blob: 1a5655b0966988120fe3477c7954d44e6787ac33 [file] [log] [blame]
Chris Lattner0a8191e2010-01-05 07:50:36 +00001//===- InstCombineAndOrXor.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitAnd, visitOr, and visitXor functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Intrinsics.h"
16#include "llvm/Analysis/InstructionSimplify.h"
Pete Cooperebf98c12011-12-17 01:20:32 +000017#include "llvm/Transforms/Utils/CmpInstAnalysis.h"
Anders Carlssonda80afe2011-03-01 15:05:01 +000018#include "llvm/Support/ConstantRange.h"
Chris Lattner0a8191e2010-01-05 07:50:36 +000019#include "llvm/Support/PatternMatch.h"
20using namespace llvm;
21using namespace PatternMatch;
22
23
24/// AddOne - Add one to a ConstantInt.
25static Constant *AddOne(Constant *C) {
26 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
27}
28/// SubOne - Subtract one from a ConstantInt.
29static Constant *SubOne(ConstantInt *C) {
30 return ConstantInt::get(C->getContext(), C->getValue()-1);
31}
32
33/// isFreeToInvert - Return true if the specified value is free to invert (apply
34/// ~ to). This happens in cases where the ~ can be eliminated.
35static inline bool isFreeToInvert(Value *V) {
36 // ~(~(X)) -> X.
37 if (BinaryOperator::isNot(V))
38 return true;
39
40 // Constants can be considered to be not'ed values.
41 if (isa<ConstantInt>(V))
42 return true;
43
44 // Compares can be inverted if they have a single use.
45 if (CmpInst *CI = dyn_cast<CmpInst>(V))
46 return CI->hasOneUse();
47
48 return false;
49}
50
51static inline Value *dyn_castNotVal(Value *V) {
52 // If this is not(not(x)) don't return that this is a not: we want the two
53 // not's to be folded first.
54 if (BinaryOperator::isNot(V)) {
55 Value *Operand = BinaryOperator::getNotArgument(V);
56 if (!isFreeToInvert(Operand))
57 return Operand;
58 }
59
60 // Constants can be considered to be not'ed values...
61 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
62 return ConstantInt::get(C->getType(), ~C->getValue());
63 return 0;
64}
65
Chris Lattner0a8191e2010-01-05 07:50:36 +000066/// getFCmpCode - Similar to getICmpCode but for FCmpInst. This encodes a fcmp
67/// predicate into a three bit mask. It also returns whether it is an ordered
68/// predicate by reference.
69static unsigned getFCmpCode(FCmpInst::Predicate CC, bool &isOrdered) {
70 isOrdered = false;
71 switch (CC) {
72 case FCmpInst::FCMP_ORD: isOrdered = true; return 0; // 000
73 case FCmpInst::FCMP_UNO: return 0; // 000
74 case FCmpInst::FCMP_OGT: isOrdered = true; return 1; // 001
75 case FCmpInst::FCMP_UGT: return 1; // 001
76 case FCmpInst::FCMP_OEQ: isOrdered = true; return 2; // 010
77 case FCmpInst::FCMP_UEQ: return 2; // 010
78 case FCmpInst::FCMP_OGE: isOrdered = true; return 3; // 011
79 case FCmpInst::FCMP_UGE: return 3; // 011
80 case FCmpInst::FCMP_OLT: isOrdered = true; return 4; // 100
81 case FCmpInst::FCMP_ULT: return 4; // 100
82 case FCmpInst::FCMP_ONE: isOrdered = true; return 5; // 101
83 case FCmpInst::FCMP_UNE: return 5; // 101
84 case FCmpInst::FCMP_OLE: isOrdered = true; return 6; // 110
85 case FCmpInst::FCMP_ULE: return 6; // 110
86 // True -> 7
87 default:
88 // Not expecting FCMP_FALSE and FCMP_TRUE;
89 llvm_unreachable("Unexpected FCmp predicate!");
90 return 0;
91 }
92}
93
94/// getICmpValue - This is the complement of getICmpCode, which turns an
95/// opcode and two operands into either a constant true or false, or a brand
96/// new ICmp instruction. The sign is passed in to determine which kind
97/// of predicate to use in the new icmp instruction.
Pete Cooperebf98c12011-12-17 01:20:32 +000098Value *getNewICmpValue(bool Sign, unsigned Code, Value *LHS, Value *RHS,
99 InstCombiner::BuilderTy *Builder) {
100 ICmpInst::Predicate NewPred;
101 if (Value *NewConstant = getICmpValue(Sign, Code, LHS, RHS, NewPred))
102 return NewConstant;
103 return Builder->CreateICmp(NewPred, LHS, RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000104}
105
106/// getFCmpValue - This is the complement of getFCmpCode, which turns an
107/// opcode and two operands into either a FCmp instruction. isordered is passed
108/// in to determine which kind of predicate to use in the new fcmp instruction.
109static Value *getFCmpValue(bool isordered, unsigned code,
Chris Lattner067459c2010-03-05 08:46:26 +0000110 Value *LHS, Value *RHS,
111 InstCombiner::BuilderTy *Builder) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000112 CmpInst::Predicate Pred;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000113 switch (code) {
Chris Lattner343d2e42010-03-05 07:47:57 +0000114 default: assert(0 && "Illegal FCmp code!");
115 case 0: Pred = isordered ? FCmpInst::FCMP_ORD : FCmpInst::FCMP_UNO; break;
116 case 1: Pred = isordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; break;
117 case 2: Pred = isordered ? FCmpInst::FCMP_OEQ : FCmpInst::FCMP_UEQ; break;
118 case 3: Pred = isordered ? FCmpInst::FCMP_OGE : FCmpInst::FCMP_UGE; break;
119 case 4: Pred = isordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; break;
120 case 5: Pred = isordered ? FCmpInst::FCMP_ONE : FCmpInst::FCMP_UNE; break;
121 case 6: Pred = isordered ? FCmpInst::FCMP_OLE : FCmpInst::FCMP_ULE; break;
Owen Andersona8342002011-01-21 19:39:42 +0000122 case 7:
123 if (!isordered) return ConstantInt::getTrue(LHS->getContext());
124 Pred = FCmpInst::FCMP_ORD; break;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000125 }
Chris Lattner067459c2010-03-05 08:46:26 +0000126 return Builder->CreateFCmp(Pred, LHS, RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000127}
128
Chris Lattner0a8191e2010-01-05 07:50:36 +0000129// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
130// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
131// guaranteed to be a binary operator.
132Instruction *InstCombiner::OptAndOp(Instruction *Op,
133 ConstantInt *OpRHS,
134 ConstantInt *AndRHS,
135 BinaryOperator &TheAnd) {
136 Value *X = Op->getOperand(0);
137 Constant *Together = 0;
138 if (!Op->isShift())
139 Together = ConstantExpr::getAnd(AndRHS, OpRHS);
140
141 switch (Op->getOpcode()) {
142 case Instruction::Xor:
143 if (Op->hasOneUse()) {
144 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
145 Value *And = Builder->CreateAnd(X, AndRHS);
146 And->takeName(Op);
147 return BinaryOperator::CreateXor(And, Together);
148 }
149 break;
150 case Instruction::Or:
Owen Andersonc237a842010-09-13 17:59:27 +0000151 if (Op->hasOneUse()){
152 if (Together != OpRHS) {
153 // (X | C1) & C2 --> (X | (C1&C2)) & C2
154 Value *Or = Builder->CreateOr(X, Together);
155 Or->takeName(Op);
156 return BinaryOperator::CreateAnd(Or, AndRHS);
157 }
158
159 ConstantInt *TogetherCI = dyn_cast<ConstantInt>(Together);
160 if (TogetherCI && !TogetherCI->isZero()){
161 // (X | C1) & C2 --> (X & (C2^(C1&C2))) | C1
162 // NOTE: This reduces the number of bits set in the & mask, which
163 // can expose opportunities for store narrowing.
164 Together = ConstantExpr::getXor(AndRHS, Together);
165 Value *And = Builder->CreateAnd(X, Together);
166 And->takeName(Op);
167 return BinaryOperator::CreateOr(And, OpRHS);
168 }
Chris Lattner0a8191e2010-01-05 07:50:36 +0000169 }
Owen Andersonc237a842010-09-13 17:59:27 +0000170
Chris Lattner0a8191e2010-01-05 07:50:36 +0000171 break;
172 case Instruction::Add:
173 if (Op->hasOneUse()) {
174 // Adding a one to a single bit bit-field should be turned into an XOR
175 // of the bit. First thing to check is to see if this AND is with a
176 // single bit constant.
177 const APInt &AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
178
179 // If there is only one bit set.
180 if (AndRHSV.isPowerOf2()) {
181 // Ok, at this point, we know that we are masking the result of the
182 // ADD down to exactly one bit. If the constant we are adding has
183 // no bits set below this bit, then we can eliminate the ADD.
184 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
185
186 // Check to see if any bits below the one bit set in AndRHSV are set.
187 if ((AddRHS & (AndRHSV-1)) == 0) {
188 // If not, the only thing that can effect the output of the AND is
189 // the bit specified by AndRHSV. If that bit is set, the effect of
190 // the XOR is to toggle the bit. If it is clear, then the ADD has
191 // no effect.
192 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
193 TheAnd.setOperand(0, X);
194 return &TheAnd;
195 } else {
196 // Pull the XOR out of the AND.
197 Value *NewAnd = Builder->CreateAnd(X, AndRHS);
198 NewAnd->takeName(Op);
199 return BinaryOperator::CreateXor(NewAnd, AndRHS);
200 }
201 }
202 }
203 }
204 break;
205
206 case Instruction::Shl: {
207 // We know that the AND will not produce any of the bits shifted in, so if
208 // the anded constant includes them, clear them now!
209 //
210 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
211 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
212 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
213 ConstantInt *CI = ConstantInt::get(AndRHS->getContext(),
214 AndRHS->getValue() & ShlMask);
215
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000216 if (CI->getValue() == ShlMask)
217 // Masking out bits that the shift already masks.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000218 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000219
220 if (CI != AndRHS) { // Reducing bits set in and.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000221 TheAnd.setOperand(1, CI);
222 return &TheAnd;
223 }
224 break;
225 }
226 case Instruction::LShr: {
227 // We know that the AND will not produce any of the bits shifted in, so if
228 // the anded constant includes them, clear them now! This only applies to
229 // unsigned shifts, because a signed shr may bring in set bits!
230 //
231 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
232 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
233 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
234 ConstantInt *CI = ConstantInt::get(Op->getContext(),
235 AndRHS->getValue() & ShrMask);
236
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000237 if (CI->getValue() == ShrMask)
238 // Masking out bits that the shift already masks.
Chris Lattner0a8191e2010-01-05 07:50:36 +0000239 return ReplaceInstUsesWith(TheAnd, Op);
Chris Lattner9f0ac0d2011-02-15 01:56:08 +0000240
241 if (CI != AndRHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000242 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
243 return &TheAnd;
244 }
245 break;
246 }
247 case Instruction::AShr:
248 // Signed shr.
249 // See if this is shifting in some sign extension, then masking it out
250 // with an and.
251 if (Op->hasOneUse()) {
252 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
253 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
254 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
255 Constant *C = ConstantInt::get(Op->getContext(),
256 AndRHS->getValue() & ShrMask);
257 if (C == AndRHS) { // Masking out bits shifted in.
258 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
259 // Make the argument unsigned.
260 Value *ShVal = Op->getOperand(0);
261 ShVal = Builder->CreateLShr(ShVal, OpRHS, Op->getName());
262 return BinaryOperator::CreateAnd(ShVal, AndRHS, TheAnd.getName());
263 }
264 }
265 break;
266 }
267 return 0;
268}
269
270
271/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
Chris Lattner0ab5e2c2011-04-15 05:18:47 +0000272/// true, otherwise (V < Lo || V >= Hi). In practice, we emit the more efficient
Chris Lattner0a8191e2010-01-05 07:50:36 +0000273/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
274/// whether to treat the V, Lo and HI as signed or not. IB is the location to
275/// insert new instructions.
Chris Lattner067459c2010-03-05 08:46:26 +0000276Value *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
277 bool isSigned, bool Inside) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000278 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
279 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
280 "Lo is not <= Hi in range emission code!");
281
282 if (Inside) {
283 if (Lo == Hi) // Trivially false.
Chris Lattner067459c2010-03-05 08:46:26 +0000284 return ConstantInt::getFalse(V->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000285
286 // V >= Min && V < Hi --> V < Hi
287 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
288 ICmpInst::Predicate pred = (isSigned ?
289 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
Chris Lattner067459c2010-03-05 08:46:26 +0000290 return Builder->CreateICmp(pred, V, Hi);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000291 }
292
293 // Emit V-Lo <u Hi-Lo
294 Constant *NegLo = ConstantExpr::getNeg(Lo);
295 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
296 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
Chris Lattner067459c2010-03-05 08:46:26 +0000297 return Builder->CreateICmpULT(Add, UpperBound);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000298 }
299
300 if (Lo == Hi) // Trivially true.
Chris Lattner067459c2010-03-05 08:46:26 +0000301 return ConstantInt::getTrue(V->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +0000302
303 // V < Min || V >= Hi -> V > Hi-1
304 Hi = SubOne(cast<ConstantInt>(Hi));
305 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
306 ICmpInst::Predicate pred = (isSigned ?
307 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
Chris Lattner067459c2010-03-05 08:46:26 +0000308 return Builder->CreateICmp(pred, V, Hi);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000309 }
310
311 // Emit V-Lo >u Hi-1-Lo
312 // Note that Hi has already had one subtracted from it, above.
313 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
314 Value *Add = Builder->CreateAdd(V, NegLo, V->getName()+".off");
315 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
Chris Lattner067459c2010-03-05 08:46:26 +0000316 return Builder->CreateICmpUGT(Add, LowerBound);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000317}
318
319// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
320// any number of 0s on either side. The 1s are allowed to wrap from LSB to
321// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
322// not, since all 1s are not contiguous.
323static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
324 const APInt& V = Val->getValue();
325 uint32_t BitWidth = Val->getType()->getBitWidth();
326 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
327
328 // look for the first zero bit after the run of ones
329 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
330 // look for the first non-zero bit
331 ME = V.getActiveBits();
332 return true;
333}
334
335/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
336/// where isSub determines whether the operator is a sub. If we can fold one of
337/// the following xforms:
338///
339/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
340/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
341/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
342///
343/// return (A +/- B).
344///
345Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
346 ConstantInt *Mask, bool isSub,
347 Instruction &I) {
348 Instruction *LHSI = dyn_cast<Instruction>(LHS);
349 if (!LHSI || LHSI->getNumOperands() != 2 ||
350 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
351
352 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
353
354 switch (LHSI->getOpcode()) {
355 default: return 0;
356 case Instruction::And:
357 if (ConstantExpr::getAnd(N, Mask) == Mask) {
358 // If the AndRHS is a power of two minus one (0+1+), this is simple.
359 if ((Mask->getValue().countLeadingZeros() +
360 Mask->getValue().countPopulation()) ==
361 Mask->getValue().getBitWidth())
362 break;
363
364 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
365 // part, we don't need any explicit masks to take them out of A. If that
366 // is all N is, ignore it.
367 uint32_t MB = 0, ME = 0;
368 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
369 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
370 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
371 if (MaskedValueIsZero(RHS, Mask))
372 break;
373 }
374 }
375 return 0;
376 case Instruction::Or:
377 case Instruction::Xor:
378 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
379 if ((Mask->getValue().countLeadingZeros() +
380 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
381 && ConstantExpr::getAnd(N, Mask)->isNullValue())
382 break;
383 return 0;
384 }
385
386 if (isSub)
387 return Builder->CreateSub(LHSI->getOperand(0), RHS, "fold");
388 return Builder->CreateAdd(LHSI->getOperand(0), RHS, "fold");
389}
390
Owen Anderson3fe002d2010-09-08 22:16:17 +0000391/// enum for classifying (icmp eq (A & B), C) and (icmp ne (A & B), C)
392/// One of A and B is considered the mask, the other the value. This is
393/// described as the "AMask" or "BMask" part of the enum. If the enum
394/// contains only "Mask", then both A and B can be considered masks.
395/// If A is the mask, then it was proven, that (A & C) == C. This
396/// is trivial if C == A, or C == 0. If both A and C are constants, this
397/// proof is also easy.
398/// For the following explanations we assume that A is the mask.
399/// The part "AllOnes" declares, that the comparison is true only
400/// if (A & B) == A, or all bits of A are set in B.
401/// Example: (icmp eq (A & 3), 3) -> FoldMskICmp_AMask_AllOnes
402/// The part "AllZeroes" declares, that the comparison is true only
403/// if (A & B) == 0, or all bits of A are cleared in B.
404/// Example: (icmp eq (A & 3), 0) -> FoldMskICmp_Mask_AllZeroes
405/// The part "Mixed" declares, that (A & B) == C and C might or might not
406/// contain any number of one bits and zero bits.
407/// Example: (icmp eq (A & 3), 1) -> FoldMskICmp_AMask_Mixed
408/// The Part "Not" means, that in above descriptions "==" should be replaced
409/// by "!=".
410/// Example: (icmp ne (A & 3), 3) -> FoldMskICmp_AMask_NotAllOnes
411/// If the mask A contains a single bit, then the following is equivalent:
412/// (icmp eq (A & B), A) equals (icmp ne (A & B), 0)
413/// (icmp ne (A & B), A) equals (icmp eq (A & B), 0)
414enum MaskedICmpType {
415 FoldMskICmp_AMask_AllOnes = 1,
416 FoldMskICmp_AMask_NotAllOnes = 2,
417 FoldMskICmp_BMask_AllOnes = 4,
418 FoldMskICmp_BMask_NotAllOnes = 8,
419 FoldMskICmp_Mask_AllZeroes = 16,
420 FoldMskICmp_Mask_NotAllZeroes = 32,
421 FoldMskICmp_AMask_Mixed = 64,
422 FoldMskICmp_AMask_NotMixed = 128,
423 FoldMskICmp_BMask_Mixed = 256,
424 FoldMskICmp_BMask_NotMixed = 512
425};
426
427/// return the set of pattern classes (from MaskedICmpType)
428/// that (icmp SCC (A & B), C) satisfies
429static unsigned getTypeOfMaskedICmp(Value* A, Value* B, Value* C,
430 ICmpInst::Predicate SCC)
431{
432 ConstantInt *ACst = dyn_cast<ConstantInt>(A);
433 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
434 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
435 bool icmp_eq = (SCC == ICmpInst::ICMP_EQ);
436 bool icmp_abit = (ACst != 0 && !ACst->isZero() &&
437 ACst->getValue().isPowerOf2());
438 bool icmp_bbit = (BCst != 0 && !BCst->isZero() &&
439 BCst->getValue().isPowerOf2());
440 unsigned result = 0;
441 if (CCst != 0 && CCst->isZero()) {
442 // if C is zero, then both A and B qualify as mask
443 result |= (icmp_eq ? (FoldMskICmp_Mask_AllZeroes |
444 FoldMskICmp_Mask_AllZeroes |
445 FoldMskICmp_AMask_Mixed |
446 FoldMskICmp_BMask_Mixed)
447 : (FoldMskICmp_Mask_NotAllZeroes |
448 FoldMskICmp_Mask_NotAllZeroes |
449 FoldMskICmp_AMask_NotMixed |
450 FoldMskICmp_BMask_NotMixed));
451 if (icmp_abit)
452 result |= (icmp_eq ? (FoldMskICmp_AMask_NotAllOnes |
453 FoldMskICmp_AMask_NotMixed)
454 : (FoldMskICmp_AMask_AllOnes |
455 FoldMskICmp_AMask_Mixed));
456 if (icmp_bbit)
457 result |= (icmp_eq ? (FoldMskICmp_BMask_NotAllOnes |
458 FoldMskICmp_BMask_NotMixed)
459 : (FoldMskICmp_BMask_AllOnes |
460 FoldMskICmp_BMask_Mixed));
461 return result;
462 }
463 if (A == C) {
464 result |= (icmp_eq ? (FoldMskICmp_AMask_AllOnes |
465 FoldMskICmp_AMask_Mixed)
466 : (FoldMskICmp_AMask_NotAllOnes |
467 FoldMskICmp_AMask_NotMixed));
468 if (icmp_abit)
469 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
470 FoldMskICmp_AMask_NotMixed)
471 : (FoldMskICmp_Mask_AllZeroes |
472 FoldMskICmp_AMask_Mixed));
473 }
474 else if (ACst != 0 && CCst != 0 &&
475 ConstantExpr::getAnd(ACst, CCst) == CCst) {
476 result |= (icmp_eq ? FoldMskICmp_AMask_Mixed
477 : FoldMskICmp_AMask_NotMixed);
478 }
479 if (B == C)
480 {
481 result |= (icmp_eq ? (FoldMskICmp_BMask_AllOnes |
482 FoldMskICmp_BMask_Mixed)
483 : (FoldMskICmp_BMask_NotAllOnes |
484 FoldMskICmp_BMask_NotMixed));
485 if (icmp_bbit)
486 result |= (icmp_eq ? (FoldMskICmp_Mask_NotAllZeroes |
487 FoldMskICmp_BMask_NotMixed)
488 : (FoldMskICmp_Mask_AllZeroes |
489 FoldMskICmp_BMask_Mixed));
490 }
491 else if (BCst != 0 && CCst != 0 &&
492 ConstantExpr::getAnd(BCst, CCst) == CCst) {
493 result |= (icmp_eq ? FoldMskICmp_BMask_Mixed
494 : FoldMskICmp_BMask_NotMixed);
495 }
496 return result;
497}
498
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000499/// decomposeBitTestICmp - Decompose an icmp into the form ((X & Y) pred Z)
500/// if possible. The returned predicate is either == or !=. Returns false if
501/// decomposition fails.
502static bool decomposeBitTestICmp(const ICmpInst *I, ICmpInst::Predicate &Pred,
503 Value *&X, Value *&Y, Value *&Z) {
504 // X < 0 is equivalent to (X & SignBit) != 0.
505 if (I->getPredicate() == ICmpInst::ICMP_SLT)
506 if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
507 if (C->isZero()) {
508 X = I->getOperand(0);
509 Y = ConstantInt::get(I->getContext(),
510 APInt::getSignBit(C->getBitWidth()));
511 Pred = ICmpInst::ICMP_NE;
512 Z = C;
513 return true;
514 }
515
516 // X > -1 is equivalent to (X & SignBit) == 0.
517 if (I->getPredicate() == ICmpInst::ICMP_SGT)
518 if (ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
519 if (C->isAllOnesValue()) {
520 X = I->getOperand(0);
521 Y = ConstantInt::get(I->getContext(),
522 APInt::getSignBit(C->getBitWidth()));
523 Pred = ICmpInst::ICMP_EQ;
524 Z = ConstantInt::getNullValue(C->getType());
525 return true;
526 }
527
528 return false;
529}
530
Owen Anderson3fe002d2010-09-08 22:16:17 +0000531/// foldLogOpOfMaskedICmpsHelper:
532/// handle (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
533/// return the set of pattern classes (from MaskedICmpType)
534/// that both LHS and RHS satisfy
535static unsigned foldLogOpOfMaskedICmpsHelper(Value*& A,
536 Value*& B, Value*& C,
537 Value*& D, Value*& E,
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000538 ICmpInst *LHS, ICmpInst *RHS,
539 ICmpInst::Predicate &LHSCC,
540 ICmpInst::Predicate &RHSCC) {
Owen Anderson3fe002d2010-09-08 22:16:17 +0000541 if (LHS->getOperand(0)->getType() != RHS->getOperand(0)->getType()) return 0;
542 // vectors are not (yet?) supported
543 if (LHS->getOperand(0)->getType()->isVectorTy()) return 0;
544
545 // Here comes the tricky part:
546 // LHS might be of the form L11 & L12 == X, X == L21 & L22,
547 // and L11 & L12 == L21 & L22. The same goes for RHS.
548 // Now we must find those components L** and R**, that are equal, so
549 // that we can extract the parameters A, B, C, D, and E for the canonical
550 // above.
551 Value *L1 = LHS->getOperand(0);
552 Value *L2 = LHS->getOperand(1);
553 Value *L11,*L12,*L21,*L22;
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000554 // Check whether the icmp can be decomposed into a bit test.
555 if (decomposeBitTestICmp(LHS, LHSCC, L11, L12, L2)) {
556 L21 = L22 = L1 = 0;
557 } else {
558 // Look for ANDs in the LHS icmp.
559 if (match(L1, m_And(m_Value(L11), m_Value(L12)))) {
560 if (!match(L2, m_And(m_Value(L21), m_Value(L22))))
561 L21 = L22 = 0;
562 } else {
563 if (!match(L2, m_And(m_Value(L11), m_Value(L12))))
564 return 0;
565 std::swap(L1, L2);
Owen Anderson3fe002d2010-09-08 22:16:17 +0000566 L21 = L22 = 0;
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000567 }
Owen Anderson3fe002d2010-09-08 22:16:17 +0000568 }
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000569
570 // Bail if LHS was a icmp that can't be decomposed into an equality.
571 if (!ICmpInst::isEquality(LHSCC))
572 return 0;
Owen Anderson3fe002d2010-09-08 22:16:17 +0000573
574 Value *R1 = RHS->getOperand(0);
575 Value *R2 = RHS->getOperand(1);
576 Value *R11,*R12;
577 bool ok = false;
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000578 if (decomposeBitTestICmp(RHS, RHSCC, R11, R12, R2)) {
579 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
580 A = R11; D = R12;
581 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
582 A = R12; D = R11;
583 } else {
584 return 0;
Owen Anderson3fe002d2010-09-08 22:16:17 +0000585 }
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000586 E = R2; R1 = 0; ok = true;
587 } else if (match(R1, m_And(m_Value(R11), m_Value(R12)))) {
588 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
589 A = R11; D = R12; E = R2; ok = true;
590 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
Owen Anderson3fe002d2010-09-08 22:16:17 +0000591 A = R12; D = R11; E = R2; ok = true;
592 }
593 }
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000594
595 // Bail if RHS was a icmp that can't be decomposed into an equality.
596 if (!ICmpInst::isEquality(RHSCC))
597 return 0;
598
599 // Look for ANDs in on the right side of the RHS icmp.
Owen Anderson3fe002d2010-09-08 22:16:17 +0000600 if (!ok && match(R2, m_And(m_Value(R11), m_Value(R12)))) {
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000601 if (R11 == L11 || R11 == L12 || R11 == L21 || R11 == L22) {
602 A = R11; D = R12; E = R1; ok = true;
603 } else if (R12 == L11 || R12 == L12 || R12 == L21 || R12 == L22) {
Owen Anderson3fe002d2010-09-08 22:16:17 +0000604 A = R12; D = R11; E = R1; ok = true;
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000605 } else {
Owen Anderson3fe002d2010-09-08 22:16:17 +0000606 return 0;
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000607 }
Owen Anderson3fe002d2010-09-08 22:16:17 +0000608 }
609 if (!ok)
610 return 0;
611
612 if (L11 == A) {
613 B = L12; C = L2;
614 }
615 else if (L12 == A) {
616 B = L11; C = L2;
617 }
618 else if (L21 == A) {
619 B = L22; C = L1;
620 }
621 else if (L22 == A) {
622 B = L21; C = L1;
623 }
624
625 unsigned left_type = getTypeOfMaskedICmp(A, B, C, LHSCC);
626 unsigned right_type = getTypeOfMaskedICmp(A, D, E, RHSCC);
627 return left_type & right_type;
628}
629/// foldLogOpOfMaskedICmps:
630/// try to fold (icmp(A & B) ==/!= C) &/| (icmp(A & D) ==/!= E)
631/// into a single (icmp(A & X) ==/!= Y)
632static Value* foldLogOpOfMaskedICmps(ICmpInst *LHS, ICmpInst *RHS,
633 ICmpInst::Predicate NEWCC,
634 llvm::InstCombiner::BuilderTy* Builder) {
635 Value *A = 0, *B = 0, *C = 0, *D = 0, *E = 0;
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000636 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
637 unsigned mask = foldLogOpOfMaskedICmpsHelper(A, B, C, D, E, LHS, RHS,
638 LHSCC, RHSCC);
639 assert(ICmpInst::isEquality(LHSCC) && ICmpInst::isEquality(RHSCC) &&
640 "foldLogOpOfMaskedICmpsHelper must return an equality predicate.");
Owen Anderson3fe002d2010-09-08 22:16:17 +0000641 if (mask == 0) return 0;
642
643 if (NEWCC == ICmpInst::ICMP_NE)
644 mask >>= 1; // treat "Not"-states as normal states
645
646 if (mask & FoldMskICmp_Mask_AllZeroes) {
647 // (icmp eq (A & B), 0) & (icmp eq (A & D), 0)
648 // -> (icmp eq (A & (B|D)), 0)
649 Value* newOr = Builder->CreateOr(B, D);
650 Value* newAnd = Builder->CreateAnd(A, newOr);
651 // we can't use C as zero, because we might actually handle
652 // (icmp ne (A & B), B) & (icmp ne (A & D), D)
653 // with B and D, having a single bit set
654 Value* zero = Constant::getNullValue(A->getType());
655 return Builder->CreateICmp(NEWCC, newAnd, zero);
656 }
657 else if (mask & FoldMskICmp_BMask_AllOnes) {
658 // (icmp eq (A & B), B) & (icmp eq (A & D), D)
659 // -> (icmp eq (A & (B|D)), (B|D))
660 Value* newOr = Builder->CreateOr(B, D);
661 Value* newAnd = Builder->CreateAnd(A, newOr);
662 return Builder->CreateICmp(NEWCC, newAnd, newOr);
663 }
664 else if (mask & FoldMskICmp_AMask_AllOnes) {
665 // (icmp eq (A & B), A) & (icmp eq (A & D), A)
666 // -> (icmp eq (A & (B&D)), A)
667 Value* newAnd1 = Builder->CreateAnd(B, D);
668 Value* newAnd = Builder->CreateAnd(A, newAnd1);
669 return Builder->CreateICmp(NEWCC, newAnd, A);
670 }
671 else if (mask & FoldMskICmp_BMask_Mixed) {
672 // (icmp eq (A & B), C) & (icmp eq (A & D), E)
673 // We already know that B & C == C && D & E == E.
674 // If we can prove that (B & D) & (C ^ E) == 0, that is, the bits of
675 // C and E, which are shared by both the mask B and the mask D, don't
676 // contradict, then we can transform to
677 // -> (icmp eq (A & (B|D)), (C|E))
678 // Currently, we only handle the case of B, C, D, and E being constant.
679 ConstantInt *BCst = dyn_cast<ConstantInt>(B);
680 if (BCst == 0) return 0;
681 ConstantInt *DCst = dyn_cast<ConstantInt>(D);
682 if (DCst == 0) return 0;
683 // we can't simply use C and E, because we might actually handle
684 // (icmp ne (A & B), B) & (icmp eq (A & D), D)
685 // with B and D, having a single bit set
686
687 ConstantInt *CCst = dyn_cast<ConstantInt>(C);
688 if (CCst == 0) return 0;
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000689 if (LHSCC != NEWCC)
Owen Anderson3fe002d2010-09-08 22:16:17 +0000690 CCst = dyn_cast<ConstantInt>( ConstantExpr::getXor(BCst, CCst) );
691 ConstantInt *ECst = dyn_cast<ConstantInt>(E);
692 if (ECst == 0) return 0;
Benjamin Kramerf9d0cc02012-01-09 17:23:27 +0000693 if (RHSCC != NEWCC)
Owen Anderson3fe002d2010-09-08 22:16:17 +0000694 ECst = dyn_cast<ConstantInt>( ConstantExpr::getXor(DCst, ECst) );
695 ConstantInt* MCst = dyn_cast<ConstantInt>(
696 ConstantExpr::getAnd(ConstantExpr::getAnd(BCst, DCst),
697 ConstantExpr::getXor(CCst, ECst)) );
698 // if there is a conflict we should actually return a false for the
699 // whole construct
700 if (!MCst->isZero())
701 return 0;
Chris Lattnerdcef03f2011-02-10 05:17:27 +0000702 Value *newOr1 = Builder->CreateOr(B, D);
703 Value *newOr2 = ConstantExpr::getOr(CCst, ECst);
704 Value *newAnd = Builder->CreateAnd(A, newOr1);
Owen Anderson3fe002d2010-09-08 22:16:17 +0000705 return Builder->CreateICmp(NEWCC, newAnd, newOr2);
706 }
707 return 0;
708}
709
Chris Lattner0a8191e2010-01-05 07:50:36 +0000710/// FoldAndOfICmps - Fold (icmp)&(icmp) if possible.
Chris Lattner067459c2010-03-05 08:46:26 +0000711Value *InstCombiner::FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000712 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
713
714 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
715 if (PredicatesFoldable(LHSCC, RHSCC)) {
716 if (LHS->getOperand(0) == RHS->getOperand(1) &&
717 LHS->getOperand(1) == RHS->getOperand(0))
718 LHS->swapOperands();
719 if (LHS->getOperand(0) == RHS->getOperand(0) &&
720 LHS->getOperand(1) == RHS->getOperand(1)) {
721 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
722 unsigned Code = getICmpCode(LHS) & getICmpCode(RHS);
723 bool isSigned = LHS->isSigned() || RHS->isSigned();
Pete Cooperebf98c12011-12-17 01:20:32 +0000724 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000725 }
726 }
Owen Anderson3fe002d2010-09-08 22:16:17 +0000727
Chris Lattnerdcef03f2011-02-10 05:17:27 +0000728 // handle (roughly): (icmp eq (A & B), C) & (icmp eq (A & D), E)
729 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_EQ, Builder))
730 return V;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000731
732 // This only handles icmp of constants: (icmp1 A, C1) & (icmp2 B, C2).
733 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
734 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
735 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
736 if (LHSCst == 0 || RHSCst == 0) return 0;
737
738 if (LHSCst == RHSCst && LHSCC == RHSCC) {
739 // (icmp ult A, C) & (icmp ult B, C) --> (icmp ult (A|B), C)
740 // where C is a power of 2
741 if (LHSCC == ICmpInst::ICMP_ULT &&
742 LHSCst->getValue().isPowerOf2()) {
743 Value *NewOr = Builder->CreateOr(Val, Val2);
Chris Lattner067459c2010-03-05 08:46:26 +0000744 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000745 }
746
747 // (icmp eq A, 0) & (icmp eq B, 0) --> (icmp eq (A|B), 0)
748 if (LHSCC == ICmpInst::ICMP_EQ && LHSCst->isZero()) {
749 Value *NewOr = Builder->CreateOr(Val, Val2);
Chris Lattner067459c2010-03-05 08:46:26 +0000750 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000751 }
752 }
Benjamin Kramer4145c0d2011-04-28 16:58:40 +0000753
Benjamin Kramer101720f2011-04-28 20:09:57 +0000754 // (trunc x) == C1 & (and x, CA) == C2 -> (and x, CA|CMAX) == C1|C2
Benjamin Kramer4145c0d2011-04-28 16:58:40 +0000755 // where CMAX is the all ones value for the truncated type,
Benjamin Kramercf9d1ad2011-04-28 21:38:51 +0000756 // iff the lower bits of C2 and CA are zero.
Benjamin Kramer4145c0d2011-04-28 16:58:40 +0000757 if (LHSCC == RHSCC && ICmpInst::isEquality(LHSCC) &&
758 LHS->hasOneUse() && RHS->hasOneUse()) {
759 Value *V;
760 ConstantInt *AndCst, *SmallCst = 0, *BigCst = 0;
761
762 // (trunc x) == C1 & (and x, CA) == C2
763 if (match(Val2, m_Trunc(m_Value(V))) &&
764 match(Val, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
765 SmallCst = RHSCst;
766 BigCst = LHSCst;
767 }
768 // (and x, CA) == C2 & (trunc x) == C1
769 else if (match(Val, m_Trunc(m_Value(V))) &&
770 match(Val2, m_And(m_Specific(V), m_ConstantInt(AndCst)))) {
771 SmallCst = LHSCst;
772 BigCst = RHSCst;
773 }
774
775 if (SmallCst && BigCst) {
776 unsigned BigBitSize = BigCst->getType()->getBitWidth();
777 unsigned SmallBitSize = SmallCst->getType()->getBitWidth();
778
779 // Check that the low bits are zero.
780 APInt Low = APInt::getLowBitsSet(BigBitSize, SmallBitSize);
Benjamin Kramercf9d1ad2011-04-28 21:38:51 +0000781 if ((Low & AndCst->getValue()) == 0 && (Low & BigCst->getValue()) == 0) {
Benjamin Kramer4145c0d2011-04-28 16:58:40 +0000782 Value *NewAnd = Builder->CreateAnd(V, Low | AndCst->getValue());
783 APInt N = SmallCst->getValue().zext(BigBitSize) | BigCst->getValue();
784 Value *NewVal = ConstantInt::get(AndCst->getType()->getContext(), N);
785 return Builder->CreateICmp(LHSCC, NewAnd, NewVal);
786 }
787 }
788 }
Benjamin Kramerda37e152012-01-08 18:32:24 +0000789
Chris Lattner0a8191e2010-01-05 07:50:36 +0000790 // From here on, we only handle:
791 // (icmp1 A, C1) & (icmp2 A, C2) --> something simpler.
792 if (Val != Val2) return 0;
793
794 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
795 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
796 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
797 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
798 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
799 return 0;
Anders Carlssonda80afe2011-03-01 15:05:01 +0000800
801 // Make a constant range that's the intersection of the two icmp ranges.
802 // If the intersection is empty, we know that the result is false.
803 ConstantRange LHSRange =
804 ConstantRange::makeICmpRegion(LHSCC, LHSCst->getValue());
805 ConstantRange RHSRange =
806 ConstantRange::makeICmpRegion(RHSCC, RHSCst->getValue());
807
808 if (LHSRange.intersectWith(RHSRange).isEmptySet())
809 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
810
Chris Lattner0a8191e2010-01-05 07:50:36 +0000811 // We can't fold (ugt x, C) & (sgt x, C2).
812 if (!PredicatesFoldable(LHSCC, RHSCC))
813 return 0;
814
815 // Ensure that the larger constant is on the RHS.
816 bool ShouldSwap;
817 if (CmpInst::isSigned(LHSCC) ||
818 (ICmpInst::isEquality(LHSCC) &&
819 CmpInst::isSigned(RHSCC)))
820 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
821 else
822 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
823
824 if (ShouldSwap) {
825 std::swap(LHS, RHS);
826 std::swap(LHSCst, RHSCst);
827 std::swap(LHSCC, RHSCC);
828 }
829
Dan Gohman4a618822010-02-10 16:03:48 +0000830 // At this point, we know we have two icmp instructions
Chris Lattner0a8191e2010-01-05 07:50:36 +0000831 // comparing a value against two constants and and'ing the result
832 // together. Because of the above check, we know that we only have
833 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
834 // (from the icmp folding check above), that the two constants
835 // are not equal and that the larger constant is on the RHS
836 assert(LHSCst != RHSCst && "Compares not folded above?");
837
838 switch (LHSCC) {
839 default: llvm_unreachable("Unknown integer condition code!");
840 case ICmpInst::ICMP_EQ:
841 switch (RHSCC) {
842 default: llvm_unreachable("Unknown integer condition code!");
Chris Lattner0a8191e2010-01-05 07:50:36 +0000843 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
844 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
845 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
Chris Lattner067459c2010-03-05 08:46:26 +0000846 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000847 }
848 case ICmpInst::ICMP_NE:
849 switch (RHSCC) {
850 default: llvm_unreachable("Unknown integer condition code!");
851 case ICmpInst::ICMP_ULT:
852 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000853 return Builder->CreateICmpULT(Val, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000854 break; // (X != 13 & X u< 15) -> no change
855 case ICmpInst::ICMP_SLT:
856 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000857 return Builder->CreateICmpSLT(Val, LHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000858 break; // (X != 13 & X s< 15) -> no change
859 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
860 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
861 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000862 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000863 case ICmpInst::ICMP_NE:
864 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
865 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
866 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
Chris Lattner067459c2010-03-05 08:46:26 +0000867 return Builder->CreateICmpUGT(Add, ConstantInt::get(Add->getType(), 1));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000868 }
869 break; // (X != 13 & X != 15) -> no change
870 }
871 break;
872 case ICmpInst::ICMP_ULT:
873 switch (RHSCC) {
874 default: llvm_unreachable("Unknown integer condition code!");
875 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
876 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
Chris Lattner067459c2010-03-05 08:46:26 +0000877 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000878 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
879 break;
880 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
881 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
Chris Lattner067459c2010-03-05 08:46:26 +0000882 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000883 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
884 break;
885 }
886 break;
887 case ICmpInst::ICMP_SLT:
888 switch (RHSCC) {
889 default: llvm_unreachable("Unknown integer condition code!");
Chris Lattner0a8191e2010-01-05 07:50:36 +0000890 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
891 break;
892 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
893 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
Chris Lattner067459c2010-03-05 08:46:26 +0000894 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000895 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
896 break;
897 }
898 break;
899 case ICmpInst::ICMP_UGT:
900 switch (RHSCC) {
901 default: llvm_unreachable("Unknown integer condition code!");
902 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X == 15
903 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000904 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000905 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
906 break;
907 case ICmpInst::ICMP_NE:
908 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
Chris Lattner067459c2010-03-05 08:46:26 +0000909 return Builder->CreateICmp(LHSCC, Val, RHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000910 break; // (X u> 13 & X != 15) -> no change
911 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) -> (X-14) <u 1
Chris Lattner067459c2010-03-05 08:46:26 +0000912 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, false, true);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000913 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
914 break;
915 }
916 break;
917 case ICmpInst::ICMP_SGT:
918 switch (RHSCC) {
919 default: llvm_unreachable("Unknown integer condition code!");
920 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
921 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
Chris Lattner067459c2010-03-05 08:46:26 +0000922 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000923 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
924 break;
925 case ICmpInst::ICMP_NE:
926 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
Chris Lattner067459c2010-03-05 08:46:26 +0000927 return Builder->CreateICmp(LHSCC, Val, RHSCst);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000928 break; // (X s> 13 & X != 15) -> no change
929 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) -> (X-14) s< 1
Chris Lattner067459c2010-03-05 08:46:26 +0000930 return InsertRangeTest(Val, AddOne(LHSCst), RHSCst, true, true);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000931 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
932 break;
933 }
934 break;
935 }
936
937 return 0;
938}
939
Chris Lattner067459c2010-03-05 08:46:26 +0000940/// FoldAndOfFCmps - Optimize (fcmp)&(fcmp). NOTE: Unlike the rest of
941/// instcombine, this returns a Value which should already be inserted into the
942/// function.
943Value *InstCombiner::FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +0000944 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
945 RHS->getPredicate() == FCmpInst::FCMP_ORD) {
946 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
947 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
948 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
949 // If either of the constants are nans, then the whole thing returns
950 // false.
951 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner067459c2010-03-05 08:46:26 +0000952 return ConstantInt::getFalse(LHS->getContext());
953 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000954 }
955
956 // Handle vector zeros. This occurs because the canonical form of
957 // "fcmp ord x,x" is "fcmp ord x, 0".
958 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
959 isa<ConstantAggregateZero>(RHS->getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +0000960 return Builder->CreateFCmpORD(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +0000961 return 0;
962 }
963
964 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
965 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
966 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
967
968
969 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
970 // Swap RHS operands to match LHS.
971 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
972 std::swap(Op1LHS, Op1RHS);
973 }
974
975 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
976 // Simplify (fcmp cc0 x, y) & (fcmp cc1 x, y).
977 if (Op0CC == Op1CC)
Chris Lattner067459c2010-03-05 08:46:26 +0000978 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000979 if (Op0CC == FCmpInst::FCMP_FALSE || Op1CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +0000980 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +0000981 if (Op0CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +0000982 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000983 if (Op1CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +0000984 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +0000985
986 bool Op0Ordered;
987 bool Op1Ordered;
988 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
989 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
990 if (Op1Pred == 0) {
991 std::swap(LHS, RHS);
992 std::swap(Op0Pred, Op1Pred);
993 std::swap(Op0Ordered, Op1Ordered);
994 }
995 if (Op0Pred == 0) {
996 // uno && ueq -> uno && (uno || eq) -> ueq
997 // ord && olt -> ord && (ord && lt) -> olt
998 if (Op0Ordered == Op1Ordered)
Chris Lattner067459c2010-03-05 08:46:26 +0000999 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001000
1001 // uno && oeq -> uno && (ord && eq) -> false
1002 // uno && ord -> false
1003 if (!Op0Ordered)
Chris Lattner067459c2010-03-05 08:46:26 +00001004 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 0);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001005 // ord && ueq -> ord && (uno || eq) -> oeq
Chris Lattner067459c2010-03-05 08:46:26 +00001006 return getFCmpValue(true, Op1Pred, Op0LHS, Op0RHS, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001007 }
1008 }
1009
1010 return 0;
1011}
1012
1013
1014Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +00001015 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001016 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1017
1018 if (Value *V = SimplifyAndInst(Op0, Op1, TD))
1019 return ReplaceInstUsesWith(I, V);
1020
Duncan Sandsfbb9ac32010-12-22 13:36:08 +00001021 // (A|B)&(A|C) -> A|(B&C) etc
1022 if (Value *V = SimplifyUsingDistributiveLaws(I))
1023 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +00001024
Chris Lattner0a8191e2010-01-05 07:50:36 +00001025 // See if we can simplify any instructions used by the instruction whose sole
1026 // purpose is to compute bits we don't care about.
1027 if (SimplifyDemandedInstructionBits(I))
1028 return &I;
1029
1030 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
1031 const APInt &AndRHSMask = AndRHS->getValue();
Chris Lattner0a8191e2010-01-05 07:50:36 +00001032
1033 // Optimize a variety of ((val OP C1) & C2) combinations...
1034 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
1035 Value *Op0LHS = Op0I->getOperand(0);
1036 Value *Op0RHS = Op0I->getOperand(1);
1037 switch (Op0I->getOpcode()) {
1038 default: break;
1039 case Instruction::Xor:
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001040 case Instruction::Or: {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001041 // If the mask is only needed on one incoming arm, push it up.
1042 if (!Op0I->hasOneUse()) break;
1043
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001044 APInt NotAndRHS(~AndRHSMask);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001045 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
1046 // Not masking anything out for the LHS, move to RHS.
1047 Value *NewRHS = Builder->CreateAnd(Op0RHS, AndRHS,
1048 Op0RHS->getName()+".masked");
1049 return BinaryOperator::Create(Op0I->getOpcode(), Op0LHS, NewRHS);
1050 }
1051 if (!isa<Constant>(Op0RHS) &&
1052 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
1053 // Not masking anything out for the RHS, move to LHS.
1054 Value *NewLHS = Builder->CreateAnd(Op0LHS, AndRHS,
1055 Op0LHS->getName()+".masked");
1056 return BinaryOperator::Create(Op0I->getOpcode(), NewLHS, Op0RHS);
1057 }
1058
1059 break;
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001060 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001061 case Instruction::Add:
1062 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
1063 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1064 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
1065 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
1066 return BinaryOperator::CreateAnd(V, AndRHS);
1067 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
1068 return BinaryOperator::CreateAnd(V, AndRHS); // Add commutes
1069 break;
1070
1071 case Instruction::Sub:
1072 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
1073 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1074 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
1075 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
1076 return BinaryOperator::CreateAnd(V, AndRHS);
1077
1078 // (A - N) & AndRHS -> -N & AndRHS iff A&AndRHS==0 and AndRHS
1079 // has 1's for all bits that the subtraction with A might affect.
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001080 if (Op0I->hasOneUse() && !match(Op0LHS, m_Zero())) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001081 uint32_t BitWidth = AndRHSMask.getBitWidth();
1082 uint32_t Zeros = AndRHSMask.countLeadingZeros();
1083 APInt Mask = APInt::getLowBitsSet(BitWidth, BitWidth - Zeros);
1084
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001085 if (MaskedValueIsZero(Op0LHS, Mask)) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001086 Value *NewNeg = Builder->CreateNeg(Op0RHS);
1087 return BinaryOperator::CreateAnd(NewNeg, AndRHS);
1088 }
1089 }
1090 break;
1091
1092 case Instruction::Shl:
1093 case Instruction::LShr:
1094 // (1 << x) & 1 --> zext(x == 0)
1095 // (1 >> x) & 1 --> zext(x == 0)
1096 if (AndRHSMask == 1 && Op0LHS == AndRHS) {
1097 Value *NewICmp =
1098 Builder->CreateICmpEQ(Op0RHS, Constant::getNullValue(I.getType()));
1099 return new ZExtInst(NewICmp, I.getType());
1100 }
1101 break;
1102 }
Chris Lattner9f0ac0d2011-02-15 01:56:08 +00001103
Chris Lattner0a8191e2010-01-05 07:50:36 +00001104 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
1105 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
1106 return Res;
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001107 }
1108
1109 // If this is an integer truncation, and if the source is an 'and' with
1110 // immediate, transform it. This frequently occurs for bitfield accesses.
1111 {
1112 Value *X = 0; ConstantInt *YC = 0;
1113 if (match(Op0, m_Trunc(m_And(m_Value(X), m_ConstantInt(YC))))) {
1114 // Change: and (trunc (and X, YC) to T), C2
1115 // into : and (trunc X to T), trunc(YC) & C2
1116 // This will fold the two constants together, which may allow
1117 // other simplifications.
1118 Value *NewCast = Builder->CreateTrunc(X, I.getType(), "and.shrunk");
1119 Constant *C3 = ConstantExpr::getTrunc(YC, I.getType());
1120 C3 = ConstantExpr::getAnd(C3, AndRHS);
1121 return BinaryOperator::CreateAnd(NewCast, C3);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001122 }
1123 }
1124
1125 // Try to fold constant and into select arguments.
1126 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1127 if (Instruction *R = FoldOpIntoSelect(I, SI))
1128 return R;
1129 if (isa<PHINode>(Op0))
1130 if (Instruction *NV = FoldOpIntoPhi(I))
1131 return NV;
1132 }
1133
1134
1135 // (~A & ~B) == (~(A | B)) - De Morgan's Law
1136 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1137 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1138 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1139 Value *Or = Builder->CreateOr(Op0NotVal, Op1NotVal,
1140 I.getName()+".demorgan");
1141 return BinaryOperator::CreateNot(Or);
1142 }
Chris Lattnerdcef03f2011-02-10 05:17:27 +00001143
Chris Lattner0a8191e2010-01-05 07:50:36 +00001144 {
1145 Value *A = 0, *B = 0, *C = 0, *D = 0;
1146 // (A|B) & ~(A&B) -> A^B
1147 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1148 match(Op1, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1149 ((A == C && B == D) || (A == D && B == C)))
1150 return BinaryOperator::CreateXor(A, B);
1151
1152 // ~(A&B) & (A|B) -> A^B
1153 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1154 match(Op0, m_Not(m_And(m_Value(C), m_Value(D)))) &&
1155 ((A == C && B == D) || (A == D && B == C)))
1156 return BinaryOperator::CreateXor(A, B);
1157
Eli Friedman61d7c8a2011-09-19 21:58:15 +00001158 // A&(A^B) => A & ~B
1159 {
1160 Value *tmpOp0 = Op0;
1161 Value *tmpOp1 = Op1;
1162 if (Op0->hasOneUse() &&
1163 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
1164 if (A == Op1 || B == Op1 ) {
1165 tmpOp1 = Op0;
1166 tmpOp0 = Op1;
1167 // Simplify below
1168 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001169 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001170
Eli Friedman61d7c8a2011-09-19 21:58:15 +00001171 if (tmpOp1->hasOneUse() &&
1172 match(tmpOp1, m_Xor(m_Value(A), m_Value(B)))) {
1173 if (B == tmpOp0) {
1174 std::swap(A, B);
1175 }
1176 // Notice that the patten (A&(~B)) is actually (A&(-1^B)), so if
1177 // A is originally -1 (or a vector of -1 and undefs), then we enter
1178 // an endless loop. By checking that A is non-constant we ensure that
1179 // we will never get to the loop.
1180 if (A == tmpOp0 && !isa<Constant>(A)) // A&(A^B) -> A & ~B
Benjamin Kramer547b6c52011-09-27 20:39:19 +00001181 return BinaryOperator::CreateAnd(A, Builder->CreateNot(B));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001182 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001183 }
1184
1185 // (A&((~A)|B)) -> A&B
1186 if (match(Op0, m_Or(m_Not(m_Specific(Op1)), m_Value(A))) ||
1187 match(Op0, m_Or(m_Value(A), m_Not(m_Specific(Op1)))))
1188 return BinaryOperator::CreateAnd(A, Op1);
1189 if (match(Op1, m_Or(m_Not(m_Specific(Op0)), m_Value(A))) ||
1190 match(Op1, m_Or(m_Value(A), m_Not(m_Specific(Op0)))))
1191 return BinaryOperator::CreateAnd(A, Op0);
1192 }
1193
1194 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1))
1195 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0))
Chris Lattner067459c2010-03-05 08:46:26 +00001196 if (Value *Res = FoldAndOfICmps(LHS, RHS))
1197 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001198
1199 // If and'ing two fcmp, try combine them into one.
1200 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1201 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001202 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
1203 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001204
1205
Chris Lattner0a8191e2010-01-05 07:50:36 +00001206 // fold (and (cast A), (cast B)) -> (cast (and A, B))
1207 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001208 if (CastInst *Op1C = dyn_cast<CastInst>(Op1)) {
Chris Lattner229907c2011-07-18 04:54:35 +00001209 Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner4e8137d2010-02-11 06:26:33 +00001210 if (Op0C->getOpcode() == Op1C->getOpcode() && // same cast kind ?
1211 SrcTy == Op1C->getOperand(0)->getType() &&
Duncan Sands9dff9be2010-02-15 16:12:20 +00001212 SrcTy->isIntOrIntVectorTy()) {
Chris Lattner4e8137d2010-02-11 06:26:33 +00001213 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
1214
1215 // Only do this if the casts both really cause code to be generated.
1216 if (ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1217 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1218 Value *NewOp = Builder->CreateAnd(Op0COp, Op1COp, I.getName());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001219 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
1220 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001221
1222 // If this is and(cast(icmp), cast(icmp)), try to fold this even if the
1223 // cast is otherwise not optimizable. This happens for vector sexts.
1224 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1225 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001226 if (Value *Res = FoldAndOfICmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001227 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner4e8137d2010-02-11 06:26:33 +00001228
1229 // If this is and(cast(fcmp), cast(fcmp)), try to fold this even if the
1230 // cast is otherwise not optimizable. This happens for vector sexts.
1231 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
1232 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
Chris Lattner067459c2010-03-05 08:46:26 +00001233 if (Value *Res = FoldAndOfFCmps(LHS, RHS))
Chris Lattner4e8137d2010-02-11 06:26:33 +00001234 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001235 }
Chris Lattner4e8137d2010-02-11 06:26:33 +00001236 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001237
1238 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
1239 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1240 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1241 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1242 SI0->getOperand(1) == SI1->getOperand(1) &&
1243 (SI0->hasOneUse() || SI1->hasOneUse())) {
1244 Value *NewOp =
1245 Builder->CreateAnd(SI0->getOperand(0), SI1->getOperand(0),
1246 SI0->getName());
1247 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1248 SI1->getOperand(1));
1249 }
1250 }
1251
Chris Lattner0a8191e2010-01-05 07:50:36 +00001252 return Changed ? &I : 0;
1253}
1254
1255/// CollectBSwapParts - Analyze the specified subexpression and see if it is
1256/// capable of providing pieces of a bswap. The subexpression provides pieces
1257/// of a bswap if it is proven that each of the non-zero bytes in the output of
1258/// the expression came from the corresponding "byte swapped" byte in some other
1259/// value. For example, if the current subexpression is "(shl i32 %X, 24)" then
1260/// we know that the expression deposits the low byte of %X into the high byte
1261/// of the bswap result and that all other bytes are zero. This expression is
1262/// accepted, the high byte of ByteValues is set to X to indicate a correct
1263/// match.
1264///
1265/// This function returns true if the match was unsuccessful and false if so.
1266/// On entry to the function the "OverallLeftShift" is a signed integer value
1267/// indicating the number of bytes that the subexpression is later shifted. For
1268/// example, if the expression is later right shifted by 16 bits, the
1269/// OverallLeftShift value would be -2 on entry. This is used to specify which
1270/// byte of ByteValues is actually being set.
1271///
1272/// Similarly, ByteMask is a bitmask where a bit is clear if its corresponding
1273/// byte is masked to zero by a user. For example, in (X & 255), X will be
1274/// processed with a bytemask of 1. Because bytemask is 32-bits, this limits
1275/// this function to working on up to 32-byte (256 bit) values. ByteMask is
1276/// always in the local (OverallLeftShift) coordinate space.
1277///
1278static bool CollectBSwapParts(Value *V, int OverallLeftShift, uint32_t ByteMask,
1279 SmallVector<Value*, 8> &ByteValues) {
1280 if (Instruction *I = dyn_cast<Instruction>(V)) {
1281 // If this is an or instruction, it may be an inner node of the bswap.
1282 if (I->getOpcode() == Instruction::Or) {
1283 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1284 ByteValues) ||
1285 CollectBSwapParts(I->getOperand(1), OverallLeftShift, ByteMask,
1286 ByteValues);
1287 }
1288
1289 // If this is a logical shift by a constant multiple of 8, recurse with
1290 // OverallLeftShift and ByteMask adjusted.
1291 if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1292 unsigned ShAmt =
1293 cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1294 // Ensure the shift amount is defined and of a byte value.
1295 if ((ShAmt & 7) || (ShAmt > 8*ByteValues.size()))
1296 return true;
1297
1298 unsigned ByteShift = ShAmt >> 3;
1299 if (I->getOpcode() == Instruction::Shl) {
1300 // X << 2 -> collect(X, +2)
1301 OverallLeftShift += ByteShift;
1302 ByteMask >>= ByteShift;
1303 } else {
1304 // X >>u 2 -> collect(X, -2)
1305 OverallLeftShift -= ByteShift;
1306 ByteMask <<= ByteShift;
1307 ByteMask &= (~0U >> (32-ByteValues.size()));
1308 }
1309
1310 if (OverallLeftShift >= (int)ByteValues.size()) return true;
1311 if (OverallLeftShift <= -(int)ByteValues.size()) return true;
1312
1313 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1314 ByteValues);
1315 }
1316
1317 // If this is a logical 'and' with a mask that clears bytes, clear the
1318 // corresponding bytes in ByteMask.
1319 if (I->getOpcode() == Instruction::And &&
1320 isa<ConstantInt>(I->getOperand(1))) {
1321 // Scan every byte of the and mask, seeing if the byte is either 0 or 255.
1322 unsigned NumBytes = ByteValues.size();
1323 APInt Byte(I->getType()->getPrimitiveSizeInBits(), 255);
1324 const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1325
1326 for (unsigned i = 0; i != NumBytes; ++i, Byte <<= 8) {
1327 // If this byte is masked out by a later operation, we don't care what
1328 // the and mask is.
1329 if ((ByteMask & (1 << i)) == 0)
1330 continue;
1331
1332 // If the AndMask is all zeros for this byte, clear the bit.
1333 APInt MaskB = AndMask & Byte;
1334 if (MaskB == 0) {
1335 ByteMask &= ~(1U << i);
1336 continue;
1337 }
1338
1339 // If the AndMask is not all ones for this byte, it's not a bytezap.
1340 if (MaskB != Byte)
1341 return true;
1342
1343 // Otherwise, this byte is kept.
1344 }
1345
1346 return CollectBSwapParts(I->getOperand(0), OverallLeftShift, ByteMask,
1347 ByteValues);
1348 }
1349 }
1350
1351 // Okay, we got to something that isn't a shift, 'or' or 'and'. This must be
1352 // the input value to the bswap. Some observations: 1) if more than one byte
1353 // is demanded from this input, then it could not be successfully assembled
1354 // into a byteswap. At least one of the two bytes would not be aligned with
1355 // their ultimate destination.
1356 if (!isPowerOf2_32(ByteMask)) return true;
1357 unsigned InputByteNo = CountTrailingZeros_32(ByteMask);
1358
1359 // 2) The input and ultimate destinations must line up: if byte 3 of an i32
1360 // is demanded, it needs to go into byte 0 of the result. This means that the
1361 // byte needs to be shifted until it lands in the right byte bucket. The
1362 // shift amount depends on the position: if the byte is coming from the high
1363 // part of the value (e.g. byte 3) then it must be shifted right. If from the
1364 // low part, it must be shifted left.
1365 unsigned DestByteNo = InputByteNo + OverallLeftShift;
1366 if (InputByteNo < ByteValues.size()/2) {
1367 if (ByteValues.size()-1-DestByteNo != InputByteNo)
1368 return true;
1369 } else {
1370 if (ByteValues.size()-1-DestByteNo != InputByteNo)
1371 return true;
1372 }
1373
1374 // If the destination byte value is already defined, the values are or'd
1375 // together, which isn't a bswap (unless it's an or of the same bits).
1376 if (ByteValues[DestByteNo] && ByteValues[DestByteNo] != V)
1377 return true;
1378 ByteValues[DestByteNo] = V;
1379 return false;
1380}
1381
1382/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
1383/// If so, insert the new bswap intrinsic and return it.
1384Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
Jay Foadb804a2b2011-07-12 14:06:48 +00001385 IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001386 if (!ITy || ITy->getBitWidth() % 16 ||
1387 // ByteMask only allows up to 32-byte values.
1388 ITy->getBitWidth() > 32*8)
1389 return 0; // Can only bswap pairs of bytes. Can't do vectors.
1390
1391 /// ByteValues - For each byte of the result, we keep track of which value
1392 /// defines each byte.
1393 SmallVector<Value*, 8> ByteValues;
1394 ByteValues.resize(ITy->getBitWidth()/8);
1395
1396 // Try to find all the pieces corresponding to the bswap.
1397 uint32_t ByteMask = ~0U >> (32-ByteValues.size());
1398 if (CollectBSwapParts(&I, 0, ByteMask, ByteValues))
1399 return 0;
1400
1401 // Check to see if all of the bytes come from the same value.
1402 Value *V = ByteValues[0];
1403 if (V == 0) return 0; // Didn't find a byte? Must be zero.
1404
1405 // Check to make sure that all of the bytes come from the same value.
1406 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
1407 if (ByteValues[i] != V)
1408 return 0;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001409 Module *M = I.getParent()->getParent()->getParent();
Benjamin Kramere6e19332011-07-14 17:45:39 +00001410 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, ITy);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001411 return CallInst::Create(F, V);
1412}
1413
1414/// MatchSelectFromAndOr - We have an expression of the form (A&C)|(B&D). Check
1415/// If A is (cond?-1:0) and either B or D is ~(cond?-1,0) or (cond?0,-1), then
1416/// we can simplify this expression to "cond ? C : D or B".
1417static Instruction *MatchSelectFromAndOr(Value *A, Value *B,
1418 Value *C, Value *D) {
1419 // If A is not a select of -1/0, this cannot match.
1420 Value *Cond = 0;
Chris Lattner9b6a1782010-02-09 01:12:41 +00001421 if (!match(A, m_SExt(m_Value(Cond))) ||
Duncan Sands9dff9be2010-02-15 16:12:20 +00001422 !Cond->getType()->isIntegerTy(1))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001423 return 0;
1424
1425 // ((cond?-1:0)&C) | (B&(cond?0:-1)) -> cond ? C : B.
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001426 if (match(D, m_Not(m_SExt(m_Specific(Cond)))))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001427 return SelectInst::Create(Cond, C, B);
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001428 if (match(D, m_SExt(m_Not(m_Specific(Cond)))))
Chris Lattner64ffd112010-02-05 19:53:02 +00001429 return SelectInst::Create(Cond, C, B);
1430
Chris Lattner0a8191e2010-01-05 07:50:36 +00001431 // ((cond?-1:0)&C) | ((cond?0:-1)&D) -> cond ? C : D.
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001432 if (match(B, m_Not(m_SExt(m_Specific(Cond)))))
Chris Lattner64ffd112010-02-05 19:53:02 +00001433 return SelectInst::Create(Cond, C, D);
Chris Lattnerf4c8d3c2010-02-09 01:14:06 +00001434 if (match(B, m_SExt(m_Not(m_Specific(Cond)))))
Chris Lattner0a8191e2010-01-05 07:50:36 +00001435 return SelectInst::Create(Cond, C, D);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001436 return 0;
1437}
1438
Chris Lattner067459c2010-03-05 08:46:26 +00001439/// FoldOrOfICmps - Fold (icmp)|(icmp) if possible.
1440Value *InstCombiner::FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001441 ICmpInst::Predicate LHSCC = LHS->getPredicate(), RHSCC = RHS->getPredicate();
1442
1443 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
1444 if (PredicatesFoldable(LHSCC, RHSCC)) {
1445 if (LHS->getOperand(0) == RHS->getOperand(1) &&
1446 LHS->getOperand(1) == RHS->getOperand(0))
1447 LHS->swapOperands();
1448 if (LHS->getOperand(0) == RHS->getOperand(0) &&
1449 LHS->getOperand(1) == RHS->getOperand(1)) {
1450 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
1451 unsigned Code = getICmpCode(LHS) | getICmpCode(RHS);
1452 bool isSigned = LHS->isSigned() || RHS->isSigned();
Pete Cooperebf98c12011-12-17 01:20:32 +00001453 return getNewICmpValue(isSigned, Code, Op0, Op1, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001454 }
1455 }
Benjamin Kramer2bca3a62010-12-20 16:21:59 +00001456
1457 // handle (roughly):
1458 // (icmp ne (A & B), C) | (icmp ne (A & D), E)
1459 if (Value *V = foldLogOpOfMaskedICmps(LHS, RHS, ICmpInst::ICMP_NE, Builder))
1460 return V;
Owen Anderson3fe002d2010-09-08 22:16:17 +00001461
Chris Lattner0a8191e2010-01-05 07:50:36 +00001462 // This only handles icmp of constants: (icmp1 A, C1) | (icmp2 B, C2).
1463 Value *Val = LHS->getOperand(0), *Val2 = RHS->getOperand(0);
1464 ConstantInt *LHSCst = dyn_cast<ConstantInt>(LHS->getOperand(1));
1465 ConstantInt *RHSCst = dyn_cast<ConstantInt>(RHS->getOperand(1));
1466 if (LHSCst == 0 || RHSCst == 0) return 0;
1467
Owen Anderson8f306a72010-08-02 09:32:13 +00001468 if (LHSCst == RHSCst && LHSCC == RHSCC) {
1469 // (icmp ne A, 0) | (icmp ne B, 0) --> (icmp ne (A|B), 0)
1470 if (LHSCC == ICmpInst::ICMP_NE && LHSCst->isZero()) {
1471 Value *NewOr = Builder->CreateOr(Val, Val2);
1472 return Builder->CreateICmp(LHSCC, NewOr, LHSCst);
1473 }
Benjamin Kramerda37e152012-01-08 18:32:24 +00001474 }
1475
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001476 // (icmp ult (X + CA), C1) | (icmp eq X, C2) -> (icmp ule (X + CA), C1)
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001477 // iff C2 + CA == C1.
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001478 if (LHSCC == ICmpInst::ICMP_ULT && RHSCC == ICmpInst::ICMP_EQ) {
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001479 ConstantInt *AddCst;
1480 if (match(Val, m_Add(m_Specific(Val2), m_ConstantInt(AddCst))))
1481 if (RHSCst->getValue() + AddCst->getValue() == LHSCst->getValue())
Benjamin Kramerf7957d02010-12-20 20:00:31 +00001482 return Builder->CreateICmpULE(Val, LHSCst);
Benjamin Kramer68531ba2010-12-20 16:18:51 +00001483 }
1484
Chris Lattner0a8191e2010-01-05 07:50:36 +00001485 // From here on, we only handle:
1486 // (icmp1 A, C1) | (icmp2 A, C2) --> something simpler.
1487 if (Val != Val2) return 0;
1488
1489 // ICMP_[US][GL]E X, CST is folded to ICMP_[US][GL]T elsewhere.
1490 if (LHSCC == ICmpInst::ICMP_UGE || LHSCC == ICmpInst::ICMP_ULE ||
1491 RHSCC == ICmpInst::ICMP_UGE || RHSCC == ICmpInst::ICMP_ULE ||
1492 LHSCC == ICmpInst::ICMP_SGE || LHSCC == ICmpInst::ICMP_SLE ||
1493 RHSCC == ICmpInst::ICMP_SGE || RHSCC == ICmpInst::ICMP_SLE)
1494 return 0;
1495
1496 // We can't fold (ugt x, C) | (sgt x, C2).
1497 if (!PredicatesFoldable(LHSCC, RHSCC))
1498 return 0;
1499
1500 // Ensure that the larger constant is on the RHS.
1501 bool ShouldSwap;
1502 if (CmpInst::isSigned(LHSCC) ||
1503 (ICmpInst::isEquality(LHSCC) &&
1504 CmpInst::isSigned(RHSCC)))
1505 ShouldSwap = LHSCst->getValue().sgt(RHSCst->getValue());
1506 else
1507 ShouldSwap = LHSCst->getValue().ugt(RHSCst->getValue());
1508
1509 if (ShouldSwap) {
1510 std::swap(LHS, RHS);
1511 std::swap(LHSCst, RHSCst);
1512 std::swap(LHSCC, RHSCC);
1513 }
1514
Dan Gohman4a618822010-02-10 16:03:48 +00001515 // At this point, we know we have two icmp instructions
Chris Lattner0a8191e2010-01-05 07:50:36 +00001516 // comparing a value against two constants and or'ing the result
1517 // together. Because of the above check, we know that we only have
1518 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
1519 // icmp folding check above), that the two constants are not
1520 // equal.
1521 assert(LHSCst != RHSCst && "Compares not folded above?");
1522
1523 switch (LHSCC) {
1524 default: llvm_unreachable("Unknown integer condition code!");
1525 case ICmpInst::ICMP_EQ:
1526 switch (RHSCC) {
1527 default: llvm_unreachable("Unknown integer condition code!");
1528 case ICmpInst::ICMP_EQ:
1529 if (LHSCst == SubOne(RHSCst)) {
1530 // (X == 13 | X == 14) -> X-13 <u 2
1531 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
1532 Value *Add = Builder->CreateAdd(Val, AddCST, Val->getName()+".off");
1533 AddCST = ConstantExpr::getSub(AddOne(RHSCst), LHSCst);
Chris Lattner067459c2010-03-05 08:46:26 +00001534 return Builder->CreateICmpULT(Add, AddCST);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001535 }
1536 break; // (X == 13 | X == 15) -> no change
1537 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
1538 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
1539 break;
1540 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
1541 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
1542 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001543 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001544 }
1545 break;
1546 case ICmpInst::ICMP_NE:
1547 switch (RHSCC) {
1548 default: llvm_unreachable("Unknown integer condition code!");
1549 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
1550 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
1551 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
Chris Lattner067459c2010-03-05 08:46:26 +00001552 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001553 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
1554 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
1555 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001556 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001557 }
1558 break;
1559 case ICmpInst::ICMP_ULT:
1560 switch (RHSCC) {
1561 default: llvm_unreachable("Unknown integer condition code!");
1562 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
1563 break;
1564 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) -> (X-13) u> 2
1565 // If RHSCst is [us]MAXINT, it is always false. Not handling
1566 // this can cause overflow.
1567 if (RHSCst->isMaxValue(false))
Chris Lattner067459c2010-03-05 08:46:26 +00001568 return LHS;
1569 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), false, false);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001570 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
1571 break;
1572 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
1573 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001574 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001575 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
1576 break;
1577 }
1578 break;
1579 case ICmpInst::ICMP_SLT:
1580 switch (RHSCC) {
1581 default: llvm_unreachable("Unknown integer condition code!");
1582 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
1583 break;
1584 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) -> (X-13) s> 2
1585 // If RHSCst is [us]MAXINT, it is always false. Not handling
1586 // this can cause overflow.
1587 if (RHSCst->isMaxValue(true))
Chris Lattner067459c2010-03-05 08:46:26 +00001588 return LHS;
1589 return InsertRangeTest(Val, LHSCst, AddOne(RHSCst), true, false);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001590 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
1591 break;
1592 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
1593 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
Chris Lattner067459c2010-03-05 08:46:26 +00001594 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001595 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
1596 break;
1597 }
1598 break;
1599 case ICmpInst::ICMP_UGT:
1600 switch (RHSCC) {
1601 default: llvm_unreachable("Unknown integer condition code!");
1602 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
1603 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
Chris Lattner067459c2010-03-05 08:46:26 +00001604 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001605 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
1606 break;
1607 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
1608 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001609 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001610 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
1611 break;
1612 }
1613 break;
1614 case ICmpInst::ICMP_SGT:
1615 switch (RHSCC) {
1616 default: llvm_unreachable("Unknown integer condition code!");
1617 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
1618 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
Chris Lattner067459c2010-03-05 08:46:26 +00001619 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001620 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
1621 break;
1622 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
1623 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
Chris Lattner067459c2010-03-05 08:46:26 +00001624 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001625 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
1626 break;
1627 }
1628 break;
1629 }
1630 return 0;
1631}
1632
Chris Lattner067459c2010-03-05 08:46:26 +00001633/// FoldOrOfFCmps - Optimize (fcmp)|(fcmp). NOTE: Unlike the rest of
1634/// instcombine, this returns a Value which should already be inserted into the
1635/// function.
1636Value *InstCombiner::FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001637 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
1638 RHS->getPredicate() == FCmpInst::FCMP_UNO &&
1639 LHS->getOperand(0)->getType() == RHS->getOperand(0)->getType()) {
1640 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
1641 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
1642 // If either of the constants are nans, then the whole thing returns
1643 // true.
1644 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner067459c2010-03-05 08:46:26 +00001645 return ConstantInt::getTrue(LHS->getContext());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001646
1647 // Otherwise, no need to compare the two constants, compare the
1648 // rest.
Chris Lattner067459c2010-03-05 08:46:26 +00001649 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001650 }
1651
1652 // Handle vector zeros. This occurs because the canonical form of
1653 // "fcmp uno x,x" is "fcmp uno x, 0".
1654 if (isa<ConstantAggregateZero>(LHS->getOperand(1)) &&
1655 isa<ConstantAggregateZero>(RHS->getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001656 return Builder->CreateFCmpUNO(LHS->getOperand(0), RHS->getOperand(0));
Chris Lattner0a8191e2010-01-05 07:50:36 +00001657
1658 return 0;
1659 }
1660
1661 Value *Op0LHS = LHS->getOperand(0), *Op0RHS = LHS->getOperand(1);
1662 Value *Op1LHS = RHS->getOperand(0), *Op1RHS = RHS->getOperand(1);
1663 FCmpInst::Predicate Op0CC = LHS->getPredicate(), Op1CC = RHS->getPredicate();
1664
1665 if (Op0LHS == Op1RHS && Op0RHS == Op1LHS) {
1666 // Swap RHS operands to match LHS.
1667 Op1CC = FCmpInst::getSwappedPredicate(Op1CC);
1668 std::swap(Op1LHS, Op1RHS);
1669 }
1670 if (Op0LHS == Op1LHS && Op0RHS == Op1RHS) {
1671 // Simplify (fcmp cc0 x, y) | (fcmp cc1 x, y).
1672 if (Op0CC == Op1CC)
Chris Lattner067459c2010-03-05 08:46:26 +00001673 return Builder->CreateFCmp((FCmpInst::Predicate)Op0CC, Op0LHS, Op0RHS);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001674 if (Op0CC == FCmpInst::FCMP_TRUE || Op1CC == FCmpInst::FCMP_TRUE)
Chris Lattner067459c2010-03-05 08:46:26 +00001675 return ConstantInt::get(CmpInst::makeCmpResultType(LHS->getType()), 1);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001676 if (Op0CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +00001677 return RHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001678 if (Op1CC == FCmpInst::FCMP_FALSE)
Chris Lattner067459c2010-03-05 08:46:26 +00001679 return LHS;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001680 bool Op0Ordered;
1681 bool Op1Ordered;
1682 unsigned Op0Pred = getFCmpCode(Op0CC, Op0Ordered);
1683 unsigned Op1Pred = getFCmpCode(Op1CC, Op1Ordered);
1684 if (Op0Ordered == Op1Ordered) {
1685 // If both are ordered or unordered, return a new fcmp with
1686 // or'ed predicates.
Chris Lattner067459c2010-03-05 08:46:26 +00001687 return getFCmpValue(Op0Ordered, Op0Pred|Op1Pred, Op0LHS, Op0RHS, Builder);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001688 }
1689 }
1690 return 0;
1691}
1692
1693/// FoldOrWithConstants - This helper function folds:
1694///
1695/// ((A | B) & C1) | (B & C2)
1696///
1697/// into:
1698///
1699/// (A & C1) | B
1700///
1701/// when the XOR of the two constants is "all ones" (-1).
1702Instruction *InstCombiner::FoldOrWithConstants(BinaryOperator &I, Value *Op,
1703 Value *A, Value *B, Value *C) {
1704 ConstantInt *CI1 = dyn_cast<ConstantInt>(C);
1705 if (!CI1) return 0;
1706
1707 Value *V1 = 0;
1708 ConstantInt *CI2 = 0;
1709 if (!match(Op, m_And(m_Value(V1), m_ConstantInt(CI2)))) return 0;
1710
1711 APInt Xor = CI1->getValue() ^ CI2->getValue();
1712 if (!Xor.isAllOnesValue()) return 0;
1713
1714 if (V1 == A || V1 == B) {
1715 Value *NewOp = Builder->CreateAnd((V1 == A) ? B : A, CI1);
1716 return BinaryOperator::CreateOr(NewOp, V1);
1717 }
1718
1719 return 0;
1720}
1721
1722Instruction *InstCombiner::visitOr(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +00001723 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001724 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1725
1726 if (Value *V = SimplifyOrInst(Op0, Op1, TD))
1727 return ReplaceInstUsesWith(I, V);
Bill Wendlingaf13d822010-03-03 00:35:56 +00001728
Duncan Sandsfbb9ac32010-12-22 13:36:08 +00001729 // (A&B)|(A&C) -> A&(B|C) etc
1730 if (Value *V = SimplifyUsingDistributiveLaws(I))
1731 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +00001732
Chris Lattner0a8191e2010-01-05 07:50:36 +00001733 // See if we can simplify any instructions used by the instruction whose sole
1734 // purpose is to compute bits we don't care about.
1735 if (SimplifyDemandedInstructionBits(I))
1736 return &I;
1737
1738 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
1739 ConstantInt *C1 = 0; Value *X = 0;
1740 // (X & C1) | C2 --> (X | C2) & (C1|C2)
Bill Wendlingaf13d822010-03-03 00:35:56 +00001741 // iff (C1 & C2) == 0.
Chris Lattner0a8191e2010-01-05 07:50:36 +00001742 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) &&
Bill Wendlingaf13d822010-03-03 00:35:56 +00001743 (RHS->getValue() & C1->getValue()) != 0 &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00001744 Op0->hasOneUse()) {
1745 Value *Or = Builder->CreateOr(X, RHS);
1746 Or->takeName(Op0);
1747 return BinaryOperator::CreateAnd(Or,
1748 ConstantInt::get(I.getContext(),
1749 RHS->getValue() | C1->getValue()));
1750 }
1751
1752 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
1753 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) &&
1754 Op0->hasOneUse()) {
1755 Value *Or = Builder->CreateOr(X, RHS);
1756 Or->takeName(Op0);
1757 return BinaryOperator::CreateXor(Or,
1758 ConstantInt::get(I.getContext(),
1759 C1->getValue() & ~RHS->getValue()));
1760 }
1761
1762 // Try to fold constant and into select arguments.
1763 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
1764 if (Instruction *R = FoldOpIntoSelect(I, SI))
1765 return R;
Bill Wendlingaf13d822010-03-03 00:35:56 +00001766
Chris Lattner0a8191e2010-01-05 07:50:36 +00001767 if (isa<PHINode>(Op0))
1768 if (Instruction *NV = FoldOpIntoPhi(I))
1769 return NV;
1770 }
1771
1772 Value *A = 0, *B = 0;
1773 ConstantInt *C1 = 0, *C2 = 0;
1774
1775 // (A | B) | C and A | (B | C) -> bswap if possible.
1776 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
1777 if (match(Op0, m_Or(m_Value(), m_Value())) ||
1778 match(Op1, m_Or(m_Value(), m_Value())) ||
Chris Lattnerb9400912011-02-09 17:00:45 +00001779 (match(Op0, m_LogicalShift(m_Value(), m_Value())) &&
1780 match(Op1, m_LogicalShift(m_Value(), m_Value())))) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00001781 if (Instruction *BSwap = MatchBSwap(I))
1782 return BSwap;
1783 }
1784
1785 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
1786 if (Op0->hasOneUse() &&
1787 match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1788 MaskedValueIsZero(Op1, C1->getValue())) {
1789 Value *NOr = Builder->CreateOr(A, Op1);
1790 NOr->takeName(Op0);
1791 return BinaryOperator::CreateXor(NOr, C1);
1792 }
1793
1794 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
1795 if (Op1->hasOneUse() &&
1796 match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
1797 MaskedValueIsZero(Op0, C1->getValue())) {
1798 Value *NOr = Builder->CreateOr(A, Op0);
1799 NOr->takeName(Op0);
1800 return BinaryOperator::CreateXor(NOr, C1);
1801 }
1802
1803 // (A & C)|(B & D)
1804 Value *C = 0, *D = 0;
1805 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1806 match(Op1, m_And(m_Value(B), m_Value(D)))) {
Duncan Sandsadc7771f2010-11-23 14:23:47 +00001807 Value *V1 = 0, *V2 = 0;
Chris Lattner0a8191e2010-01-05 07:50:36 +00001808 C1 = dyn_cast<ConstantInt>(C);
1809 C2 = dyn_cast<ConstantInt>(D);
1810 if (C1 && C2) { // (A & C1)|(B & C2)
1811 // If we have: ((V + N) & C1) | (V & C2)
1812 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1813 // replace with V+N.
1814 if (C1->getValue() == ~C2->getValue()) {
1815 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
1816 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1817 // Add commutes, try both ways.
1818 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
1819 return ReplaceInstUsesWith(I, A);
1820 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
1821 return ReplaceInstUsesWith(I, A);
1822 }
1823 // Or commutes, try both ways.
1824 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
1825 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1826 // Add commutes, try both ways.
1827 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
1828 return ReplaceInstUsesWith(I, B);
1829 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
1830 return ReplaceInstUsesWith(I, B);
1831 }
1832 }
1833
Chris Lattner0a8191e2010-01-05 07:50:36 +00001834 if ((C1->getValue() & C2->getValue()) == 0) {
Chris Lattner95188692010-01-11 06:55:24 +00001835 // ((V | N) & C1) | (V & C2) --> (V|N) & (C1|C2)
1836 // iff (C1&C2) == 0 and (N&~C1) == 0
Chris Lattner0a8191e2010-01-05 07:50:36 +00001837 if (match(A, m_Or(m_Value(V1), m_Value(V2))) &&
1838 ((V1 == B && MaskedValueIsZero(V2, ~C1->getValue())) || // (V|N)
1839 (V2 == B && MaskedValueIsZero(V1, ~C1->getValue())))) // (N|V)
1840 return BinaryOperator::CreateAnd(A,
1841 ConstantInt::get(A->getContext(),
1842 C1->getValue()|C2->getValue()));
1843 // Or commutes, try both ways.
1844 if (match(B, m_Or(m_Value(V1), m_Value(V2))) &&
1845 ((V1 == A && MaskedValueIsZero(V2, ~C2->getValue())) || // (V|N)
1846 (V2 == A && MaskedValueIsZero(V1, ~C2->getValue())))) // (N|V)
1847 return BinaryOperator::CreateAnd(B,
1848 ConstantInt::get(B->getContext(),
1849 C1->getValue()|C2->getValue()));
Chris Lattner95188692010-01-11 06:55:24 +00001850
1851 // ((V|C3)&C1) | ((V|C4)&C2) --> (V|C3|C4)&(C1|C2)
1852 // iff (C1&C2) == 0 and (C3&~C1) == 0 and (C4&~C2) == 0.
1853 ConstantInt *C3 = 0, *C4 = 0;
1854 if (match(A, m_Or(m_Value(V1), m_ConstantInt(C3))) &&
1855 (C3->getValue() & ~C1->getValue()) == 0 &&
1856 match(B, m_Or(m_Specific(V1), m_ConstantInt(C4))) &&
1857 (C4->getValue() & ~C2->getValue()) == 0) {
1858 V2 = Builder->CreateOr(V1, ConstantExpr::getOr(C3, C4), "bitfield");
1859 return BinaryOperator::CreateAnd(V2,
1860 ConstantInt::get(B->getContext(),
1861 C1->getValue()|C2->getValue()));
1862 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001863 }
1864 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001865
Chris Lattner8e2c4712010-02-02 02:43:51 +00001866 // (A & (C0?-1:0)) | (B & ~(C0?-1:0)) -> C0 ? A : B, and commuted variants.
1867 // Don't do this for vector select idioms, the code generator doesn't handle
1868 // them well yet.
Duncan Sands19d0b472010-02-16 11:11:14 +00001869 if (!I.getType()->isVectorTy()) {
Chris Lattner8e2c4712010-02-02 02:43:51 +00001870 if (Instruction *Match = MatchSelectFromAndOr(A, B, C, D))
1871 return Match;
1872 if (Instruction *Match = MatchSelectFromAndOr(B, A, D, C))
1873 return Match;
1874 if (Instruction *Match = MatchSelectFromAndOr(C, B, A, D))
1875 return Match;
1876 if (Instruction *Match = MatchSelectFromAndOr(D, A, B, C))
1877 return Match;
1878 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001879
1880 // ((A&~B)|(~A&B)) -> A^B
1881 if ((match(C, m_Not(m_Specific(D))) &&
1882 match(B, m_Not(m_Specific(A)))))
1883 return BinaryOperator::CreateXor(A, D);
1884 // ((~B&A)|(~A&B)) -> A^B
1885 if ((match(A, m_Not(m_Specific(D))) &&
1886 match(B, m_Not(m_Specific(C)))))
1887 return BinaryOperator::CreateXor(C, D);
1888 // ((A&~B)|(B&~A)) -> A^B
1889 if ((match(C, m_Not(m_Specific(B))) &&
1890 match(D, m_Not(m_Specific(A)))))
1891 return BinaryOperator::CreateXor(A, B);
1892 // ((~B&A)|(B&~A)) -> A^B
1893 if ((match(A, m_Not(m_Specific(B))) &&
1894 match(D, m_Not(m_Specific(C)))))
1895 return BinaryOperator::CreateXor(C, B);
Benjamin Kramer11743242010-07-12 13:34:22 +00001896
1897 // ((A|B)&1)|(B&-2) -> (A&1) | B
1898 if (match(A, m_Or(m_Value(V1), m_Specific(B))) ||
1899 match(A, m_Or(m_Specific(B), m_Value(V1)))) {
1900 Instruction *Ret = FoldOrWithConstants(I, Op1, V1, B, C);
1901 if (Ret) return Ret;
1902 }
1903 // (B&-2)|((A|B)&1) -> (A&1) | B
1904 if (match(B, m_Or(m_Specific(A), m_Value(V1))) ||
1905 match(B, m_Or(m_Value(V1), m_Specific(A)))) {
1906 Instruction *Ret = FoldOrWithConstants(I, Op0, A, V1, D);
1907 if (Ret) return Ret;
1908 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00001909 }
1910
1911 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
1912 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
1913 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
1914 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
1915 SI0->getOperand(1) == SI1->getOperand(1) &&
1916 (SI0->hasOneUse() || SI1->hasOneUse())) {
1917 Value *NewOp = Builder->CreateOr(SI0->getOperand(0), SI1->getOperand(0),
1918 SI0->getName());
1919 return BinaryOperator::Create(SI1->getOpcode(), NewOp,
1920 SI1->getOperand(1));
1921 }
1922 }
1923
Chris Lattner0a8191e2010-01-05 07:50:36 +00001924 // (~A | ~B) == (~(A & B)) - De Morgan's Law
1925 if (Value *Op0NotVal = dyn_castNotVal(Op0))
1926 if (Value *Op1NotVal = dyn_castNotVal(Op1))
1927 if (Op0->hasOneUse() && Op1->hasOneUse()) {
1928 Value *And = Builder->CreateAnd(Op0NotVal, Op1NotVal,
1929 I.getName()+".demorgan");
1930 return BinaryOperator::CreateNot(And);
1931 }
1932
Benjamin Kramerd5d7f372011-02-20 13:23:43 +00001933 // Canonicalize xor to the RHS.
1934 if (match(Op0, m_Xor(m_Value(), m_Value())))
1935 std::swap(Op0, Op1);
1936
1937 // A | ( A ^ B) -> A | B
1938 // A | (~A ^ B) -> A | ~B
1939 if (match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
1940 if (Op0 == A || Op0 == B)
1941 return BinaryOperator::CreateOr(A, B);
1942
1943 if (Op1->hasOneUse() && match(A, m_Not(m_Specific(Op0)))) {
1944 Value *Not = Builder->CreateNot(B, B->getName()+".not");
1945 return BinaryOperator::CreateOr(Not, Op0);
1946 }
1947 if (Op1->hasOneUse() && match(B, m_Not(m_Specific(Op0)))) {
1948 Value *Not = Builder->CreateNot(A, A->getName()+".not");
1949 return BinaryOperator::CreateOr(Not, Op0);
1950 }
1951 }
1952
1953 // A | ~(A | B) -> A | ~B
1954 // A | ~(A ^ B) -> A | ~B
Benjamin Kramerd5d7f372011-02-20 13:23:43 +00001955 if (match(Op1, m_Not(m_Value(A))))
1956 if (BinaryOperator *B = dyn_cast<BinaryOperator>(A))
Benjamin Kramer5b7a4e02011-02-20 15:20:01 +00001957 if ((Op0 == B->getOperand(0) || Op0 == B->getOperand(1)) &&
1958 Op1->hasOneUse() && (B->getOpcode() == Instruction::Or ||
1959 B->getOpcode() == Instruction::Xor)) {
1960 Value *NotOp = Op0 == B->getOperand(0) ? B->getOperand(1) :
1961 B->getOperand(0);
1962 Value *Not = Builder->CreateNot(NotOp, NotOp->getName()+".not");
1963 return BinaryOperator::CreateOr(Not, Op0);
1964 }
Benjamin Kramerd5d7f372011-02-20 13:23:43 +00001965
Chris Lattner0a8191e2010-01-05 07:50:36 +00001966 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
1967 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
Chris Lattner067459c2010-03-05 08:46:26 +00001968 if (Value *Res = FoldOrOfICmps(LHS, RHS))
1969 return ReplaceInstUsesWith(I, Res);
Chris Lattner0a8191e2010-01-05 07:50:36 +00001970
Chris Lattner4e8137d2010-02-11 06:26:33 +00001971 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
1972 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0)))
1973 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1)))
Chris Lattner067459c2010-03-05 08:46:26 +00001974 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
1975 return ReplaceInstUsesWith(I, Res);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001976
Chris Lattner0a8191e2010-01-05 07:50:36 +00001977 // fold (or (cast A), (cast B)) -> (cast (or A, B))
1978 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Chris Lattner311aa632011-01-15 05:40:29 +00001979 CastInst *Op1C = dyn_cast<CastInst>(Op1);
1980 if (Op1C && Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
Chris Lattner229907c2011-07-18 04:54:35 +00001981 Type *SrcTy = Op0C->getOperand(0)->getType();
Chris Lattner311aa632011-01-15 05:40:29 +00001982 if (SrcTy == Op1C->getOperand(0)->getType() &&
1983 SrcTy->isIntOrIntVectorTy()) {
1984 Value *Op0COp = Op0C->getOperand(0), *Op1COp = Op1C->getOperand(0);
Chris Lattner4e8137d2010-02-11 06:26:33 +00001985
Chris Lattner311aa632011-01-15 05:40:29 +00001986 if ((!isa<ICmpInst>(Op0COp) || !isa<ICmpInst>(Op1COp)) &&
1987 // Only do this if the casts both really cause code to be
1988 // generated.
1989 ShouldOptimizeCast(Op0C->getOpcode(), Op0COp, I.getType()) &&
1990 ShouldOptimizeCast(Op1C->getOpcode(), Op1COp, I.getType())) {
1991 Value *NewOp = Builder->CreateOr(Op0COp, Op1COp, I.getName());
1992 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00001993 }
Chris Lattner311aa632011-01-15 05:40:29 +00001994
1995 // If this is or(cast(icmp), cast(icmp)), try to fold this even if the
1996 // cast is otherwise not optimizable. This happens for vector sexts.
1997 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1COp))
1998 if (ICmpInst *LHS = dyn_cast<ICmpInst>(Op0COp))
1999 if (Value *Res = FoldOrOfICmps(LHS, RHS))
2000 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
2001
2002 // If this is or(cast(fcmp), cast(fcmp)), try to fold this even if the
2003 // cast is otherwise not optimizable. This happens for vector sexts.
2004 if (FCmpInst *RHS = dyn_cast<FCmpInst>(Op1COp))
2005 if (FCmpInst *LHS = dyn_cast<FCmpInst>(Op0COp))
2006 if (Value *Res = FoldOrOfFCmps(LHS, RHS))
2007 return CastInst::Create(Op0C->getOpcode(), Res, I.getType());
Chris Lattner0a8191e2010-01-05 07:50:36 +00002008 }
Chris Lattner311aa632011-01-15 05:40:29 +00002009 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00002010 }
Eli Friedman23956262011-04-14 22:41:27 +00002011
2012 // or(sext(A), B) -> A ? -1 : B where A is an i1
2013 // or(A, sext(B)) -> B ? -1 : A where B is an i1
2014 if (match(Op0, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2015 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op1);
2016 if (match(Op1, m_SExt(m_Value(A))) && A->getType()->isIntegerTy(1))
2017 return SelectInst::Create(A, ConstantInt::getSigned(I.getType(), -1), Op0);
2018
Owen Andersonc237a842010-09-13 17:59:27 +00002019 // Note: If we've gotten to the point of visiting the outer OR, then the
2020 // inner one couldn't be simplified. If it was a constant, then it won't
2021 // be simplified by a later pass either, so we try swapping the inner/outer
2022 // ORs in the hopes that we'll be able to simplify it this way.
2023 // (X|C) | V --> (X|V) | C
2024 if (Op0->hasOneUse() && !isa<ConstantInt>(Op1) &&
2025 match(Op0, m_Or(m_Value(A), m_ConstantInt(C1)))) {
2026 Value *Inner = Builder->CreateOr(A, Op1);
2027 Inner->takeName(Op0);
2028 return BinaryOperator::CreateOr(Inner, C1);
2029 }
2030
Chris Lattner0a8191e2010-01-05 07:50:36 +00002031 return Changed ? &I : 0;
2032}
2033
2034Instruction *InstCombiner::visitXor(BinaryOperator &I) {
Duncan Sands641baf12010-11-13 15:10:37 +00002035 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattner0a8191e2010-01-05 07:50:36 +00002036 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2037
Duncan Sandsc89ac072010-11-17 18:52:15 +00002038 if (Value *V = SimplifyXorInst(Op0, Op1, TD))
2039 return ReplaceInstUsesWith(I, V);
Chris Lattner0a8191e2010-01-05 07:50:36 +00002040
Duncan Sandsfbb9ac32010-12-22 13:36:08 +00002041 // (A&B)^(A&C) -> A&(B^C) etc
2042 if (Value *V = SimplifyUsingDistributiveLaws(I))
2043 return ReplaceInstUsesWith(I, V);
Duncan Sandsadc7771f2010-11-23 14:23:47 +00002044
Chris Lattner0a8191e2010-01-05 07:50:36 +00002045 // See if we can simplify any instructions used by the instruction whose sole
2046 // purpose is to compute bits we don't care about.
2047 if (SimplifyDemandedInstructionBits(I))
2048 return &I;
Chris Lattner0a8191e2010-01-05 07:50:36 +00002049
2050 // Is this a ~ operation?
2051 if (Value *NotOp = dyn_castNotVal(&I)) {
2052 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
2053 if (Op0I->getOpcode() == Instruction::And ||
2054 Op0I->getOpcode() == Instruction::Or) {
2055 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
2056 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
2057 if (dyn_castNotVal(Op0I->getOperand(1)))
2058 Op0I->swapOperands();
2059 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
2060 Value *NotY =
2061 Builder->CreateNot(Op0I->getOperand(1),
2062 Op0I->getOperand(1)->getName()+".not");
2063 if (Op0I->getOpcode() == Instruction::And)
2064 return BinaryOperator::CreateOr(Op0NotVal, NotY);
2065 return BinaryOperator::CreateAnd(Op0NotVal, NotY);
2066 }
2067
2068 // ~(X & Y) --> (~X | ~Y) - De Morgan's Law
2069 // ~(X | Y) === (~X & ~Y) - De Morgan's Law
2070 if (isFreeToInvert(Op0I->getOperand(0)) &&
2071 isFreeToInvert(Op0I->getOperand(1))) {
2072 Value *NotX =
2073 Builder->CreateNot(Op0I->getOperand(0), "notlhs");
2074 Value *NotY =
2075 Builder->CreateNot(Op0I->getOperand(1), "notrhs");
2076 if (Op0I->getOpcode() == Instruction::And)
2077 return BinaryOperator::CreateOr(NotX, NotY);
2078 return BinaryOperator::CreateAnd(NotX, NotY);
2079 }
Chris Lattner18f49ce2010-01-19 18:16:19 +00002080
2081 } else if (Op0I->getOpcode() == Instruction::AShr) {
2082 // ~(~X >>s Y) --> (X >>s Y)
2083 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0)))
2084 return BinaryOperator::CreateAShr(Op0NotVal, Op0I->getOperand(1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002085 }
2086 }
2087 }
2088
2089
2090 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Dan Gohman0a8175d2010-04-09 14:53:59 +00002091 if (RHS->isOne() && Op0->hasOneUse())
Chris Lattner0a8191e2010-01-05 07:50:36 +00002092 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
Dan Gohman0a8175d2010-04-09 14:53:59 +00002093 if (CmpInst *CI = dyn_cast<CmpInst>(Op0))
2094 return CmpInst::Create(CI->getOpcode(),
2095 CI->getInversePredicate(),
2096 CI->getOperand(0), CI->getOperand(1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002097
2098 // fold (xor(zext(cmp)), 1) and (xor(sext(cmp)), -1) to ext(!cmp).
2099 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2100 if (CmpInst *CI = dyn_cast<CmpInst>(Op0C->getOperand(0))) {
2101 if (CI->hasOneUse() && Op0C->hasOneUse()) {
2102 Instruction::CastOps Opcode = Op0C->getOpcode();
2103 if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
2104 (RHS == ConstantExpr::getCast(Opcode,
2105 ConstantInt::getTrue(I.getContext()),
2106 Op0C->getDestTy()))) {
2107 CI->setPredicate(CI->getInversePredicate());
2108 return CastInst::Create(Opcode, CI, Op0C->getType());
2109 }
2110 }
2111 }
2112 }
2113
2114 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2115 // ~(c-X) == X-c-1 == X+(-c-1)
2116 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
2117 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
2118 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
2119 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
2120 ConstantInt::get(I.getType(), 1));
2121 return BinaryOperator::CreateAdd(Op0I->getOperand(1), ConstantRHS);
2122 }
2123
2124 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2125 if (Op0I->getOpcode() == Instruction::Add) {
2126 // ~(X-c) --> (-c-1)-X
2127 if (RHS->isAllOnesValue()) {
2128 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
2129 return BinaryOperator::CreateSub(
2130 ConstantExpr::getSub(NegOp0CI,
2131 ConstantInt::get(I.getType(), 1)),
2132 Op0I->getOperand(0));
2133 } else if (RHS->getValue().isSignBit()) {
2134 // (X + C) ^ signbit -> (X + C + signbit)
2135 Constant *C = ConstantInt::get(I.getContext(),
2136 RHS->getValue() + Op0CI->getValue());
2137 return BinaryOperator::CreateAdd(Op0I->getOperand(0), C);
2138
2139 }
2140 } else if (Op0I->getOpcode() == Instruction::Or) {
2141 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
2142 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
2143 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
2144 // Anything in both C1 and C2 is known to be zero, remove it from
2145 // NewRHS.
2146 Constant *CommonBits = ConstantExpr::getAnd(Op0CI, RHS);
2147 NewRHS = ConstantExpr::getAnd(NewRHS,
2148 ConstantExpr::getNot(CommonBits));
2149 Worklist.Add(Op0I);
2150 I.setOperand(0, Op0I->getOperand(0));
2151 I.setOperand(1, NewRHS);
2152 return &I;
2153 }
2154 }
2155 }
2156 }
2157
2158 // Try to fold constant and into select arguments.
2159 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2160 if (Instruction *R = FoldOpIntoSelect(I, SI))
2161 return R;
2162 if (isa<PHINode>(Op0))
2163 if (Instruction *NV = FoldOpIntoPhi(I))
2164 return NV;
2165 }
2166
Chris Lattner0a8191e2010-01-05 07:50:36 +00002167 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
2168 if (Op1I) {
2169 Value *A, *B;
2170 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
2171 if (A == Op0) { // B^(B|A) == (A|B)^B
2172 Op1I->swapOperands();
2173 I.swapOperands();
2174 std::swap(Op0, Op1);
2175 } else if (B == Op0) { // B^(A|B) == (A|B)^B
2176 I.swapOperands(); // Simplified below.
2177 std::swap(Op0, Op1);
2178 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00002179 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) &&
2180 Op1I->hasOneUse()){
2181 if (A == Op0) { // A^(A&B) -> A^(B&A)
2182 Op1I->swapOperands();
2183 std::swap(A, B);
2184 }
2185 if (B == Op0) { // A^(B&A) -> (B&A)^A
2186 I.swapOperands(); // Simplified below.
2187 std::swap(Op0, Op1);
2188 }
2189 }
2190 }
2191
2192 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
2193 if (Op0I) {
2194 Value *A, *B;
2195 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2196 Op0I->hasOneUse()) {
2197 if (A == Op1) // (B|A)^B == (A|B)^B
2198 std::swap(A, B);
2199 if (B == Op1) // (A|B)^B == A & ~B
Benjamin Kramer547b6c52011-09-27 20:39:19 +00002200 return BinaryOperator::CreateAnd(A, Builder->CreateNot(Op1));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002201 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2202 Op0I->hasOneUse()){
2203 if (A == Op1) // (A&B)^A -> (B&A)^A
2204 std::swap(A, B);
2205 if (B == Op1 && // (B&A)^A == ~B & A
2206 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
Benjamin Kramer547b6c52011-09-27 20:39:19 +00002207 return BinaryOperator::CreateAnd(Builder->CreateNot(A), Op1);
Chris Lattner0a8191e2010-01-05 07:50:36 +00002208 }
2209 }
2210 }
2211
2212 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
2213 if (Op0I && Op1I && Op0I->isShift() &&
2214 Op0I->getOpcode() == Op1I->getOpcode() &&
2215 Op0I->getOperand(1) == Op1I->getOperand(1) &&
2216 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
2217 Value *NewOp =
2218 Builder->CreateXor(Op0I->getOperand(0), Op1I->getOperand(0),
2219 Op0I->getName());
2220 return BinaryOperator::Create(Op1I->getOpcode(), NewOp,
2221 Op1I->getOperand(1));
2222 }
2223
2224 if (Op0I && Op1I) {
2225 Value *A, *B, *C, *D;
2226 // (A & B)^(A | B) -> A ^ B
2227 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
2228 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
2229 if ((A == C && B == D) || (A == D && B == C))
2230 return BinaryOperator::CreateXor(A, B);
2231 }
2232 // (A | B)^(A & B) -> A ^ B
2233 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
2234 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
2235 if ((A == C && B == D) || (A == D && B == C))
2236 return BinaryOperator::CreateXor(A, B);
2237 }
Chris Lattner0a8191e2010-01-05 07:50:36 +00002238 }
Duncan Sandsadc7771f2010-11-23 14:23:47 +00002239
Chris Lattner0a8191e2010-01-05 07:50:36 +00002240 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
2241 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
2242 if (ICmpInst *LHS = dyn_cast<ICmpInst>(I.getOperand(0)))
2243 if (PredicatesFoldable(LHS->getPredicate(), RHS->getPredicate())) {
2244 if (LHS->getOperand(0) == RHS->getOperand(1) &&
2245 LHS->getOperand(1) == RHS->getOperand(0))
2246 LHS->swapOperands();
2247 if (LHS->getOperand(0) == RHS->getOperand(0) &&
2248 LHS->getOperand(1) == RHS->getOperand(1)) {
2249 Value *Op0 = LHS->getOperand(0), *Op1 = LHS->getOperand(1);
2250 unsigned Code = getICmpCode(LHS) ^ getICmpCode(RHS);
2251 bool isSigned = LHS->isSigned() || RHS->isSigned();
Chris Lattner067459c2010-03-05 08:46:26 +00002252 return ReplaceInstUsesWith(I,
Pete Cooperebf98c12011-12-17 01:20:32 +00002253 getNewICmpValue(isSigned, Code, Op0, Op1,
2254 Builder));
Chris Lattner0a8191e2010-01-05 07:50:36 +00002255 }
2256 }
2257
2258 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
2259 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
2260 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
2261 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
Chris Lattner229907c2011-07-18 04:54:35 +00002262 Type *SrcTy = Op0C->getOperand(0)->getType();
Duncan Sands9dff9be2010-02-15 16:12:20 +00002263 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isIntegerTy() &&
Chris Lattner0a8191e2010-01-05 07:50:36 +00002264 // Only do this if the casts both really cause code to be generated.
Chris Lattner4e8137d2010-02-11 06:26:33 +00002265 ShouldOptimizeCast(Op0C->getOpcode(), Op0C->getOperand(0),
2266 I.getType()) &&
2267 ShouldOptimizeCast(Op1C->getOpcode(), Op1C->getOperand(0),
2268 I.getType())) {
Chris Lattner0a8191e2010-01-05 07:50:36 +00002269 Value *NewOp = Builder->CreateXor(Op0C->getOperand(0),
2270 Op1C->getOperand(0), I.getName());
2271 return CastInst::Create(Op0C->getOpcode(), NewOp, I.getType());
2272 }
2273 }
2274 }
2275
2276 return Changed ? &I : 0;
2277}