blob: 5983c804c0c18de332fc76905faf59c84a2f698d [file] [log] [blame]
Artur Pilipenko8fb3d572017-01-25 16:00:44 +00001//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LoopPredication pass tries to convert loop variant range checks to loop
11// invariant by widening checks across loop iterations. For example, it will
12// convert
13//
14// for (i = 0; i < n; i++) {
15// guard(i < len);
16// ...
17// }
18//
19// to
20//
21// for (i = 0; i < n; i++) {
22// guard(n - 1 < len);
23// ...
24// }
25//
26// After this transformation the condition of the guard is loop invariant, so
27// loop-unswitch can later unswitch the loop by this condition which basically
28// predicates the loop by the widened condition:
29//
30// if (n - 1 < len)
31// for (i = 0; i < n; i++) {
32// ...
33// }
34// else
35// deoptimize
36//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000037// It's tempting to rely on SCEV here, but it has proven to be problematic.
38// Generally the facts SCEV provides about the increment step of add
39// recurrences are true if the backedge of the loop is taken, which implicitly
40// assumes that the guard doesn't fail. Using these facts to optimize the
41// guard results in a circular logic where the guard is optimized under the
42// assumption that it never fails.
43//
44// For example, in the loop below the induction variable will be marked as nuw
45// basing on the guard. Basing on nuw the guard predicate will be considered
46// monotonic. Given a monotonic condition it's tempting to replace the induction
47// variable in the condition with its value on the last iteration. But this
48// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
49//
50// for (int i = b; i != e; i++)
51// guard(i u< len)
52//
53// One of the ways to reason about this problem is to use an inductive proof
54// approach. Given the loop:
55//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000056// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000057// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000058// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000059// I.INC = I + Step
60// guard(G(I));
Artur Pilipenko8aadc642017-10-27 14:46:17 +000061// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000062// }
63//
64// where B(x) and G(x) are predicates that map integers to booleans, we want a
65// loop invariant expression M such the following program has the same semantics
66// as the above:
67//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000068// if (B(0)) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000069// do {
Artur Pilipenko8aadc642017-10-27 14:46:17 +000070// I = PHI(0, I.INC)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000071// I.INC = I + Step
Artur Pilipenko8aadc642017-10-27 14:46:17 +000072// guard(G(0) && M);
73// } while (B(I));
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000074// }
75//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000076// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
Fangrui Songf78650a2018-07-30 19:41:25 +000077//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000078// Informal proof that the transformation above is correct:
79//
80// By the definition of guards we can rewrite the guard condition to:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000081// G(I) && G(0) && M
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000082//
83// Let's prove that for each iteration of the loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +000084// G(0) && M => G(I)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000085// And the condition above can be simplified to G(Start) && M.
Fangrui Songf78650a2018-07-30 19:41:25 +000086//
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000087// Induction base.
Artur Pilipenko8aadc642017-10-27 14:46:17 +000088// G(0) && M => G(0)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000089//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000090// Induction step. Assuming G(0) && M => G(I) on the subsequent
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000091// iteration:
92//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000093// B(I) is true because it's the backedge condition.
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000094// G(I) is true because the backedge is guarded by this condition.
95//
Artur Pilipenko8aadc642017-10-27 14:46:17 +000096// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
Artur Pilipenko889dc1e2017-09-22 13:13:57 +000097//
98// Note that we can use anything stronger than M, i.e. any condition which
99// implies M.
100//
Anna Thomas7b360432017-12-04 15:11:48 +0000101// When S = 1 (i.e. forward iterating loop), the transformation is supported
102// when:
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000103// * The loop has a single latch with the condition of the form:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000104// B(X) = latchStart + X <pred> latchLimit,
105// where <pred> is u<, u<=, s<, or s<=.
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000106// * The guard condition is of the form
107// G(X) = guardStart + X u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000108//
Anna Thomas7b360432017-12-04 15:11:48 +0000109// For the ult latch comparison case M is:
110// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
111// guardStart + X + 1 u< guardLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000112//
Anna Thomas7b360432017-12-04 15:11:48 +0000113// The only way the antecedent can be true and the consequent can be false is
114// if
115// X == guardLimit - 1 - guardStart
116// (and guardLimit is non-zero, but we won't use this latter fact).
117// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
118// latchStart + guardLimit - 1 - guardStart u< latchLimit
119// and its negation is
120// latchStart + guardLimit - 1 - guardStart u>= latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000121//
Anna Thomas7b360432017-12-04 15:11:48 +0000122// In other words, if
123// latchLimit u<= latchStart + guardLimit - 1 - guardStart
124// then:
125// (the ranges below are written in ConstantRange notation, where [A, B) is the
126// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000127//
Anna Thomas7b360432017-12-04 15:11:48 +0000128// forall X . guardStart + X u< guardLimit &&
129// latchStart + X u< latchLimit =>
130// guardStart + X + 1 u< guardLimit
131// == forall X . guardStart + X u< guardLimit &&
132// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
133// guardStart + X + 1 u< guardLimit
134// == forall X . (guardStart + X) in [0, guardLimit) &&
135// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
136// (guardStart + X + 1) in [0, guardLimit)
137// == forall X . X in [-guardStart, guardLimit - guardStart) &&
138// X in [-latchStart, guardLimit - 1 - guardStart) =>
139// X in [-guardStart - 1, guardLimit - guardStart - 1)
140// == true
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000141//
Anna Thomas7b360432017-12-04 15:11:48 +0000142// So the widened condition is:
143// guardStart u< guardLimit &&
144// latchStart + guardLimit - 1 - guardStart u>= latchLimit
145// Similarly for ule condition the widened condition is:
146// guardStart u< guardLimit &&
147// latchStart + guardLimit - 1 - guardStart u> latchLimit
148// For slt condition the widened condition is:
149// guardStart u< guardLimit &&
150// latchStart + guardLimit - 1 - guardStart s>= latchLimit
151// For sle condition the widened condition is:
152// guardStart u< guardLimit &&
153// latchStart + guardLimit - 1 - guardStart s> latchLimit
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000154//
Anna Thomas7b360432017-12-04 15:11:48 +0000155// When S = -1 (i.e. reverse iterating loop), the transformation is supported
156// when:
157// * The loop has a single latch with the condition of the form:
Serguei Katkovc8016e72018-02-08 10:34:08 +0000158// B(X) = X <pred> latchLimit, where <pred> is u>, u>=, s>, or s>=.
Anna Thomas7b360432017-12-04 15:11:48 +0000159// * The guard condition is of the form
160// G(X) = X - 1 u< guardLimit
161//
162// For the ugt latch comparison case M is:
163// forall X. X-1 u< guardLimit and X u> latchLimit => X-2 u< guardLimit
164//
165// The only way the antecedent can be true and the consequent can be false is if
166// X == 1.
167// If X == 1 then the second half of the antecedent is
168// 1 u> latchLimit, and its negation is latchLimit u>= 1.
169//
170// So the widened condition is:
171// guardStart u< guardLimit && latchLimit u>= 1.
172// Similarly for sgt condition the widened condition is:
173// guardStart u< guardLimit && latchLimit s>= 1.
Serguei Katkovc8016e72018-02-08 10:34:08 +0000174// For uge condition the widened condition is:
175// guardStart u< guardLimit && latchLimit u> 1.
176// For sge condition the widened condition is:
177// guardStart u< guardLimit && latchLimit s> 1.
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000178//===----------------------------------------------------------------------===//
179
180#include "llvm/Transforms/Scalar/LoopPredication.h"
Fedor Sergeevc297e842018-10-17 09:02:54 +0000181#include "llvm/ADT/Statistic.h"
Anna Thomas9b1176b2018-03-22 16:03:59 +0000182#include "llvm/Analysis/BranchProbabilityInfo.h"
Max Kazantsev28298e92018-12-26 08:22:25 +0000183#include "llvm/Analysis/GuardUtils.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000184#include "llvm/Analysis/LoopInfo.h"
185#include "llvm/Analysis/LoopPass.h"
186#include "llvm/Analysis/ScalarEvolution.h"
187#include "llvm/Analysis/ScalarEvolutionExpander.h"
188#include "llvm/Analysis/ScalarEvolutionExpressions.h"
189#include "llvm/IR/Function.h"
190#include "llvm/IR/GlobalValue.h"
191#include "llvm/IR/IntrinsicInst.h"
192#include "llvm/IR/Module.h"
193#include "llvm/IR/PatternMatch.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +0000194#include "llvm/Pass.h"
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000195#include "llvm/Support/Debug.h"
196#include "llvm/Transforms/Scalar.h"
197#include "llvm/Transforms/Utils/LoopUtils.h"
198
199#define DEBUG_TYPE "loop-predication"
200
Fedor Sergeevc297e842018-10-17 09:02:54 +0000201STATISTIC(TotalConsidered, "Number of guards considered");
202STATISTIC(TotalWidened, "Number of checks widened");
203
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000204using namespace llvm;
205
Anna Thomas1d02b132017-11-02 21:21:02 +0000206static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
207 cl::Hidden, cl::init(true));
208
Anna Thomas7b360432017-12-04 15:11:48 +0000209static cl::opt<bool> EnableCountDownLoop("loop-predication-enable-count-down-loop",
210 cl::Hidden, cl::init(true));
Anna Thomas9b1176b2018-03-22 16:03:59 +0000211
212static cl::opt<bool>
213 SkipProfitabilityChecks("loop-predication-skip-profitability-checks",
214 cl::Hidden, cl::init(false));
215
216// This is the scale factor for the latch probability. We use this during
217// profitability analysis to find other exiting blocks that have a much higher
218// probability of exiting the loop instead of loop exiting via latch.
219// This value should be greater than 1 for a sane profitability check.
220static cl::opt<float> LatchExitProbabilityScale(
221 "loop-predication-latch-probability-scale", cl::Hidden, cl::init(2.0),
222 cl::desc("scale factor for the latch probability. Value should be greater "
223 "than 1. Lower values are ignored"));
224
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000225namespace {
226class LoopPredication {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000227 /// Represents an induction variable check:
228 /// icmp Pred, <induction variable>, <loop invariant limit>
229 struct LoopICmp {
230 ICmpInst::Predicate Pred;
231 const SCEVAddRecExpr *IV;
232 const SCEV *Limit;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000233 LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
234 const SCEV *Limit)
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000235 : Pred(Pred), IV(IV), Limit(Limit) {}
236 LoopICmp() {}
Anna Thomas68797212017-11-03 14:25:39 +0000237 void dump() {
238 dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
239 << ", Limit = " << *Limit << "\n";
240 }
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000241 };
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000242
243 ScalarEvolution *SE;
Anna Thomas9b1176b2018-03-22 16:03:59 +0000244 BranchProbabilityInfo *BPI;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000245
246 Loop *L;
247 const DataLayout *DL;
248 BasicBlock *Preheader;
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000249 LoopICmp LatchCheck;
Artur Pilipenkoc488dfa2017-05-22 12:01:32 +0000250
Anna Thomas68797212017-11-03 14:25:39 +0000251 bool isSupportedStep(const SCEV* Step);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000252 Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
253 return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
254 ICI->getOperand(1));
255 }
256 Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
257 Value *RHS);
258
259 Optional<LoopICmp> parseLoopLatchICmp();
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000260
Anna Thomas68797212017-11-03 14:25:39 +0000261 bool CanExpand(const SCEV* S);
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000262 Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
263 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
264 Instruction *InsertAt);
265
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000266 Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
267 IRBuilder<> &Builder);
Anna Thomas68797212017-11-03 14:25:39 +0000268 Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
269 LoopICmp RangeCheck,
270 SCEVExpander &Expander,
271 IRBuilder<> &Builder);
Anna Thomas7b360432017-12-04 15:11:48 +0000272 Optional<Value *> widenICmpRangeCheckDecrementingLoop(LoopICmp LatchCheck,
273 LoopICmp RangeCheck,
274 SCEVExpander &Expander,
275 IRBuilder<> &Builder);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000276 bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
277
Anna Thomas9b1176b2018-03-22 16:03:59 +0000278 // If the loop always exits through another block in the loop, we should not
279 // predicate based on the latch check. For example, the latch check can be a
280 // very coarse grained check and there can be more fine grained exit checks
281 // within the loop. We identify such unprofitable loops through BPI.
282 bool isLoopProfitableToPredicate();
283
Anna Thomas1d02b132017-11-02 21:21:02 +0000284 // When the IV type is wider than the range operand type, we can still do loop
285 // predication, by generating SCEVs for the range and latch that are of the
286 // same type. We achieve this by generating a SCEV truncate expression for the
287 // latch IV. This is done iff truncation of the IV is a safe operation,
288 // without loss of information.
289 // Another way to achieve this is by generating a wider type SCEV for the
290 // range check operand, however, this needs a more involved check that
291 // operands do not overflow. This can lead to loss of information when the
292 // range operand is of the form: add i32 %offset, %iv. We need to prove that
293 // sext(x + y) is same as sext(x) + sext(y).
294 // This function returns true if we can safely represent the IV type in
295 // the RangeCheckType without loss of information.
296 bool isSafeToTruncateWideIVType(Type *RangeCheckType);
297 // Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
298 // so.
299 Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
Serguei Katkovebc90312018-02-07 06:53:37 +0000300
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000301public:
Anna Thomas9b1176b2018-03-22 16:03:59 +0000302 LoopPredication(ScalarEvolution *SE, BranchProbabilityInfo *BPI)
303 : SE(SE), BPI(BPI){};
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000304 bool runOnLoop(Loop *L);
305};
306
307class LoopPredicationLegacyPass : public LoopPass {
308public:
309 static char ID;
310 LoopPredicationLegacyPass() : LoopPass(ID) {
311 initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
312 }
313
314 void getAnalysisUsage(AnalysisUsage &AU) const override {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000315 AU.addRequired<BranchProbabilityInfoWrapperPass>();
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000316 getLoopAnalysisUsage(AU);
317 }
318
319 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
320 if (skipLoop(L))
321 return false;
322 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
Anna Thomas9b1176b2018-03-22 16:03:59 +0000323 BranchProbabilityInfo &BPI =
324 getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
325 LoopPredication LP(SE, &BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000326 return LP.runOnLoop(L);
327 }
328};
329
330char LoopPredicationLegacyPass::ID = 0;
331} // end namespace llvm
332
333INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
334 "Loop predication", false, false)
Anna Thomas9b1176b2018-03-22 16:03:59 +0000335INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass)
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000336INITIALIZE_PASS_DEPENDENCY(LoopPass)
337INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
338 "Loop predication", false, false)
339
340Pass *llvm::createLoopPredicationPass() {
341 return new LoopPredicationLegacyPass();
342}
343
344PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
345 LoopStandardAnalysisResults &AR,
346 LPMUpdater &U) {
Anna Thomas9b1176b2018-03-22 16:03:59 +0000347 const auto &FAM =
348 AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
349 Function *F = L.getHeader()->getParent();
350 auto *BPI = FAM.getCachedResult<BranchProbabilityAnalysis>(*F);
351 LoopPredication LP(&AR.SE, BPI);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000352 if (!LP.runOnLoop(&L))
353 return PreservedAnalyses::all();
354
355 return getLoopPassPreservedAnalyses();
356}
357
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000358Optional<LoopPredication::LoopICmp>
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000359LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
360 Value *RHS) {
Artur Pilipenkoa6c278042017-05-19 14:02:46 +0000361 const SCEV *LHSS = SE->getSCEV(LHS);
362 if (isa<SCEVCouldNotCompute>(LHSS))
363 return None;
364 const SCEV *RHSS = SE->getSCEV(RHS);
365 if (isa<SCEVCouldNotCompute>(RHSS))
366 return None;
367
368 // Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
369 if (SE->isLoopInvariant(LHSS, L)) {
370 std::swap(LHS, RHS);
371 std::swap(LHSS, RHSS);
372 Pred = ICmpInst::getSwappedPredicate(Pred);
373 }
374
375 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
376 if (!AR || AR->getLoop() != L)
377 return None;
378
379 return LoopICmp(Pred, AR, RHSS);
380}
381
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000382Value *LoopPredication::expandCheck(SCEVExpander &Expander,
383 IRBuilder<> &Builder,
384 ICmpInst::Predicate Pred, const SCEV *LHS,
385 const SCEV *RHS, Instruction *InsertAt) {
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000386 // TODO: we can check isLoopEntryGuardedByCond before emitting the check
Fangrui Songf78650a2018-07-30 19:41:25 +0000387
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000388 Type *Ty = LHS->getType();
389 assert(Ty == RHS->getType() && "expandCheck operands have different types?");
Artur Pilipenkoead69ee2017-10-12 21:21:17 +0000390
391 if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
392 return Builder.getTrue();
393
Artur Pilipenko6780ba62017-05-19 14:00:58 +0000394 Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
395 Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
396 return Builder.CreateICmp(Pred, LHSV, RHSV);
397}
398
Anna Thomas1d02b132017-11-02 21:21:02 +0000399Optional<LoopPredication::LoopICmp>
400LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
401
402 auto *LatchType = LatchCheck.IV->getType();
403 if (RangeCheckType == LatchType)
404 return LatchCheck;
405 // For now, bail out if latch type is narrower than range type.
406 if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
407 return None;
408 if (!isSafeToTruncateWideIVType(RangeCheckType))
409 return None;
410 // We can now safely identify the truncated version of the IV and limit for
411 // RangeCheckType.
412 LoopICmp NewLatchCheck;
413 NewLatchCheck.Pred = LatchCheck.Pred;
414 NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
415 SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
416 if (!NewLatchCheck.IV)
417 return None;
418 NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000419 LLVM_DEBUG(dbgs() << "IV of type: " << *LatchType
420 << "can be represented as range check type:"
421 << *RangeCheckType << "\n");
422 LLVM_DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
423 LLVM_DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
Anna Thomas1d02b132017-11-02 21:21:02 +0000424 return NewLatchCheck;
425}
426
Anna Thomas68797212017-11-03 14:25:39 +0000427bool LoopPredication::isSupportedStep(const SCEV* Step) {
Anna Thomas7b360432017-12-04 15:11:48 +0000428 return Step->isOne() || (Step->isAllOnesValue() && EnableCountDownLoop);
Anna Thomas68797212017-11-03 14:25:39 +0000429}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000430
Anna Thomas68797212017-11-03 14:25:39 +0000431bool LoopPredication::CanExpand(const SCEV* S) {
432 return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
433}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000434
Anna Thomas68797212017-11-03 14:25:39 +0000435Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
436 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
437 SCEVExpander &Expander, IRBuilder<> &Builder) {
438 auto *Ty = RangeCheck.IV->getType();
439 // Generate the widened condition for the forward loop:
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000440 // guardStart u< guardLimit &&
441 // latchLimit <pred> guardLimit - 1 - guardStart + latchStart
Artur Pilipenkob4527e12017-10-12 20:40:27 +0000442 // where <pred> depends on the latch condition predicate. See the file
443 // header comment for the reasoning.
Anna Thomas68797212017-11-03 14:25:39 +0000444 // guardLimit - guardStart + latchStart - 1
445 const SCEV *GuardStart = RangeCheck.IV->getStart();
446 const SCEV *GuardLimit = RangeCheck.Limit;
447 const SCEV *LatchStart = LatchCheck.IV->getStart();
448 const SCEV *LatchLimit = LatchCheck.Limit;
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000449
450 // guardLimit - guardStart + latchStart - 1
451 const SCEV *RHS =
452 SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
453 SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
Anna Thomas68797212017-11-03 14:25:39 +0000454 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
455 !CanExpand(LatchLimit) || !CanExpand(RHS)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000456 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000457 return None;
458 }
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000459 auto LimitCheckPred =
460 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Artur Pilipenkoaab28662017-05-19 14:00:04 +0000461
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000462 LLVM_DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
463 LLVM_DEBUG(dbgs() << "RHS: " << *RHS << "\n");
464 LLVM_DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000465
Artur Pilipenko0860bfc2017-02-27 15:44:49 +0000466 Instruction *InsertAt = Preheader->getTerminator();
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000467 auto *LimitCheck =
468 expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
Anna Thomas68797212017-11-03 14:25:39 +0000469 auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
Artur Pilipenko8aadc642017-10-27 14:46:17 +0000470 GuardStart, GuardLimit, InsertAt);
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000471 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000472}
Anna Thomas7b360432017-12-04 15:11:48 +0000473
474Optional<Value *> LoopPredication::widenICmpRangeCheckDecrementingLoop(
475 LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
476 SCEVExpander &Expander, IRBuilder<> &Builder) {
477 auto *Ty = RangeCheck.IV->getType();
478 const SCEV *GuardStart = RangeCheck.IV->getStart();
479 const SCEV *GuardLimit = RangeCheck.Limit;
480 const SCEV *LatchLimit = LatchCheck.Limit;
481 if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
482 !CanExpand(LatchLimit)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000483 LLVM_DEBUG(dbgs() << "Can't expand limit check!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000484 return None;
485 }
486 // The decrement of the latch check IV should be the same as the
487 // rangeCheckIV.
488 auto *PostDecLatchCheckIV = LatchCheck.IV->getPostIncExpr(*SE);
489 if (RangeCheck.IV != PostDecLatchCheckIV) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000490 LLVM_DEBUG(dbgs() << "Not the same. PostDecLatchCheckIV: "
491 << *PostDecLatchCheckIV
492 << " and RangeCheckIV: " << *RangeCheck.IV << "\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000493 return None;
494 }
495
496 // Generate the widened condition for CountDownLoop:
497 // guardStart u< guardLimit &&
498 // latchLimit <pred> 1.
499 // See the header comment for reasoning of the checks.
500 Instruction *InsertAt = Preheader->getTerminator();
Serguei Katkov3cb4c342018-02-09 07:59:07 +0000501 auto LimitCheckPred =
502 ICmpInst::getFlippedStrictnessPredicate(LatchCheck.Pred);
Anna Thomas7b360432017-12-04 15:11:48 +0000503 auto *FirstIterationCheck = expandCheck(Expander, Builder, ICmpInst::ICMP_ULT,
504 GuardStart, GuardLimit, InsertAt);
505 auto *LimitCheck = expandCheck(Expander, Builder, LimitCheckPred, LatchLimit,
506 SE->getOne(Ty), InsertAt);
507 return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
508}
509
Anna Thomas68797212017-11-03 14:25:39 +0000510/// If ICI can be widened to a loop invariant condition emits the loop
511/// invariant condition in the loop preheader and return it, otherwise
512/// returns None.
513Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
514 SCEVExpander &Expander,
515 IRBuilder<> &Builder) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000516 LLVM_DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
517 LLVM_DEBUG(ICI->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000518
519 // parseLoopStructure guarantees that the latch condition is:
520 // ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
521 // We are looking for the range checks of the form:
522 // i u< guardLimit
523 auto RangeCheck = parseLoopICmp(ICI);
524 if (!RangeCheck) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000525 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000526 return None;
527 }
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000528 LLVM_DEBUG(dbgs() << "Guard check:\n");
529 LLVM_DEBUG(RangeCheck->dump());
Anna Thomas68797212017-11-03 14:25:39 +0000530 if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000531 LLVM_DEBUG(dbgs() << "Unsupported range check predicate("
532 << RangeCheck->Pred << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000533 return None;
534 }
535 auto *RangeCheckIV = RangeCheck->IV;
536 if (!RangeCheckIV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000537 LLVM_DEBUG(dbgs() << "Range check IV is not affine!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000538 return None;
539 }
540 auto *Step = RangeCheckIV->getStepRecurrence(*SE);
541 // We cannot just compare with latch IV step because the latch and range IVs
542 // may have different types.
543 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000544 LLVM_DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000545 return None;
546 }
547 auto *Ty = RangeCheckIV->getType();
548 auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
549 if (!CurrLatchCheckOpt) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000550 LLVM_DEBUG(dbgs() << "Failed to generate a loop latch check "
551 "corresponding to range type: "
552 << *Ty << "\n");
Anna Thomas68797212017-11-03 14:25:39 +0000553 return None;
554 }
555
556 LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
Anna Thomas7b360432017-12-04 15:11:48 +0000557 // At this point, the range and latch step should have the same type, but need
558 // not have the same value (we support both 1 and -1 steps).
559 assert(Step->getType() ==
560 CurrLatchCheck.IV->getStepRecurrence(*SE)->getType() &&
561 "Range and latch steps should be of same type!");
562 if (Step != CurrLatchCheck.IV->getStepRecurrence(*SE)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000563 LLVM_DEBUG(dbgs() << "Range and latch have different step values!\n");
Anna Thomas7b360432017-12-04 15:11:48 +0000564 return None;
565 }
Anna Thomas68797212017-11-03 14:25:39 +0000566
Anna Thomas7b360432017-12-04 15:11:48 +0000567 if (Step->isOne())
568 return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
569 Expander, Builder);
570 else {
571 assert(Step->isAllOnesValue() && "Step should be -1!");
572 return widenICmpRangeCheckDecrementingLoop(CurrLatchCheck, *RangeCheck,
573 Expander, Builder);
574 }
Anna Thomas68797212017-11-03 14:25:39 +0000575}
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000576
577bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
578 SCEVExpander &Expander) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000579 LLVM_DEBUG(dbgs() << "Processing guard:\n");
580 LLVM_DEBUG(Guard->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000581
Fedor Sergeevc297e842018-10-17 09:02:54 +0000582 TotalConsidered++;
583
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000584 IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
585
586 // The guard condition is expected to be in form of:
587 // cond1 && cond2 && cond3 ...
Hiroshi Inoue0909ca12018-01-26 08:15:29 +0000588 // Iterate over subconditions looking for icmp conditions which can be
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000589 // widened across loop iterations. Widening these conditions remember the
590 // resulting list of subconditions in Checks vector.
591 SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
592 SmallPtrSet<Value *, 4> Visited;
593
594 SmallVector<Value *, 4> Checks;
595
596 unsigned NumWidened = 0;
597 do {
598 Value *Condition = Worklist.pop_back_val();
599 if (!Visited.insert(Condition).second)
600 continue;
601
602 Value *LHS, *RHS;
603 using namespace llvm::PatternMatch;
604 if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
605 Worklist.push_back(LHS);
606 Worklist.push_back(RHS);
607 continue;
608 }
609
610 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
611 if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
612 Checks.push_back(NewRangeCheck.getValue());
613 NumWidened++;
614 continue;
615 }
616 }
617
618 // Save the condition as is if we can't widen it
619 Checks.push_back(Condition);
620 } while (Worklist.size() != 0);
621
622 if (NumWidened == 0)
623 return false;
624
Fedor Sergeevc297e842018-10-17 09:02:54 +0000625 TotalWidened += NumWidened;
626
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000627 // Emit the new guard condition
628 Builder.SetInsertPoint(Guard);
629 Value *LastCheck = nullptr;
630 for (auto *Check : Checks)
631 if (!LastCheck)
632 LastCheck = Check;
633 else
634 LastCheck = Builder.CreateAnd(LastCheck, Check);
635 Guard->setOperand(0, LastCheck);
636
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000637 LLVM_DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000638 return true;
639}
640
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000641Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
642 using namespace PatternMatch;
643
644 BasicBlock *LoopLatch = L->getLoopLatch();
645 if (!LoopLatch) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000646 LLVM_DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000647 return None;
648 }
649
650 ICmpInst::Predicate Pred;
651 Value *LHS, *RHS;
652 BasicBlock *TrueDest, *FalseDest;
653
654 if (!match(LoopLatch->getTerminator(),
655 m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
656 FalseDest))) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000657 LLVM_DEBUG(dbgs() << "Failed to match the latch terminator!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000658 return None;
659 }
660 assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
661 "One of the latch's destinations must be the header");
662 if (TrueDest != L->getHeader())
663 Pred = ICmpInst::getInversePredicate(Pred);
664
665 auto Result = parseLoopICmp(Pred, LHS, RHS);
666 if (!Result) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000667 LLVM_DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000668 return None;
669 }
670
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000671 // Check affine first, so if it's not we don't try to compute the step
672 // recurrence.
673 if (!Result->IV->isAffine()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000674 LLVM_DEBUG(dbgs() << "The induction variable is not affine!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000675 return None;
676 }
677
678 auto *Step = Result->IV->getStepRecurrence(*SE);
Anna Thomas68797212017-11-03 14:25:39 +0000679 if (!isSupportedStep(Step)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000680 LLVM_DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000681 return None;
682 }
683
Anna Thomas68797212017-11-03 14:25:39 +0000684 auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
Anna Thomas7b360432017-12-04 15:11:48 +0000685 if (Step->isOne()) {
686 return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
687 Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
688 } else {
689 assert(Step->isAllOnesValue() && "Step should be -1!");
Serguei Katkovc8016e72018-02-08 10:34:08 +0000690 return Pred != ICmpInst::ICMP_UGT && Pred != ICmpInst::ICMP_SGT &&
691 Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_SGE;
Anna Thomas7b360432017-12-04 15:11:48 +0000692 }
Anna Thomas68797212017-11-03 14:25:39 +0000693 };
694
695 if (IsUnsupportedPredicate(Step, Result->Pred)) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000696 LLVM_DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
697 << ")!\n");
Anna Thomas68797212017-11-03 14:25:39 +0000698 return None;
699 }
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000700 return Result;
701}
702
Anna Thomas1d02b132017-11-02 21:21:02 +0000703// Returns true if its safe to truncate the IV to RangeCheckType.
704bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
705 if (!EnableIVTruncation)
706 return false;
707 assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
708 DL->getTypeSizeInBits(RangeCheckType) &&
709 "Expected latch check IV type to be larger than range check operand "
710 "type!");
711 // The start and end values of the IV should be known. This is to guarantee
712 // that truncating the wide type will not lose information.
713 auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
714 auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
715 if (!Limit || !Start)
716 return false;
717 // This check makes sure that the IV does not change sign during loop
718 // iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
719 // LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
720 // IV wraps around, and the truncation of the IV would lose the range of
721 // iterations between 2^32 and 2^64.
722 bool Increasing;
723 if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
724 return false;
725 // The active bits should be less than the bits in the RangeCheckType. This
726 // guarantees that truncating the latch check to RangeCheckType is a safe
727 // operation.
728 auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
729 return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
730 Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
731}
732
Anna Thomas9b1176b2018-03-22 16:03:59 +0000733bool LoopPredication::isLoopProfitableToPredicate() {
734 if (SkipProfitabilityChecks || !BPI)
735 return true;
736
737 SmallVector<std::pair<const BasicBlock *, const BasicBlock *>, 8> ExitEdges;
738 L->getExitEdges(ExitEdges);
739 // If there is only one exiting edge in the loop, it is always profitable to
740 // predicate the loop.
741 if (ExitEdges.size() == 1)
742 return true;
743
744 // Calculate the exiting probabilities of all exiting edges from the loop,
745 // starting with the LatchExitProbability.
746 // Heuristic for profitability: If any of the exiting blocks' probability of
747 // exiting the loop is larger than exiting through the latch block, it's not
748 // profitable to predicate the loop.
749 auto *LatchBlock = L->getLoopLatch();
750 assert(LatchBlock && "Should have a single latch at this point!");
751 auto *LatchTerm = LatchBlock->getTerminator();
752 assert(LatchTerm->getNumSuccessors() == 2 &&
753 "expected to be an exiting block with 2 succs!");
754 unsigned LatchBrExitIdx =
755 LatchTerm->getSuccessor(0) == L->getHeader() ? 1 : 0;
756 BranchProbability LatchExitProbability =
757 BPI->getEdgeProbability(LatchBlock, LatchBrExitIdx);
758
759 // Protect against degenerate inputs provided by the user. Providing a value
760 // less than one, can invert the definition of profitable loop predication.
761 float ScaleFactor = LatchExitProbabilityScale;
762 if (ScaleFactor < 1) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000763 LLVM_DEBUG(
Anna Thomas9b1176b2018-03-22 16:03:59 +0000764 dbgs()
765 << "Ignored user setting for loop-predication-latch-probability-scale: "
766 << LatchExitProbabilityScale << "\n");
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000767 LLVM_DEBUG(dbgs() << "The value is set to 1.0\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000768 ScaleFactor = 1.0;
769 }
770 const auto LatchProbabilityThreshold =
771 LatchExitProbability * ScaleFactor;
772
773 for (const auto &ExitEdge : ExitEdges) {
774 BranchProbability ExitingBlockProbability =
775 BPI->getEdgeProbability(ExitEdge.first, ExitEdge.second);
776 // Some exiting edge has higher probability than the latch exiting edge.
777 // No longer profitable to predicate.
778 if (ExitingBlockProbability > LatchProbabilityThreshold)
779 return false;
780 }
781 // Using BPI, we have concluded that the most probable way to exit from the
782 // loop is through the latch (or there's no profile information and all
783 // exits are equally likely).
784 return true;
785}
786
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000787bool LoopPredication::runOnLoop(Loop *Loop) {
788 L = Loop;
789
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000790 LLVM_DEBUG(dbgs() << "Analyzing ");
791 LLVM_DEBUG(L->dump());
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000792
793 Module *M = L->getHeader()->getModule();
794
795 // There is nothing to do if the module doesn't use guards
796 auto *GuardDecl =
797 M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
798 if (!GuardDecl || GuardDecl->use_empty())
799 return false;
800
801 DL = &M->getDataLayout();
802
803 Preheader = L->getLoopPreheader();
804 if (!Preheader)
805 return false;
806
Artur Pilipenko889dc1e2017-09-22 13:13:57 +0000807 auto LatchCheckOpt = parseLoopLatchICmp();
808 if (!LatchCheckOpt)
809 return false;
810 LatchCheck = *LatchCheckOpt;
811
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000812 LLVM_DEBUG(dbgs() << "Latch check:\n");
813 LLVM_DEBUG(LatchCheck.dump());
Anna Thomas68797212017-11-03 14:25:39 +0000814
Anna Thomas9b1176b2018-03-22 16:03:59 +0000815 if (!isLoopProfitableToPredicate()) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +0000816 LLVM_DEBUG(dbgs() << "Loop not profitable to predicate!\n");
Anna Thomas9b1176b2018-03-22 16:03:59 +0000817 return false;
818 }
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000819 // Collect all the guards into a vector and process later, so as not
820 // to invalidate the instruction iterator.
821 SmallVector<IntrinsicInst *, 4> Guards;
822 for (const auto BB : L->blocks())
823 for (auto &I : *BB)
Max Kazantsev28298e92018-12-26 08:22:25 +0000824 if (isGuard(&I))
825 Guards.push_back(cast<IntrinsicInst>(&I));
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000826
Artur Pilipenko46c4e0a2017-05-19 13:59:34 +0000827 if (Guards.empty())
828 return false;
829
Artur Pilipenko8fb3d572017-01-25 16:00:44 +0000830 SCEVExpander Expander(*SE, *DL, "loop-predication");
831
832 bool Changed = false;
833 for (auto *Guard : Guards)
834 Changed |= widenGuardConditions(Guard, Expander);
835
836 return Changed;
837}