blob: d0616fd678bda3f53ede024e0128b3432b36f5b6 [file] [log] [blame]
Eugene Zelenko32a40562017-09-11 23:00:48 +00001//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
Brendon Cahoon254f8892016-07-29 16:44:44 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
13// that overlap loop iterations and explioits ILP via a compiler transformation.
14//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
Eugene Zelenkocdc71612016-08-11 17:20:18 +000061#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000063#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/MapVector.h"
65#include "llvm/ADT/PriorityQueue.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallSet.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000069#include "llvm/ADT/SmallVector.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000070#include "llvm/ADT/Statistic.h"
Chandler Carruth6bda14b2017-06-06 11:49:48 +000071#include "llvm/ADT/iterator_range.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000072#include "llvm/Analysis/AliasAnalysis.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000073#include "llvm/Analysis/MemoryLocation.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000074#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
76#include "llvm/CodeGen/LiveIntervalAnalysis.h"
77#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000079#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000082#include "llvm/CodeGen/MachineInstrBuilder.h"
83#include "llvm/CodeGen/MachineLoopInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000084#include "llvm/CodeGen/MachineMemOperand.h"
85#include "llvm/CodeGen/MachineOperand.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000086#include "llvm/CodeGen/MachineRegisterInfo.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000087#include "llvm/CodeGen/RegisterClassInfo.h"
88#include "llvm/CodeGen/RegisterPressure.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000089#include "llvm/CodeGen/ScheduleDAG.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000090#include "llvm/CodeGen/ScheduleDAGInstrs.h"
Krzysztof Parzyszek88391242016-12-22 19:21:20 +000091#include "llvm/CodeGen/ScheduleDAGMutation.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +000092#include "llvm/IR/Attributes.h"
93#include "llvm/IR/DebugLoc.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000094#include "llvm/IR/Function.h"
95#include "llvm/MC/LaneBitmask.h"
96#include "llvm/MC/MCInstrDesc.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +000097#include "llvm/MC/MCInstrItineraries.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +000098#include "llvm/MC/MCRegisterInfo.h"
99#include "llvm/Pass.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000100#include "llvm/Support/CommandLine.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000101#include "llvm/Support/Compiler.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000102#include "llvm/Support/Debug.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000103#include "llvm/Support/MathExtras.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000104#include "llvm/Support/raw_ostream.h"
105#include "llvm/Target/TargetInstrInfo.h"
Eugene Zelenko32a40562017-09-11 23:00:48 +0000106#include "llvm/Target/TargetOpcodes.h"
Brendon Cahoon254f8892016-07-29 16:44:44 +0000107#include "llvm/Target/TargetRegisterInfo.h"
108#include "llvm/Target/TargetSubtargetInfo.h"
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000109#include <algorithm>
110#include <cassert>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000111#include <climits>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000112#include <cstdint>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000113#include <deque>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000114#include <functional>
115#include <iterator>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000116#include <map>
Eugene Zelenko32a40562017-09-11 23:00:48 +0000117#include <memory>
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000118#include <tuple>
119#include <utility>
120#include <vector>
Brendon Cahoon254f8892016-07-29 16:44:44 +0000121
122using namespace llvm;
123
124#define DEBUG_TYPE "pipeliner"
125
126STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
127STATISTIC(NumPipelined, "Number of loops software pipelined");
128
129/// A command line option to turn software pipelining on or off.
Benjamin Kramerb7d33112016-08-06 11:13:10 +0000130static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
131 cl::ZeroOrMore,
132 cl::desc("Enable Software Pipelining"));
Brendon Cahoon254f8892016-07-29 16:44:44 +0000133
134/// A command line option to enable SWP at -Os.
135static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
136 cl::desc("Enable SWP at Os."), cl::Hidden,
137 cl::init(false));
138
139/// A command line argument to limit minimum initial interval for pipelining.
140static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
141 cl::desc("Size limit for the the MII."),
142 cl::Hidden, cl::init(27));
143
144/// A command line argument to limit the number of stages in the pipeline.
145static cl::opt<int>
146 SwpMaxStages("pipeliner-max-stages",
147 cl::desc("Maximum stages allowed in the generated scheduled."),
148 cl::Hidden, cl::init(3));
149
150/// A command line option to disable the pruning of chain dependences due to
151/// an unrelated Phi.
152static cl::opt<bool>
153 SwpPruneDeps("pipeliner-prune-deps",
154 cl::desc("Prune dependences between unrelated Phi nodes."),
155 cl::Hidden, cl::init(true));
156
157/// A command line option to disable the pruning of loop carried order
158/// dependences.
159static cl::opt<bool>
160 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
161 cl::desc("Prune loop carried order dependences."),
162 cl::Hidden, cl::init(true));
163
164#ifndef NDEBUG
165static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
166#endif
167
168static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
169 cl::ReallyHidden, cl::init(false),
170 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
171
172namespace {
173
174class NodeSet;
175class SMSchedule;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000176
177/// The main class in the implementation of the target independent
178/// software pipeliner pass.
179class MachinePipeliner : public MachineFunctionPass {
180public:
181 MachineFunction *MF = nullptr;
182 const MachineLoopInfo *MLI = nullptr;
183 const MachineDominatorTree *MDT = nullptr;
184 const InstrItineraryData *InstrItins;
185 const TargetInstrInfo *TII = nullptr;
186 RegisterClassInfo RegClassInfo;
187
188#ifndef NDEBUG
189 static int NumTries;
190#endif
Eugene Zelenko32a40562017-09-11 23:00:48 +0000191
Brendon Cahoon254f8892016-07-29 16:44:44 +0000192 /// Cache the target analysis information about the loop.
193 struct LoopInfo {
194 MachineBasicBlock *TBB = nullptr;
195 MachineBasicBlock *FBB = nullptr;
196 SmallVector<MachineOperand, 4> BrCond;
197 MachineInstr *LoopInductionVar = nullptr;
198 MachineInstr *LoopCompare = nullptr;
199 };
200 LoopInfo LI;
201
202 static char ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000203
Brendon Cahoon254f8892016-07-29 16:44:44 +0000204 MachinePipeliner() : MachineFunctionPass(ID) {
205 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
206 }
207
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000208 bool runOnMachineFunction(MachineFunction &MF) override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000209
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000210 void getAnalysisUsage(AnalysisUsage &AU) const override {
Brendon Cahoon254f8892016-07-29 16:44:44 +0000211 AU.addRequired<AAResultsWrapperPass>();
212 AU.addPreserved<AAResultsWrapperPass>();
213 AU.addRequired<MachineLoopInfo>();
214 AU.addRequired<MachineDominatorTree>();
215 AU.addRequired<LiveIntervals>();
216 MachineFunctionPass::getAnalysisUsage(AU);
217 }
218
219private:
220 bool canPipelineLoop(MachineLoop &L);
221 bool scheduleLoop(MachineLoop &L);
222 bool swingModuloScheduler(MachineLoop &L);
223};
224
225/// This class builds the dependence graph for the instructions in a loop,
226/// and attempts to schedule the instructions using the SMS algorithm.
227class SwingSchedulerDAG : public ScheduleDAGInstrs {
228 MachinePipeliner &Pass;
229 /// The minimum initiation interval between iterations for this schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000230 unsigned MII = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000231 /// Set to true if a valid pipelined schedule is found for the loop.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000232 bool Scheduled = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000233 MachineLoop &Loop;
234 LiveIntervals &LIS;
235 const RegisterClassInfo &RegClassInfo;
236
237 /// A toplogical ordering of the SUnits, which is needed for changing
238 /// dependences and iterating over the SUnits.
239 ScheduleDAGTopologicalSort Topo;
240
241 struct NodeInfo {
Eugene Zelenko32a40562017-09-11 23:00:48 +0000242 int ASAP = 0;
243 int ALAP = 0;
244
245 NodeInfo() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000246 };
247 /// Computed properties for each node in the graph.
248 std::vector<NodeInfo> ScheduleInfo;
249
250 enum OrderKind { BottomUp = 0, TopDown = 1 };
251 /// Computed node ordering for scheduling.
252 SetVector<SUnit *> NodeOrder;
253
Eugene Zelenko32a40562017-09-11 23:00:48 +0000254 using NodeSetType = SmallVector<NodeSet, 8>;
255 using ValueMapTy = DenseMap<unsigned, unsigned>;
256 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
257 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000258
259 /// Instructions to change when emitting the final schedule.
260 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
261
262 /// We may create a new instruction, so remember it because it
263 /// must be deleted when the pass is finished.
264 SmallPtrSet<MachineInstr *, 4> NewMIs;
265
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000266 /// Ordered list of DAG postprocessing steps.
267 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
268
Brendon Cahoon254f8892016-07-29 16:44:44 +0000269 /// Helper class to implement Johnson's circuit finding algorithm.
270 class Circuits {
271 std::vector<SUnit> &SUnits;
272 SetVector<SUnit *> Stack;
273 BitVector Blocked;
274 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
275 SmallVector<SmallVector<int, 4>, 16> AdjK;
276 unsigned NumPaths;
277 static unsigned MaxPaths;
278
279 public:
280 Circuits(std::vector<SUnit> &SUs)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000281 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
282
Brendon Cahoon254f8892016-07-29 16:44:44 +0000283 /// Reset the data structures used in the circuit algorithm.
284 void reset() {
285 Stack.clear();
286 Blocked.reset();
287 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
288 NumPaths = 0;
289 }
Eugene Zelenko32a40562017-09-11 23:00:48 +0000290
Brendon Cahoon254f8892016-07-29 16:44:44 +0000291 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
292 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
293 void unblock(int U);
294 };
295
296public:
297 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
298 const RegisterClassInfo &rci)
Eugene Zelenko32a40562017-09-11 23:00:48 +0000299 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
300 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000301 P.MF->getSubtarget().getSMSMutations(Mutations);
302 }
Brendon Cahoon254f8892016-07-29 16:44:44 +0000303
Eugene Zelenkocdc71612016-08-11 17:20:18 +0000304 void schedule() override;
305 void finishBlock() override;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000306
307 /// Return true if the loop kernel has been scheduled.
308 bool hasNewSchedule() { return Scheduled; }
309
310 /// Return the earliest time an instruction may be scheduled.
311 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
312
313 /// Return the latest time an instruction my be scheduled.
314 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
315
316 /// The mobility function, which the the number of slots in which
317 /// an instruction may be scheduled.
318 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
319
320 /// The depth, in the dependence graph, for a node.
321 int getDepth(SUnit *Node) { return Node->getDepth(); }
322
323 /// The height, in the dependence graph, for a node.
324 int getHeight(SUnit *Node) { return Node->getHeight(); }
325
326 /// Return true if the dependence is a back-edge in the data dependence graph.
327 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
328 /// using an anti dependence from a Phi to an instruction.
329 bool isBackedge(SUnit *Source, const SDep &Dep) {
330 if (Dep.getKind() != SDep::Anti)
331 return false;
332 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
333 }
334
335 /// Return true if the dependence is an order dependence between non-Phis.
336 static bool isOrder(SUnit *Source, const SDep &Dep) {
337 if (Dep.getKind() != SDep::Order)
338 return false;
339 return (!Source->getInstr()->isPHI() &&
340 !Dep.getSUnit()->getInstr()->isPHI());
341 }
342
343 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
344
345 /// The latency of the dependence.
346 unsigned getLatency(SUnit *Source, const SDep &Dep) {
347 // Anti dependences represent recurrences, so use the latency of the
348 // instruction on the back-edge.
349 if (Dep.getKind() == SDep::Anti) {
350 if (Source->getInstr()->isPHI())
351 return Dep.getSUnit()->Latency;
352 if (Dep.getSUnit()->getInstr()->isPHI())
353 return Source->Latency;
354 return Dep.getLatency();
355 }
356 return Dep.getLatency();
357 }
358
359 /// The distance function, which indicates that operation V of iteration I
360 /// depends on operations U of iteration I-distance.
361 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
362 // Instructions that feed a Phi have a distance of 1. Computing larger
363 // values for arrays requires data dependence information.
364 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
365 return 1;
366 return 0;
367 }
368
369 /// Set the Minimum Initiation Interval for this schedule attempt.
370 void setMII(unsigned mii) { MII = mii; }
371
372 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
373 bool UpdateDAG = false);
374
375 /// Return the new base register that was stored away for the changed
376 /// instruction.
377 unsigned getInstrBaseReg(SUnit *SU) {
378 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
379 InstrChanges.find(SU);
380 if (It != InstrChanges.end())
381 return It->second.first;
382 return 0;
383 }
384
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000385 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
386 Mutations.push_back(std::move(Mutation));
387 }
388
Brendon Cahoon254f8892016-07-29 16:44:44 +0000389private:
390 void addLoopCarriedDependences(AliasAnalysis *AA);
391 void updatePhiDependences();
392 void changeDependences();
393 unsigned calculateResMII();
394 unsigned calculateRecMII(NodeSetType &RecNodeSets);
395 void findCircuits(NodeSetType &NodeSets);
396 void fuseRecs(NodeSetType &NodeSets);
397 void removeDuplicateNodes(NodeSetType &NodeSets);
398 void computeNodeFunctions(NodeSetType &NodeSets);
399 void registerPressureFilter(NodeSetType &NodeSets);
400 void colocateNodeSets(NodeSetType &NodeSets);
401 void checkNodeSets(NodeSetType &NodeSets);
402 void groupRemainingNodes(NodeSetType &NodeSets);
403 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
404 SetVector<SUnit *> &NodesAdded);
405 void computeNodeOrder(NodeSetType &NodeSets);
406 bool schedulePipeline(SMSchedule &Schedule);
407 void generatePipelinedLoop(SMSchedule &Schedule);
408 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
409 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
410 MBBVectorTy &PrologBBs);
411 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
412 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
413 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
414 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
415 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
416 SMSchedule &Schedule, ValueMapTy *VRMap,
417 InstrMapTy &InstrMap, unsigned LastStageNum,
418 unsigned CurStageNum, bool IsLast);
419 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
420 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
421 SMSchedule &Schedule, ValueMapTy *VRMap,
422 InstrMapTy &InstrMap, unsigned LastStageNum,
423 unsigned CurStageNum, bool IsLast);
424 void removeDeadInstructions(MachineBasicBlock *KernelBB,
425 MBBVectorTy &EpilogBBs);
426 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
427 SMSchedule &Schedule);
428 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
429 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
430 ValueMapTy *VRMap);
431 bool computeDelta(MachineInstr &MI, unsigned &Delta);
432 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
433 unsigned Num);
434 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
435 unsigned InstStageNum);
436 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
437 unsigned InstStageNum,
438 SMSchedule &Schedule);
439 void updateInstruction(MachineInstr *NewMI, bool LastDef,
440 unsigned CurStageNum, unsigned InstStageNum,
441 SMSchedule &Schedule, ValueMapTy *VRMap);
442 MachineInstr *findDefInLoop(unsigned Reg);
443 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
444 unsigned LoopStage, ValueMapTy *VRMap,
445 MachineBasicBlock *BB);
446 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
447 SMSchedule &Schedule, ValueMapTy *VRMap,
448 InstrMapTy &InstrMap);
449 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
450 InstrMapTy &InstrMap, unsigned CurStageNum,
451 unsigned PhiNum, MachineInstr *Phi,
452 unsigned OldReg, unsigned NewReg,
453 unsigned PrevReg = 0);
454 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
455 unsigned &OffsetPos, unsigned &NewBase,
456 int64_t &NewOffset);
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000457 void postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000458};
459
460/// A NodeSet contains a set of SUnit DAG nodes with additional information
461/// that assigns a priority to the set.
462class NodeSet {
463 SetVector<SUnit *> Nodes;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000464 bool HasRecurrence = false;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000465 unsigned RecMII = 0;
466 int MaxMOV = 0;
467 int MaxDepth = 0;
468 unsigned Colocate = 0;
469 SUnit *ExceedPressure = nullptr;
470
471public:
Eugene Zelenko32a40562017-09-11 23:00:48 +0000472 using iterator = SetVector<SUnit *>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000473
Eugene Zelenko32a40562017-09-11 23:00:48 +0000474 NodeSet() = default;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000475 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
476
477 bool insert(SUnit *SU) { return Nodes.insert(SU); }
478
479 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
480
481 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
482 return Nodes.remove_if(P);
483 }
484
485 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
486
487 bool hasRecurrence() { return HasRecurrence; };
488
489 unsigned size() const { return Nodes.size(); }
490
491 bool empty() const { return Nodes.empty(); }
492
493 SUnit *getNode(unsigned i) const { return Nodes[i]; };
494
495 void setRecMII(unsigned mii) { RecMII = mii; };
496
497 void setColocate(unsigned c) { Colocate = c; };
498
499 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
500
501 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
502
503 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
504
505 int getRecMII() { return RecMII; }
506
507 /// Summarize node functions for the entire node set.
508 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
509 for (SUnit *SU : *this) {
510 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
511 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
512 }
513 }
514
515 void clear() {
516 Nodes.clear();
517 RecMII = 0;
518 HasRecurrence = false;
519 MaxMOV = 0;
520 MaxDepth = 0;
521 Colocate = 0;
522 ExceedPressure = nullptr;
523 }
524
525 operator SetVector<SUnit *> &() { return Nodes; }
526
527 /// Sort the node sets by importance. First, rank them by recurrence MII,
528 /// then by mobility (least mobile done first), and finally by depth.
529 /// Each node set may contain a colocate value which is used as the first
530 /// tie breaker, if it's set.
531 bool operator>(const NodeSet &RHS) const {
532 if (RecMII == RHS.RecMII) {
533 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
534 return Colocate < RHS.Colocate;
535 if (MaxMOV == RHS.MaxMOV)
536 return MaxDepth > RHS.MaxDepth;
537 return MaxMOV < RHS.MaxMOV;
538 }
539 return RecMII > RHS.RecMII;
540 }
541
542 bool operator==(const NodeSet &RHS) const {
543 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
544 MaxDepth == RHS.MaxDepth;
545 }
546
547 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
548
549 iterator begin() { return Nodes.begin(); }
550 iterator end() { return Nodes.end(); }
551
552 void print(raw_ostream &os) const {
553 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
554 << " depth " << MaxDepth << " col " << Colocate << "\n";
555 for (const auto &I : Nodes)
556 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
557 os << "\n";
558 }
559
Matthias Braun8c209aa2017-01-28 02:02:38 +0000560#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
561 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
562#endif
Brendon Cahoon254f8892016-07-29 16:44:44 +0000563};
564
565/// This class repesents the scheduled code. The main data structure is a
566/// map from scheduled cycle to instructions. During scheduling, the
567/// data structure explicitly represents all stages/iterations. When
568/// the algorithm finshes, the schedule is collapsed into a single stage,
569/// which represents instructions from different loop iterations.
570///
571/// The SMS algorithm allows negative values for cycles, so the first cycle
572/// in the schedule is the smallest cycle value.
573class SMSchedule {
574private:
575 /// Map from execution cycle to instructions.
576 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
577
578 /// Map from instruction to execution cycle.
579 std::map<SUnit *, int> InstrToCycle;
580
581 /// Map for each register and the max difference between its uses and def.
582 /// The first element in the pair is the max difference in stages. The
583 /// second is true if the register defines a Phi value and loop value is
584 /// scheduled before the Phi.
585 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
586
587 /// Keep track of the first cycle value in the schedule. It starts
588 /// as zero, but the algorithm allows negative values.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000589 int FirstCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000590
591 /// Keep track of the last cycle value in the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000592 int LastCycle = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000593
594 /// The initiation interval (II) for the schedule.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000595 int InitiationInterval = 0;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000596
597 /// Target machine information.
598 const TargetSubtargetInfo &ST;
599
600 /// Virtual register information.
601 MachineRegisterInfo &MRI;
602
Benjamin Kramer3f6260c2017-02-16 20:26:51 +0000603 std::unique_ptr<DFAPacketizer> Resources;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000604
605public:
606 SMSchedule(MachineFunction *mf)
607 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
Eugene Zelenko32a40562017-09-11 23:00:48 +0000608 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
Brendon Cahoon254f8892016-07-29 16:44:44 +0000609
Brendon Cahoon254f8892016-07-29 16:44:44 +0000610 void reset() {
611 ScheduledInstrs.clear();
612 InstrToCycle.clear();
613 RegToStageDiff.clear();
614 FirstCycle = 0;
615 LastCycle = 0;
616 InitiationInterval = 0;
617 }
618
619 /// Set the initiation interval for this schedule.
620 void setInitiationInterval(int ii) { InitiationInterval = ii; }
621
622 /// Return the first cycle in the completed schedule. This
623 /// can be a negative value.
624 int getFirstCycle() const { return FirstCycle; }
625
626 /// Return the last cycle in the finalized schedule.
627 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
628
629 /// Return the cycle of the earliest scheduled instruction in the dependence
630 /// chain.
631 int earliestCycleInChain(const SDep &Dep);
632
633 /// Return the cycle of the latest scheduled instruction in the dependence
634 /// chain.
635 int latestCycleInChain(const SDep &Dep);
636
637 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
638 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
639 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
640
641 /// Iterators for the cycle to instruction map.
Eugene Zelenko32a40562017-09-11 23:00:48 +0000642 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
643 using const_sched_iterator =
644 DenseMap<int, std::deque<SUnit *>>::const_iterator;
Brendon Cahoon254f8892016-07-29 16:44:44 +0000645
646 /// Return true if the instruction is scheduled at the specified stage.
647 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
648 return (stageScheduled(SU) == (int)StageNum);
649 }
650
651 /// Return the stage for a scheduled instruction. Return -1 if
652 /// the instruction has not been scheduled.
653 int stageScheduled(SUnit *SU) const {
654 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
655 if (it == InstrToCycle.end())
656 return -1;
657 return (it->second - FirstCycle) / InitiationInterval;
658 }
659
660 /// Return the cycle for a scheduled instruction. This function normalizes
661 /// the first cycle to be 0.
662 unsigned cycleScheduled(SUnit *SU) const {
663 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
664 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
665 return (it->second - FirstCycle) % InitiationInterval;
666 }
667
668 /// Return the maximum stage count needed for this schedule.
669 unsigned getMaxStageCount() {
670 return (LastCycle - FirstCycle) / InitiationInterval;
671 }
672
673 /// Return the max. number of stages/iterations that can occur between a
674 /// register definition and its uses.
675 unsigned getStagesForReg(int Reg, unsigned CurStage) {
676 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
677 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
678 return 1;
679 return Stages.first;
680 }
681
682 /// The number of stages for a Phi is a little different than other
683 /// instructions. The minimum value computed in RegToStageDiff is 1
684 /// because we assume the Phi is needed for at least 1 iteration.
685 /// This is not the case if the loop value is scheduled prior to the
686 /// Phi in the same stage. This function returns the number of stages
687 /// or iterations needed between the Phi definition and any uses.
688 unsigned getStagesForPhi(int Reg) {
689 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
690 if (Stages.second)
691 return Stages.first;
692 return Stages.first - 1;
693 }
694
695 /// Return the instructions that are scheduled at the specified cycle.
696 std::deque<SUnit *> &getInstructions(int cycle) {
697 return ScheduledInstrs[cycle];
698 }
699
700 bool isValidSchedule(SwingSchedulerDAG *SSD);
701 void finalizeSchedule(SwingSchedulerDAG *SSD);
702 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
703 std::deque<SUnit *> &Insts);
704 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
705 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
706 MachineOperand &MO);
707 void print(raw_ostream &os) const;
708 void dump() const;
709};
710
711} // end anonymous namespace
712
713unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
714char MachinePipeliner::ID = 0;
715#ifndef NDEBUG
716int MachinePipeliner::NumTries = 0;
717#endif
718char &llvm::MachinePipelinerID = MachinePipeliner::ID;
Eugene Zelenko32a40562017-09-11 23:00:48 +0000719
Matthias Braun1527baa2017-05-25 21:26:32 +0000720INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000721 "Modulo Software Pipelining", false, false)
722INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
723INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
724INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
725INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
Matthias Braun1527baa2017-05-25 21:26:32 +0000726INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
Brendon Cahoon254f8892016-07-29 16:44:44 +0000727 "Modulo Software Pipelining", false, false)
728
729/// The "main" function for implementing Swing Modulo Scheduling.
730bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
731 if (skipFunction(*mf.getFunction()))
732 return false;
733
734 if (!EnableSWP)
735 return false;
736
737 if (mf.getFunction()->getAttributes().hasAttribute(
Reid Klecknerb5180542017-03-21 16:57:19 +0000738 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
Brendon Cahoon254f8892016-07-29 16:44:44 +0000739 !EnableSWPOptSize.getPosition())
740 return false;
741
742 MF = &mf;
743 MLI = &getAnalysis<MachineLoopInfo>();
744 MDT = &getAnalysis<MachineDominatorTree>();
745 TII = MF->getSubtarget().getInstrInfo();
746 RegClassInfo.runOnMachineFunction(*MF);
747
748 for (auto &L : *MLI)
749 scheduleLoop(*L);
750
751 return false;
752}
753
754/// Attempt to perform the SMS algorithm on the specified loop. This function is
755/// the main entry point for the algorithm. The function identifies candidate
756/// loops, calculates the minimum initiation interval, and attempts to schedule
757/// the loop.
758bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
759 bool Changed = false;
760 for (auto &InnerLoop : L)
761 Changed |= scheduleLoop(*InnerLoop);
762
763#ifndef NDEBUG
764 // Stop trying after reaching the limit (if any).
765 int Limit = SwpLoopLimit;
766 if (Limit >= 0) {
767 if (NumTries >= SwpLoopLimit)
768 return Changed;
769 NumTries++;
770 }
771#endif
772
773 if (!canPipelineLoop(L))
774 return Changed;
775
776 ++NumTrytoPipeline;
777
778 Changed = swingModuloScheduler(L);
779
780 return Changed;
781}
782
783/// Return true if the loop can be software pipelined. The algorithm is
784/// restricted to loops with a single basic block. Make sure that the
785/// branch in the loop can be analyzed.
786bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
787 if (L.getNumBlocks() != 1)
788 return false;
789
790 // Check if the branch can't be understood because we can't do pipelining
791 // if that's the case.
792 LI.TBB = nullptr;
793 LI.FBB = nullptr;
794 LI.BrCond.clear();
795 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
796 return false;
797
798 LI.LoopInductionVar = nullptr;
799 LI.LoopCompare = nullptr;
800 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
801 return false;
802
803 if (!L.getLoopPreheader())
804 return false;
805
806 // If any of the Phis contain subregs, then we can't pipeline
807 // because we don't know how to maintain subreg information in the
808 // VMap structure.
809 MachineBasicBlock *MBB = L.getHeader();
810 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
811 BBE = MBB->getFirstNonPHI();
812 BBI != BBE; ++BBI)
813 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
814 if (BBI->getOperand(i).getSubReg() != 0)
815 return false;
816
817 return true;
818}
819
820/// The SMS algorithm consists of the following main steps:
821/// 1. Computation and analysis of the dependence graph.
822/// 2. Ordering of the nodes (instructions).
823/// 3. Attempt to Schedule the loop.
824bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
825 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
826
827 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
828
829 MachineBasicBlock *MBB = L.getHeader();
830 // The kernel should not include any terminator instructions. These
831 // will be added back later.
832 SMS.startBlock(MBB);
833
834 // Compute the number of 'real' instructions in the basic block by
835 // ignoring terminators.
836 unsigned size = MBB->size();
837 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
838 E = MBB->instr_end();
839 I != E; ++I, --size)
840 ;
841
842 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
843 SMS.schedule();
844 SMS.exitRegion();
845
846 SMS.finishBlock();
847 return SMS.hasNewSchedule();
848}
849
850/// We override the schedule function in ScheduleDAGInstrs to implement the
851/// scheduling part of the Swing Modulo Scheduling algorithm.
852void SwingSchedulerDAG::schedule() {
853 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
854 buildSchedGraph(AA);
855 addLoopCarriedDependences(AA);
856 updatePhiDependences();
857 Topo.InitDAGTopologicalSorting();
Krzysztof Parzyszek88391242016-12-22 19:21:20 +0000858 postprocessDAG();
Brendon Cahoon254f8892016-07-29 16:44:44 +0000859 changeDependences();
860 DEBUG({
861 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
862 SUnits[su].dumpAll(this);
863 });
864
865 NodeSetType NodeSets;
866 findCircuits(NodeSets);
867
868 // Calculate the MII.
869 unsigned ResMII = calculateResMII();
870 unsigned RecMII = calculateRecMII(NodeSets);
871
872 fuseRecs(NodeSets);
873
874 // This flag is used for testing and can cause correctness problems.
875 if (SwpIgnoreRecMII)
876 RecMII = 0;
877
878 MII = std::max(ResMII, RecMII);
879 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
880 << ")\n");
881
882 // Can't schedule a loop without a valid MII.
883 if (MII == 0)
884 return;
885
886 // Don't pipeline large loops.
887 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
888 return;
889
890 computeNodeFunctions(NodeSets);
891
892 registerPressureFilter(NodeSets);
893
894 colocateNodeSets(NodeSets);
895
896 checkNodeSets(NodeSets);
897
898 DEBUG({
899 for (auto &I : NodeSets) {
900 dbgs() << " Rec NodeSet ";
901 I.dump();
902 }
903 });
904
905 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
906
907 groupRemainingNodes(NodeSets);
908
909 removeDuplicateNodes(NodeSets);
910
911 DEBUG({
912 for (auto &I : NodeSets) {
913 dbgs() << " NodeSet ";
914 I.dump();
915 }
916 });
917
918 computeNodeOrder(NodeSets);
919
920 SMSchedule Schedule(Pass.MF);
921 Scheduled = schedulePipeline(Schedule);
922
923 if (!Scheduled)
924 return;
925
926 unsigned numStages = Schedule.getMaxStageCount();
927 // No need to generate pipeline if there are no overlapped iterations.
928 if (numStages == 0)
929 return;
930
931 // Check that the maximum stage count is less than user-defined limit.
932 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
933 return;
934
935 generatePipelinedLoop(Schedule);
936 ++NumPipelined;
937}
938
939/// Clean up after the software pipeliner runs.
940void SwingSchedulerDAG::finishBlock() {
941 for (MachineInstr *I : NewMIs)
942 MF.DeleteMachineInstr(I);
943 NewMIs.clear();
944
945 // Call the superclass.
946 ScheduleDAGInstrs::finishBlock();
947}
948
949/// Return the register values for the operands of a Phi instruction.
950/// This function assume the instruction is a Phi.
951static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
952 unsigned &InitVal, unsigned &LoopVal) {
953 assert(Phi.isPHI() && "Expecting a Phi.");
954
955 InitVal = 0;
956 LoopVal = 0;
957 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
958 if (Phi.getOperand(i + 1).getMBB() != Loop)
959 InitVal = Phi.getOperand(i).getReg();
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +0000960 else
Brendon Cahoon254f8892016-07-29 16:44:44 +0000961 LoopVal = Phi.getOperand(i).getReg();
962
963 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
964}
965
966/// Return the Phi register value that comes from the incoming block.
967static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
968 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
969 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
970 return Phi.getOperand(i).getReg();
971 return 0;
972}
973
974/// Return the Phi register value that comes the the loop block.
975static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
976 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
977 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
978 return Phi.getOperand(i).getReg();
979 return 0;
980}
981
982/// Return true if SUb can be reached from SUa following the chain edges.
983static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
984 SmallPtrSet<SUnit *, 8> Visited;
985 SmallVector<SUnit *, 8> Worklist;
986 Worklist.push_back(SUa);
987 while (!Worklist.empty()) {
988 const SUnit *SU = Worklist.pop_back_val();
989 for (auto &SI : SU->Succs) {
990 SUnit *SuccSU = SI.getSUnit();
991 if (SI.getKind() == SDep::Order) {
992 if (Visited.count(SuccSU))
993 continue;
994 if (SuccSU == SUb)
995 return true;
996 Worklist.push_back(SuccSU);
997 Visited.insert(SuccSU);
998 }
999 }
1000 }
1001 return false;
1002}
1003
1004/// Return true if the instruction causes a chain between memory
1005/// references before and after it.
1006static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1007 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1008 (MI.hasOrderedMemoryRef() &&
Justin Lebard98cf002016-09-10 01:03:20 +00001009 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001010}
1011
1012/// Return the underlying objects for the memory references of an instruction.
1013/// This function calls the code in ValueTracking, but first checks that the
1014/// instruction has a memory operand.
1015static void getUnderlyingObjects(MachineInstr *MI,
1016 SmallVectorImpl<Value *> &Objs,
1017 const DataLayout &DL) {
1018 if (!MI->hasOneMemOperand())
1019 return;
1020 MachineMemOperand *MM = *MI->memoperands_begin();
1021 if (!MM->getValue())
1022 return;
1023 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
1024}
1025
1026/// Add a chain edge between a load and store if the store can be an
1027/// alias of the load on a subsequent iteration, i.e., a loop carried
1028/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1029/// but that code doesn't create loop carried dependences.
1030void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1031 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
1032 for (auto &SU : SUnits) {
1033 MachineInstr &MI = *SU.getInstr();
1034 if (isDependenceBarrier(MI, AA))
1035 PendingLoads.clear();
1036 else if (MI.mayLoad()) {
1037 SmallVector<Value *, 4> Objs;
1038 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1039 for (auto V : Objs) {
1040 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1041 SUs.push_back(&SU);
1042 }
1043 } else if (MI.mayStore()) {
1044 SmallVector<Value *, 4> Objs;
1045 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1046 for (auto V : Objs) {
1047 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1048 PendingLoads.find(V);
1049 if (I == PendingLoads.end())
1050 continue;
1051 for (auto Load : I->second) {
1052 if (isSuccOrder(Load, &SU))
1053 continue;
1054 MachineInstr &LdMI = *Load->getInstr();
1055 // First, perform the cheaper check that compares the base register.
1056 // If they are the same and the load offset is less than the store
1057 // offset, then mark the dependence as loop carried potentially.
1058 unsigned BaseReg1, BaseReg2;
1059 int64_t Offset1, Offset2;
1060 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
1061 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1062 SU.addPred(SDep(Load, SDep::Barrier));
1063 continue;
1064 }
1065 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1066 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1067 "What happened to the chain edge?");
1068 SU.addPred(SDep(Load, SDep::Barrier));
1069 continue;
1070 }
1071 // Second, the more expensive check that uses alias analysis on the
1072 // base registers. If they alias, and the load offset is less than
1073 // the store offset, the mark the dependence as loop carried.
1074 if (!AA) {
1075 SU.addPred(SDep(Load, SDep::Barrier));
1076 continue;
1077 }
1078 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1079 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1080 if (!MMO1->getValue() || !MMO2->getValue()) {
1081 SU.addPred(SDep(Load, SDep::Barrier));
1082 continue;
1083 }
1084 if (MMO1->getValue() == MMO2->getValue() &&
1085 MMO1->getOffset() <= MMO2->getOffset()) {
1086 SU.addPred(SDep(Load, SDep::Barrier));
1087 continue;
1088 }
1089 AliasResult AAResult = AA->alias(
1090 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1091 MMO1->getAAInfo()),
1092 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1093 MMO2->getAAInfo()));
1094
1095 if (AAResult != NoAlias)
1096 SU.addPred(SDep(Load, SDep::Barrier));
1097 }
1098 }
1099 }
1100 }
1101}
1102
1103/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1104/// processes dependences for PHIs. This function adds true dependences
1105/// from a PHI to a use, and a loop carried dependence from the use to the
1106/// PHI. The loop carried dependence is represented as an anti dependence
1107/// edge. This function also removes chain dependences between unrelated
1108/// PHIs.
1109void SwingSchedulerDAG::updatePhiDependences() {
1110 SmallVector<SDep, 4> RemoveDeps;
1111 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1112
1113 // Iterate over each DAG node.
1114 for (SUnit &I : SUnits) {
1115 RemoveDeps.clear();
1116 // Set to true if the instruction has an operand defined by a Phi.
1117 unsigned HasPhiUse = 0;
1118 unsigned HasPhiDef = 0;
1119 MachineInstr *MI = I.getInstr();
1120 // Iterate over each operand, and we process the definitions.
1121 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1122 MOE = MI->operands_end();
1123 MOI != MOE; ++MOI) {
1124 if (!MOI->isReg())
1125 continue;
1126 unsigned Reg = MOI->getReg();
1127 if (MOI->isDef()) {
1128 // If the register is used by a Phi, then create an anti dependence.
1129 for (MachineRegisterInfo::use_instr_iterator
1130 UI = MRI.use_instr_begin(Reg),
1131 UE = MRI.use_instr_end();
1132 UI != UE; ++UI) {
1133 MachineInstr *UseMI = &*UI;
1134 SUnit *SU = getSUnit(UseMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001135 if (SU != nullptr && UseMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001136 if (!MI->isPHI()) {
1137 SDep Dep(SU, SDep::Anti, Reg);
1138 I.addPred(Dep);
1139 } else {
1140 HasPhiDef = Reg;
1141 // Add a chain edge to a dependent Phi that isn't an existing
1142 // predecessor.
1143 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1144 I.addPred(SDep(SU, SDep::Barrier));
1145 }
1146 }
1147 }
1148 } else if (MOI->isUse()) {
1149 // If the register is defined by a Phi, then create a true dependence.
1150 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001151 if (DefMI == nullptr)
Brendon Cahoon254f8892016-07-29 16:44:44 +00001152 continue;
1153 SUnit *SU = getSUnit(DefMI);
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001154 if (SU != nullptr && DefMI->isPHI()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001155 if (!MI->isPHI()) {
1156 SDep Dep(SU, SDep::Data, Reg);
1157 Dep.setLatency(0);
1158 ST.adjustSchedDependency(SU, &I, Dep);
1159 I.addPred(Dep);
1160 } else {
1161 HasPhiUse = Reg;
1162 // Add a chain edge to a dependent Phi that isn't an existing
1163 // predecessor.
1164 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1165 I.addPred(SDep(SU, SDep::Barrier));
1166 }
1167 }
1168 }
1169 }
1170 // Remove order dependences from an unrelated Phi.
1171 if (!SwpPruneDeps)
1172 continue;
1173 for (auto &PI : I.Preds) {
1174 MachineInstr *PMI = PI.getSUnit()->getInstr();
1175 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1176 if (I.getInstr()->isPHI()) {
1177 if (PMI->getOperand(0).getReg() == HasPhiUse)
1178 continue;
1179 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1180 continue;
1181 }
1182 RemoveDeps.push_back(PI);
1183 }
1184 }
1185 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1186 I.removePred(RemoveDeps[i]);
1187 }
1188}
1189
1190/// Iterate over each DAG node and see if we can change any dependences
1191/// in order to reduce the recurrence MII.
1192void SwingSchedulerDAG::changeDependences() {
1193 // See if an instruction can use a value from the previous iteration.
1194 // If so, we update the base and offset of the instruction and change
1195 // the dependences.
1196 for (SUnit &I : SUnits) {
1197 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1198 int64_t NewOffset = 0;
1199 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1200 NewOffset))
1201 continue;
1202
1203 // Get the MI and SUnit for the instruction that defines the original base.
1204 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1205 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1206 if (!DefMI)
1207 continue;
1208 SUnit *DefSU = getSUnit(DefMI);
1209 if (!DefSU)
1210 continue;
1211 // Get the MI and SUnit for the instruction that defins the new base.
1212 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1213 if (!LastMI)
1214 continue;
1215 SUnit *LastSU = getSUnit(LastMI);
1216 if (!LastSU)
1217 continue;
1218
1219 if (Topo.IsReachable(&I, LastSU))
1220 continue;
1221
1222 // Remove the dependence. The value now depends on a prior iteration.
1223 SmallVector<SDep, 4> Deps;
1224 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1225 ++P)
1226 if (P->getSUnit() == DefSU)
1227 Deps.push_back(*P);
1228 for (int i = 0, e = Deps.size(); i != e; i++) {
1229 Topo.RemovePred(&I, Deps[i].getSUnit());
1230 I.removePred(Deps[i]);
1231 }
1232 // Remove the chain dependence between the instructions.
1233 Deps.clear();
1234 for (auto &P : LastSU->Preds)
1235 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1236 Deps.push_back(P);
1237 for (int i = 0, e = Deps.size(); i != e; i++) {
1238 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1239 LastSU->removePred(Deps[i]);
1240 }
1241
1242 // Add a dependence between the new instruction and the instruction
1243 // that defines the new base.
1244 SDep Dep(&I, SDep::Anti, NewBase);
1245 LastSU->addPred(Dep);
1246
1247 // Remember the base and offset information so that we can update the
1248 // instruction during code generation.
1249 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1250 }
1251}
1252
1253namespace {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001254
Brendon Cahoon254f8892016-07-29 16:44:44 +00001255// FuncUnitSorter - Comparison operator used to sort instructions by
1256// the number of functional unit choices.
1257struct FuncUnitSorter {
1258 const InstrItineraryData *InstrItins;
1259 DenseMap<unsigned, unsigned> Resources;
1260
Eugene Zelenko32a40562017-09-11 23:00:48 +00001261 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1262
Brendon Cahoon254f8892016-07-29 16:44:44 +00001263 // Compute the number of functional unit alternatives needed
1264 // at each stage, and take the minimum value. We prioritize the
1265 // instructions by the least number of choices first.
1266 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1267 unsigned schedClass = Inst->getDesc().getSchedClass();
1268 unsigned min = UINT_MAX;
1269 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1270 *IE = InstrItins->endStage(schedClass);
1271 IS != IE; ++IS) {
1272 unsigned funcUnits = IS->getUnits();
1273 unsigned numAlternatives = countPopulation(funcUnits);
1274 if (numAlternatives < min) {
1275 min = numAlternatives;
1276 F = funcUnits;
1277 }
1278 }
1279 return min;
1280 }
1281
1282 // Compute the critical resources needed by the instruction. This
1283 // function records the functional units needed by instructions that
1284 // must use only one functional unit. We use this as a tie breaker
1285 // for computing the resource MII. The instrutions that require
1286 // the same, highly used, functional unit have high priority.
1287 void calcCriticalResources(MachineInstr &MI) {
1288 unsigned SchedClass = MI.getDesc().getSchedClass();
1289 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1290 *IE = InstrItins->endStage(SchedClass);
1291 IS != IE; ++IS) {
1292 unsigned FuncUnits = IS->getUnits();
1293 if (countPopulation(FuncUnits) == 1)
1294 Resources[FuncUnits]++;
1295 }
1296 }
1297
Brendon Cahoon254f8892016-07-29 16:44:44 +00001298 /// Return true if IS1 has less priority than IS2.
1299 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1300 unsigned F1 = 0, F2 = 0;
1301 unsigned MFUs1 = minFuncUnits(IS1, F1);
1302 unsigned MFUs2 = minFuncUnits(IS2, F2);
1303 if (MFUs1 == 1 && MFUs2 == 1)
1304 return Resources.lookup(F1) < Resources.lookup(F2);
1305 return MFUs1 > MFUs2;
1306 }
1307};
Eugene Zelenkocdc71612016-08-11 17:20:18 +00001308
1309} // end anonymous namespace
Brendon Cahoon254f8892016-07-29 16:44:44 +00001310
1311/// Calculate the resource constrained minimum initiation interval for the
1312/// specified loop. We use the DFA to model the resources needed for
1313/// each instruction, and we ignore dependences. A different DFA is created
1314/// for each cycle that is required. When adding a new instruction, we attempt
1315/// to add it to each existing DFA, until a legal space is found. If the
1316/// instruction cannot be reserved in an existing DFA, we create a new one.
1317unsigned SwingSchedulerDAG::calculateResMII() {
1318 SmallVector<DFAPacketizer *, 8> Resources;
1319 MachineBasicBlock *MBB = Loop.getHeader();
1320 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1321
1322 // Sort the instructions by the number of available choices for scheduling,
1323 // least to most. Use the number of critical resources as the tie breaker.
1324 FuncUnitSorter FUS =
1325 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1326 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1327 E = MBB->getFirstTerminator();
1328 I != E; ++I)
1329 FUS.calcCriticalResources(*I);
1330 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1331 FuncUnitOrder(FUS);
1332
1333 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1334 E = MBB->getFirstTerminator();
1335 I != E; ++I)
1336 FuncUnitOrder.push(&*I);
1337
1338 while (!FuncUnitOrder.empty()) {
1339 MachineInstr *MI = FuncUnitOrder.top();
1340 FuncUnitOrder.pop();
1341 if (TII->isZeroCost(MI->getOpcode()))
1342 continue;
1343 // Attempt to reserve the instruction in an existing DFA. At least one
1344 // DFA is needed for each cycle.
1345 unsigned NumCycles = getSUnit(MI)->Latency;
1346 unsigned ReservedCycles = 0;
1347 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1348 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1349 for (unsigned C = 0; C < NumCycles; ++C)
1350 while (RI != RE) {
1351 if ((*RI++)->canReserveResources(*MI)) {
1352 ++ReservedCycles;
1353 break;
1354 }
1355 }
1356 // Start reserving resources using existing DFAs.
1357 for (unsigned C = 0; C < ReservedCycles; ++C) {
1358 --RI;
1359 (*RI)->reserveResources(*MI);
1360 }
1361 // Add new DFAs, if needed, to reserve resources.
1362 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1363 DFAPacketizer *NewResource =
1364 TII->CreateTargetScheduleState(MF.getSubtarget());
1365 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1366 NewResource->reserveResources(*MI);
1367 Resources.push_back(NewResource);
1368 }
1369 }
1370 int Resmii = Resources.size();
1371 // Delete the memory for each of the DFAs that were created earlier.
1372 for (DFAPacketizer *RI : Resources) {
1373 DFAPacketizer *D = RI;
1374 delete D;
1375 }
1376 Resources.clear();
1377 return Resmii;
1378}
1379
1380/// Calculate the recurrence-constrainted minimum initiation interval.
1381/// Iterate over each circuit. Compute the delay(c) and distance(c)
1382/// for each circuit. The II needs to satisfy the inequality
1383/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1384/// II that satistifies the inequality, and the RecMII is the maximum
1385/// of those values.
1386unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1387 unsigned RecMII = 0;
1388
1389 for (NodeSet &Nodes : NodeSets) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00001390 if (Nodes.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001391 continue;
1392
1393 unsigned Delay = Nodes.size() - 1;
1394 unsigned Distance = 1;
1395
1396 // ii = ceil(delay / distance)
1397 unsigned CurMII = (Delay + Distance - 1) / Distance;
1398 Nodes.setRecMII(CurMII);
1399 if (CurMII > RecMII)
1400 RecMII = CurMII;
1401 }
1402
1403 return RecMII;
1404}
1405
1406/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1407/// but we do this to find the circuits, and then change them back.
1408static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1409 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1410 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1411 SUnit *SU = &SUnits[i];
1412 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1413 IP != EP; ++IP) {
1414 if (IP->getKind() != SDep::Anti)
1415 continue;
1416 DepsAdded.push_back(std::make_pair(SU, *IP));
1417 }
1418 }
1419 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1420 E = DepsAdded.end();
1421 I != E; ++I) {
1422 // Remove this anti dependency and add one in the reverse direction.
1423 SUnit *SU = I->first;
1424 SDep &D = I->second;
1425 SUnit *TargetSU = D.getSUnit();
1426 unsigned Reg = D.getReg();
1427 unsigned Lat = D.getLatency();
1428 SU->removePred(D);
1429 SDep Dep(SU, SDep::Anti, Reg);
1430 Dep.setLatency(Lat);
1431 TargetSU->addPred(Dep);
1432 }
1433}
1434
1435/// Create the adjacency structure of the nodes in the graph.
1436void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1437 SwingSchedulerDAG *DAG) {
1438 BitVector Added(SUnits.size());
1439 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1440 Added.reset();
1441 // Add any successor to the adjacency matrix and exclude duplicates.
1442 for (auto &SI : SUnits[i].Succs) {
1443 // Do not process a boundary node and a back-edge is processed only
1444 // if it goes to a Phi.
1445 if (SI.getSUnit()->isBoundaryNode() ||
1446 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1447 continue;
1448 int N = SI.getSUnit()->NodeNum;
1449 if (!Added.test(N)) {
1450 AdjK[i].push_back(N);
1451 Added.set(N);
1452 }
1453 }
1454 // A chain edge between a store and a load is treated as a back-edge in the
1455 // adjacency matrix.
1456 for (auto &PI : SUnits[i].Preds) {
1457 if (!SUnits[i].getInstr()->mayStore() ||
1458 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
1459 continue;
1460 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1461 int N = PI.getSUnit()->NodeNum;
1462 if (!Added.test(N)) {
1463 AdjK[i].push_back(N);
1464 Added.set(N);
1465 }
1466 }
1467 }
1468 }
1469}
1470
1471/// Identify an elementary circuit in the dependence graph starting at the
1472/// specified node.
1473bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1474 bool HasBackedge) {
1475 SUnit *SV = &SUnits[V];
1476 bool F = false;
1477 Stack.insert(SV);
1478 Blocked.set(V);
1479
1480 for (auto W : AdjK[V]) {
1481 if (NumPaths > MaxPaths)
1482 break;
1483 if (W < S)
1484 continue;
1485 if (W == S) {
1486 if (!HasBackedge)
1487 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1488 F = true;
1489 ++NumPaths;
1490 break;
1491 } else if (!Blocked.test(W)) {
1492 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1493 F = true;
1494 }
1495 }
1496
1497 if (F)
1498 unblock(V);
1499 else {
1500 for (auto W : AdjK[V]) {
1501 if (W < S)
1502 continue;
1503 if (B[W].count(SV) == 0)
1504 B[W].insert(SV);
1505 }
1506 }
1507 Stack.pop_back();
1508 return F;
1509}
1510
1511/// Unblock a node in the circuit finding algorithm.
1512void SwingSchedulerDAG::Circuits::unblock(int U) {
1513 Blocked.reset(U);
1514 SmallPtrSet<SUnit *, 4> &BU = B[U];
1515 while (!BU.empty()) {
1516 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1517 assert(SI != BU.end() && "Invalid B set.");
1518 SUnit *W = *SI;
1519 BU.erase(W);
1520 if (Blocked.test(W->NodeNum))
1521 unblock(W->NodeNum);
1522 }
1523}
1524
1525/// Identify all the elementary circuits in the dependence graph using
1526/// Johnson's circuit algorithm.
1527void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1528 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1529 // but we do this to find the circuits, and then change them back.
1530 swapAntiDependences(SUnits);
1531
1532 Circuits Cir(SUnits);
1533 // Create the adjacency structure.
1534 Cir.createAdjacencyStructure(this);
1535 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1536 Cir.reset();
1537 Cir.circuit(i, i, NodeSets);
1538 }
1539
1540 // Change the dependences back so that we've created a DAG again.
1541 swapAntiDependences(SUnits);
1542}
1543
1544/// Return true for DAG nodes that we ignore when computing the cost functions.
1545/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1546/// in the calculation of the ASAP, ALAP, etc functions.
1547static bool ignoreDependence(const SDep &D, bool isPred) {
1548 if (D.isArtificial())
1549 return true;
1550 return D.getKind() == SDep::Anti && isPred;
1551}
1552
1553/// Compute several functions need to order the nodes for scheduling.
1554/// ASAP - Earliest time to schedule a node.
1555/// ALAP - Latest time to schedule a node.
1556/// MOV - Mobility function, difference between ALAP and ASAP.
1557/// D - Depth of each node.
1558/// H - Height of each node.
1559void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001560 ScheduleInfo.resize(SUnits.size());
1561
1562 DEBUG({
1563 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1564 E = Topo.end();
1565 I != E; ++I) {
1566 SUnit *SU = &SUnits[*I];
1567 SU->dump(this);
1568 }
1569 });
1570
1571 int maxASAP = 0;
1572 // Compute ASAP.
1573 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1574 E = Topo.end();
1575 I != E; ++I) {
1576 int asap = 0;
1577 SUnit *SU = &SUnits[*I];
1578 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1579 EP = SU->Preds.end();
1580 IP != EP; ++IP) {
1581 if (ignoreDependence(*IP, true))
1582 continue;
1583 SUnit *pred = IP->getSUnit();
1584 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
1585 getDistance(pred, SU, *IP) * MII));
1586 }
1587 maxASAP = std::max(maxASAP, asap);
1588 ScheduleInfo[*I].ASAP = asap;
1589 }
1590
1591 // Compute ALAP and MOV.
1592 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1593 E = Topo.rend();
1594 I != E; ++I) {
1595 int alap = maxASAP;
1596 SUnit *SU = &SUnits[*I];
1597 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1598 ES = SU->Succs.end();
1599 IS != ES; ++IS) {
1600 if (ignoreDependence(*IS, true))
1601 continue;
1602 SUnit *succ = IS->getSUnit();
1603 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
1604 getDistance(SU, succ, *IS) * MII));
1605 }
1606
1607 ScheduleInfo[*I].ALAP = alap;
1608 }
1609
1610 // After computing the node functions, compute the summary for each node set.
1611 for (NodeSet &I : NodeSets)
1612 I.computeNodeSetInfo(this);
1613
1614 DEBUG({
1615 for (unsigned i = 0; i < SUnits.size(); i++) {
1616 dbgs() << "\tNode " << i << ":\n";
1617 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1618 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1619 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1620 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1621 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1622 }
1623 });
1624}
1625
1626/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1627/// as the predecessors of the elements of NodeOrder that are not also in
1628/// NodeOrder.
1629static bool pred_L(SetVector<SUnit *> &NodeOrder,
1630 SmallSetVector<SUnit *, 8> &Preds,
1631 const NodeSet *S = nullptr) {
1632 Preds.clear();
1633 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1634 I != E; ++I) {
1635 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1636 PI != PE; ++PI) {
1637 if (S && S->count(PI->getSUnit()) == 0)
1638 continue;
1639 if (ignoreDependence(*PI, true))
1640 continue;
1641 if (NodeOrder.count(PI->getSUnit()) == 0)
1642 Preds.insert(PI->getSUnit());
1643 }
1644 // Back-edges are predecessors with an anti-dependence.
1645 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1646 ES = (*I)->Succs.end();
1647 IS != ES; ++IS) {
1648 if (IS->getKind() != SDep::Anti)
1649 continue;
1650 if (S && S->count(IS->getSUnit()) == 0)
1651 continue;
1652 if (NodeOrder.count(IS->getSUnit()) == 0)
1653 Preds.insert(IS->getSUnit());
1654 }
1655 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001656 return !Preds.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001657}
1658
1659/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1660/// as the successors of the elements of NodeOrder that are not also in
1661/// NodeOrder.
1662static bool succ_L(SetVector<SUnit *> &NodeOrder,
1663 SmallSetVector<SUnit *, 8> &Succs,
1664 const NodeSet *S = nullptr) {
1665 Succs.clear();
1666 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1667 I != E; ++I) {
1668 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1669 SI != SE; ++SI) {
1670 if (S && S->count(SI->getSUnit()) == 0)
1671 continue;
1672 if (ignoreDependence(*SI, false))
1673 continue;
1674 if (NodeOrder.count(SI->getSUnit()) == 0)
1675 Succs.insert(SI->getSUnit());
1676 }
1677 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1678 PE = (*I)->Preds.end();
1679 PI != PE; ++PI) {
1680 if (PI->getKind() != SDep::Anti)
1681 continue;
1682 if (S && S->count(PI->getSUnit()) == 0)
1683 continue;
1684 if (NodeOrder.count(PI->getSUnit()) == 0)
1685 Succs.insert(PI->getSUnit());
1686 }
1687 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001688 return !Succs.empty();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001689}
1690
1691/// Return true if there is a path from the specified node to any of the nodes
1692/// in DestNodes. Keep track and return the nodes in any path.
1693static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1694 SetVector<SUnit *> &DestNodes,
1695 SetVector<SUnit *> &Exclude,
1696 SmallPtrSet<SUnit *, 8> &Visited) {
1697 if (Cur->isBoundaryNode())
1698 return false;
1699 if (Exclude.count(Cur) != 0)
1700 return false;
1701 if (DestNodes.count(Cur) != 0)
1702 return true;
1703 if (!Visited.insert(Cur).second)
1704 return Path.count(Cur) != 0;
1705 bool FoundPath = false;
1706 for (auto &SI : Cur->Succs)
1707 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1708 for (auto &PI : Cur->Preds)
1709 if (PI.getKind() == SDep::Anti)
1710 FoundPath |=
1711 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1712 if (FoundPath)
1713 Path.insert(Cur);
1714 return FoundPath;
1715}
1716
1717/// Return true if Set1 is a subset of Set2.
1718template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1719 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1720 if (Set2.count(*I) == 0)
1721 return false;
1722 return true;
1723}
1724
1725/// Compute the live-out registers for the instructions in a node-set.
1726/// The live-out registers are those that are defined in the node-set,
1727/// but not used. Except for use operands of Phis.
1728static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1729 NodeSet &NS) {
1730 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1731 MachineRegisterInfo &MRI = MF.getRegInfo();
1732 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1733 SmallSet<unsigned, 4> Uses;
1734 for (SUnit *SU : NS) {
1735 const MachineInstr *MI = SU->getInstr();
1736 if (MI->isPHI())
1737 continue;
Matthias Braunfc371552016-10-24 21:36:43 +00001738 for (const MachineOperand &MO : MI->operands())
1739 if (MO.isReg() && MO.isUse()) {
1740 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001741 if (TargetRegisterInfo::isVirtualRegister(Reg))
1742 Uses.insert(Reg);
1743 else if (MRI.isAllocatable(Reg))
1744 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1745 Uses.insert(*Units);
1746 }
1747 }
1748 for (SUnit *SU : NS)
Matthias Braunfc371552016-10-24 21:36:43 +00001749 for (const MachineOperand &MO : SU->getInstr()->operands())
1750 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1751 unsigned Reg = MO.getReg();
Brendon Cahoon254f8892016-07-29 16:44:44 +00001752 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1753 if (!Uses.count(Reg))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001754 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1755 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001756 } else if (MRI.isAllocatable(Reg)) {
1757 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1758 if (!Uses.count(*Units))
Krzysztof Parzyszek91b5cf82016-12-15 14:36:06 +00001759 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1760 LaneBitmask::getNone()));
Brendon Cahoon254f8892016-07-29 16:44:44 +00001761 }
1762 }
1763 RPTracker.addLiveRegs(LiveOutRegs);
1764}
1765
1766/// A heuristic to filter nodes in recurrent node-sets if the register
1767/// pressure of a set is too high.
1768void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1769 for (auto &NS : NodeSets) {
1770 // Skip small node-sets since they won't cause register pressure problems.
1771 if (NS.size() <= 2)
1772 continue;
1773 IntervalPressure RecRegPressure;
1774 RegPressureTracker RecRPTracker(RecRegPressure);
1775 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1776 computeLiveOuts(MF, RecRPTracker, NS);
1777 RecRPTracker.closeBottom();
1778
1779 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1780 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1781 return A->NodeNum > B->NodeNum;
1782 });
1783
1784 for (auto &SU : SUnits) {
1785 // Since we're computing the register pressure for a subset of the
1786 // instructions in a block, we need to set the tracker for each
1787 // instruction in the node-set. The tracker is set to the instruction
1788 // just after the one we're interested in.
1789 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1790 RecRPTracker.setPos(std::next(CurInstI));
1791
1792 RegPressureDelta RPDelta;
1793 ArrayRef<PressureChange> CriticalPSets;
1794 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1795 CriticalPSets,
1796 RecRegPressure.MaxSetPressure);
1797 if (RPDelta.Excess.isValid()) {
1798 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1799 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1800 << ":" << RPDelta.Excess.getUnitInc());
1801 NS.setExceedPressure(SU);
1802 break;
1803 }
1804 RecRPTracker.recede();
1805 }
1806 }
1807}
1808
1809/// A heuristic to colocate node sets that have the same set of
1810/// successors.
1811void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1812 unsigned Colocate = 0;
1813 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1814 NodeSet &N1 = NodeSets[i];
1815 SmallSetVector<SUnit *, 8> S1;
1816 if (N1.empty() || !succ_L(N1, S1))
1817 continue;
1818 for (int j = i + 1; j < e; ++j) {
1819 NodeSet &N2 = NodeSets[j];
1820 if (N1.compareRecMII(N2) != 0)
1821 continue;
1822 SmallSetVector<SUnit *, 8> S2;
1823 if (N2.empty() || !succ_L(N2, S2))
1824 continue;
1825 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1826 N1.setColocate(++Colocate);
1827 N2.setColocate(Colocate);
1828 break;
1829 }
1830 }
1831 }
1832}
1833
1834/// Check if the existing node-sets are profitable. If not, then ignore the
1835/// recurrent node-sets, and attempt to schedule all nodes together. This is
1836/// a heuristic. If the MII is large and there is a non-recurrent node with
1837/// a large depth compared to the MII, then it's best to try and schedule
1838/// all instruction together instead of starting with the recurrent node-sets.
1839void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1840 // Look for loops with a large MII.
1841 if (MII <= 20)
1842 return;
1843 // Check if the node-set contains only a simple add recurrence.
1844 for (auto &NS : NodeSets)
1845 if (NS.size() > 2)
1846 return;
1847 // If the depth of any instruction is significantly larger than the MII, then
1848 // ignore the recurrent node-sets and treat all instructions equally.
1849 for (auto &SU : SUnits)
1850 if (SU.getDepth() > MII * 1.5) {
1851 NodeSets.clear();
1852 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1853 return;
1854 }
1855}
1856
1857/// Add the nodes that do not belong to a recurrence set into groups
1858/// based upon connected componenets.
1859void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1860 SetVector<SUnit *> NodesAdded;
1861 SmallPtrSet<SUnit *, 8> Visited;
1862 // Add the nodes that are on a path between the previous node sets and
1863 // the current node set.
1864 for (NodeSet &I : NodeSets) {
1865 SmallSetVector<SUnit *, 8> N;
1866 // Add the nodes from the current node set to the previous node set.
1867 if (succ_L(I, N)) {
1868 SetVector<SUnit *> Path;
1869 for (SUnit *NI : N) {
1870 Visited.clear();
1871 computePath(NI, Path, NodesAdded, I, Visited);
1872 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001873 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001874 I.insert(Path.begin(), Path.end());
1875 }
1876 // Add the nodes from the previous node set to the current node set.
1877 N.clear();
1878 if (succ_L(NodesAdded, N)) {
1879 SetVector<SUnit *> Path;
1880 for (SUnit *NI : N) {
1881 Visited.clear();
1882 computePath(NI, Path, I, NodesAdded, Visited);
1883 }
Eugene Zelenko32a40562017-09-11 23:00:48 +00001884 if (!Path.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001885 I.insert(Path.begin(), Path.end());
1886 }
1887 NodesAdded.insert(I.begin(), I.end());
1888 }
1889
1890 // Create a new node set with the connected nodes of any successor of a node
1891 // in a recurrent set.
1892 NodeSet NewSet;
1893 SmallSetVector<SUnit *, 8> N;
1894 if (succ_L(NodesAdded, N))
1895 for (SUnit *I : N)
1896 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001897 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001898 NodeSets.push_back(NewSet);
1899
1900 // Create a new node set with the connected nodes of any predecessor of a node
1901 // in a recurrent set.
1902 NewSet.clear();
1903 if (pred_L(NodesAdded, N))
1904 for (SUnit *I : N)
1905 addConnectedNodes(I, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001906 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001907 NodeSets.push_back(NewSet);
1908
1909 // Create new nodes sets with the connected nodes any any remaining node that
1910 // has no predecessor.
1911 for (unsigned i = 0; i < SUnits.size(); ++i) {
1912 SUnit *SU = &SUnits[i];
1913 if (NodesAdded.count(SU) == 0) {
1914 NewSet.clear();
1915 addConnectedNodes(SU, NewSet, NodesAdded);
Eugene Zelenko32a40562017-09-11 23:00:48 +00001916 if (!NewSet.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00001917 NodeSets.push_back(NewSet);
1918 }
1919 }
1920}
1921
1922/// Add the node to the set, and add all is its connected nodes to the set.
1923void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1924 SetVector<SUnit *> &NodesAdded) {
1925 NewSet.insert(SU);
1926 NodesAdded.insert(SU);
1927 for (auto &SI : SU->Succs) {
1928 SUnit *Successor = SI.getSUnit();
1929 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1930 addConnectedNodes(Successor, NewSet, NodesAdded);
1931 }
1932 for (auto &PI : SU->Preds) {
1933 SUnit *Predecessor = PI.getSUnit();
1934 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1935 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1936 }
1937}
1938
1939/// Return true if Set1 contains elements in Set2. The elements in common
1940/// are returned in a different container.
1941static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1942 SmallSetVector<SUnit *, 8> &Result) {
1943 Result.clear();
1944 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1945 SUnit *SU = Set1[i];
1946 if (Set2.count(SU) != 0)
1947 Result.insert(SU);
1948 }
1949 return !Result.empty();
1950}
1951
1952/// Merge the recurrence node sets that have the same initial node.
1953void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1954 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1955 ++I) {
1956 NodeSet &NI = *I;
1957 for (NodeSetType::iterator J = I + 1; J != E;) {
1958 NodeSet &NJ = *J;
1959 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1960 if (NJ.compareRecMII(NI) > 0)
1961 NI.setRecMII(NJ.getRecMII());
1962 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1963 ++NII)
1964 I->insert(*NII);
1965 NodeSets.erase(J);
1966 E = NodeSets.end();
1967 } else {
1968 ++J;
1969 }
1970 }
1971 }
1972}
1973
1974/// Remove nodes that have been scheduled in previous NodeSets.
1975void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1976 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1977 ++I)
1978 for (NodeSetType::iterator J = I + 1; J != E;) {
1979 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1980
Eugene Zelenko32a40562017-09-11 23:00:48 +00001981 if (J->empty()) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00001982 NodeSets.erase(J);
1983 E = NodeSets.end();
1984 } else {
1985 ++J;
1986 }
1987 }
1988}
1989
1990/// Return true if Inst1 defines a value that is used in Inst2.
1991static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
1992 for (auto &SI : Inst1->Succs)
1993 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
1994 return true;
1995 return false;
1996}
1997
1998/// Compute an ordered list of the dependence graph nodes, which
1999/// indicates the order that the nodes will be scheduled. This is a
2000/// two-level algorithm. First, a partial order is created, which
2001/// consists of a list of sets ordered from highest to lowest priority.
2002void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2003 SmallSetVector<SUnit *, 8> R;
2004 NodeOrder.clear();
2005
2006 for (auto &Nodes : NodeSets) {
2007 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
2008 OrderKind Order;
2009 SmallSetVector<SUnit *, 8> N;
2010 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2011 R.insert(N.begin(), N.end());
2012 Order = BottomUp;
2013 DEBUG(dbgs() << " Bottom up (preds) ");
2014 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2015 R.insert(N.begin(), N.end());
2016 Order = TopDown;
2017 DEBUG(dbgs() << " Top down (succs) ");
2018 } else if (isIntersect(N, Nodes, R)) {
2019 // If some of the successors are in the existing node-set, then use the
2020 // top-down ordering.
2021 Order = TopDown;
2022 DEBUG(dbgs() << " Top down (intersect) ");
2023 } else if (NodeSets.size() == 1) {
2024 for (auto &N : Nodes)
2025 if (N->Succs.size() == 0)
2026 R.insert(N);
2027 Order = BottomUp;
2028 DEBUG(dbgs() << " Bottom up (all) ");
2029 } else {
2030 // Find the node with the highest ASAP.
2031 SUnit *maxASAP = nullptr;
2032 for (SUnit *SU : Nodes) {
2033 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
2034 maxASAP = SU;
2035 }
2036 R.insert(maxASAP);
2037 Order = BottomUp;
2038 DEBUG(dbgs() << " Bottom up (default) ");
2039 }
2040
2041 while (!R.empty()) {
2042 if (Order == TopDown) {
2043 // Choose the node with the maximum height. If more than one, choose
2044 // the node with the lowest MOV. If still more than one, check if there
2045 // is a dependence between the instructions.
2046 while (!R.empty()) {
2047 SUnit *maxHeight = nullptr;
2048 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002049 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002050 maxHeight = I;
2051 else if (getHeight(I) == getHeight(maxHeight) &&
2052 getMOV(I) < getMOV(maxHeight) &&
2053 !hasDataDependence(maxHeight, I))
2054 maxHeight = I;
2055 else if (hasDataDependence(I, maxHeight))
2056 maxHeight = I;
2057 }
2058 NodeOrder.insert(maxHeight);
2059 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2060 R.remove(maxHeight);
2061 for (const auto &I : maxHeight->Succs) {
2062 if (Nodes.count(I.getSUnit()) == 0)
2063 continue;
2064 if (NodeOrder.count(I.getSUnit()) != 0)
2065 continue;
2066 if (ignoreDependence(I, false))
2067 continue;
2068 R.insert(I.getSUnit());
2069 }
2070 // Back-edges are predecessors with an anti-dependence.
2071 for (const auto &I : maxHeight->Preds) {
2072 if (I.getKind() != SDep::Anti)
2073 continue;
2074 if (Nodes.count(I.getSUnit()) == 0)
2075 continue;
2076 if (NodeOrder.count(I.getSUnit()) != 0)
2077 continue;
2078 R.insert(I.getSUnit());
2079 }
2080 }
2081 Order = BottomUp;
2082 DEBUG(dbgs() << "\n Switching order to bottom up ");
2083 SmallSetVector<SUnit *, 8> N;
2084 if (pred_L(NodeOrder, N, &Nodes))
2085 R.insert(N.begin(), N.end());
2086 } else {
2087 // Choose the node with the maximum depth. If more than one, choose
2088 // the node with the lowest MOV. If there is still more than one, check
2089 // for a dependence between the instructions.
2090 while (!R.empty()) {
2091 SUnit *maxDepth = nullptr;
2092 for (SUnit *I : R) {
Eugene Zelenkocdc71612016-08-11 17:20:18 +00002093 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
Brendon Cahoon254f8892016-07-29 16:44:44 +00002094 maxDepth = I;
2095 else if (getDepth(I) == getDepth(maxDepth) &&
2096 getMOV(I) < getMOV(maxDepth) &&
2097 !hasDataDependence(I, maxDepth))
2098 maxDepth = I;
2099 else if (hasDataDependence(maxDepth, I))
2100 maxDepth = I;
2101 }
2102 NodeOrder.insert(maxDepth);
2103 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2104 R.remove(maxDepth);
2105 if (Nodes.isExceedSU(maxDepth)) {
2106 Order = TopDown;
2107 R.clear();
2108 R.insert(Nodes.getNode(0));
2109 break;
2110 }
2111 for (const auto &I : maxDepth->Preds) {
2112 if (Nodes.count(I.getSUnit()) == 0)
2113 continue;
2114 if (NodeOrder.count(I.getSUnit()) != 0)
2115 continue;
2116 if (I.getKind() == SDep::Anti)
2117 continue;
2118 R.insert(I.getSUnit());
2119 }
2120 // Back-edges are predecessors with an anti-dependence.
2121 for (const auto &I : maxDepth->Succs) {
2122 if (I.getKind() != SDep::Anti)
2123 continue;
2124 if (Nodes.count(I.getSUnit()) == 0)
2125 continue;
2126 if (NodeOrder.count(I.getSUnit()) != 0)
2127 continue;
2128 R.insert(I.getSUnit());
2129 }
2130 }
2131 Order = TopDown;
2132 DEBUG(dbgs() << "\n Switching order to top down ");
2133 SmallSetVector<SUnit *, 8> N;
2134 if (succ_L(NodeOrder, N, &Nodes))
2135 R.insert(N.begin(), N.end());
2136 }
2137 }
2138 DEBUG(dbgs() << "\nDone with Nodeset\n");
2139 }
2140
2141 DEBUG({
2142 dbgs() << "Node order: ";
2143 for (SUnit *I : NodeOrder)
2144 dbgs() << " " << I->NodeNum << " ";
2145 dbgs() << "\n";
2146 });
2147}
2148
2149/// Process the nodes in the computed order and create the pipelined schedule
2150/// of the instructions, if possible. Return true if a schedule is found.
2151bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
Eugene Zelenko32a40562017-09-11 23:00:48 +00002152 if (NodeOrder.empty())
Brendon Cahoon254f8892016-07-29 16:44:44 +00002153 return false;
2154
2155 bool scheduleFound = false;
2156 // Keep increasing II until a valid schedule is found.
2157 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2158 Schedule.reset();
2159 Schedule.setInitiationInterval(II);
2160 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2161
2162 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2163 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2164 do {
2165 SUnit *SU = *NI;
2166
2167 // Compute the schedule time for the instruction, which is based
2168 // upon the scheduled time for any predecessors/successors.
2169 int EarlyStart = INT_MIN;
2170 int LateStart = INT_MAX;
2171 // These values are set when the size of the schedule window is limited
2172 // due to chain dependences.
2173 int SchedEnd = INT_MAX;
2174 int SchedStart = INT_MIN;
2175 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2176 II, this);
2177 DEBUG({
2178 dbgs() << "Inst (" << SU->NodeNum << ") ";
2179 SU->getInstr()->dump();
2180 dbgs() << "\n";
2181 });
2182 DEBUG({
2183 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2184 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2185 });
2186
2187 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2188 SchedStart > LateStart)
2189 scheduleFound = false;
2190 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2191 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2192 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2193 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2194 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2195 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2196 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2197 SchedEnd =
2198 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2199 // When scheduling a Phi it is better to start at the late cycle and go
2200 // backwards. The default order may insert the Phi too far away from
2201 // its first dependence.
2202 if (SU->getInstr()->isPHI())
2203 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2204 else
2205 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2206 } else {
2207 int FirstCycle = Schedule.getFirstCycle();
2208 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2209 FirstCycle + getASAP(SU) + II - 1, II);
2210 }
2211 // Even if we find a schedule, make sure the schedule doesn't exceed the
2212 // allowable number of stages. We keep trying if this happens.
2213 if (scheduleFound)
2214 if (SwpMaxStages > -1 &&
2215 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2216 scheduleFound = false;
2217
2218 DEBUG({
2219 if (!scheduleFound)
2220 dbgs() << "\tCan't schedule\n";
2221 });
2222 } while (++NI != NE && scheduleFound);
2223
2224 // If a schedule is found, check if it is a valid schedule too.
2225 if (scheduleFound)
2226 scheduleFound = Schedule.isValidSchedule(this);
2227 }
2228
2229 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2230
2231 if (scheduleFound)
2232 Schedule.finalizeSchedule(this);
2233 else
2234 Schedule.reset();
2235
2236 return scheduleFound && Schedule.getMaxStageCount() > 0;
2237}
2238
2239/// Given a schedule for the loop, generate a new version of the loop,
2240/// and replace the old version. This function generates a prolog
2241/// that contains the initial iterations in the pipeline, and kernel
2242/// loop, and the epilogue that contains the code for the final
2243/// iterations.
2244void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2245 // Create a new basic block for the kernel and add it to the CFG.
2246 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2247
2248 unsigned MaxStageCount = Schedule.getMaxStageCount();
2249
2250 // Remember the registers that are used in different stages. The index is
2251 // the iteration, or stage, that the instruction is scheduled in. This is
2252 // a map between register names in the orignal block and the names created
2253 // in each stage of the pipelined loop.
2254 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2255 InstrMapTy InstrMap;
2256
2257 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2258 // Generate the prolog instructions that set up the pipeline.
2259 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2260 MF.insert(BB->getIterator(), KernelBB);
2261
2262 // Rearrange the instructions to generate the new, pipelined loop,
2263 // and update register names as needed.
2264 for (int Cycle = Schedule.getFirstCycle(),
2265 LastCycle = Schedule.getFinalCycle();
2266 Cycle <= LastCycle; ++Cycle) {
2267 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2268 // This inner loop schedules each instruction in the cycle.
2269 for (SUnit *CI : CycleInstrs) {
2270 if (CI->getInstr()->isPHI())
2271 continue;
2272 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2273 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2274 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2275 KernelBB->push_back(NewMI);
2276 InstrMap[NewMI] = CI->getInstr();
2277 }
2278 }
2279
2280 // Copy any terminator instructions to the new kernel, and update
2281 // names as needed.
2282 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2283 E = BB->instr_end();
2284 I != E; ++I) {
2285 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2286 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2287 KernelBB->push_back(NewMI);
2288 InstrMap[NewMI] = &*I;
2289 }
2290
2291 KernelBB->transferSuccessors(BB);
2292 KernelBB->replaceSuccessor(BB, KernelBB);
2293
2294 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2295 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2296 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2297 InstrMap, MaxStageCount, MaxStageCount, false);
2298
2299 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2300
2301 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2302 // Generate the epilog instructions to complete the pipeline.
2303 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2304 PrologBBs);
2305
2306 // We need this step because the register allocation doesn't handle some
2307 // situations well, so we insert copies to help out.
2308 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2309
2310 // Remove dead instructions due to loop induction variables.
2311 removeDeadInstructions(KernelBB, EpilogBBs);
2312
2313 // Add branches between prolog and epilog blocks.
2314 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2315
2316 // Remove the original loop since it's no longer referenced.
2317 BB->clear();
2318 BB->eraseFromParent();
2319
2320 delete[] VRMap;
2321}
2322
2323/// Generate the pipeline prolog code.
2324void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2325 MachineBasicBlock *KernelBB,
2326 ValueMapTy *VRMap,
2327 MBBVectorTy &PrologBBs) {
2328 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
Eugene Zelenko32a40562017-09-11 23:00:48 +00002329 assert(PreheaderBB != nullptr &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002330 "Need to add code to handle loops w/o preheader");
2331 MachineBasicBlock *PredBB = PreheaderBB;
2332 InstrMapTy InstrMap;
2333
2334 // Generate a basic block for each stage, not including the last stage,
2335 // which will be generated in the kernel. Each basic block may contain
2336 // instructions from multiple stages/iterations.
2337 for (unsigned i = 0; i < LastStage; ++i) {
2338 // Create and insert the prolog basic block prior to the original loop
2339 // basic block. The original loop is removed later.
2340 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2341 PrologBBs.push_back(NewBB);
2342 MF.insert(BB->getIterator(), NewBB);
2343 NewBB->transferSuccessors(PredBB);
2344 PredBB->addSuccessor(NewBB);
2345 PredBB = NewBB;
2346
2347 // Generate instructions for each appropriate stage. Process instructions
2348 // in original program order.
2349 for (int StageNum = i; StageNum >= 0; --StageNum) {
2350 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2351 BBE = BB->getFirstTerminator();
2352 BBI != BBE; ++BBI) {
2353 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2354 if (BBI->isPHI())
2355 continue;
2356 MachineInstr *NewMI =
2357 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2358 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2359 VRMap);
2360 NewBB->push_back(NewMI);
2361 InstrMap[NewMI] = &*BBI;
2362 }
2363 }
2364 }
2365 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2366 DEBUG({
2367 dbgs() << "prolog:\n";
2368 NewBB->dump();
2369 });
2370 }
2371
2372 PredBB->replaceSuccessor(BB, KernelBB);
2373
2374 // Check if we need to remove the branch from the preheader to the original
2375 // loop, and replace it with a branch to the new loop.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002376 unsigned numBranches = TII->removeBranch(*PreheaderBB);
Brendon Cahoon254f8892016-07-29 16:44:44 +00002377 if (numBranches) {
2378 SmallVector<MachineOperand, 0> Cond;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002379 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002380 }
2381}
2382
2383/// Generate the pipeline epilog code. The epilog code finishes the iterations
2384/// that were started in either the prolog or the kernel. We create a basic
2385/// block for each stage that needs to complete.
2386void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2387 MachineBasicBlock *KernelBB,
2388 ValueMapTy *VRMap,
2389 MBBVectorTy &EpilogBBs,
2390 MBBVectorTy &PrologBBs) {
2391 // We need to change the branch from the kernel to the first epilog block, so
2392 // this call to analyze branch uses the kernel rather than the original BB.
2393 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2394 SmallVector<MachineOperand, 4> Cond;
2395 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2396 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2397 if (checkBranch)
2398 return;
2399
2400 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2401 if (*LoopExitI == KernelBB)
2402 ++LoopExitI;
2403 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2404 MachineBasicBlock *LoopExitBB = *LoopExitI;
2405
2406 MachineBasicBlock *PredBB = KernelBB;
2407 MachineBasicBlock *EpilogStart = LoopExitBB;
2408 InstrMapTy InstrMap;
2409
2410 // Generate a basic block for each stage, not including the last stage,
2411 // which was generated for the kernel. Each basic block may contain
2412 // instructions from multiple stages/iterations.
2413 int EpilogStage = LastStage + 1;
2414 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2415 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2416 EpilogBBs.push_back(NewBB);
2417 MF.insert(BB->getIterator(), NewBB);
2418
2419 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2420 NewBB->addSuccessor(LoopExitBB);
2421
2422 if (EpilogStart == LoopExitBB)
2423 EpilogStart = NewBB;
2424
2425 // Add instructions to the epilog depending on the current block.
2426 // Process instructions in original program order.
2427 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2428 for (auto &BBI : *BB) {
2429 if (BBI.isPHI())
2430 continue;
2431 MachineInstr *In = &BBI;
2432 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2433 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
2434 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2435 NewBB->push_back(NewMI);
2436 InstrMap[NewMI] = In;
2437 }
2438 }
2439 }
2440 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2441 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2442 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2443 InstrMap, LastStage, EpilogStage, i == 1);
2444 PredBB = NewBB;
2445
2446 DEBUG({
2447 dbgs() << "epilog:\n";
2448 NewBB->dump();
2449 });
2450 }
2451
2452 // Fix any Phi nodes in the loop exit block.
2453 for (MachineInstr &MI : *LoopExitBB) {
2454 if (!MI.isPHI())
2455 break;
2456 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2457 MachineOperand &MO = MI.getOperand(i);
2458 if (MO.getMBB() == BB)
2459 MO.setMBB(PredBB);
2460 }
2461 }
2462
2463 // Create a branch to the new epilog from the kernel.
2464 // Remove the original branch and add a new branch to the epilog.
Matt Arsenault1b9fc8e2016-09-14 20:43:16 +00002465 TII->removeBranch(*KernelBB);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002466 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002467 // Add a branch to the loop exit.
2468 if (EpilogBBs.size() > 0) {
2469 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2470 SmallVector<MachineOperand, 4> Cond1;
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00002471 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00002472 }
2473}
2474
2475/// Replace all uses of FromReg that appear outside the specified
2476/// basic block with ToReg.
2477static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2478 MachineBasicBlock *MBB,
2479 MachineRegisterInfo &MRI,
2480 LiveIntervals &LIS) {
2481 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2482 E = MRI.use_end();
2483 I != E;) {
2484 MachineOperand &O = *I;
2485 ++I;
2486 if (O.getParent()->getParent() != MBB)
2487 O.setReg(ToReg);
2488 }
2489 if (!LIS.hasInterval(ToReg))
2490 LIS.createEmptyInterval(ToReg);
2491}
2492
2493/// Return true if the register has a use that occurs outside the
2494/// specified loop.
2495static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2496 MachineRegisterInfo &MRI) {
2497 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2498 E = MRI.use_end();
2499 I != E; ++I)
2500 if (I->getParent()->getParent() != BB)
2501 return true;
2502 return false;
2503}
2504
2505/// Generate Phis for the specific block in the generated pipelined code.
2506/// This function looks at the Phis from the original code to guide the
2507/// creation of new Phis.
2508void SwingSchedulerDAG::generateExistingPhis(
2509 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2510 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2511 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2512 bool IsLast) {
Simon Pilgrim6bdc7552017-03-31 10:59:37 +00002513 // Compute the stage number for the initial value of the Phi, which
Brendon Cahoon254f8892016-07-29 16:44:44 +00002514 // comes from the prolog. The prolog to use depends on to which kernel/
2515 // epilog that we're adding the Phi.
2516 unsigned PrologStage = 0;
2517 unsigned PrevStage = 0;
2518 bool InKernel = (LastStageNum == CurStageNum);
2519 if (InKernel) {
2520 PrologStage = LastStageNum - 1;
2521 PrevStage = CurStageNum;
2522 } else {
2523 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2524 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2525 }
2526
2527 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2528 BBE = BB->getFirstNonPHI();
2529 BBI != BBE; ++BBI) {
2530 unsigned Def = BBI->getOperand(0).getReg();
2531
2532 unsigned InitVal = 0;
2533 unsigned LoopVal = 0;
2534 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2535
2536 unsigned PhiOp1 = 0;
2537 // The Phi value from the loop body typically is defined in the loop, but
2538 // not always. So, we need to check if the value is defined in the loop.
2539 unsigned PhiOp2 = LoopVal;
2540 if (VRMap[LastStageNum].count(LoopVal))
2541 PhiOp2 = VRMap[LastStageNum][LoopVal];
2542
2543 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2544 int LoopValStage =
2545 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2546 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2547 if (NumStages == 0) {
2548 // We don't need to generate a Phi anymore, but we need to rename any uses
2549 // of the Phi value.
2550 unsigned NewReg = VRMap[PrevStage][LoopVal];
2551 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2552 Def, NewReg);
2553 if (VRMap[CurStageNum].count(LoopVal))
2554 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2555 }
2556 // Adjust the number of Phis needed depending on the number of prologs left,
2557 // and the distance from where the Phi is first scheduled.
2558 unsigned NumPhis = NumStages;
2559 if (!InKernel && (int)PrologStage < LoopValStage)
2560 // The NumPhis is the maximum number of new Phis needed during the steady
2561 // state. If the Phi has not been scheduled in current prolog, then we
2562 // need to generate less Phis.
2563 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
2564 // The number of Phis cannot exceed the number of prolog stages. Each
2565 // stage can potentially define two values.
2566 NumPhis = std::min(NumPhis, PrologStage + 2);
2567
2568 unsigned NewReg = 0;
2569
2570 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2571 // In the epilog, we may need to look back one stage to get the correct
2572 // Phi name because the epilog and prolog blocks execute the same stage.
2573 // The correct name is from the previous block only when the Phi has
2574 // been completely scheduled prior to the epilog, and Phi value is not
2575 // needed in multiple stages.
2576 int StageDiff = 0;
2577 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2578 NumPhis == 1)
2579 StageDiff = 1;
2580 // Adjust the computations below when the phi and the loop definition
2581 // are scheduled in different stages.
2582 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2583 StageDiff = StageScheduled - LoopValStage;
2584 for (unsigned np = 0; np < NumPhis; ++np) {
2585 // If the Phi hasn't been scheduled, then use the initial Phi operand
2586 // value. Otherwise, use the scheduled version of the instruction. This
2587 // is a little complicated when a Phi references another Phi.
2588 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2589 PhiOp1 = InitVal;
2590 // Check if the Phi has already been scheduled in a prolog stage.
2591 else if (PrologStage >= AccessStage + StageDiff + np &&
2592 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2593 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2594 // Check if the Phi has already been scheduled, but the loop intruction
2595 // is either another Phi, or doesn't occur in the loop.
2596 else if (PrologStage >= AccessStage + StageDiff + np) {
2597 // If the Phi references another Phi, we need to examine the other
2598 // Phi to get the correct value.
2599 PhiOp1 = LoopVal;
2600 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2601 int Indirects = 1;
2602 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2603 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2604 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2605 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2606 else
2607 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2608 InstOp1 = MRI.getVRegDef(PhiOp1);
2609 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2610 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2611 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2612 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2613 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2614 break;
2615 }
2616 ++Indirects;
2617 }
2618 } else
2619 PhiOp1 = InitVal;
2620 // If this references a generated Phi in the kernel, get the Phi operand
2621 // from the incoming block.
2622 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2623 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2624 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2625
2626 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2627 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2628 // In the epilog, a map lookup is needed to get the value from the kernel,
2629 // or previous epilog block. How is does this depends on if the
2630 // instruction is scheduled in the previous block.
2631 if (!InKernel) {
2632 int StageDiffAdj = 0;
2633 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2634 StageDiffAdj = StageScheduled - LoopValStage;
2635 // Use the loop value defined in the kernel, unless the kernel
2636 // contains the last definition of the Phi.
2637 if (np == 0 && PrevStage == LastStageNum &&
2638 (StageScheduled != 0 || LoopValStage != 0) &&
2639 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2640 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2641 // Use the value defined by the Phi. We add one because we switch
2642 // from looking at the loop value to the Phi definition.
2643 else if (np > 0 && PrevStage == LastStageNum &&
2644 VRMap[PrevStage - np + 1].count(Def))
2645 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2646 // Use the loop value defined in the kernel.
2647 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2648 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2649 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2650 // Use the value defined by the Phi, unless we're generating the first
2651 // epilog and the Phi refers to a Phi in a different stage.
2652 else if (VRMap[PrevStage - np].count(Def) &&
2653 (!LoopDefIsPhi || PrevStage != LastStageNum))
2654 PhiOp2 = VRMap[PrevStage - np][Def];
2655 }
2656
2657 // Check if we can reuse an existing Phi. This occurs when a Phi
2658 // references another Phi, and the other Phi is scheduled in an
2659 // earlier stage. We can try to reuse an existing Phi up until the last
2660 // stage of the current Phi.
Brendon Cahoon65b6ebc2016-08-16 14:29:24 +00002661 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00002662 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2663 int StageDiff = (StageScheduled - LoopValStage);
2664 LVNumStages -= StageDiff;
2665 if (LVNumStages > (int)np) {
2666 NewReg = PhiOp2;
2667 unsigned ReuseStage = CurStageNum;
2668 if (Schedule.isLoopCarried(this, *PhiInst))
2669 ReuseStage -= LVNumStages;
2670 // Check if the Phi to reuse has been generated yet. If not, then
2671 // there is nothing to reuse.
2672 if (VRMap[ReuseStage].count(LoopVal)) {
2673 NewReg = VRMap[ReuseStage][LoopVal];
2674
2675 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2676 &*BBI, Def, NewReg);
2677 // Update the map with the new Phi name.
2678 VRMap[CurStageNum - np][Def] = NewReg;
2679 PhiOp2 = NewReg;
2680 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2681 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2682
2683 if (IsLast && np == NumPhis - 1)
2684 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2685 continue;
2686 }
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00002687 } else if (InKernel && StageDiff > 0 &&
Brendon Cahoon254f8892016-07-29 16:44:44 +00002688 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2689 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2690 }
2691
2692 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2693 NewReg = MRI.createVirtualRegister(RC);
2694
2695 MachineInstrBuilder NewPhi =
2696 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2697 TII->get(TargetOpcode::PHI), NewReg);
2698 NewPhi.addReg(PhiOp1).addMBB(BB1);
2699 NewPhi.addReg(PhiOp2).addMBB(BB2);
2700 if (np == 0)
2701 InstrMap[NewPhi] = &*BBI;
2702
2703 // We define the Phis after creating the new pipelined code, so
2704 // we need to rename the Phi values in scheduled instructions.
2705
2706 unsigned PrevReg = 0;
2707 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2708 PrevReg = VRMap[PrevStage - np][LoopVal];
2709 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2710 Def, NewReg, PrevReg);
2711 // If the Phi has been scheduled, use the new name for rewriting.
2712 if (VRMap[CurStageNum - np].count(Def)) {
2713 unsigned R = VRMap[CurStageNum - np][Def];
2714 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2715 R, NewReg);
2716 }
2717
2718 // Check if we need to rename any uses that occurs after the loop. The
2719 // register to replace depends on whether the Phi is scheduled in the
2720 // epilog.
2721 if (IsLast && np == NumPhis - 1)
2722 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2723
2724 // In the kernel, a dependent Phi uses the value from this Phi.
2725 if (InKernel)
2726 PhiOp2 = NewReg;
2727
2728 // Update the map with the new Phi name.
2729 VRMap[CurStageNum - np][Def] = NewReg;
2730 }
2731
2732 while (NumPhis++ < NumStages) {
2733 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2734 &*BBI, Def, NewReg, 0);
2735 }
2736
2737 // Check if we need to rename a Phi that has been eliminated due to
2738 // scheduling.
2739 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2740 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2741 }
2742}
2743
2744/// Generate Phis for the specified block in the generated pipelined code.
2745/// These are new Phis needed because the definition is scheduled after the
2746/// use in the pipelened sequence.
2747void SwingSchedulerDAG::generatePhis(
2748 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2749 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2750 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2751 bool IsLast) {
2752 // Compute the stage number that contains the initial Phi value, and
2753 // the Phi from the previous stage.
2754 unsigned PrologStage = 0;
2755 unsigned PrevStage = 0;
2756 unsigned StageDiff = CurStageNum - LastStageNum;
2757 bool InKernel = (StageDiff == 0);
2758 if (InKernel) {
2759 PrologStage = LastStageNum - 1;
2760 PrevStage = CurStageNum;
2761 } else {
2762 PrologStage = LastStageNum - StageDiff;
2763 PrevStage = LastStageNum + StageDiff - 1;
2764 }
2765
2766 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2767 BBE = BB->instr_end();
2768 BBI != BBE; ++BBI) {
2769 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2770 MachineOperand &MO = BBI->getOperand(i);
2771 if (!MO.isReg() || !MO.isDef() ||
2772 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2773 continue;
2774
2775 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2776 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2777 unsigned Def = MO.getReg();
2778 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2779 // An instruction scheduled in stage 0 and is used after the loop
2780 // requires a phi in the epilog for the last definition from either
2781 // the kernel or prolog.
2782 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2783 hasUseAfterLoop(Def, BB, MRI))
2784 NumPhis = 1;
2785 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2786 continue;
2787
2788 unsigned PhiOp2 = VRMap[PrevStage][Def];
2789 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2790 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2791 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2792 // The number of Phis can't exceed the number of prolog stages. The
2793 // prolog stage number is zero based.
2794 if (NumPhis > PrologStage + 1 - StageScheduled)
2795 NumPhis = PrologStage + 1 - StageScheduled;
2796 for (unsigned np = 0; np < NumPhis; ++np) {
2797 unsigned PhiOp1 = VRMap[PrologStage][Def];
2798 if (np <= PrologStage)
2799 PhiOp1 = VRMap[PrologStage - np][Def];
2800 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2801 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2802 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2803 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2804 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2805 }
2806 if (!InKernel)
2807 PhiOp2 = VRMap[PrevStage - np][Def];
2808
2809 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2810 unsigned NewReg = MRI.createVirtualRegister(RC);
2811
2812 MachineInstrBuilder NewPhi =
2813 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2814 TII->get(TargetOpcode::PHI), NewReg);
2815 NewPhi.addReg(PhiOp1).addMBB(BB1);
2816 NewPhi.addReg(PhiOp2).addMBB(BB2);
2817 if (np == 0)
2818 InstrMap[NewPhi] = &*BBI;
2819
2820 // Rewrite uses and update the map. The actions depend upon whether
2821 // we generating code for the kernel or epilog blocks.
2822 if (InKernel) {
2823 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2824 &*BBI, PhiOp1, NewReg);
2825 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2826 &*BBI, PhiOp2, NewReg);
2827
2828 PhiOp2 = NewReg;
2829 VRMap[PrevStage - np - 1][Def] = NewReg;
2830 } else {
2831 VRMap[CurStageNum - np][Def] = NewReg;
2832 if (np == NumPhis - 1)
2833 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2834 &*BBI, Def, NewReg);
2835 }
2836 if (IsLast && np == NumPhis - 1)
2837 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2838 }
2839 }
2840 }
2841}
2842
2843/// Remove instructions that generate values with no uses.
2844/// Typically, these are induction variable operations that generate values
2845/// used in the loop itself. A dead instruction has a definition with
2846/// no uses, or uses that occur in the original loop only.
2847void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2848 MBBVectorTy &EpilogBBs) {
2849 // For each epilog block, check that the value defined by each instruction
2850 // is used. If not, delete it.
2851 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2852 MBE = EpilogBBs.rend();
2853 MBB != MBE; ++MBB)
2854 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2855 ME = (*MBB)->instr_rend();
2856 MI != ME;) {
2857 // From DeadMachineInstructionElem. Don't delete inline assembly.
2858 if (MI->isInlineAsm()) {
2859 ++MI;
2860 continue;
2861 }
2862 bool SawStore = false;
2863 // Check if it's safe to remove the instruction due to side effects.
2864 // We can, and want to, remove Phis here.
2865 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2866 ++MI;
2867 continue;
2868 }
2869 bool used = true;
2870 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2871 MOE = MI->operands_end();
2872 MOI != MOE; ++MOI) {
2873 if (!MOI->isReg() || !MOI->isDef())
2874 continue;
2875 unsigned reg = MOI->getReg();
2876 unsigned realUses = 0;
2877 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2878 EI = MRI.use_end();
2879 UI != EI; ++UI) {
2880 // Check if there are any uses that occur only in the original
2881 // loop. If so, that's not a real use.
2882 if (UI->getParent()->getParent() != BB) {
2883 realUses++;
2884 used = true;
2885 break;
2886 }
2887 }
2888 if (realUses > 0)
2889 break;
2890 used = false;
2891 }
2892 if (!used) {
Duncan P. N. Exon Smith5c001c32016-08-30 00:13:12 +00002893 MI++->eraseFromParent();
Brendon Cahoon254f8892016-07-29 16:44:44 +00002894 continue;
2895 }
2896 ++MI;
2897 }
2898 // In the kernel block, check if we can remove a Phi that generates a value
2899 // used in an instruction removed in the epilog block.
2900 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2901 BBE = KernelBB->getFirstNonPHI();
2902 BBI != BBE;) {
2903 MachineInstr *MI = &*BBI;
2904 ++BBI;
2905 unsigned reg = MI->getOperand(0).getReg();
2906 if (MRI.use_begin(reg) == MRI.use_end()) {
2907 MI->eraseFromParent();
2908 }
2909 }
2910}
2911
2912/// For loop carried definitions, we split the lifetime of a virtual register
2913/// that has uses past the definition in the next iteration. A copy with a new
2914/// virtual register is inserted before the definition, which helps with
2915/// generating a better register assignment.
2916///
2917/// v1 = phi(a, v2) v1 = phi(a, v2)
2918/// v2 = phi(b, v3) v2 = phi(b, v3)
2919/// v3 = .. v4 = copy v1
2920/// .. = V1 v3 = ..
2921/// .. = v4
2922void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2923 MBBVectorTy &EpilogBBs,
2924 SMSchedule &Schedule) {
2925 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2926 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2927 BBF = KernelBB->getFirstNonPHI();
2928 BBI != BBF; ++BBI) {
2929 unsigned Def = BBI->getOperand(0).getReg();
2930 // Check for any Phi definition that used as an operand of another Phi
2931 // in the same block.
2932 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2933 E = MRI.use_instr_end();
2934 I != E; ++I) {
2935 if (I->isPHI() && I->getParent() == KernelBB) {
2936 // Get the loop carried definition.
2937 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
2938 if (!LCDef)
2939 continue;
2940 MachineInstr *MI = MRI.getVRegDef(LCDef);
2941 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2942 continue;
2943 // Search through the rest of the block looking for uses of the Phi
2944 // definition. If one occurs, then split the lifetime.
2945 unsigned SplitReg = 0;
2946 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2947 KernelBB->instr_end()))
2948 if (BBJ.readsRegister(Def)) {
2949 // We split the lifetime when we find the first use.
2950 if (SplitReg == 0) {
2951 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2952 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2953 TII->get(TargetOpcode::COPY), SplitReg)
2954 .addReg(Def);
2955 }
2956 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2957 }
2958 if (!SplitReg)
2959 continue;
2960 // Search through each of the epilog blocks for any uses to be renamed.
2961 for (auto &Epilog : EpilogBBs)
2962 for (auto &I : *Epilog)
2963 if (I.readsRegister(Def))
2964 I.substituteRegister(Def, SplitReg, 0, *TRI);
2965 break;
2966 }
2967 }
2968 }
2969}
2970
2971/// Remove the incoming block from the Phis in a basic block.
2972static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2973 for (MachineInstr &MI : *BB) {
2974 if (!MI.isPHI())
2975 break;
2976 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2977 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2978 MI.RemoveOperand(i + 1);
2979 MI.RemoveOperand(i);
2980 break;
2981 }
2982 }
2983}
2984
2985/// Create branches from each prolog basic block to the appropriate epilog
2986/// block. These edges are needed if the loop ends before reaching the
2987/// kernel.
2988void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2989 MachineBasicBlock *KernelBB,
2990 MBBVectorTy &EpilogBBs,
2991 SMSchedule &Schedule, ValueMapTy *VRMap) {
2992 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2993 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2994 MachineInstr *Cmp = Pass.LI.LoopCompare;
2995 MachineBasicBlock *LastPro = KernelBB;
2996 MachineBasicBlock *LastEpi = KernelBB;
2997
2998 // Start from the blocks connected to the kernel and work "out"
2999 // to the first prolog and the last epilog blocks.
3000 SmallVector<MachineInstr *, 4> PrevInsts;
3001 unsigned MaxIter = PrologBBs.size() - 1;
3002 unsigned LC = UINT_MAX;
3003 unsigned LCMin = UINT_MAX;
3004 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3005 // Add branches to the prolog that go to the corresponding
3006 // epilog, and the fall-thru prolog/kernel block.
3007 MachineBasicBlock *Prolog = PrologBBs[j];
3008 MachineBasicBlock *Epilog = EpilogBBs[i];
3009 // We've executed one iteration, so decrement the loop count and check for
3010 // the loop end.
3011 SmallVector<MachineOperand, 4> Cond;
3012 // Check if the LOOP0 has already been removed. If so, then there is no need
3013 // to reduce the trip count.
3014 if (LC != 0)
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003015 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
Brendon Cahoon254f8892016-07-29 16:44:44 +00003016 MaxIter);
3017
3018 // Record the value of the first trip count, which is used to determine if
3019 // branches and blocks can be removed for constant trip counts.
3020 if (LCMin == UINT_MAX)
3021 LCMin = LC;
3022
3023 unsigned numAdded = 0;
3024 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3025 Prolog->addSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003026 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003027 } else if (j >= LCMin) {
3028 Prolog->addSuccessor(Epilog);
3029 Prolog->removeSuccessor(LastPro);
3030 LastEpi->removeSuccessor(Epilog);
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003031 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003032 removePhis(Epilog, LastEpi);
3033 // Remove the blocks that are no longer referenced.
3034 if (LastPro != LastEpi) {
3035 LastEpi->clear();
3036 LastEpi->eraseFromParent();
3037 }
3038 LastPro->clear();
3039 LastPro->eraseFromParent();
3040 } else {
Matt Arsenaulte8e0f5c2016-09-14 17:24:15 +00003041 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003042 removePhis(Epilog, Prolog);
3043 }
3044 LastPro = Prolog;
3045 LastEpi = Epilog;
3046 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3047 E = Prolog->instr_rend();
3048 I != E && numAdded > 0; ++I, --numAdded)
3049 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3050 }
3051}
3052
3053/// Return true if we can compute the amount the instruction changes
3054/// during each iteration. Set Delta to the amount of the change.
3055bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3056 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3057 unsigned BaseReg;
3058 int64_t Offset;
3059 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3060 return false;
3061
3062 MachineRegisterInfo &MRI = MF.getRegInfo();
3063 // Check if there is a Phi. If so, get the definition in the loop.
3064 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3065 if (BaseDef && BaseDef->isPHI()) {
3066 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3067 BaseDef = MRI.getVRegDef(BaseReg);
3068 }
3069 if (!BaseDef)
3070 return false;
3071
3072 int D = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003073 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003074 return false;
3075
3076 Delta = D;
3077 return true;
3078}
3079
3080/// Update the memory operand with a new offset when the pipeliner
Justin Lebarcf56e922016-08-12 23:58:19 +00003081/// generates a new copy of the instruction that refers to a
Brendon Cahoon254f8892016-07-29 16:44:44 +00003082/// different memory location.
3083void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3084 MachineInstr &OldMI, unsigned Num) {
3085 if (Num == 0)
3086 return;
3087 // If the instruction has memory operands, then adjust the offset
3088 // when the instruction appears in different stages.
3089 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3090 if (NumRefs == 0)
3091 return;
3092 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3093 unsigned Refs = 0;
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003094 for (MachineMemOperand *MMO : NewMI.memoperands()) {
Justin Lebaradbf09e2016-09-11 01:38:58 +00003095 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3096 (!MMO->getValue())) {
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003097 NewMemRefs[Refs++] = MMO;
Brendon Cahoon254f8892016-07-29 16:44:44 +00003098 continue;
3099 }
3100 unsigned Delta;
3101 if (computeDelta(OldMI, Delta)) {
3102 int64_t AdjOffset = Delta * Num;
3103 NewMemRefs[Refs++] =
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003104 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
Brendon Cahoon254f8892016-07-29 16:44:44 +00003105 } else
Justin Lebar0a33a7a2016-08-23 17:18:07 +00003106 NewMemRefs[Refs++] = MF.getMachineMemOperand(MMO, 0, UINT64_MAX);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003107 }
3108 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3109}
3110
3111/// Clone the instruction for the new pipelined loop and update the
3112/// memory operands, if needed.
3113MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3114 unsigned CurStageNum,
3115 unsigned InstStageNum) {
3116 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3117 // Check for tied operands in inline asm instructions. This should be handled
3118 // elsewhere, but I'm not sure of the best solution.
3119 if (OldMI->isInlineAsm())
3120 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3121 const auto &MO = OldMI->getOperand(i);
3122 if (MO.isReg() && MO.isUse())
3123 break;
3124 unsigned UseIdx;
3125 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3126 NewMI->tieOperands(i, UseIdx);
3127 }
3128 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3129 return NewMI;
3130}
3131
3132/// Clone the instruction for the new pipelined loop. If needed, this
3133/// function updates the instruction using the values saved in the
3134/// InstrChanges structure.
3135MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3136 unsigned CurStageNum,
3137 unsigned InstStageNum,
3138 SMSchedule &Schedule) {
3139 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3140 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3141 InstrChanges.find(getSUnit(OldMI));
3142 if (It != InstrChanges.end()) {
3143 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3144 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003145 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003146 return nullptr;
3147 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3148 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3149 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3150 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3151 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3152 }
3153 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3154 return NewMI;
3155}
3156
3157/// Update the machine instruction with new virtual registers. This
3158/// function may change the defintions and/or uses.
3159void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3160 unsigned CurStageNum,
3161 unsigned InstrStageNum,
3162 SMSchedule &Schedule,
3163 ValueMapTy *VRMap) {
3164 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3165 MachineOperand &MO = NewMI->getOperand(i);
3166 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3167 continue;
3168 unsigned reg = MO.getReg();
3169 if (MO.isDef()) {
3170 // Create a new virtual register for the definition.
3171 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3172 unsigned NewReg = MRI.createVirtualRegister(RC);
3173 MO.setReg(NewReg);
3174 VRMap[CurStageNum][reg] = NewReg;
3175 if (LastDef)
3176 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3177 } else if (MO.isUse()) {
3178 MachineInstr *Def = MRI.getVRegDef(reg);
3179 // Compute the stage that contains the last definition for instruction.
3180 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3181 unsigned StageNum = CurStageNum;
3182 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3183 // Compute the difference in stages between the defintion and the use.
3184 unsigned StageDiff = (InstrStageNum - DefStageNum);
3185 // Make an adjustment to get the last definition.
3186 StageNum -= StageDiff;
3187 }
3188 if (VRMap[StageNum].count(reg))
3189 MO.setReg(VRMap[StageNum][reg]);
3190 }
3191 }
3192}
3193
3194/// Return the instruction in the loop that defines the register.
3195/// If the definition is a Phi, then follow the Phi operand to
3196/// the instruction in the loop.
3197MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3198 SmallPtrSet<MachineInstr *, 8> Visited;
3199 MachineInstr *Def = MRI.getVRegDef(Reg);
3200 while (Def->isPHI()) {
3201 if (!Visited.insert(Def).second)
3202 break;
3203 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3204 if (Def->getOperand(i + 1).getMBB() == BB) {
3205 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3206 break;
3207 }
3208 }
3209 return Def;
3210}
3211
3212/// Return the new name for the value from the previous stage.
3213unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3214 unsigned LoopVal, unsigned LoopStage,
3215 ValueMapTy *VRMap,
3216 MachineBasicBlock *BB) {
3217 unsigned PrevVal = 0;
3218 if (StageNum > PhiStage) {
3219 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3220 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3221 // The name is defined in the previous stage.
3222 PrevVal = VRMap[StageNum - 1][LoopVal];
3223 else if (VRMap[StageNum].count(LoopVal))
3224 // The previous name is defined in the current stage when the instruction
3225 // order is swapped.
3226 PrevVal = VRMap[StageNum][LoopVal];
Krzysztof Parzyszekdf24da22016-12-22 18:49:55 +00003227 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003228 // The loop value hasn't yet been scheduled.
3229 PrevVal = LoopVal;
3230 else if (StageNum == PhiStage + 1)
3231 // The loop value is another phi, which has not been scheduled.
3232 PrevVal = getInitPhiReg(*LoopInst, BB);
3233 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3234 // The loop value is another phi, which has been scheduled.
3235 PrevVal =
3236 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3237 LoopStage, VRMap, BB);
3238 }
3239 return PrevVal;
3240}
3241
3242/// Rewrite the Phi values in the specified block to use the mappings
3243/// from the initial operand. Once the Phi is scheduled, we switch
3244/// to using the loop value instead of the Phi value, so those names
3245/// do not need to be rewritten.
3246void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3247 unsigned StageNum,
3248 SMSchedule &Schedule,
3249 ValueMapTy *VRMap,
3250 InstrMapTy &InstrMap) {
3251 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
3252 BBE = BB->getFirstNonPHI();
3253 BBI != BBE; ++BBI) {
3254 unsigned InitVal = 0;
3255 unsigned LoopVal = 0;
3256 getPhiRegs(*BBI, BB, InitVal, LoopVal);
3257 unsigned PhiDef = BBI->getOperand(0).getReg();
3258
3259 unsigned PhiStage =
3260 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3261 unsigned LoopStage =
3262 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3263 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3264 if (NumPhis > StageNum)
3265 NumPhis = StageNum;
3266 for (unsigned np = 0; np <= NumPhis; ++np) {
3267 unsigned NewVal =
3268 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3269 if (!NewVal)
3270 NewVal = InitVal;
3271 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
3272 PhiDef, NewVal);
3273 }
3274 }
3275}
3276
3277/// Rewrite a previously scheduled instruction to use the register value
3278/// from the new instruction. Make sure the instruction occurs in the
3279/// basic block, and we don't change the uses in the new instruction.
3280void SwingSchedulerDAG::rewriteScheduledInstr(
3281 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3282 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3283 unsigned NewReg, unsigned PrevReg) {
3284 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3285 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3286 // Rewrite uses that have been scheduled already to use the new
3287 // Phi register.
3288 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3289 EI = MRI.use_end();
3290 UI != EI;) {
3291 MachineOperand &UseOp = *UI;
3292 MachineInstr *UseMI = UseOp.getParent();
3293 ++UI;
3294 if (UseMI->getParent() != BB)
3295 continue;
3296 if (UseMI->isPHI()) {
3297 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3298 continue;
3299 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3300 continue;
3301 }
3302 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3303 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3304 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3305 int StageSched = Schedule.stageScheduled(OrigMISU);
3306 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3307 unsigned ReplaceReg = 0;
3308 // This is the stage for the scheduled instruction.
3309 if (StagePhi == StageSched && Phi->isPHI()) {
3310 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3311 if (PrevReg && InProlog)
3312 ReplaceReg = PrevReg;
3313 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3314 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3315 ReplaceReg = PrevReg;
3316 else
3317 ReplaceReg = NewReg;
3318 }
3319 // The scheduled instruction occurs before the scheduled Phi, and the
3320 // Phi is not loop carried.
3321 if (!InProlog && StagePhi + 1 == StageSched &&
3322 !Schedule.isLoopCarried(this, *Phi))
3323 ReplaceReg = NewReg;
3324 if (StagePhi > StageSched && Phi->isPHI())
3325 ReplaceReg = NewReg;
3326 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3327 ReplaceReg = NewReg;
3328 if (ReplaceReg) {
3329 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3330 UseOp.setReg(ReplaceReg);
3331 }
3332 }
3333}
3334
3335/// Check if we can change the instruction to use an offset value from the
3336/// previous iteration. If so, return true and set the base and offset values
3337/// so that we can rewrite the load, if necessary.
3338/// v1 = Phi(v0, v3)
3339/// v2 = load v1, 0
3340/// v3 = post_store v1, 4, x
3341/// This function enables the load to be rewritten as v2 = load v3, 4.
3342bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3343 unsigned &BasePos,
3344 unsigned &OffsetPos,
3345 unsigned &NewBase,
3346 int64_t &Offset) {
3347 // Get the load instruction.
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003348 if (TII->isPostIncrement(*MI))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003349 return false;
3350 unsigned BasePosLd, OffsetPosLd;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003351 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003352 return false;
3353 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3354
3355 // Look for the Phi instruction.
Justin Bognerfdf9bf42017-10-10 23:50:49 +00003356 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
Brendon Cahoon254f8892016-07-29 16:44:44 +00003357 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3358 if (!Phi || !Phi->isPHI())
3359 return false;
3360 // Get the register defined in the loop block.
3361 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3362 if (!PrevReg)
3363 return false;
3364
3365 // Check for the post-increment load/store instruction.
3366 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3367 if (!PrevDef || PrevDef == MI)
3368 return false;
3369
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003370 if (!TII->isPostIncrement(*PrevDef))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003371 return false;
3372
3373 unsigned BasePos1 = 0, OffsetPos1 = 0;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003374 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003375 return false;
3376
3377 // Make sure offset values are both positive or both negative.
3378 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3379 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3380 if ((LoadOffset >= 0) != (StoreOffset >= 0))
3381 return false;
3382
3383 // Set the return value once we determine that we return true.
3384 BasePos = BasePosLd;
3385 OffsetPos = OffsetPosLd;
3386 NewBase = PrevReg;
3387 Offset = StoreOffset;
3388 return true;
3389}
3390
3391/// Apply changes to the instruction if needed. The changes are need
3392/// to improve the scheduling and depend up on the final schedule.
3393MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3394 SMSchedule &Schedule,
3395 bool UpdateDAG) {
3396 SUnit *SU = getSUnit(MI);
3397 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3398 InstrChanges.find(SU);
3399 if (It != InstrChanges.end()) {
3400 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3401 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003402 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003403 return nullptr;
3404 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3405 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3406 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3407 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3408 int BaseStageNum = Schedule.stageScheduled(SU);
3409 int BaseCycleNum = Schedule.cycleScheduled(SU);
3410 if (BaseStageNum < DefStageNum) {
3411 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3412 int OffsetDiff = DefStageNum - BaseStageNum;
3413 if (DefCycleNum < BaseCycleNum) {
3414 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3415 if (OffsetDiff > 0)
3416 --OffsetDiff;
3417 }
3418 int64_t NewOffset =
3419 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3420 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3421 if (UpdateDAG) {
3422 SU->setInstr(NewMI);
3423 MISUnitMap[NewMI] = SU;
3424 }
3425 NewMIs.insert(NewMI);
3426 return NewMI;
3427 }
3428 }
3429 return nullptr;
3430}
3431
3432/// Return true for an order dependence that is loop carried potentially.
3433/// An order dependence is loop carried if the destination defines a value
3434/// that may be used by the source in a subsequent iteration.
3435bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
3436 bool isSucc) {
3437 if (!isOrder(Source, Dep) || Dep.isArtificial())
3438 return false;
3439
3440 if (!SwpPruneLoopCarried)
3441 return true;
3442
3443 MachineInstr *SI = Source->getInstr();
3444 MachineInstr *DI = Dep.getSUnit()->getInstr();
3445 if (!isSucc)
3446 std::swap(SI, DI);
3447 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3448
3449 // Assume ordered loads and stores may have a loop carried dependence.
3450 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3451 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3452 return true;
3453
3454 // Only chain dependences between a load and store can be loop carried.
3455 if (!DI->mayStore() || !SI->mayLoad())
3456 return false;
3457
3458 unsigned DeltaS, DeltaD;
3459 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3460 return true;
3461
3462 unsigned BaseRegS, BaseRegD;
3463 int64_t OffsetS, OffsetD;
3464 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3465 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3466 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3467 return true;
3468
3469 if (BaseRegS != BaseRegD)
3470 return true;
3471
3472 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3473 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3474
3475 // This is the main test, which checks the offset values and the loop
3476 // increment value to determine if the accesses may be loop carried.
3477 if (OffsetS >= OffsetD)
3478 return OffsetS + AccessSizeS > DeltaS;
Simon Pilgrimfbfb19b2017-03-16 19:52:00 +00003479 else
Brendon Cahoon254f8892016-07-29 16:44:44 +00003480 return OffsetD + AccessSizeD > DeltaD;
3481
3482 return true;
3483}
3484
Krzysztof Parzyszek88391242016-12-22 19:21:20 +00003485void SwingSchedulerDAG::postprocessDAG() {
3486 for (auto &M : Mutations)
3487 M->apply(this);
3488}
3489
Brendon Cahoon254f8892016-07-29 16:44:44 +00003490/// Try to schedule the node at the specified StartCycle and continue
3491/// until the node is schedule or the EndCycle is reached. This function
3492/// returns true if the node is scheduled. This routine may search either
3493/// forward or backward for a place to insert the instruction based upon
3494/// the relative values of StartCycle and EndCycle.
3495bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3496 bool forward = true;
3497 if (StartCycle > EndCycle)
3498 forward = false;
3499
3500 // The terminating condition depends on the direction.
3501 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3502 for (int curCycle = StartCycle; curCycle != termCycle;
3503 forward ? ++curCycle : --curCycle) {
3504
3505 // Add the already scheduled instructions at the specified cycle to the DFA.
3506 Resources->clearResources();
3507 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3508 checkCycle <= LastCycle; checkCycle += II) {
3509 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3510
3511 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3512 E = cycleInstrs.end();
3513 I != E; ++I) {
3514 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3515 continue;
3516 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3517 "These instructions have already been scheduled.");
3518 Resources->reserveResources(*(*I)->getInstr());
3519 }
3520 }
3521 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3522 Resources->canReserveResources(*SU->getInstr())) {
3523 DEBUG({
3524 dbgs() << "\tinsert at cycle " << curCycle << " ";
3525 SU->getInstr()->dump();
3526 });
3527
3528 ScheduledInstrs[curCycle].push_back(SU);
3529 InstrToCycle.insert(std::make_pair(SU, curCycle));
3530 if (curCycle > LastCycle)
3531 LastCycle = curCycle;
3532 if (curCycle < FirstCycle)
3533 FirstCycle = curCycle;
3534 return true;
3535 }
3536 DEBUG({
3537 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3538 SU->getInstr()->dump();
3539 });
3540 }
3541 return false;
3542}
3543
3544// Return the cycle of the earliest scheduled instruction in the chain.
3545int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3546 SmallPtrSet<SUnit *, 8> Visited;
3547 SmallVector<SDep, 8> Worklist;
3548 Worklist.push_back(Dep);
3549 int EarlyCycle = INT_MAX;
3550 while (!Worklist.empty()) {
3551 const SDep &Cur = Worklist.pop_back_val();
3552 SUnit *PrevSU = Cur.getSUnit();
3553 if (Visited.count(PrevSU))
3554 continue;
3555 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3556 if (it == InstrToCycle.end())
3557 continue;
3558 EarlyCycle = std::min(EarlyCycle, it->second);
3559 for (const auto &PI : PrevSU->Preds)
3560 if (SwingSchedulerDAG::isOrder(PrevSU, PI))
3561 Worklist.push_back(PI);
3562 Visited.insert(PrevSU);
3563 }
3564 return EarlyCycle;
3565}
3566
3567// Return the cycle of the latest scheduled instruction in the chain.
3568int SMSchedule::latestCycleInChain(const SDep &Dep) {
3569 SmallPtrSet<SUnit *, 8> Visited;
3570 SmallVector<SDep, 8> Worklist;
3571 Worklist.push_back(Dep);
3572 int LateCycle = INT_MIN;
3573 while (!Worklist.empty()) {
3574 const SDep &Cur = Worklist.pop_back_val();
3575 SUnit *SuccSU = Cur.getSUnit();
3576 if (Visited.count(SuccSU))
3577 continue;
3578 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3579 if (it == InstrToCycle.end())
3580 continue;
3581 LateCycle = std::max(LateCycle, it->second);
3582 for (const auto &SI : SuccSU->Succs)
3583 if (SwingSchedulerDAG::isOrder(SuccSU, SI))
3584 Worklist.push_back(SI);
3585 Visited.insert(SuccSU);
3586 }
3587 return LateCycle;
3588}
3589
3590/// If an instruction has a use that spans multiple iterations, then
3591/// return true. These instructions are characterized by having a back-ege
3592/// to a Phi, which contains a reference to another Phi.
3593static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3594 for (auto &P : SU->Preds)
3595 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3596 for (auto &S : P.getSUnit()->Succs)
3597 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
3598 return P.getSUnit();
3599 return nullptr;
3600}
3601
3602/// Compute the scheduling start slot for the instruction. The start slot
3603/// depends on any predecessor or successor nodes scheduled already.
3604void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3605 int *MinEnd, int *MaxStart, int II,
3606 SwingSchedulerDAG *DAG) {
3607 // Iterate over each instruction that has been scheduled already. The start
3608 // slot computuation depends on whether the previously scheduled instruction
3609 // is a predecessor or successor of the specified instruction.
3610 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3611
3612 // Iterate over each instruction in the current cycle.
3613 for (SUnit *I : getInstructions(cycle)) {
3614 // Because we're processing a DAG for the dependences, we recognize
3615 // the back-edge in recurrences by anti dependences.
3616 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3617 const SDep &Dep = SU->Preds[i];
3618 if (Dep.getSUnit() == I) {
3619 if (!DAG->isBackedge(SU, Dep)) {
3620 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3621 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3622 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3623 if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
3624 int End = earliestCycleInChain(Dep) + (II - 1);
3625 *MinEnd = std::min(*MinEnd, End);
3626 }
3627 } else {
3628 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3629 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3630 *MinLateStart = std::min(*MinLateStart, LateStart);
3631 }
3632 }
3633 // For instruction that requires multiple iterations, make sure that
3634 // the dependent instruction is not scheduled past the definition.
3635 SUnit *BE = multipleIterations(I, DAG);
3636 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3637 !SU->isPred(I))
3638 *MinLateStart = std::min(*MinLateStart, cycle);
3639 }
3640 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
3641 if (SU->Succs[i].getSUnit() == I) {
3642 const SDep &Dep = SU->Succs[i];
3643 if (!DAG->isBackedge(SU, Dep)) {
3644 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3645 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3646 *MinLateStart = std::min(*MinLateStart, LateStart);
3647 if (DAG->isLoopCarriedOrder(SU, Dep)) {
3648 int Start = latestCycleInChain(Dep) + 1 - II;
3649 *MaxStart = std::max(*MaxStart, Start);
3650 }
3651 } else {
3652 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3653 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3654 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3655 }
3656 }
3657 }
3658 }
3659}
3660
3661/// Order the instructions within a cycle so that the definitions occur
3662/// before the uses. Returns true if the instruction is added to the start
3663/// of the list, or false if added to the end.
3664bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3665 std::deque<SUnit *> &Insts) {
3666 MachineInstr *MI = SU->getInstr();
3667 bool OrderBeforeUse = false;
3668 bool OrderAfterDef = false;
3669 bool OrderBeforeDef = false;
3670 unsigned MoveDef = 0;
3671 unsigned MoveUse = 0;
3672 int StageInst1 = stageScheduled(SU);
3673
3674 unsigned Pos = 0;
3675 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3676 ++I, ++Pos) {
3677 // Relative order of Phis does not matter.
3678 if (MI->isPHI() && (*I)->getInstr()->isPHI())
3679 continue;
3680 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3681 MachineOperand &MO = MI->getOperand(i);
3682 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3683 continue;
3684 unsigned Reg = MO.getReg();
3685 unsigned BasePos, OffsetPos;
Krzysztof Parzyszek8fb181c2016-08-01 17:55:48 +00003686 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003687 if (MI->getOperand(BasePos).getReg() == Reg)
3688 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3689 Reg = NewReg;
3690 bool Reads, Writes;
3691 std::tie(Reads, Writes) =
3692 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3693 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3694 OrderBeforeUse = true;
3695 MoveUse = Pos;
3696 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3697 // Add the instruction after the scheduled instruction.
3698 OrderAfterDef = true;
3699 MoveDef = Pos;
3700 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3701 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3702 OrderBeforeUse = true;
3703 MoveUse = Pos;
3704 } else {
3705 OrderAfterDef = true;
3706 MoveDef = Pos;
3707 }
3708 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3709 OrderBeforeUse = true;
3710 MoveUse = Pos;
3711 if (MoveUse != 0) {
3712 OrderAfterDef = true;
3713 MoveDef = Pos - 1;
3714 }
3715 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3716 // Add the instruction before the scheduled instruction.
3717 OrderBeforeUse = true;
3718 MoveUse = Pos;
3719 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3720 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3721 OrderBeforeDef = true;
3722 MoveUse = Pos;
3723 }
3724 }
3725 // Check for order dependences between instructions. Make sure the source
3726 // is ordered before the destination.
3727 for (auto &S : SU->Succs)
3728 if (S.getKind() == SDep::Order) {
3729 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3730 OrderBeforeUse = true;
3731 MoveUse = Pos;
3732 }
3733 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
3734 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
3735 if (S.isAssignedRegDep()) {
3736 OrderAfterDef = true;
3737 MoveDef = Pos;
3738 }
3739 } else {
3740 OrderBeforeUse = true;
3741 MoveUse = Pos;
3742 }
3743 }
3744 for (auto &P : SU->Preds)
3745 if (P.getKind() == SDep::Order) {
3746 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3747 OrderAfterDef = true;
3748 MoveDef = Pos;
3749 }
3750 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
3751 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
3752 if (P.isAssignedRegDep()) {
3753 OrderBeforeUse = true;
3754 MoveUse = Pos;
3755 }
3756 } else {
3757 OrderAfterDef = true;
3758 MoveDef = Pos;
3759 }
3760 }
3761 }
3762
3763 // A circular dependence.
3764 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3765 OrderBeforeUse = false;
3766
3767 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3768 // to a loop-carried dependence.
3769 if (OrderBeforeDef)
3770 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3771
3772 // The uncommon case when the instruction order needs to be updated because
3773 // there is both a use and def.
3774 if (OrderBeforeUse && OrderAfterDef) {
3775 SUnit *UseSU = Insts.at(MoveUse);
3776 SUnit *DefSU = Insts.at(MoveDef);
3777 if (MoveUse > MoveDef) {
3778 Insts.erase(Insts.begin() + MoveUse);
3779 Insts.erase(Insts.begin() + MoveDef);
3780 } else {
3781 Insts.erase(Insts.begin() + MoveDef);
3782 Insts.erase(Insts.begin() + MoveUse);
3783 }
3784 if (orderDependence(SSD, UseSU, Insts)) {
3785 Insts.push_front(SU);
3786 orderDependence(SSD, DefSU, Insts);
3787 return true;
3788 }
3789 Insts.pop_back();
3790 Insts.push_back(SU);
3791 Insts.push_back(UseSU);
3792 orderDependence(SSD, DefSU, Insts);
3793 return false;
3794 }
3795 // Put the new instruction first if there is a use in the list. Otherwise,
3796 // put it at the end of the list.
3797 if (OrderBeforeUse)
3798 Insts.push_front(SU);
3799 else
3800 Insts.push_back(SU);
3801 return OrderBeforeUse;
3802}
3803
3804/// Return true if the scheduled Phi has a loop carried operand.
3805bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3806 if (!Phi.isPHI())
3807 return false;
3808 assert(Phi.isPHI() && "Expecing a Phi.");
3809 SUnit *DefSU = SSD->getSUnit(&Phi);
3810 unsigned DefCycle = cycleScheduled(DefSU);
3811 int DefStage = stageScheduled(DefSU);
3812
3813 unsigned InitVal = 0;
3814 unsigned LoopVal = 0;
3815 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3816 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3817 if (!UseSU)
3818 return true;
3819 if (UseSU->getInstr()->isPHI())
3820 return true;
3821 unsigned LoopCycle = cycleScheduled(UseSU);
3822 int LoopStage = stageScheduled(UseSU);
Simon Pilgrim3d8482a2016-11-14 10:40:23 +00003823 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
Brendon Cahoon254f8892016-07-29 16:44:44 +00003824}
3825
3826/// Return true if the instruction is a definition that is loop carried
3827/// and defines the use on the next iteration.
3828/// v1 = phi(v2, v3)
3829/// (Def) v3 = op v1
3830/// (MO) = v1
3831/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3832/// register.
3833bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3834 MachineInstr *Def, MachineOperand &MO) {
3835 if (!MO.isReg())
3836 return false;
3837 if (Def->isPHI())
3838 return false;
3839 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3840 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3841 return false;
3842 if (!isLoopCarried(SSD, *Phi))
3843 return false;
3844 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3845 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3846 MachineOperand &DMO = Def->getOperand(i);
3847 if (!DMO.isReg() || !DMO.isDef())
3848 continue;
3849 if (DMO.getReg() == LoopReg)
3850 return true;
3851 }
3852 return false;
3853}
3854
3855// Check if the generated schedule is valid. This function checks if
3856// an instruction that uses a physical register is scheduled in a
3857// different stage than the definition. The pipeliner does not handle
3858// physical register values that may cross a basic block boundary.
3859bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
Brendon Cahoon254f8892016-07-29 16:44:44 +00003860 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3861 SUnit &SU = SSD->SUnits[i];
3862 if (!SU.hasPhysRegDefs)
3863 continue;
3864 int StageDef = stageScheduled(&SU);
3865 assert(StageDef != -1 && "Instruction should have been scheduled.");
3866 for (auto &SI : SU.Succs)
3867 if (SI.isAssignedRegDep())
Simon Pilgrimb39236b2016-07-29 18:57:32 +00003868 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
Brendon Cahoon254f8892016-07-29 16:44:44 +00003869 if (stageScheduled(SI.getSUnit()) != StageDef)
3870 return false;
3871 }
3872 return true;
3873}
3874
3875/// After the schedule has been formed, call this function to combine
3876/// the instructions from the different stages/cycles. That is, this
3877/// function creates a schedule that represents a single iteration.
3878void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3879 // Move all instructions to the first stage from later stages.
3880 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3881 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3882 ++stage) {
3883 std::deque<SUnit *> &cycleInstrs =
3884 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3885 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3886 E = cycleInstrs.rend();
3887 I != E; ++I)
3888 ScheduledInstrs[cycle].push_front(*I);
3889 }
3890 }
3891 // Iterate over the definitions in each instruction, and compute the
3892 // stage difference for each use. Keep the maximum value.
3893 for (auto &I : InstrToCycle) {
3894 int DefStage = stageScheduled(I.first);
3895 MachineInstr *MI = I.first->getInstr();
3896 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3897 MachineOperand &Op = MI->getOperand(i);
3898 if (!Op.isReg() || !Op.isDef())
3899 continue;
3900
3901 unsigned Reg = Op.getReg();
3902 unsigned MaxDiff = 0;
3903 bool PhiIsSwapped = false;
3904 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3905 EI = MRI.use_end();
3906 UI != EI; ++UI) {
3907 MachineOperand &UseOp = *UI;
3908 MachineInstr *UseMI = UseOp.getParent();
3909 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3910 int UseStage = stageScheduled(SUnitUse);
3911 unsigned Diff = 0;
3912 if (UseStage != -1 && UseStage >= DefStage)
3913 Diff = UseStage - DefStage;
3914 if (MI->isPHI()) {
3915 if (isLoopCarried(SSD, *MI))
3916 ++Diff;
3917 else
3918 PhiIsSwapped = true;
3919 }
3920 MaxDiff = std::max(Diff, MaxDiff);
3921 }
3922 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3923 }
3924 }
3925
3926 // Erase all the elements in the later stages. Only one iteration should
3927 // remain in the scheduled list, and it contains all the instructions.
3928 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3929 ScheduledInstrs.erase(cycle);
3930
3931 // Change the registers in instruction as specified in the InstrChanges
3932 // map. We need to use the new registers to create the correct order.
3933 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3934 SUnit *SU = &SSD->SUnits[i];
3935 SSD->applyInstrChange(SU->getInstr(), *this, true);
3936 }
3937
3938 // Reorder the instructions in each cycle to fix and improve the
3939 // generated code.
3940 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3941 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3942 std::deque<SUnit *> newOrderZC;
3943 // Put the zero-cost, pseudo instructions at the start of the cycle.
3944 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3945 SUnit *SU = cycleInstrs[i];
3946 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3947 orderDependence(SSD, SU, newOrderZC);
3948 }
3949 std::deque<SUnit *> newOrderI;
3950 // Then, add the regular instructions back.
3951 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3952 SUnit *SU = cycleInstrs[i];
3953 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3954 orderDependence(SSD, SU, newOrderI);
3955 }
3956 // Replace the old order with the new order.
3957 cycleInstrs.swap(newOrderZC);
3958 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
3959 }
3960
3961 DEBUG(dump(););
3962}
3963
Florian Hahn6b3216a2017-07-31 10:07:49 +00003964#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Brendon Cahoon254f8892016-07-29 16:44:44 +00003965/// Print the schedule information to the given output.
3966void SMSchedule::print(raw_ostream &os) const {
3967 // Iterate over each cycle.
3968 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3969 // Iterate over each instruction in the cycle.
3970 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3971 for (SUnit *CI : cycleInstrs->second) {
3972 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3973 os << "(" << CI->NodeNum << ") ";
3974 CI->getInstr()->print(os);
3975 os << "\n";
3976 }
3977 }
3978}
3979
3980/// Utility function used for debugging to print the schedule.
Matthias Braun8c209aa2017-01-28 02:02:38 +00003981LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
3982#endif