once.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000662 It->second = 0;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000663 Ops.push_back(std::make_pair(V, Weight));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000664 }
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000665
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000666 // For nilpotent operations or addition there may be no operands, for example
667 // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
668 // in both cases the weight reduces to 0 causing the value to be skipped.
669 if (Ops.empty()) {
Duncan Sandsac852c72012-11-15 09:58:38 +0000670 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
Duncan Sands318a89d2012-06-13 09:42:13 +0000671 assert(Identity && "Associative operation without identity!");
Duncan Sandsd7aeefe2012-06-12 14:33:56 +0000672 Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
673 }
674
675 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000676}
677
Chris Lattner1e506502005-05-07 21:59:39 +0000678// RewriteExprTree - Now that the operands for this expression tree are
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000679// linearized and optimized, emit them in-order.
Chris Lattnerc5f866b2006-03-14 16:04:29 +0000680void Reassociate::RewriteExprTree(BinaryOperator *I,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000681 SmallVectorImpl<ValueEntry> &Ops) {
682 assert(Ops.size() > 1 && "Single values should be used directly!");
Dan Gohman08d2c982011-02-02 02:02:34 +0000683
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000684 // Since our optimizations should never increase the number of operations, the
685 // new expression can usually be written reusing the existing binary operators
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000686 // from the original expression tree, without creating any new instructions,
687 // though the rewritten expression may have a completely different topology.
688 // We take care to not change anything if the new expression will be the same
689 // as the original. If more than trivial changes (like commuting operands)
690 // were made then we are obliged to clear out any optional subclass data like
691 // nsw flags.
Dan Gohman08d2c982011-02-02 02:02:34 +0000692
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000693 /// NodesToRewrite - Nodes from the original expression available for writing
694 /// the new expression into.
695 SmallVector<BinaryOperator*, 8> NodesToRewrite;
696 unsigned Opcode = I->getOpcode();
Duncan Sands98382862012-06-29 19:03:05 +0000697 BinaryOperator *Op = I;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000698
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000699 /// NotRewritable - The operands being written will be the leaves of the new
700 /// expression and must not be used as inner nodes (via NodesToRewrite) by
701 /// mistake. Inner nodes are always reassociable, and usually leaves are not
702 /// (if they were they would have been incorporated into the expression and so
703 /// would not be leaves), so most of the time there is no danger of this. But
704 /// in rare cases a leaf may become reassociable if an optimization kills uses
705 /// of it, or it may momentarily become reassociable during rewriting (below)
706 /// due it being removed as an operand of one of its uses. Ensure that misuse
707 /// of leaf nodes as inner nodes cannot occur by remembering all of the future
708 /// leaves and refusing to reuse any of them as inner nodes.
709 SmallPtrSet<Value*, 8> NotRewritable;
710 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
711 NotRewritable.insert(Ops[i].Op);
712
Duncan Sands3c05cd32012-05-26 16:42:52 +0000713 // ExpressionChanged - Non-null if the rewritten expression differs from the
714 // original in some non-trivial way, requiring the clearing of optional flags.
715 // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
716 BinaryOperator *ExpressionChanged = 0;
Duncan Sands514db112012-06-27 14:19:00 +0000717 for (unsigned i = 0; ; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000718 // The last operation (which comes earliest in the IR) is special as both
719 // operands will come from Ops, rather than just one with the other being
720 // a subexpression.
721 if (i+2 == Ops.size()) {
722 Value *NewLHS = Ops[i].Op;
723 Value *NewRHS = Ops[i+1].Op;
724 Value *OldLHS = Op->getOperand(0);
725 Value *OldRHS = Op->getOperand(1);
726
727 if (NewLHS == OldLHS && NewRHS == OldRHS)
728 // Nothing changed, leave it alone.
729 break;
730
731 if (NewLHS == OldRHS && NewRHS == OldLHS) {
732 // The order of the operands was reversed. Swap them.
733 DEBUG(dbgs() << "RA: " << *Op << '\n');
734 Op->swapOperands();
735 DEBUG(dbgs() << "TO: " << *Op << '\n');
736 MadeChange = true;
737 ++NumChanged;
738 break;
739 }
740
741 // The new operation differs non-trivially from the original. Overwrite
742 // the old operands with the new ones.
743 DEBUG(dbgs() << "RA: " << *Op << '\n');
744 if (NewLHS != OldLHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000745 BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
746 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000747 NodesToRewrite.push_back(BO);
748 Op->setOperand(0, NewLHS);
749 }
750 if (NewRHS != OldRHS) {
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000751 BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
752 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000753 NodesToRewrite.push_back(BO);
754 Op->setOperand(1, NewRHS);
755 }
756 DEBUG(dbgs() << "TO: " << *Op << '\n');
757
Duncan Sands3c05cd32012-05-26 16:42:52 +0000758 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000759 MadeChange = true;
760 ++NumChanged;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000761
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000762 break;
Chris Lattner1e506502005-05-07 21:59:39 +0000763 }
Chris Lattner1e506502005-05-07 21:59:39 +0000764
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000765 // Not the last operation. The left-hand side will be a sub-expression
766 // while the right-hand side will be the current element of Ops.
767 Value *NewRHS = Ops[i].Op;
768 if (NewRHS != Op->getOperand(1)) {
769 DEBUG(dbgs() << "RA: " << *Op << '\n');
770 if (NewRHS == Op->getOperand(0)) {
771 // The new right-hand side was already present as the left operand. If
772 // we are lucky then swapping the operands will sort out both of them.
773 Op->swapOperands();
774 } else {
775 // Overwrite with the new right-hand side.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000776 BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
777 if (BO && !NotRewritable.count(BO))
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000778 NodesToRewrite.push_back(BO);
779 Op->setOperand(1, NewRHS);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000780 ExpressionChanged = Op;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000781 }
782 DEBUG(dbgs() << "TO: " << *Op << '\n');
783 MadeChange = true;
784 ++NumChanged;
785 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000786
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000787 // Now deal with the left-hand side. If this is already an operation node
788 // from the original expression then just rewrite the rest of the expression
789 // into it.
Duncan Sands20bd7fa2012-11-18 19:27:01 +0000790 BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
791 if (BO && !NotRewritable.count(BO)) {
Duncan Sands98382862012-06-29 19:03:05 +0000792 Op = BO;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000793 continue;
794 }
Dan Gohman08d2c982011-02-02 02:02:34 +0000795
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000796 // Otherwise, grab a spare node from the original expression and use that as
Duncan Sands369c6d22012-06-29 13:25:06 +0000797 // the left-hand side. If there are no nodes left then the optimizers made
798 // an expression with more nodes than the original! This usually means that
799 // they did something stupid but it might mean that the problem was just too
800 // hard (finding the mimimal number of multiplications needed to realize a
801 // multiplication expression is NP-complete). Whatever the reason, smart or
802 // stupid, create a new node if there are none left.
Duncan Sands98382862012-06-29 19:03:05 +0000803 BinaryOperator *NewOp;
Duncan Sands369c6d22012-06-29 13:25:06 +0000804 if (NodesToRewrite.empty()) {
805 Constant *Undef = UndefValue::get(I->getType());
Duncan Sands98382862012-06-29 19:03:05 +0000806 NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
807 Undef, Undef, "", I);
808 } else {
809 NewOp = NodesToRewrite.pop_back_val();
Duncan Sands369c6d22012-06-29 13:25:06 +0000810 }
811
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000812 DEBUG(dbgs() << "RA: " << *Op << '\n');
Duncan Sands98382862012-06-29 19:03:05 +0000813 Op->setOperand(0, NewOp);
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000814 DEBUG(dbgs() << "TO: " << *Op << '\n');
Duncan Sands3c05cd32012-05-26 16:42:52 +0000815 ExpressionChanged = Op;
Chris Lattner1e506502005-05-07 21:59:39 +0000816 MadeChange = true;
817 ++NumChanged;
Duncan Sands98382862012-06-29 19:03:05 +0000818 Op = NewOp;
Chris Lattner1e506502005-05-07 21:59:39 +0000819 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000820
Duncan Sands3c05cd32012-05-26 16:42:52 +0000821 // If the expression changed non-trivially then clear out all subclass data
Duncan Sands514db112012-06-27 14:19:00 +0000822 // starting from the operator specified in ExpressionChanged, and compactify
823 // the operators to just before the expression root to guarantee that the
824 // expression tree is dominated by all of Ops.
825 if (ExpressionChanged)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000826 do {
Duncan Sands3c05cd32012-05-26 16:42:52 +0000827 ExpressionChanged->clearSubclassOptionalData();
828 if (ExpressionChanged == I)
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000829 break;
Duncan Sands514db112012-06-27 14:19:00 +0000830 ExpressionChanged->moveBefore(I);
Duncan Sands3c05cd32012-05-26 16:42:52 +0000831 ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->use_begin());
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000832 } while (1);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000833
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000834 // Throw away any left over nodes from the original expression.
835 for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
Duncan Sands3293f462012-06-08 20:15:33 +0000836 RedoInsts.insert(NodesToRewrite[i]);
Chris Lattner1e506502005-05-07 21:59:39 +0000837}
838
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000839/// NegateValue - Insert instructions before the instruction pointed to by BI,
840/// that computes the negative version of the value specified. The negative
841/// version of the value is returned, and BI is left pointing at the instruction
842/// that should be processed next by the reassociation pass.
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000843static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattnerfed33972009-12-31 20:34:32 +0000844 if (Constant *C = dyn_cast<Constant>(V))
845 return ConstantExpr::getNeg(C);
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000846
Chris Lattner7bc532d2002-05-16 04:37:07 +0000847 // We are trying to expose opportunity for reassociation. One of the things
848 // that we want to do to achieve this is to push a negation as deep into an
849 // expression chain as possible, to expose the add instructions. In practice,
850 // this means that we turn this:
851 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
852 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
853 // the constants. We assume that instcombine will clean up the mess later if
Chris Lattnera5526832010-01-01 00:04:26 +0000854 // we introduce tons of unnecessary negation instructions.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000855 //
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000856 if (BinaryOperator *I = isReassociableOp(V, Instruction::Add)) {
857 // Push the negates through the add.
858 I->setOperand(0, NegateValue(I->getOperand(0), BI));
859 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000860
Duncan Sandsbddfb2f2012-05-25 12:03:02 +0000861 // We must move the add instruction here, because the neg instructions do
862 // not dominate the old add instruction in general. By moving it, we are
863 // assured that the neg instructions we just inserted dominate the
864 // instruction we are about to insert after them.
865 //
866 I->moveBefore(BI);
867 I->setName(I->getName()+".neg");
868 return I;
869 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000870
Chris Lattnerfed33972009-12-31 20:34:32 +0000871 // Okay, we need to materialize a negated version of V with an instruction.
872 // Scan the use lists of V to see if we have one already.
873 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
Gabor Greif782f6242010-07-12 12:03:02 +0000874 User *U = *UI;
875 if (!BinaryOperator::isNeg(U)) continue;
Chris Lattnerfed33972009-12-31 20:34:32 +0000876
877 // We found one! Now we have to make sure that the definition dominates
878 // this use. We do this by moving it to the entry block (if it is a
879 // non-instruction value) or right after the definition. These negates will
880 // be zapped by reassociate later, so we don't need much finesse here.
Gabor Greif782f6242010-07-12 12:03:02 +0000881 BinaryOperator *TheNeg = cast<BinaryOperator>(U);
Chris Lattnere199d2d2010-01-02 21:46:33 +0000882
883 // Verify that the negate is in this function, V might be a constant expr.
884 if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
885 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000886
Chris Lattnerfed33972009-12-31 20:34:32 +0000887 BasicBlock::iterator InsertPt;
888 if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
889 if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
890 InsertPt = II->getNormalDest()->begin();
891 } else {
892 InsertPt = InstInput;
893 ++InsertPt;
894 }
895 while (isa<PHINode>(InsertPt)) ++InsertPt;
896 } else {
897 InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
898 }
899 TheNeg->moveBefore(InsertPt);
900 return TheNeg;
901 }
Chris Lattner7bc532d2002-05-16 04:37:07 +0000902
903 // Insert a 'neg' instruction that subtracts the value from zero to get the
904 // negation.
Dan Gohman5476cfd2009-08-12 16:23:25 +0000905 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000906}
907
Chris Lattner902537c2008-02-17 20:44:51 +0000908/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
909/// X-Y into (X + -Y).
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000910static bool ShouldBreakUpSubtract(Instruction *Sub) {
Chris Lattner902537c2008-02-17 20:44:51 +0000911 // If this is a negation, we can't split it up!
Owen Andersonbb2501b2009-07-13 22:18:28 +0000912 if (BinaryOperator::isNeg(Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000913 return false;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000914
Chris Lattner902537c2008-02-17 20:44:51 +0000915 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattnera70d1382008-02-17 20:51:26 +0000916 // subtract or if this is only used by one.
917 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
918 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000919 return true;
Chris Lattnera70d1382008-02-17 20:51:26 +0000920 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner5f08ec82008-02-17 20:54:40 +0000921 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner902537c2008-02-17 20:44:51 +0000922 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000923 if (Sub->hasOneUse() &&
Chris Lattnera70d1382008-02-17 20:51:26 +0000924 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
925 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner902537c2008-02-17 20:44:51 +0000926 return true;
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000927
Chris Lattner902537c2008-02-17 20:44:51 +0000928 return false;
929}
930
Chris Lattnerf43e9742005-05-07 04:08:02 +0000931/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
932/// only used by an add, transform this into (X+(0-Y)) to promote better
933/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000934static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
Chris Lattnera5526832010-01-01 00:04:26 +0000935 // Convert a subtract into an add and a neg instruction. This allows sub
936 // instructions to be commuted with other add instructions.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000937 //
Chris Lattnera5526832010-01-01 00:04:26 +0000938 // Calculate the negative value of Operand 1 of the sub instruction,
939 // and set it as the RHS of the add instruction we just made.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000940 //
Nick Lewycky7935bcb2009-11-14 07:25:54 +0000941 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000942 BinaryOperator *New =
Gabor Greife1f6e4b2008-05-16 19:29:10 +0000943 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Duncan Sands3293f462012-06-08 20:15:33 +0000944 Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
945 Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
Chris Lattner6e0123b2007-02-11 01:23:03 +0000946 New->takeName(Sub);
Chris Lattnerf43e9742005-05-07 04:08:02 +0000947
948 // Everyone now refers to the add instruction.
949 Sub->replaceAllUsesWith(New);
Devang Patel80d1d3a2011-04-28 22:48:14 +0000950 New->setDebugLoc(Sub->getDebugLoc());
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000951
David Greened17c3912010-01-05 01:27:24 +0000952 DEBUG(dbgs() << "Negated: " << *New << '\n');
Chris Lattnerf43e9742005-05-07 04:08:02 +0000953 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000954}
955
Chris Lattnercea57992005-05-07 04:24:13 +0000956/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
957/// by one, change this into a multiply by a constant to assist with further
958/// reassociation.
Duncan Sands3293f462012-06-08 20:15:33 +0000959static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
960 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
961 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000962
Duncan Sands3293f462012-06-08 20:15:33 +0000963 BinaryOperator *Mul =
964 BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
965 Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
966 Mul->takeName(Shl);
967 Shl->replaceAllUsesWith(Mul);
968 Mul->setDebugLoc(Shl->getDebugLoc());
969 return Mul;
Chris Lattnercea57992005-05-07 04:24:13 +0000970}
971
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000972/// FindInOperandList - Scan backwards and forwards among values with the same
973/// rank as element i to see if X exists. If X does not exist, return i. This
974/// is useful when scanning for 'x' when we see '-x' because they both get the
975/// same rank.
Chris Lattner38abecb2009-12-31 18:40:32 +0000976static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
Chris Lattner5847e5e2005-05-08 18:59:37 +0000977 Value *X) {
978 unsigned XRank = Ops[i].Rank;
979 unsigned e = Ops.size();
980 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
981 if (Ops[j].Op == X)
982 return j;
Chris Lattner0c59ac32010-01-01 01:13:15 +0000983 // Scan backwards.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000984 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
985 if (Ops[j].Op == X)
986 return j;
987 return i;
988}
989
Chris Lattner4c065092006-03-04 09:31:13 +0000990/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
991/// and returning the result. Insert the tree before I.
Bill Wendling274ba892012-05-02 09:59:45 +0000992static Value *EmitAddTreeOfValues(Instruction *I,
993 SmallVectorImpl<WeakVH> &Ops){
Chris Lattner4c065092006-03-04 09:31:13 +0000994 if (Ops.size() == 1) return Ops.back();
Bill Wendlingc94d86c2012-05-02 23:43:23 +0000995
Chris Lattner4c065092006-03-04 09:31:13 +0000996 Value *V1 = Ops.back();
997 Ops.pop_back();
998 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greife1f6e4b2008-05-16 19:29:10 +0000999 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Chris Lattner4c065092006-03-04 09:31:13 +00001000}
1001
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001002/// RemoveFactorFromExpression - If V is an expression tree that is a
Chris Lattner4c065092006-03-04 09:31:13 +00001003/// multiplication sequence, and if this sequence contains a multiply by Factor,
1004/// remove Factor from the tree and return the new tree.
1005Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
1006 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1007 if (!BO) return 0;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001008
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001009 SmallVector<RepeatedValue, 8> Tree;
1010 MadeChange |= LinearizeExprTree(BO, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001011 SmallVector<ValueEntry, 8> Factors;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001012 Factors.reserve(Tree.size());
1013 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1014 RepeatedValue E = Tree[i];
1015 Factors.append(E.second.getZExtValue(),
1016 ValueEntry(getRank(E.first), E.first));
1017 }
Chris Lattner4c065092006-03-04 09:31:13 +00001018
1019 bool FoundFactor = false;
Chris Lattner0c59ac32010-01-01 01:13:15 +00001020 bool NeedsNegate = false;
1021 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
Chris Lattner4c065092006-03-04 09:31:13 +00001022 if (Factors[i].Op == Factor) {
1023 FoundFactor = true;
1024 Factors.erase(Factors.begin()+i);
1025 break;
1026 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001027
Chris Lattner0c59ac32010-01-01 01:13:15 +00001028 // If this is a negative version of this factor, remove it.
1029 if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
1030 if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
1031 if (FC1->getValue() == -FC2->getValue()) {
1032 FoundFactor = NeedsNegate = true;
1033 Factors.erase(Factors.begin()+i);
1034 break;
1035 }
1036 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001037
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001038 if (!FoundFactor) {
1039 // Make sure to restore the operands to the expression tree.
1040 RewriteExprTree(BO, Factors);
1041 return 0;
1042 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001043
Chris Lattner0c59ac32010-01-01 01:13:15 +00001044 BasicBlock::iterator InsertPt = BO; ++InsertPt;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001045
Chris Lattner1d897942009-12-31 19:34:45 +00001046 // If this was just a single multiply, remove the multiply and return the only
1047 // remaining operand.
1048 if (Factors.size() == 1) {
Duncan Sands3293f462012-06-08 20:15:33 +00001049 RedoInsts.insert(BO);
Chris Lattner0c59ac32010-01-01 01:13:15 +00001050 V = Factors[0].Op;
1051 } else {
1052 RewriteExprTree(BO, Factors);
1053 V = BO;
Chris Lattner1d897942009-12-31 19:34:45 +00001054 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001055
Chris Lattner0c59ac32010-01-01 01:13:15 +00001056 if (NeedsNegate)
1057 V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001058
Chris Lattner0c59ac32010-01-01 01:13:15 +00001059 return V;
Chris Lattner4c065092006-03-04 09:31:13 +00001060}
1061
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001062/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
1063/// add its operands as factors, otherwise add V to the list of factors.
Chris Lattnerc6c15232010-03-05 07:18:54 +00001064///
1065/// Ops is the top-level list of add operands we're trying to factor.
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001066static void FindSingleUseMultiplyFactors(Value *V,
Chris Lattnerc6c15232010-03-05 07:18:54 +00001067 SmallVectorImpl<Value*> &Factors,
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001068 const SmallVectorImpl<ValueEntry> &Ops) {
1069 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
1070 if (!BO) {
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001071 Factors.push_back(V);
1072 return;
1073 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001074
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001075 // Otherwise, add the LHS and RHS to the list of factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001076 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
1077 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001078}
1079
Chris Lattner5f8a0052009-12-31 07:59:34 +00001080/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
1081/// instruction. This optimizes based on identities. If it can be reduced to
1082/// a single Value, it is returned, otherwise the Ops list is mutated as
1083/// necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001084static Value *OptimizeAndOrXor(unsigned Opcode,
1085 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001086 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
1087 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
1088 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1089 // First, check for X and ~X in the operand list.
1090 assert(i < Ops.size());
1091 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
1092 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
1093 unsigned FoundX = FindInOperandList(Ops, i, X);
1094 if (FoundX != i) {
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001095 if (Opcode == Instruction::And) // ...&X&~X = 0
Chris Lattner5f8a0052009-12-31 07:59:34 +00001096 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001097
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001098 if (Opcode == Instruction::Or) // ...|X|~X = -1
Chris Lattner5f8a0052009-12-31 07:59:34 +00001099 return Constant::getAllOnesValue(X->getType());
Chris Lattner5f8a0052009-12-31 07:59:34 +00001100 }
1101 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001102
Chris Lattner5f8a0052009-12-31 07:59:34 +00001103 // Next, check for duplicate pairs of values, which we assume are next to
1104 // each other, due to our sorting criteria.
1105 assert(i < Ops.size());
1106 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
1107 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
Chris Lattner60c2ca72009-12-31 19:49:01 +00001108 // Drop duplicate values for And and Or.
Chris Lattner5f8a0052009-12-31 07:59:34 +00001109 Ops.erase(Ops.begin()+i);
1110 --i; --e;
1111 ++NumAnnihil;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001112 continue;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001113 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001114
Chris Lattner60c2ca72009-12-31 19:49:01 +00001115 // Drop pairs of values for Xor.
1116 assert(Opcode == Instruction::Xor);
1117 if (e == 2)
1118 return Constant::getNullValue(Ops[0].Op->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001119
Chris Lattnera5526832010-01-01 00:04:26 +00001120 // Y ^ X^X -> Y
Chris Lattner60c2ca72009-12-31 19:49:01 +00001121 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
1122 i -= 1; e -= 2;
1123 ++NumAnnihil;
Chris Lattner5f8a0052009-12-31 07:59:34 +00001124 }
1125 }
1126 return 0;
1127}
Chris Lattnerc5f866b2006-03-14 16:04:29 +00001128
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001129/// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
1130/// instruction with the given two operands, and return the resulting
1131/// instruction. There are two special cases: 1) if the constant operand is 0,
1132/// it will return NULL. 2) if the constant is ~0, the symbolic operand will
1133/// be returned.
1134static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
1135 const APInt &ConstOpnd) {
1136 if (ConstOpnd != 0) {
1137 if (!ConstOpnd.isAllOnesValue()) {
1138 LLVMContext &Ctx = Opnd->getType()->getContext();
1139 Instruction *I;
1140 I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
1141 "and.ra", InsertBefore);
1142 I->setDebugLoc(InsertBefore->getDebugLoc());
1143 return I;
1144 }
1145 return Opnd;
1146 }
1147 return 0;
1148}
1149
1150// Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
1151// into "R ^ C", where C would be 0, and R is a symbolic value.
1152//
1153// If it was successful, true is returned, and the "R" and "C" is returned
1154// via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
1155// and both "Res" and "ConstOpnd" remain unchanged.
1156//
1157bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
1158 APInt &ConstOpnd, Value *&Res) {
1159 // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
1160 // = ((x | c1) ^ c1) ^ (c1 ^ c2)
1161 // = (x & ~c1) ^ (c1 ^ c2)
1162 // It is useful only when c1 == c2.
1163 if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
1164 if (!Opnd1->getValue()->hasOneUse())
1165 return false;
1166
1167 const APInt &C1 = Opnd1->getConstPart();
1168 if (C1 != ConstOpnd)
1169 return false;
1170
1171 Value *X = Opnd1->getSymbolicPart();
1172 Res = createAndInstr(I, X, ~C1);
1173 // ConstOpnd was C2, now C1 ^ C2.
1174 ConstOpnd ^= C1;
1175
1176 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1177 RedoInsts.insert(T);
1178 return true;
1179 }
1180 return false;
1181}
1182
1183
1184// Helper function of OptimizeXor(). It tries to simplify
1185// "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
1186// symbolic value.
1187//
1188// If it was successful, true is returned, and the "R" and "C" is returned
1189// via "Res" and "ConstOpnd", respectively (If the entire expression is
1190// evaluated to a constant, the Res is set to NULL); otherwise, false is
1191// returned, and both "Res" and "ConstOpnd" remain unchanged.
1192bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
1193 APInt &ConstOpnd, Value *&Res) {
1194 Value *X = Opnd1->getSymbolicPart();
1195 if (X != Opnd2->getSymbolicPart())
1196 return false;
1197
1198 const APInt &C1 = Opnd1->getConstPart();
1199 const APInt &C2 = Opnd2->getConstPart();
1200
1201 // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
1202 int DeadInstNum = 1;
1203 if (Opnd1->getValue()->hasOneUse())
1204 DeadInstNum++;
1205 if (Opnd2->getValue()->hasOneUse())
1206 DeadInstNum++;
1207
1208 // Xor-Rule 2:
1209 // (x | c1) ^ (x & c2)
1210 // = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
1211 // = (x & ~c1) ^ (x & c2) ^ c1 // Xor-Rule 1
1212 // = (x & c3) ^ c1, where c3 = ~c1 ^ c2 // Xor-rule 3
1213 //
1214 if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
1215 if (Opnd2->isOrExpr())
1216 std::swap(Opnd1, Opnd2);
1217
1218 APInt C3((~C1) ^ C2);
1219
1220 // Do not increase code size!
1221 if (C3 != 0 && !C3.isAllOnesValue()) {
1222 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1223 if (NewInstNum > DeadInstNum)
1224 return false;
1225 }
1226
1227 Res = createAndInstr(I, X, C3);
1228 ConstOpnd ^= C1;
1229
1230 } else if (Opnd1->isOrExpr()) {
1231 // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
1232 //
1233 APInt C3 = C1 ^ C2;
1234
1235 // Do not increase code size
1236 if (C3 != 0 && !C3.isAllOnesValue()) {
1237 int NewInstNum = ConstOpnd != 0 ? 1 : 2;
1238 if (NewInstNum > DeadInstNum)
1239 return false;
1240 }
1241
1242 Res = createAndInstr(I, X, C3);
1243 ConstOpnd ^= C3;
1244 } else {
1245 // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
1246 //
1247 APInt C3 = C1 ^ C2;
1248 Res = createAndInstr(I, X, C3);
1249 }
1250
1251 // Put the original operands in the Redo list; hope they will be deleted
1252 // as dead code.
1253 if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
1254 RedoInsts.insert(T);
1255 if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
1256 RedoInsts.insert(T);
1257
1258 return true;
1259}
1260
1261/// Optimize a series of operands to an 'xor' instruction. If it can be reduced
1262/// to a single Value, it is returned, otherwise the Ops list is mutated as
1263/// necessary.
1264Value *Reassociate::OptimizeXor(Instruction *I,
1265 SmallVectorImpl<ValueEntry> &Ops) {
1266 if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
1267 return V;
1268
1269 if (Ops.size() == 1)
1270 return 0;
1271
1272 SmallVector<XorOpnd, 8> Opnds;
1273 SmallVector<XorOpnd*, 8> OpndPtrs;
1274 Type *Ty = Ops[0].Op->getType();
1275 APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
1276
1277 // Step 1: Convert ValueEntry to XorOpnd
1278 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1279 Value *V = Ops[i].Op;
1280 if (!isa<ConstantInt>(V)) {
1281 XorOpnd O(V);
1282 O.setSymbolicRank(getRank(O.getSymbolicPart()));
1283 Opnds.push_back(O);
1284 OpndPtrs.push_back(&Opnds.back());
1285 } else
1286 ConstOpnd ^= cast<ConstantInt>(V)->getValue();
1287 }
1288
1289 // Step 2: Sort the Xor-Operands in a way such that the operands containing
1290 // the same symbolic value cluster together. For instance, the input operand
1291 // sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
1292 // ("x | 123", "x & 789", "y & 456").
1293 std::sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
1294
1295 // Step 3: Combine adjacent operands
1296 XorOpnd *PrevOpnd = 0;
1297 bool Changed = false;
1298 for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
1299 XorOpnd *CurrOpnd = OpndPtrs[i];
1300 // The combined value
1301 Value *CV;
1302
1303 // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
1304 if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
1305 Changed = true;
1306 if (CV)
1307 *CurrOpnd = XorOpnd(CV);
1308 else {
1309 CurrOpnd->Invalidate();
1310 continue;
1311 }
1312 }
1313
1314 if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
1315 PrevOpnd = CurrOpnd;
1316 continue;
1317 }
1318
1319 // step 3.2: When previous and current operands share the same symbolic
1320 // value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
1321 //
1322 if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
1323 // Remove previous operand
1324 PrevOpnd->Invalidate();
1325 if (CV) {
1326 *CurrOpnd = XorOpnd(CV);
1327 PrevOpnd = CurrOpnd;
1328 } else {
1329 CurrOpnd->Invalidate();
1330 PrevOpnd = 0;
1331 }
1332 Changed = true;
1333 }
1334 }
1335
1336 // Step 4: Reassemble the Ops
1337 if (Changed) {
1338 Ops.clear();
1339 for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
1340 XorOpnd &O = Opnds[i];
1341 if (O.isInvalid())
1342 continue;
1343 ValueEntry VE(getRank(O.getValue()), O.getValue());
1344 Ops.push_back(VE);
1345 }
1346 if (ConstOpnd != 0) {
1347 Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
1348 ValueEntry VE(getRank(C), C);
1349 Ops.push_back(VE);
1350 }
1351 int Sz = Ops.size();
1352 if (Sz == 1)
1353 return Ops.back().Op;
1354 else if (Sz == 0) {
1355 assert(ConstOpnd == 0);
1356 return ConstantInt::get(Ty->getContext(), ConstOpnd);
1357 }
1358 }
1359
1360 return 0;
1361}
1362
Chris Lattner5f8a0052009-12-31 07:59:34 +00001363/// OptimizeAdd - Optimize a series of operands to an 'add' instruction. This
1364/// optimizes based on identities. If it can be reduced to a single Value, it
1365/// is returned, otherwise the Ops list is mutated as necessary.
Chris Lattner38abecb2009-12-31 18:40:32 +00001366Value *Reassociate::OptimizeAdd(Instruction *I,
1367 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattner5f8a0052009-12-31 07:59:34 +00001368 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner60b71b52009-12-31 19:24:52 +00001369 // can simplify the expression. X+-X == 0. While we're at it, scan for any
1370 // duplicates. We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001371 //
1372 // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
1373 //
Chris Lattner5f8a0052009-12-31 07:59:34 +00001374 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001375 Value *TheOp = Ops[i].Op;
1376 // Check to see if we've seen this operand before. If so, we factor all
Chris Lattner60c2ca72009-12-31 19:49:01 +00001377 // instances of the operand together. Due to our sorting criteria, we know
1378 // that these need to be next to each other in the vector.
1379 if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
1380 // Rescan the list, remove all instances of this operand from the expr.
Chris Lattner60b71b52009-12-31 19:24:52 +00001381 unsigned NumFound = 0;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001382 do {
1383 Ops.erase(Ops.begin()+i);
Chris Lattner60b71b52009-12-31 19:24:52 +00001384 ++NumFound;
Chris Lattner60c2ca72009-12-31 19:49:01 +00001385 } while (i != Ops.size() && Ops[i].Op == TheOp);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001386
Chris Lattnered189172009-12-31 19:25:19 +00001387 DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
Chris Lattner60b71b52009-12-31 19:24:52 +00001388 ++NumFactor;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001389
Chris Lattner60b71b52009-12-31 19:24:52 +00001390 // Insert a new multiply.
1391 Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
1392 Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001393
Chris Lattner60b71b52009-12-31 19:24:52 +00001394 // Now that we have inserted a multiply, optimize it. This allows us to
1395 // handle cases that require multiple factoring steps, such as this:
1396 // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
Duncan Sands3293f462012-06-08 20:15:33 +00001397 RedoInsts.insert(cast<Instruction>(Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001398
Chris Lattner60b71b52009-12-31 19:24:52 +00001399 // If every add operand was a duplicate, return the multiply.
1400 if (Ops.empty())
1401 return Mul;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001402
Chris Lattner60b71b52009-12-31 19:24:52 +00001403 // Otherwise, we had some input that didn't have the dupe, such as
1404 // "A + A + B" -> "A*2 + B". Add the new multiply to the list of
1405 // things being added by this operation.
1406 Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001407
Chris Lattner60c2ca72009-12-31 19:49:01 +00001408 --i;
1409 e = Ops.size();
1410 continue;
Chris Lattner60b71b52009-12-31 19:24:52 +00001411 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001412
Chris Lattner5f8a0052009-12-31 07:59:34 +00001413 // Check for X and -X in the operand list.
Chris Lattner60b71b52009-12-31 19:24:52 +00001414 if (!BinaryOperator::isNeg(TheOp))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001415 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001416
Chris Lattner60b71b52009-12-31 19:24:52 +00001417 Value *X = BinaryOperator::getNegArgument(TheOp);
Chris Lattner5f8a0052009-12-31 07:59:34 +00001418 unsigned FoundX = FindInOperandList(Ops, i, X);
1419 if (FoundX == i)
1420 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001421
Chris Lattner5f8a0052009-12-31 07:59:34 +00001422 // Remove X and -X from the operand list.
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001423 if (Ops.size() == 2)
Chris Lattner5f8a0052009-12-31 07:59:34 +00001424 return Constant::getNullValue(X->getType());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001425
Chris Lattner5f8a0052009-12-31 07:59:34 +00001426 Ops.erase(Ops.begin()+i);
1427 if (i < FoundX)
1428 --FoundX;
1429 else
1430 --i; // Need to back up an extra one.
1431 Ops.erase(Ops.begin()+FoundX);
1432 ++NumAnnihil;
1433 --i; // Revisit element.
1434 e -= 2; // Removed two elements.
1435 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001436
Chris Lattner177140a2009-12-31 18:17:13 +00001437 // Scan the operand list, checking to see if there are any common factors
1438 // between operands. Consider something like A*A+A*B*C+D. We would like to
1439 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
1440 // To efficiently find this, we count the number of times a factor occurs
1441 // for any ADD operands that are MULs.
1442 DenseMap<Value*, unsigned> FactorOccurrences;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001443
Chris Lattner177140a2009-12-31 18:17:13 +00001444 // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
1445 // where they are actually the same multiply.
Chris Lattner177140a2009-12-31 18:17:13 +00001446 unsigned MaxOcc = 0;
1447 Value *MaxOccVal = 0;
1448 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001449 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1450 if (!BOp)
Chris Lattner177140a2009-12-31 18:17:13 +00001451 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001452
Chris Lattner177140a2009-12-31 18:17:13 +00001453 // Compute all of the factors of this added value.
1454 SmallVector<Value*, 8> Factors;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001455 FindSingleUseMultiplyFactors(BOp, Factors, Ops);
Chris Lattner177140a2009-12-31 18:17:13 +00001456 assert(Factors.size() > 1 && "Bad linearize!");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001457
Chris Lattner177140a2009-12-31 18:17:13 +00001458 // Add one to FactorOccurrences for each unique factor in this op.
Chris Lattner0c59ac32010-01-01 01:13:15 +00001459 SmallPtrSet<Value*, 8> Duplicates;
1460 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
1461 Value *Factor = Factors[i];
1462 if (!Duplicates.insert(Factor)) continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001463
Chris Lattner0c59ac32010-01-01 01:13:15 +00001464 unsigned Occ = ++FactorOccurrences[Factor];
1465 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001466
Chris Lattner0c59ac32010-01-01 01:13:15 +00001467 // If Factor is a negative constant, add the negated value as a factor
1468 // because we can percolate the negate out. Watch for minint, which
1469 // cannot be positivified.
1470 if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
Chris Lattnerb1a15122011-07-15 06:08:15 +00001471 if (CI->isNegative() && !CI->isMinValue(true)) {
Chris Lattner0c59ac32010-01-01 01:13:15 +00001472 Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
1473 assert(!Duplicates.count(Factor) &&
1474 "Shouldn't have two constant factors, missed a canonicalize");
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001475
Chris Lattner0c59ac32010-01-01 01:13:15 +00001476 unsigned Occ = ++FactorOccurrences[Factor];
1477 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
1478 }
Chris Lattner177140a2009-12-31 18:17:13 +00001479 }
1480 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001481
Chris Lattner177140a2009-12-31 18:17:13 +00001482 // If any factor occurred more than one time, we can pull it out.
1483 if (MaxOcc > 1) {
Chris Lattner60b71b52009-12-31 19:24:52 +00001484 DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
Chris Lattner177140a2009-12-31 18:17:13 +00001485 ++NumFactor;
1486
1487 // Create a new instruction that uses the MaxOccVal twice. If we don't do
1488 // this, we could otherwise run into situations where removing a factor
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001489 // from an expression will drop a use of maxocc, and this can cause
Chris Lattner177140a2009-12-31 18:17:13 +00001490 // RemoveFactorFromExpression on successive values to behave differently.
1491 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Bill Wendling274ba892012-05-02 09:59:45 +00001492 SmallVector<WeakVH, 4> NewMulOps;
Duncan Sands69bdb582011-01-26 10:08:38 +00001493 for (unsigned i = 0; i != Ops.size(); ++i) {
Chris Lattnerab7087a2010-01-09 06:01:36 +00001494 // Only try to remove factors from expressions we're allowed to.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001495 BinaryOperator *BOp = isReassociableOp(Ops[i].Op, Instruction::Mul);
1496 if (!BOp)
Chris Lattnerab7087a2010-01-09 06:01:36 +00001497 continue;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001498
Chris Lattner177140a2009-12-31 18:17:13 +00001499 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
Duncan Sands69bdb582011-01-26 10:08:38 +00001500 // The factorized operand may occur several times. Convert them all in
1501 // one fell swoop.
1502 for (unsigned j = Ops.size(); j != i;) {
1503 --j;
1504 if (Ops[j].Op == Ops[i].Op) {
1505 NewMulOps.push_back(V);
1506 Ops.erase(Ops.begin()+j);
1507 }
1508 }
1509 --i;
Chris Lattner177140a2009-12-31 18:17:13 +00001510 }
1511 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001512
Chris Lattner177140a2009-12-31 18:17:13 +00001513 // No need for extra uses anymore.
1514 delete DummyInst;
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001515
Chris Lattner177140a2009-12-31 18:17:13 +00001516 unsigned NumAddedValues = NewMulOps.size();
1517 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001518
Chris Lattner60b71b52009-12-31 19:24:52 +00001519 // Now that we have inserted the add tree, optimize it. This allows us to
1520 // handle cases that require multiple factoring steps, such as this:
Chris Lattner177140a2009-12-31 18:17:13 +00001521 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
Chris Lattnerac615502009-12-31 18:18:46 +00001522 assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
Duncan Sands4a8b15d2010-01-08 17:51:48 +00001523 (void)NumAddedValues;
Duncan Sands3293f462012-06-08 20:15:33 +00001524 if (Instruction *VI = dyn_cast<Instruction>(V))
1525 RedoInsts.insert(VI);
Chris Lattner60b71b52009-12-31 19:24:52 +00001526
1527 // Create the multiply.
Duncan Sands3293f462012-06-08 20:15:33 +00001528 Instruction *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Chris Lattner60b71b52009-12-31 19:24:52 +00001529
Chris Lattner60c2ca72009-12-31 19:49:01 +00001530 // Rerun associate on the multiply in case the inner expression turned into
1531 // a multiply. We want to make sure that we keep things in canonical form.
Duncan Sands3293f462012-06-08 20:15:33 +00001532 RedoInsts.insert(V2);
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001533
Chris Lattner177140a2009-12-31 18:17:13 +00001534 // If every add operand included the factor (e.g. "A*B + A*C"), then the
1535 // entire result expression is just the multiply "A*(B+C)".
1536 if (Ops.empty())
1537 return V2;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001538
Chris Lattnerac615502009-12-31 18:18:46 +00001539 // Otherwise, we had some input that didn't have the factor, such as
Chris Lattner177140a2009-12-31 18:17:13 +00001540 // "A*B + A*C + D" -> "A*(B+C) + D". Add the new multiply to the list of
Chris Lattnerac615502009-12-31 18:18:46 +00001541 // things being added by this operation.
Chris Lattner177140a2009-12-31 18:17:13 +00001542 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
1543 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001544
Chris Lattner5f8a0052009-12-31 07:59:34 +00001545 return 0;
1546}
Chris Lattner4c065092006-03-04 09:31:13 +00001547
Chandler Carruth739ef802012-04-26 05:30:30 +00001548namespace {
1549 /// \brief Predicate tests whether a ValueEntry's op is in a map.
1550 struct IsValueInMap {
1551 const DenseMap<Value *, unsigned> &Map;
1552
1553 IsValueInMap(const DenseMap<Value *, unsigned> &Map) : Map(Map) {}
1554
1555 bool operator()(const ValueEntry &Entry) {
1556 return Map.find(Entry.Op) != Map.end();
1557 }
1558 };
1559}
1560
1561/// \brief Build up a vector of value/power pairs factoring a product.
1562///
1563/// Given a series of multiplication operands, build a vector of factors and
1564/// the powers each is raised to when forming the final product. Sort them in
1565/// the order of descending power.
1566///
1567/// (x*x) -> [(x, 2)]
1568/// ((x*x)*x) -> [(x, 3)]
1569/// ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
1570///
1571/// \returns Whether any factors have a power greater than one.
1572bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
1573 SmallVectorImpl<Factor> &Factors) {
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001574 // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
1575 // Compute the sum of powers of simplifiable factors.
Chandler Carruth739ef802012-04-26 05:30:30 +00001576 unsigned FactorPowerSum = 0;
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001577 for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
1578 Value *Op = Ops[Idx-1].Op;
1579
1580 // Count the number of occurrences of this value.
1581 unsigned Count = 1;
1582 for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
1583 ++Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001584 // Track for simplification all factors which occur 2 or more times.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001585 if (Count > 1)
1586 FactorPowerSum += Count;
Chandler Carruth739ef802012-04-26 05:30:30 +00001587 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001588
Chandler Carruth739ef802012-04-26 05:30:30 +00001589 // We can only simplify factors if the sum of the powers of our simplifiable
1590 // factors is 4 or higher. When that is the case, we will *always* have
1591 // a simplification. This is an important invariant to prevent cyclicly
1592 // trying to simplify already minimal formations.
1593 if (FactorPowerSum < 4)
1594 return false;
1595
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001596 // Now gather the simplifiable factors, removing them from Ops.
1597 FactorPowerSum = 0;
1598 for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
1599 Value *Op = Ops[Idx-1].Op;
Chandler Carruth739ef802012-04-26 05:30:30 +00001600
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001601 // Count the number of occurrences of this value.
1602 unsigned Count = 1;
1603 for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
1604 ++Count;
1605 if (Count == 1)
1606 continue;
Benjamin Kramerbde91762012-06-02 10:20:22 +00001607 // Move an even number of occurrences to Factors.
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001608 Count &= ~1U;
1609 Idx -= Count;
1610 FactorPowerSum += Count;
1611 Factors.push_back(Factor(Op, Count));
1612 Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
Chandler Carruth739ef802012-04-26 05:30:30 +00001613 }
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001614
Chandler Carruth739ef802012-04-26 05:30:30 +00001615 // None of the adjustments above should have reduced the sum of factor powers
1616 // below our mininum of '4'.
1617 assert(FactorPowerSum >= 4);
1618
Chandler Carruth739ef802012-04-26 05:30:30 +00001619 std::sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
1620 return true;
1621}
1622
1623/// \brief Build a tree of multiplies, computing the product of Ops.
1624static Value *buildMultiplyTree(IRBuilder<> &Builder,
1625 SmallVectorImpl<Value*> &Ops) {
1626 if (Ops.size() == 1)
1627 return Ops.back();
1628
1629 Value *LHS = Ops.pop_back_val();
1630 do {
1631 LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
1632 } while (!Ops.empty());
1633
1634 return LHS;
1635}
1636
1637/// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
1638///
1639/// Given a vector of values raised to various powers, where no two values are
1640/// equal and the powers are sorted in decreasing order, compute the minimal
1641/// DAG of multiplies to compute the final product, and return that product
1642/// value.
1643Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
1644 SmallVectorImpl<Factor> &Factors) {
1645 assert(Factors[0].Power);
1646 SmallVector<Value *, 4> OuterProduct;
1647 for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
1648 Idx < Size && Factors[Idx].Power > 0; ++Idx) {
1649 if (Factors[Idx].Power != Factors[LastIdx].Power) {
1650 LastIdx = Idx;
1651 continue;
1652 }
1653
1654 // We want to multiply across all the factors with the same power so that
1655 // we can raise them to that power as a single entity. Build a mini tree
1656 // for that.
1657 SmallVector<Value *, 4> InnerProduct;
1658 InnerProduct.push_back(Factors[LastIdx].Base);
1659 do {
1660 InnerProduct.push_back(Factors[Idx].Base);
1661 ++Idx;
1662 } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
1663
1664 // Reset the base value of the first factor to the new expression tree.
1665 // We'll remove all the factors with the same power in a second pass.
Duncan Sands3293f462012-06-08 20:15:33 +00001666 Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
1667 if (Instruction *MI = dyn_cast<Instruction>(M))
1668 RedoInsts.insert(MI);
Chandler Carruth739ef802012-04-26 05:30:30 +00001669
1670 LastIdx = Idx;
1671 }
1672 // Unique factors with equal powers -- we've folded them into the first one's
1673 // base.
1674 Factors.erase(std::unique(Factors.begin(), Factors.end(),
1675 Factor::PowerEqual()),
1676 Factors.end());
1677
1678 // Iteratively collect the base of each factor with an add power into the
1679 // outer product, and halve each power in preparation for squaring the
1680 // expression.
1681 for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
1682 if (Factors[Idx].Power & 1)
1683 OuterProduct.push_back(Factors[Idx].Base);
1684 Factors[Idx].Power >>= 1;
1685 }
1686 if (Factors[0].Power) {
1687 Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
1688 OuterProduct.push_back(SquareRoot);
1689 OuterProduct.push_back(SquareRoot);
1690 }
1691 if (OuterProduct.size() == 1)
1692 return OuterProduct.front();
1693
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001694 Value *V = buildMultiplyTree(Builder, OuterProduct);
Duncan Sands3bbb1d52012-05-08 12:16:05 +00001695 return V;
Chandler Carruth739ef802012-04-26 05:30:30 +00001696}
1697
1698Value *Reassociate::OptimizeMul(BinaryOperator *I,
1699 SmallVectorImpl<ValueEntry> &Ops) {
1700 // We can only optimize the multiplies when there is a chain of more than
1701 // three, such that a balanced tree might require fewer total multiplies.
1702 if (Ops.size() < 4)
1703 return 0;
1704
1705 // Try to turn linear trees of multiplies without other uses of the
1706 // intermediate stages into minimal multiply DAGs with perfect sub-expression
1707 // re-use.
1708 SmallVector<Factor, 4> Factors;
1709 if (!collectMultiplyFactors(Ops, Factors))
1710 return 0; // All distinct factors, so nothing left for us to do.
1711
1712 IRBuilder<> Builder(I);
1713 Value *V = buildMinimalMultiplyDAG(Builder, Factors);
1714 if (Ops.empty())
1715 return V;
1716
1717 ValueEntry NewEntry = ValueEntry(getRank(V), V);
1718 Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
1719 return 0;
1720}
1721
Chris Lattner4c065092006-03-04 09:31:13 +00001722Value *Reassociate::OptimizeExpression(BinaryOperator *I,
Chris Lattner38abecb2009-12-31 18:40:32 +00001723 SmallVectorImpl<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +00001724 // Now that we have the linearized expression tree, try to optimize it.
1725 // Start by folding any constants that we found.
Duncan Sandsac852c72012-11-15 09:58:38 +00001726 Constant *Cst = 0;
Chris Lattner4c065092006-03-04 09:31:13 +00001727 unsigned Opcode = I->getOpcode();
Duncan Sandsac852c72012-11-15 09:58:38 +00001728 while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
1729 Constant *C = cast<Constant>(Ops.pop_back_val().Op);
1730 Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
1731 }
1732 // If there was nothing but constants then we are done.
1733 if (Ops.empty())
1734 return Cst;
1735
1736 // Put the combined constant back at the end of the operand list, except if
1737 // there is no point. For example, an add of 0 gets dropped here, while a
1738 // multiplication by zero turns the whole expression into zero.
1739 if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
1740 if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
1741 return Cst;
1742 Ops.push_back(ValueEntry(0, Cst));
1743 }
1744
1745 if (Ops.size() == 1) return Ops[0].Op;
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001746
Chris Lattner9039ff82009-12-31 07:33:14 +00001747 // Handle destructive annihilation due to identities between elements in the
Chris Lattnere1850b82005-05-08 00:19:31 +00001748 // argument list here.
Chandler Carruth739ef802012-04-26 05:30:30 +00001749 unsigned NumOps = Ops.size();
Chris Lattner5847e5e2005-05-08 18:59:37 +00001750 switch (Opcode) {
1751 default: break;
1752 case Instruction::And:
1753 case Instruction::Or:
Chris Lattner5f8a0052009-12-31 07:59:34 +00001754 if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
1755 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001756 break;
1757
Shuxin Yang7b0c94e2013-03-30 02:15:01 +00001758 case Instruction::Xor:
1759 if (Value *Result = OptimizeXor(I, Ops))
1760 return Result;
1761 break;
1762
Chandler Carruth739ef802012-04-26 05:30:30 +00001763 case Instruction::Add:
Chris Lattner177140a2009-12-31 18:17:13 +00001764 if (Value *Result = OptimizeAdd(I, Ops))
Chris Lattner5f8a0052009-12-31 07:59:34 +00001765 return Result;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001766 break;
Chandler Carruth739ef802012-04-26 05:30:30 +00001767
1768 case Instruction::Mul:
1769 if (Value *Result = OptimizeMul(I, Ops))
1770 return Result;
1771 break;
Chris Lattner5847e5e2005-05-08 18:59:37 +00001772 }
1773
Duncan Sands3293f462012-06-08 20:15:33 +00001774 if (Ops.size() != NumOps)
Chris Lattner4c065092006-03-04 09:31:13 +00001775 return OptimizeExpression(I, Ops);
1776 return 0;
Chris Lattnere1850b82005-05-08 00:19:31 +00001777}
1778
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001779/// EraseInst - Zap the given instruction, adding interesting operands to the
1780/// work list.
1781void Reassociate::EraseInst(Instruction *I) {
Duncan Sands3293f462012-06-08 20:15:33 +00001782 assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
1783 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
1784 // Erase the dead instruction.
1785 ValueRankMap.erase(I);
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001786 RedoInsts.remove(I);
Duncan Sands3293f462012-06-08 20:15:33 +00001787 I->eraseFromParent();
1788 // Optimize its operands.
Duncan Sands78386032012-06-15 08:37:50 +00001789 SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
Duncan Sands3293f462012-06-08 20:15:33 +00001790 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1791 if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
1792 // If this is a node in an expression tree, climb to the expression root
1793 // and add that since that's where optimization actually happens.
1794 unsigned Opcode = Op->getOpcode();
Duncan Sands78386032012-06-15 08:37:50 +00001795 while (Op->hasOneUse() && Op->use_back()->getOpcode() == Opcode &&
1796 Visited.insert(Op))
Duncan Sands3293f462012-06-08 20:15:33 +00001797 Op = Op->use_back();
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001798 RedoInsts.insert(Op);
Duncan Sands3293f462012-06-08 20:15:33 +00001799 }
1800}
1801
1802/// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
1803/// instructions is not allowed.
1804void Reassociate::OptimizeInst(Instruction *I) {
1805 // Only consider operations that we understand.
1806 if (!isa<BinaryOperator>(I))
1807 return;
1808
1809 if (I->getOpcode() == Instruction::Shl &&
1810 isa<ConstantInt>(I->getOperand(1)))
1811 // If an operand of this shift is a reassociable multiply, or if the shift
1812 // is used by a reassociable multiply or add, turn into a multiply.
1813 if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
1814 (I->hasOneUse() &&
1815 (isReassociableOp(I->use_back(), Instruction::Mul) ||
1816 isReassociableOp(I->use_back(), Instruction::Add)))) {
1817 Instruction *NI = ConvertShiftToMul(I);
1818 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001819 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001820 I = NI;
Chris Lattner877b1142005-05-08 21:28:52 +00001821 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +00001822
Owen Andersonf4f80e12012-05-07 20:47:23 +00001823 // Floating point binary operators are not associative, but we can still
1824 // commute (some) of them, to canonicalize the order of their operands.
1825 // This can potentially expose more CSE opportunities, and makes writing
1826 // other transformations simpler.
Duncan Sands3293f462012-06-08 20:15:33 +00001827 if ((I->getType()->isFloatingPointTy() || I->getType()->isVectorTy())) {
Owen Andersonf4f80e12012-05-07 20:47:23 +00001828 // FAdd and FMul can be commuted.
Duncan Sands3293f462012-06-08 20:15:33 +00001829 if (I->getOpcode() != Instruction::FMul &&
1830 I->getOpcode() != Instruction::FAdd)
Owen Andersonf4f80e12012-05-07 20:47:23 +00001831 return;
1832
Duncan Sands3293f462012-06-08 20:15:33 +00001833 Value *LHS = I->getOperand(0);
1834 Value *RHS = I->getOperand(1);
Owen Andersonf4f80e12012-05-07 20:47:23 +00001835 unsigned LHSRank = getRank(LHS);
1836 unsigned RHSRank = getRank(RHS);
1837
1838 // Sort the operands by rank.
1839 if (RHSRank < LHSRank) {
Duncan Sands3293f462012-06-08 20:15:33 +00001840 I->setOperand(0, RHS);
1841 I->setOperand(1, LHS);
Owen Andersonf4f80e12012-05-07 20:47:23 +00001842 }
1843
1844 return;
1845 }
1846
Dan Gohman1c6c3482011-04-12 00:11:56 +00001847 // Do not reassociate boolean (i1) expressions. We want to preserve the
1848 // original order of evaluation for short-circuited comparisons that
1849 // SimplifyCFG has folded to AND/OR expressions. If the expression
1850 // is not further optimized, it is likely to be transformed back to a
1851 // short-circuited form for code gen, and the source order may have been
1852 // optimized for the most likely conditions.
Duncan Sands3293f462012-06-08 20:15:33 +00001853 if (I->getType()->isIntegerTy(1))
Dan Gohman1c6c3482011-04-12 00:11:56 +00001854 return;
Chris Lattner7bc532d2002-05-16 04:37:07 +00001855
Dan Gohman1c6c3482011-04-12 00:11:56 +00001856 // If this is a subtract instruction which is not already in negate form,
1857 // see if we can convert it to X+-Y.
Duncan Sands3293f462012-06-08 20:15:33 +00001858 if (I->getOpcode() == Instruction::Sub) {
1859 if (ShouldBreakUpSubtract(I)) {
1860 Instruction *NI = BreakUpSubtract(I);
1861 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001862 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001863 I = NI;
1864 } else if (BinaryOperator::isNeg(I)) {
Dan Gohman1c6c3482011-04-12 00:11:56 +00001865 // Otherwise, this is a negation. See if the operand is a multiply tree
1866 // and if this is not an inner node of a multiply tree.
Duncan Sands3293f462012-06-08 20:15:33 +00001867 if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
1868 (!I->hasOneUse() ||
1869 !isReassociableOp(I->use_back(), Instruction::Mul))) {
1870 Instruction *NI = LowerNegateToMultiply(I);
1871 RedoInsts.insert(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001872 MadeChange = true;
Duncan Sands3293f462012-06-08 20:15:33 +00001873 I = NI;
Dan Gohman1c6c3482011-04-12 00:11:56 +00001874 }
1875 }
Chris Lattner2fc319d2006-03-14 07:11:11 +00001876 }
Dan Gohman1c6c3482011-04-12 00:11:56 +00001877
Duncan Sands3293f462012-06-08 20:15:33 +00001878 // If this instruction is an associative binary operator, process it.
1879 if (!I->isAssociative()) return;
1880 BinaryOperator *BO = cast<BinaryOperator>(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001881
1882 // If this is an interior node of a reassociable tree, ignore it until we
1883 // get to the root of the tree, to avoid N^2 analysis.
Nadav Rotem10888112012-07-23 13:44:15 +00001884 unsigned Opcode = BO->getOpcode();
1885 if (BO->hasOneUse() && BO->use_back()->getOpcode() == Opcode)
Dan Gohman1c6c3482011-04-12 00:11:56 +00001886 return;
1887
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001888 // If this is an add tree that is used by a sub instruction, ignore it
Dan Gohman1c6c3482011-04-12 00:11:56 +00001889 // until we process the subtract.
Duncan Sands3293f462012-06-08 20:15:33 +00001890 if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
1891 cast<Instruction>(BO->use_back())->getOpcode() == Instruction::Sub)
Dan Gohman1c6c3482011-04-12 00:11:56 +00001892 return;
1893
Duncan Sands3293f462012-06-08 20:15:33 +00001894 ReassociateExpression(BO);
Chris Lattner2fc319d2006-03-14 07:11:11 +00001895}
Chris Lattner1e506502005-05-07 21:59:39 +00001896
Duncan Sands78386032012-06-15 08:37:50 +00001897void Reassociate::ReassociateExpression(BinaryOperator *I) {
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001898
Chris Lattner60b71b52009-12-31 19:24:52 +00001899 // First, walk the expression tree, linearizing the tree, collecting the
1900 // operand information.
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001901 SmallVector<RepeatedValue, 8> Tree;
1902 MadeChange |= LinearizeExprTree(I, Tree);
Chris Lattner38abecb2009-12-31 18:40:32 +00001903 SmallVector<ValueEntry, 8> Ops;
Duncan Sandsd7aeefe2012-06-12 14:33:56 +00001904 Ops.reserve(Tree.size());
1905 for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
1906 RepeatedValue E = Tree[i];
1907 Ops.append(E.second.getZExtValue(),
1908 ValueEntry(getRank(E.first), E.first));
1909 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001910
Duncan Sandsc94ac6f2012-05-26 07:47:48 +00001911 DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
1912
Chris Lattner2fc319d2006-03-14 07:11:11 +00001913 // Now that we have linearized the tree to a list and have gathered all of
1914 // the operands and their ranks, sort the operands by their rank. Use a
1915 // stable_sort so that values with equal ranks will have their relative
1916 // positions maintained (and so the compiler is deterministic). Note that
1917 // this sorts so that the highest ranking values end up at the beginning of
1918 // the vector.
1919 std::stable_sort(Ops.begin(), Ops.end());
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001920
Chris Lattner2fc319d2006-03-14 07:11:11 +00001921 // OptimizeExpression - Now that we have the expression tree in a convenient
1922 // sorted form, optimize it globally if possible.
1923 if (Value *V = OptimizeExpression(I, Ops)) {
Duncan Sands78386032012-06-15 08:37:50 +00001924 if (V == I)
1925 // Self-referential expression in unreachable code.
1926 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00001927 // This expression tree simplified to something that isn't a tree,
1928 // eliminate it.
David Greened17c3912010-01-05 01:27:24 +00001929 DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
Chris Lattner2fc319d2006-03-14 07:11:11 +00001930 I->replaceAllUsesWith(V);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001931 if (Instruction *VI = dyn_cast<Instruction>(V))
1932 VI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00001933 RedoInsts.insert(I);
Chris Lattnerba1f36a2009-12-31 17:51:05 +00001934 ++NumAnnihil;
Duncan Sands78386032012-06-15 08:37:50 +00001935 return;
Chris Lattner2fc319d2006-03-14 07:11:11 +00001936 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001937
Chris Lattner2fc319d2006-03-14 07:11:11 +00001938 // We want to sink immediates as deeply as possible except in the case where
1939 // this is a multiply tree used only by an add, and the immediate is a -1.
1940 // In this case we reassociate to put the negation on the outside so that we
1941 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
1942 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
1943 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
1944 isa<ConstantInt>(Ops.back().Op) &&
1945 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
Chris Lattner38abecb2009-12-31 18:40:32 +00001946 ValueEntry Tmp = Ops.pop_back_val();
1947 Ops.insert(Ops.begin(), Tmp);
Chris Lattner2fc319d2006-03-14 07:11:11 +00001948 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001949
David Greened17c3912010-01-05 01:27:24 +00001950 DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001951
Chris Lattner2fc319d2006-03-14 07:11:11 +00001952 if (Ops.size() == 1) {
Duncan Sands78386032012-06-15 08:37:50 +00001953 if (Ops[0].Op == I)
1954 // Self-referential expression in unreachable code.
1955 return;
1956
Chris Lattner2fc319d2006-03-14 07:11:11 +00001957 // This expression tree simplified to something that isn't a tree,
1958 // eliminate it.
1959 I->replaceAllUsesWith(Ops[0].Op);
Devang Patel80d1d3a2011-04-28 22:48:14 +00001960 if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
1961 OI->setDebugLoc(I->getDebugLoc());
Duncan Sands3293f462012-06-08 20:15:33 +00001962 RedoInsts.insert(I);
Duncan Sands78386032012-06-15 08:37:50 +00001963 return;
Chris Lattnerc0f58002002-05-08 22:19:27 +00001964 }
Bill Wendlingc94d86c2012-05-02 23:43:23 +00001965
Chris Lattner60b71b52009-12-31 19:24:52 +00001966 // Now that we ordered and optimized the expressions, splat them back into
1967 // the expression tree, removing any unneeded nodes.
1968 RewriteExprTree(I, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +00001969}
1970
Chris Lattner113f4f42002-06-25 16:13:24 +00001971bool Reassociate::runOnFunction(Function &F) {
Duncan Sands3293f462012-06-08 20:15:33 +00001972 // Calculate the rank map for F
Chris Lattnerc0f58002002-05-08 22:19:27 +00001973 BuildRankMap(F);
1974
Chris Lattner1e506502005-05-07 21:59:39 +00001975 MadeChange = false;
Duncan Sands3293f462012-06-08 20:15:33 +00001976 for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
1977 // Optimize every instruction in the basic block.
1978 for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
1979 if (isInstructionTriviallyDead(II)) {
1980 EraseInst(II++);
1981 } else {
1982 OptimizeInst(II);
1983 assert(II->getParent() == BI && "Moved to a different block!");
1984 ++II;
1985 }
Duncan Sands9a5cf922012-06-08 13:37:30 +00001986
Duncan Sands3293f462012-06-08 20:15:33 +00001987 // If this produced extra instructions to optimize, handle them now.
1988 while (!RedoInsts.empty()) {
Shuxin Yangc94c3bb2012-11-13 00:08:49 +00001989 Instruction *I = RedoInsts.pop_back_val();
Duncan Sands3293f462012-06-08 20:15:33 +00001990 if (isInstructionTriviallyDead(I))
1991 EraseInst(I);
1992 else
1993 OptimizeInst(I);
Dan Gohman1c6c3482011-04-12 00:11:56 +00001994 }
Duncan Sands3293f462012-06-08 20:15:33 +00001995 }
Chris Lattnerc0f58002002-05-08 22:19:27 +00001996
Duncan Sandsbddfb2f2012-05-25 12:03:02 +00001997 // We are done with the rank map.
1998 RankMap.clear();
1999 ValueRankMap.clear();
2000
Chris Lattner1e506502005-05-07 21:59:39 +00002001 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +00002002}