blob: bf0b469fb91bffb9816fe59bec1105dea507f17c [file] [log] [blame]
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Tobias Grosser2219d152016-08-03 05:28:09 +000010// This pass generates an entirely new schedule tree from the data dependences
Tobias Grosser234a4822015-08-15 09:34:33 +000011// and iteration domains. The new schedule tree is computed in two steps:
Tobias Grosser30aa24c2011-05-14 19:02:06 +000012//
Tobias Grosser234a4822015-08-15 09:34:33 +000013// 1) The isl scheduling optimizer is run
14//
15// The isl scheduling optimizer creates a new schedule tree that maximizes
16// parallelism and tileability and minimizes data-dependence distances. The
17// algorithm used is a modified version of the ``Pluto'' algorithm:
18//
19// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
20// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
21// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
22// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
23//
24// 2) A set of post-scheduling transformations is applied on the schedule tree.
25//
26// These optimizations include:
27//
28// - Tiling of the innermost tilable bands
29// - Prevectorization - The coice of a possible outer loop that is strip-mined
30// to the innermost level to enable inner-loop
31// vectorization.
32// - Some optimizations for spatial locality are also planned.
33//
34// For a detailed description of the schedule tree itself please see section 6
35// of:
36//
37// Polyhedral AST generation is more than scanning polyhedra
38// Tobias Grosser, Sven Verdoolaege, Albert Cohen
39// ACM Transations on Programming Languages and Systems (TOPLAS),
40// 37(4), July 2015
41// http://www.grosser.es/#pub-polyhedral-AST-generation
42//
43// This publication also contains a detailed discussion of the different options
44// for polyhedral loop unrolling, full/partial tile separation and other uses
45// of the schedule tree.
46//
Tobias Grosser30aa24c2011-05-14 19:02:06 +000047//===----------------------------------------------------------------------===//
48
Tobias Grosser967239c2011-10-23 20:59:44 +000049#include "polly/ScheduleOptimizer.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000050#include "polly/CodeGen/CodeGeneration.h"
51#include "polly/DependenceInfo.h"
52#include "polly/LinkAllPasses.h"
53#include "polly/Options.h"
54#include "polly/ScopInfo.h"
55#include "polly/Support/GICHelper.h"
Roman Gareev42402c92016-06-22 09:52:37 +000056#include "llvm/Analysis/TargetTransformInfo.h"
Tobias Grosserba0d0922015-05-09 09:13:42 +000057#include "llvm/Support/Debug.h"
Tobias Grosser2493e922011-12-07 07:42:57 +000058#include "isl/aff.h"
Tobias Grosserde68cc92011-06-30 20:01:02 +000059#include "isl/band.h"
Tobias Grosser8ad6bc32012-01-31 13:26:29 +000060#include "isl/constraint.h"
61#include "isl/map.h"
Tobias Grosser42152ff2012-01-30 19:38:47 +000062#include "isl/options.h"
Tobias Grosser97d87452015-05-30 06:46:59 +000063#include "isl/printer.h"
Tobias Grosser8ad6bc32012-01-31 13:26:29 +000064#include "isl/schedule.h"
Tobias Grosserbbb4cec2015-03-22 12:06:39 +000065#include "isl/schedule_node.h"
Tobias Grosser8ad6bc32012-01-31 13:26:29 +000066#include "isl/space.h"
Tobias Grossercd524dc2015-05-09 09:36:38 +000067#include "isl/union_map.h"
68#include "isl/union_set.h"
Tobias Grosser30aa24c2011-05-14 19:02:06 +000069
70using namespace llvm;
71using namespace polly;
72
Chandler Carruth95fef942014-04-22 03:30:19 +000073#define DEBUG_TYPE "polly-opt-isl"
74
Tobias Grossera26db472012-01-30 19:38:43 +000075static cl::opt<std::string>
Tobias Grosser483a90d2014-07-09 10:50:10 +000076 OptimizeDeps("polly-opt-optimize-only",
77 cl::desc("Only a certain kind of dependences (all/raw)"),
78 cl::Hidden, cl::init("all"), cl::ZeroOrMore,
79 cl::cat(PollyCategory));
Tobias Grosser1deda292012-02-14 14:02:48 +000080
81static cl::opt<std::string>
Tobias Grosser483a90d2014-07-09 10:50:10 +000082 SimplifyDeps("polly-opt-simplify-deps",
83 cl::desc("Dependences should be simplified (yes/no)"),
84 cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
85 cl::cat(PollyCategory));
Tobias Grossera26db472012-01-30 19:38:43 +000086
Tobias Grosser483a90d2014-07-09 10:50:10 +000087static cl::opt<int> MaxConstantTerm(
88 "polly-opt-max-constant-term",
89 cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
90 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
Tobias Grosser992e60c2012-02-20 08:41:15 +000091
Tobias Grosser483a90d2014-07-09 10:50:10 +000092static cl::opt<int> MaxCoefficient(
93 "polly-opt-max-coefficient",
94 cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
95 cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
96
97static cl::opt<std::string> FusionStrategy(
98 "polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
99 cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
Tobias Grosser92f54802012-02-20 08:41:47 +0000100
Tobias Grossere602a072013-05-07 07:30:56 +0000101static cl::opt<std::string>
Tobias Grosser483a90d2014-07-09 10:50:10 +0000102 MaximizeBandDepth("polly-opt-maximize-bands",
103 cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
104 cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
Tobias Grosserb3ad85b2012-01-30 19:38:50 +0000105
Michael Kruse315aa322016-05-02 11:35:27 +0000106static cl::opt<std::string> OuterCoincidence(
107 "polly-opt-outer-coincidence",
108 cl::desc("Try to construct schedules where the outer member of each band "
109 "satisfies the coincidence constraints (yes/no)"),
110 cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
111
Tobias Grosser07c1c2f2015-08-19 08:46:11 +0000112static cl::opt<int> PrevectorWidth(
113 "polly-prevect-width",
114 cl::desc(
115 "The number of loop iterations to strip-mine for pre-vectorization"),
116 cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
117
Tobias Grosser04832712015-08-20 13:45:02 +0000118static cl::opt<bool> FirstLevelTiling("polly-tiling",
119 cl::desc("Enable loop tiling"),
120 cl::init(true), cl::ZeroOrMore,
121 cl::cat(PollyCategory));
122
Roman Gareev42402c92016-06-22 09:52:37 +0000123static cl::opt<int> LatencyVectorFma(
124 "polly-target-latency-vector-fma",
125 cl::desc("The minimal number of cycles between issuing two "
126 "dependent consecutive vector fused multiply-add "
127 "instructions."),
128 cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
129
Tobias Grosser0791d5f2016-12-23 07:33:39 +0000130static cl::opt<int> ThroughputVectorFma(
131 "polly-target-throughput-vector-fma",
Roman Gareev42402c92016-06-22 09:52:37 +0000132 cl::desc("A throughput of the processor floating-point arithmetic units "
133 "expressed in the number of vector fused multiply-add "
134 "instructions per clock cycle."),
135 cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
136
Roman Gareev1c2927b2016-12-25 16:32:28 +0000137// This option, along with --polly-target-2nd-cache-level-associativity,
138// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
139// represent the parameters of the target cache, which do not have typical
140// values that can be used by default. However, to apply the pattern matching
141// optimizations, we use the values of the parameters of Intel Core i7-3820
142// SandyBridge in case the parameters are not specified. Such an approach helps
143// also to attain the high-performance on IBM POWER System S822 and IBM Power
144// 730 Express server.
145static cl::opt<int> FirstCacheLevelAssociativity(
146 "polly-target-1st-cache-level-associativity",
147 cl::desc("The associativity of the first cache level."), cl::Hidden,
148 cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
Roman Gareev3a18a932016-07-25 09:42:53 +0000149
Roman Gareev1c2927b2016-12-25 16:32:28 +0000150static cl::opt<int> SecondCacheLevelAssociativity(
151 "polly-target-2nd-cache-level-associativity",
152 cl::desc("The associativity of the second cache level."), cl::Hidden,
153 cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
154
155static cl::opt<int> FirstCacheLevelSize(
156 "polly-target-1st-cache-level-size",
157 cl::desc("The size of the first cache level specified in bytes."),
158 cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
159
160static cl::opt<int> SecondCacheLevelSize(
161 "polly-target-2nd-cache-level-size",
162 cl::desc("The size of the second level specified in bytes."), cl::Hidden,
163 cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
Roman Gareev3a18a932016-07-25 09:42:53 +0000164
Tobias Grosser67e94fb2017-01-14 07:14:54 +0000165static cl::opt<int> VectorRegisterBitwidth(
166 "polly-target-vector-register-bitwidth",
167 cl::desc("The size in bits of a vector register (if not set, this "
168 "information is taken from LLVM's target information."),
169 cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
170
Tobias Grosser04832712015-08-20 13:45:02 +0000171static cl::opt<int> FirstLevelDefaultTileSize(
Tobias Grosser483a90d2014-07-09 10:50:10 +0000172 "polly-default-tile-size",
173 cl::desc("The default tile size (if not enough were provided by"
174 " --polly-tile-sizes)"),
175 cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
Johannes Doerfertc3958b22014-05-28 17:21:02 +0000176
Tobias Grosser21a059a2017-01-16 14:08:10 +0000177static cl::list<int>
178 FirstLevelTileSizes("polly-tile-sizes",
179 cl::desc("A tile size for each loop dimension, filled "
Tobias Grosser04832712015-08-20 13:45:02 +0000180 "with --polly-default-tile-size"),
Tobias Grosser21a059a2017-01-16 14:08:10 +0000181 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
182 cl::cat(PollyCategory));
Tobias Grosser04832712015-08-20 13:45:02 +0000183
184static cl::opt<bool>
185 SecondLevelTiling("polly-2nd-level-tiling",
186 cl::desc("Enable a 2nd level loop of loop tiling"),
187 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
188
189static cl::opt<int> SecondLevelDefaultTileSize(
190 "polly-2nd-level-default-tile-size",
191 cl::desc("The default 2nd-level tile size (if not enough were provided by"
192 " --polly-2nd-level-tile-sizes)"),
193 cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
194
195static cl::list<int>
196 SecondLevelTileSizes("polly-2nd-level-tile-sizes",
197 cl::desc("A tile size for each loop dimension, filled "
198 "with --polly-default-tile-size"),
199 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
200 cl::cat(PollyCategory));
201
Tobias Grosser42e24892015-08-20 13:45:05 +0000202static cl::opt<bool> RegisterTiling("polly-register-tiling",
203 cl::desc("Enable register tiling"),
204 cl::init(false), cl::ZeroOrMore,
205 cl::cat(PollyCategory));
206
207static cl::opt<int> RegisterDefaultTileSize(
208 "polly-register-tiling-default-tile-size",
209 cl::desc("The default register tile size (if not enough were provided by"
210 " --polly-register-tile-sizes)"),
211 cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
212
Roman Gareevbe5299a2016-12-21 12:51:12 +0000213static cl::opt<int> PollyPatternMatchingNcQuotient(
214 "polly-pattern-matching-nc-quotient",
215 cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
216 "macro-kernel, by Nr, the parameter of the micro-kernel"),
217 cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
218
Tobias Grosser42e24892015-08-20 13:45:05 +0000219static cl::list<int>
220 RegisterTileSizes("polly-register-tile-sizes",
221 cl::desc("A tile size for each loop dimension, filled "
222 "with --polly-register-tile-size"),
223 cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
224 cl::cat(PollyCategory));
225
Roman Gareev9c3eb592016-05-28 16:17:58 +0000226static cl::opt<bool>
227 PMBasedOpts("polly-pattern-matching-based-opts",
228 cl::desc("Perform optimizations based on pattern matching"),
229 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
230
Roman Gareev5f99f862016-08-21 11:20:39 +0000231static cl::opt<bool> OptimizedScops(
232 "polly-optimized-scops",
233 cl::desc("Polly - Dump polyhedral description of Scops optimized with "
234 "the isl scheduling optimizer and the set of post-scheduling "
235 "transformations is applied on the schedule tree"),
236 cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
237
Tobias Grosserc80d6972016-09-02 06:33:33 +0000238/// Create an isl_union_set, which describes the isolate option based on
239/// IsoalteDomain.
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000240///
Roman Gareev99890882017-02-09 07:10:01 +0000241/// @param IsolateDomain An isl_set whose @p OutDimsNum last dimensions should
242/// belong to the current band node.
243/// @param OutDimsNum A number of dimensions that should belong to
244/// the current band node.
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000245static __isl_give isl_union_set *
Roman Gareev99890882017-02-09 07:10:01 +0000246getIsolateOptions(__isl_take isl_set *IsolateDomain, unsigned OutDimsNum) {
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000247 auto Dims = isl_set_dim(IsolateDomain, isl_dim_set);
Roman Gareev99890882017-02-09 07:10:01 +0000248 assert(OutDimsNum <= Dims &&
249 "The isl_set IsolateDomain is used to describe the range of schedule "
250 "dimensions values, which should be isolated. Consequently, the "
251 "number of its dimensions should be greater than or equal to the "
252 "number of the schedule dimensions.");
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000253 auto *IsolateRelation = isl_map_from_domain(IsolateDomain);
Roman Gareev99890882017-02-09 07:10:01 +0000254 IsolateRelation =
255 isl_map_move_dims(IsolateRelation, isl_dim_out, 0, isl_dim_in,
256 Dims - OutDimsNum, OutDimsNum);
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000257 auto *IsolateOption = isl_map_wrap(IsolateRelation);
Tobias Grosser8dd653d2016-06-22 16:22:00 +0000258 auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", nullptr);
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000259 return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id));
260}
261
Tobias Grosserc80d6972016-09-02 06:33:33 +0000262/// Create an isl_union_set, which describes the atomic option for the dimension
263/// of the current node.
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000264///
265/// It may help to reduce the size of generated code.
266///
267/// @param Ctx An isl_ctx, which is used to create the isl_union_set.
Roman Gareevafcf0262017-02-11 07:14:37 +0000268static __isl_give isl_union_set *getAtomicOptions(isl_ctx *Ctx) {
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000269 auto *Space = isl_space_set_alloc(Ctx, 0, 1);
270 auto *AtomicOption = isl_set_universe(Space);
Tobias Grosser8dd653d2016-06-22 16:22:00 +0000271 auto *Id = isl_id_alloc(Ctx, "atomic", nullptr);
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000272 return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id));
273}
274
Roman Gareev99890882017-02-09 07:10:01 +0000275/// Create an isl_union_set, which describes the option of the form
276/// [isolate[] -> unroll[x]].
277///
278/// @param Ctx An isl_ctx, which is used to create the isl_union_set.
279static __isl_give isl_union_set *getUnrollIsolatedSetOptions(isl_ctx *Ctx) {
280 auto *Space = isl_space_alloc(Ctx, 0, 0, 1);
281 auto *UnrollIsolatedSetOption = isl_map_universe(Space);
282 auto *DimInId = isl_id_alloc(Ctx, "isolate", nullptr);
283 auto *DimOutId = isl_id_alloc(Ctx, "unroll", nullptr);
284 UnrollIsolatedSetOption =
285 isl_map_set_tuple_id(UnrollIsolatedSetOption, isl_dim_in, DimInId);
286 UnrollIsolatedSetOption =
287 isl_map_set_tuple_id(UnrollIsolatedSetOption, isl_dim_out, DimOutId);
288 return isl_union_set_from_set(isl_map_wrap(UnrollIsolatedSetOption));
289}
290
Tobias Grosserc80d6972016-09-02 06:33:33 +0000291/// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000292///
293/// @param Set A set, which should be modified.
294/// @param VectorWidth A parameter, which determines the constraint.
295static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set,
296 int VectorWidth) {
297 auto Dims = isl_set_dim(Set, isl_dim_set);
298 auto Space = isl_set_get_space(Set);
299 auto *LocalSpace = isl_local_space_from_space(Space);
300 auto *ExtConstr =
301 isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace));
302 ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0);
303 ExtConstr =
304 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1);
305 Set = isl_set_add_constraint(Set, ExtConstr);
306 ExtConstr = isl_constraint_alloc_inequality(LocalSpace);
307 ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1);
308 ExtConstr =
309 isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1);
310 return isl_set_add_constraint(Set, ExtConstr);
311}
312
Tobias Grosserc80d6972016-09-02 06:33:33 +0000313/// Build the desired set of partial tile prefixes.
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000314///
315/// We build a set of partial tile prefixes, which are prefixes of the vector
316/// loop that have exactly VectorWidth iterations.
317///
318/// 1. Get all prefixes of the vector loop.
319/// 2. Extend it to a set, which has exactly VectorWidth iterations for
320/// any prefix from the set that was built on the previous step.
321/// 3. Subtract loop domain from it, project out the vector loop dimension and
Roman Gareev76614d32016-05-31 11:22:21 +0000322/// get a set of prefixes, which don't have exactly VectorWidth iterations.
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000323/// 4. Subtract it from all prefixes of the vector loop and get the desired
324/// set.
325///
326/// @param ScheduleRange A range of a map, which describes a prefix schedule
327/// relation.
328static __isl_give isl_set *
329getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) {
330 auto Dims = isl_set_dim(ScheduleRange, isl_dim_set);
331 auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange),
332 isl_dim_set, Dims - 1, 1);
333 auto *ExtentPrefixes =
334 isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1);
335 ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth);
336 auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange);
337 BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1);
338 return isl_set_subtract(LoopPrefixes, BadPrefixes);
339}
340
341__isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles(
342 __isl_take isl_schedule_node *Node, int VectorWidth) {
343 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
344 Node = isl_schedule_node_child(Node, 0);
345 Node = isl_schedule_node_child(Node, 0);
346 auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node);
347 auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap);
348 auto *ScheduleRange = isl_map_range(ScheduleRelation);
349 auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
350 auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain));
Roman Gareev99890882017-02-09 07:10:01 +0000351 auto *IsolateOption = getIsolateOptions(IsolateDomain, 1);
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000352 Node = isl_schedule_node_parent(Node);
353 Node = isl_schedule_node_parent(Node);
354 auto *Options = isl_union_set_union(IsolateOption, AtomicOption);
355 Node = isl_schedule_node_band_set_ast_build_options(Node, Options);
356 return Node;
357}
358
Tobias Grosserb241d922015-07-28 18:03:36 +0000359__isl_give isl_schedule_node *
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000360ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node,
361 unsigned DimToVectorize,
362 int VectorWidth) {
Tobias Grosserb241d922015-07-28 18:03:36 +0000363 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
Tobias Grosserc6699b72011-06-30 20:29:13 +0000364
Tobias Grosserb241d922015-07-28 18:03:36 +0000365 auto Space = isl_schedule_node_band_get_space(Node);
366 auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set);
367 isl_space_free(Space);
368 assert(DimToVectorize < ScheduleDimensions);
Tobias Grosserf5338802011-10-06 00:03:35 +0000369
Tobias Grosserb241d922015-07-28 18:03:36 +0000370 if (DimToVectorize > 0) {
371 Node = isl_schedule_node_band_split(Node, DimToVectorize);
372 Node = isl_schedule_node_child(Node, 0);
373 }
374 if (DimToVectorize < ScheduleDimensions - 1)
375 Node = isl_schedule_node_band_split(Node, 1);
376 Space = isl_schedule_node_band_get_space(Node);
377 auto Sizes = isl_multi_val_zero(Space);
378 auto Ctx = isl_schedule_node_get_ctx(Node);
379 Sizes =
380 isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth));
381 Node = isl_schedule_node_band_tile(Node, Sizes);
Tobias Grosserca7f5bb2015-10-20 09:12:21 +0000382 Node = isolateFullPartialTiles(Node, VectorWidth);
Tobias Grosserb241d922015-07-28 18:03:36 +0000383 Node = isl_schedule_node_child(Node, 0);
Tobias Grosser42e24892015-08-20 13:45:05 +0000384 // Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
385 // we will have troubles to match it in the backend.
386 Node = isl_schedule_node_band_set_ast_build_options(
Tobias Grosserfc490a92015-08-20 19:08:16 +0000387 Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }"));
388 Node = isl_schedule_node_band_sink(Node);
Tobias Grosserb241d922015-07-28 18:03:36 +0000389 Node = isl_schedule_node_child(Node, 0);
Roman Gareev11001e12016-02-23 09:00:13 +0000390 if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf)
391 Node = isl_schedule_node_parent(Node);
392 isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr);
393 Node = isl_schedule_node_insert_mark(Node, LoopMarker);
Tobias Grosserb241d922015-07-28 18:03:36 +0000394 return Node;
Tobias Grosserc6699b72011-06-30 20:29:13 +0000395}
396
Tobias Grosserd891b542015-08-20 12:16:23 +0000397__isl_give isl_schedule_node *
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000398ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node,
399 const char *Identifier, ArrayRef<int> TileSizes,
400 int DefaultTileSize) {
Tobias Grosser9bdea572015-08-20 12:22:37 +0000401 auto Ctx = isl_schedule_node_get_ctx(Node);
402 auto Space = isl_schedule_node_band_get_space(Node);
403 auto Dims = isl_space_dim(Space, isl_dim_set);
404 auto Sizes = isl_multi_val_zero(Space);
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000405 std::string IdentifierString(Identifier);
Tobias Grosser9bdea572015-08-20 12:22:37 +0000406 for (unsigned i = 0; i < Dims; i++) {
407 auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
408 Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
409 }
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000410 auto TileLoopMarkerStr = IdentifierString + " - Tiles";
411 isl_id *TileLoopMarker =
412 isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr);
413 Node = isl_schedule_node_insert_mark(Node, TileLoopMarker);
414 Node = isl_schedule_node_child(Node, 0);
Tobias Grosser9bdea572015-08-20 12:22:37 +0000415 Node = isl_schedule_node_band_tile(Node, Sizes);
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000416 Node = isl_schedule_node_child(Node, 0);
417 auto PointLoopMarkerStr = IdentifierString + " - Points";
418 isl_id *PointLoopMarker =
419 isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr);
420 Node = isl_schedule_node_insert_mark(Node, PointLoopMarker);
421 Node = isl_schedule_node_child(Node, 0);
422 return Node;
Tobias Grosser9bdea572015-08-20 12:22:37 +0000423}
424
Roman Gareevb17b9a82016-06-12 17:20:05 +0000425__isl_give isl_schedule_node *
426ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node,
427 llvm::ArrayRef<int> TileSizes,
428 int DefaultTileSize) {
429 auto *Ctx = isl_schedule_node_get_ctx(Node);
430 Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
431 Node = isl_schedule_node_band_set_ast_build_options(
432 Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}"));
433 return Node;
434}
435
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000436bool ScheduleTreeOptimizer::isTileableBandNode(
Tobias Grosser862b9b52015-08-20 12:32:45 +0000437 __isl_keep isl_schedule_node *Node) {
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000438 if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
Tobias Grosser862b9b52015-08-20 12:32:45 +0000439 return false;
Tobias Grosserde68cc92011-06-30 20:01:02 +0000440
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000441 if (isl_schedule_node_n_children(Node) != 1)
Tobias Grosser862b9b52015-08-20 12:32:45 +0000442 return false;
Tobias Grosserde68cc92011-06-30 20:01:02 +0000443
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000444 if (!isl_schedule_node_band_get_permutable(Node))
Tobias Grosser862b9b52015-08-20 12:32:45 +0000445 return false;
Tobias Grosser44f19ac2011-07-05 22:15:53 +0000446
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000447 auto Space = isl_schedule_node_band_get_space(Node);
448 auto Dims = isl_space_dim(Space, isl_dim_set);
Tobias Grosser9bdea572015-08-20 12:22:37 +0000449 isl_space_free(Space);
Tobias Grosserde68cc92011-06-30 20:01:02 +0000450
Tobias Grosser9bdea572015-08-20 12:22:37 +0000451 if (Dims <= 1)
Tobias Grosser862b9b52015-08-20 12:32:45 +0000452 return false;
Tobias Grosserde68cc92011-06-30 20:01:02 +0000453
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000454 auto Child = isl_schedule_node_get_child(Node, 0);
455 auto Type = isl_schedule_node_get_type(Child);
456 isl_schedule_node_free(Child);
457
Tobias Grosser9bdea572015-08-20 12:22:37 +0000458 if (Type != isl_schedule_node_leaf)
Tobias Grosser862b9b52015-08-20 12:32:45 +0000459 return false;
460
461 return true;
462}
463
464__isl_give isl_schedule_node *
Roman Gareev9c3eb592016-05-28 16:17:58 +0000465ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node,
466 void *User) {
Tobias Grosser04832712015-08-20 13:45:02 +0000467 if (FirstLevelTiling)
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000468 Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
469 FirstLevelDefaultTileSize);
Tobias Grosser04832712015-08-20 13:45:02 +0000470
471 if (SecondLevelTiling)
Tobias Grosser1ac884d2015-08-23 09:11:00 +0000472 Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
473 SecondLevelDefaultTileSize);
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000474
Roman Gareevb17b9a82016-06-12 17:20:05 +0000475 if (RegisterTiling)
476 Node =
477 applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
Tobias Grosser42e24892015-08-20 13:45:05 +0000478
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000479 if (PollyVectorizerChoice == VECTORIZER_NONE)
Tobias Grosserf10f4632015-08-19 08:03:37 +0000480 return Node;
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000481
Tobias Grosser862b9b52015-08-20 12:32:45 +0000482 auto Space = isl_schedule_node_band_get_space(Node);
483 auto Dims = isl_space_dim(Space, isl_dim_set);
484 isl_space_free(Space);
485
Tobias Grosserb241d922015-07-28 18:03:36 +0000486 for (int i = Dims - 1; i >= 0; i--)
Tobias Grosserf10f4632015-08-19 08:03:37 +0000487 if (isl_schedule_node_band_member_get_coincident(Node, i)) {
Tobias Grosserfa57e9b2015-08-24 06:01:47 +0000488 Node = prevectSchedBand(Node, i, PrevectorWidth);
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000489 break;
490 }
Tobias Grosserbbb4cec2015-03-22 12:06:39 +0000491
Tobias Grosserf10f4632015-08-19 08:03:37 +0000492 return Node;
Tobias Grosserde68cc92011-06-30 20:01:02 +0000493}
494
Roman Gareev98075fe2017-02-02 14:23:14 +0000495/// Get the position of a dimension with a non-zero coefficient.
Roman Gareev9c3eb592016-05-28 16:17:58 +0000496///
Roman Gareev98075fe2017-02-02 14:23:14 +0000497/// Check that isl constraint @p Constraint has only one non-zero
498/// coefficient for dimensions that have type @p DimType. If this is true,
499/// return the position of the dimension corresponding to the non-zero
500/// coefficient and negative value, otherwise.
501///
502/// @param Constraint The isl constraint to be checked.
503/// @param DimType The type of the dimensions.
504/// @return The position of the dimension in case the isl
505/// constraint satisfies the requirements, a negative
506/// value, otherwise.
507static int getMatMulConstraintDim(__isl_keep isl_constraint *Constraint,
508 enum isl_dim_type DimType) {
509 int DimPos = -1;
510 auto *LocalSpace = isl_constraint_get_local_space(Constraint);
511 int LocalSpaceDimNum = isl_local_space_dim(LocalSpace, DimType);
512 for (int i = 0; i < LocalSpaceDimNum; i++) {
513 auto *Val = isl_constraint_get_coefficient_val(Constraint, DimType, i);
514 if (isl_val_is_zero(Val)) {
515 isl_val_free(Val);
516 continue;
517 }
518 if (DimPos >= 0 || (DimType == isl_dim_out && !isl_val_is_one(Val)) ||
519 (DimType == isl_dim_in && !isl_val_is_negone(Val))) {
520 isl_val_free(Val);
521 isl_local_space_free(LocalSpace);
522 return -1;
523 }
524 DimPos = i;
525 isl_val_free(Val);
526 }
527 isl_local_space_free(LocalSpace);
528 return DimPos;
529}
530
531/// Check the form of the isl constraint.
532///
533/// Check that the @p DimInPos input dimension of the isl constraint
534/// @p Constraint has a coefficient that is equal to negative one, the @p
535/// DimOutPos has a coefficient that is equal to one and others
536/// have coefficients equal to zero.
537///
538/// @param Constraint The isl constraint to be checked.
539/// @param DimInPos The input dimension of the isl constraint.
540/// @param DimOutPos The output dimension of the isl constraint.
541/// @return isl_stat_ok in case the isl constraint satisfies
542/// the requirements, isl_stat_error otherwise.
543static isl_stat isMatMulOperandConstraint(__isl_keep isl_constraint *Constraint,
544 int &DimInPos, int &DimOutPos) {
545 auto *Val = isl_constraint_get_constant_val(Constraint);
546 if (!isl_constraint_is_equality(Constraint) || !isl_val_is_zero(Val)) {
547 isl_val_free(Val);
548 return isl_stat_error;
549 }
550 isl_val_free(Val);
551 DimInPos = getMatMulConstraintDim(Constraint, isl_dim_in);
552 if (DimInPos < 0)
553 return isl_stat_error;
554 DimOutPos = getMatMulConstraintDim(Constraint, isl_dim_out);
555 if (DimOutPos < 0)
556 return isl_stat_error;
557 return isl_stat_ok;
558}
559
560/// Check that the access relation corresponds to a non-constant operand
561/// of the matrix multiplication.
562///
563/// Access relations that correspond to non-constant operands of the matrix
564/// multiplication depend only on two input dimensions and have two output
565/// dimensions. The function checks that the isl basic map @p bmap satisfies
566/// the requirements. The two input dimensions can be specified via @p user
567/// array.
568///
569/// @param bmap The isl basic map to be checked.
570/// @param user The input dimensions of @p bmap.
571/// @return isl_stat_ok in case isl basic map satisfies the requirements,
572/// isl_stat_error otherwise.
573static isl_stat isMatMulOperandBasicMap(__isl_take isl_basic_map *bmap,
574 void *user) {
575 auto *Constraints = isl_basic_map_get_constraint_list(bmap);
576 isl_basic_map_free(bmap);
577 if (isl_constraint_list_n_constraint(Constraints) != 2) {
578 isl_constraint_list_free(Constraints);
579 return isl_stat_error;
580 }
581 int InPosPair[] = {-1, -1};
582 auto DimInPos = user ? static_cast<int *>(user) : InPosPair;
583 for (int i = 0; i < 2; i++) {
584 auto *Constraint = isl_constraint_list_get_constraint(Constraints, i);
585 int InPos, OutPos;
586 if (isMatMulOperandConstraint(Constraint, InPos, OutPos) ==
587 isl_stat_error ||
588 OutPos > 1 || (DimInPos[OutPos] >= 0 && DimInPos[OutPos] != InPos)) {
589 isl_constraint_free(Constraint);
590 isl_constraint_list_free(Constraints);
591 return isl_stat_error;
592 }
593 DimInPos[OutPos] = InPos;
594 isl_constraint_free(Constraint);
595 }
596 isl_constraint_list_free(Constraints);
597 return isl_stat_ok;
598}
599
600/// Permute the two dimensions of the isl map.
601///
602/// Permute @p DstPos and @p SrcPos dimensions of the isl map @p Map that
603/// have type @p DimType.
604///
605/// @param Map The isl map to be modified.
606/// @param DimType The type of the dimensions.
607/// @param DstPos The first dimension.
608/// @param SrcPos The second dimension.
609/// @return The modified map.
610__isl_give isl_map *permuteDimensions(__isl_take isl_map *Map,
611 enum isl_dim_type DimType,
612 unsigned DstPos, unsigned SrcPos) {
613 assert(DstPos < isl_map_dim(Map, DimType) &&
614 SrcPos < isl_map_dim(Map, DimType));
615 if (DstPos == SrcPos)
616 return Map;
617 isl_id *DimId = nullptr;
618 if (isl_map_has_tuple_id(Map, DimType))
619 DimId = isl_map_get_tuple_id(Map, DimType);
620 auto FreeDim = DimType == isl_dim_in ? isl_dim_out : isl_dim_in;
621 isl_id *FreeDimId = nullptr;
622 if (isl_map_has_tuple_id(Map, FreeDim))
623 FreeDimId = isl_map_get_tuple_id(Map, FreeDim);
624 auto MaxDim = std::max(DstPos, SrcPos);
625 auto MinDim = std::min(DstPos, SrcPos);
626 Map = isl_map_move_dims(Map, FreeDim, 0, DimType, MaxDim, 1);
627 Map = isl_map_move_dims(Map, FreeDim, 0, DimType, MinDim, 1);
628 Map = isl_map_move_dims(Map, DimType, MinDim, FreeDim, 1, 1);
629 Map = isl_map_move_dims(Map, DimType, MaxDim, FreeDim, 0, 1);
630 if (DimId)
631 Map = isl_map_set_tuple_id(Map, DimType, DimId);
632 if (FreeDimId)
633 Map = isl_map_set_tuple_id(Map, FreeDim, FreeDimId);
634 return Map;
635}
636
637/// Check the form of the access relation.
638///
639/// Check that the access relation @p AccMap has the form M[i][j], where i
640/// is a @p FirstPos and j is a @p SecondPos.
641///
642/// @param AccMap The access relation to be checked.
643/// @param FirstPos The index of the input dimension that is mapped to
644/// the first output dimension.
645/// @param SecondPos The index of the input dimension that is mapped to the
646/// second output dimension.
647/// @return True in case @p AccMap has the expected form and false,
648/// otherwise.
649static bool isMatMulOperandAcc(__isl_keep isl_map *AccMap, int &FirstPos,
650 int &SecondPos) {
651 int DimInPos[] = {FirstPos, SecondPos};
652 if (isl_map_foreach_basic_map(AccMap, isMatMulOperandBasicMap,
653 static_cast<void *>(DimInPos)) != isl_stat_ok ||
654 DimInPos[0] < 0 || DimInPos[1] < 0)
655 return false;
656 FirstPos = DimInPos[0];
657 SecondPos = DimInPos[1];
658 return true;
659}
660
661/// Does the memory access represent a non-scalar operand of the matrix
662/// multiplication.
663///
664/// Check that the memory access @p MemAccess is the read access to a non-scalar
665/// operand of the matrix multiplication or its result.
666///
667/// @param MemAccess The memory access to be checked.
668/// @param MMI Parameters of the matrix multiplication operands.
669/// @return True in case the memory access represents the read access
670/// to a non-scalar operand of the matrix multiplication and
671/// false, otherwise.
672static bool isMatMulNonScalarReadAccess(MemoryAccess *MemAccess,
673 MatMulInfoTy &MMI) {
674 if (!MemAccess->isArrayKind() || !MemAccess->isRead())
675 return false;
676 isl_map *AccMap = MemAccess->getAccessRelation();
677 if (isMatMulOperandAcc(AccMap, MMI.i, MMI.j) && !MMI.ReadFromC &&
678 isl_map_n_basic_map(AccMap) == 1) {
679 MMI.ReadFromC = MemAccess;
680 isl_map_free(AccMap);
681 return true;
682 }
683 if (isMatMulOperandAcc(AccMap, MMI.i, MMI.k) && !MMI.A &&
684 isl_map_n_basic_map(AccMap) == 1) {
685 MMI.A = MemAccess;
686 isl_map_free(AccMap);
687 return true;
688 }
689 if (isMatMulOperandAcc(AccMap, MMI.k, MMI.j) && !MMI.B &&
690 isl_map_n_basic_map(AccMap) == 1) {
691 MMI.B = MemAccess;
692 isl_map_free(AccMap);
693 return true;
694 }
695 isl_map_free(AccMap);
696 return false;
697}
698
699/// Check accesses to operands of the matrix multiplication.
700///
701/// Check that accesses of the SCoP statement, which corresponds to
702/// the partial schedule @p PartialSchedule, are scalar in terms of loops
703/// containing the matrix multiplication, in case they do not represent
704/// accesses to the non-scalar operands of the matrix multiplication or
705/// its result.
706///
707/// @param PartialSchedule The partial schedule of the SCoP statement.
708/// @param MMI Parameters of the matrix multiplication operands.
709/// @return True in case the corresponding SCoP statement
710/// represents matrix multiplication and false,
711/// otherwise.
712static bool containsOnlyMatrMultAcc(__isl_keep isl_map *PartialSchedule,
713 MatMulInfoTy &MMI) {
714 auto *InputDimId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
715 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimId));
716 isl_id_free(InputDimId);
717 unsigned OutDimNum = isl_map_dim(PartialSchedule, isl_dim_out);
718 assert(OutDimNum > 2 && "In case of the matrix multiplication the loop nest "
719 "and, consequently, the corresponding scheduling "
720 "functions have at least three dimensions.");
721 auto *MapI = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
722 MMI.i, OutDimNum - 1);
723 auto *MapJ = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
724 MMI.j, OutDimNum - 1);
725 auto *MapK = permuteDimensions(isl_map_copy(PartialSchedule), isl_dim_out,
726 MMI.k, OutDimNum - 1);
727 for (auto *MemA = Stmt->begin(); MemA != Stmt->end() - 1; MemA++) {
728 auto *MemAccessPtr = *MemA;
729 if (MemAccessPtr->isArrayKind() && MemAccessPtr != MMI.WriteToC &&
730 !isMatMulNonScalarReadAccess(MemAccessPtr, MMI) &&
731 !(MemAccessPtr->isStrideZero(isl_map_copy(MapI)) &&
732 MemAccessPtr->isStrideZero(isl_map_copy(MapJ)) &&
733 MemAccessPtr->isStrideZero(isl_map_copy(MapK)))) {
734 isl_map_free(MapI);
735 isl_map_free(MapJ);
736 isl_map_free(MapK);
737 return false;
738 }
739 }
740 isl_map_free(MapI);
741 isl_map_free(MapJ);
742 isl_map_free(MapK);
743 return true;
744}
745
746/// Check for dependencies corresponding to the matrix multiplication.
747///
748/// Check that there is only true dependence of the form
749/// S(..., k, ...) -> S(..., k + 1, …), where S is the SCoP statement
750/// represented by @p Schedule and k is @p Pos. Such a dependence corresponds
751/// to the dependency produced by the matrix multiplication.
752///
753/// @param Schedule The schedule of the SCoP statement.
754/// @param D The SCoP dependencies.
755/// @param Pos The parameter to desribe an acceptable true dependence.
756/// In case it has a negative value, try to determine its
757/// acceptable value.
758/// @return True in case dependencies correspond to the matrix multiplication
759/// and false, otherwise.
760static bool containsOnlyMatMulDep(__isl_keep isl_map *Schedule,
761 const Dependences *D, int &Pos) {
762 auto *WAR = D->getDependences(Dependences::TYPE_WAR);
763 if (!isl_union_map_is_empty(WAR)) {
764 isl_union_map_free(WAR);
765 return false;
766 }
767 isl_union_map_free(WAR);
768 auto *RAW = D->getDependences(Dependences::TYPE_RAW);
Roman Gareevafcf0262017-02-11 07:14:37 +0000769 auto *DomainSpace = isl_space_domain(isl_map_get_space(Schedule));
770 auto *Space = isl_space_map_from_domain_and_range(isl_space_copy(DomainSpace),
771 DomainSpace);
Roman Gareev98075fe2017-02-02 14:23:14 +0000772 auto *Deltas = isl_map_deltas(isl_union_map_extract_map(RAW, Space));
Roman Gareev5ef7e212017-02-11 08:43:41 +0000773 isl_union_map_free(RAW);
Roman Gareev98075fe2017-02-02 14:23:14 +0000774 int DeltasDimNum = isl_set_dim(Deltas, isl_dim_set);
Roman Gareevafcf0262017-02-11 07:14:37 +0000775 isl_set_free(Deltas);
Roman Gareev98075fe2017-02-02 14:23:14 +0000776 for (int i = 0; i < DeltasDimNum; i++) {
777 auto *Val = isl_set_plain_get_val_if_fixed(Deltas, isl_dim_set, i);
Roman Gareevafcf0262017-02-11 07:14:37 +0000778 Pos = Pos < 0 && isl_val_is_one(Val) ? i : Pos;
Roman Gareev98075fe2017-02-02 14:23:14 +0000779 if (isl_val_is_nan(Val) ||
780 !(isl_val_is_zero(Val) || (i == Pos && isl_val_is_one(Val)))) {
781 isl_val_free(Val);
Roman Gareev98075fe2017-02-02 14:23:14 +0000782 return false;
783 }
784 isl_val_free(Val);
785 }
Roman Gareev98075fe2017-02-02 14:23:14 +0000786 return true;
Roman Gareev9c3eb592016-05-28 16:17:58 +0000787}
788
Tobias Grosserc80d6972016-09-02 06:33:33 +0000789/// Check if the SCoP statement could probably be optimized with analytical
790/// modeling.
Roman Gareev9c3eb592016-05-28 16:17:58 +0000791///
792/// containsMatrMult tries to determine whether the following conditions
793/// are true:
Roman Gareev98075fe2017-02-02 14:23:14 +0000794/// 1. The last memory access modeling an array, MA1, represents writing to
795/// memory and has the form S(..., i1, ..., i2, ...) -> M(i1, i2) or
796/// S(..., i2, ..., i1, ...) -> M(i1, i2), where S is the SCoP statement
797/// under consideration.
798/// 2. There is only one loop-carried true dependency, and it has the
799/// form S(..., i3, ...) -> S(..., i3 + 1, ...), and there are no
800/// loop-carried or anti dependencies.
801/// 3. SCoP contains three access relations, MA2, MA3, and MA4 that represent
802/// reading from memory and have the form S(..., i3, ...) -> M(i1, i3),
803/// S(..., i3, ...) -> M(i3, i2), S(...) -> M(i1, i2), respectively,
804/// and all memory accesses of the SCoP that are different from MA1, MA2,
805/// MA3, and MA4 have stride 0, if the innermost loop is exchanged with any
806/// of loops i1, i2 and i3.
Roman Gareev9c3eb592016-05-28 16:17:58 +0000807///
808/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
809/// to check.
Roman Gareev98075fe2017-02-02 14:23:14 +0000810/// @D The SCoP dependencies.
811/// @MMI Parameters of the matrix multiplication operands.
812static bool containsMatrMult(__isl_keep isl_map *PartialSchedule,
813 const Dependences *D, MatMulInfoTy &MMI) {
814 auto *InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
815 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
Roman Gareev9c3eb592016-05-28 16:17:58 +0000816 isl_id_free(InputDimsId);
Roman Gareev98075fe2017-02-02 14:23:14 +0000817 if (Stmt->size() <= 1)
Roman Gareev9c3eb592016-05-28 16:17:58 +0000818 return false;
Roman Gareev98075fe2017-02-02 14:23:14 +0000819 for (auto *MemA = Stmt->end() - 1; MemA != Stmt->begin(); MemA--) {
820 auto *MemAccessPtr = *MemA;
821 if (!MemAccessPtr->isArrayKind())
822 continue;
823 if (!MemAccessPtr->isWrite())
Roman Gareev9c3eb592016-05-28 16:17:58 +0000824 return false;
Roman Gareev98075fe2017-02-02 14:23:14 +0000825 auto *AccMap = MemAccessPtr->getAccessRelation();
826 if (isl_map_n_basic_map(AccMap) != 1 ||
827 !isMatMulOperandAcc(AccMap, MMI.i, MMI.j)) {
828 isl_map_free(AccMap);
829 return false;
830 }
831 isl_map_free(AccMap);
832 MMI.WriteToC = MemAccessPtr;
833 break;
834 }
Roman Gareev9c3eb592016-05-28 16:17:58 +0000835
Roman Gareev98075fe2017-02-02 14:23:14 +0000836 if (!containsOnlyMatMulDep(PartialSchedule, D, MMI.k))
837 return false;
838
839 if (!MMI.WriteToC || !containsOnlyMatrMultAcc(PartialSchedule, MMI))
840 return false;
841
842 if (!MMI.A || !MMI.B || !MMI.ReadFromC)
843 return false;
844 return true;
Roman Gareev9c3eb592016-05-28 16:17:58 +0000845}
846
Tobias Grosserc80d6972016-09-02 06:33:33 +0000847/// Permute two dimensions of the band node.
Roman Gareev3a18a932016-07-25 09:42:53 +0000848///
849/// Permute FirstDim and SecondDim dimensions of the Node.
850///
851/// @param Node The band node to be modified.
852/// @param FirstDim The first dimension to be permuted.
853/// @param SecondDim The second dimension to be permuted.
854static __isl_give isl_schedule_node *
855permuteBandNodeDimensions(__isl_take isl_schedule_node *Node, unsigned FirstDim,
856 unsigned SecondDim) {
857 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band &&
858 isl_schedule_node_band_n_member(Node) > std::max(FirstDim, SecondDim));
859 auto PartialSchedule = isl_schedule_node_band_get_partial_schedule(Node);
860 auto PartialScheduleFirstDim =
861 isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, FirstDim);
862 auto PartialScheduleSecondDim =
863 isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, SecondDim);
864 PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
865 PartialSchedule, SecondDim, PartialScheduleFirstDim);
866 PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
867 PartialSchedule, FirstDim, PartialScheduleSecondDim);
868 Node = isl_schedule_node_delete(Node);
869 Node = isl_schedule_node_insert_partial_schedule(Node, PartialSchedule);
870 return Node;
871}
872
Roman Gareev2cb4d132016-07-25 07:27:59 +0000873__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMicroKernel(
874 __isl_take isl_schedule_node *Node, MicroKernelParamsTy MicroKernelParams) {
Roman Gareev8babe1a2016-12-15 11:47:38 +0000875 applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1);
876 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
877 Node = permuteBandNodeDimensions(Node, 0, 1);
878 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
Roman Gareev2cb4d132016-07-25 07:27:59 +0000879}
880
Roman Gareev3a18a932016-07-25 09:42:53 +0000881__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMacroKernel(
882 __isl_take isl_schedule_node *Node, MacroKernelParamsTy MacroKernelParams) {
883 assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
884 if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
885 MacroKernelParams.Kc == 1)
886 return Node;
Roman Gareev98075fe2017-02-02 14:23:14 +0000887 int DimOutNum = isl_schedule_node_band_n_member(Node);
888 std::vector<int> TileSizes(DimOutNum, 1);
889 TileSizes[DimOutNum - 3] = MacroKernelParams.Mc;
890 TileSizes[DimOutNum - 2] = MacroKernelParams.Nc;
891 TileSizes[DimOutNum - 1] = MacroKernelParams.Kc;
892 Node = tileNode(Node, "1st level tiling", TileSizes, 1);
Roman Gareev3a18a932016-07-25 09:42:53 +0000893 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
Roman Gareev98075fe2017-02-02 14:23:14 +0000894 Node = permuteBandNodeDimensions(Node, DimOutNum - 2, DimOutNum - 1);
895 Node = permuteBandNodeDimensions(Node, DimOutNum - 3, DimOutNum - 1);
Roman Gareev3a18a932016-07-25 09:42:53 +0000896 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
897}
898
Roman Gareev3d4eae32017-02-11 07:00:05 +0000899/// Get the size of the widest type of the matrix multiplication operands
900/// in bytes, including alignment padding.
901///
902/// @param MMI Parameters of the matrix multiplication operands.
903/// @return The size of the widest type of the matrix multiplication operands
904/// in bytes, including alignment padding.
905static uint64_t getMatMulAlignTypeSize(MatMulInfoTy MMI) {
906 auto *S = MMI.A->getStatement()->getParent();
907 auto &DL = S->getFunction().getParent()->getDataLayout();
908 auto ElementSizeA = DL.getTypeAllocSize(MMI.A->getElementType());
909 auto ElementSizeB = DL.getTypeAllocSize(MMI.B->getElementType());
910 auto ElementSizeC = DL.getTypeAllocSize(MMI.WriteToC->getElementType());
911 return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
912}
913
914/// Get the size of the widest type of the matrix multiplication operands
915/// in bits.
916///
917/// @param MMI Parameters of the matrix multiplication operands.
918/// @return The size of the widest type of the matrix multiplication operands
919/// in bits.
920static uint64_t getMatMulTypeSize(MatMulInfoTy MMI) {
921 auto *S = MMI.A->getStatement()->getParent();
922 auto &DL = S->getFunction().getParent()->getDataLayout();
923 auto ElementSizeA = DL.getTypeSizeInBits(MMI.A->getElementType());
924 auto ElementSizeB = DL.getTypeSizeInBits(MMI.B->getElementType());
925 auto ElementSizeC = DL.getTypeSizeInBits(MMI.WriteToC->getElementType());
926 return std::max({ElementSizeA, ElementSizeB, ElementSizeC});
927}
928
Roman Gareev2cb4d132016-07-25 07:27:59 +0000929/// Get parameters of the BLIS micro kernel.
930///
931/// We choose the Mr and Nr parameters of the micro kernel to be large enough
932/// such that no stalls caused by the combination of latencies and dependencies
933/// are introduced during the updates of the resulting matrix of the matrix
934/// multiplication. However, they should also be as small as possible to
935/// release more registers for entries of multiplied matrices.
936///
937/// @param TTI Target Transform Info.
Roman Gareev3d4eae32017-02-11 07:00:05 +0000938/// @param MMI Parameters of the matrix multiplication operands.
Roman Gareev2cb4d132016-07-25 07:27:59 +0000939/// @return The structure of type MicroKernelParamsTy.
940/// @see MicroKernelParamsTy
941static struct MicroKernelParamsTy
Roman Gareev3d4eae32017-02-11 07:00:05 +0000942getMicroKernelParams(const llvm::TargetTransformInfo *TTI, MatMulInfoTy MMI) {
Roman Gareev42402c92016-06-22 09:52:37 +0000943 assert(TTI && "The target transform info should be provided.");
Roman Gareev2cb4d132016-07-25 07:27:59 +0000944
Roman Gareev42402c92016-06-22 09:52:37 +0000945 // Nvec - Number of double-precision floating-point numbers that can be hold
946 // by a vector register. Use 2 by default.
Tobias Grosser67e94fb2017-01-14 07:14:54 +0000947 long RegisterBitwidth = VectorRegisterBitwidth;
948
949 if (RegisterBitwidth == -1)
950 RegisterBitwidth = TTI->getRegisterBitWidth(true);
Roman Gareev3d4eae32017-02-11 07:00:05 +0000951 auto ElementSize = getMatMulTypeSize(MMI);
952 assert(ElementSize > 0 && "The element size of the matrix multiplication "
953 "operands should be greater than zero.");
954 auto Nvec = RegisterBitwidth / ElementSize;
Roman Gareev42402c92016-06-22 09:52:37 +0000955 if (Nvec == 0)
956 Nvec = 2;
957 int Nr =
Tobias Grosser0791d5f2016-12-23 07:33:39 +0000958 ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec;
959 int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr);
Roman Gareev2cb4d132016-07-25 07:27:59 +0000960 return {Mr, Nr};
961}
962
Roman Gareev3a18a932016-07-25 09:42:53 +0000963/// Get parameters of the BLIS macro kernel.
964///
965/// During the computation of matrix multiplication, blocks of partitioned
966/// matrices are mapped to different layers of the memory hierarchy.
967/// To optimize data reuse, blocks should be ideally kept in cache between
968/// iterations. Since parameters of the macro kernel determine sizes of these
969/// blocks, there are upper and lower bounds on these parameters.
970///
971/// @param MicroKernelParams Parameters of the micro-kernel
972/// to be taken into account.
Roman Gareev3d4eae32017-02-11 07:00:05 +0000973/// @param MMI Parameters of the matrix multiplication operands.
Roman Gareev3a18a932016-07-25 09:42:53 +0000974/// @return The structure of type MacroKernelParamsTy.
975/// @see MacroKernelParamsTy
976/// @see MicroKernelParamsTy
977static struct MacroKernelParamsTy
Roman Gareev3d4eae32017-02-11 07:00:05 +0000978getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams,
979 MatMulInfoTy MMI) {
Roman Gareev3a18a932016-07-25 09:42:53 +0000980 // According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
981 // it requires information about the first two levels of a cache to determine
982 // all the parameters of a macro-kernel. It also checks that an associativity
983 // degree of a cache level is greater than two. Otherwise, another algorithm
984 // for determination of the parameters should be used.
985 if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
Roman Gareev1c2927b2016-12-25 16:32:28 +0000986 FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
987 FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
Roman Gareev3a18a932016-07-25 09:42:53 +0000988 return {1, 1, 1};
Roman Gareevbe5299a2016-12-21 12:51:12 +0000989 // The quotient should be greater than zero.
990 if (PollyPatternMatchingNcQuotient <= 0)
991 return {1, 1, 1};
Roman Gareev15db81e2016-12-15 12:00:57 +0000992 int Car = floor(
Roman Gareev1c2927b2016-12-25 16:32:28 +0000993 (FirstCacheLevelAssociativity - 1) /
Roman Gareev8babe1a2016-12-15 11:47:38 +0000994 (1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
Roman Gareev3d4eae32017-02-11 07:00:05 +0000995 auto ElementSize = getMatMulAlignTypeSize(MMI);
996 assert(ElementSize > 0 && "The element size of the matrix multiplication "
997 "operands should be greater than zero.");
Roman Gareev1c2927b2016-12-25 16:32:28 +0000998 int Kc = (Car * FirstCacheLevelSize) /
Roman Gareev3d4eae32017-02-11 07:00:05 +0000999 (MicroKernelParams.Mr * FirstCacheLevelAssociativity * ElementSize);
1000 double Cac =
1001 static_cast<double>(Kc * ElementSize * SecondCacheLevelAssociativity) /
1002 SecondCacheLevelSize;
Roman Gareev1c2927b2016-12-25 16:32:28 +00001003 int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
Roman Gareevbe5299a2016-12-21 12:51:12 +00001004 int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
Roman Gareev3a18a932016-07-25 09:42:53 +00001005 return {Mc, Nc, Kc};
1006}
1007
Tobias Grosserc80d6972016-09-02 06:33:33 +00001008/// Create an access relation that is specific to
Roman Gareev1c892e92016-08-15 12:22:54 +00001009/// the matrix multiplication pattern.
1010///
1011/// Create an access relation of the following form:
Roman Gareev92c44602016-12-21 11:18:42 +00001012/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
1013/// where I is @p FirstDim, J is @p SecondDim.
Roman Gareev1c892e92016-08-15 12:22:54 +00001014///
1015/// It can be used, for example, to create relations that helps to consequently
1016/// access elements of operands of a matrix multiplication after creation of
1017/// the BLIS micro and macro kernels.
1018///
1019/// @see ScheduleTreeOptimizer::createMicroKernel
1020/// @see ScheduleTreeOptimizer::createMacroKernel
1021///
1022/// Subsequently, the described access relation is applied to the range of
1023/// @p MapOldIndVar, that is used to map original induction variables to
1024/// the ones, which are produced by schedule transformations. It helps to
1025/// define relations using a new space and, at the same time, keep them
1026/// in the original one.
1027///
1028/// @param MapOldIndVar The relation, which maps original induction variables
1029/// to the ones, which are produced by schedule
1030/// transformations.
Roman Gareev1c892e92016-08-15 12:22:54 +00001031/// @param FirstDim, SecondDim The input dimensions that are used to define
1032/// the specified access relation.
1033/// @return The specified access relation.
1034__isl_give isl_map *getMatMulAccRel(__isl_take isl_map *MapOldIndVar,
Roman Gareev92c44602016-12-21 11:18:42 +00001035 unsigned FirstDim, unsigned SecondDim) {
Roman Gareev1c892e92016-08-15 12:22:54 +00001036 auto *Ctx = isl_map_get_ctx(MapOldIndVar);
Roman Gareev92c44602016-12-21 11:18:42 +00001037 auto *AccessRelSpace = isl_space_alloc(Ctx, 0, 9, 3);
1038 auto *AccessRel = isl_map_universe(AccessRelSpace);
1039 AccessRel = isl_map_equate(AccessRel, isl_dim_in, FirstDim, isl_dim_out, 0);
1040 AccessRel = isl_map_equate(AccessRel, isl_dim_in, 5, isl_dim_out, 1);
1041 AccessRel = isl_map_equate(AccessRel, isl_dim_in, SecondDim, isl_dim_out, 2);
Roman Gareev1c892e92016-08-15 12:22:54 +00001042 return isl_map_apply_range(MapOldIndVar, AccessRel);
1043}
1044
Roman Gareevb3224ad2016-09-14 06:26:09 +00001045__isl_give isl_schedule_node *
1046createExtensionNode(__isl_take isl_schedule_node *Node,
1047 __isl_take isl_map *ExtensionMap) {
1048 auto *Extension = isl_union_map_from_map(ExtensionMap);
1049 auto *NewNode = isl_schedule_node_from_extension(Extension);
1050 return isl_schedule_node_graft_before(Node, NewNode);
1051}
1052
Tobias Grosserc80d6972016-09-02 06:33:33 +00001053/// Apply the packing transformation.
Roman Gareev1c892e92016-08-15 12:22:54 +00001054///
1055/// The packing transformation can be described as a data-layout
1056/// transformation that requires to introduce a new array, copy data
Roman Gareev7758a2a2017-01-29 10:37:50 +00001057/// to the array, and change memory access locations to reference the array.
1058/// It can be used to ensure that elements of the new array are read in-stride
1059/// access, aligned to cache lines boundaries, and preloaded into certain cache
1060/// levels.
1061///
1062/// As an example let us consider the packing of the array A that would help
1063/// to read its elements with in-stride access. An access to the array A
1064/// is represented by an access relation that has the form
1065/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
1066/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
1067/// k mod Kc, j mod Nr, i mod Mr].
1068///
1069/// To ensure that elements of the array A are read in-stride access, we add
1070/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
1071/// Scop::createScopArrayInfo, change the access relation
1072/// S[i, j, k] -> A[i, k] to
1073/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
1074/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
1075/// the copy statement created by Scop::addScopStmt.
Roman Gareev1c892e92016-08-15 12:22:54 +00001076///
1077/// @param Node The schedule node to be optimized.
1078/// @param MapOldIndVar The relation, which maps original induction variables
1079/// to the ones, which are produced by schedule
1080/// transformations.
1081/// @param MicroParams, MacroParams Parameters of the BLIS kernel
1082/// to be taken into account.
Roman Gareev98075fe2017-02-02 14:23:14 +00001083/// @param MMI Parameters of the matrix multiplication operands.
Roman Gareev1c892e92016-08-15 12:22:54 +00001084/// @return The optimized schedule node.
Roman Gareevb3224ad2016-09-14 06:26:09 +00001085static __isl_give isl_schedule_node *optimizeDataLayoutMatrMulPattern(
1086 __isl_take isl_schedule_node *Node, __isl_take isl_map *MapOldIndVar,
Roman Gareev98075fe2017-02-02 14:23:14 +00001087 MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams,
1088 MatMulInfoTy &MMI) {
Roman Gareev1c892e92016-08-15 12:22:54 +00001089 auto InputDimsId = isl_map_get_tuple_id(MapOldIndVar, isl_dim_in);
1090 auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
1091 isl_id_free(InputDimsId);
Roman Gareev2606c482016-12-15 12:35:59 +00001092
1093 // Create a copy statement that corresponds to the memory access to the
1094 // matrix B, the second operand of the matrix multiplication.
Roman Gareevb3224ad2016-09-14 06:26:09 +00001095 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
1096 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
1097 Node = isl_schedule_node_parent(Node);
1098 Node = isl_schedule_node_child(isl_schedule_node_band_split(Node, 2), 0);
Roman Gareev92c44602016-12-21 11:18:42 +00001099 auto *AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 3, 7);
1100 unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
1101 unsigned SecondDimSize = MacroParams.Kc;
1102 unsigned ThirdDimSize = MicroParams.Nr;
Roman Gareev1c892e92016-08-15 12:22:54 +00001103 auto *SAI = Stmt->getParent()->createScopArrayInfo(
Roman Gareev98075fe2017-02-02 14:23:14 +00001104 MMI.B->getElementType(), "Packed_B",
Roman Gareev92c44602016-12-21 11:18:42 +00001105 {FirstDimSize, SecondDimSize, ThirdDimSize});
Roman Gareev1c892e92016-08-15 12:22:54 +00001106 AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
Roman Gareev98075fe2017-02-02 14:23:14 +00001107 auto *OldAcc = MMI.B->getAccessRelation();
1108 MMI.B->setNewAccessRelation(AccRel);
Roman Gareevb3224ad2016-09-14 06:26:09 +00001109 auto *ExtMap =
Roman Gareev98075fe2017-02-02 14:23:14 +00001110 isl_map_project_out(isl_map_copy(MapOldIndVar), isl_dim_out, 2,
1111 isl_map_dim(MapOldIndVar, isl_dim_out) - 2);
1112 ExtMap = isl_map_reverse(ExtMap);
1113 ExtMap = isl_map_fix_si(ExtMap, isl_dim_out, MMI.i, 0);
Roman Gareevb3224ad2016-09-14 06:26:09 +00001114 auto *Domain = Stmt->getDomain();
Roman Gareev2606c482016-12-15 12:35:59 +00001115
1116 // Restrict the domains of the copy statements to only execute when also its
1117 // originating statement is executed.
1118 auto *DomainId = isl_set_get_tuple_id(Domain);
Roman Gareevb3224ad2016-09-14 06:26:09 +00001119 auto *NewStmt = Stmt->getParent()->addScopStmt(
Roman Gareev98075fe2017-02-02 14:23:14 +00001120 OldAcc, MMI.B->getAccessRelation(), isl_set_copy(Domain));
Roman Gareev2606c482016-12-15 12:35:59 +00001121 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, isl_id_copy(DomainId));
1122 ExtMap = isl_map_intersect_range(ExtMap, isl_set_copy(Domain));
Roman Gareevb3224ad2016-09-14 06:26:09 +00001123 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId());
1124 Node = createExtensionNode(Node, ExtMap);
Roman Gareev2606c482016-12-15 12:35:59 +00001125
1126 // Create a copy statement that corresponds to the memory access
1127 // to the matrix A, the first operand of the matrix multiplication.
Roman Gareevb3224ad2016-09-14 06:26:09 +00001128 Node = isl_schedule_node_child(Node, 0);
Roman Gareev98075fe2017-02-02 14:23:14 +00001129 AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 4, 6);
Roman Gareev92c44602016-12-21 11:18:42 +00001130 FirstDimSize = MacroParams.Mc / MicroParams.Mr;
1131 ThirdDimSize = MicroParams.Mr;
Roman Gareev1c892e92016-08-15 12:22:54 +00001132 SAI = Stmt->getParent()->createScopArrayInfo(
Roman Gareev98075fe2017-02-02 14:23:14 +00001133 MMI.A->getElementType(), "Packed_A",
Roman Gareev92c44602016-12-21 11:18:42 +00001134 {FirstDimSize, SecondDimSize, ThirdDimSize});
Roman Gareev1c892e92016-08-15 12:22:54 +00001135 AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
Roman Gareev98075fe2017-02-02 14:23:14 +00001136 OldAcc = MMI.A->getAccessRelation();
1137 MMI.A->setNewAccessRelation(AccRel);
1138 ExtMap = isl_map_project_out(MapOldIndVar, isl_dim_out, 3,
1139 isl_map_dim(MapOldIndVar, isl_dim_out) - 3);
1140 ExtMap = isl_map_reverse(ExtMap);
1141 ExtMap = isl_map_fix_si(ExtMap, isl_dim_out, MMI.j, 0);
1142 NewStmt = Stmt->getParent()->addScopStmt(OldAcc, MMI.A->getAccessRelation(),
1143 isl_set_copy(Domain));
Roman Gareev2606c482016-12-15 12:35:59 +00001144
1145 // Restrict the domains of the copy statements to only execute when also its
1146 // originating statement is executed.
1147 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, DomainId);
1148 ExtMap = isl_map_intersect_range(ExtMap, Domain);
Roman Gareevb3224ad2016-09-14 06:26:09 +00001149 ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId());
1150 Node = createExtensionNode(Node, ExtMap);
1151 Node = isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
1152 return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
Roman Gareev1c892e92016-08-15 12:22:54 +00001153}
1154
Tobias Grosserc80d6972016-09-02 06:33:33 +00001155/// Get a relation mapping induction variables produced by schedule
1156/// transformations to the original ones.
Roman Gareev1c892e92016-08-15 12:22:54 +00001157///
1158/// @param Node The schedule node produced as the result of creation
1159/// of the BLIS kernels.
1160/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
1161/// to be taken into account.
1162/// @return The relation mapping original induction variables to the ones
1163/// produced by schedule transformation.
1164/// @see ScheduleTreeOptimizer::createMicroKernel
1165/// @see ScheduleTreeOptimizer::createMacroKernel
1166/// @see getMacroKernelParams
1167__isl_give isl_map *
1168getInductionVariablesSubstitution(__isl_take isl_schedule_node *Node,
1169 MicroKernelParamsTy MicroKernelParams,
1170 MacroKernelParamsTy MacroKernelParams) {
1171 auto *Child = isl_schedule_node_get_child(Node, 0);
1172 auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_union_map(Child);
1173 isl_schedule_node_free(Child);
1174 auto *MapOldIndVar = isl_map_from_union_map(UnMapOldIndVar);
1175 if (isl_map_dim(MapOldIndVar, isl_dim_out) > 9)
1176 MapOldIndVar =
1177 isl_map_project_out(MapOldIndVar, isl_dim_out, 0,
1178 isl_map_dim(MapOldIndVar, isl_dim_out) - 9);
1179 return MapOldIndVar;
1180}
1181
Roman Gareev99890882017-02-09 07:10:01 +00001182/// Isolate a set of partial tile prefixes and unroll the isolated part.
1183///
1184/// The set should ensure that it contains only partial tile prefixes that have
1185/// exactly Mr x Nr iterations of the two innermost loops produced by
1186/// the optimization of the matrix multiplication. Mr and Nr are parameters of
1187/// the micro-kernel.
1188///
1189/// In case of parametric bounds, this helps to auto-vectorize the unrolled
1190/// innermost loops, using the SLP vectorizer.
1191///
1192/// @param Node The schedule node to be modified.
1193/// @param MicroKernelParams Parameters of the micro-kernel
1194/// to be taken into account.
1195/// @return The modified isl_schedule_node.
1196static __isl_give isl_schedule_node *
1197isolateAndUnrollMatMulInnerLoops(__isl_take isl_schedule_node *Node,
1198 struct MicroKernelParamsTy MicroKernelParams) {
1199 auto *Child = isl_schedule_node_get_child(Node, 0);
1200 auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_relation(Child);
1201 isl_schedule_node_free(Child);
1202 auto *Prefix = isl_map_range(isl_map_from_union_map(UnMapOldIndVar));
1203 auto Dims = isl_set_dim(Prefix, isl_dim_set);
1204 Prefix = isl_set_project_out(Prefix, isl_dim_set, Dims - 1, 1);
1205 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Nr);
1206 Prefix = getPartialTilePrefixes(Prefix, MicroKernelParams.Mr);
1207 auto *IsolateOption = getIsolateOptions(
1208 isl_set_add_dims(isl_set_copy(Prefix), isl_dim_set, 3), 3);
1209 auto *Ctx = isl_schedule_node_get_ctx(Node);
1210 auto *AtomicOption = getAtomicOptions(Ctx);
1211 auto *Options =
1212 isl_union_set_union(IsolateOption, isl_union_set_copy(AtomicOption));
1213 Options = isl_union_set_union(Options, getUnrollIsolatedSetOptions(Ctx));
1214 Node = isl_schedule_node_band_set_ast_build_options(Node, Options);
1215 Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
1216 IsolateOption = getIsolateOptions(Prefix, 3);
1217 Options = isl_union_set_union(IsolateOption, AtomicOption);
1218 Node = isl_schedule_node_band_set_ast_build_options(Node, Options);
1219 Node = isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
1220 return Node;
1221}
1222
Roman Gareev2cb4d132016-07-25 07:27:59 +00001223__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern(
Roman Gareev98075fe2017-02-02 14:23:14 +00001224 __isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI,
1225 MatMulInfoTy &MMI) {
Roman Gareev2cb4d132016-07-25 07:27:59 +00001226 assert(TTI && "The target transform info should be provided.");
Roman Gareev98075fe2017-02-02 14:23:14 +00001227 int DimOutNum = isl_schedule_node_band_n_member(Node);
1228 assert(DimOutNum > 2 && "In case of the matrix multiplication the loop nest "
1229 "and, consequently, the corresponding scheduling "
1230 "functions have at least three dimensions.");
1231 Node = permuteBandNodeDimensions(Node, MMI.i, DimOutNum - 3);
1232 int NewJ = MMI.j == DimOutNum - 3 ? MMI.i : MMI.j;
1233 int NewK = MMI.k == DimOutNum - 3 ? MMI.i : MMI.k;
1234 Node = permuteBandNodeDimensions(Node, NewJ, DimOutNum - 2);
1235 NewK = MMI.k == DimOutNum - 2 ? MMI.j : MMI.k;
1236 Node = permuteBandNodeDimensions(Node, NewK, DimOutNum - 1);
Roman Gareev3d4eae32017-02-11 07:00:05 +00001237 auto MicroKernelParams = getMicroKernelParams(TTI, MMI);
1238 auto MacroKernelParams = getMacroKernelParams(MicroKernelParams, MMI);
Roman Gareev3a18a932016-07-25 09:42:53 +00001239 Node = createMacroKernel(Node, MacroKernelParams);
Roman Gareev2cb4d132016-07-25 07:27:59 +00001240 Node = createMicroKernel(Node, MicroKernelParams);
Roman Gareev1c892e92016-08-15 12:22:54 +00001241 if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
1242 MacroKernelParams.Kc == 1)
1243 return Node;
1244 auto *MapOldIndVar = getInductionVariablesSubstitution(
1245 Node, MicroKernelParams, MacroKernelParams);
1246 if (!MapOldIndVar)
1247 return Node;
Roman Gareev99890882017-02-09 07:10:01 +00001248 Node = isolateAndUnrollMatMulInnerLoops(Node, MicroKernelParams);
Roman Gareevb3224ad2016-09-14 06:26:09 +00001249 return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
Roman Gareev98075fe2017-02-02 14:23:14 +00001250 MacroKernelParams, MMI);
Roman Gareev42402c92016-06-22 09:52:37 +00001251}
1252
Roman Gareev9c3eb592016-05-28 16:17:58 +00001253bool ScheduleTreeOptimizer::isMatrMultPattern(
Roman Gareev98075fe2017-02-02 14:23:14 +00001254 __isl_keep isl_schedule_node *Node, const Dependences *D,
1255 MatMulInfoTy &MMI) {
Roman Gareev9c3eb592016-05-28 16:17:58 +00001256 auto *PartialSchedule =
1257 isl_schedule_node_band_get_partial_schedule_union_map(Node);
Roman Gareev98075fe2017-02-02 14:23:14 +00001258 if (isl_schedule_node_band_n_member(Node) < 3 ||
Roman Gareev397a34a2016-06-22 12:11:30 +00001259 isl_union_map_n_map(PartialSchedule) != 1) {
1260 isl_union_map_free(PartialSchedule);
Roman Gareev9c3eb592016-05-28 16:17:58 +00001261 return false;
1262 }
Roman Gareev397a34a2016-06-22 12:11:30 +00001263 auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule);
Roman Gareev98075fe2017-02-02 14:23:14 +00001264 if (containsMatrMult(NewPartialSchedule, D, MMI)) {
Roman Gareev9c3eb592016-05-28 16:17:58 +00001265 isl_map_free(NewPartialSchedule);
1266 return true;
1267 }
1268 isl_map_free(NewPartialSchedule);
1269 return false;
1270}
1271
1272__isl_give isl_schedule_node *
1273ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
1274 void *User) {
1275 if (!isTileableBandNode(Node))
1276 return Node;
1277
Roman Gareev98075fe2017-02-02 14:23:14 +00001278 const OptimizerAdditionalInfoTy *OAI =
1279 static_cast<const OptimizerAdditionalInfoTy *>(User);
1280
1281 MatMulInfoTy MMI;
1282 if (PMBasedOpts && User && isMatrMultPattern(Node, OAI->D, MMI)) {
Roman Gareev9c3eb592016-05-28 16:17:58 +00001283 DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
Roman Gareev772498d2017-02-08 13:29:06 +00001284 return optimizeMatMulPattern(Node, OAI->TTI, MMI);
Roman Gareev42402c92016-06-22 09:52:37 +00001285 }
Roman Gareev9c3eb592016-05-28 16:17:58 +00001286
1287 return standardBandOpts(Node, User);
1288}
1289
Tobias Grosser808cd692015-07-14 09:33:13 +00001290__isl_give isl_schedule *
Roman Gareev42402c92016-06-22 09:52:37 +00001291ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule,
Roman Gareev98075fe2017-02-02 14:23:14 +00001292 const OptimizerAdditionalInfoTy *OAI) {
Tobias Grosserbbb4cec2015-03-22 12:06:39 +00001293 isl_schedule_node *Root = isl_schedule_get_root(Schedule);
Roman Gareev98075fe2017-02-02 14:23:14 +00001294 Root = optimizeScheduleNode(Root, OAI);
Tobias Grosser808cd692015-07-14 09:33:13 +00001295 isl_schedule_free(Schedule);
Tobias Grosser808cd692015-07-14 09:33:13 +00001296 auto S = isl_schedule_node_get_schedule(Root);
Tobias Grosserbbb4cec2015-03-22 12:06:39 +00001297 isl_schedule_node_free(Root);
Tobias Grosser808cd692015-07-14 09:33:13 +00001298 return S;
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001299}
1300
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001301__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode(
Roman Gareev98075fe2017-02-02 14:23:14 +00001302 __isl_take isl_schedule_node *Node, const OptimizerAdditionalInfoTy *OAI) {
Roman Gareev42402c92016-06-22 09:52:37 +00001303 Node = isl_schedule_node_map_descendant_bottom_up(
Roman Gareev98075fe2017-02-02 14:23:14 +00001304 Node, optimizeBand, const_cast<void *>(static_cast<const void *>(OAI)));
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001305 return Node;
1306}
1307
1308bool ScheduleTreeOptimizer::isProfitableSchedule(
Roman Gareevb3224ad2016-09-14 06:26:09 +00001309 Scop &S, __isl_keep isl_schedule *NewSchedule) {
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001310 // To understand if the schedule has been optimized we check if the schedule
1311 // has changed at all.
1312 // TODO: We can improve this by tracking if any necessarily beneficial
1313 // transformations have been performed. This can e.g. be tiling, loop
1314 // interchange, or ...) We can track this either at the place where the
1315 // transformation has been performed or, in case of automatic ILP based
1316 // optimizations, by comparing (yet to be defined) performance metrics
1317 // before/after the scheduling optimizer
1318 // (e.g., #stride-one accesses)
Roman Gareevb3224ad2016-09-14 06:26:09 +00001319 if (S.containsExtensionNode(NewSchedule))
1320 return true;
1321 auto *NewScheduleMap = isl_schedule_get_map(NewSchedule);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001322 isl_union_map *OldSchedule = S.getSchedule();
Tobias Grosserff400872017-02-01 10:12:09 +00001323 assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
1324 "that make Scop::getSchedule() return nullptr.");
Roman Gareevb3224ad2016-09-14 06:26:09 +00001325 bool changed = !isl_union_map_is_equal(OldSchedule, NewScheduleMap);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001326 isl_union_map_free(OldSchedule);
Roman Gareevb3224ad2016-09-14 06:26:09 +00001327 isl_union_map_free(NewScheduleMap);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001328 return changed;
1329}
1330
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001331namespace {
1332class IslScheduleOptimizer : public ScopPass {
1333public:
1334 static char ID;
1335 explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
1336
1337 ~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
1338
Tobias Grosserc80d6972016-09-02 06:33:33 +00001339 /// Optimize the schedule of the SCoP @p S.
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001340 bool runOnScop(Scop &S) override;
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001341
Tobias Grosserc80d6972016-09-02 06:33:33 +00001342 /// Print the new schedule for the SCoP @p S.
Johannes Doerfert45be6442015-09-27 15:43:29 +00001343 void printScop(raw_ostream &OS, Scop &S) const override;
1344
Tobias Grosserc80d6972016-09-02 06:33:33 +00001345 /// Register all analyses and transformation required.
Johannes Doerfert45be6442015-09-27 15:43:29 +00001346 void getAnalysisUsage(AnalysisUsage &AU) const override;
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001347
Tobias Grosserc80d6972016-09-02 06:33:33 +00001348 /// Release the internal memory.
Johannes Doerfert0f376302015-09-27 15:42:28 +00001349 void releaseMemory() override {
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001350 isl_schedule_free(LastSchedule);
1351 LastSchedule = nullptr;
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001352 }
Johannes Doerfert45be6442015-09-27 15:43:29 +00001353
1354private:
1355 isl_schedule *LastSchedule;
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001356};
Tobias Grosser522478d2016-06-23 22:17:27 +00001357} // namespace
Tobias Grosserfa57e9b2015-08-24 06:01:47 +00001358
1359char IslScheduleOptimizer::ID = 0;
1360
Tobias Grosser73600b82011-10-08 00:30:40 +00001361bool IslScheduleOptimizer::runOnScop(Scop &S) {
Johannes Doerfert6f7921f2015-02-14 12:02:24 +00001362
1363 // Skip empty SCoPs but still allow code generation as it will delete the
1364 // loops present but not needed.
1365 if (S.getSize() == 0) {
1366 S.markAsOptimized();
1367 return false;
1368 }
1369
Hongbin Zheng2a798852016-03-03 08:15:33 +00001370 const Dependences &D =
1371 getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001372
Johannes Doerfert7e6424b2015-03-05 00:43:48 +00001373 if (!D.hasValidDependences())
Tobias Grosser38c36ea2014-02-23 15:15:44 +00001374 return false;
1375
Tobias Grosser28781422012-10-16 07:29:19 +00001376 isl_schedule_free(LastSchedule);
Tobias Grosser5a56cbf2014-04-16 07:33:47 +00001377 LastSchedule = nullptr;
Tobias Grosser28781422012-10-16 07:29:19 +00001378
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001379 // Build input data.
Johannes Doerfert7e6424b2015-03-05 00:43:48 +00001380 int ValidityKinds =
1381 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
Tobias Grosser1deda292012-02-14 14:02:48 +00001382 int ProximityKinds;
1383
1384 if (OptimizeDeps == "all")
Johannes Doerfert7e6424b2015-03-05 00:43:48 +00001385 ProximityKinds =
1386 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
Tobias Grosser1deda292012-02-14 14:02:48 +00001387 else if (OptimizeDeps == "raw")
Johannes Doerfert7e6424b2015-03-05 00:43:48 +00001388 ProximityKinds = Dependences::TYPE_RAW;
Tobias Grosser1deda292012-02-14 14:02:48 +00001389 else {
1390 errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00001391 << " Falling back to optimizing all dependences.\n";
Johannes Doerfert7e6424b2015-03-05 00:43:48 +00001392 ProximityKinds =
1393 Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
Tobias Grosser1deda292012-02-14 14:02:48 +00001394 }
1395
Tobias Grosser5f9a7622012-02-14 14:02:40 +00001396 isl_union_set *Domain = S.getDomains();
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001397
Tobias Grosser98610ee2012-02-13 23:31:39 +00001398 if (!Domain)
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001399 return false;
1400
Johannes Doerfert7e6424b2015-03-05 00:43:48 +00001401 isl_union_map *Validity = D.getDependences(ValidityKinds);
1402 isl_union_map *Proximity = D.getDependences(ProximityKinds);
Tobias Grosser8a507022012-03-16 11:51:41 +00001403
Tobias Grossera26db472012-01-30 19:38:43 +00001404 // Simplify the dependences by removing the constraints introduced by the
1405 // domains. This can speed up the scheduling time significantly, as large
1406 // constant coefficients will be removed from the dependences. The
1407 // introduction of some additional dependences reduces the possible
1408 // transformations, but in most cases, such transformation do not seem to be
1409 // interesting anyway. In some cases this option may stop the scheduler to
1410 // find any schedule.
1411 if (SimplifyDeps == "yes") {
Tobias Grosser00383a72012-02-14 14:02:44 +00001412 Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
1413 Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00001414 Proximity =
1415 isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
Tobias Grosser00383a72012-02-14 14:02:44 +00001416 Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
Tobias Grossera26db472012-01-30 19:38:43 +00001417 } else if (SimplifyDeps != "no") {
1418 errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
1419 "or 'no'. Falling back to default: 'yes'\n";
1420 }
1421
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001422 DEBUG(dbgs() << "\n\nCompute schedule from: ");
Tobias Grosser01aea582014-10-22 23:16:28 +00001423 DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
1424 DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
1425 DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001426
Michael Krusec59f22c2015-06-18 16:45:40 +00001427 unsigned IslSerializeSCCs;
Tobias Grosserb3ad85b2012-01-30 19:38:50 +00001428
1429 if (FusionStrategy == "max") {
Michael Krusec59f22c2015-06-18 16:45:40 +00001430 IslSerializeSCCs = 0;
Tobias Grosserb3ad85b2012-01-30 19:38:50 +00001431 } else if (FusionStrategy == "min") {
Michael Krusec59f22c2015-06-18 16:45:40 +00001432 IslSerializeSCCs = 1;
Tobias Grosserb3ad85b2012-01-30 19:38:50 +00001433 } else {
1434 errs() << "warning: Unknown fusion strategy. Falling back to maximal "
1435 "fusion.\n";
Michael Krusec59f22c2015-06-18 16:45:40 +00001436 IslSerializeSCCs = 0;
Tobias Grosserb3ad85b2012-01-30 19:38:50 +00001437 }
1438
Tobias Grosser95e860c2012-01-30 19:38:54 +00001439 int IslMaximizeBands;
1440
Tobias Grossera4ea90b2012-01-30 22:43:56 +00001441 if (MaximizeBandDepth == "yes") {
Tobias Grosser95e860c2012-01-30 19:38:54 +00001442 IslMaximizeBands = 1;
Tobias Grossera4ea90b2012-01-30 22:43:56 +00001443 } else if (MaximizeBandDepth == "no") {
Tobias Grosser95e860c2012-01-30 19:38:54 +00001444 IslMaximizeBands = 0;
1445 } else {
1446 errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
1447 " or 'no'. Falling back to default: 'yes'\n";
1448 IslMaximizeBands = 1;
1449 }
1450
Michael Kruse315aa322016-05-02 11:35:27 +00001451 int IslOuterCoincidence;
1452
1453 if (OuterCoincidence == "yes") {
1454 IslOuterCoincidence = 1;
1455 } else if (OuterCoincidence == "no") {
1456 IslOuterCoincidence = 0;
1457 } else {
1458 errs() << "warning: Option -polly-opt-outer-coincidence should either be "
1459 "'yes' or 'no'. Falling back to default: 'no'\n";
1460 IslOuterCoincidence = 0;
1461 }
1462
Tobias Grosseraf149932016-06-30 20:42:56 +00001463 isl_ctx *Ctx = S.getIslCtx();
Tobias Grosser42152ff2012-01-30 19:38:47 +00001464
Tobias Grosseraf149932016-06-30 20:42:56 +00001465 isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
1466 isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
1467 isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
1468 isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
1469 isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
1470 isl_options_set_tile_scale_tile_loops(Ctx, 0);
1471
Tobias Grosser3898a042016-06-30 20:42:58 +00001472 auto OnErrorStatus = isl_options_get_on_error(Ctx);
Tobias Grosseraf149932016-06-30 20:42:56 +00001473 isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
Tobias Grossera38c9242014-01-26 19:36:28 +00001474
1475 isl_schedule_constraints *ScheduleConstraints;
1476 ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
1477 ScheduleConstraints =
1478 isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
1479 ScheduleConstraints = isl_schedule_constraints_set_validity(
1480 ScheduleConstraints, isl_union_map_copy(Validity));
1481 ScheduleConstraints =
1482 isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
Tobias Grosser00383a72012-02-14 14:02:44 +00001483 isl_schedule *Schedule;
Tobias Grossera38c9242014-01-26 19:36:28 +00001484 Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
Tobias Grosser3898a042016-06-30 20:42:58 +00001485 isl_options_set_on_error(Ctx, OnErrorStatus);
Tobias Grosser42152ff2012-01-30 19:38:47 +00001486
1487 // In cases the scheduler is not able to optimize the code, we just do not
1488 // touch the schedule.
Tobias Grosser98610ee2012-02-13 23:31:39 +00001489 if (!Schedule)
Tobias Grosser42152ff2012-01-30 19:38:47 +00001490 return false;
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001491
Tobias Grosser97d87452015-05-30 06:46:59 +00001492 DEBUG({
Tobias Grosseraf149932016-06-30 20:42:56 +00001493 auto *P = isl_printer_to_str(Ctx);
Tobias Grosser97d87452015-05-30 06:46:59 +00001494 P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
1495 P = isl_printer_print_schedule(P, Schedule);
Michael Kruse79c01732016-12-12 14:51:06 +00001496 auto *str = isl_printer_get_str(P);
1497 dbgs() << "NewScheduleTree: \n" << str << "\n";
1498 free(str);
Tobias Grosser97d87452015-05-30 06:46:59 +00001499 isl_printer_free(P);
1500 });
Tobias Grosser4d63b9d2012-02-20 08:41:21 +00001501
Roman Gareev42402c92016-06-22 09:52:37 +00001502 Function &F = S.getFunction();
1503 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
Roman Gareev98075fe2017-02-02 14:23:14 +00001504 const OptimizerAdditionalInfoTy OAI = {TTI, const_cast<Dependences *>(&D)};
Roman Gareev42402c92016-06-22 09:52:37 +00001505 isl_schedule *NewSchedule =
Roman Gareev98075fe2017-02-02 14:23:14 +00001506 ScheduleTreeOptimizer::optimizeSchedule(Schedule, &OAI);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001507
Roman Gareevb3224ad2016-09-14 06:26:09 +00001508 if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule)) {
Tobias Grosser808cd692015-07-14 09:33:13 +00001509 isl_schedule_free(NewSchedule);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001510 return false;
1511 }
1512
Tobias Grosser808cd692015-07-14 09:33:13 +00001513 S.setScheduleTree(NewSchedule);
Johannes Doerfert7ceb0402015-02-11 17:25:09 +00001514 S.markAsOptimized();
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001515
Roman Gareev5f99f862016-08-21 11:20:39 +00001516 if (OptimizedScops)
1517 S.dump();
1518
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001519 return false;
1520}
1521
Johannes Doerfert3fe584d2015-03-01 18:40:25 +00001522void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
Tobias Grosser28781422012-10-16 07:29:19 +00001523 isl_printer *p;
1524 char *ScheduleStr;
1525
1526 OS << "Calculated schedule:\n";
1527
1528 if (!LastSchedule) {
1529 OS << "n/a\n";
1530 return;
1531 }
1532
1533 p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
1534 p = isl_printer_print_schedule(p, LastSchedule);
1535 ScheduleStr = isl_printer_get_str(p);
1536 isl_printer_free(p);
1537
1538 OS << ScheduleStr << "\n";
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001539}
1540
Tobias Grosser73600b82011-10-08 00:30:40 +00001541void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001542 ScopPass::getAnalysisUsage(AU);
Johannes Doerfertf6557f92015-03-04 22:43:40 +00001543 AU.addRequired<DependenceInfo>();
Roman Gareev42402c92016-06-22 09:52:37 +00001544 AU.addRequired<TargetTransformInfoWrapperPass>();
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001545}
1546
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00001547Pass *polly::createIslScheduleOptimizerPass() {
Tobias Grosser73600b82011-10-08 00:30:40 +00001548 return new IslScheduleOptimizer();
Tobias Grosser30aa24c2011-05-14 19:02:06 +00001549}
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00001550
1551INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
1552 "Polly - Optimize schedule of SCoP", false, false);
Johannes Doerfertf6557f92015-03-04 22:43:40 +00001553INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
Johannes Doerfert99191c72016-05-31 09:41:04 +00001554INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
Roman Gareev42402c92016-06-22 09:52:37 +00001555INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
Tobias Grosser4d96c8d2013-03-23 01:05:07 +00001556INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
1557 "Polly - Optimize schedule of SCoP", false, false)