blob: 4a484c3584a856d716dbe758b323363d4beaeea5 [file] [log] [blame]
Chris Lattnerc0f58002002-05-08 22:19:27 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
Misha Brukmanb1c93172005-04-21 23:48:37 +00002//
John Criswell482202a2003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukmanb1c93172005-04-21 23:48:37 +00007//
John Criswell482202a2003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnerc0f58002002-05-08 22:19:27 +00009//
10// This pass reassociates commutative expressions in an order that is designed
Chris Lattner36663782003-05-02 19:26:34 +000011// to promote better constant propagation, GCSE, LICM, PRE...
Chris Lattnerc0f58002002-05-08 22:19:27 +000012//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
Chris Lattnerc0f58002002-05-08 22:19:27 +000015// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
Chris Lattnerf43e9742005-05-07 04:08:02 +000023#define DEBUG_TYPE "reassociate"
Chris Lattnerc0f58002002-05-08 22:19:27 +000024#include "llvm/Transforms/Scalar.h"
Chris Lattnercea57992005-05-07 04:24:13 +000025#include "llvm/Constants.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000026#include "llvm/Function.h"
Misha Brukman2b3387a2004-07-29 17:05:13 +000027#include "llvm/Instructions.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000028#include "llvm/Pass.h"
Chris Lattnercea57992005-05-07 04:24:13 +000029#include "llvm/Type.h"
Chris Lattner9187f392005-05-08 20:09:57 +000030#include "llvm/Assembly/Writer.h"
Chris Lattnerc0f58002002-05-08 22:19:27 +000031#include "llvm/Support/CFG.h"
Reid Spencer7c16caa2004-09-01 22:55:40 +000032#include "llvm/Support/Debug.h"
33#include "llvm/ADT/PostOrderIterator.h"
34#include "llvm/ADT/Statistic.h"
Chris Lattner1e506502005-05-07 21:59:39 +000035#include <algorithm>
Chris Lattnerc597b8a2006-01-22 23:32:06 +000036#include <iostream>
Chris Lattner49525f82004-01-09 06:02:20 +000037using namespace llvm;
Brian Gaeke960707c2003-11-11 22:41:34 +000038
Chris Lattnerc0f58002002-05-08 22:19:27 +000039namespace {
Chris Lattnerbf3a0992002-10-01 22:38:41 +000040 Statistic<> NumLinear ("reassociate","Number of insts linearized");
41 Statistic<> NumChanged("reassociate","Number of insts reassociated");
42 Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
Chris Lattner5847e5e2005-05-08 18:59:37 +000043 Statistic<> NumAnnihil("reassociate","Number of expr tree annihilated");
Chris Lattner4c065092006-03-04 09:31:13 +000044 Statistic<> NumFactor ("reassociate","Number of multiplies factored");
Chris Lattnerbf3a0992002-10-01 22:38:41 +000045
Chris Lattner1e506502005-05-07 21:59:39 +000046 struct ValueEntry {
47 unsigned Rank;
48 Value *Op;
49 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50 };
51 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
53 }
Chris Lattner4c065092006-03-04 09:31:13 +000054}
Chris Lattner1e506502005-05-07 21:59:39 +000055
Chris Lattner4c065092006-03-04 09:31:13 +000056/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59 Module *M = I->getParent()->getParent()->getParent();
60 std::cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
61 << *Ops[0].Op->getType();
62 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
63 WriteAsOperand(std::cerr << " ", Ops[i].Op, false, true, M)
64 << "," << Ops[i].Rank;
65}
66
67namespace {
Chris Lattnerc0f58002002-05-08 22:19:27 +000068 class Reassociate : public FunctionPass {
Chris Lattner10073a92002-07-25 06:17:51 +000069 std::map<BasicBlock*, unsigned> RankMap;
Chris Lattner8ac196d2003-08-13 16:16:26 +000070 std::map<Value*, unsigned> ValueRankMap;
Chris Lattner1e506502005-05-07 21:59:39 +000071 bool MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +000072 public:
Chris Lattner113f4f42002-06-25 16:13:24 +000073 bool runOnFunction(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000074
75 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
Chris Lattner820d9712002-10-21 20:00:28 +000076 AU.setPreservesCFG();
Chris Lattnerc0f58002002-05-08 22:19:27 +000077 }
78 private:
Chris Lattner113f4f42002-06-25 16:13:24 +000079 void BuildRankMap(Function &F);
Chris Lattnerc0f58002002-05-08 22:19:27 +000080 unsigned getRank(Value *V);
Chris Lattner1e506502005-05-07 21:59:39 +000081 void RewriteExprTree(BinaryOperator *I, unsigned Idx,
82 std::vector<ValueEntry> &Ops);
Chris Lattner4c065092006-03-04 09:31:13 +000083 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
Chris Lattner1e506502005-05-07 21:59:39 +000084 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
85 void LinearizeExpr(BinaryOperator *I);
Chris Lattner4c065092006-03-04 09:31:13 +000086 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
Chris Lattner1e506502005-05-07 21:59:39 +000087 void ReassociateBB(BasicBlock *BB);
Chris Lattner4c065092006-03-04 09:31:13 +000088
89 void RemoveDeadBinaryOp(Value *V);
Chris Lattnerc0f58002002-05-08 22:19:27 +000090 };
Chris Lattnerb28b6802002-07-23 18:06:35 +000091
Chris Lattnerc8b70922002-07-26 21:12:46 +000092 RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
Chris Lattnerc0f58002002-05-08 22:19:27 +000093}
94
Brian Gaeke960707c2003-11-11 22:41:34 +000095// Public interface to the Reassociate pass
Chris Lattner49525f82004-01-09 06:02:20 +000096FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
Chris Lattnerc0f58002002-05-08 22:19:27 +000097
Chris Lattner4c065092006-03-04 09:31:13 +000098void Reassociate::RemoveDeadBinaryOp(Value *V) {
99 BinaryOperator *BOp = dyn_cast<BinaryOperator>(V);
100 if (!BOp || !BOp->use_empty()) return;
101
102 Value *LHS = BOp->getOperand(0), *RHS = BOp->getOperand(1);
103 RemoveDeadBinaryOp(LHS);
104 RemoveDeadBinaryOp(RHS);
105}
106
Chris Lattner9f284e02005-05-08 20:57:04 +0000107
108static bool isUnmovableInstruction(Instruction *I) {
109 if (I->getOpcode() == Instruction::PHI ||
110 I->getOpcode() == Instruction::Alloca ||
111 I->getOpcode() == Instruction::Load ||
112 I->getOpcode() == Instruction::Malloc ||
113 I->getOpcode() == Instruction::Invoke ||
114 I->getOpcode() == Instruction::Call ||
115 I->getOpcode() == Instruction::Div ||
116 I->getOpcode() == Instruction::Rem)
117 return true;
118 return false;
119}
120
Chris Lattner113f4f42002-06-25 16:13:24 +0000121void Reassociate::BuildRankMap(Function &F) {
Chris Lattner58c7eb62003-08-12 20:14:27 +0000122 unsigned i = 2;
Chris Lattner8ac196d2003-08-13 16:16:26 +0000123
124 // Assign distinct ranks to function arguments
Chris Lattner531f9e92005-03-15 04:54:21 +0000125 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
Chris Lattner8ac196d2003-08-13 16:16:26 +0000126 ValueRankMap[I] = ++i;
127
Chris Lattner113f4f42002-06-25 16:13:24 +0000128 ReversePostOrderTraversal<Function*> RPOT(&F);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000129 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
Chris Lattner9f284e02005-05-08 20:57:04 +0000130 E = RPOT.end(); I != E; ++I) {
131 BasicBlock *BB = *I;
132 unsigned BBRank = RankMap[BB] = ++i << 16;
133
134 // Walk the basic block, adding precomputed ranks for any instructions that
135 // we cannot move. This ensures that the ranks for these instructions are
136 // all different in the block.
137 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
138 if (isUnmovableInstruction(I))
139 ValueRankMap[I] = ++BBRank;
140 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000141}
142
143unsigned Reassociate::getRank(Value *V) {
Chris Lattner8ac196d2003-08-13 16:16:26 +0000144 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
145
Chris Lattnerf43e9742005-05-07 04:08:02 +0000146 Instruction *I = dyn_cast<Instruction>(V);
147 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
Chris Lattnerc0f58002002-05-08 22:19:27 +0000148
Chris Lattnerf43e9742005-05-07 04:08:02 +0000149 unsigned &CachedRank = ValueRankMap[I];
150 if (CachedRank) return CachedRank; // Rank already known?
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000151
Chris Lattnerf43e9742005-05-07 04:08:02 +0000152 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
153 // we can reassociate expressions for code motion! Since we do not recurse
154 // for PHI nodes, we cannot have infinite recursion here, because there
155 // cannot be loops in the value graph that do not go through PHI nodes.
Chris Lattnerf43e9742005-05-07 04:08:02 +0000156 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
157 for (unsigned i = 0, e = I->getNumOperands();
158 i != e && Rank != MaxRank; ++i)
159 Rank = std::max(Rank, getRank(I->getOperand(i)));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000160
Chris Lattner6e2086d2005-05-08 00:08:33 +0000161 // If this is a not or neg instruction, do not count it for rank. This
162 // assures us that X and ~X will have the same rank.
163 if (!I->getType()->isIntegral() ||
164 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
165 ++Rank;
166
Chris Lattner9f284e02005-05-08 20:57:04 +0000167 //DEBUG(std::cerr << "Calculated Rank[" << V->getName() << "] = "
168 //<< Rank << "\n");
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000169
Chris Lattner6e2086d2005-05-08 00:08:33 +0000170 return CachedRank = Rank;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000171}
172
Chris Lattner1e506502005-05-07 21:59:39 +0000173/// isReassociableOp - Return true if V is an instruction of the specified
174/// opcode and if it only has one use.
175static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
176 if (V->hasOneUse() && isa<Instruction>(V) &&
177 cast<Instruction>(V)->getOpcode() == Opcode)
178 return cast<BinaryOperator>(V);
179 return 0;
180}
Chris Lattnerc0f58002002-05-08 22:19:27 +0000181
Chris Lattner877b1142005-05-08 21:28:52 +0000182/// LowerNegateToMultiply - Replace 0-X with X*-1.
183///
184static Instruction *LowerNegateToMultiply(Instruction *Neg) {
185 Constant *Cst;
186 if (Neg->getType()->isFloatingPoint())
187 Cst = ConstantFP::get(Neg->getType(), -1);
188 else
189 Cst = ConstantInt::getAllOnesValue(Neg->getType());
190
191 std::string NegName = Neg->getName(); Neg->setName("");
192 Instruction *Res = BinaryOperator::createMul(Neg->getOperand(1), Cst, NegName,
193 Neg);
194 Neg->replaceAllUsesWith(Res);
195 Neg->eraseFromParent();
196 return Res;
197}
198
Chris Lattner1e506502005-05-07 21:59:39 +0000199// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
200// Note that if D is also part of the expression tree that we recurse to
201// linearize it as well. Besides that case, this does not recurse into A,B, or
202// C.
203void Reassociate::LinearizeExpr(BinaryOperator *I) {
204 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
205 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000206 assert(isReassociableOp(LHS, I->getOpcode()) &&
Chris Lattner1e506502005-05-07 21:59:39 +0000207 isReassociableOp(RHS, I->getOpcode()) &&
208 "Not an expression that needs linearization?");
Misha Brukmanb1c93172005-04-21 23:48:37 +0000209
Chris Lattner1e506502005-05-07 21:59:39 +0000210 DEBUG(std::cerr << "Linear" << *LHS << *RHS << *I);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000211
Chris Lattner1e506502005-05-07 21:59:39 +0000212 // Move the RHS instruction to live immediately before I, avoiding breaking
213 // dominator properties.
Chris Lattner9f269e42005-08-08 19:11:57 +0000214 RHS->moveBefore(I);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000215
Chris Lattner1e506502005-05-07 21:59:39 +0000216 // Move operands around to do the linearization.
217 I->setOperand(1, RHS->getOperand(0));
218 RHS->setOperand(0, LHS);
219 I->setOperand(0, RHS);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000220
Chris Lattner1e506502005-05-07 21:59:39 +0000221 ++NumLinear;
222 MadeChange = true;
223 DEBUG(std::cerr << "Linearized: " << *I);
224
225 // If D is part of this expression tree, tail recurse.
226 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
227 LinearizeExpr(I);
228}
229
230
231/// LinearizeExprTree - Given an associative binary expression tree, traverse
232/// all of the uses putting it into canonical form. This forces a left-linear
233/// form of the the expression (((a+b)+c)+d), and collects information about the
234/// rank of the non-tree operands.
235///
Chris Lattner1e506502005-05-07 21:59:39 +0000236void Reassociate::LinearizeExprTree(BinaryOperator *I,
237 std::vector<ValueEntry> &Ops) {
238 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
239 unsigned Opcode = I->getOpcode();
240
241 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
242 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
243 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
244
Chris Lattner877b1142005-05-08 21:28:52 +0000245 // If this is a multiply expression tree and it contains internal negations,
246 // transform them into multiplies by -1 so they can be reassociated.
247 if (I->getOpcode() == Instruction::Mul) {
248 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
249 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
250 LHSBO = isReassociableOp(LHS, Opcode);
251 }
252 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
253 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
254 RHSBO = isReassociableOp(RHS, Opcode);
255 }
256 }
257
Chris Lattner1e506502005-05-07 21:59:39 +0000258 if (!LHSBO) {
259 if (!RHSBO) {
260 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
261 // such, just remember these operands and their rank.
262 Ops.push_back(ValueEntry(getRank(LHS), LHS));
263 Ops.push_back(ValueEntry(getRank(RHS), RHS));
264 return;
265 } else {
266 // Turn X+(Y+Z) -> (Y+Z)+X
267 std::swap(LHSBO, RHSBO);
268 std::swap(LHS, RHS);
269 bool Success = !I->swapOperands();
270 assert(Success && "swapOperands failed");
271 MadeChange = true;
272 }
273 } else if (RHSBO) {
274 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
275 // part of the expression tree.
276 LinearizeExpr(I);
277 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
278 RHS = I->getOperand(1);
279 RHSBO = 0;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000280 }
Misha Brukmanb1c93172005-04-21 23:48:37 +0000281
Chris Lattner1e506502005-05-07 21:59:39 +0000282 // Okay, now we know that the LHS is a nested expression and that the RHS is
283 // not. Perform reassociation.
284 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
Chris Lattnerc0f58002002-05-08 22:19:27 +0000285
Chris Lattner1e506502005-05-07 21:59:39 +0000286 // Move LHS right before I to make sure that the tree expression dominates all
287 // values.
Chris Lattner9f269e42005-08-08 19:11:57 +0000288 LHSBO->moveBefore(I);
Chris Lattner98b3ecd2003-08-12 21:45:24 +0000289
Chris Lattner1e506502005-05-07 21:59:39 +0000290 // Linearize the expression tree on the LHS.
291 LinearizeExprTree(LHSBO, Ops);
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000292
Chris Lattner1e506502005-05-07 21:59:39 +0000293 // Remember the RHS operand and its rank.
294 Ops.push_back(ValueEntry(getRank(RHS), RHS));
Chris Lattnerc0f58002002-05-08 22:19:27 +0000295}
296
Chris Lattner1e506502005-05-07 21:59:39 +0000297// RewriteExprTree - Now that the operands for this expression tree are
298// linearized and optimized, emit them in-order. This function is written to be
299// tail recursive.
300void Reassociate::RewriteExprTree(BinaryOperator *I, unsigned i,
301 std::vector<ValueEntry> &Ops) {
302 if (i+2 == Ops.size()) {
303 if (I->getOperand(0) != Ops[i].Op ||
304 I->getOperand(1) != Ops[i+1].Op) {
Chris Lattner4c065092006-03-04 09:31:13 +0000305 Value *OldLHS = I->getOperand(0);
Chris Lattner1e506502005-05-07 21:59:39 +0000306 DEBUG(std::cerr << "RA: " << *I);
307 I->setOperand(0, Ops[i].Op);
308 I->setOperand(1, Ops[i+1].Op);
309 DEBUG(std::cerr << "TO: " << *I);
310 MadeChange = true;
311 ++NumChanged;
Chris Lattner4c065092006-03-04 09:31:13 +0000312
313 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
314 // delete the extra, now dead, nodes.
315 RemoveDeadBinaryOp(OldLHS);
Chris Lattner1e506502005-05-07 21:59:39 +0000316 }
317 return;
318 }
319 assert(i+2 < Ops.size() && "Ops index out of range!");
320
321 if (I->getOperand(1) != Ops[i].Op) {
322 DEBUG(std::cerr << "RA: " << *I);
323 I->setOperand(1, Ops[i].Op);
324 DEBUG(std::cerr << "TO: " << *I);
325 MadeChange = true;
326 ++NumChanged;
327 }
Chris Lattner4c065092006-03-04 09:31:13 +0000328
329 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
330 assert(LHS->getOpcode() == I->getOpcode() &&
331 "Improper expression tree!");
332
333 // Compactify the tree instructions together with each other to guarantee
334 // that the expression tree is dominated by all of Ops.
335 LHS->moveBefore(I);
336 RewriteExprTree(LHS, i+1, Ops);
Chris Lattner1e506502005-05-07 21:59:39 +0000337}
338
339
Chris Lattnerc0f58002002-05-08 22:19:27 +0000340
Chris Lattner7bc532d2002-05-16 04:37:07 +0000341// NegateValue - Insert instructions before the instruction pointed to by BI,
342// that computes the negative version of the value specified. The negative
343// version of the value is returned, and BI is left pointing at the instruction
344// that should be processed next by the reassociation pass.
345//
Chris Lattnerf43e9742005-05-07 04:08:02 +0000346static Value *NegateValue(Value *V, Instruction *BI) {
Chris Lattner7bc532d2002-05-16 04:37:07 +0000347 // We are trying to expose opportunity for reassociation. One of the things
348 // that we want to do to achieve this is to push a negation as deep into an
349 // expression chain as possible, to expose the add instructions. In practice,
350 // this means that we turn this:
351 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
352 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
353 // the constants. We assume that instcombine will clean up the mess later if
Misha Brukman7eb05a12003-08-18 14:43:39 +0000354 // we introduce tons of unnecessary negation instructions...
Chris Lattner7bc532d2002-05-16 04:37:07 +0000355 //
356 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattnerf95d9b92003-10-15 16:48:29 +0000357 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Chris Lattner9fe263a2005-09-02 06:38:04 +0000358 // Push the negates through the add.
359 I->setOperand(0, NegateValue(I->getOperand(0), BI));
360 I->setOperand(1, NegateValue(I->getOperand(1), BI));
Chris Lattner7bc532d2002-05-16 04:37:07 +0000361
Chris Lattner9fe263a2005-09-02 06:38:04 +0000362 // We must move the add instruction here, because the neg instructions do
363 // not dominate the old add instruction in general. By moving it, we are
364 // assured that the neg instructions we just inserted dominate the
365 // instruction we are about to insert after them.
Chris Lattner7bc532d2002-05-16 04:37:07 +0000366 //
Chris Lattner9fe263a2005-09-02 06:38:04 +0000367 I->moveBefore(BI);
368 I->setName(I->getName()+".neg");
369 return I;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000370 }
371
372 // Insert a 'neg' instruction that subtracts the value from zero to get the
373 // negation.
374 //
Chris Lattnerf43e9742005-05-07 04:08:02 +0000375 return BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
376}
377
Chris Lattnerf43e9742005-05-07 04:08:02 +0000378/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
379/// only used by an add, transform this into (X+(0-Y)) to promote better
380/// reassociation.
381static Instruction *BreakUpSubtract(Instruction *Sub) {
Chris Lattnerf43e9742005-05-07 04:08:02 +0000382 // Don't bother to break this up unless either the LHS is an associable add or
383 // if this is only used by one.
384 if (!isReassociableOp(Sub->getOperand(0), Instruction::Add) &&
385 !isReassociableOp(Sub->getOperand(1), Instruction::Add) &&
386 !(Sub->hasOneUse() &&isReassociableOp(Sub->use_back(), Instruction::Add)))
387 return 0;
388
389 // Convert a subtract into an add and a neg instruction... so that sub
390 // instructions can be commuted with other add instructions...
391 //
392 // Calculate the negative value of Operand 1 of the sub instruction...
393 // and set it as the RHS of the add instruction we just made...
394 //
395 std::string Name = Sub->getName();
396 Sub->setName("");
397 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
398 Instruction *New =
399 BinaryOperator::createAdd(Sub->getOperand(0), NegVal, Name, Sub);
400
401 // Everyone now refers to the add instruction.
402 Sub->replaceAllUsesWith(New);
403 Sub->eraseFromParent();
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000404
Chris Lattnerf43e9742005-05-07 04:08:02 +0000405 DEBUG(std::cerr << "Negated: " << *New);
406 return New;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000407}
408
Chris Lattnercea57992005-05-07 04:24:13 +0000409/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
410/// by one, change this into a multiply by a constant to assist with further
411/// reassociation.
412static Instruction *ConvertShiftToMul(Instruction *Shl) {
Chris Lattnerd6bde462006-03-14 06:55:18 +0000413 // If an operand of this shift is a reassociable multiply, or if the shift
414 // is used by a reassociable multiply or add, turn into a multiply.
415 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
416 (Shl->hasOneUse() &&
417 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
418 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
419 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
420 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
421
422 std::string Name = Shl->getName(); Shl->setName("");
423 Instruction *Mul = BinaryOperator::createMul(Shl->getOperand(0), MulCst,
424 Name, Shl);
425 Shl->replaceAllUsesWith(Mul);
426 Shl->eraseFromParent();
427 return Mul;
428 }
429 return 0;
Chris Lattnercea57992005-05-07 04:24:13 +0000430}
431
Chris Lattner5847e5e2005-05-08 18:59:37 +0000432// Scan backwards and forwards among values with the same rank as element i to
433// see if X exists. If X does not exist, return i.
434static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
435 Value *X) {
436 unsigned XRank = Ops[i].Rank;
437 unsigned e = Ops.size();
438 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
439 if (Ops[j].Op == X)
440 return j;
441 // Scan backwards
442 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
443 if (Ops[j].Op == X)
444 return j;
445 return i;
446}
447
Chris Lattner4c065092006-03-04 09:31:13 +0000448/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
449/// and returning the result. Insert the tree before I.
450static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
451 if (Ops.size() == 1) return Ops.back();
452
453 Value *V1 = Ops.back();
454 Ops.pop_back();
455 Value *V2 = EmitAddTreeOfValues(I, Ops);
456 return BinaryOperator::createAdd(V2, V1, "tmp", I);
457}
458
459/// RemoveFactorFromExpression - If V is an expression tree that is a
460/// multiplication sequence, and if this sequence contains a multiply by Factor,
461/// remove Factor from the tree and return the new tree.
462Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
463 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
464 if (!BO) return 0;
465
466 std::vector<ValueEntry> Factors;
467 LinearizeExprTree(BO, Factors);
468
469 bool FoundFactor = false;
470 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
471 if (Factors[i].Op == Factor) {
472 FoundFactor = true;
473 Factors.erase(Factors.begin()+i);
474 break;
475 }
476 if (!FoundFactor) return 0;
477
478 if (Factors.size() == 1) return Factors[0].Op;
479
480 RewriteExprTree(BO, 0, Factors);
481 return BO;
482}
483
484
485Value *Reassociate::OptimizeExpression(BinaryOperator *I,
486 std::vector<ValueEntry> &Ops) {
Chris Lattnere1850b82005-05-08 00:19:31 +0000487 // Now that we have the linearized expression tree, try to optimize it.
488 // Start by folding any constants that we found.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000489 bool IterateOptimization = false;
Chris Lattner4c065092006-03-04 09:31:13 +0000490 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattnere1850b82005-05-08 00:19:31 +0000491
Chris Lattner4c065092006-03-04 09:31:13 +0000492 unsigned Opcode = I->getOpcode();
493
Chris Lattnere1850b82005-05-08 00:19:31 +0000494 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
495 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
496 Ops.pop_back();
497 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
Chris Lattner4c065092006-03-04 09:31:13 +0000498 return OptimizeExpression(I, Ops);
Chris Lattnere1850b82005-05-08 00:19:31 +0000499 }
500
501 // Check for destructive annihilation due to a constant being used.
502 if (ConstantIntegral *CstVal = dyn_cast<ConstantIntegral>(Ops.back().Op))
503 switch (Opcode) {
504 default: break;
505 case Instruction::And:
506 if (CstVal->isNullValue()) { // ... & 0 -> 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000507 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000508 return CstVal;
Chris Lattnere1850b82005-05-08 00:19:31 +0000509 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
510 Ops.pop_back();
511 }
512 break;
513 case Instruction::Mul:
514 if (CstVal->isNullValue()) { // ... * 0 -> 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000515 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000516 return CstVal;
Chris Lattnere1850b82005-05-08 00:19:31 +0000517 } else if (cast<ConstantInt>(CstVal)->getRawValue() == 1) {
518 Ops.pop_back(); // ... * 1 -> ...
519 }
520 break;
521 case Instruction::Or:
522 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
Chris Lattner5847e5e2005-05-08 18:59:37 +0000523 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000524 return CstVal;
Chris Lattnere1850b82005-05-08 00:19:31 +0000525 }
526 // FALLTHROUGH!
527 case Instruction::Add:
528 case Instruction::Xor:
529 if (CstVal->isNullValue()) // ... [|^+] 0 -> ...
530 Ops.pop_back();
531 break;
532 }
Chris Lattner4c065092006-03-04 09:31:13 +0000533 if (Ops.size() == 1) return Ops[0].Op;
Chris Lattnere1850b82005-05-08 00:19:31 +0000534
535 // Handle destructive annihilation do to identities between elements in the
536 // argument list here.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000537 switch (Opcode) {
538 default: break;
539 case Instruction::And:
540 case Instruction::Or:
541 case Instruction::Xor:
542 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
543 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
544 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
545 // First, check for X and ~X in the operand list.
Chris Lattnerd1325da2005-09-02 05:23:22 +0000546 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000547 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
548 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
549 unsigned FoundX = FindInOperandList(Ops, i, X);
550 if (FoundX != i) {
551 if (Opcode == Instruction::And) { // ...&X&~X = 0
Chris Lattner5847e5e2005-05-08 18:59:37 +0000552 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000553 return Constant::getNullValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000554 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
Chris Lattner5847e5e2005-05-08 18:59:37 +0000555 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000556 return ConstantIntegral::getAllOnesValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000557 }
558 }
559 }
560
561 // Next, check for duplicate pairs of values, which we assume are next to
562 // each other, due to our sorting criteria.
Chris Lattnerd1325da2005-09-02 05:23:22 +0000563 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000564 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
565 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
566 // Drop duplicate values.
567 Ops.erase(Ops.begin()+i);
568 --i; --e;
569 IterateOptimization = true;
570 ++NumAnnihil;
571 } else {
572 assert(Opcode == Instruction::Xor);
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000573 if (e == 2) {
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000574 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000575 return Constant::getNullValue(Ops[0].Op->getType());
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000576 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000577 // ... X^X -> ...
578 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
Chris Lattner8ca5b2a2005-08-24 17:55:32 +0000579 i -= 1; e -= 2;
Chris Lattner5847e5e2005-05-08 18:59:37 +0000580 IterateOptimization = true;
581 ++NumAnnihil;
582 }
583 }
584 }
585 break;
586
587 case Instruction::Add:
588 // Scan the operand lists looking for X and -X pairs. If we find any, we
Chris Lattner4c065092006-03-04 09:31:13 +0000589 // can simplify the expression. X+-X == 0.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000590 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
Chris Lattnerd1325da2005-09-02 05:23:22 +0000591 assert(i < Ops.size());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000592 // Check for X and -X in the operand list.
593 if (BinaryOperator::isNeg(Ops[i].Op)) {
594 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
595 unsigned FoundX = FindInOperandList(Ops, i, X);
596 if (FoundX != i) {
597 // Remove X and -X from the operand list.
598 if (Ops.size() == 2) {
Chris Lattner5847e5e2005-05-08 18:59:37 +0000599 ++NumAnnihil;
Chris Lattner4c065092006-03-04 09:31:13 +0000600 return Constant::getNullValue(X->getType());
Chris Lattner5847e5e2005-05-08 18:59:37 +0000601 } else {
602 Ops.erase(Ops.begin()+i);
Chris Lattnerd1325da2005-09-02 05:23:22 +0000603 if (i < FoundX)
604 --FoundX;
605 else
606 --i; // Need to back up an extra one.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000607 Ops.erase(Ops.begin()+FoundX);
608 IterateOptimization = true;
609 ++NumAnnihil;
Chris Lattnerd1325da2005-09-02 05:23:22 +0000610 --i; // Revisit element.
611 e -= 2; // Removed two elements.
Chris Lattner5847e5e2005-05-08 18:59:37 +0000612 }
613 }
614 }
615 }
Chris Lattner4c065092006-03-04 09:31:13 +0000616
617
618 // Scan the operand list, checking to see if there are any common factors
619 // between operands. Consider something like A*A+A*B*C+D. We would like to
620 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
621 // To efficiently find this, we count the number of times a factor occurs
622 // for any ADD operands that are MULs.
623 std::map<Value*, unsigned> FactorOccurrences;
624 unsigned MaxOcc = 0;
625 Value *MaxOccVal = 0;
626 if (!I->getType()->isFloatingPoint()) {
627 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
628 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op))
629 if (BOp->getOpcode() == Instruction::Mul && BOp->hasOneUse()) {
630 // Compute all of the factors of this added value.
631 std::vector<ValueEntry> Factors;
632 LinearizeExprTree(BOp, Factors);
633 assert(Factors.size() > 1 && "Bad linearize!");
634
635 // Add one to FactorOccurrences for each unique factor in this op.
636 if (Factors.size() == 2) {
637 unsigned Occ = ++FactorOccurrences[Factors[0].Op];
638 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0].Op; }
639 if (Factors[0].Op != Factors[1].Op) { // Don't double count A*A.
640 Occ = ++FactorOccurrences[Factors[1].Op];
641 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1].Op; }
642 }
643 } else {
644 std::set<Value*> Duplicates;
645 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
646 if (Duplicates.insert(Factors[i].Op).second) {
647 unsigned Occ = ++FactorOccurrences[Factors[i].Op];
648 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i].Op; }
649 }
650 }
651 }
652 }
653 }
654
655 // If any factor occurred more than one time, we can pull it out.
656 if (MaxOcc > 1) {
657 DEBUG(std::cerr << "\nFACTORING [" << MaxOcc << "]: "
658 << *MaxOccVal << "\n");
659
660 // Create a new instruction that uses the MaxOccVal twice. If we don't do
661 // this, we could otherwise run into situations where removing a factor
662 // from an expression will drop a use of maxocc, and this can cause
663 // RemoveFactorFromExpression on successive values to behave differently.
664 Instruction *DummyInst = BinaryOperator::createAdd(MaxOccVal, MaxOccVal);
665 std::vector<Value*> NewMulOps;
666 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
667 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
668 NewMulOps.push_back(V);
669 Ops.erase(Ops.begin()+i);
670 --i; --e;
671 }
672 }
673
674 // No need for extra uses anymore.
675 delete DummyInst;
676
677 Value *V = EmitAddTreeOfValues(I, NewMulOps);
678 // FIXME: Must optimize V now, to handle this case:
679 // A*A*B + A*A*C -> A*(A*B+A*C) -> A*(A*(B+C))
680 V = BinaryOperator::createMul(V, MaxOccVal, "tmp", I);
681
682 ++NumFactor;
683
684 if (Ops.size() == 0)
685 return V;
686
687 // Add the new value to the list of things being added.
688 Ops.insert(Ops.begin(), ValueEntry(getRank(V), V));
689
690 // Rewrite the tree so that there is now a use of V.
691 RewriteExprTree(I, 0, Ops);
692 return OptimizeExpression(I, Ops);
693 }
Chris Lattner5847e5e2005-05-08 18:59:37 +0000694 break;
695 //case Instruction::Mul:
696 }
697
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000698 if (IterateOptimization)
Chris Lattner4c065092006-03-04 09:31:13 +0000699 return OptimizeExpression(I, Ops);
700 return 0;
Chris Lattnere1850b82005-05-08 00:19:31 +0000701}
702
Chris Lattner7bc532d2002-05-16 04:37:07 +0000703
Chris Lattnerf43e9742005-05-07 04:08:02 +0000704/// ReassociateBB - Inspect all of the instructions in this basic block,
705/// reassociating them as we go.
Chris Lattner1e506502005-05-07 21:59:39 +0000706void Reassociate::ReassociateBB(BasicBlock *BB) {
Chris Lattner4c065092006-03-04 09:31:13 +0000707 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
708 Instruction *BI = BBI++;
Chris Lattner31c667e2005-05-10 03:39:25 +0000709 if (BI->getOpcode() == Instruction::Shl &&
710 isa<ConstantInt>(BI->getOperand(1)))
711 if (Instruction *NI = ConvertShiftToMul(BI)) {
712 MadeChange = true;
713 BI = NI;
714 }
715
Chris Lattnerc4f8e2b2005-05-08 21:33:47 +0000716 // Reject cases where it is pointless to do this.
717 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint())
718 continue; // Floating point ops are not associative.
719
Chris Lattnerf43e9742005-05-07 04:08:02 +0000720 // If this is a subtract instruction which is not already in negate form,
721 // see if we can convert it to X+-Y.
Chris Lattner877b1142005-05-08 21:28:52 +0000722 if (BI->getOpcode() == Instruction::Sub) {
723 if (!BinaryOperator::isNeg(BI)) {
724 if (Instruction *NI = BreakUpSubtract(BI)) {
725 MadeChange = true;
726 BI = NI;
727 }
728 } else {
729 // Otherwise, this is a negation. See if the operand is a multiply tree
730 // and if this is not an inner node of a multiply tree.
731 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
732 (!BI->hasOneUse() ||
733 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
734 BI = LowerNegateToMultiply(BI);
735 MadeChange = true;
736 }
Chris Lattnerf43e9742005-05-07 04:08:02 +0000737 }
Chris Lattner877b1142005-05-08 21:28:52 +0000738 }
Chris Lattner8fdf75c2002-10-31 17:12:59 +0000739
Chris Lattner1e506502005-05-07 21:59:39 +0000740 // If this instruction is a commutative binary operator, process it.
741 if (!BI->isAssociative()) continue;
742 BinaryOperator *I = cast<BinaryOperator>(BI);
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000743
Chris Lattner1e506502005-05-07 21:59:39 +0000744 // If this is an interior node of a reassociable tree, ignore it until we
745 // get to the root of the tree, to avoid N^2 analysis.
746 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
747 continue;
Chris Lattner7bc532d2002-05-16 04:37:07 +0000748
Chris Lattnerb5e381a2005-09-02 07:07:58 +0000749 // If this is an add tree that is used by a sub instruction, ignore it
750 // until we process the subtract.
751 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
752 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
753 continue;
754
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000755 // First, walk the expression tree, linearizing the tree, collecting
Chris Lattner1e506502005-05-07 21:59:39 +0000756 std::vector<ValueEntry> Ops;
757 LinearizeExprTree(I, Ops);
758
Chris Lattner4c065092006-03-04 09:31:13 +0000759 DEBUG(std::cerr << "RAIn:\t"; PrintOps(I, Ops);
Chris Lattner9187f392005-05-08 20:09:57 +0000760 std::cerr << "\n");
761
Chris Lattner1e506502005-05-07 21:59:39 +0000762 // Now that we have linearized the tree to a list and have gathered all of
763 // the operands and their ranks, sort the operands by their rank. Use a
764 // stable_sort so that values with equal ranks will have their relative
765 // positions maintained (and so the compiler is deterministic). Note that
766 // this sorts so that the highest ranking values end up at the beginning of
767 // the vector.
768 std::stable_sort(Ops.begin(), Ops.end());
769
Chris Lattnere1850b82005-05-08 00:19:31 +0000770 // OptimizeExpression - Now that we have the expression tree in a convenient
771 // sorted form, optimize it globally if possible.
Chris Lattner4c065092006-03-04 09:31:13 +0000772 if (Value *V = OptimizeExpression(I, Ops)) {
773 // This expression tree simplified to something that isn't a tree,
774 // eliminate it.
775 DEBUG(std::cerr << "Reassoc to scalar: " << *V << "\n");
776 I->replaceAllUsesWith(V);
777 RemoveDeadBinaryOp(I);
778 continue;
779 }
Chris Lattner1e506502005-05-07 21:59:39 +0000780
Chris Lattnerdf333262005-05-08 21:41:35 +0000781 // We want to sink immediates as deeply as possible except in the case where
782 // this is a multiply tree used only by an add, and the immediate is a -1.
783 // In this case we reassociate to put the negation on the outside so that we
784 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
Jeff Cohen5f4ef3c2005-07-27 06:12:32 +0000785 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
Chris Lattnerdf333262005-05-08 21:41:35 +0000786 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
787 isa<ConstantInt>(Ops.back().Op) &&
788 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
789 Ops.insert(Ops.begin(), Ops.back());
790 Ops.pop_back();
791 }
792
Chris Lattner4c065092006-03-04 09:31:13 +0000793 DEBUG(std::cerr << "RAOut:\t"; PrintOps(I, Ops);
Chris Lattner9187f392005-05-08 20:09:57 +0000794 std::cerr << "\n");
795
Chris Lattner1e506502005-05-07 21:59:39 +0000796 if (Ops.size() == 1) {
797 // This expression tree simplified to something that isn't a tree,
798 // eliminate it.
799 I->replaceAllUsesWith(Ops[0].Op);
Chris Lattner4c065092006-03-04 09:31:13 +0000800 RemoveDeadBinaryOp(I);
Chris Lattner1e506502005-05-07 21:59:39 +0000801 } else {
802 // Now that we ordered and optimized the expressions, splat them back into
803 // the expression tree, removing any unneeded nodes.
804 RewriteExprTree(I, 0, Ops);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000805 }
806 }
Chris Lattnerc0f58002002-05-08 22:19:27 +0000807}
808
809
Chris Lattner113f4f42002-06-25 16:13:24 +0000810bool Reassociate::runOnFunction(Function &F) {
Chris Lattnerc0f58002002-05-08 22:19:27 +0000811 // Recalculate the rank map for F
812 BuildRankMap(F);
813
Chris Lattner1e506502005-05-07 21:59:39 +0000814 MadeChange = false;
Chris Lattner113f4f42002-06-25 16:13:24 +0000815 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
Chris Lattner1e506502005-05-07 21:59:39 +0000816 ReassociateBB(FI);
Chris Lattnerc0f58002002-05-08 22:19:27 +0000817
818 // We are done with the rank map...
819 RankMap.clear();
Chris Lattner8ac196d2003-08-13 16:16:26 +0000820 ValueRankMap.clear();
Chris Lattner1e506502005-05-07 21:59:39 +0000821 return MadeChange;
Chris Lattnerc0f58002002-05-08 22:19:27 +0000822}
Brian Gaeke960707c2003-11-11 22:41:34 +0000823