David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 1 | //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This file defines vectorizer utilities. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 14 | #include "llvm/Analysis/VectorUtils.h" |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 15 | #include "llvm/ADT/EquivalenceClasses.h" |
| 16 | #include "llvm/Analysis/DemandedBits.h" |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 17 | #include "llvm/Analysis/LoopInfo.h" |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 18 | #include "llvm/Analysis/LoopIterator.h" |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 19 | #include "llvm/Analysis/ScalarEvolution.h" |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 20 | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 21 | #include "llvm/Analysis/TargetTransformInfo.h" |
David Majnemer | b4b2723 | 2016-04-19 19:10:21 +0000 | [diff] [blame] | 22 | #include "llvm/Analysis/ValueTracking.h" |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 23 | #include "llvm/IR/Constants.h" |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 24 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
Chandler Carruth | 6bda14b | 2017-06-06 11:49:48 +0000 | [diff] [blame] | 25 | #include "llvm/IR/IRBuilder.h" |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 26 | #include "llvm/IR/PatternMatch.h" |
| 27 | #include "llvm/IR/Value.h" |
Renato Golin | 3b1d3b0 | 2015-08-30 10:49:04 +0000 | [diff] [blame] | 28 | |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 29 | #define DEBUG_TYPE "vectorutils" |
| 30 | |
David Majnemer | 5eaf08f | 2015-08-18 22:07:20 +0000 | [diff] [blame] | 31 | using namespace llvm; |
| 32 | using namespace llvm::PatternMatch; |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 33 | |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 34 | /// Maximum factor for an interleaved memory access. |
| 35 | static cl::opt<unsigned> MaxInterleaveGroupFactor( |
| 36 | "max-interleave-group-factor", cl::Hidden, |
| 37 | cl::desc("Maximum factor for an interleaved access group (default = 8)"), |
| 38 | cl::init(8)); |
| 39 | |
Sanjay Patel | 0f4f4806 | 2018-11-12 15:10:30 +0000 | [diff] [blame] | 40 | /// Return true if all of the intrinsic's arguments and return type are scalars |
| 41 | /// for the scalar form of the intrinsic and vectors for the vector form of the |
| 42 | /// intrinsic. |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 43 | bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) { |
| 44 | switch (ID) { |
Sanjay Patel | 0f4f4806 | 2018-11-12 15:10:30 +0000 | [diff] [blame] | 45 | case Intrinsic::bswap: // Begin integer bit-manipulation. |
| 46 | case Intrinsic::bitreverse: |
| 47 | case Intrinsic::ctpop: |
| 48 | case Intrinsic::ctlz: |
| 49 | case Intrinsic::cttz: |
Sanjay Patel | 1456fd7 | 2018-11-12 15:20:14 +0000 | [diff] [blame] | 50 | case Intrinsic::fshl: |
| 51 | case Intrinsic::fshr: |
Sanjay Patel | 0f4f4806 | 2018-11-12 15:10:30 +0000 | [diff] [blame] | 52 | case Intrinsic::sqrt: // Begin floating-point. |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 53 | case Intrinsic::sin: |
| 54 | case Intrinsic::cos: |
| 55 | case Intrinsic::exp: |
| 56 | case Intrinsic::exp2: |
| 57 | case Intrinsic::log: |
| 58 | case Intrinsic::log10: |
| 59 | case Intrinsic::log2: |
| 60 | case Intrinsic::fabs: |
| 61 | case Intrinsic::minnum: |
| 62 | case Intrinsic::maxnum: |
Thomas Lively | 8a91cf1 | 2018-10-19 21:11:43 +0000 | [diff] [blame] | 63 | case Intrinsic::minimum: |
| 64 | case Intrinsic::maximum: |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 65 | case Intrinsic::copysign: |
| 66 | case Intrinsic::floor: |
| 67 | case Intrinsic::ceil: |
| 68 | case Intrinsic::trunc: |
| 69 | case Intrinsic::rint: |
| 70 | case Intrinsic::nearbyint: |
| 71 | case Intrinsic::round: |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 72 | case Intrinsic::pow: |
| 73 | case Intrinsic::fma: |
| 74 | case Intrinsic::fmuladd: |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 75 | case Intrinsic::powi: |
Matt Arsenault | 80ea6dd | 2018-09-17 13:24:30 +0000 | [diff] [blame] | 76 | case Intrinsic::canonicalize: |
Simon Pilgrim | c2aadfa | 2019-01-03 12:18:23 +0000 | [diff] [blame] | 77 | case Intrinsic::sadd_sat: |
| 78 | case Intrinsic::ssub_sat: |
| 79 | case Intrinsic::uadd_sat: |
| 80 | case Intrinsic::usub_sat: |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 81 | return true; |
| 82 | default: |
| 83 | return false; |
| 84 | } |
| 85 | } |
| 86 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 87 | /// Identifies if the intrinsic has a scalar operand. It check for |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 88 | /// ctlz,cttz and powi special intrinsics whose argument is scalar. |
| 89 | bool llvm::hasVectorInstrinsicScalarOpd(Intrinsic::ID ID, |
| 90 | unsigned ScalarOpdIdx) { |
| 91 | switch (ID) { |
| 92 | case Intrinsic::ctlz: |
| 93 | case Intrinsic::cttz: |
| 94 | case Intrinsic::powi: |
| 95 | return (ScalarOpdIdx == 1); |
| 96 | default: |
| 97 | return false; |
| 98 | } |
| 99 | } |
| 100 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 101 | /// Returns intrinsic ID for call. |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 102 | /// For the input call instruction it finds mapping intrinsic and returns |
| 103 | /// its ID, in case it does not found it return not_intrinsic. |
David Majnemer | b4b2723 | 2016-04-19 19:10:21 +0000 | [diff] [blame] | 104 | Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI, |
| 105 | const TargetLibraryInfo *TLI) { |
| 106 | Intrinsic::ID ID = getIntrinsicForCallSite(CI, TLI); |
| 107 | if (ID == Intrinsic::not_intrinsic) |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 108 | return Intrinsic::not_intrinsic; |
| 109 | |
David Majnemer | b4b2723 | 2016-04-19 19:10:21 +0000 | [diff] [blame] | 110 | if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start || |
Dan Gohman | 2c74fe9 | 2017-11-08 21:59:51 +0000 | [diff] [blame] | 111 | ID == Intrinsic::lifetime_end || ID == Intrinsic::assume || |
| 112 | ID == Intrinsic::sideeffect) |
David Majnemer | b4b2723 | 2016-04-19 19:10:21 +0000 | [diff] [blame] | 113 | return ID; |
David Blaikie | 1213dbf | 2015-06-26 16:57:30 +0000 | [diff] [blame] | 114 | return Intrinsic::not_intrinsic; |
| 115 | } |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 116 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 117 | /// Find the operand of the GEP that should be checked for consecutive |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 118 | /// stores. This ignores trailing indices that have no effect on the final |
| 119 | /// pointer. |
| 120 | unsigned llvm::getGEPInductionOperand(const GetElementPtrInst *Gep) { |
| 121 | const DataLayout &DL = Gep->getModule()->getDataLayout(); |
| 122 | unsigned LastOperand = Gep->getNumOperands() - 1; |
Eduard Burtescu | 19eb031 | 2016-01-19 17:28:00 +0000 | [diff] [blame] | 123 | unsigned GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 124 | |
| 125 | // Walk backwards and try to peel off zeros. |
David Majnemer | 5eaf08f | 2015-08-18 22:07:20 +0000 | [diff] [blame] | 126 | while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 127 | // Find the type we're currently indexing into. |
| 128 | gep_type_iterator GEPTI = gep_type_begin(Gep); |
Peter Collingbourne | ab85225b | 2016-12-02 02:24:42 +0000 | [diff] [blame] | 129 | std::advance(GEPTI, LastOperand - 2); |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 130 | |
| 131 | // If it's a type with the same allocation size as the result of the GEP we |
| 132 | // can peel off the zero index. |
Peter Collingbourne | ab85225b | 2016-12-02 02:24:42 +0000 | [diff] [blame] | 133 | if (DL.getTypeAllocSize(GEPTI.getIndexedType()) != GEPAllocSize) |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 134 | break; |
| 135 | --LastOperand; |
| 136 | } |
| 137 | |
| 138 | return LastOperand; |
| 139 | } |
| 140 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 141 | /// If the argument is a GEP, then returns the operand identified by |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 142 | /// getGEPInductionOperand. However, if there is some other non-loop-invariant |
| 143 | /// operand, it returns that instead. |
David Majnemer | 5eaf08f | 2015-08-18 22:07:20 +0000 | [diff] [blame] | 144 | Value *llvm::stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 145 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); |
| 146 | if (!GEP) |
| 147 | return Ptr; |
| 148 | |
| 149 | unsigned InductionOperand = getGEPInductionOperand(GEP); |
| 150 | |
| 151 | // Check that all of the gep indices are uniform except for our induction |
| 152 | // operand. |
| 153 | for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) |
| 154 | if (i != InductionOperand && |
| 155 | !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(i)), Lp)) |
| 156 | return Ptr; |
| 157 | return GEP->getOperand(InductionOperand); |
| 158 | } |
| 159 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 160 | /// If a value has only one user that is a CastInst, return it. |
David Majnemer | 5eaf08f | 2015-08-18 22:07:20 +0000 | [diff] [blame] | 161 | Value *llvm::getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) { |
| 162 | Value *UniqueCast = nullptr; |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 163 | for (User *U : Ptr->users()) { |
| 164 | CastInst *CI = dyn_cast<CastInst>(U); |
| 165 | if (CI && CI->getType() == Ty) { |
| 166 | if (!UniqueCast) |
| 167 | UniqueCast = CI; |
| 168 | else |
| 169 | return nullptr; |
| 170 | } |
| 171 | } |
| 172 | return UniqueCast; |
| 173 | } |
| 174 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 175 | /// Get the stride of a pointer access in a loop. Looks for symbolic |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 176 | /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. |
David Majnemer | 5eaf08f | 2015-08-18 22:07:20 +0000 | [diff] [blame] | 177 | Value *llvm::getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { |
Craig Topper | e3dcce9 | 2015-08-01 22:20:21 +0000 | [diff] [blame] | 178 | auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 179 | if (!PtrTy || PtrTy->isAggregateType()) |
| 180 | return nullptr; |
| 181 | |
| 182 | // Try to remove a gep instruction to make the pointer (actually index at this |
Vedant Kumar | d319674 | 2018-02-28 19:08:52 +0000 | [diff] [blame] | 183 | // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 184 | // pointer, otherwise, we are analyzing the index. |
David Majnemer | 5eaf08f | 2015-08-18 22:07:20 +0000 | [diff] [blame] | 185 | Value *OrigPtr = Ptr; |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 186 | |
| 187 | // The size of the pointer access. |
| 188 | int64_t PtrAccessSize = 1; |
| 189 | |
| 190 | Ptr = stripGetElementPtr(Ptr, SE, Lp); |
| 191 | const SCEV *V = SE->getSCEV(Ptr); |
| 192 | |
| 193 | if (Ptr != OrigPtr) |
| 194 | // Strip off casts. |
| 195 | while (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) |
| 196 | V = C->getOperand(); |
| 197 | |
| 198 | const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); |
| 199 | if (!S) |
| 200 | return nullptr; |
| 201 | |
| 202 | V = S->getStepRecurrence(*SE); |
| 203 | if (!V) |
| 204 | return nullptr; |
| 205 | |
| 206 | // Strip off the size of access multiplication if we are still analyzing the |
| 207 | // pointer. |
| 208 | if (OrigPtr == Ptr) { |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 209 | if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { |
| 210 | if (M->getOperand(0)->getSCEVType() != scConstant) |
| 211 | return nullptr; |
| 212 | |
Sanjoy Das | 0de2fec | 2015-12-17 20:28:46 +0000 | [diff] [blame] | 213 | const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 214 | |
| 215 | // Huge step value - give up. |
| 216 | if (APStepVal.getBitWidth() > 64) |
| 217 | return nullptr; |
| 218 | |
| 219 | int64_t StepVal = APStepVal.getSExtValue(); |
| 220 | if (PtrAccessSize != StepVal) |
| 221 | return nullptr; |
| 222 | V = M->getOperand(1); |
| 223 | } |
| 224 | } |
| 225 | |
| 226 | // Strip off casts. |
| 227 | Type *StripedOffRecurrenceCast = nullptr; |
| 228 | if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) { |
| 229 | StripedOffRecurrenceCast = C->getType(); |
| 230 | V = C->getOperand(); |
| 231 | } |
| 232 | |
| 233 | // Look for the loop invariant symbolic value. |
| 234 | const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V); |
| 235 | if (!U) |
| 236 | return nullptr; |
| 237 | |
David Majnemer | 5eaf08f | 2015-08-18 22:07:20 +0000 | [diff] [blame] | 238 | Value *Stride = U->getValue(); |
Hal Finkel | 9cf58c4 | 2015-07-11 10:52:42 +0000 | [diff] [blame] | 239 | if (!Lp->isLoopInvariant(Stride)) |
| 240 | return nullptr; |
| 241 | |
| 242 | // If we have stripped off the recurrence cast we have to make sure that we |
| 243 | // return the value that is used in this loop so that we can replace it later. |
| 244 | if (StripedOffRecurrenceCast) |
| 245 | Stride = getUniqueCastUse(Stride, Lp, StripedOffRecurrenceCast); |
| 246 | |
| 247 | return Stride; |
| 248 | } |
David Majnemer | 599ca44 | 2015-07-13 01:15:53 +0000 | [diff] [blame] | 249 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 250 | /// Given a vector and an element number, see if the scalar value is |
David Majnemer | 599ca44 | 2015-07-13 01:15:53 +0000 | [diff] [blame] | 251 | /// already around as a register, for example if it were inserted then extracted |
| 252 | /// from the vector. |
David Majnemer | 5eaf08f | 2015-08-18 22:07:20 +0000 | [diff] [blame] | 253 | Value *llvm::findScalarElement(Value *V, unsigned EltNo) { |
David Majnemer | 599ca44 | 2015-07-13 01:15:53 +0000 | [diff] [blame] | 254 | assert(V->getType()->isVectorTy() && "Not looking at a vector?"); |
| 255 | VectorType *VTy = cast<VectorType>(V->getType()); |
| 256 | unsigned Width = VTy->getNumElements(); |
| 257 | if (EltNo >= Width) // Out of range access. |
| 258 | return UndefValue::get(VTy->getElementType()); |
| 259 | |
| 260 | if (Constant *C = dyn_cast<Constant>(V)) |
| 261 | return C->getAggregateElement(EltNo); |
| 262 | |
| 263 | if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) { |
| 264 | // If this is an insert to a variable element, we don't know what it is. |
| 265 | if (!isa<ConstantInt>(III->getOperand(2))) |
| 266 | return nullptr; |
| 267 | unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue(); |
| 268 | |
| 269 | // If this is an insert to the element we are looking for, return the |
| 270 | // inserted value. |
| 271 | if (EltNo == IIElt) |
| 272 | return III->getOperand(1); |
| 273 | |
| 274 | // Otherwise, the insertelement doesn't modify the value, recurse on its |
| 275 | // vector input. |
| 276 | return findScalarElement(III->getOperand(0), EltNo); |
| 277 | } |
| 278 | |
| 279 | if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) { |
| 280 | unsigned LHSWidth = SVI->getOperand(0)->getType()->getVectorNumElements(); |
| 281 | int InEl = SVI->getMaskValue(EltNo); |
| 282 | if (InEl < 0) |
| 283 | return UndefValue::get(VTy->getElementType()); |
| 284 | if (InEl < (int)LHSWidth) |
| 285 | return findScalarElement(SVI->getOperand(0), InEl); |
| 286 | return findScalarElement(SVI->getOperand(1), InEl - LHSWidth); |
| 287 | } |
| 288 | |
| 289 | // Extract a value from a vector add operation with a constant zero. |
Sanjay Patel | 3413a66 | 2018-09-24 17:18:32 +0000 | [diff] [blame] | 290 | // TODO: Use getBinOpIdentity() to generalize this. |
| 291 | Value *Val; Constant *C; |
| 292 | if (match(V, m_Add(m_Value(Val), m_Constant(C)))) |
| 293 | if (Constant *Elt = C->getAggregateElement(EltNo)) |
David Majnemer | c6bb0e2 | 2015-08-18 22:07:25 +0000 | [diff] [blame] | 294 | if (Elt->isNullValue()) |
| 295 | return findScalarElement(Val, EltNo); |
David Majnemer | 599ca44 | 2015-07-13 01:15:53 +0000 | [diff] [blame] | 296 | |
| 297 | // Otherwise, we don't know. |
| 298 | return nullptr; |
| 299 | } |
Renato Golin | 3b1d3b0 | 2015-08-30 10:49:04 +0000 | [diff] [blame] | 300 | |
Adrian Prantl | 5f8f34e4 | 2018-05-01 15:54:18 +0000 | [diff] [blame] | 301 | /// Get splat value if the input is a splat vector or return nullptr. |
Elena Demikhovsky | 63a7ca9 | 2015-08-30 13:48:02 +0000 | [diff] [blame] | 302 | /// This function is not fully general. It checks only 2 cases: |
| 303 | /// the input value is (1) a splat constants vector or (2) a sequence |
| 304 | /// of instructions that broadcast a single value into a vector. |
| 305 | /// |
Elena Demikhovsky | 0781d7b | 2015-12-01 12:08:36 +0000 | [diff] [blame] | 306 | const llvm::Value *llvm::getSplatValue(const Value *V) { |
| 307 | |
| 308 | if (auto *C = dyn_cast<Constant>(V)) |
Elena Demikhovsky | 47fa271 | 2015-12-01 12:30:40 +0000 | [diff] [blame] | 309 | if (isa<VectorType>(V->getType())) |
| 310 | return C->getSplatValue(); |
Elena Demikhovsky | 63a7ca9 | 2015-08-30 13:48:02 +0000 | [diff] [blame] | 311 | |
| 312 | auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V); |
Renato Golin | 3b1d3b0 | 2015-08-30 10:49:04 +0000 | [diff] [blame] | 313 | if (!ShuffleInst) |
| 314 | return nullptr; |
Elena Demikhovsky | 63a7ca9 | 2015-08-30 13:48:02 +0000 | [diff] [blame] | 315 | // All-zero (or undef) shuffle mask elements. |
| 316 | for (int MaskElt : ShuffleInst->getShuffleMask()) |
| 317 | if (MaskElt != 0 && MaskElt != -1) |
Renato Golin | 3b1d3b0 | 2015-08-30 10:49:04 +0000 | [diff] [blame] | 318 | return nullptr; |
| 319 | // The first shuffle source is 'insertelement' with index 0. |
Elena Demikhovsky | 63a7ca9 | 2015-08-30 13:48:02 +0000 | [diff] [blame] | 320 | auto *InsertEltInst = |
| 321 | dyn_cast<InsertElementInst>(ShuffleInst->getOperand(0)); |
Renato Golin | 3b1d3b0 | 2015-08-30 10:49:04 +0000 | [diff] [blame] | 322 | if (!InsertEltInst || !isa<ConstantInt>(InsertEltInst->getOperand(2)) || |
Craig Topper | 79ab643 | 2017-07-06 18:39:47 +0000 | [diff] [blame] | 323 | !cast<ConstantInt>(InsertEltInst->getOperand(2))->isZero()) |
Renato Golin | 3b1d3b0 | 2015-08-30 10:49:04 +0000 | [diff] [blame] | 324 | return nullptr; |
| 325 | |
| 326 | return InsertEltInst->getOperand(1); |
| 327 | } |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 328 | |
Charlie Turner | 54336a5 | 2015-11-26 20:39:51 +0000 | [diff] [blame] | 329 | MapVector<Instruction *, uint64_t> |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 330 | llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB, |
| 331 | const TargetTransformInfo *TTI) { |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 332 | |
| 333 | // DemandedBits will give us every value's live-out bits. But we want |
| 334 | // to ensure no extra casts would need to be inserted, so every DAG |
| 335 | // of connected values must have the same minimum bitwidth. |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 336 | EquivalenceClasses<Value *> ECs; |
| 337 | SmallVector<Value *, 16> Worklist; |
| 338 | SmallPtrSet<Value *, 4> Roots; |
| 339 | SmallPtrSet<Value *, 16> Visited; |
| 340 | DenseMap<Value *, uint64_t> DBits; |
| 341 | SmallPtrSet<Instruction *, 4> InstructionSet; |
Charlie Turner | 54336a5 | 2015-11-26 20:39:51 +0000 | [diff] [blame] | 342 | MapVector<Instruction *, uint64_t> MinBWs; |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 343 | |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 344 | // Determine the roots. We work bottom-up, from truncs or icmps. |
| 345 | bool SeenExtFromIllegalType = false; |
| 346 | for (auto *BB : Blocks) |
| 347 | for (auto &I : *BB) { |
| 348 | InstructionSet.insert(&I); |
| 349 | |
| 350 | if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) && |
| 351 | !TTI->isTypeLegal(I.getOperand(0)->getType())) |
| 352 | SeenExtFromIllegalType = true; |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 353 | |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 354 | // Only deal with non-vector integers up to 64-bits wide. |
| 355 | if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) && |
| 356 | !I.getType()->isVectorTy() && |
| 357 | I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) { |
| 358 | // Don't make work for ourselves. If we know the loaded type is legal, |
| 359 | // don't add it to the worklist. |
| 360 | if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType())) |
| 361 | continue; |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 362 | |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 363 | Worklist.push_back(&I); |
| 364 | Roots.insert(&I); |
| 365 | } |
| 366 | } |
| 367 | // Early exit. |
| 368 | if (Worklist.empty() || (TTI && !SeenExtFromIllegalType)) |
| 369 | return MinBWs; |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 370 | |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 371 | // Now proceed breadth-first, unioning values together. |
| 372 | while (!Worklist.empty()) { |
| 373 | Value *Val = Worklist.pop_back_val(); |
| 374 | Value *Leader = ECs.getOrInsertLeaderValue(Val); |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 375 | |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 376 | if (Visited.count(Val)) |
| 377 | continue; |
| 378 | Visited.insert(Val); |
| 379 | |
| 380 | // Non-instructions terminate a chain successfully. |
| 381 | if (!isa<Instruction>(Val)) |
| 382 | continue; |
| 383 | Instruction *I = cast<Instruction>(Val); |
| 384 | |
| 385 | // If we encounter a type that is larger than 64 bits, we can't represent |
| 386 | // it so bail out. |
James Molloy | aa1d638 | 2016-05-10 12:27:23 +0000 | [diff] [blame] | 387 | if (DB.getDemandedBits(I).getBitWidth() > 64) |
Charlie Turner | 54336a5 | 2015-11-26 20:39:51 +0000 | [diff] [blame] | 388 | return MapVector<Instruction *, uint64_t>(); |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 389 | |
James Molloy | aa1d638 | 2016-05-10 12:27:23 +0000 | [diff] [blame] | 390 | uint64_t V = DB.getDemandedBits(I).getZExtValue(); |
| 391 | DBits[Leader] |= V; |
| 392 | DBits[I] = V; |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 393 | |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 394 | // Casts, loads and instructions outside of our range terminate a chain |
| 395 | // successfully. |
| 396 | if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) || |
| 397 | !InstructionSet.count(I)) |
| 398 | continue; |
| 399 | |
| 400 | // Unsafe casts terminate a chain unsuccessfully. We can't do anything |
| 401 | // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to |
| 402 | // transform anything that relies on them. |
| 403 | if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) || |
| 404 | !I->getType()->isIntegerTy()) { |
| 405 | DBits[Leader] |= ~0ULL; |
| 406 | continue; |
| 407 | } |
| 408 | |
| 409 | // We don't modify the types of PHIs. Reductions will already have been |
| 410 | // truncated if possible, and inductions' sizes will have been chosen by |
| 411 | // indvars. |
| 412 | if (isa<PHINode>(I)) |
| 413 | continue; |
| 414 | |
| 415 | if (DBits[Leader] == ~0ULL) |
| 416 | // All bits demanded, no point continuing. |
| 417 | continue; |
| 418 | |
| 419 | for (Value *O : cast<User>(I)->operands()) { |
| 420 | ECs.unionSets(Leader, O); |
| 421 | Worklist.push_back(O); |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | // Now we've discovered all values, walk them to see if there are |
| 426 | // any users we didn't see. If there are, we can't optimize that |
| 427 | // chain. |
| 428 | for (auto &I : DBits) |
| 429 | for (auto *U : I.first->users()) |
| 430 | if (U->getType()->isIntegerTy() && DBits.count(U) == 0) |
| 431 | DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL; |
James Molloy | 45f67d5 | 2015-11-09 14:32:05 +0000 | [diff] [blame] | 432 | |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 433 | for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) { |
| 434 | uint64_t LeaderDemandedBits = 0; |
| 435 | for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) |
| 436 | LeaderDemandedBits |= DBits[*MI]; |
| 437 | |
| 438 | uint64_t MinBW = (sizeof(LeaderDemandedBits) * 8) - |
| 439 | llvm::countLeadingZeros(LeaderDemandedBits); |
| 440 | // Round up to a power of 2 |
| 441 | if (!isPowerOf2_64((uint64_t)MinBW)) |
| 442 | MinBW = NextPowerOf2(MinBW); |
James Molloy | 8e46cd0 | 2016-03-30 10:11:43 +0000 | [diff] [blame] | 443 | |
| 444 | // We don't modify the types of PHIs. Reductions will already have been |
| 445 | // truncated if possible, and inductions' sizes will have been chosen by |
| 446 | // indvars. |
| 447 | // If we are required to shrink a PHI, abandon this entire equivalence class. |
| 448 | bool Abort = false; |
| 449 | for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) |
| 450 | if (isa<PHINode>(*MI) && MinBW < (*MI)->getType()->getScalarSizeInBits()) { |
| 451 | Abort = true; |
| 452 | break; |
| 453 | } |
| 454 | if (Abort) |
| 455 | continue; |
| 456 | |
James Molloy | 55d633b | 2015-10-12 12:34:45 +0000 | [diff] [blame] | 457 | for (auto MI = ECs.member_begin(I), ME = ECs.member_end(); MI != ME; ++MI) { |
| 458 | if (!isa<Instruction>(*MI)) |
| 459 | continue; |
| 460 | Type *Ty = (*MI)->getType(); |
| 461 | if (Roots.count(*MI)) |
| 462 | Ty = cast<Instruction>(*MI)->getOperand(0)->getType(); |
| 463 | if (MinBW < Ty->getScalarSizeInBits()) |
| 464 | MinBWs[cast<Instruction>(*MI)] = MinBW; |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | return MinBWs; |
| 469 | } |
Matt Arsenault | 727e279 | 2016-06-30 21:17:59 +0000 | [diff] [blame] | 470 | |
Michael Kruse | 978ba61 | 2018-12-20 04:58:07 +0000 | [diff] [blame] | 471 | /// Add all access groups in @p AccGroups to @p List. |
| 472 | template <typename ListT> |
| 473 | static void addToAccessGroupList(ListT &List, MDNode *AccGroups) { |
| 474 | // Interpret an access group as a list containing itself. |
| 475 | if (AccGroups->getNumOperands() == 0) { |
| 476 | assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group"); |
| 477 | List.insert(AccGroups); |
| 478 | return; |
| 479 | } |
| 480 | |
| 481 | for (auto &AccGroupListOp : AccGroups->operands()) { |
| 482 | auto *Item = cast<MDNode>(AccGroupListOp.get()); |
| 483 | assert(isValidAsAccessGroup(Item) && "List item must be an access group"); |
| 484 | List.insert(Item); |
| 485 | } |
Clement Courbet | d4bd3eb | 2018-12-20 09:20:07 +0000 | [diff] [blame] | 486 | } |
Michael Kruse | 978ba61 | 2018-12-20 04:58:07 +0000 | [diff] [blame] | 487 | |
| 488 | MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) { |
| 489 | if (!AccGroups1) |
| 490 | return AccGroups2; |
| 491 | if (!AccGroups2) |
| 492 | return AccGroups1; |
| 493 | if (AccGroups1 == AccGroups2) |
| 494 | return AccGroups1; |
| 495 | |
| 496 | SmallSetVector<Metadata *, 4> Union; |
| 497 | addToAccessGroupList(Union, AccGroups1); |
| 498 | addToAccessGroupList(Union, AccGroups2); |
| 499 | |
| 500 | if (Union.size() == 0) |
| 501 | return nullptr; |
| 502 | if (Union.size() == 1) |
| 503 | return cast<MDNode>(Union.front()); |
| 504 | |
| 505 | LLVMContext &Ctx = AccGroups1->getContext(); |
| 506 | return MDNode::get(Ctx, Union.getArrayRef()); |
| 507 | } |
| 508 | |
| 509 | MDNode *llvm::intersectAccessGroups(const Instruction *Inst1, |
| 510 | const Instruction *Inst2) { |
| 511 | bool MayAccessMem1 = Inst1->mayReadOrWriteMemory(); |
| 512 | bool MayAccessMem2 = Inst2->mayReadOrWriteMemory(); |
| 513 | |
| 514 | if (!MayAccessMem1 && !MayAccessMem2) |
| 515 | return nullptr; |
| 516 | if (!MayAccessMem1) |
| 517 | return Inst2->getMetadata(LLVMContext::MD_access_group); |
| 518 | if (!MayAccessMem2) |
| 519 | return Inst1->getMetadata(LLVMContext::MD_access_group); |
| 520 | |
| 521 | MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group); |
| 522 | MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group); |
| 523 | if (!MD1 || !MD2) |
| 524 | return nullptr; |
| 525 | if (MD1 == MD2) |
| 526 | return MD1; |
| 527 | |
| 528 | // Use set for scalable 'contains' check. |
| 529 | SmallPtrSet<Metadata *, 4> AccGroupSet2; |
| 530 | addToAccessGroupList(AccGroupSet2, MD2); |
| 531 | |
| 532 | SmallVector<Metadata *, 4> Intersection; |
| 533 | if (MD1->getNumOperands() == 0) { |
| 534 | assert(isValidAsAccessGroup(MD1) && "Node must be an access group"); |
| 535 | if (AccGroupSet2.count(MD1)) |
| 536 | Intersection.push_back(MD1); |
| 537 | } else { |
| 538 | for (const MDOperand &Node : MD1->operands()) { |
| 539 | auto *Item = cast<MDNode>(Node.get()); |
| 540 | assert(isValidAsAccessGroup(Item) && "List item must be an access group"); |
| 541 | if (AccGroupSet2.count(Item)) |
| 542 | Intersection.push_back(Item); |
| 543 | } |
| 544 | } |
| 545 | |
| 546 | if (Intersection.size() == 0) |
| 547 | return nullptr; |
| 548 | if (Intersection.size() == 1) |
| 549 | return cast<MDNode>(Intersection.front()); |
| 550 | |
| 551 | LLVMContext &Ctx = Inst1->getContext(); |
| 552 | return MDNode::get(Ctx, Intersection); |
| 553 | } |
| 554 | |
Matt Arsenault | 727e279 | 2016-06-30 21:17:59 +0000 | [diff] [blame] | 555 | /// \returns \p I after propagating metadata from \p VL. |
| 556 | Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) { |
| 557 | Instruction *I0 = cast<Instruction>(VL[0]); |
| 558 | SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; |
| 559 | I0->getAllMetadataOtherThanDebugLoc(Metadata); |
| 560 | |
Michael Kruse | 978ba61 | 2018-12-20 04:58:07 +0000 | [diff] [blame] | 561 | for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| 562 | LLVMContext::MD_noalias, LLVMContext::MD_fpmath, |
| 563 | LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load, |
| 564 | LLVMContext::MD_access_group}) { |
Matt Arsenault | 727e279 | 2016-06-30 21:17:59 +0000 | [diff] [blame] | 565 | MDNode *MD = I0->getMetadata(Kind); |
| 566 | |
| 567 | for (int J = 1, E = VL.size(); MD && J != E; ++J) { |
| 568 | const Instruction *IJ = cast<Instruction>(VL[J]); |
| 569 | MDNode *IMD = IJ->getMetadata(Kind); |
| 570 | switch (Kind) { |
| 571 | case LLVMContext::MD_tbaa: |
| 572 | MD = MDNode::getMostGenericTBAA(MD, IMD); |
| 573 | break; |
| 574 | case LLVMContext::MD_alias_scope: |
| 575 | MD = MDNode::getMostGenericAliasScope(MD, IMD); |
| 576 | break; |
Matt Arsenault | 727e279 | 2016-06-30 21:17:59 +0000 | [diff] [blame] | 577 | case LLVMContext::MD_fpmath: |
| 578 | MD = MDNode::getMostGenericFPMath(MD, IMD); |
| 579 | break; |
Justin Lebar | 11a3204 | 2016-09-11 01:39:08 +0000 | [diff] [blame] | 580 | case LLVMContext::MD_noalias: |
Matt Arsenault | 727e279 | 2016-06-30 21:17:59 +0000 | [diff] [blame] | 581 | case LLVMContext::MD_nontemporal: |
Justin Lebar | 11a3204 | 2016-09-11 01:39:08 +0000 | [diff] [blame] | 582 | case LLVMContext::MD_invariant_load: |
Matt Arsenault | 727e279 | 2016-06-30 21:17:59 +0000 | [diff] [blame] | 583 | MD = MDNode::intersect(MD, IMD); |
| 584 | break; |
Michael Kruse | 978ba61 | 2018-12-20 04:58:07 +0000 | [diff] [blame] | 585 | case LLVMContext::MD_access_group: |
| 586 | MD = intersectAccessGroups(Inst, IJ); |
| 587 | break; |
Matt Arsenault | 727e279 | 2016-06-30 21:17:59 +0000 | [diff] [blame] | 588 | default: |
| 589 | llvm_unreachable("unhandled metadata"); |
| 590 | } |
| 591 | } |
| 592 | |
| 593 | Inst->setMetadata(Kind, MD); |
| 594 | } |
| 595 | |
| 596 | return Inst; |
| 597 | } |
Matthew Simpson | ba5cf9d | 2017-02-01 17:45:46 +0000 | [diff] [blame] | 598 | |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 599 | Constant * |
| 600 | llvm::createBitMaskForGaps(IRBuilder<> &Builder, unsigned VF, |
| 601 | const InterleaveGroup<Instruction> &Group) { |
Dorit Nuzman | 34da6dd | 2018-10-31 09:57:56 +0000 | [diff] [blame] | 602 | // All 1's means mask is not needed. |
| 603 | if (Group.getNumMembers() == Group.getFactor()) |
| 604 | return nullptr; |
| 605 | |
| 606 | // TODO: support reversed access. |
| 607 | assert(!Group.isReverse() && "Reversed group not supported."); |
| 608 | |
| 609 | SmallVector<Constant *, 16> Mask; |
| 610 | for (unsigned i = 0; i < VF; i++) |
| 611 | for (unsigned j = 0; j < Group.getFactor(); ++j) { |
| 612 | unsigned HasMember = Group.getMember(j) ? 1 : 0; |
| 613 | Mask.push_back(Builder.getInt1(HasMember)); |
| 614 | } |
| 615 | |
| 616 | return ConstantVector::get(Mask); |
| 617 | } |
| 618 | |
Dorit Nuzman | 38bbf81 | 2018-10-14 08:50:06 +0000 | [diff] [blame] | 619 | Constant *llvm::createReplicatedMask(IRBuilder<> &Builder, |
| 620 | unsigned ReplicationFactor, unsigned VF) { |
| 621 | SmallVector<Constant *, 16> MaskVec; |
| 622 | for (unsigned i = 0; i < VF; i++) |
| 623 | for (unsigned j = 0; j < ReplicationFactor; j++) |
| 624 | MaskVec.push_back(Builder.getInt32(i)); |
| 625 | |
| 626 | return ConstantVector::get(MaskVec); |
| 627 | } |
| 628 | |
Matthew Simpson | ba5cf9d | 2017-02-01 17:45:46 +0000 | [diff] [blame] | 629 | Constant *llvm::createInterleaveMask(IRBuilder<> &Builder, unsigned VF, |
| 630 | unsigned NumVecs) { |
| 631 | SmallVector<Constant *, 16> Mask; |
| 632 | for (unsigned i = 0; i < VF; i++) |
| 633 | for (unsigned j = 0; j < NumVecs; j++) |
| 634 | Mask.push_back(Builder.getInt32(j * VF + i)); |
| 635 | |
| 636 | return ConstantVector::get(Mask); |
| 637 | } |
| 638 | |
| 639 | Constant *llvm::createStrideMask(IRBuilder<> &Builder, unsigned Start, |
| 640 | unsigned Stride, unsigned VF) { |
| 641 | SmallVector<Constant *, 16> Mask; |
| 642 | for (unsigned i = 0; i < VF; i++) |
| 643 | Mask.push_back(Builder.getInt32(Start + i * Stride)); |
| 644 | |
| 645 | return ConstantVector::get(Mask); |
| 646 | } |
| 647 | |
| 648 | Constant *llvm::createSequentialMask(IRBuilder<> &Builder, unsigned Start, |
| 649 | unsigned NumInts, unsigned NumUndefs) { |
| 650 | SmallVector<Constant *, 16> Mask; |
| 651 | for (unsigned i = 0; i < NumInts; i++) |
| 652 | Mask.push_back(Builder.getInt32(Start + i)); |
| 653 | |
| 654 | Constant *Undef = UndefValue::get(Builder.getInt32Ty()); |
| 655 | for (unsigned i = 0; i < NumUndefs; i++) |
| 656 | Mask.push_back(Undef); |
| 657 | |
| 658 | return ConstantVector::get(Mask); |
| 659 | } |
| 660 | |
| 661 | /// A helper function for concatenating vectors. This function concatenates two |
| 662 | /// vectors having the same element type. If the second vector has fewer |
| 663 | /// elements than the first, it is padded with undefs. |
| 664 | static Value *concatenateTwoVectors(IRBuilder<> &Builder, Value *V1, |
| 665 | Value *V2) { |
| 666 | VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType()); |
| 667 | VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType()); |
| 668 | assert(VecTy1 && VecTy2 && |
| 669 | VecTy1->getScalarType() == VecTy2->getScalarType() && |
| 670 | "Expect two vectors with the same element type"); |
| 671 | |
| 672 | unsigned NumElts1 = VecTy1->getNumElements(); |
| 673 | unsigned NumElts2 = VecTy2->getNumElements(); |
| 674 | assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements"); |
| 675 | |
| 676 | if (NumElts1 > NumElts2) { |
| 677 | // Extend with UNDEFs. |
| 678 | Constant *ExtMask = |
| 679 | createSequentialMask(Builder, 0, NumElts2, NumElts1 - NumElts2); |
| 680 | V2 = Builder.CreateShuffleVector(V2, UndefValue::get(VecTy2), ExtMask); |
| 681 | } |
| 682 | |
| 683 | Constant *Mask = createSequentialMask(Builder, 0, NumElts1 + NumElts2, 0); |
| 684 | return Builder.CreateShuffleVector(V1, V2, Mask); |
| 685 | } |
| 686 | |
| 687 | Value *llvm::concatenateVectors(IRBuilder<> &Builder, ArrayRef<Value *> Vecs) { |
| 688 | unsigned NumVecs = Vecs.size(); |
| 689 | assert(NumVecs > 1 && "Should be at least two vectors"); |
| 690 | |
| 691 | SmallVector<Value *, 8> ResList; |
| 692 | ResList.append(Vecs.begin(), Vecs.end()); |
| 693 | do { |
| 694 | SmallVector<Value *, 8> TmpList; |
| 695 | for (unsigned i = 0; i < NumVecs - 1; i += 2) { |
| 696 | Value *V0 = ResList[i], *V1 = ResList[i + 1]; |
| 697 | assert((V0->getType() == V1->getType() || i == NumVecs - 2) && |
| 698 | "Only the last vector may have a different type"); |
| 699 | |
| 700 | TmpList.push_back(concatenateTwoVectors(Builder, V0, V1)); |
| 701 | } |
| 702 | |
| 703 | // Push the last vector if the total number of vectors is odd. |
| 704 | if (NumVecs % 2 != 0) |
| 705 | TmpList.push_back(ResList[NumVecs - 1]); |
| 706 | |
| 707 | ResList = TmpList; |
| 708 | NumVecs = ResList.size(); |
| 709 | } while (NumVecs > 1); |
| 710 | |
| 711 | return ResList[0]; |
| 712 | } |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 713 | |
| 714 | bool InterleavedAccessInfo::isStrided(int Stride) { |
| 715 | unsigned Factor = std::abs(Stride); |
| 716 | return Factor >= 2 && Factor <= MaxInterleaveGroupFactor; |
| 717 | } |
| 718 | |
| 719 | void InterleavedAccessInfo::collectConstStrideAccesses( |
| 720 | MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo, |
| 721 | const ValueToValueMap &Strides) { |
| 722 | auto &DL = TheLoop->getHeader()->getModule()->getDataLayout(); |
| 723 | |
| 724 | // Since it's desired that the load/store instructions be maintained in |
| 725 | // "program order" for the interleaved access analysis, we have to visit the |
| 726 | // blocks in the loop in reverse postorder (i.e., in a topological order). |
| 727 | // Such an ordering will ensure that any load/store that may be executed |
| 728 | // before a second load/store will precede the second load/store in |
| 729 | // AccessStrideInfo. |
| 730 | LoopBlocksDFS DFS(TheLoop); |
| 731 | DFS.perform(LI); |
| 732 | for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) |
| 733 | for (auto &I : *BB) { |
| 734 | auto *LI = dyn_cast<LoadInst>(&I); |
| 735 | auto *SI = dyn_cast<StoreInst>(&I); |
| 736 | if (!LI && !SI) |
| 737 | continue; |
| 738 | |
| 739 | Value *Ptr = getLoadStorePointerOperand(&I); |
| 740 | // We don't check wrapping here because we don't know yet if Ptr will be |
| 741 | // part of a full group or a group with gaps. Checking wrapping for all |
| 742 | // pointers (even those that end up in groups with no gaps) will be overly |
| 743 | // conservative. For full groups, wrapping should be ok since if we would |
| 744 | // wrap around the address space we would do a memory access at nullptr |
| 745 | // even without the transformation. The wrapping checks are therefore |
| 746 | // deferred until after we've formed the interleaved groups. |
| 747 | int64_t Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, |
| 748 | /*Assume=*/true, /*ShouldCheckWrap=*/false); |
| 749 | |
| 750 | const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr); |
| 751 | PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType()); |
| 752 | uint64_t Size = DL.getTypeAllocSize(PtrTy->getElementType()); |
| 753 | |
| 754 | // An alignment of 0 means target ABI alignment. |
| 755 | unsigned Align = getLoadStoreAlignment(&I); |
| 756 | if (!Align) |
| 757 | Align = DL.getABITypeAlignment(PtrTy->getElementType()); |
| 758 | |
| 759 | AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size, Align); |
| 760 | } |
| 761 | } |
| 762 | |
| 763 | // Analyze interleaved accesses and collect them into interleaved load and |
| 764 | // store groups. |
| 765 | // |
| 766 | // When generating code for an interleaved load group, we effectively hoist all |
| 767 | // loads in the group to the location of the first load in program order. When |
| 768 | // generating code for an interleaved store group, we sink all stores to the |
| 769 | // location of the last store. This code motion can change the order of load |
| 770 | // and store instructions and may break dependences. |
| 771 | // |
| 772 | // The code generation strategy mentioned above ensures that we won't violate |
| 773 | // any write-after-read (WAR) dependences. |
| 774 | // |
| 775 | // E.g., for the WAR dependence: a = A[i]; // (1) |
| 776 | // A[i] = b; // (2) |
| 777 | // |
| 778 | // The store group of (2) is always inserted at or below (2), and the load |
| 779 | // group of (1) is always inserted at or above (1). Thus, the instructions will |
| 780 | // never be reordered. All other dependences are checked to ensure the |
| 781 | // correctness of the instruction reordering. |
| 782 | // |
| 783 | // The algorithm visits all memory accesses in the loop in bottom-up program |
| 784 | // order. Program order is established by traversing the blocks in the loop in |
| 785 | // reverse postorder when collecting the accesses. |
| 786 | // |
| 787 | // We visit the memory accesses in bottom-up order because it can simplify the |
| 788 | // construction of store groups in the presence of write-after-write (WAW) |
| 789 | // dependences. |
| 790 | // |
| 791 | // E.g., for the WAW dependence: A[i] = a; // (1) |
| 792 | // A[i] = b; // (2) |
| 793 | // A[i + 1] = c; // (3) |
| 794 | // |
| 795 | // We will first create a store group with (3) and (2). (1) can't be added to |
| 796 | // this group because it and (2) are dependent. However, (1) can be grouped |
| 797 | // with other accesses that may precede it in program order. Note that a |
| 798 | // bottom-up order does not imply that WAW dependences should not be checked. |
Dorit Nuzman | 38bbf81 | 2018-10-14 08:50:06 +0000 | [diff] [blame] | 799 | void InterleavedAccessInfo::analyzeInterleaving( |
| 800 | bool EnablePredicatedInterleavedMemAccesses) { |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 801 | LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n"); |
| 802 | const ValueToValueMap &Strides = LAI->getSymbolicStrides(); |
| 803 | |
| 804 | // Holds all accesses with a constant stride. |
| 805 | MapVector<Instruction *, StrideDescriptor> AccessStrideInfo; |
| 806 | collectConstStrideAccesses(AccessStrideInfo, Strides); |
| 807 | |
| 808 | if (AccessStrideInfo.empty()) |
| 809 | return; |
| 810 | |
| 811 | // Collect the dependences in the loop. |
| 812 | collectDependences(); |
| 813 | |
| 814 | // Holds all interleaved store groups temporarily. |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 815 | SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups; |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 816 | // Holds all interleaved load groups temporarily. |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 817 | SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups; |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 818 | |
| 819 | // Search in bottom-up program order for pairs of accesses (A and B) that can |
| 820 | // form interleaved load or store groups. In the algorithm below, access A |
| 821 | // precedes access B in program order. We initialize a group for B in the |
| 822 | // outer loop of the algorithm, and then in the inner loop, we attempt to |
| 823 | // insert each A into B's group if: |
| 824 | // |
| 825 | // 1. A and B have the same stride, |
| 826 | // 2. A and B have the same memory object size, and |
| 827 | // 3. A belongs in B's group according to its distance from B. |
| 828 | // |
| 829 | // Special care is taken to ensure group formation will not break any |
| 830 | // dependences. |
| 831 | for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend(); |
| 832 | BI != E; ++BI) { |
| 833 | Instruction *B = BI->first; |
| 834 | StrideDescriptor DesB = BI->second; |
| 835 | |
| 836 | // Initialize a group for B if it has an allowable stride. Even if we don't |
| 837 | // create a group for B, we continue with the bottom-up algorithm to ensure |
| 838 | // we don't break any of B's dependences. |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 839 | InterleaveGroup<Instruction> *Group = nullptr; |
Dorit Nuzman | 38bbf81 | 2018-10-14 08:50:06 +0000 | [diff] [blame] | 840 | if (isStrided(DesB.Stride) && |
| 841 | (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) { |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 842 | Group = getInterleaveGroup(B); |
| 843 | if (!Group) { |
| 844 | LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B |
| 845 | << '\n'); |
| 846 | Group = createInterleaveGroup(B, DesB.Stride, DesB.Align); |
| 847 | } |
| 848 | if (B->mayWriteToMemory()) |
| 849 | StoreGroups.insert(Group); |
| 850 | else |
| 851 | LoadGroups.insert(Group); |
| 852 | } |
| 853 | |
| 854 | for (auto AI = std::next(BI); AI != E; ++AI) { |
| 855 | Instruction *A = AI->first; |
| 856 | StrideDescriptor DesA = AI->second; |
| 857 | |
| 858 | // Our code motion strategy implies that we can't have dependences |
| 859 | // between accesses in an interleaved group and other accesses located |
| 860 | // between the first and last member of the group. Note that this also |
| 861 | // means that a group can't have more than one member at a given offset. |
| 862 | // The accesses in a group can have dependences with other accesses, but |
| 863 | // we must ensure we don't extend the boundaries of the group such that |
| 864 | // we encompass those dependent accesses. |
| 865 | // |
| 866 | // For example, assume we have the sequence of accesses shown below in a |
| 867 | // stride-2 loop: |
| 868 | // |
| 869 | // (1, 2) is a group | A[i] = a; // (1) |
| 870 | // | A[i-1] = b; // (2) | |
| 871 | // A[i-3] = c; // (3) |
| 872 | // A[i] = d; // (4) | (2, 4) is not a group |
| 873 | // |
| 874 | // Because accesses (2) and (3) are dependent, we can group (2) with (1) |
| 875 | // but not with (4). If we did, the dependent access (3) would be within |
| 876 | // the boundaries of the (2, 4) group. |
| 877 | if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI)) { |
| 878 | // If a dependence exists and A is already in a group, we know that A |
| 879 | // must be a store since A precedes B and WAR dependences are allowed. |
| 880 | // Thus, A would be sunk below B. We release A's group to prevent this |
| 881 | // illegal code motion. A will then be free to form another group with |
| 882 | // instructions that precede it. |
| 883 | if (isInterleaved(A)) { |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 884 | InterleaveGroup<Instruction> *StoreGroup = getInterleaveGroup(A); |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 885 | StoreGroups.remove(StoreGroup); |
| 886 | releaseGroup(StoreGroup); |
| 887 | } |
| 888 | |
| 889 | // If a dependence exists and A is not already in a group (or it was |
| 890 | // and we just released it), B might be hoisted above A (if B is a |
| 891 | // load) or another store might be sunk below A (if B is a store). In |
| 892 | // either case, we can't add additional instructions to B's group. B |
| 893 | // will only form a group with instructions that it precedes. |
| 894 | break; |
| 895 | } |
| 896 | |
| 897 | // At this point, we've checked for illegal code motion. If either A or B |
| 898 | // isn't strided, there's nothing left to do. |
| 899 | if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride)) |
| 900 | continue; |
| 901 | |
| 902 | // Ignore A if it's already in a group or isn't the same kind of memory |
| 903 | // operation as B. |
| 904 | // Note that mayReadFromMemory() isn't mutually exclusive to |
| 905 | // mayWriteToMemory in the case of atomic loads. We shouldn't see those |
| 906 | // here, canVectorizeMemory() should have returned false - except for the |
| 907 | // case we asked for optimization remarks. |
| 908 | if (isInterleaved(A) || |
| 909 | (A->mayReadFromMemory() != B->mayReadFromMemory()) || |
| 910 | (A->mayWriteToMemory() != B->mayWriteToMemory())) |
| 911 | continue; |
| 912 | |
| 913 | // Check rules 1 and 2. Ignore A if its stride or size is different from |
| 914 | // that of B. |
| 915 | if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size) |
| 916 | continue; |
| 917 | |
| 918 | // Ignore A if the memory object of A and B don't belong to the same |
| 919 | // address space |
| 920 | if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B)) |
| 921 | continue; |
| 922 | |
| 923 | // Calculate the distance from A to B. |
| 924 | const SCEVConstant *DistToB = dyn_cast<SCEVConstant>( |
| 925 | PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev)); |
| 926 | if (!DistToB) |
| 927 | continue; |
| 928 | int64_t DistanceToB = DistToB->getAPInt().getSExtValue(); |
| 929 | |
| 930 | // Check rule 3. Ignore A if its distance to B is not a multiple of the |
| 931 | // size. |
| 932 | if (DistanceToB % static_cast<int64_t>(DesB.Size)) |
| 933 | continue; |
| 934 | |
Dorit Nuzman | 38bbf81 | 2018-10-14 08:50:06 +0000 | [diff] [blame] | 935 | // All members of a predicated interleave-group must have the same predicate, |
| 936 | // and currently must reside in the same BB. |
| 937 | BasicBlock *BlockA = A->getParent(); |
| 938 | BasicBlock *BlockB = B->getParent(); |
| 939 | if ((isPredicated(BlockA) || isPredicated(BlockB)) && |
| 940 | (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB)) |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 941 | continue; |
| 942 | |
| 943 | // The index of A is the index of B plus A's distance to B in multiples |
| 944 | // of the size. |
| 945 | int IndexA = |
| 946 | Group->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size); |
| 947 | |
| 948 | // Try to insert A into B's group. |
| 949 | if (Group->insertMember(A, IndexA, DesA.Align)) { |
| 950 | LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n' |
| 951 | << " into the interleave group with" << *B |
| 952 | << '\n'); |
| 953 | InterleaveGroupMap[A] = Group; |
| 954 | |
| 955 | // Set the first load in program order as the insert position. |
| 956 | if (A->mayReadFromMemory()) |
| 957 | Group->setInsertPos(A); |
| 958 | } |
| 959 | } // Iteration over A accesses. |
| 960 | } // Iteration over B accesses. |
| 961 | |
| 962 | // Remove interleaved store groups with gaps. |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 963 | for (auto *Group : StoreGroups) |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 964 | if (Group->getNumMembers() != Group->getFactor()) { |
| 965 | LLVM_DEBUG( |
| 966 | dbgs() << "LV: Invalidate candidate interleaved store group due " |
| 967 | "to gaps.\n"); |
| 968 | releaseGroup(Group); |
| 969 | } |
| 970 | // Remove interleaved groups with gaps (currently only loads) whose memory |
| 971 | // accesses may wrap around. We have to revisit the getPtrStride analysis, |
| 972 | // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does |
| 973 | // not check wrapping (see documentation there). |
| 974 | // FORNOW we use Assume=false; |
| 975 | // TODO: Change to Assume=true but making sure we don't exceed the threshold |
| 976 | // of runtime SCEV assumptions checks (thereby potentially failing to |
| 977 | // vectorize altogether). |
| 978 | // Additional optional optimizations: |
| 979 | // TODO: If we are peeling the loop and we know that the first pointer doesn't |
| 980 | // wrap then we can deduce that all pointers in the group don't wrap. |
| 981 | // This means that we can forcefully peel the loop in order to only have to |
| 982 | // check the first pointer for no-wrap. When we'll change to use Assume=true |
| 983 | // we'll only need at most one runtime check per interleaved group. |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 984 | for (auto *Group : LoadGroups) { |
Florian Hahn | 1086ce2 | 2018-09-12 08:01:57 +0000 | [diff] [blame] | 985 | // Case 1: A full group. Can Skip the checks; For full groups, if the wide |
| 986 | // load would wrap around the address space we would do a memory access at |
| 987 | // nullptr even without the transformation. |
| 988 | if (Group->getNumMembers() == Group->getFactor()) |
| 989 | continue; |
| 990 | |
| 991 | // Case 2: If first and last members of the group don't wrap this implies |
| 992 | // that all the pointers in the group don't wrap. |
| 993 | // So we check only group member 0 (which is always guaranteed to exist), |
| 994 | // and group member Factor - 1; If the latter doesn't exist we rely on |
| 995 | // peeling (if it is a non-reveresed accsess -- see Case 3). |
| 996 | Value *FirstMemberPtr = getLoadStorePointerOperand(Group->getMember(0)); |
| 997 | if (!getPtrStride(PSE, FirstMemberPtr, TheLoop, Strides, /*Assume=*/false, |
| 998 | /*ShouldCheckWrap=*/true)) { |
| 999 | LLVM_DEBUG( |
| 1000 | dbgs() << "LV: Invalidate candidate interleaved group due to " |
| 1001 | "first group member potentially pointer-wrapping.\n"); |
| 1002 | releaseGroup(Group); |
| 1003 | continue; |
| 1004 | } |
| 1005 | Instruction *LastMember = Group->getMember(Group->getFactor() - 1); |
| 1006 | if (LastMember) { |
| 1007 | Value *LastMemberPtr = getLoadStorePointerOperand(LastMember); |
| 1008 | if (!getPtrStride(PSE, LastMemberPtr, TheLoop, Strides, /*Assume=*/false, |
| 1009 | /*ShouldCheckWrap=*/true)) { |
| 1010 | LLVM_DEBUG( |
| 1011 | dbgs() << "LV: Invalidate candidate interleaved group due to " |
| 1012 | "last group member potentially pointer-wrapping.\n"); |
| 1013 | releaseGroup(Group); |
| 1014 | } |
| 1015 | } else { |
| 1016 | // Case 3: A non-reversed interleaved load group with gaps: We need |
| 1017 | // to execute at least one scalar epilogue iteration. This will ensure |
| 1018 | // we don't speculatively access memory out-of-bounds. We only need |
| 1019 | // to look for a member at index factor - 1, since every group must have |
| 1020 | // a member at index zero. |
| 1021 | if (Group->isReverse()) { |
| 1022 | LLVM_DEBUG( |
| 1023 | dbgs() << "LV: Invalidate candidate interleaved group due to " |
| 1024 | "a reverse access with gaps.\n"); |
| 1025 | releaseGroup(Group); |
| 1026 | continue; |
| 1027 | } |
| 1028 | LLVM_DEBUG( |
| 1029 | dbgs() << "LV: Interleaved group requires epilogue iteration.\n"); |
| 1030 | RequiresScalarEpilogue = true; |
| 1031 | } |
| 1032 | } |
| 1033 | } |
Dorit Nuzman | 3ec99fe | 2018-10-22 06:17:09 +0000 | [diff] [blame] | 1034 | |
| 1035 | void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() { |
| 1036 | // If no group had triggered the requirement to create an epilogue loop, |
| 1037 | // there is nothing to do. |
| 1038 | if (!requiresScalarEpilogue()) |
| 1039 | return; |
| 1040 | |
| 1041 | // Avoid releasing a Group twice. |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 1042 | SmallPtrSet<InterleaveGroup<Instruction> *, 4> DelSet; |
Dorit Nuzman | 3ec99fe | 2018-10-22 06:17:09 +0000 | [diff] [blame] | 1043 | for (auto &I : InterleaveGroupMap) { |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 1044 | InterleaveGroup<Instruction> *Group = I.second; |
Dorit Nuzman | 3ec99fe | 2018-10-22 06:17:09 +0000 | [diff] [blame] | 1045 | if (Group->requiresScalarEpilogue()) |
| 1046 | DelSet.insert(Group); |
| 1047 | } |
| 1048 | for (auto *Ptr : DelSet) { |
| 1049 | LLVM_DEBUG( |
Dorit Nuzman | 34da6dd | 2018-10-31 09:57:56 +0000 | [diff] [blame] | 1050 | dbgs() |
Dorit Nuzman | 3ec99fe | 2018-10-22 06:17:09 +0000 | [diff] [blame] | 1051 | << "LV: Invalidate candidate interleaved group due to gaps that " |
Dorit Nuzman | 34da6dd | 2018-10-31 09:57:56 +0000 | [diff] [blame] | 1052 | "require a scalar epilogue (not allowed under optsize) and cannot " |
| 1053 | "be masked (not enabled). \n"); |
Dorit Nuzman | 3ec99fe | 2018-10-22 06:17:09 +0000 | [diff] [blame] | 1054 | releaseGroup(Ptr); |
| 1055 | } |
| 1056 | |
| 1057 | RequiresScalarEpilogue = false; |
| 1058 | } |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 1059 | |
Florian Hahn | 86ed347 | 2018-11-13 16:26:34 +0000 | [diff] [blame] | 1060 | template <typename InstT> |
| 1061 | void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const { |
| 1062 | llvm_unreachable("addMetadata can only be used for Instruction"); |
| 1063 | } |
| 1064 | |
| 1065 | namespace llvm { |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 1066 | template <> |
| 1067 | void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const { |
| 1068 | SmallVector<Value *, 4> VL; |
| 1069 | std::transform(Members.begin(), Members.end(), std::back_inserter(VL), |
| 1070 | [](std::pair<int, Instruction *> p) { return p.second; }); |
| 1071 | propagateMetadata(NewInst, VL); |
| 1072 | } |
Florian Hahn | a4dc7fe | 2018-11-13 15:58:18 +0000 | [diff] [blame] | 1073 | } |