blob: b6e220beb0c62b2738143029deb19a818c92de51 [file] [log] [blame]
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +00001//===- HexagonBitTracker.cpp ----------------------------------------------===//
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000010#include "HexagonBitTracker.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000011#include "Hexagon.h"
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000012#include "HexagonInstrInfo.h"
13#include "HexagonRegisterInfo.h"
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +000014#include "HexagonSubtarget.h"
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000015#include "llvm/CodeGen/MachineFrameInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000016#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineInstr.h"
18#include "llvm/CodeGen/MachineOperand.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
David Blaikieb3bde2e2017-11-17 01:07:10 +000020#include "llvm/CodeGen/TargetRegisterInfo.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000021#include "llvm/IR/Argument.h"
22#include "llvm/IR/Attributes.h"
23#include "llvm/IR/Function.h"
24#include "llvm/IR/Type.h"
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000025#include "llvm/Support/Compiler.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000026#include "llvm/Support/Debug.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/MathExtras.h"
29#include "llvm/Support/raw_ostream.h"
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +000030#include <cassert>
31#include <cstddef>
32#include <cstdint>
33#include <cstdlib>
34#include <utility>
35#include <vector>
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000036
37using namespace llvm;
38
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000039using BT = BitTracker;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000040
Benjamin Kramerd8861512015-07-13 20:38:16 +000041HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri,
42 MachineRegisterInfo &mri,
43 const HexagonInstrInfo &tii,
44 MachineFunction &mf)
Matthias Braun941a7052016-07-28 18:40:00 +000045 : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000046 // Populate the VRX map (VR to extension-type).
47 // Go over all the formal parameters of the function. If a given parameter
48 // P is sign- or zero-extended, locate the virtual register holding that
49 // parameter and create an entry in the VRX map indicating the type of ex-
50 // tension (and the source type).
51 // This is a bit complicated to do accurately, since the memory layout in-
52 // formation is necessary to precisely determine whether an aggregate para-
53 // meter will be passed in a register or in memory. What is given in MRI
54 // is the association between the physical register that is live-in (i.e.
55 // holds an argument), and the virtual register that this value will be
56 // copied into. This, by itself, is not sufficient to map back the virtual
57 // register to a formal parameter from Function (since consecutive live-ins
58 // from MRI may not correspond to consecutive formal parameters from Func-
59 // tion). To avoid the complications with in-memory arguments, only consi-
60 // der the initial sequence of formal parameters that are known to be
61 // passed via registers.
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000062 unsigned InVirtReg, InPhysReg = 0;
Eugene Zelenkoe4fc6ee2017-07-26 23:20:35 +000063
Matthias Braunf1caa282017-12-15 22:22:58 +000064 for (const Argument &Arg : MF.getFunction().args()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000065 Type *ATy = Arg.getType();
66 unsigned Width = 0;
67 if (ATy->isIntegerTy())
68 Width = ATy->getIntegerBitWidth();
69 else if (ATy->isPointerTy())
70 Width = 32;
71 // If pointer size is not set through target data, it will default to
72 // Module::AnyPointerSize.
73 if (Width == 0 || Width > 64)
74 break;
Reid Kleckner6652a522017-04-28 18:37:16 +000075 if (Arg.hasAttribute(Attribute::ByVal))
Krzysztof Parzyszek60f0b512016-08-11 18:15:16 +000076 continue;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000077 InPhysReg = getNextPhysReg(InPhysReg, Width);
78 if (!InPhysReg)
79 break;
80 InVirtReg = getVirtRegFor(InPhysReg);
81 if (!InVirtReg)
82 continue;
Reid Kleckner6652a522017-04-28 18:37:16 +000083 if (Arg.hasAttribute(Attribute::SExt))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000084 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width)));
Reid Kleckner6652a522017-04-28 18:37:16 +000085 else if (Arg.hasAttribute(Attribute::ZExt))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000086 VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width)));
87 }
88}
89
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000090BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const {
91 if (Sub == 0)
92 return MachineEvaluator::mask(Reg, 0);
Krzysztof Parzyszekd72bd832017-09-25 18:49:42 +000093 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
94 unsigned ID = RC.getID();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000095 uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub));
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +000096 auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
97 bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +000098 switch (ID) {
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +000099 case Hexagon::DoubleRegsRegClassID:
100 case Hexagon::HvxWRRegClassID:
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000101 return IsSubLo ? BT::BitMask(0, RW-1)
102 : BT::BitMask(RW, 2*RW-1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000103 default:
104 break;
105 }
106#ifndef NDEBUG
Francis Visoiu Mistrih9d419d32017-11-28 12:42:37 +0000107 dbgs() << printReg(Reg, &TRI, Sub) << " in reg class "
Krzysztof Parzyszekd72bd832017-09-25 18:49:42 +0000108 << TRI.getRegClassName(&RC) << '\n';
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000109#endif
110 llvm_unreachable("Unexpected register/subregister");
111}
112
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +0000113uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const {
114 assert(TargetRegisterInfo::isPhysicalRegister(Reg));
115
116 using namespace Hexagon;
117 for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass})
118 if (RC.contains(Reg))
119 return TRI.getRegSizeInBits(RC);
120 // Default treatment for other physical registers.
121 if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg))
122 return TRI.getRegSizeInBits(*RC);
123
Benjamin Kramer82b71032017-09-25 19:42:20 +0000124 llvm_unreachable(
125 (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str());
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +0000126}
127
128const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex(
129 const TargetRegisterClass &RC, unsigned Idx) const {
130 if (Idx == 0)
131 return RC;
132
Benjamin Kramer82b71032017-09-25 19:42:20 +0000133#ifndef NDEBUG
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +0000134 const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI);
135 bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo));
136 bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
137 assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg");
Benjamin Kramer82b71032017-09-25 19:42:20 +0000138#endif
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +0000139
140 switch (RC.getID()) {
141 case Hexagon::DoubleRegsRegClassID:
142 return Hexagon::IntRegsRegClass;
143 case Hexagon::HvxWRRegClassID:
144 return Hexagon::HvxVRRegClass;
145 default:
146 break;
147 }
Krzysztof Parzyszek9801d7f2017-09-26 15:31:15 +0000148#ifndef NDEBUG
Krzysztof Parzyszek7e604de2017-09-25 19:12:55 +0000149 dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n';
150#endif
151 llvm_unreachable("Unimplemented combination of reg class/subreg idx");
152}
153
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000154namespace {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000155
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000156class RegisterRefs {
157 std::vector<BT::RegisterRef> Vector;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000158
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000159public:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000160 RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) {
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000161 for (unsigned i = 0, n = Vector.size(); i < n; ++i) {
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000162 const MachineOperand &MO = MI.getOperand(i);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000163 if (MO.isReg())
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000164 Vector[i] = BT::RegisterRef(MO);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000165 // For indices that don't correspond to registers, the entry will
166 // remain constructed via the default constructor.
167 }
168 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000169
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000170 size_t size() const { return Vector.size(); }
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000171
Benjamin Kramer9a5d7882015-07-18 17:43:23 +0000172 const BT::RegisterRef &operator[](unsigned n) const {
173 // The main purpose of this operator is to assert with bad argument.
174 assert(n < Vector.size());
175 return Vector[n];
176 }
177};
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000178
179} // end anonymous namespace
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000180
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000181bool HexagonEvaluator::evaluate(const MachineInstr &MI,
182 const CellMapType &Inputs,
183 CellMapType &Outputs) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000184 using namespace Hexagon;
185
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000186 unsigned NumDefs = 0;
187
188 // Sanity verification: there should not be any defs with subregisters.
Krzysztof Parzyszek02893de2017-10-16 18:43:08 +0000189 for (const MachineOperand &MO : MI.operands()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000190 if (!MO.isReg() || !MO.isDef())
191 continue;
192 NumDefs++;
193 assert(MO.getSubReg() == 0);
194 }
195
196 if (NumDefs == 0)
197 return false;
198
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000199 unsigned Opc = MI.getOpcode();
200
201 if (MI.mayLoad()) {
202 switch (Opc) {
203 // These instructions may be marked as mayLoad, but they are generating
204 // immediate values, so skip them.
205 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000206 case CONST64:
Krzysztof Parzyszek1adca302016-07-26 18:30:11 +0000207 break;
208 default:
209 return evaluateLoad(MI, Inputs, Outputs);
210 }
211 }
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000212
213 // Check COPY instructions that copy formal parameters into virtual
214 // registers. Such parameters can be sign- or zero-extended at the
215 // call site, and we should take advantage of this knowledge. The MRI
216 // keeps a list of pairs of live-in physical and virtual registers,
217 // which provides information about which virtual registers will hold
218 // the argument values. The function will still contain instructions
219 // defining those virtual registers, and in practice those are COPY
220 // instructions from a physical to a virtual register. In such cases,
221 // applying the argument extension to the virtual register can be seen
222 // as simply mirroring the extension that had already been applied to
223 // the physical register at the call site. If the defining instruction
224 // was not a COPY, it would not be clear how to mirror that extension
225 // on the callee's side. For that reason, only check COPY instructions
226 // for potential extensions.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000227 if (MI.isCopy()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000228 if (evaluateFormalCopy(MI, Inputs, Outputs))
229 return true;
230 }
231
232 // Beyond this point, if any operand is a global, skip that instruction.
233 // The reason is that certain instructions that can take an immediate
234 // operand can also have a global symbol in that operand. To avoid
235 // checking what kind of operand a given instruction has individually
236 // for each instruction, do it here. Global symbols as operands gene-
237 // rally do not provide any useful information.
Krzysztof Parzyszek02893de2017-10-16 18:43:08 +0000238 for (const MachineOperand &MO : MI.operands()) {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000239 if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() ||
240 MO.isCPI())
241 return false;
242 }
243
244 RegisterRefs Reg(MI);
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000245#define op(i) MI.getOperand(i)
246#define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs))
247#define im(i) MI.getOperand(i).getImm()
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000248
249 // If the instruction has no register operands, skip it.
250 if (Reg.size() == 0)
251 return false;
252
253 // Record result for register in operand 0.
254 auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs)
255 -> bool {
256 putCell(Reg[0], Val, Outputs);
257 return true;
258 };
259 // Get the cell corresponding to the N-th operand.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000260 auto cop = [this, &Reg, &MI, &Inputs](unsigned N,
261 uint16_t W) -> BT::RegisterCell {
262 const MachineOperand &Op = MI.getOperand(N);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000263 if (Op.isImm())
264 return eIMM(Op.getImm(), W);
265 if (!Op.isReg())
266 return RegisterCell::self(0, W);
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000267 assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch");
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000268 return rc(N);
269 };
270 // Extract RW low bits of the cell.
271 auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW)
272 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000273 assert(RW <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000274 return eXTR(RC, 0, RW);
275 };
276 // Extract RW high bits of the cell.
277 auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW)
278 -> BT::RegisterCell {
279 uint16_t W = RC.width();
280 assert(RW <= W);
281 return eXTR(RC, W-RW, W);
282 };
283 // Extract N-th halfword (counting from the least significant position).
284 auto half = [this] (const BT::RegisterCell &RC, unsigned N)
285 -> BT::RegisterCell {
Krzysztof Parzyszeka45971a2015-07-07 16:02:11 +0000286 assert(N*16+16 <= RC.width());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000287 return eXTR(RC, N*16, N*16+16);
288 };
289 // Shuffle bits (pick even/odd from cells and merge into result).
290 auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt,
291 uint16_t BW, bool Odd) -> BT::RegisterCell {
292 uint16_t I = Odd, Ws = Rs.width();
293 assert(Ws == Rt.width());
294 RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW));
295 I += 2;
296 while (I*BW < Ws) {
297 RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW));
298 I += 2;
299 }
300 return RC;
301 };
302
303 // The bitwidth of the 0th operand. In most (if not all) of the
304 // instructions below, the 0th operand is the defined register.
305 // Pre-compute the bitwidth here, because it is needed in many cases
306 // cases below.
307 uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0;
308
Krzysztof Parzyszek128e1912017-02-23 22:11:52 +0000309 // Register id of the 0th operand. It can be 0.
310 unsigned Reg0 = Reg[0].Reg;
311
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000312 switch (Opc) {
313 // Transfer immediate:
314
315 case A2_tfrsi:
316 case A2_tfrpi:
317 case CONST32:
Krzysztof Parzyszeka3386502016-08-10 16:46:36 +0000318 case CONST64:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000319 return rr0(eIMM(im(1), W0), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000320 case PS_false:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000321 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000322 case PS_true:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000323 return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs);
Krzysztof Parzyszek1d01a792016-08-16 18:08:40 +0000324 case PS_fi: {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000325 int FI = op(1).getIndex();
326 int Off = op(2).getImm();
327 unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off);
328 unsigned L = Log2_32(A);
329 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
330 RC.fill(0, L, BT::BitValue::Zero);
331 return rr0(RC, Outputs);
332 }
333
334 // Transfer register:
335
336 case A2_tfr:
337 case A2_tfrp:
338 case C2_pxfer_map:
339 return rr0(rc(1), Outputs);
340 case C2_tfrpr: {
341 uint16_t RW = W0;
342 uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
343 assert(PW <= RW);
344 RegisterCell PC = eXTR(rc(1), 0, PW);
345 RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1));
346 RC.fill(PW, RW, BT::BitValue::Zero);
347 return rr0(RC, Outputs);
348 }
349 case C2_tfrrp: {
350 RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0);
351 W0 = 8; // XXX Pred size
352 return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs);
353 }
354
355 // Arithmetic:
356
357 case A2_abs:
358 case A2_absp:
359 // TODO
360 break;
361
362 case A2_addsp: {
363 uint16_t W1 = getRegBitWidth(Reg[1]);
364 assert(W0 == 64 && W1 == 32);
365 RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1));
366 RegisterCell RC = eADD(eSXT(CW, W1), rc(2));
367 return rr0(RC, Outputs);
368 }
369 case A2_add:
370 case A2_addp:
371 return rr0(eADD(rc(1), rc(2)), Outputs);
372 case A2_addi:
373 return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs);
374 case S4_addi_asl_ri: {
375 RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3)));
376 return rr0(RC, Outputs);
377 }
378 case S4_addi_lsr_ri: {
379 RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3)));
380 return rr0(RC, Outputs);
381 }
382 case S4_addaddi: {
383 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
384 return rr0(RC, Outputs);
385 }
386 case M4_mpyri_addi: {
387 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
388 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
389 return rr0(RC, Outputs);
390 }
391 case M4_mpyrr_addi: {
392 RegisterCell M = eMLS(rc(2), rc(3));
393 RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0));
394 return rr0(RC, Outputs);
395 }
396 case M4_mpyri_addr_u2: {
397 RegisterCell M = eMLS(eIMM(im(2), W0), rc(3));
398 RegisterCell RC = eADD(rc(1), lo(M, W0));
399 return rr0(RC, Outputs);
400 }
401 case M4_mpyri_addr: {
402 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
403 RegisterCell RC = eADD(rc(1), lo(M, W0));
404 return rr0(RC, Outputs);
405 }
406 case M4_mpyrr_addr: {
407 RegisterCell M = eMLS(rc(2), rc(3));
408 RegisterCell RC = eADD(rc(1), lo(M, W0));
409 return rr0(RC, Outputs);
410 }
411 case S4_subaddi: {
412 RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3)));
413 return rr0(RC, Outputs);
414 }
415 case M2_accii: {
416 RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0)));
417 return rr0(RC, Outputs);
418 }
419 case M2_acci: {
420 RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3)));
421 return rr0(RC, Outputs);
422 }
423 case M2_subacc: {
424 RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3)));
425 return rr0(RC, Outputs);
426 }
427 case S2_addasl_rrri: {
428 RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3)));
429 return rr0(RC, Outputs);
430 }
431 case C4_addipc: {
432 RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0);
433 RPC.fill(0, 2, BT::BitValue::Zero);
434 return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs);
435 }
436 case A2_sub:
437 case A2_subp:
438 return rr0(eSUB(rc(1), rc(2)), Outputs);
439 case A2_subri:
440 return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs);
441 case S4_subi_asl_ri: {
442 RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3)));
443 return rr0(RC, Outputs);
444 }
445 case S4_subi_lsr_ri: {
446 RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3)));
447 return rr0(RC, Outputs);
448 }
449 case M2_naccii: {
450 RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0)));
451 return rr0(RC, Outputs);
452 }
453 case M2_nacci: {
454 RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3)));
455 return rr0(RC, Outputs);
456 }
457 // 32-bit negation is done by "Rd = A2_subri 0, Rs"
458 case A2_negp:
459 return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs);
460
461 case M2_mpy_up: {
462 RegisterCell M = eMLS(rc(1), rc(2));
463 return rr0(hi(M, W0), Outputs);
464 }
465 case M2_dpmpyss_s0:
466 return rr0(eMLS(rc(1), rc(2)), Outputs);
467 case M2_dpmpyss_acc_s0:
468 return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs);
469 case M2_dpmpyss_nac_s0:
470 return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs);
471 case M2_mpyi: {
472 RegisterCell M = eMLS(rc(1), rc(2));
473 return rr0(lo(M, W0), Outputs);
474 }
475 case M2_macsip: {
476 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
477 RegisterCell RC = eADD(rc(1), lo(M, W0));
478 return rr0(RC, Outputs);
479 }
480 case M2_macsin: {
481 RegisterCell M = eMLS(rc(2), eIMM(im(3), W0));
482 RegisterCell RC = eSUB(rc(1), lo(M, W0));
483 return rr0(RC, Outputs);
484 }
485 case M2_maci: {
486 RegisterCell M = eMLS(rc(2), rc(3));
487 RegisterCell RC = eADD(rc(1), lo(M, W0));
488 return rr0(RC, Outputs);
489 }
490 case M2_mpysmi: {
491 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
492 return rr0(lo(M, 32), Outputs);
493 }
494 case M2_mpysin: {
495 RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0));
496 return rr0(lo(M, 32), Outputs);
497 }
498 case M2_mpysip: {
499 RegisterCell M = eMLS(rc(1), eIMM(im(2), W0));
500 return rr0(lo(M, 32), Outputs);
501 }
502 case M2_mpyu_up: {
503 RegisterCell M = eMLU(rc(1), rc(2));
504 return rr0(hi(M, W0), Outputs);
505 }
506 case M2_dpmpyuu_s0:
507 return rr0(eMLU(rc(1), rc(2)), Outputs);
508 case M2_dpmpyuu_acc_s0:
509 return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs);
510 case M2_dpmpyuu_nac_s0:
511 return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs);
512 //case M2_mpysu_up:
513
514 // Logical/bitwise:
515
516 case A2_andir:
517 return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs);
518 case A2_and:
519 case A2_andp:
520 return rr0(eAND(rc(1), rc(2)), Outputs);
521 case A4_andn:
522 case A4_andnp:
523 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
524 case S4_andi_asl_ri: {
525 RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3)));
526 return rr0(RC, Outputs);
527 }
528 case S4_andi_lsr_ri: {
529 RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3)));
530 return rr0(RC, Outputs);
531 }
532 case M4_and_and:
533 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
534 case M4_and_andn:
535 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
536 case M4_and_or:
537 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
538 case M4_and_xor:
539 return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs);
540 case A2_orir:
541 return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs);
542 case A2_or:
543 case A2_orp:
544 return rr0(eORL(rc(1), rc(2)), Outputs);
545 case A4_orn:
546 case A4_ornp:
547 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
548 case S4_ori_asl_ri: {
549 RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3)));
550 return rr0(RC, Outputs);
551 }
552 case S4_ori_lsr_ri: {
553 RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3)));
554 return rr0(RC, Outputs);
555 }
556 case M4_or_and:
557 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
558 case M4_or_andn:
559 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
560 case S4_or_andi:
561 case S4_or_andix: {
562 RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0)));
563 return rr0(RC, Outputs);
564 }
565 case S4_or_ori: {
566 RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0)));
567 return rr0(RC, Outputs);
568 }
569 case M4_or_or:
570 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
571 case M4_or_xor:
572 return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs);
573 case A2_xor:
574 case A2_xorp:
575 return rr0(eXOR(rc(1), rc(2)), Outputs);
576 case M4_xor_and:
577 return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs);
578 case M4_xor_andn:
579 return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
580 case M4_xor_or:
581 return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs);
582 case M4_xor_xacc:
583 return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs);
584 case A2_not:
585 case A2_notp:
586 return rr0(eNOT(rc(1)), Outputs);
587
588 case S2_asl_i_r:
589 case S2_asl_i_p:
590 return rr0(eASL(rc(1), im(2)), Outputs);
591 case A2_aslh:
592 return rr0(eASL(rc(1), 16), Outputs);
593 case S2_asl_i_r_acc:
594 case S2_asl_i_p_acc:
595 return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs);
596 case S2_asl_i_r_nac:
597 case S2_asl_i_p_nac:
598 return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs);
599 case S2_asl_i_r_and:
600 case S2_asl_i_p_and:
601 return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs);
602 case S2_asl_i_r_or:
603 case S2_asl_i_p_or:
604 return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs);
605 case S2_asl_i_r_xacc:
606 case S2_asl_i_p_xacc:
607 return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs);
608 case S2_asl_i_vh:
609 case S2_asl_i_vw:
610 // TODO
611 break;
612
613 case S2_asr_i_r:
614 case S2_asr_i_p:
615 return rr0(eASR(rc(1), im(2)), Outputs);
616 case A2_asrh:
617 return rr0(eASR(rc(1), 16), Outputs);
618 case S2_asr_i_r_acc:
619 case S2_asr_i_p_acc:
620 return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs);
621 case S2_asr_i_r_nac:
622 case S2_asr_i_p_nac:
623 return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs);
624 case S2_asr_i_r_and:
625 case S2_asr_i_p_and:
626 return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs);
627 case S2_asr_i_r_or:
628 case S2_asr_i_p_or:
629 return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs);
630 case S2_asr_i_r_rnd: {
631 // The input is first sign-extended to 64 bits, then the output
632 // is truncated back to 32 bits.
633 assert(W0 == 32);
634 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
635 RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1);
636 return rr0(eXTR(RC, 0, W0), Outputs);
637 }
638 case S2_asr_i_r_rnd_goodsyntax: {
639 int64_t S = im(2);
640 if (S == 0)
641 return rr0(rc(1), Outputs);
642 // Result: S2_asr_i_r_rnd Rs, u5-1
643 RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0);
644 RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1);
645 return rr0(eXTR(RC, 0, W0), Outputs);
646 }
647 case S2_asr_r_vh:
648 case S2_asr_i_vw:
649 case S2_asr_i_svw_trun:
650 // TODO
651 break;
652
653 case S2_lsr_i_r:
654 case S2_lsr_i_p:
655 return rr0(eLSR(rc(1), im(2)), Outputs);
656 case S2_lsr_i_r_acc:
657 case S2_lsr_i_p_acc:
658 return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs);
659 case S2_lsr_i_r_nac:
660 case S2_lsr_i_p_nac:
661 return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs);
662 case S2_lsr_i_r_and:
663 case S2_lsr_i_p_and:
664 return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs);
665 case S2_lsr_i_r_or:
666 case S2_lsr_i_p_or:
667 return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs);
668 case S2_lsr_i_r_xacc:
669 case S2_lsr_i_p_xacc:
670 return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs);
671
672 case S2_clrbit_i: {
673 RegisterCell RC = rc(1);
674 RC[im(2)] = BT::BitValue::Zero;
675 return rr0(RC, Outputs);
676 }
677 case S2_setbit_i: {
678 RegisterCell RC = rc(1);
679 RC[im(2)] = BT::BitValue::One;
680 return rr0(RC, Outputs);
681 }
682 case S2_togglebit_i: {
683 RegisterCell RC = rc(1);
684 uint16_t BX = im(2);
685 RC[BX] = RC[BX].is(0) ? BT::BitValue::One
686 : RC[BX].is(1) ? BT::BitValue::Zero
687 : BT::BitValue::self();
688 return rr0(RC, Outputs);
689 }
690
691 case A4_bitspliti: {
692 uint16_t W1 = getRegBitWidth(Reg[1]);
693 uint16_t BX = im(2);
694 // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx]
695 const BT::BitValue Zero = BT::BitValue::Zero;
696 RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero)
697 .fill(W1+(W1-BX), W0, Zero);
698 RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1);
699 RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1);
700 return rr0(RC, Outputs);
701 }
702 case S4_extract:
703 case S4_extractp:
704 case S2_extractu:
705 case S2_extractup: {
706 uint16_t Wd = im(2), Of = im(3);
707 assert(Wd <= W0);
708 if (Wd == 0)
709 return rr0(eIMM(0, W0), Outputs);
710 // If the width extends beyond the register size, pad the register
711 // with 0 bits.
712 RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1);
713 RegisterCell Ext = eXTR(Pad, Of, Wd+Of);
714 // Ext is short, need to extend it with 0s or sign bit.
715 RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1));
716 if (Opc == S2_extractu || Opc == S2_extractup)
717 return rr0(eZXT(RC, Wd), Outputs);
718 return rr0(eSXT(RC, Wd), Outputs);
719 }
720 case S2_insert:
721 case S2_insertp: {
722 uint16_t Wd = im(3), Of = im(4);
723 assert(Wd < W0 && Of < W0);
724 // If Wd+Of exceeds W0, the inserted bits are truncated.
725 if (Wd+Of > W0)
726 Wd = W0-Of;
727 if (Wd == 0)
728 return rr0(rc(1), Outputs);
729 return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs);
730 }
731
732 // Bit permutations:
733
734 case A2_combineii:
735 case A4_combineii:
736 case A4_combineir:
737 case A4_combineri:
738 case A2_combinew:
Krzysztof Parzyszek23ee12e2016-08-03 18:35:48 +0000739 case V6_vcombine:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000740 assert(W0 % 2 == 0);
741 return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs);
742 case A2_combine_ll:
743 case A2_combine_lh:
744 case A2_combine_hl:
745 case A2_combine_hh: {
746 assert(W0 == 32);
747 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
748 // Low half in the output is 0 for _ll and _hl, 1 otherwise:
749 unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl);
750 // High half in the output is 0 for _ll and _lh, 1 otherwise:
751 unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh);
752 RegisterCell R1 = rc(1);
753 RegisterCell R2 = rc(2);
754 RegisterCell RC = half(R2, LoH).cat(half(R1, HiH));
755 return rr0(RC, Outputs);
756 }
757 case S2_packhl: {
758 assert(W0 == 64);
759 assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32);
760 RegisterCell R1 = rc(1);
761 RegisterCell R2 = rc(2);
762 RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1))
763 .cat(half(R1, 1));
764 return rr0(RC, Outputs);
765 }
766 case S2_shuffeb: {
767 RegisterCell RC = shuffle(rc(1), rc(2), 8, false);
768 return rr0(RC, Outputs);
769 }
770 case S2_shuffeh: {
771 RegisterCell RC = shuffle(rc(1), rc(2), 16, false);
772 return rr0(RC, Outputs);
773 }
774 case S2_shuffob: {
775 RegisterCell RC = shuffle(rc(1), rc(2), 8, true);
776 return rr0(RC, Outputs);
777 }
778 case S2_shuffoh: {
779 RegisterCell RC = shuffle(rc(1), rc(2), 16, true);
780 return rr0(RC, Outputs);
781 }
782 case C2_mask: {
783 uint16_t WR = W0;
784 uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]);
785 assert(WR == 64 && WP == 8);
786 RegisterCell R1 = rc(1);
787 RegisterCell RC(WR);
788 for (uint16_t i = 0; i < WP; ++i) {
789 const BT::BitValue &V = R1[i];
790 BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self();
791 RC.fill(i*8, i*8+8, F);
792 }
793 return rr0(RC, Outputs);
794 }
795
796 // Mux:
797
798 case C2_muxii:
799 case C2_muxir:
800 case C2_muxri:
801 case C2_mux: {
802 BT::BitValue PC0 = rc(1)[0];
803 RegisterCell R2 = cop(2, W0);
804 RegisterCell R3 = cop(3, W0);
805 if (PC0.is(0) || PC0.is(1))
806 return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs);
807 R2.meet(R3, Reg[0].Reg);
808 return rr0(R2, Outputs);
809 }
810 case C2_vmux:
811 // TODO
812 break;
813
814 // Sign- and zero-extension:
815
816 case A2_sxtb:
817 return rr0(eSXT(rc(1), 8), Outputs);
818 case A2_sxth:
819 return rr0(eSXT(rc(1), 16), Outputs);
820 case A2_sxtw: {
821 uint16_t W1 = getRegBitWidth(Reg[1]);
822 assert(W0 == 64 && W1 == 32);
823 RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1);
824 return rr0(RC, Outputs);
825 }
826 case A2_zxtb:
827 return rr0(eZXT(rc(1), 8), Outputs);
828 case A2_zxth:
829 return rr0(eZXT(rc(1), 16), Outputs);
830
Krzysztof Parzyszek128e1912017-02-23 22:11:52 +0000831 // Saturations
832
833 case A2_satb:
834 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
835 case A2_sath:
836 return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
837 case A2_satub:
838 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs);
839 case A2_satuh:
840 return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs);
841
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000842 // Bit count:
843
844 case S2_cl0:
845 case S2_cl0p:
846 // Always produce a 32-bit result.
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000847 return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000848 case S2_cl1:
849 case S2_cl1p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000850 return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000851 case S2_clb:
852 case S2_clbp: {
853 uint16_t W1 = getRegBitWidth(Reg[1]);
854 RegisterCell R1 = rc(1);
855 BT::BitValue TV = R1[W1-1];
856 if (TV.is(0) || TV.is(1))
857 return rr0(eCLB(R1, TV, 32), Outputs);
858 break;
859 }
860 case S2_ct0:
861 case S2_ct0p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000862 return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000863 case S2_ct1:
864 case S2_ct1p:
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +0000865 return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000866 case S5_popcountp:
867 // TODO
868 break;
869
870 case C2_all8: {
871 RegisterCell P1 = rc(1);
872 bool Has0 = false, All1 = true;
873 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
874 if (!P1[i].is(1))
875 All1 = false;
876 if (!P1[i].is(0))
877 continue;
878 Has0 = true;
879 break;
880 }
881 if (!Has0 && !All1)
882 break;
883 RegisterCell RC(W0);
884 RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero));
885 return rr0(RC, Outputs);
886 }
887 case C2_any8: {
888 RegisterCell P1 = rc(1);
889 bool Has1 = false, All0 = true;
890 for (uint16_t i = 0; i < 8/*XXX*/; ++i) {
891 if (!P1[i].is(0))
892 All0 = false;
893 if (!P1[i].is(1))
894 continue;
895 Has1 = true;
896 break;
897 }
898 if (!Has1 && !All0)
899 break;
900 RegisterCell RC(W0);
901 RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero));
902 return rr0(RC, Outputs);
903 }
904 case C2_and:
905 return rr0(eAND(rc(1), rc(2)), Outputs);
906 case C2_andn:
907 return rr0(eAND(rc(1), eNOT(rc(2))), Outputs);
908 case C2_not:
909 return rr0(eNOT(rc(1)), Outputs);
910 case C2_or:
911 return rr0(eORL(rc(1), rc(2)), Outputs);
912 case C2_orn:
913 return rr0(eORL(rc(1), eNOT(rc(2))), Outputs);
914 case C2_xor:
915 return rr0(eXOR(rc(1), rc(2)), Outputs);
916 case C4_and_and:
917 return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs);
918 case C4_and_andn:
919 return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
920 case C4_and_or:
921 return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs);
922 case C4_and_orn:
923 return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
924 case C4_or_and:
925 return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs);
926 case C4_or_andn:
927 return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs);
928 case C4_or_or:
929 return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs);
930 case C4_or_orn:
931 return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs);
932 case C2_bitsclr:
933 case C2_bitsclri:
934 case C2_bitsset:
935 case C4_nbitsclr:
936 case C4_nbitsclri:
937 case C4_nbitsset:
938 // TODO
939 break;
940 case S2_tstbit_i:
941 case S4_ntstbit_i: {
942 BT::BitValue V = rc(1)[im(2)];
943 if (V.is(0) || V.is(1)) {
944 // If instruction is S2_tstbit_i, test for 1, otherwise test for 0.
945 bool TV = (Opc == S2_tstbit_i);
946 BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero;
947 return rr0(RegisterCell(W0).fill(0, W0, F), Outputs);
948 }
949 break;
950 }
951
952 default:
953 return MachineEvaluator::evaluate(MI, Inputs, Outputs);
954 }
955 #undef im
956 #undef rc
957 #undef op
958 return false;
959}
960
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000961bool HexagonEvaluator::evaluate(const MachineInstr &BI,
962 const CellMapType &Inputs,
963 BranchTargetList &Targets,
964 bool &FallsThru) const {
Krzysztof Parzyszeka5409972016-11-09 16:19:08 +0000965 // We need to evaluate one branch at a time. TII::analyzeBranch checks
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000966 // all the branches in a basic block at once, so we cannot use it.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000967 unsigned Opc = BI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000968 bool SimpleBranch = false;
969 bool Negated = false;
970 switch (Opc) {
971 case Hexagon::J2_jumpf:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000972 case Hexagon::J2_jumpfpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000973 case Hexagon::J2_jumpfnew:
974 case Hexagon::J2_jumpfnewpt:
975 Negated = true;
Simon Pilgrim087e87d2017-07-07 13:21:43 +0000976 LLVM_FALLTHROUGH;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000977 case Hexagon::J2_jumpt:
Krzysztof Parzyszeka243adf2016-08-19 14:14:09 +0000978 case Hexagon::J2_jumptpt:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000979 case Hexagon::J2_jumptnew:
980 case Hexagon::J2_jumptnewpt:
981 // Simple branch: if([!]Pn) jump ...
982 // i.e. Op0 = predicate, Op1 = branch target.
983 SimpleBranch = true;
984 break;
985 case Hexagon::J2_jump:
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000986 Targets.insert(BI.getOperand(0).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +0000987 FallsThru = false;
988 return true;
989 default:
990 // If the branch is of unknown type, assume that all successors are
991 // executable.
992 return false;
993 }
994
995 if (!SimpleBranch)
996 return false;
997
998 // BI is a conditional branch if we got here.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +0000999 RegisterRef PR = BI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001000 RegisterCell PC = getCell(PR, Inputs);
1001 const BT::BitValue &Test = PC[0];
1002
1003 // If the condition is neither true nor false, then it's unknown.
1004 if (!Test.is(0) && !Test.is(1))
1005 return false;
1006
1007 // "Test.is(!Negated)" means "branch condition is true".
1008 if (!Test.is(!Negated)) {
1009 // Condition known to be false.
1010 FallsThru = true;
1011 return true;
1012 }
1013
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001014 Targets.insert(BI.getOperand(1).getMBB());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001015 FallsThru = false;
1016 return true;
1017}
1018
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001019bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI,
1020 const CellMapType &Inputs,
1021 CellMapType &Outputs) const {
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +00001022 using namespace Hexagon;
1023
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001024 if (TII.isPredicated(MI))
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001025 return false;
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001026 assert(MI.mayLoad() && "A load that mayn't?");
1027 unsigned Opc = MI.getOpcode();
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001028
1029 uint16_t BitNum;
1030 bool SignEx;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001031
1032 switch (Opc) {
1033 default:
1034 return false;
1035
1036#if 0
1037 // memb_fifo
1038 case L2_loadalignb_pbr:
1039 case L2_loadalignb_pcr:
1040 case L2_loadalignb_pi:
1041 // memh_fifo
1042 case L2_loadalignh_pbr:
1043 case L2_loadalignh_pcr:
1044 case L2_loadalignh_pi:
1045 // membh
1046 case L2_loadbsw2_pbr:
1047 case L2_loadbsw2_pci:
1048 case L2_loadbsw2_pcr:
1049 case L2_loadbsw2_pi:
1050 case L2_loadbsw4_pbr:
1051 case L2_loadbsw4_pci:
1052 case L2_loadbsw4_pcr:
1053 case L2_loadbsw4_pi:
1054 // memubh
1055 case L2_loadbzw2_pbr:
1056 case L2_loadbzw2_pci:
1057 case L2_loadbzw2_pcr:
1058 case L2_loadbzw2_pi:
1059 case L2_loadbzw4_pbr:
1060 case L2_loadbzw4_pci:
1061 case L2_loadbzw4_pcr:
1062 case L2_loadbzw4_pi:
1063#endif
1064
1065 case L2_loadrbgp:
1066 case L2_loadrb_io:
1067 case L2_loadrb_pbr:
1068 case L2_loadrb_pci:
1069 case L2_loadrb_pcr:
1070 case L2_loadrb_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001071 case PS_loadrbabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001072 case L4_loadrb_ap:
1073 case L4_loadrb_rr:
1074 case L4_loadrb_ur:
1075 BitNum = 8;
1076 SignEx = true;
1077 break;
1078
1079 case L2_loadrubgp:
1080 case L2_loadrub_io:
1081 case L2_loadrub_pbr:
1082 case L2_loadrub_pci:
1083 case L2_loadrub_pcr:
1084 case L2_loadrub_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001085 case PS_loadrubabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001086 case L4_loadrub_ap:
1087 case L4_loadrub_rr:
1088 case L4_loadrub_ur:
1089 BitNum = 8;
1090 SignEx = false;
1091 break;
1092
1093 case L2_loadrhgp:
1094 case L2_loadrh_io:
1095 case L2_loadrh_pbr:
1096 case L2_loadrh_pci:
1097 case L2_loadrh_pcr:
1098 case L2_loadrh_pi:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001099 case PS_loadrhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001100 case L4_loadrh_ap:
1101 case L4_loadrh_rr:
1102 case L4_loadrh_ur:
1103 BitNum = 16;
1104 SignEx = true;
1105 break;
1106
1107 case L2_loadruhgp:
1108 case L2_loadruh_io:
1109 case L2_loadruh_pbr:
1110 case L2_loadruh_pci:
1111 case L2_loadruh_pcr:
1112 case L2_loadruh_pi:
1113 case L4_loadruh_rr:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001114 case PS_loadruhabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001115 case L4_loadruh_ap:
1116 case L4_loadruh_ur:
1117 BitNum = 16;
1118 SignEx = false;
1119 break;
1120
1121 case L2_loadrigp:
1122 case L2_loadri_io:
1123 case L2_loadri_pbr:
1124 case L2_loadri_pci:
1125 case L2_loadri_pcr:
1126 case L2_loadri_pi:
1127 case L2_loadw_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001128 case PS_loadriabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001129 case L4_loadri_ap:
1130 case L4_loadri_rr:
1131 case L4_loadri_ur:
1132 case LDriw_pred:
1133 BitNum = 32;
1134 SignEx = true;
1135 break;
1136
1137 case L2_loadrdgp:
1138 case L2_loadrd_io:
1139 case L2_loadrd_pbr:
1140 case L2_loadrd_pci:
1141 case L2_loadrd_pcr:
1142 case L2_loadrd_pi:
1143 case L4_loadd_locked:
Colin LeMahieu9675de52016-10-06 23:02:11 +00001144 case PS_loadrdabs:
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001145 case L4_loadrd_ap:
1146 case L4_loadrd_rr:
1147 case L4_loadrd_ur:
1148 BitNum = 64;
1149 SignEx = true;
1150 break;
1151 }
1152
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001153 const MachineOperand &MD = MI.getOperand(0);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001154 assert(MD.isReg() && MD.isDef());
1155 RegisterRef RD = MD;
1156
1157 uint16_t W = getRegBitWidth(RD);
1158 assert(W >= BitNum && BitNum > 0);
1159 RegisterCell Res(W);
1160
1161 for (uint16_t i = 0; i < BitNum; ++i)
1162 Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i));
1163
1164 if (SignEx) {
1165 const BT::BitValue &Sign = Res[BitNum-1];
1166 for (uint16_t i = BitNum; i < W; ++i)
1167 Res[i] = BT::BitValue::ref(Sign);
1168 } else {
1169 for (uint16_t i = BitNum; i < W; ++i)
1170 Res[i] = BT::BitValue::Zero;
1171 }
1172
1173 putCell(RD, Res, Outputs);
1174 return true;
1175}
1176
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001177bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI,
1178 const CellMapType &Inputs,
1179 CellMapType &Outputs) const {
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001180 // If MI defines a formal parameter, but is not a copy (loads are handled
1181 // in evaluateLoad), then it's not clear what to do.
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001182 assert(MI.isCopy());
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001183
Duncan P. N. Exon Smith98226e32016-07-12 01:55:32 +00001184 RegisterRef RD = MI.getOperand(0);
1185 RegisterRef RS = MI.getOperand(1);
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001186 assert(RD.Sub == 0);
1187 if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg))
1188 return false;
1189 RegExtMap::const_iterator F = VRX.find(RD.Reg);
1190 if (F == VRX.end())
1191 return false;
1192
1193 uint16_t EW = F->second.Width;
1194 // Store RD's cell into the map. This will associate the cell with a virtual
1195 // register, and make zero-/sign-extends possible (otherwise we would be ex-
1196 // tending "self" bit values, which will have no effect, since "self" values
1197 // cannot be references to anything).
1198 putCell(RD, getCell(RS, Inputs), Outputs);
1199
1200 RegisterCell Res;
1201 // Read RD's cell from the outputs instead of RS's cell from the inputs:
1202 if (F->second.Type == ExtType::SExt)
1203 Res = eSXT(getCell(RD, Outputs), EW);
1204 else if (F->second.Type == ExtType::ZExt)
1205 Res = eZXT(getCell(RD, Outputs), EW);
1206
1207 putCell(RD, Res, Outputs);
1208 return true;
1209}
1210
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001211unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const {
1212 using namespace Hexagon;
Eugene Zelenkob2ca1b32017-01-04 02:02:05 +00001213
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001214 bool Is64 = DoubleRegsRegClass.contains(PReg);
1215 assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg));
1216
1217 static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 };
1218 static const unsigned Phys64[] = { D0, D1, D2 };
1219 const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned);
1220 const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned);
1221
1222 // Return the first parameter register of the required width.
1223 if (PReg == 0)
1224 return (Width <= 32) ? Phys32[0] : Phys64[0];
1225
1226 // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the
1227 // next register.
1228 unsigned Idx32 = 0, Idx64 = 0;
1229 if (!Is64) {
1230 while (Idx32 < Num32) {
1231 if (Phys32[Idx32] == PReg)
1232 break;
1233 Idx32++;
1234 }
1235 Idx64 = Idx32/2;
1236 } else {
1237 while (Idx64 < Num64) {
1238 if (Phys64[Idx64] == PReg)
1239 break;
1240 Idx64++;
1241 }
1242 Idx32 = Idx64*2+1;
1243 }
1244
1245 if (Width <= 32)
1246 return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0;
1247 return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0;
1248}
1249
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001250unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const {
Krzysztof Parzyszek72518ea2017-10-16 19:08:41 +00001251 for (std::pair<unsigned,unsigned> P : MRI.liveins())
1252 if (P.first == PReg)
1253 return P.second;
Krzysztof Parzyszeke53b31a2015-07-07 15:16:42 +00001254 return 0;
1255}