blob: 01f008a2d98abc5355fd680f612320e147229ba0 [file] [log] [blame]
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001//===-- SystemZISelDAGToDAG.cpp - A dag to dag inst selector for SystemZ --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines an instruction selector for the SystemZ target.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SystemZTargetMachine.h"
Richard Sandiford97846492013-07-09 09:46:39 +000015#include "llvm/Analysis/AliasAnalysis.h"
Ulrich Weigand5f613df2013-05-06 16:15:19 +000016#include "llvm/CodeGen/SelectionDAGISel.h"
17#include "llvm/Support/Debug.h"
18#include "llvm/Support/raw_ostream.h"
19
20using namespace llvm;
21
22namespace {
23// Used to build addressing modes.
24struct SystemZAddressingMode {
25 // The shape of the address.
26 enum AddrForm {
27 // base+displacement
28 FormBD,
29
30 // base+displacement+index for load and store operands
31 FormBDXNormal,
32
33 // base+displacement+index for load address operands
34 FormBDXLA,
35
36 // base+displacement+index+ADJDYNALLOC
37 FormBDXDynAlloc
38 };
39 AddrForm Form;
40
41 // The type of displacement. The enum names here correspond directly
42 // to the definitions in SystemZOperand.td. We could split them into
43 // flags -- single/pair, 128-bit, etc. -- but it hardly seems worth it.
44 enum DispRange {
45 Disp12Only,
46 Disp12Pair,
47 Disp20Only,
48 Disp20Only128,
49 Disp20Pair
50 };
51 DispRange DR;
52
53 // The parts of the address. The address is equivalent to:
54 //
55 // Base + Disp + Index + (IncludesDynAlloc ? ADJDYNALLOC : 0)
56 SDValue Base;
57 int64_t Disp;
58 SDValue Index;
59 bool IncludesDynAlloc;
60
61 SystemZAddressingMode(AddrForm form, DispRange dr)
62 : Form(form), DR(dr), Base(), Disp(0), Index(),
63 IncludesDynAlloc(false) {}
64
65 // True if the address can have an index register.
66 bool hasIndexField() { return Form != FormBD; }
67
68 // True if the address can (and must) include ADJDYNALLOC.
69 bool isDynAlloc() { return Form == FormBDXDynAlloc; }
70
71 void dump() {
72 errs() << "SystemZAddressingMode " << this << '\n';
73
74 errs() << " Base ";
75 if (Base.getNode() != 0)
76 Base.getNode()->dump();
77 else
78 errs() << "null\n";
79
80 if (hasIndexField()) {
81 errs() << " Index ";
82 if (Index.getNode() != 0)
83 Index.getNode()->dump();
84 else
85 errs() << "null\n";
86 }
87
88 errs() << " Disp " << Disp;
89 if (IncludesDynAlloc)
90 errs() << " + ADJDYNALLOC";
91 errs() << '\n';
92 }
93};
94
Richard Sandiford82ec87d2013-07-16 11:02:24 +000095// Return a mask with Count low bits set.
96static uint64_t allOnes(unsigned int Count) {
97 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
98}
99
Richard Sandiford51093212013-07-18 10:40:35 +0000100// Represents operands 2 to 5 of the ROTATE AND ... SELECTED BITS operation
101// given by Opcode. The operands are: Input (R2), Start (I3), End (I4) and
102// Rotate (I5). The combined operand value is effectively:
103//
104// (or (rotl Input, Rotate), ~Mask)
105//
106// for RNSBG and:
107//
108// (and (rotl Input, Rotate), Mask)
109//
110// otherwise. The value has BitSize bits.
Richard Sandiford5cbac962013-07-18 09:45:08 +0000111struct RxSBGOperands {
Richard Sandiford51093212013-07-18 10:40:35 +0000112 RxSBGOperands(unsigned Op, SDValue N)
113 : Opcode(Op), BitSize(N.getValueType().getSizeInBits()),
114 Mask(allOnes(BitSize)), Input(N), Start(64 - BitSize), End(63),
115 Rotate(0) {}
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000116
Richard Sandiford51093212013-07-18 10:40:35 +0000117 unsigned Opcode;
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000118 unsigned BitSize;
119 uint64_t Mask;
120 SDValue Input;
121 unsigned Start;
122 unsigned End;
123 unsigned Rotate;
124};
125
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000126class SystemZDAGToDAGISel : public SelectionDAGISel {
127 const SystemZTargetLowering &Lowering;
128 const SystemZSubtarget &Subtarget;
129
130 // Used by SystemZOperands.td to create integer constants.
131 inline SDValue getImm(const SDNode *Node, uint64_t Imm) {
132 return CurDAG->getTargetConstant(Imm, Node->getValueType(0));
133 }
134
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000135 const SystemZTargetMachine &getTargetMachine() const {
136 return static_cast<const SystemZTargetMachine &>(TM);
137 }
138
139 const SystemZInstrInfo *getInstrInfo() const {
140 return getTargetMachine().getInstrInfo();
141 }
142
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000143 // Try to fold more of the base or index of AM into AM, where IsBase
144 // selects between the base and index.
145 bool expandAddress(SystemZAddressingMode &AM, bool IsBase);
146
147 // Try to describe N in AM, returning true on success.
148 bool selectAddress(SDValue N, SystemZAddressingMode &AM);
149
150 // Extract individual target operands from matched address AM.
151 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
152 SDValue &Base, SDValue &Disp);
153 void getAddressOperands(const SystemZAddressingMode &AM, EVT VT,
154 SDValue &Base, SDValue &Disp, SDValue &Index);
155
156 // Try to match Addr as a FormBD address with displacement type DR.
157 // Return true on success, storing the base and displacement in
158 // Base and Disp respectively.
159 bool selectBDAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
160 SDValue &Base, SDValue &Disp);
161
Richard Sandiforda481f582013-08-23 11:18:53 +0000162 // Try to match Addr as a FormBDX address with displacement type DR.
163 // Return true on success and if the result had no index. Store the
164 // base and displacement in Base and Disp respectively.
165 bool selectMVIAddr(SystemZAddressingMode::DispRange DR, SDValue Addr,
166 SDValue &Base, SDValue &Disp);
167
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000168 // Try to match Addr as a FormBDX* address of form Form with
169 // displacement type DR. Return true on success, storing the base,
170 // displacement and index in Base, Disp and Index respectively.
171 bool selectBDXAddr(SystemZAddressingMode::AddrForm Form,
172 SystemZAddressingMode::DispRange DR, SDValue Addr,
173 SDValue &Base, SDValue &Disp, SDValue &Index);
174
175 // PC-relative address matching routines used by SystemZOperands.td.
176 bool selectPCRelAddress(SDValue Addr, SDValue &Target) {
177 if (Addr.getOpcode() == SystemZISD::PCREL_WRAPPER) {
178 Target = Addr.getOperand(0);
179 return true;
180 }
181 return false;
182 }
183
184 // BD matching routines used by SystemZOperands.td.
185 bool selectBDAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
186 return selectBDAddr(SystemZAddressingMode::Disp12Only, Addr, Base, Disp);
187 }
188 bool selectBDAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
189 return selectBDAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
190 }
191 bool selectBDAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp) {
192 return selectBDAddr(SystemZAddressingMode::Disp20Only, Addr, Base, Disp);
193 }
194 bool selectBDAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
195 return selectBDAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
196 }
197
Richard Sandiforda481f582013-08-23 11:18:53 +0000198 // MVI matching routines used by SystemZOperands.td.
199 bool selectMVIAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
200 return selectMVIAddr(SystemZAddressingMode::Disp12Pair, Addr, Base, Disp);
201 }
202 bool selectMVIAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp) {
203 return selectMVIAddr(SystemZAddressingMode::Disp20Pair, Addr, Base, Disp);
204 }
205
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000206 // BDX matching routines used by SystemZOperands.td.
207 bool selectBDXAddr12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
208 SDValue &Index) {
209 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
210 SystemZAddressingMode::Disp12Only,
211 Addr, Base, Disp, Index);
212 }
213 bool selectBDXAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
214 SDValue &Index) {
215 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
216 SystemZAddressingMode::Disp12Pair,
217 Addr, Base, Disp, Index);
218 }
219 bool selectDynAlloc12Only(SDValue Addr, SDValue &Base, SDValue &Disp,
220 SDValue &Index) {
221 return selectBDXAddr(SystemZAddressingMode::FormBDXDynAlloc,
222 SystemZAddressingMode::Disp12Only,
223 Addr, Base, Disp, Index);
224 }
225 bool selectBDXAddr20Only(SDValue Addr, SDValue &Base, SDValue &Disp,
226 SDValue &Index) {
227 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
228 SystemZAddressingMode::Disp20Only,
229 Addr, Base, Disp, Index);
230 }
231 bool selectBDXAddr20Only128(SDValue Addr, SDValue &Base, SDValue &Disp,
232 SDValue &Index) {
233 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
234 SystemZAddressingMode::Disp20Only128,
235 Addr, Base, Disp, Index);
236 }
237 bool selectBDXAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
238 SDValue &Index) {
239 return selectBDXAddr(SystemZAddressingMode::FormBDXNormal,
240 SystemZAddressingMode::Disp20Pair,
241 Addr, Base, Disp, Index);
242 }
243 bool selectLAAddr12Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
244 SDValue &Index) {
245 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
246 SystemZAddressingMode::Disp12Pair,
247 Addr, Base, Disp, Index);
248 }
249 bool selectLAAddr20Pair(SDValue Addr, SDValue &Base, SDValue &Disp,
250 SDValue &Index) {
251 return selectBDXAddr(SystemZAddressingMode::FormBDXLA,
252 SystemZAddressingMode::Disp20Pair,
253 Addr, Base, Disp, Index);
254 }
255
Richard Sandiford885140c2013-07-16 11:55:57 +0000256 // Check whether (or Op (and X InsertMask)) is effectively an insertion
257 // of X into bits InsertMask of some Y != Op. Return true if so and
258 // set Op to that Y.
259 bool detectOrAndInsertion(SDValue &Op, uint64_t InsertMask);
260
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000261 // Try to update RxSBG so that only the bits of RxSBG.Input in Mask are used.
262 // Return true on success.
263 bool refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask);
264
Richard Sandiford5cbac962013-07-18 09:45:08 +0000265 // Try to fold some of RxSBG.Input into other fields of RxSBG.
266 // Return true on success.
267 bool expandRxSBG(RxSBGOperands &RxSBG);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000268
Richard Sandiford84f54a32013-07-11 08:59:12 +0000269 // Return an undefined i64 value.
270 SDValue getUNDEF64(SDLoc DL);
271
272 // Convert N to VT, if it isn't already.
273 SDValue convertTo(SDLoc DL, EVT VT, SDValue N);
274
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000275 // Try to implement AND or shift node N using RISBG with the zero flag set.
276 // Return the selected node on success, otherwise return null.
277 SDNode *tryRISBGZero(SDNode *N);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000278
Richard Sandiford7878b852013-07-18 10:06:15 +0000279 // Try to use RISBG or Opcode to implement OR or XOR node N.
280 // Return the selected node on success, otherwise return null.
281 SDNode *tryRxSBG(SDNode *N, unsigned Opcode);
Richard Sandiford885140c2013-07-16 11:55:57 +0000282
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000283 // If Op0 is null, then Node is a constant that can be loaded using:
284 //
285 // (Opcode UpperVal LowerVal)
286 //
287 // If Op0 is nonnull, then Node can be implemented using:
288 //
289 // (Opcode (Opcode Op0 UpperVal) LowerVal)
290 SDNode *splitLargeImmediate(unsigned Opcode, SDNode *Node, SDValue Op0,
291 uint64_t UpperVal, uint64_t LowerVal);
292
Richard Sandiford178273a2013-09-05 10:36:45 +0000293 // N is a (store (load Y), X) pattern. Return true if it can use an MVC
294 // from Y to X.
Richard Sandiford97846492013-07-09 09:46:39 +0000295 bool storeLoadCanUseMVC(SDNode *N) const;
296
Richard Sandiford178273a2013-09-05 10:36:45 +0000297 // N is a (store (op (load A[0]), (load A[1])), X) pattern. Return true
298 // if A[1 - I] == X and if N can use a block operation like NC from A[I]
299 // to X.
300 bool storeLoadCanUseBlockBinary(SDNode *N, unsigned I) const;
301
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000302public:
303 SystemZDAGToDAGISel(SystemZTargetMachine &TM, CodeGenOpt::Level OptLevel)
304 : SelectionDAGISel(TM, OptLevel),
305 Lowering(*TM.getTargetLowering()),
306 Subtarget(*TM.getSubtargetImpl()) { }
307
308 // Override MachineFunctionPass.
309 virtual const char *getPassName() const LLVM_OVERRIDE {
310 return "SystemZ DAG->DAG Pattern Instruction Selection";
311 }
312
313 // Override SelectionDAGISel.
314 virtual SDNode *Select(SDNode *Node) LLVM_OVERRIDE;
315 virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
316 char ConstraintCode,
317 std::vector<SDValue> &OutOps)
318 LLVM_OVERRIDE;
319
320 // Include the pieces autogenerated from the target description.
321 #include "SystemZGenDAGISel.inc"
322};
323} // end anonymous namespace
324
325FunctionPass *llvm::createSystemZISelDag(SystemZTargetMachine &TM,
326 CodeGenOpt::Level OptLevel) {
327 return new SystemZDAGToDAGISel(TM, OptLevel);
328}
329
330// Return true if Val should be selected as a displacement for an address
331// with range DR. Here we're interested in the range of both the instruction
332// described by DR and of any pairing instruction.
333static bool selectDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
334 switch (DR) {
335 case SystemZAddressingMode::Disp12Only:
336 return isUInt<12>(Val);
337
338 case SystemZAddressingMode::Disp12Pair:
339 case SystemZAddressingMode::Disp20Only:
340 case SystemZAddressingMode::Disp20Pair:
341 return isInt<20>(Val);
342
343 case SystemZAddressingMode::Disp20Only128:
344 return isInt<20>(Val) && isInt<20>(Val + 8);
345 }
346 llvm_unreachable("Unhandled displacement range");
347}
348
349// Change the base or index in AM to Value, where IsBase selects
350// between the base and index.
351static void changeComponent(SystemZAddressingMode &AM, bool IsBase,
352 SDValue Value) {
353 if (IsBase)
354 AM.Base = Value;
355 else
356 AM.Index = Value;
357}
358
359// The base or index of AM is equivalent to Value + ADJDYNALLOC,
360// where IsBase selects between the base and index. Try to fold the
361// ADJDYNALLOC into AM.
362static bool expandAdjDynAlloc(SystemZAddressingMode &AM, bool IsBase,
363 SDValue Value) {
364 if (AM.isDynAlloc() && !AM.IncludesDynAlloc) {
365 changeComponent(AM, IsBase, Value);
366 AM.IncludesDynAlloc = true;
367 return true;
368 }
369 return false;
370}
371
372// The base of AM is equivalent to Base + Index. Try to use Index as
373// the index register.
374static bool expandIndex(SystemZAddressingMode &AM, SDValue Base,
375 SDValue Index) {
376 if (AM.hasIndexField() && !AM.Index.getNode()) {
377 AM.Base = Base;
378 AM.Index = Index;
379 return true;
380 }
381 return false;
382}
383
384// The base or index of AM is equivalent to Op0 + Op1, where IsBase selects
385// between the base and index. Try to fold Op1 into AM's displacement.
386static bool expandDisp(SystemZAddressingMode &AM, bool IsBase,
387 SDValue Op0, ConstantSDNode *Op1) {
388 // First try adjusting the displacement.
389 int64_t TestDisp = AM.Disp + Op1->getSExtValue();
390 if (selectDisp(AM.DR, TestDisp)) {
391 changeComponent(AM, IsBase, Op0);
392 AM.Disp = TestDisp;
393 return true;
394 }
395
396 // We could consider forcing the displacement into a register and
397 // using it as an index, but it would need to be carefully tuned.
398 return false;
399}
400
401bool SystemZDAGToDAGISel::expandAddress(SystemZAddressingMode &AM,
402 bool IsBase) {
403 SDValue N = IsBase ? AM.Base : AM.Index;
404 unsigned Opcode = N.getOpcode();
405 if (Opcode == ISD::TRUNCATE) {
406 N = N.getOperand(0);
407 Opcode = N.getOpcode();
408 }
409 if (Opcode == ISD::ADD || CurDAG->isBaseWithConstantOffset(N)) {
410 SDValue Op0 = N.getOperand(0);
411 SDValue Op1 = N.getOperand(1);
412
413 unsigned Op0Code = Op0->getOpcode();
414 unsigned Op1Code = Op1->getOpcode();
415
416 if (Op0Code == SystemZISD::ADJDYNALLOC)
417 return expandAdjDynAlloc(AM, IsBase, Op1);
418 if (Op1Code == SystemZISD::ADJDYNALLOC)
419 return expandAdjDynAlloc(AM, IsBase, Op0);
420
421 if (Op0Code == ISD::Constant)
422 return expandDisp(AM, IsBase, Op1, cast<ConstantSDNode>(Op0));
423 if (Op1Code == ISD::Constant)
424 return expandDisp(AM, IsBase, Op0, cast<ConstantSDNode>(Op1));
425
426 if (IsBase && expandIndex(AM, Op0, Op1))
427 return true;
428 }
429 return false;
430}
431
432// Return true if an instruction with displacement range DR should be
433// used for displacement value Val. selectDisp(DR, Val) must already hold.
434static bool isValidDisp(SystemZAddressingMode::DispRange DR, int64_t Val) {
435 assert(selectDisp(DR, Val) && "Invalid displacement");
436 switch (DR) {
437 case SystemZAddressingMode::Disp12Only:
438 case SystemZAddressingMode::Disp20Only:
439 case SystemZAddressingMode::Disp20Only128:
440 return true;
441
442 case SystemZAddressingMode::Disp12Pair:
443 // Use the other instruction if the displacement is too large.
444 return isUInt<12>(Val);
445
446 case SystemZAddressingMode::Disp20Pair:
447 // Use the other instruction if the displacement is small enough.
448 return !isUInt<12>(Val);
449 }
450 llvm_unreachable("Unhandled displacement range");
451}
452
453// Return true if Base + Disp + Index should be performed by LA(Y).
454static bool shouldUseLA(SDNode *Base, int64_t Disp, SDNode *Index) {
455 // Don't use LA(Y) for constants.
456 if (!Base)
457 return false;
458
459 // Always use LA(Y) for frame addresses, since we know that the destination
460 // register is almost always (perhaps always) going to be different from
461 // the frame register.
462 if (Base->getOpcode() == ISD::FrameIndex)
463 return true;
464
465 if (Disp) {
466 // Always use LA(Y) if there is a base, displacement and index.
467 if (Index)
468 return true;
469
470 // Always use LA if the displacement is small enough. It should always
471 // be no worse than AGHI (and better if it avoids a move).
472 if (isUInt<12>(Disp))
473 return true;
474
475 // For similar reasons, always use LAY if the constant is too big for AGHI.
476 // LAY should be no worse than AGFI.
477 if (!isInt<16>(Disp))
478 return true;
479 } else {
480 // Don't use LA for plain registers.
481 if (!Index)
482 return false;
483
484 // Don't use LA for plain addition if the index operand is only used
485 // once. It should be a natural two-operand addition in that case.
486 if (Index->hasOneUse())
487 return false;
488
489 // Prefer addition if the second operation is sign-extended, in the
490 // hope of using AGF.
491 unsigned IndexOpcode = Index->getOpcode();
492 if (IndexOpcode == ISD::SIGN_EXTEND ||
493 IndexOpcode == ISD::SIGN_EXTEND_INREG)
494 return false;
495 }
496
497 // Don't use LA for two-operand addition if either operand is only
498 // used once. The addition instructions are better in that case.
499 if (Base->hasOneUse())
500 return false;
501
502 return true;
503}
504
505// Return true if Addr is suitable for AM, updating AM if so.
506bool SystemZDAGToDAGISel::selectAddress(SDValue Addr,
507 SystemZAddressingMode &AM) {
508 // Start out assuming that the address will need to be loaded separately,
509 // then try to extend it as much as we can.
510 AM.Base = Addr;
511
512 // First try treating the address as a constant.
513 if (Addr.getOpcode() == ISD::Constant &&
514 expandDisp(AM, true, SDValue(), cast<ConstantSDNode>(Addr)))
515 ;
516 else
517 // Otherwise try expanding each component.
518 while (expandAddress(AM, true) ||
519 (AM.Index.getNode() && expandAddress(AM, false)))
520 continue;
521
522 // Reject cases where it isn't profitable to use LA(Y).
523 if (AM.Form == SystemZAddressingMode::FormBDXLA &&
524 !shouldUseLA(AM.Base.getNode(), AM.Disp, AM.Index.getNode()))
525 return false;
526
527 // Reject cases where the other instruction in a pair should be used.
528 if (!isValidDisp(AM.DR, AM.Disp))
529 return false;
530
531 // Make sure that ADJDYNALLOC is included where necessary.
532 if (AM.isDynAlloc() && !AM.IncludesDynAlloc)
533 return false;
534
535 DEBUG(AM.dump());
536 return true;
537}
538
539// Insert a node into the DAG at least before Pos. This will reposition
540// the node as needed, and will assign it a node ID that is <= Pos's ID.
541// Note that this does *not* preserve the uniqueness of node IDs!
542// The selection DAG must no longer depend on their uniqueness when this
543// function is used.
544static void insertDAGNode(SelectionDAG *DAG, SDNode *Pos, SDValue N) {
545 if (N.getNode()->getNodeId() == -1 ||
546 N.getNode()->getNodeId() > Pos->getNodeId()) {
547 DAG->RepositionNode(Pos, N.getNode());
548 N.getNode()->setNodeId(Pos->getNodeId());
549 }
550}
551
552void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
553 EVT VT, SDValue &Base,
554 SDValue &Disp) {
555 Base = AM.Base;
556 if (!Base.getNode())
557 // Register 0 means "no base". This is mostly useful for shifts.
558 Base = CurDAG->getRegister(0, VT);
559 else if (Base.getOpcode() == ISD::FrameIndex) {
560 // Lower a FrameIndex to a TargetFrameIndex.
561 int64_t FrameIndex = cast<FrameIndexSDNode>(Base)->getIndex();
562 Base = CurDAG->getTargetFrameIndex(FrameIndex, VT);
563 } else if (Base.getValueType() != VT) {
564 // Truncate values from i64 to i32, for shifts.
565 assert(VT == MVT::i32 && Base.getValueType() == MVT::i64 &&
566 "Unexpected truncation");
Andrew Trickef9de2a2013-05-25 02:42:55 +0000567 SDLoc DL(Base);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000568 SDValue Trunc = CurDAG->getNode(ISD::TRUNCATE, DL, VT, Base);
569 insertDAGNode(CurDAG, Base.getNode(), Trunc);
570 Base = Trunc;
571 }
572
573 // Lower the displacement to a TargetConstant.
574 Disp = CurDAG->getTargetConstant(AM.Disp, VT);
575}
576
577void SystemZDAGToDAGISel::getAddressOperands(const SystemZAddressingMode &AM,
578 EVT VT, SDValue &Base,
579 SDValue &Disp, SDValue &Index) {
580 getAddressOperands(AM, VT, Base, Disp);
581
582 Index = AM.Index;
583 if (!Index.getNode())
584 // Register 0 means "no index".
585 Index = CurDAG->getRegister(0, VT);
586}
587
588bool SystemZDAGToDAGISel::selectBDAddr(SystemZAddressingMode::DispRange DR,
589 SDValue Addr, SDValue &Base,
590 SDValue &Disp) {
591 SystemZAddressingMode AM(SystemZAddressingMode::FormBD, DR);
592 if (!selectAddress(Addr, AM))
593 return false;
594
595 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
596 return true;
597}
598
Richard Sandiforda481f582013-08-23 11:18:53 +0000599bool SystemZDAGToDAGISel::selectMVIAddr(SystemZAddressingMode::DispRange DR,
600 SDValue Addr, SDValue &Base,
601 SDValue &Disp) {
602 SystemZAddressingMode AM(SystemZAddressingMode::FormBDXNormal, DR);
603 if (!selectAddress(Addr, AM) || AM.Index.getNode())
604 return false;
605
606 getAddressOperands(AM, Addr.getValueType(), Base, Disp);
607 return true;
608}
609
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000610bool SystemZDAGToDAGISel::selectBDXAddr(SystemZAddressingMode::AddrForm Form,
611 SystemZAddressingMode::DispRange DR,
612 SDValue Addr, SDValue &Base,
613 SDValue &Disp, SDValue &Index) {
614 SystemZAddressingMode AM(Form, DR);
615 if (!selectAddress(Addr, AM))
616 return false;
617
618 getAddressOperands(AM, Addr.getValueType(), Base, Disp, Index);
619 return true;
620}
621
Richard Sandiford885140c2013-07-16 11:55:57 +0000622bool SystemZDAGToDAGISel::detectOrAndInsertion(SDValue &Op,
623 uint64_t InsertMask) {
624 // We're only interested in cases where the insertion is into some operand
625 // of Op, rather than into Op itself. The only useful case is an AND.
626 if (Op.getOpcode() != ISD::AND)
627 return false;
628
629 // We need a constant mask.
630 ConstantSDNode *MaskNode =
631 dyn_cast<ConstantSDNode>(Op.getOperand(1).getNode());
632 if (!MaskNode)
633 return false;
634
635 // It's not an insertion of Op.getOperand(0) if the two masks overlap.
636 uint64_t AndMask = MaskNode->getZExtValue();
637 if (InsertMask & AndMask)
638 return false;
639
640 // It's only an insertion if all bits are covered or are known to be zero.
641 // The inner check covers all cases but is more expensive.
642 uint64_t Used = allOnes(Op.getValueType().getSizeInBits());
643 if (Used != (AndMask | InsertMask)) {
644 APInt KnownZero, KnownOne;
645 CurDAG->ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne);
646 if (Used != (AndMask | InsertMask | KnownZero.getZExtValue()))
647 return false;
648 }
649
650 Op = Op.getOperand(0);
651 return true;
652}
653
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000654bool SystemZDAGToDAGISel::refineRxSBGMask(RxSBGOperands &RxSBG, uint64_t Mask) {
655 const SystemZInstrInfo *TII = getInstrInfo();
Richard Sandiford5cbac962013-07-18 09:45:08 +0000656 if (RxSBG.Rotate != 0)
657 Mask = (Mask << RxSBG.Rotate) | (Mask >> (64 - RxSBG.Rotate));
658 Mask &= RxSBG.Mask;
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000659 if (TII->isRxSBGMask(Mask, RxSBG.BitSize, RxSBG.Start, RxSBG.End)) {
Richard Sandiford5cbac962013-07-18 09:45:08 +0000660 RxSBG.Mask = Mask;
Richard Sandiford5cbac962013-07-18 09:45:08 +0000661 return true;
662 }
Richard Sandiford84f54a32013-07-11 08:59:12 +0000663 return false;
664}
665
Richard Sandiford297f7d22013-07-18 10:14:55 +0000666// RxSBG.Input is a shift of Count bits in the direction given by IsLeft.
667// Return true if the result depends on the signs or zeros that are
668// shifted in.
669static bool shiftedInBitsMatter(RxSBGOperands &RxSBG, uint64_t Count,
670 bool IsLeft) {
671 // Work out which bits of the shift result are zeros or sign copies.
672 uint64_t ShiftedIn = allOnes(Count);
673 if (!IsLeft)
674 ShiftedIn <<= RxSBG.BitSize - Count;
675
676 // Rotate that mask in the same way as RxSBG.Input is rotated.
677 if (RxSBG.Rotate != 0)
678 ShiftedIn = ((ShiftedIn << RxSBG.Rotate) |
679 (ShiftedIn >> (64 - RxSBG.Rotate)));
680
681 // Fail if any of the zero or sign bits are used.
682 return (ShiftedIn & RxSBG.Mask) != 0;
683}
684
Richard Sandiford5cbac962013-07-18 09:45:08 +0000685bool SystemZDAGToDAGISel::expandRxSBG(RxSBGOperands &RxSBG) {
686 SDValue N = RxSBG.Input;
Richard Sandiford297f7d22013-07-18 10:14:55 +0000687 unsigned Opcode = N.getOpcode();
688 switch (Opcode) {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000689 case ISD::AND: {
Richard Sandiford51093212013-07-18 10:40:35 +0000690 if (RxSBG.Opcode == SystemZ::RNSBG)
691 return false;
692
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000693 ConstantSDNode *MaskNode =
694 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
695 if (!MaskNode)
696 return false;
697
698 SDValue Input = N.getOperand(0);
699 uint64_t Mask = MaskNode->getZExtValue();
Richard Sandiford5cbac962013-07-18 09:45:08 +0000700 if (!refineRxSBGMask(RxSBG, Mask)) {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000701 // If some bits of Input are already known zeros, those bits will have
702 // been removed from the mask. See if adding them back in makes the
703 // mask suitable.
704 APInt KnownZero, KnownOne;
705 CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
706 Mask |= KnownZero.getZExtValue();
Richard Sandiford5cbac962013-07-18 09:45:08 +0000707 if (!refineRxSBGMask(RxSBG, Mask))
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000708 return false;
709 }
Richard Sandiford5cbac962013-07-18 09:45:08 +0000710 RxSBG.Input = Input;
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000711 return true;
712 }
713
Richard Sandiford51093212013-07-18 10:40:35 +0000714 case ISD::OR: {
715 if (RxSBG.Opcode != SystemZ::RNSBG)
716 return false;
717
718 ConstantSDNode *MaskNode =
719 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
720 if (!MaskNode)
721 return false;
722
723 SDValue Input = N.getOperand(0);
724 uint64_t Mask = ~MaskNode->getZExtValue();
725 if (!refineRxSBGMask(RxSBG, Mask)) {
726 // If some bits of Input are already known ones, those bits will have
727 // been removed from the mask. See if adding them back in makes the
728 // mask suitable.
729 APInt KnownZero, KnownOne;
730 CurDAG->ComputeMaskedBits(Input, KnownZero, KnownOne);
731 Mask &= ~KnownOne.getZExtValue();
732 if (!refineRxSBGMask(RxSBG, Mask))
733 return false;
734 }
735 RxSBG.Input = Input;
736 return true;
737 }
738
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000739 case ISD::ROTL: {
Richard Sandiford5cbac962013-07-18 09:45:08 +0000740 // Any 64-bit rotate left can be merged into the RxSBG.
741 if (RxSBG.BitSize != 64)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000742 return false;
743 ConstantSDNode *CountNode
744 = dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
745 if (!CountNode)
746 return false;
747
Richard Sandiford5cbac962013-07-18 09:45:08 +0000748 RxSBG.Rotate = (RxSBG.Rotate + CountNode->getZExtValue()) & 63;
749 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000750 return true;
751 }
752
753 case ISD::SHL: {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000754 ConstantSDNode *CountNode =
755 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
756 if (!CountNode)
757 return false;
758
759 uint64_t Count = CountNode->getZExtValue();
Richard Sandiford51093212013-07-18 10:40:35 +0000760 if (Count < 1 || Count >= RxSBG.BitSize)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000761 return false;
762
Richard Sandiford51093212013-07-18 10:40:35 +0000763 if (RxSBG.Opcode == SystemZ::RNSBG) {
764 // Treat (shl X, count) as (rotl X, size-count) as long as the bottom
765 // count bits from RxSBG.Input are ignored.
766 if (shiftedInBitsMatter(RxSBG, Count, true))
767 return false;
768 } else {
769 // Treat (shl X, count) as (and (rotl X, count), ~0<<count).
770 if (!refineRxSBGMask(RxSBG, allOnes(RxSBG.BitSize - Count) << Count))
771 return false;
772 }
773
Richard Sandiford5cbac962013-07-18 09:45:08 +0000774 RxSBG.Rotate = (RxSBG.Rotate + Count) & 63;
775 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000776 return true;
777 }
778
Richard Sandiford297f7d22013-07-18 10:14:55 +0000779 case ISD::SRL:
780 case ISD::SRA: {
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000781 ConstantSDNode *CountNode =
782 dyn_cast<ConstantSDNode>(N.getOperand(1).getNode());
783 if (!CountNode)
784 return false;
785
786 uint64_t Count = CountNode->getZExtValue();
Richard Sandiford297f7d22013-07-18 10:14:55 +0000787 if (Count < 1 || Count >= RxSBG.BitSize)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000788 return false;
789
Richard Sandiford51093212013-07-18 10:40:35 +0000790 if (RxSBG.Opcode == SystemZ::RNSBG || Opcode == ISD::SRA) {
791 // Treat (srl|sra X, count) as (rotl X, size-count) as long as the top
792 // count bits from RxSBG.Input are ignored.
Richard Sandiford297f7d22013-07-18 10:14:55 +0000793 if (shiftedInBitsMatter(RxSBG, Count, false))
794 return false;
795 } else {
796 // Treat (srl X, count), mask) as (and (rotl X, size-count), ~0>>count),
797 // which is similar to SLL above.
798 if (!refineRxSBGMask(RxSBG, allOnes(RxSBG.BitSize - Count)))
799 return false;
800 }
801
Richard Sandiford5cbac962013-07-18 09:45:08 +0000802 RxSBG.Rotate = (RxSBG.Rotate - Count) & 63;
803 RxSBG.Input = N.getOperand(0);
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000804 return true;
805 }
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000806 default:
807 return false;
808 }
809}
810
Richard Sandiford84f54a32013-07-11 08:59:12 +0000811SDValue SystemZDAGToDAGISel::getUNDEF64(SDLoc DL) {
812 SDNode *N = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i64);
813 return SDValue(N, 0);
814}
815
816SDValue SystemZDAGToDAGISel::convertTo(SDLoc DL, EVT VT, SDValue N) {
Richard Sandifordd8163202013-09-13 09:12:44 +0000817 if (N.getValueType() == MVT::i32 && VT == MVT::i64)
818 return CurDAG->getTargetInsertSubreg(SystemZ::subreg_32bit,
819 DL, VT, getUNDEF64(DL), N);
820 if (N.getValueType() == MVT::i64 && VT == MVT::i32)
821 return CurDAG->getTargetExtractSubreg(SystemZ::subreg_32bit, DL, VT, N);
Richard Sandiford84f54a32013-07-11 08:59:12 +0000822 assert(N.getValueType() == VT && "Unexpected value types");
823 return N;
824}
825
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000826SDNode *SystemZDAGToDAGISel::tryRISBGZero(SDNode *N) {
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000827 EVT VT = N->getValueType(0);
Richard Sandiford51093212013-07-18 10:40:35 +0000828 RxSBGOperands RISBG(SystemZ::RISBG, SDValue(N, 0));
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000829 unsigned Count = 0;
Richard Sandiford5cbac962013-07-18 09:45:08 +0000830 while (expandRxSBG(RISBG))
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000831 Count += 1;
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000832 if (Count == 0)
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000833 return 0;
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000834 if (Count == 1) {
835 // Prefer to use normal shift instructions over RISBG, since they can handle
836 // all cases and are sometimes shorter.
837 if (N->getOpcode() != ISD::AND)
838 return 0;
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000839
Richard Sandiford6a06ba32013-07-31 11:36:35 +0000840 // Prefer register extensions like LLC over RISBG. Also prefer to start
841 // out with normal ANDs if one instruction would be enough. We can convert
842 // these ANDs into an RISBG later if a three-address instruction is useful.
843 if (VT == MVT::i32 ||
844 RISBG.Mask == 0xff ||
845 RISBG.Mask == 0xffff ||
846 SystemZ::isImmLF(~RISBG.Mask) ||
847 SystemZ::isImmHF(~RISBG.Mask)) {
848 // Force the new mask into the DAG, since it may include known-one bits.
849 ConstantSDNode *MaskN = cast<ConstantSDNode>(N->getOperand(1).getNode());
850 if (MaskN->getZExtValue() != RISBG.Mask) {
851 SDValue NewMask = CurDAG->getConstant(RISBG.Mask, VT);
852 N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), NewMask);
853 return SelectCode(N);
854 }
855 return 0;
856 }
857 }
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000858
Richard Sandiford84f54a32013-07-11 08:59:12 +0000859 SDValue Ops[5] = {
860 getUNDEF64(SDLoc(N)),
Richard Sandiford82ec87d2013-07-16 11:02:24 +0000861 convertTo(SDLoc(N), MVT::i64, RISBG.Input),
862 CurDAG->getTargetConstant(RISBG.Start, MVT::i32),
863 CurDAG->getTargetConstant(RISBG.End | 128, MVT::i32),
864 CurDAG->getTargetConstant(RISBG.Rotate, MVT::i32)
Richard Sandiford84f54a32013-07-11 08:59:12 +0000865 };
866 N = CurDAG->getMachineNode(SystemZ::RISBG, SDLoc(N), MVT::i64, Ops);
867 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
868}
869
Richard Sandiford7878b852013-07-18 10:06:15 +0000870SDNode *SystemZDAGToDAGISel::tryRxSBG(SDNode *N, unsigned Opcode) {
871 // Try treating each operand of N as the second operand of the RxSBG
Richard Sandiford885140c2013-07-16 11:55:57 +0000872 // and see which goes deepest.
Richard Sandiford51093212013-07-18 10:40:35 +0000873 RxSBGOperands RxSBG[] = {
874 RxSBGOperands(Opcode, N->getOperand(0)),
875 RxSBGOperands(Opcode, N->getOperand(1))
876 };
Richard Sandiford885140c2013-07-16 11:55:57 +0000877 unsigned Count[] = { 0, 0 };
878 for (unsigned I = 0; I < 2; ++I)
Richard Sandiford5cbac962013-07-18 09:45:08 +0000879 while (expandRxSBG(RxSBG[I]))
Richard Sandiford885140c2013-07-16 11:55:57 +0000880 Count[I] += 1;
881
882 // Do nothing if neither operand is suitable.
883 if (Count[0] == 0 && Count[1] == 0)
884 return 0;
885
886 // Pick the deepest second operand.
887 unsigned I = Count[0] > Count[1] ? 0 : 1;
888 SDValue Op0 = N->getOperand(I ^ 1);
889
890 // Prefer IC for character insertions from memory.
Richard Sandiford7878b852013-07-18 10:06:15 +0000891 if (Opcode == SystemZ::ROSBG && (RxSBG[I].Mask & 0xff) == 0)
Richard Sandiford885140c2013-07-16 11:55:57 +0000892 if (LoadSDNode *Load = dyn_cast<LoadSDNode>(Op0.getNode()))
893 if (Load->getMemoryVT() == MVT::i8)
894 return 0;
895
896 // See whether we can avoid an AND in the first operand by converting
897 // ROSBG to RISBG.
Richard Sandiford7878b852013-07-18 10:06:15 +0000898 if (Opcode == SystemZ::ROSBG && detectOrAndInsertion(Op0, RxSBG[I].Mask))
Richard Sandiford885140c2013-07-16 11:55:57 +0000899 Opcode = SystemZ::RISBG;
900
901 EVT VT = N->getValueType(0);
902 SDValue Ops[5] = {
903 convertTo(SDLoc(N), MVT::i64, Op0),
Richard Sandiford5cbac962013-07-18 09:45:08 +0000904 convertTo(SDLoc(N), MVT::i64, RxSBG[I].Input),
905 CurDAG->getTargetConstant(RxSBG[I].Start, MVT::i32),
906 CurDAG->getTargetConstant(RxSBG[I].End, MVT::i32),
907 CurDAG->getTargetConstant(RxSBG[I].Rotate, MVT::i32)
Richard Sandiford885140c2013-07-16 11:55:57 +0000908 };
909 N = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i64, Ops);
910 return convertTo(SDLoc(N), VT, SDValue(N, 0)).getNode();
911}
912
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000913SDNode *SystemZDAGToDAGISel::splitLargeImmediate(unsigned Opcode, SDNode *Node,
914 SDValue Op0, uint64_t UpperVal,
915 uint64_t LowerVal) {
916 EVT VT = Node->getValueType(0);
Andrew Trickef9de2a2013-05-25 02:42:55 +0000917 SDLoc DL(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000918 SDValue Upper = CurDAG->getConstant(UpperVal, VT);
919 if (Op0.getNode())
920 Upper = CurDAG->getNode(Opcode, DL, VT, Op0, Upper);
921 Upper = SDValue(Select(Upper.getNode()), 0);
922
923 SDValue Lower = CurDAG->getConstant(LowerVal, VT);
924 SDValue Or = CurDAG->getNode(Opcode, DL, VT, Upper, Lower);
925 return Or.getNode();
926}
927
Richard Sandiford178273a2013-09-05 10:36:45 +0000928// Return true if Load and Store:
929// - are loads and stores of the same size;
930// - do not partially overlap; and
931// - can be decomposed into what are logically individual character accesses
932// without changing the semantics.
933static bool canUseBlockOperation(StoreSDNode *Store, LoadSDNode *Load,
934 AliasAnalysis *AA) {
935 // Check that the two memory operands have the same size.
936 if (Load->getMemoryVT() != Store->getMemoryVT())
Richard Sandiford97846492013-07-09 09:46:39 +0000937 return false;
938
Richard Sandiford178273a2013-09-05 10:36:45 +0000939 // Volatility stops an access from being decomposed.
940 if (Load->isVolatile() || Store->isVolatile())
941 return false;
Richard Sandiford97846492013-07-09 09:46:39 +0000942
943 // There's no chance of overlap if the load is invariant.
944 if (Load->isInvariant())
945 return true;
946
947 // If both operands are aligned, they must be equal or not overlap.
Richard Sandiford178273a2013-09-05 10:36:45 +0000948 uint64_t Size = Load->getMemoryVT().getStoreSize();
Richard Sandiford97846492013-07-09 09:46:39 +0000949 if (Load->getAlignment() >= Size && Store->getAlignment() >= Size)
950 return true;
951
952 // Otherwise we need to check whether there's an alias.
953 const Value *V1 = Load->getSrcValue();
954 const Value *V2 = Store->getSrcValue();
955 if (!V1 || !V2)
956 return false;
957
958 int64_t End1 = Load->getSrcValueOffset() + Size;
959 int64_t End2 = Store->getSrcValueOffset() + Size;
960 return !AA->alias(AliasAnalysis::Location(V1, End1, Load->getTBAAInfo()),
961 AliasAnalysis::Location(V2, End2, Store->getTBAAInfo()));
962}
963
Richard Sandiford178273a2013-09-05 10:36:45 +0000964bool SystemZDAGToDAGISel::storeLoadCanUseMVC(SDNode *N) const {
965 StoreSDNode *Store = cast<StoreSDNode>(N);
966 LoadSDNode *Load = cast<LoadSDNode>(Store->getValue());
967
968 // Prefer not to use MVC if either address can use ... RELATIVE LONG
969 // instructions.
970 uint64_t Size = Load->getMemoryVT().getStoreSize();
971 if (Size > 1 && Size <= 8) {
972 // Prefer LHRL, LRL and LGRL.
973 if (Load->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
974 return false;
975 // Prefer STHRL, STRL and STGRL.
976 if (Store->getBasePtr().getOpcode() == SystemZISD::PCREL_WRAPPER)
977 return false;
978 }
979
980 return canUseBlockOperation(Store, Load, AA);
981}
982
983bool SystemZDAGToDAGISel::storeLoadCanUseBlockBinary(SDNode *N,
984 unsigned I) const {
985 StoreSDNode *StoreA = cast<StoreSDNode>(N);
986 LoadSDNode *LoadA = cast<LoadSDNode>(StoreA->getValue().getOperand(1 - I));
987 LoadSDNode *LoadB = cast<LoadSDNode>(StoreA->getValue().getOperand(I));
988 if (LoadA->isVolatile() ||
989 LoadA->getMemoryVT() != StoreA->getMemoryVT() ||
990 LoadA->getBasePtr() != StoreA->getBasePtr())
991 return false;
992 return canUseBlockOperation(StoreA, LoadB, AA);
993}
994
Ulrich Weigand5f613df2013-05-06 16:15:19 +0000995SDNode *SystemZDAGToDAGISel::Select(SDNode *Node) {
996 // Dump information about the Node being selected
997 DEBUG(errs() << "Selecting: "; Node->dump(CurDAG); errs() << "\n");
998
999 // If we have a custom node, we already have selected!
1000 if (Node->isMachineOpcode()) {
1001 DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
1002 return 0;
1003 }
1004
1005 unsigned Opcode = Node->getOpcode();
Richard Sandiford84f54a32013-07-11 08:59:12 +00001006 SDNode *ResNode = 0;
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001007 switch (Opcode) {
1008 case ISD::OR:
Richard Sandiford885140c2013-07-16 11:55:57 +00001009 if (Node->getOperand(1).getOpcode() != ISD::Constant)
Richard Sandiford7878b852013-07-18 10:06:15 +00001010 ResNode = tryRxSBG(Node, SystemZ::ROSBG);
1011 goto or_xor;
1012
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001013 case ISD::XOR:
Richard Sandiford7878b852013-07-18 10:06:15 +00001014 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1015 ResNode = tryRxSBG(Node, SystemZ::RXSBG);
1016 // Fall through.
1017 or_xor:
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001018 // If this is a 64-bit operation in which both 32-bit halves are nonzero,
1019 // split the operation into two.
Richard Sandiford885140c2013-07-16 11:55:57 +00001020 if (!ResNode && Node->getValueType(0) == MVT::i64)
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001021 if (ConstantSDNode *Op1 = dyn_cast<ConstantSDNode>(Node->getOperand(1))) {
1022 uint64_t Val = Op1->getZExtValue();
1023 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val))
1024 Node = splitLargeImmediate(Opcode, Node, Node->getOperand(0),
1025 Val - uint32_t(Val), uint32_t(Val));
1026 }
1027 break;
1028
Richard Sandiford84f54a32013-07-11 08:59:12 +00001029 case ISD::AND:
Richard Sandiford51093212013-07-18 10:40:35 +00001030 if (Node->getOperand(1).getOpcode() != ISD::Constant)
1031 ResNode = tryRxSBG(Node, SystemZ::RNSBG);
1032 // Fall through.
Richard Sandiford82ec87d2013-07-16 11:02:24 +00001033 case ISD::ROTL:
1034 case ISD::SHL:
1035 case ISD::SRL:
Richard Sandiford7878b852013-07-18 10:06:15 +00001036 if (!ResNode)
1037 ResNode = tryRISBGZero(Node);
Richard Sandiford84f54a32013-07-11 08:59:12 +00001038 break;
1039
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001040 case ISD::Constant:
1041 // If this is a 64-bit constant that is out of the range of LLILF,
1042 // LLIHF and LGFI, split it into two 32-bit pieces.
1043 if (Node->getValueType(0) == MVT::i64) {
1044 uint64_t Val = cast<ConstantSDNode>(Node)->getZExtValue();
1045 if (!SystemZ::isImmLF(Val) && !SystemZ::isImmHF(Val) && !isInt<32>(Val))
1046 Node = splitLargeImmediate(ISD::OR, Node, SDValue(),
1047 Val - uint32_t(Val), uint32_t(Val));
1048 }
1049 break;
1050
1051 case ISD::ATOMIC_LOAD_SUB:
1052 // Try to convert subtractions of constants to additions.
1053 if (ConstantSDNode *Op2 = dyn_cast<ConstantSDNode>(Node->getOperand(2))) {
1054 uint64_t Value = -Op2->getZExtValue();
1055 EVT VT = Node->getValueType(0);
1056 if (VT == MVT::i32 || isInt<32>(Value)) {
1057 SDValue Ops[] = { Node->getOperand(0), Node->getOperand(1),
1058 CurDAG->getConstant(int32_t(Value), VT) };
1059 Node = CurDAG->MorphNodeTo(Node, ISD::ATOMIC_LOAD_ADD,
1060 Node->getVTList(), Ops, array_lengthof(Ops));
1061 }
1062 }
1063 break;
Richard Sandifordee834382013-07-31 12:38:08 +00001064
1065 case SystemZISD::SELECT_CCMASK: {
1066 SDValue Op0 = Node->getOperand(0);
1067 SDValue Op1 = Node->getOperand(1);
1068 // Prefer to put any load first, so that it can be matched as a
1069 // conditional load.
1070 if (Op1.getOpcode() == ISD::LOAD && Op0.getOpcode() != ISD::LOAD) {
1071 SDValue CCValid = Node->getOperand(2);
1072 SDValue CCMask = Node->getOperand(3);
1073 uint64_t ConstCCValid =
1074 cast<ConstantSDNode>(CCValid.getNode())->getZExtValue();
1075 uint64_t ConstCCMask =
1076 cast<ConstantSDNode>(CCMask.getNode())->getZExtValue();
1077 // Invert the condition.
1078 CCMask = CurDAG->getConstant(ConstCCValid ^ ConstCCMask,
1079 CCMask.getValueType());
1080 SDValue Op4 = Node->getOperand(4);
1081 Node = CurDAG->UpdateNodeOperands(Node, Op1, Op0, CCValid, CCMask, Op4);
1082 }
1083 break;
1084 }
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001085 }
1086
1087 // Select the default instruction
Richard Sandiford84f54a32013-07-11 08:59:12 +00001088 if (!ResNode)
1089 ResNode = SelectCode(Node);
Ulrich Weigand5f613df2013-05-06 16:15:19 +00001090
1091 DEBUG(errs() << "=> ";
1092 if (ResNode == NULL || ResNode == Node)
1093 Node->dump(CurDAG);
1094 else
1095 ResNode->dump(CurDAG);
1096 errs() << "\n";
1097 );
1098 return ResNode;
1099}
1100
1101bool SystemZDAGToDAGISel::
1102SelectInlineAsmMemoryOperand(const SDValue &Op,
1103 char ConstraintCode,
1104 std::vector<SDValue> &OutOps) {
1105 assert(ConstraintCode == 'm' && "Unexpected constraint code");
1106 // Accept addresses with short displacements, which are compatible
1107 // with Q, R, S and T. But keep the index operand for future expansion.
1108 SDValue Base, Disp, Index;
1109 if (!selectBDXAddr(SystemZAddressingMode::FormBD,
1110 SystemZAddressingMode::Disp12Only,
1111 Op, Base, Disp, Index))
1112 return true;
1113 OutOps.push_back(Base);
1114 OutOps.push_back(Disp);
1115 OutOps.push_back(Index);
1116 return false;
1117}