blob: b38c0c4f14392ed14a13774671adaa943cfb9a09 [file] [log] [blame]
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001//===- MemorySSA.cpp - Memory SSA Builder ---------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00008//===----------------------------------------------------------------------===//
George Burgess IVe1100f52016-02-02 22:46:49 +00009//
10// This file implements the MemorySSA class.
11//
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000012//===----------------------------------------------------------------------===//
13
Daniel Berlin554dcd82017-04-11 20:06:36 +000014#include "llvm/Analysis/MemorySSA.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000015#include "llvm/ADT/DenseMap.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000016#include "llvm/ADT/DenseMapInfo.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000017#include "llvm/ADT/DenseSet.h"
18#include "llvm/ADT/DepthFirstIterator.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000019#include "llvm/ADT/Hashing.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000022#include "llvm/ADT/STLExtras.h"
23#include "llvm/ADT/SmallPtrSet.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000024#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000027#include "llvm/Analysis/AliasAnalysis.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000028#include "llvm/Analysis/IteratedDominanceFrontier.h"
29#include "llvm/Analysis/MemoryLocation.h"
Nico Weber432a3882018-04-30 14:59:11 +000030#include "llvm/Config/llvm-config.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000031#include "llvm/IR/AssemblyAnnotationWriter.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000032#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/CallSite.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000034#include "llvm/IR/Dominators.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000035#include "llvm/IR/Function.h"
36#include "llvm/IR/Instruction.h"
37#include "llvm/IR/Instructions.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000038#include "llvm/IR/IntrinsicInst.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000039#include "llvm/IR/Intrinsics.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000040#include "llvm/IR/LLVMContext.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000041#include "llvm/IR/PassManager.h"
42#include "llvm/IR/Use.h"
43#include "llvm/Pass.h"
44#include "llvm/Support/AtomicOrdering.h"
45#include "llvm/Support/Casting.h"
46#include "llvm/Support/CommandLine.h"
47#include "llvm/Support/Compiler.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000048#include "llvm/Support/Debug.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000049#include "llvm/Support/ErrorHandling.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000050#include "llvm/Support/FormattedStream.h"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000051#include "llvm/Support/raw_ostream.h"
George Burgess IVe1100f52016-02-02 22:46:49 +000052#include <algorithm>
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000053#include <cassert>
54#include <iterator>
55#include <memory>
56#include <utility>
57
58using namespace llvm;
George Burgess IVe1100f52016-02-02 22:46:49 +000059
60#define DEBUG_TYPE "memoryssa"
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000061
Geoff Berryefb0dd12016-06-14 21:19:40 +000062INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
Geoff Berryb96d3b22016-06-01 21:30:40 +000063 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000064INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
65INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
Geoff Berryefb0dd12016-06-14 21:19:40 +000066INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false,
67 true)
George Burgess IVe1100f52016-02-02 22:46:49 +000068
Chad Rosier232e29e2016-07-06 21:20:47 +000069INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa",
70 "Memory SSA Printer", false, false)
71INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
72INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa",
73 "Memory SSA Printer", false, false)
74
Daniel Berlinc43aa5a2016-08-02 16:24:03 +000075static cl::opt<unsigned> MaxCheckLimit(
76 "memssa-check-limit", cl::Hidden, cl::init(100),
77 cl::desc("The maximum number of stores/phis MemorySSA"
78 "will consider trying to walk past (default = 100)"));
79
Chad Rosier232e29e2016-07-06 21:20:47 +000080static cl::opt<bool>
81 VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden,
82 cl::desc("Verify MemorySSA in legacy printer pass."));
83
George Burgess IVe1100f52016-02-02 22:46:49 +000084namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000085
Adrian Prantl5f8f34e42018-05-01 15:54:18 +000086/// An assembly annotator class to print Memory SSA information in
George Burgess IVe1100f52016-02-02 22:46:49 +000087/// comments.
88class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter {
89 friend class MemorySSA;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000090
George Burgess IVe1100f52016-02-02 22:46:49 +000091 const MemorySSA *MSSA;
92
93public:
94 MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {}
95
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +000096 void emitBasicBlockStartAnnot(const BasicBlock *BB,
97 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +000098 if (MemoryAccess *MA = MSSA->getMemoryAccess(BB))
99 OS << "; " << *MA << "\n";
100 }
101
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000102 void emitInstructionAnnot(const Instruction *I,
103 formatted_raw_ostream &OS) override {
George Burgess IVe1100f52016-02-02 22:46:49 +0000104 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
105 OS << "; " << *MA << "\n";
106 }
107};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000108
109} // end namespace llvm
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000110
George Burgess IV5f308972016-07-19 01:29:15 +0000111namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000112
Daniel Berlindff31de2016-08-02 21:57:52 +0000113/// Our current alias analysis API differentiates heavily between calls and
114/// non-calls, and functions called on one usually assert on the other.
115/// This class encapsulates the distinction to simplify other code that wants
116/// "Memory affecting instructions and related data" to use as a key.
117/// For example, this class is used as a densemap key in the use optimizer.
118class MemoryLocOrCall {
119public:
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000120 bool IsCall = false;
121
122 MemoryLocOrCall() = default;
Daniel Berlindff31de2016-08-02 21:57:52 +0000123 MemoryLocOrCall(MemoryUseOrDef *MUD)
124 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000125 MemoryLocOrCall(const MemoryUseOrDef *MUD)
126 : MemoryLocOrCall(MUD->getMemoryInst()) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000127
128 MemoryLocOrCall(Instruction *Inst) {
129 if (ImmutableCallSite(Inst)) {
130 IsCall = true;
131 CS = ImmutableCallSite(Inst);
132 } else {
133 IsCall = false;
134 // There is no such thing as a memorylocation for a fence inst, and it is
135 // unique in that regard.
136 if (!isa<FenceInst>(Inst))
137 Loc = MemoryLocation::get(Inst);
138 }
139 }
140
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000141 explicit MemoryLocOrCall(const MemoryLocation &Loc) : Loc(Loc) {}
Daniel Berlindff31de2016-08-02 21:57:52 +0000142
Daniel Berlindff31de2016-08-02 21:57:52 +0000143 ImmutableCallSite getCS() const {
144 assert(IsCall);
145 return CS;
146 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000147
Daniel Berlindff31de2016-08-02 21:57:52 +0000148 MemoryLocation getLoc() const {
149 assert(!IsCall);
150 return Loc;
151 }
152
153 bool operator==(const MemoryLocOrCall &Other) const {
154 if (IsCall != Other.IsCall)
155 return false;
156
George Burgess IV3588fd42018-03-29 00:54:39 +0000157 if (!IsCall)
158 return Loc == Other.Loc;
159
160 if (CS.getCalledValue() != Other.CS.getCalledValue())
161 return false;
162
George Burgess IVaf0b06f2018-03-29 03:12:03 +0000163 return CS.arg_size() == Other.CS.arg_size() &&
164 std::equal(CS.arg_begin(), CS.arg_end(), Other.CS.arg_begin());
Daniel Berlindff31de2016-08-02 21:57:52 +0000165 }
166
167private:
Daniel Berlinf5361132016-10-22 04:15:41 +0000168 union {
Daniel Berlind602e042017-01-25 20:56:19 +0000169 ImmutableCallSite CS;
170 MemoryLocation Loc;
Daniel Berlinf5361132016-10-22 04:15:41 +0000171 };
Daniel Berlindff31de2016-08-02 21:57:52 +0000172};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000173
174} // end anonymous namespace
Daniel Berlindff31de2016-08-02 21:57:52 +0000175
176namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000177
Daniel Berlindff31de2016-08-02 21:57:52 +0000178template <> struct DenseMapInfo<MemoryLocOrCall> {
179 static inline MemoryLocOrCall getEmptyKey() {
180 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getEmptyKey());
181 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000182
Daniel Berlindff31de2016-08-02 21:57:52 +0000183 static inline MemoryLocOrCall getTombstoneKey() {
184 return MemoryLocOrCall(DenseMapInfo<MemoryLocation>::getTombstoneKey());
185 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000186
Daniel Berlindff31de2016-08-02 21:57:52 +0000187 static unsigned getHashValue(const MemoryLocOrCall &MLOC) {
George Burgess IV3588fd42018-03-29 00:54:39 +0000188 if (!MLOC.IsCall)
189 return hash_combine(
190 MLOC.IsCall,
191 DenseMapInfo<MemoryLocation>::getHashValue(MLOC.getLoc()));
192
193 hash_code hash =
194 hash_combine(MLOC.IsCall, DenseMapInfo<const Value *>::getHashValue(
195 MLOC.getCS().getCalledValue()));
196
197 for (const Value *Arg : MLOC.getCS().args())
198 hash = hash_combine(hash, DenseMapInfo<const Value *>::getHashValue(Arg));
199 return hash;
Daniel Berlindff31de2016-08-02 21:57:52 +0000200 }
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000201
Daniel Berlindff31de2016-08-02 21:57:52 +0000202 static bool isEqual(const MemoryLocOrCall &LHS, const MemoryLocOrCall &RHS) {
203 return LHS == RHS;
204 }
205};
Daniel Berlindf101192016-08-03 00:01:46 +0000206
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000207} // end namespace llvm
208
George Burgess IV82e355c2016-08-03 19:39:54 +0000209/// This does one-way checks to see if Use could theoretically be hoisted above
210/// MayClobber. This will not check the other way around.
211///
212/// This assumes that, for the purposes of MemorySSA, Use comes directly after
213/// MayClobber, with no potentially clobbering operations in between them.
214/// (Where potentially clobbering ops are memory barriers, aliased stores, etc.)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000215static bool areLoadsReorderable(const LoadInst *Use,
216 const LoadInst *MayClobber) {
George Burgess IV82e355c2016-08-03 19:39:54 +0000217 bool VolatileUse = Use->isVolatile();
218 bool VolatileClobber = MayClobber->isVolatile();
219 // Volatile operations may never be reordered with other volatile operations.
220 if (VolatileUse && VolatileClobber)
Alina Sbirleaca741a82017-12-22 19:54:03 +0000221 return false;
222 // Otherwise, volatile doesn't matter here. From the language reference:
223 // 'optimizers may change the order of volatile operations relative to
224 // non-volatile operations.'"
George Burgess IV82e355c2016-08-03 19:39:54 +0000225
226 // If a load is seq_cst, it cannot be moved above other loads. If its ordering
227 // is weaker, it can be moved above other loads. We just need to be sure that
228 // MayClobber isn't an acquire load, because loads can't be moved above
229 // acquire loads.
230 //
231 // Note that this explicitly *does* allow the free reordering of monotonic (or
232 // weaker) loads of the same address.
233 bool SeqCstUse = Use->getOrdering() == AtomicOrdering::SequentiallyConsistent;
234 bool MayClobberIsAcquire = isAtLeastOrStrongerThan(MayClobber->getOrdering(),
235 AtomicOrdering::Acquire);
Alina Sbirleaca741a82017-12-22 19:54:03 +0000236 return !(SeqCstUse || MayClobberIsAcquire);
George Burgess IV82e355c2016-08-03 19:39:54 +0000237}
238
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000239namespace {
240
241struct ClobberAlias {
242 bool IsClobber;
243 Optional<AliasResult> AR;
244};
245
246} // end anonymous namespace
247
248// Return a pair of {IsClobber (bool), AR (AliasResult)}. It relies on AR being
249// ignored if IsClobber = false.
250static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
251 const MemoryLocation &UseLoc,
252 const Instruction *UseInst,
253 AliasAnalysis &AA) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +0000254 Instruction *DefInst = MD->getMemoryInst();
255 assert(DefInst && "Defining instruction not actually an instruction");
Daniel Berlin74603a62017-04-10 18:46:00 +0000256 ImmutableCallSite UseCS(UseInst);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000257 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000258
Daniel Berlindf101192016-08-03 00:01:46 +0000259 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(DefInst)) {
260 // These intrinsics will show up as affecting memory, but they are just
George Burgess IVff08c802018-08-10 05:14:43 +0000261 // markers, mostly.
262 //
263 // FIXME: We probably don't actually want MemorySSA to model these at all
264 // (including creating MemoryAccesses for them): we just end up inventing
265 // clobbers where they don't really exist at all. Please see D43269 for
266 // context.
Daniel Berlindf101192016-08-03 00:01:46 +0000267 switch (II->getIntrinsicID()) {
268 case Intrinsic::lifetime_start:
Daniel Berlin74603a62017-04-10 18:46:00 +0000269 if (UseCS)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000270 return {false, NoAlias};
271 AR = AA.alias(MemoryLocation(II->getArgOperand(1)), UseLoc);
George Burgess IVff08c802018-08-10 05:14:43 +0000272 return {AR != NoAlias, AR};
Daniel Berlindf101192016-08-03 00:01:46 +0000273 case Intrinsic::lifetime_end:
274 case Intrinsic::invariant_start:
275 case Intrinsic::invariant_end:
276 case Intrinsic::assume:
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000277 return {false, NoAlias};
Daniel Berlindf101192016-08-03 00:01:46 +0000278 default:
279 break;
280 }
281 }
282
Hans Wennborg70e22d12017-11-21 18:00:01 +0000283 if (UseCS) {
Daniel Berlindff31de2016-08-02 21:57:52 +0000284 ModRefInfo I = AA.getModRefInfo(DefInst, UseCS);
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000285 AR = isMustSet(I) ? MustAlias : MayAlias;
286 return {isModOrRefSet(I), AR};
Hans Wennborg70e22d12017-11-21 18:00:01 +0000287 }
George Burgess IV82e355c2016-08-03 19:39:54 +0000288
Alina Sbirleaca741a82017-12-22 19:54:03 +0000289 if (auto *DefLoad = dyn_cast<LoadInst>(DefInst))
290 if (auto *UseLoad = dyn_cast<LoadInst>(UseInst))
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000291 return {!areLoadsReorderable(UseLoad, DefLoad), MayAlias};
George Burgess IV82e355c2016-08-03 19:39:54 +0000292
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000293 ModRefInfo I = AA.getModRefInfo(DefInst, UseLoc);
294 AR = isMustSet(I) ? MustAlias : MayAlias;
295 return {isModSet(I), AR};
Daniel Berlindff31de2016-08-02 21:57:52 +0000296}
297
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000298static ClobberAlias instructionClobbersQuery(MemoryDef *MD,
299 const MemoryUseOrDef *MU,
300 const MemoryLocOrCall &UseMLOC,
301 AliasAnalysis &AA) {
Sebastian Pop5068d7a2016-10-13 03:23:33 +0000302 // FIXME: This is a temporary hack to allow a single instructionClobbersQuery
303 // to exist while MemoryLocOrCall is pushed through places.
304 if (UseMLOC.IsCall)
305 return instructionClobbersQuery(MD, MemoryLocation(), MU->getMemoryInst(),
306 AA);
307 return instructionClobbersQuery(MD, UseMLOC.getLoc(), MU->getMemoryInst(),
308 AA);
309}
310
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000311// Return true when MD may alias MU, return false otherwise.
Daniel Berlindcb004f2017-03-02 23:06:46 +0000312bool MemorySSAUtil::defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
313 AliasAnalysis &AA) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000314 return instructionClobbersQuery(MD, MU, MemoryLocOrCall(MU), AA).IsClobber;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000315}
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000316
317namespace {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000318
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000319struct UpwardsMemoryQuery {
320 // True if our original query started off as a call
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000321 bool IsCall = false;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000322 // The pointer location we started the query with. This will be empty if
323 // IsCall is true.
324 MemoryLocation StartingLoc;
325 // This is the instruction we were querying about.
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000326 const Instruction *Inst = nullptr;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000327 // The MemoryAccess we actually got called with, used to test local domination
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000328 const MemoryAccess *OriginalAccess = nullptr;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000329 Optional<AliasResult> AR = MayAlias;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000330
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000331 UpwardsMemoryQuery() = default;
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000332
333 UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access)
334 : IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {
335 if (!IsCall)
336 StartingLoc = MemoryLocation::get(Inst);
337 }
338};
339
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000340} // end anonymous namespace
341
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000342static bool lifetimeEndsAt(MemoryDef *MD, const MemoryLocation &Loc,
343 AliasAnalysis &AA) {
344 Instruction *Inst = MD->getMemoryInst();
345 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
346 switch (II->getIntrinsicID()) {
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000347 case Intrinsic::lifetime_end:
348 return AA.isMustAlias(MemoryLocation(II->getArgOperand(1)), Loc);
349 default:
350 return false;
351 }
352 }
353 return false;
354}
355
356static bool isUseTriviallyOptimizableToLiveOnEntry(AliasAnalysis &AA,
357 const Instruction *I) {
358 // If the memory can't be changed, then loads of the memory can't be
359 // clobbered.
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000360 return isa<LoadInst>(I) && (I->getMetadata(LLVMContext::MD_invariant_load) ||
Hal Finkela9d67cf2017-04-09 12:57:50 +0000361 AA.pointsToConstantMemory(cast<LoadInst>(I)->
362 getPointerOperand()));
Sebastian Pop5ba9f242016-10-13 01:39:10 +0000363}
364
George Burgess IV5f308972016-07-19 01:29:15 +0000365/// Verifies that `Start` is clobbered by `ClobberAt`, and that nothing
366/// inbetween `Start` and `ClobberAt` can clobbers `Start`.
367///
368/// This is meant to be as simple and self-contained as possible. Because it
369/// uses no cache, etc., it can be relatively expensive.
370///
371/// \param Start The MemoryAccess that we want to walk from.
372/// \param ClobberAt A clobber for Start.
373/// \param StartLoc The MemoryLocation for Start.
374/// \param MSSA The MemorySSA isntance that Start and ClobberAt belong to.
375/// \param Query The UpwardsMemoryQuery we used for our search.
376/// \param AA The AliasAnalysis we used for our search.
377static void LLVM_ATTRIBUTE_UNUSED
378checkClobberSanity(MemoryAccess *Start, MemoryAccess *ClobberAt,
379 const MemoryLocation &StartLoc, const MemorySSA &MSSA,
380 const UpwardsMemoryQuery &Query, AliasAnalysis &AA) {
381 assert(MSSA.dominates(ClobberAt, Start) && "Clobber doesn't dominate start?");
382
383 if (MSSA.isLiveOnEntryDef(Start)) {
384 assert(MSSA.isLiveOnEntryDef(ClobberAt) &&
385 "liveOnEntry must clobber itself");
386 return;
387 }
388
George Burgess IV5f308972016-07-19 01:29:15 +0000389 bool FoundClobber = false;
390 DenseSet<MemoryAccessPair> VisitedPhis;
391 SmallVector<MemoryAccessPair, 8> Worklist;
392 Worklist.emplace_back(Start, StartLoc);
393 // Walk all paths from Start to ClobberAt, while looking for clobbers. If one
394 // is found, complain.
395 while (!Worklist.empty()) {
396 MemoryAccessPair MAP = Worklist.pop_back_val();
397 // All we care about is that nothing from Start to ClobberAt clobbers Start.
398 // We learn nothing from revisiting nodes.
399 if (!VisitedPhis.insert(MAP).second)
400 continue;
401
402 for (MemoryAccess *MA : def_chain(MAP.first)) {
403 if (MA == ClobberAt) {
404 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
405 // instructionClobbersQuery isn't essentially free, so don't use `|=`,
406 // since it won't let us short-circuit.
407 //
408 // Also, note that this can't be hoisted out of the `Worklist` loop,
409 // since MD may only act as a clobber for 1 of N MemoryLocations.
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000410 FoundClobber = FoundClobber || MSSA.isLiveOnEntryDef(MD);
411 if (!FoundClobber) {
412 ClobberAlias CA =
413 instructionClobbersQuery(MD, MAP.second, Query.Inst, AA);
414 if (CA.IsClobber) {
415 FoundClobber = true;
416 // Not used: CA.AR;
417 }
418 }
George Burgess IV5f308972016-07-19 01:29:15 +0000419 }
420 break;
421 }
422
423 // We should never hit liveOnEntry, unless it's the clobber.
424 assert(!MSSA.isLiveOnEntryDef(MA) && "Hit liveOnEntry before clobber?");
425
426 if (auto *MD = dyn_cast<MemoryDef>(MA)) {
427 (void)MD;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000428 assert(!instructionClobbersQuery(MD, MAP.second, Query.Inst, AA)
429 .IsClobber &&
George Burgess IV5f308972016-07-19 01:29:15 +0000430 "Found clobber before reaching ClobberAt!");
431 continue;
432 }
433
434 assert(isa<MemoryPhi>(MA));
435 Worklist.append(upward_defs_begin({MA, MAP.second}), upward_defs_end());
436 }
437 }
438
439 // If ClobberAt is a MemoryPhi, we can assume something above it acted as a
440 // clobber. Otherwise, `ClobberAt` should've acted as a clobber at some point.
441 assert((isa<MemoryPhi>(ClobberAt) || FoundClobber) &&
442 "ClobberAt never acted as a clobber");
443}
444
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000445namespace {
446
George Burgess IV5f308972016-07-19 01:29:15 +0000447/// Our algorithm for walking (and trying to optimize) clobbers, all wrapped up
448/// in one class.
449class ClobberWalker {
450 /// Save a few bytes by using unsigned instead of size_t.
451 using ListIndex = unsigned;
452
453 /// Represents a span of contiguous MemoryDefs, potentially ending in a
454 /// MemoryPhi.
455 struct DefPath {
456 MemoryLocation Loc;
457 // Note that, because we always walk in reverse, Last will always dominate
458 // First. Also note that First and Last are inclusive.
459 MemoryAccess *First;
460 MemoryAccess *Last;
George Burgess IV5f308972016-07-19 01:29:15 +0000461 Optional<ListIndex> Previous;
462
463 DefPath(const MemoryLocation &Loc, MemoryAccess *First, MemoryAccess *Last,
464 Optional<ListIndex> Previous)
465 : Loc(Loc), First(First), Last(Last), Previous(Previous) {}
466
467 DefPath(const MemoryLocation &Loc, MemoryAccess *Init,
468 Optional<ListIndex> Previous)
469 : DefPath(Loc, Init, Init, Previous) {}
470 };
471
472 const MemorySSA &MSSA;
473 AliasAnalysis &AA;
474 DominatorTree &DT;
George Burgess IV5f308972016-07-19 01:29:15 +0000475 UpwardsMemoryQuery *Query;
George Burgess IV5f308972016-07-19 01:29:15 +0000476
477 // Phi optimization bookkeeping
478 SmallVector<DefPath, 32> Paths;
479 DenseSet<ConstMemoryAccessPair> VisitedPhis;
George Burgess IV5f308972016-07-19 01:29:15 +0000480
George Burgess IV5f308972016-07-19 01:29:15 +0000481 /// Find the nearest def or phi that `From` can legally be optimized to.
Daniel Berlind0420312017-04-01 09:01:12 +0000482 const MemoryAccess *getWalkTarget(const MemoryPhi *From) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000483 assert(From->getNumOperands() && "Phi with no operands?");
484
485 BasicBlock *BB = From->getBlock();
George Burgess IV5f308972016-07-19 01:29:15 +0000486 MemoryAccess *Result = MSSA.getLiveOnEntryDef();
487 DomTreeNode *Node = DT.getNode(BB);
488 while ((Node = Node->getIDom())) {
Daniel Berlin7500c562017-04-01 08:59:45 +0000489 auto *Defs = MSSA.getBlockDefs(Node->getBlock());
490 if (Defs)
Daniel Berlind0420312017-04-01 09:01:12 +0000491 return &*Defs->rbegin();
George Burgess IV5f308972016-07-19 01:29:15 +0000492 }
George Burgess IV5f308972016-07-19 01:29:15 +0000493 return Result;
494 }
495
496 /// Result of calling walkToPhiOrClobber.
497 struct UpwardsWalkResult {
498 /// The "Result" of the walk. Either a clobber, the last thing we walked, or
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000499 /// both. Include alias info when clobber found.
George Burgess IV5f308972016-07-19 01:29:15 +0000500 MemoryAccess *Result;
501 bool IsKnownClobber;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000502 Optional<AliasResult> AR;
George Burgess IV5f308972016-07-19 01:29:15 +0000503 };
504
505 /// Walk to the next Phi or Clobber in the def chain starting at Desc.Last.
506 /// This will update Desc.Last as it walks. It will (optionally) also stop at
507 /// StopAt.
508 ///
509 /// This does not test for whether StopAt is a clobber
Daniel Berlind0420312017-04-01 09:01:12 +0000510 UpwardsWalkResult
511 walkToPhiOrClobber(DefPath &Desc,
512 const MemoryAccess *StopAt = nullptr) const {
George Burgess IV5f308972016-07-19 01:29:15 +0000513 assert(!isa<MemoryUse>(Desc.Last) && "Uses don't exist in my world");
514
515 for (MemoryAccess *Current : def_chain(Desc.Last)) {
516 Desc.Last = Current;
517 if (Current == StopAt)
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000518 return {Current, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000519
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000520 if (auto *MD = dyn_cast<MemoryDef>(Current)) {
521 if (MSSA.isLiveOnEntryDef(MD))
522 return {MD, true, MustAlias};
523 ClobberAlias CA =
524 instructionClobbersQuery(MD, Desc.Loc, Query->Inst, AA);
525 if (CA.IsClobber)
526 return {MD, true, CA.AR};
527 }
George Burgess IV5f308972016-07-19 01:29:15 +0000528 }
529
530 assert(isa<MemoryPhi>(Desc.Last) &&
531 "Ended at a non-clobber that's not a phi?");
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000532 return {Desc.Last, false, MayAlias};
George Burgess IV5f308972016-07-19 01:29:15 +0000533 }
534
535 void addSearches(MemoryPhi *Phi, SmallVectorImpl<ListIndex> &PausedSearches,
536 ListIndex PriorNode) {
537 auto UpwardDefs = make_range(upward_defs_begin({Phi, Paths[PriorNode].Loc}),
538 upward_defs_end());
539 for (const MemoryAccessPair &P : UpwardDefs) {
540 PausedSearches.push_back(Paths.size());
541 Paths.emplace_back(P.second, P.first, PriorNode);
542 }
543 }
544
545 /// Represents a search that terminated after finding a clobber. This clobber
546 /// may or may not be present in the path of defs from LastNode..SearchStart,
547 /// since it may have been retrieved from cache.
548 struct TerminatedPath {
549 MemoryAccess *Clobber;
550 ListIndex LastNode;
551 };
552
553 /// Get an access that keeps us from optimizing to the given phi.
554 ///
555 /// PausedSearches is an array of indices into the Paths array. Its incoming
556 /// value is the indices of searches that stopped at the last phi optimization
557 /// target. It's left in an unspecified state.
558 ///
559 /// If this returns None, NewPaused is a vector of searches that terminated
560 /// at StopWhere. Otherwise, NewPaused is left in an unspecified state.
George Burgess IV14633b52016-08-03 01:22:19 +0000561 Optional<TerminatedPath>
Daniel Berlind0420312017-04-01 09:01:12 +0000562 getBlockingAccess(const MemoryAccess *StopWhere,
George Burgess IV5f308972016-07-19 01:29:15 +0000563 SmallVectorImpl<ListIndex> &PausedSearches,
564 SmallVectorImpl<ListIndex> &NewPaused,
565 SmallVectorImpl<TerminatedPath> &Terminated) {
566 assert(!PausedSearches.empty() && "No searches to continue?");
567
568 // BFS vs DFS really doesn't make a difference here, so just do a DFS with
569 // PausedSearches as our stack.
570 while (!PausedSearches.empty()) {
571 ListIndex PathIndex = PausedSearches.pop_back_val();
572 DefPath &Node = Paths[PathIndex];
573
574 // If we've already visited this path with this MemoryLocation, we don't
575 // need to do so again.
576 //
577 // NOTE: That we just drop these paths on the ground makes caching
578 // behavior sporadic. e.g. given a diamond:
579 // A
580 // B C
581 // D
582 //
583 // ...If we walk D, B, A, C, we'll only cache the result of phi
584 // optimization for A, B, and D; C will be skipped because it dies here.
585 // This arguably isn't the worst thing ever, since:
586 // - We generally query things in a top-down order, so if we got below D
587 // without needing cache entries for {C, MemLoc}, then chances are
588 // that those cache entries would end up ultimately unused.
589 // - We still cache things for A, so C only needs to walk up a bit.
590 // If this behavior becomes problematic, we can fix without a ton of extra
591 // work.
592 if (!VisitedPhis.insert({Node.Last, Node.Loc}).second)
593 continue;
594
595 UpwardsWalkResult Res = walkToPhiOrClobber(Node, /*StopAt=*/StopWhere);
596 if (Res.IsKnownClobber) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000597 assert(Res.Result != StopWhere);
George Burgess IV5f308972016-07-19 01:29:15 +0000598 // If this wasn't a cache hit, we hit a clobber when walking. That's a
599 // failure.
George Burgess IV14633b52016-08-03 01:22:19 +0000600 TerminatedPath Term{Res.Result, PathIndex};
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000601 if (!MSSA.dominates(Res.Result, StopWhere))
George Burgess IV14633b52016-08-03 01:22:19 +0000602 return Term;
George Burgess IV5f308972016-07-19 01:29:15 +0000603
604 // Otherwise, it's a valid thing to potentially optimize to.
George Burgess IV14633b52016-08-03 01:22:19 +0000605 Terminated.push_back(Term);
George Burgess IV5f308972016-07-19 01:29:15 +0000606 continue;
607 }
608
609 if (Res.Result == StopWhere) {
610 // We've hit our target. Save this path off for if we want to continue
611 // walking.
612 NewPaused.push_back(PathIndex);
613 continue;
614 }
615
616 assert(!MSSA.isLiveOnEntryDef(Res.Result) && "liveOnEntry is a clobber");
617 addSearches(cast<MemoryPhi>(Res.Result), PausedSearches, PathIndex);
618 }
619
620 return None;
621 }
622
623 template <typename T, typename Walker>
624 struct generic_def_path_iterator
625 : public iterator_facade_base<generic_def_path_iterator<T, Walker>,
626 std::forward_iterator_tag, T *> {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000627 generic_def_path_iterator() = default;
George Burgess IV5f308972016-07-19 01:29:15 +0000628 generic_def_path_iterator(Walker *W, ListIndex N) : W(W), N(N) {}
629
630 T &operator*() const { return curNode(); }
631
632 generic_def_path_iterator &operator++() {
633 N = curNode().Previous;
634 return *this;
635 }
636
637 bool operator==(const generic_def_path_iterator &O) const {
638 if (N.hasValue() != O.N.hasValue())
639 return false;
640 return !N.hasValue() || *N == *O.N;
641 }
642
643 private:
644 T &curNode() const { return W->Paths[*N]; }
645
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000646 Walker *W = nullptr;
647 Optional<ListIndex> N = None;
George Burgess IV5f308972016-07-19 01:29:15 +0000648 };
649
650 using def_path_iterator = generic_def_path_iterator<DefPath, ClobberWalker>;
651 using const_def_path_iterator =
652 generic_def_path_iterator<const DefPath, const ClobberWalker>;
653
654 iterator_range<def_path_iterator> def_path(ListIndex From) {
655 return make_range(def_path_iterator(this, From), def_path_iterator());
656 }
657
658 iterator_range<const_def_path_iterator> const_def_path(ListIndex From) const {
659 return make_range(const_def_path_iterator(this, From),
660 const_def_path_iterator());
661 }
662
663 struct OptznResult {
664 /// The path that contains our result.
665 TerminatedPath PrimaryClobber;
666 /// The paths that we can legally cache back from, but that aren't
667 /// necessarily the result of the Phi optimization.
668 SmallVector<TerminatedPath, 4> OtherClobbers;
669 };
670
671 ListIndex defPathIndex(const DefPath &N) const {
672 // The assert looks nicer if we don't need to do &N
673 const DefPath *NP = &N;
674 assert(!Paths.empty() && NP >= &Paths.front() && NP <= &Paths.back() &&
675 "Out of bounds DefPath!");
676 return NP - &Paths.front();
677 }
678
679 /// Try to optimize a phi as best as we can. Returns a SmallVector of Paths
680 /// that act as legal clobbers. Note that this won't return *all* clobbers.
681 ///
682 /// Phi optimization algorithm tl;dr:
683 /// - Find the earliest def/phi, A, we can optimize to
684 /// - Find if all paths from the starting memory access ultimately reach A
685 /// - If not, optimization isn't possible.
686 /// - Otherwise, walk from A to another clobber or phi, A'.
687 /// - If A' is a def, we're done.
688 /// - If A' is a phi, try to optimize it.
689 ///
690 /// A path is a series of {MemoryAccess, MemoryLocation} pairs. A path
691 /// terminates when a MemoryAccess that clobbers said MemoryLocation is found.
692 OptznResult tryOptimizePhi(MemoryPhi *Phi, MemoryAccess *Start,
693 const MemoryLocation &Loc) {
694 assert(Paths.empty() && VisitedPhis.empty() &&
695 "Reset the optimization state.");
696
697 Paths.emplace_back(Loc, Start, Phi, None);
698 // Stores how many "valid" optimization nodes we had prior to calling
699 // addSearches/getBlockingAccess. Necessary for caching if we had a blocker.
700 auto PriorPathsSize = Paths.size();
701
702 SmallVector<ListIndex, 16> PausedSearches;
703 SmallVector<ListIndex, 8> NewPaused;
704 SmallVector<TerminatedPath, 4> TerminatedPaths;
705
706 addSearches(Phi, PausedSearches, 0);
707
708 // Moves the TerminatedPath with the "most dominated" Clobber to the end of
709 // Paths.
710 auto MoveDominatedPathToEnd = [&](SmallVectorImpl<TerminatedPath> &Paths) {
711 assert(!Paths.empty() && "Need a path to move");
George Burgess IV5f308972016-07-19 01:29:15 +0000712 auto Dom = Paths.begin();
713 for (auto I = std::next(Dom), E = Paths.end(); I != E; ++I)
714 if (!MSSA.dominates(I->Clobber, Dom->Clobber))
715 Dom = I;
716 auto Last = Paths.end() - 1;
717 if (Last != Dom)
718 std::iter_swap(Last, Dom);
719 };
720
721 MemoryPhi *Current = Phi;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000722 while (true) {
George Burgess IV5f308972016-07-19 01:29:15 +0000723 assert(!MSSA.isLiveOnEntryDef(Current) &&
724 "liveOnEntry wasn't treated as a clobber?");
725
Daniel Berlind0420312017-04-01 09:01:12 +0000726 const auto *Target = getWalkTarget(Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000727 // If a TerminatedPath doesn't dominate Target, then it wasn't a legal
728 // optimization for the prior phi.
729 assert(all_of(TerminatedPaths, [&](const TerminatedPath &P) {
730 return MSSA.dominates(P.Clobber, Target);
731 }));
732
733 // FIXME: This is broken, because the Blocker may be reported to be
734 // liveOnEntry, and we'll happily wait for that to disappear (read: never)
George Burgess IV7f414b92016-08-22 23:40:01 +0000735 // For the moment, this is fine, since we do nothing with blocker info.
George Burgess IV14633b52016-08-03 01:22:19 +0000736 if (Optional<TerminatedPath> Blocker = getBlockingAccess(
George Burgess IV5f308972016-07-19 01:29:15 +0000737 Target, PausedSearches, NewPaused, TerminatedPaths)) {
George Burgess IV5f308972016-07-19 01:29:15 +0000738
739 // Find the node we started at. We can't search based on N->Last, since
740 // we may have gone around a loop with a different MemoryLocation.
George Burgess IV14633b52016-08-03 01:22:19 +0000741 auto Iter = find_if(def_path(Blocker->LastNode), [&](const DefPath &N) {
George Burgess IV5f308972016-07-19 01:29:15 +0000742 return defPathIndex(N) < PriorPathsSize;
743 });
744 assert(Iter != def_path_iterator());
745
746 DefPath &CurNode = *Iter;
747 assert(CurNode.Last == Current);
George Burgess IV5f308972016-07-19 01:29:15 +0000748
749 // Two things:
750 // A. We can't reliably cache all of NewPaused back. Consider a case
751 // where we have two paths in NewPaused; one of which can't optimize
752 // above this phi, whereas the other can. If we cache the second path
753 // back, we'll end up with suboptimal cache entries. We can handle
754 // cases like this a bit better when we either try to find all
755 // clobbers that block phi optimization, or when our cache starts
756 // supporting unfinished searches.
757 // B. We can't reliably cache TerminatedPaths back here without doing
758 // extra checks; consider a case like:
759 // T
760 // / \
761 // D C
762 // \ /
763 // S
764 // Where T is our target, C is a node with a clobber on it, D is a
765 // diamond (with a clobber *only* on the left or right node, N), and
766 // S is our start. Say we walk to D, through the node opposite N
767 // (read: ignoring the clobber), and see a cache entry in the top
768 // node of D. That cache entry gets put into TerminatedPaths. We then
769 // walk up to C (N is later in our worklist), find the clobber, and
770 // quit. If we append TerminatedPaths to OtherClobbers, we'll cache
771 // the bottom part of D to the cached clobber, ignoring the clobber
772 // in N. Again, this problem goes away if we start tracking all
773 // blockers for a given phi optimization.
774 TerminatedPath Result{CurNode.Last, defPathIndex(CurNode)};
775 return {Result, {}};
776 }
777
778 // If there's nothing left to search, then all paths led to valid clobbers
779 // that we got from our cache; pick the nearest to the start, and allow
780 // the rest to be cached back.
781 if (NewPaused.empty()) {
782 MoveDominatedPathToEnd(TerminatedPaths);
783 TerminatedPath Result = TerminatedPaths.pop_back_val();
784 return {Result, std::move(TerminatedPaths)};
785 }
786
787 MemoryAccess *DefChainEnd = nullptr;
788 SmallVector<TerminatedPath, 4> Clobbers;
789 for (ListIndex Paused : NewPaused) {
790 UpwardsWalkResult WR = walkToPhiOrClobber(Paths[Paused]);
791 if (WR.IsKnownClobber)
792 Clobbers.push_back({WR.Result, Paused});
793 else
794 // Micro-opt: If we hit the end of the chain, save it.
795 DefChainEnd = WR.Result;
796 }
797
798 if (!TerminatedPaths.empty()) {
799 // If we couldn't find the dominating phi/liveOnEntry in the above loop,
800 // do it now.
801 if (!DefChainEnd)
Daniel Berlind0420312017-04-01 09:01:12 +0000802 for (auto *MA : def_chain(const_cast<MemoryAccess *>(Target)))
George Burgess IV5f308972016-07-19 01:29:15 +0000803 DefChainEnd = MA;
804
805 // If any of the terminated paths don't dominate the phi we'll try to
806 // optimize, we need to figure out what they are and quit.
807 const BasicBlock *ChainBB = DefChainEnd->getBlock();
808 for (const TerminatedPath &TP : TerminatedPaths) {
809 // Because we know that DefChainEnd is as "high" as we can go, we
810 // don't need local dominance checks; BB dominance is sufficient.
811 if (DT.dominates(ChainBB, TP.Clobber->getBlock()))
812 Clobbers.push_back(TP);
813 }
814 }
815
816 // If we have clobbers in the def chain, find the one closest to Current
817 // and quit.
818 if (!Clobbers.empty()) {
819 MoveDominatedPathToEnd(Clobbers);
820 TerminatedPath Result = Clobbers.pop_back_val();
821 return {Result, std::move(Clobbers)};
822 }
823
824 assert(all_of(NewPaused,
825 [&](ListIndex I) { return Paths[I].Last == DefChainEnd; }));
826
827 // Because liveOnEntry is a clobber, this must be a phi.
828 auto *DefChainPhi = cast<MemoryPhi>(DefChainEnd);
829
830 PriorPathsSize = Paths.size();
831 PausedSearches.clear();
832 for (ListIndex I : NewPaused)
833 addSearches(DefChainPhi, PausedSearches, I);
834 NewPaused.clear();
835
836 Current = DefChainPhi;
837 }
838 }
839
George Burgess IV5f308972016-07-19 01:29:15 +0000840 void verifyOptResult(const OptznResult &R) const {
841 assert(all_of(R.OtherClobbers, [&](const TerminatedPath &P) {
842 return MSSA.dominates(P.Clobber, R.PrimaryClobber.Clobber);
843 }));
844 }
845
846 void resetPhiOptznState() {
847 Paths.clear();
848 VisitedPhis.clear();
849 }
850
851public:
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000852 ClobberWalker(const MemorySSA &MSSA, AliasAnalysis &AA, DominatorTree &DT)
853 : MSSA(MSSA), AA(AA), DT(DT) {}
George Burgess IV5f308972016-07-19 01:29:15 +0000854
George Burgess IV5f308972016-07-19 01:29:15 +0000855 /// Finds the nearest clobber for the given query, optimizing phis if
856 /// possible.
Daniel Berlind7a7ae02017-04-05 19:01:58 +0000857 MemoryAccess *findClobber(MemoryAccess *Start, UpwardsMemoryQuery &Q) {
George Burgess IV5f308972016-07-19 01:29:15 +0000858 Query = &Q;
859
860 MemoryAccess *Current = Start;
861 // This walker pretends uses don't exist. If we're handed one, silently grab
862 // its def. (This has the nice side-effect of ensuring we never cache uses)
863 if (auto *MU = dyn_cast<MemoryUse>(Start))
864 Current = MU->getDefiningAccess();
865
866 DefPath FirstDesc(Q.StartingLoc, Current, Current, None);
867 // Fast path for the overly-common case (no crazy phi optimization
868 // necessary)
869 UpwardsWalkResult WalkResult = walkToPhiOrClobber(FirstDesc);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000870 MemoryAccess *Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000871 if (WalkResult.IsKnownClobber) {
George Burgess IV93ea19b2016-07-24 07:03:49 +0000872 Result = WalkResult.Result;
Alina Sbirlead90c9f42018-03-08 18:03:14 +0000873 Q.AR = WalkResult.AR;
George Burgess IV93ea19b2016-07-24 07:03:49 +0000874 } else {
875 OptznResult OptRes = tryOptimizePhi(cast<MemoryPhi>(FirstDesc.Last),
876 Current, Q.StartingLoc);
877 verifyOptResult(OptRes);
George Burgess IV93ea19b2016-07-24 07:03:49 +0000878 resetPhiOptznState();
879 Result = OptRes.PrimaryClobber.Clobber;
George Burgess IV5f308972016-07-19 01:29:15 +0000880 }
881
George Burgess IV5f308972016-07-19 01:29:15 +0000882#ifdef EXPENSIVE_CHECKS
George Burgess IV93ea19b2016-07-24 07:03:49 +0000883 checkClobberSanity(Current, Result, Q.StartingLoc, MSSA, Q, AA);
George Burgess IV5f308972016-07-19 01:29:15 +0000884#endif
George Burgess IV93ea19b2016-07-24 07:03:49 +0000885 return Result;
George Burgess IV5f308972016-07-19 01:29:15 +0000886 }
Geoff Berrycdf53332016-08-08 17:52:01 +0000887
888 void verify(const MemorySSA *MSSA) { assert(MSSA == &this->MSSA); }
George Burgess IV5f308972016-07-19 01:29:15 +0000889};
890
891struct RenamePassData {
892 DomTreeNode *DTN;
893 DomTreeNode::const_iterator ChildIt;
894 MemoryAccess *IncomingVal;
895
896 RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It,
897 MemoryAccess *M)
898 : DTN(D), ChildIt(It), IncomingVal(M) {}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000899
George Burgess IV5f308972016-07-19 01:29:15 +0000900 void swap(RenamePassData &RHS) {
901 std::swap(DTN, RHS.DTN);
902 std::swap(ChildIt, RHS.ChildIt);
903 std::swap(IncomingVal, RHS.IncomingVal);
904 }
905};
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000906
907} // end anonymous namespace
George Burgess IV5f308972016-07-19 01:29:15 +0000908
909namespace llvm {
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000910
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000911/// A MemorySSAWalker that does AA walks to disambiguate accesses. It no
George Burgess IV45f263d2018-05-26 02:28:55 +0000912/// longer does caching on its own, but the name has been retained for the
913/// moment.
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000914class MemorySSA::CachingWalker final : public MemorySSAWalker {
George Burgess IV5f308972016-07-19 01:29:15 +0000915 ClobberWalker Walker;
George Burgess IV5f308972016-07-19 01:29:15 +0000916
917 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &);
George Burgess IV5f308972016-07-19 01:29:15 +0000918
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000919public:
920 CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000921 ~CachingWalker() override = default;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000922
George Burgess IV400ae402016-07-20 19:51:34 +0000923 using MemorySSAWalker::getClobberingMemoryAccess;
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000924
George Burgess IV400ae402016-07-20 19:51:34 +0000925 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000926 MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
George Burgess IV013fd732016-10-28 19:22:46 +0000927 const MemoryLocation &) override;
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000928 void invalidateInfo(MemoryAccess *) override;
929
Geoff Berrycdf53332016-08-08 17:52:01 +0000930 void verify(const MemorySSA *MSSA) override {
931 MemorySSAWalker::verify(MSSA);
932 Walker.verify(MSSA);
933 }
George Burgess IVfd1f2f82016-06-24 21:02:12 +0000934};
George Burgess IVe1100f52016-02-02 22:46:49 +0000935
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +0000936} // end namespace llvm
937
Daniel Berlin78cbd282017-02-20 22:26:03 +0000938void MemorySSA::renameSuccessorPhis(BasicBlock *BB, MemoryAccess *IncomingVal,
939 bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000940 // Pass through values to our successors
941 for (const BasicBlock *S : successors(BB)) {
942 auto It = PerBlockAccesses.find(S);
943 // Rename the phi nodes in our successor block
944 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
945 continue;
Daniel Berlinada263d2016-06-20 20:21:33 +0000946 AccessList *Accesses = It->second.get();
George Burgess IVe1100f52016-02-02 22:46:49 +0000947 auto *Phi = cast<MemoryPhi>(&Accesses->front());
Daniel Berlin78cbd282017-02-20 22:26:03 +0000948 if (RenameAllUses) {
949 int PhiIndex = Phi->getBasicBlockIndex(BB);
950 assert(PhiIndex != -1 && "Incomplete phi during partial rename");
951 Phi->setIncomingValue(PhiIndex, IncomingVal);
952 } else
953 Phi->addIncoming(IncomingVal, BB);
George Burgess IVe1100f52016-02-02 22:46:49 +0000954 }
Daniel Berlin78cbd282017-02-20 22:26:03 +0000955}
George Burgess IVe1100f52016-02-02 22:46:49 +0000956
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000957/// Rename a single basic block into MemorySSA form.
Daniel Berlin78cbd282017-02-20 22:26:03 +0000958/// Uses the standard SSA renaming algorithm.
959/// \returns The new incoming value.
960MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal,
961 bool RenameAllUses) {
962 auto It = PerBlockAccesses.find(BB);
963 // Skip most processing if the list is empty.
964 if (It != PerBlockAccesses.end()) {
965 AccessList *Accesses = It->second.get();
966 for (MemoryAccess &L : *Accesses) {
967 if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&L)) {
968 if (MUD->getDefiningAccess() == nullptr || RenameAllUses)
969 MUD->setDefiningAccess(IncomingVal);
970 if (isa<MemoryDef>(&L))
971 IncomingVal = &L;
972 } else {
973 IncomingVal = &L;
974 }
975 }
976 }
George Burgess IVe1100f52016-02-02 22:46:49 +0000977 return IncomingVal;
978}
979
Adrian Prantl5f8f34e42018-05-01 15:54:18 +0000980/// This is the standard SSA renaming algorithm.
George Burgess IVe1100f52016-02-02 22:46:49 +0000981///
982/// We walk the dominator tree in preorder, renaming accesses, and then filling
983/// in phi nodes in our successors.
984void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal,
Daniel Berlin78cbd282017-02-20 22:26:03 +0000985 SmallPtrSetImpl<BasicBlock *> &Visited,
986 bool SkipVisited, bool RenameAllUses) {
George Burgess IVe1100f52016-02-02 22:46:49 +0000987 SmallVector<RenamePassData, 32> WorkStack;
Daniel Berlin78cbd282017-02-20 22:26:03 +0000988 // Skip everything if we already renamed this block and we are skipping.
989 // Note: You can't sink this into the if, because we need it to occur
990 // regardless of whether we skip blocks or not.
991 bool AlreadyVisited = !Visited.insert(Root->getBlock()).second;
992 if (SkipVisited && AlreadyVisited)
993 return;
994
995 IncomingVal = renameBlock(Root->getBlock(), IncomingVal, RenameAllUses);
996 renameSuccessorPhis(Root->getBlock(), IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +0000997 WorkStack.push_back({Root, Root->begin(), IncomingVal});
George Burgess IVe1100f52016-02-02 22:46:49 +0000998
999 while (!WorkStack.empty()) {
1000 DomTreeNode *Node = WorkStack.back().DTN;
1001 DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt;
1002 IncomingVal = WorkStack.back().IncomingVal;
1003
1004 if (ChildIt == Node->end()) {
1005 WorkStack.pop_back();
1006 } else {
1007 DomTreeNode *Child = *ChildIt;
1008 ++WorkStack.back().ChildIt;
1009 BasicBlock *BB = Child->getBlock();
Daniel Berlin78cbd282017-02-20 22:26:03 +00001010 // Note: You can't sink this into the if, because we need it to occur
1011 // regardless of whether we skip blocks or not.
1012 AlreadyVisited = !Visited.insert(BB).second;
1013 if (SkipVisited && AlreadyVisited) {
1014 // We already visited this during our renaming, which can happen when
1015 // being asked to rename multiple blocks. Figure out the incoming val,
1016 // which is the last def.
1017 // Incoming value can only change if there is a block def, and in that
1018 // case, it's the last block def in the list.
1019 if (auto *BlockDefs = getWritableBlockDefs(BB))
1020 IncomingVal = &*BlockDefs->rbegin();
1021 } else
1022 IncomingVal = renameBlock(BB, IncomingVal, RenameAllUses);
1023 renameSuccessorPhis(BB, IncomingVal, RenameAllUses);
George Burgess IVe1100f52016-02-02 22:46:49 +00001024 WorkStack.push_back({Child, Child->begin(), IncomingVal});
1025 }
1026 }
1027}
1028
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001029/// This handles unreachable block accesses by deleting phi nodes in
George Burgess IVe1100f52016-02-02 22:46:49 +00001030/// unreachable blocks, and marking all other unreachable MemoryAccess's as
1031/// being uses of the live on entry definition.
1032void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) {
1033 assert(!DT->isReachableFromEntry(BB) &&
1034 "Reachable block found while handling unreachable blocks");
1035
Daniel Berlinfc7e6512016-07-06 05:32:05 +00001036 // Make sure phi nodes in our reachable successors end up with a
1037 // LiveOnEntryDef for our incoming edge, even though our block is forward
1038 // unreachable. We could just disconnect these blocks from the CFG fully,
1039 // but we do not right now.
1040 for (const BasicBlock *S : successors(BB)) {
1041 if (!DT->isReachableFromEntry(S))
1042 continue;
1043 auto It = PerBlockAccesses.find(S);
1044 // Rename the phi nodes in our successor block
1045 if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front()))
1046 continue;
1047 AccessList *Accesses = It->second.get();
1048 auto *Phi = cast<MemoryPhi>(&Accesses->front());
1049 Phi->addIncoming(LiveOnEntryDef.get(), BB);
1050 }
1051
George Burgess IVe1100f52016-02-02 22:46:49 +00001052 auto It = PerBlockAccesses.find(BB);
1053 if (It == PerBlockAccesses.end())
1054 return;
1055
1056 auto &Accesses = It->second;
1057 for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) {
1058 auto Next = std::next(AI);
1059 // If we have a phi, just remove it. We are going to replace all
1060 // users with live on entry.
1061 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI))
1062 UseOrDef->setDefiningAccess(LiveOnEntryDef.get());
1063 else
1064 Accesses->erase(AI);
1065 AI = Next;
1066 }
1067}
1068
Geoff Berryb96d3b22016-06-01 21:30:40 +00001069MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT)
1070 : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr),
George Burgess IV68ac9412018-02-23 23:07:18 +00001071 NextID(0) {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001072 buildMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00001073}
1074
George Burgess IVe1100f52016-02-02 22:46:49 +00001075MemorySSA::~MemorySSA() {
1076 // Drop all our references
1077 for (const auto &Pair : PerBlockAccesses)
1078 for (MemoryAccess &MA : *Pair.second)
1079 MA.dropAllReferences();
1080}
1081
Daniel Berlin14300262016-06-21 18:39:20 +00001082MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001083 auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr));
1084
1085 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001086 Res.first->second = llvm::make_unique<AccessList>();
George Burgess IVe1100f52016-02-02 22:46:49 +00001087 return Res.first->second.get();
1088}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001089
Daniel Berlind602e042017-01-25 20:56:19 +00001090MemorySSA::DefsList *MemorySSA::getOrCreateDefsList(const BasicBlock *BB) {
1091 auto Res = PerBlockDefs.insert(std::make_pair(BB, nullptr));
1092
1093 if (Res.second)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001094 Res.first->second = llvm::make_unique<DefsList>();
Daniel Berlind602e042017-01-25 20:56:19 +00001095 return Res.first->second.get();
1096}
George Burgess IVe1100f52016-02-02 22:46:49 +00001097
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001098namespace llvm {
1099
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001100/// This class is a batch walker of all MemoryUse's in the program, and points
1101/// their defining access at the thing that actually clobbers them. Because it
1102/// is a batch walker that touches everything, it does not operate like the
1103/// other walkers. This walker is basically performing a top-down SSA renaming
1104/// pass, where the version stack is used as the cache. This enables it to be
1105/// significantly more time and memory efficient than using the regular walker,
1106/// which is walking bottom-up.
1107class MemorySSA::OptimizeUses {
1108public:
1109 OptimizeUses(MemorySSA *MSSA, MemorySSAWalker *Walker, AliasAnalysis *AA,
1110 DominatorTree *DT)
1111 : MSSA(MSSA), Walker(Walker), AA(AA), DT(DT) {
1112 Walker = MSSA->getWalker();
1113 }
1114
1115 void optimizeUses();
1116
1117private:
1118 /// This represents where a given memorylocation is in the stack.
1119 struct MemlocStackInfo {
1120 // This essentially is keeping track of versions of the stack. Whenever
1121 // the stack changes due to pushes or pops, these versions increase.
1122 unsigned long StackEpoch;
1123 unsigned long PopEpoch;
1124 // This is the lower bound of places on the stack to check. It is equal to
1125 // the place the last stack walk ended.
1126 // Note: Correctness depends on this being initialized to 0, which densemap
1127 // does
1128 unsigned long LowerBound;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001129 const BasicBlock *LowerBoundBlock;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001130 // This is where the last walk for this memory location ended.
1131 unsigned long LastKill;
1132 bool LastKillValid;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001133 Optional<AliasResult> AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001134 };
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001135
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001136 void optimizeUsesInBlock(const BasicBlock *, unsigned long &, unsigned long &,
1137 SmallVectorImpl<MemoryAccess *> &,
1138 DenseMap<MemoryLocOrCall, MemlocStackInfo> &);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001139
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001140 MemorySSA *MSSA;
1141 MemorySSAWalker *Walker;
1142 AliasAnalysis *AA;
1143 DominatorTree *DT;
1144};
1145
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001146} // end namespace llvm
1147
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001148/// Optimize the uses in a given block This is basically the SSA renaming
1149/// algorithm, with one caveat: We are able to use a single stack for all
1150/// MemoryUses. This is because the set of *possible* reaching MemoryDefs is
1151/// the same for every MemoryUse. The *actual* clobbering MemoryDef is just
1152/// going to be some position in that stack of possible ones.
1153///
1154/// We track the stack positions that each MemoryLocation needs
1155/// to check, and last ended at. This is because we only want to check the
1156/// things that changed since last time. The same MemoryLocation should
1157/// get clobbered by the same store (getModRefInfo does not use invariantness or
1158/// things like this, and if they start, we can modify MemoryLocOrCall to
1159/// include relevant data)
1160void MemorySSA::OptimizeUses::optimizeUsesInBlock(
1161 const BasicBlock *BB, unsigned long &StackEpoch, unsigned long &PopEpoch,
1162 SmallVectorImpl<MemoryAccess *> &VersionStack,
1163 DenseMap<MemoryLocOrCall, MemlocStackInfo> &LocStackInfo) {
1164
1165 /// If no accesses, nothing to do.
1166 MemorySSA::AccessList *Accesses = MSSA->getWritableBlockAccesses(BB);
1167 if (Accesses == nullptr)
1168 return;
1169
1170 // Pop everything that doesn't dominate the current block off the stack,
1171 // increment the PopEpoch to account for this.
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001172 while (true) {
1173 assert(
1174 !VersionStack.empty() &&
1175 "Version stack should have liveOnEntry sentinel dominating everything");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001176 BasicBlock *BackBlock = VersionStack.back()->getBlock();
1177 if (DT->dominates(BackBlock, BB))
1178 break;
1179 while (VersionStack.back()->getBlock() == BackBlock)
1180 VersionStack.pop_back();
1181 ++PopEpoch;
1182 }
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001183
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001184 for (MemoryAccess &MA : *Accesses) {
1185 auto *MU = dyn_cast<MemoryUse>(&MA);
1186 if (!MU) {
1187 VersionStack.push_back(&MA);
1188 ++StackEpoch;
1189 continue;
1190 }
1191
George Burgess IV024f3d22016-08-03 19:57:02 +00001192 if (isUseTriviallyOptimizableToLiveOnEntry(*AA, MU->getMemoryInst())) {
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001193 MU->setDefiningAccess(MSSA->getLiveOnEntryDef(), true, None);
George Burgess IV024f3d22016-08-03 19:57:02 +00001194 continue;
1195 }
1196
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001197 MemoryLocOrCall UseMLOC(MU);
1198 auto &LocInfo = LocStackInfo[UseMLOC];
Daniel Berlin26fcea92016-08-02 20:02:21 +00001199 // If the pop epoch changed, it means we've removed stuff from top of
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001200 // stack due to changing blocks. We may have to reset the lower bound or
1201 // last kill info.
1202 if (LocInfo.PopEpoch != PopEpoch) {
1203 LocInfo.PopEpoch = PopEpoch;
1204 LocInfo.StackEpoch = StackEpoch;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001205 // If the lower bound was in something that no longer dominates us, we
1206 // have to reset it.
1207 // We can't simply track stack size, because the stack may have had
1208 // pushes/pops in the meantime.
1209 // XXX: This is non-optimal, but only is slower cases with heavily
1210 // branching dominator trees. To get the optimal number of queries would
1211 // be to make lowerbound and lastkill a per-loc stack, and pop it until
1212 // the top of that stack dominates us. This does not seem worth it ATM.
1213 // A much cheaper optimization would be to always explore the deepest
1214 // branch of the dominator tree first. This will guarantee this resets on
1215 // the smallest set of blocks.
1216 if (LocInfo.LowerBoundBlock && LocInfo.LowerBoundBlock != BB &&
Daniel Berlin1e98c042016-09-26 17:22:54 +00001217 !DT->dominates(LocInfo.LowerBoundBlock, BB)) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001218 // Reset the lower bound of things to check.
1219 // TODO: Some day we should be able to reset to last kill, rather than
1220 // 0.
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001221 LocInfo.LowerBound = 0;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001222 LocInfo.LowerBoundBlock = VersionStack[0]->getBlock();
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001223 LocInfo.LastKillValid = false;
1224 }
1225 } else if (LocInfo.StackEpoch != StackEpoch) {
1226 // If all that has changed is the StackEpoch, we only have to check the
1227 // new things on the stack, because we've checked everything before. In
1228 // this case, the lower bound of things to check remains the same.
1229 LocInfo.PopEpoch = PopEpoch;
1230 LocInfo.StackEpoch = StackEpoch;
1231 }
1232 if (!LocInfo.LastKillValid) {
1233 LocInfo.LastKill = VersionStack.size() - 1;
1234 LocInfo.LastKillValid = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001235 LocInfo.AR = MayAlias;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001236 }
1237
1238 // At this point, we should have corrected last kill and LowerBound to be
1239 // in bounds.
1240 assert(LocInfo.LowerBound < VersionStack.size() &&
1241 "Lower bound out of range");
1242 assert(LocInfo.LastKill < VersionStack.size() &&
1243 "Last kill info out of range");
1244 // In any case, the new upper bound is the top of the stack.
1245 unsigned long UpperBound = VersionStack.size() - 1;
1246
1247 if (UpperBound - LocInfo.LowerBound > MaxCheckLimit) {
Nicola Zaghend34e60c2018-05-14 12:53:11 +00001248 LLVM_DEBUG(dbgs() << "MemorySSA skipping optimization of " << *MU << " ("
1249 << *(MU->getMemoryInst()) << ")"
1250 << " because there are "
1251 << UpperBound - LocInfo.LowerBound
1252 << " stores to disambiguate\n");
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001253 // Because we did not walk, LastKill is no longer valid, as this may
1254 // have been a kill.
1255 LocInfo.LastKillValid = false;
1256 continue;
1257 }
1258 bool FoundClobberResult = false;
1259 while (UpperBound > LocInfo.LowerBound) {
1260 if (isa<MemoryPhi>(VersionStack[UpperBound])) {
1261 // For phis, use the walker, see where we ended up, go there
1262 Instruction *UseInst = MU->getMemoryInst();
1263 MemoryAccess *Result = Walker->getClobberingMemoryAccess(UseInst);
1264 // We are guaranteed to find it or something is wrong
1265 while (VersionStack[UpperBound] != Result) {
1266 assert(UpperBound != 0);
1267 --UpperBound;
1268 }
1269 FoundClobberResult = true;
1270 break;
1271 }
1272
1273 MemoryDef *MD = cast<MemoryDef>(VersionStack[UpperBound]);
Daniel Berlindf101192016-08-03 00:01:46 +00001274 // If the lifetime of the pointer ends at this instruction, it's live on
1275 // entry.
1276 if (!UseMLOC.IsCall && lifetimeEndsAt(MD, UseMLOC.getLoc(), *AA)) {
1277 // Reset UpperBound to liveOnEntryDef's place in the stack
1278 UpperBound = 0;
1279 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001280 LocInfo.AR = MustAlias;
Daniel Berlindf101192016-08-03 00:01:46 +00001281 break;
1282 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001283 ClobberAlias CA = instructionClobbersQuery(MD, MU, UseMLOC, *AA);
1284 if (CA.IsClobber) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001285 FoundClobberResult = true;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001286 LocInfo.AR = CA.AR;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001287 break;
1288 }
1289 --UpperBound;
1290 }
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001291
1292 // Note: Phis always have AliasResult AR set to MayAlias ATM.
1293
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001294 // At the end of this loop, UpperBound is either a clobber, or lower bound
1295 // PHI walking may cause it to be < LowerBound, and in fact, < LastKill.
1296 if (FoundClobberResult || UpperBound < LocInfo.LastKill) {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001297 // We were last killed now by where we got to
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001298 if (MSSA->isLiveOnEntryDef(VersionStack[UpperBound]))
1299 LocInfo.AR = None;
1300 MU->setDefiningAccess(VersionStack[UpperBound], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001301 LocInfo.LastKill = UpperBound;
1302 } else {
1303 // Otherwise, we checked all the new ones, and now we know we can get to
1304 // LastKill.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00001305 MU->setDefiningAccess(VersionStack[LocInfo.LastKill], true, LocInfo.AR);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001306 }
1307 LocInfo.LowerBound = VersionStack.size() - 1;
Daniel Berlin4b4c7222016-08-08 04:44:53 +00001308 LocInfo.LowerBoundBlock = BB;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001309 }
1310}
1311
1312/// Optimize uses to point to their actual clobbering definitions.
1313void MemorySSA::OptimizeUses::optimizeUses() {
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001314 SmallVector<MemoryAccess *, 16> VersionStack;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001315 DenseMap<MemoryLocOrCall, MemlocStackInfo> LocStackInfo;
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001316 VersionStack.push_back(MSSA->getLiveOnEntryDef());
1317
1318 unsigned long StackEpoch = 1;
1319 unsigned long PopEpoch = 1;
Piotr Padlewskicc5868c12017-02-18 20:34:36 +00001320 // We perform a non-recursive top-down dominator tree walk.
Daniel Berlin7ac3d742016-08-05 22:09:14 +00001321 for (const auto *DomNode : depth_first(DT->getRootNode()))
1322 optimizeUsesInBlock(DomNode->getBlock(), StackEpoch, PopEpoch, VersionStack,
1323 LocStackInfo);
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001324}
1325
Daniel Berlin3d512a22016-08-22 19:14:30 +00001326void MemorySSA::placePHINodes(
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001327 const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks) {
Daniel Berlin3d512a22016-08-22 19:14:30 +00001328 // Determine where our MemoryPhi's should go
1329 ForwardIDFCalculator IDFs(*DT);
1330 IDFs.setDefiningBlocks(DefiningBlocks);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001331 SmallVector<BasicBlock *, 32> IDFBlocks;
1332 IDFs.calculate(IDFBlocks);
1333
1334 // Now place MemoryPhi nodes.
Daniel Berlind602e042017-01-25 20:56:19 +00001335 for (auto &BB : IDFBlocks)
1336 createMemoryPhi(BB);
Daniel Berlin3d512a22016-08-22 19:14:30 +00001337}
1338
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001339void MemorySSA::buildMemorySSA() {
George Burgess IVe1100f52016-02-02 22:46:49 +00001340 // We create an access to represent "live on entry", for things like
1341 // arguments or users of globals, where the memory they use is defined before
1342 // the beginning of the function. We do not actually insert it into the IR.
1343 // We do not define a live on exit for the immediate uses, and thus our
1344 // semantics do *not* imply that something with no immediate uses can simply
1345 // be removed.
1346 BasicBlock &StartingPoint = F.getEntryBlock();
George Burgess IV612cf212018-02-27 06:43:19 +00001347 LiveOnEntryDef.reset(new MemoryDef(F.getContext(), nullptr, nullptr,
1348 &StartingPoint, NextID++));
George Burgess IVe1100f52016-02-02 22:46:49 +00001349
1350 // We maintain lists of memory accesses per-block, trading memory for time. We
1351 // could just look up the memory access for every possible instruction in the
1352 // stream.
1353 SmallPtrSet<BasicBlock *, 32> DefiningBlocks;
George Burgess IVe1100f52016-02-02 22:46:49 +00001354 // Go through each block, figure out where defs occur, and chain together all
1355 // the accesses.
1356 for (BasicBlock &B : F) {
Daniel Berlin7898ca62016-02-07 01:52:15 +00001357 bool InsertIntoDef = false;
Daniel Berlinada263d2016-06-20 20:21:33 +00001358 AccessList *Accesses = nullptr;
Daniel Berlind602e042017-01-25 20:56:19 +00001359 DefsList *Defs = nullptr;
George Burgess IVe1100f52016-02-02 22:46:49 +00001360 for (Instruction &I : B) {
Peter Collingbourneffecb142016-05-26 01:19:17 +00001361 MemoryUseOrDef *MUD = createNewAccess(&I);
George Burgess IVb42b7622016-03-11 19:34:03 +00001362 if (!MUD)
George Burgess IVe1100f52016-02-02 22:46:49 +00001363 continue;
Daniel Berlin1b51a292016-02-07 01:52:19 +00001364
George Burgess IVe1100f52016-02-02 22:46:49 +00001365 if (!Accesses)
1366 Accesses = getOrCreateAccessList(&B);
George Burgess IVb42b7622016-03-11 19:34:03 +00001367 Accesses->push_back(MUD);
Daniel Berlind602e042017-01-25 20:56:19 +00001368 if (isa<MemoryDef>(MUD)) {
1369 InsertIntoDef = true;
1370 if (!Defs)
1371 Defs = getOrCreateDefsList(&B);
1372 Defs->push_back(*MUD);
1373 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001374 }
Daniel Berlin7898ca62016-02-07 01:52:15 +00001375 if (InsertIntoDef)
1376 DefiningBlocks.insert(&B);
Daniel Berlin1b51a292016-02-07 01:52:19 +00001377 }
Michael Zolotukhin67cfbaa2018-05-15 18:40:29 +00001378 placePHINodes(DefiningBlocks);
George Burgess IVe1100f52016-02-02 22:46:49 +00001379
1380 // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get
1381 // filled in with all blocks.
1382 SmallPtrSet<BasicBlock *, 16> Visited;
1383 renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited);
1384
George Burgess IV5f308972016-07-19 01:29:15 +00001385 CachingWalker *Walker = getWalkerImpl();
1386
Daniel Berlinc43aa5a2016-08-02 16:24:03 +00001387 OptimizeUses(this, Walker, AA, DT).optimizeUses();
George Burgess IV5f308972016-07-19 01:29:15 +00001388
George Burgess IVe1100f52016-02-02 22:46:49 +00001389 // Mark the uses in unreachable blocks as live on entry, so that they go
1390 // somewhere.
1391 for (auto &BB : F)
1392 if (!Visited.count(&BB))
1393 markUnreachableAsLiveOnEntry(&BB);
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001394}
George Burgess IVe1100f52016-02-02 22:46:49 +00001395
George Burgess IV5f308972016-07-19 01:29:15 +00001396MemorySSAWalker *MemorySSA::getWalker() { return getWalkerImpl(); }
1397
1398MemorySSA::CachingWalker *MemorySSA::getWalkerImpl() {
Daniel Berlin16ed57c2016-06-27 18:22:27 +00001399 if (Walker)
1400 return Walker.get();
1401
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001402 Walker = llvm::make_unique<CachingWalker>(this, AA, DT);
Geoff Berryb96d3b22016-06-01 21:30:40 +00001403 return Walker.get();
George Burgess IVe1100f52016-02-02 22:46:49 +00001404}
1405
Daniel Berlind602e042017-01-25 20:56:19 +00001406// This is a helper function used by the creation routines. It places NewAccess
1407// into the access and defs lists for a given basic block, at the given
1408// insertion point.
1409void MemorySSA::insertIntoListsForBlock(MemoryAccess *NewAccess,
1410 const BasicBlock *BB,
1411 InsertionPlace Point) {
1412 auto *Accesses = getOrCreateAccessList(BB);
1413 if (Point == Beginning) {
1414 // If it's a phi node, it goes first, otherwise, it goes after any phi
1415 // nodes.
1416 if (isa<MemoryPhi>(NewAccess)) {
1417 Accesses->push_front(NewAccess);
1418 auto *Defs = getOrCreateDefsList(BB);
1419 Defs->push_front(*NewAccess);
1420 } else {
1421 auto AI = find_if_not(
1422 *Accesses, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1423 Accesses->insert(AI, NewAccess);
1424 if (!isa<MemoryUse>(NewAccess)) {
1425 auto *Defs = getOrCreateDefsList(BB);
1426 auto DI = find_if_not(
1427 *Defs, [](const MemoryAccess &MA) { return isa<MemoryPhi>(MA); });
1428 Defs->insert(DI, *NewAccess);
1429 }
1430 }
1431 } else {
1432 Accesses->push_back(NewAccess);
1433 if (!isa<MemoryUse>(NewAccess)) {
1434 auto *Defs = getOrCreateDefsList(BB);
1435 Defs->push_back(*NewAccess);
1436 }
1437 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001438 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001439}
1440
1441void MemorySSA::insertIntoListsBefore(MemoryAccess *What, const BasicBlock *BB,
1442 AccessList::iterator InsertPt) {
1443 auto *Accesses = getWritableBlockAccesses(BB);
1444 bool WasEnd = InsertPt == Accesses->end();
1445 Accesses->insert(AccessList::iterator(InsertPt), What);
1446 if (!isa<MemoryUse>(What)) {
1447 auto *Defs = getOrCreateDefsList(BB);
1448 // If we got asked to insert at the end, we have an easy job, just shove it
1449 // at the end. If we got asked to insert before an existing def, we also get
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001450 // an iterator. If we got asked to insert before a use, we have to hunt for
Daniel Berlind602e042017-01-25 20:56:19 +00001451 // the next def.
1452 if (WasEnd) {
1453 Defs->push_back(*What);
1454 } else if (isa<MemoryDef>(InsertPt)) {
1455 Defs->insert(InsertPt->getDefsIterator(), *What);
1456 } else {
1457 while (InsertPt != Accesses->end() && !isa<MemoryDef>(InsertPt))
1458 ++InsertPt;
1459 // Either we found a def, or we are inserting at the end
1460 if (InsertPt == Accesses->end())
1461 Defs->push_back(*What);
1462 else
1463 Defs->insert(InsertPt->getDefsIterator(), *What);
1464 }
1465 }
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001466 BlockNumberingValid.erase(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001467}
1468
Zhaoshi Zhenga5531f22018-04-04 21:08:11 +00001469// Move What before Where in the IR. The end result is that What will belong to
Daniel Berlin60ead052017-01-28 01:23:13 +00001470// the right lists and have the right Block set, but will not otherwise be
1471// correct. It will not have the right defining access, and if it is a def,
1472// things below it will not properly be updated.
1473void MemorySSA::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1474 AccessList::iterator Where) {
1475 // Keep it in the lookup tables, remove from the lists
1476 removeFromLists(What, false);
1477 What->setBlock(BB);
1478 insertIntoListsBefore(What, BB, Where);
1479}
1480
Alina Sbirlea0f533552018-07-11 22:11:46 +00001481void MemorySSA::moveTo(MemoryAccess *What, BasicBlock *BB,
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001482 InsertionPlace Point) {
Alina Sbirlea0f533552018-07-11 22:11:46 +00001483 if (isa<MemoryPhi>(What)) {
1484 assert(Point == Beginning &&
1485 "Can only move a Phi at the beginning of the block");
1486 // Update lookup table entry
1487 ValueToMemoryAccess.erase(What->getBlock());
1488 bool Inserted = ValueToMemoryAccess.insert({BB, What}).second;
1489 (void)Inserted;
1490 assert(Inserted && "Cannot move a Phi to a block that already has one");
1491 }
1492
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001493 removeFromLists(What, false);
1494 What->setBlock(BB);
1495 insertIntoListsForBlock(What, BB, Point);
1496}
1497
Daniel Berlin14300262016-06-21 18:39:20 +00001498MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) {
1499 assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB");
Daniel Berlin14300262016-06-21 18:39:20 +00001500 MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++);
Daniel Berlin9d8a3352017-01-30 11:35:39 +00001501 // Phi's always are placed at the front of the block.
Daniel Berlind602e042017-01-25 20:56:19 +00001502 insertIntoListsForBlock(Phi, BB, Beginning);
Daniel Berlin5130cc82016-07-31 21:08:20 +00001503 ValueToMemoryAccess[BB] = Phi;
Daniel Berlin14300262016-06-21 18:39:20 +00001504 return Phi;
1505}
1506
1507MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I,
1508 MemoryAccess *Definition) {
1509 assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI");
1510 MemoryUseOrDef *NewAccess = createNewAccess(I);
1511 assert(
1512 NewAccess != nullptr &&
1513 "Tried to create a memory access for a non-memory touching instruction");
1514 NewAccess->setDefiningAccess(Definition);
1515 return NewAccess;
1516}
1517
Daniel Berlind952cea2017-04-07 01:28:36 +00001518// Return true if the instruction has ordering constraints.
1519// Note specifically that this only considers stores and loads
1520// because others are still considered ModRef by getModRefInfo.
1521static inline bool isOrdered(const Instruction *I) {
1522 if (auto *SI = dyn_cast<StoreInst>(I)) {
1523 if (!SI->isUnordered())
1524 return true;
1525 } else if (auto *LI = dyn_cast<LoadInst>(I)) {
1526 if (!LI->isUnordered())
1527 return true;
1528 }
1529 return false;
1530}
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00001531
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001532/// Helper function to create new memory accesses
Peter Collingbourneffecb142016-05-26 01:19:17 +00001533MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) {
Peter Collingbourneb9aa1f42016-05-26 04:58:46 +00001534 // The assume intrinsic has a control dependency which we model by claiming
1535 // that it writes arbitrarily. Ignore that fake memory dependency here.
1536 // FIXME: Replace this special casing with a more accurate modelling of
1537 // assume's control dependency.
1538 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1539 if (II->getIntrinsicID() == Intrinsic::assume)
1540 return nullptr;
1541
George Burgess IVe1100f52016-02-02 22:46:49 +00001542 // Find out what affect this instruction has on memory.
Alina Sbirlea967e7962017-08-01 00:28:29 +00001543 ModRefInfo ModRef = AA->getModRefInfo(I, None);
Daniel Berlind952cea2017-04-07 01:28:36 +00001544 // The isOrdered check is used to ensure that volatiles end up as defs
1545 // (atomics end up as ModRef right now anyway). Until we separate the
1546 // ordering chain from the memory chain, this enables people to see at least
1547 // some relative ordering to volatiles. Note that getClobberingMemoryAccess
1548 // will still give an answer that bypasses other volatile loads. TODO:
1549 // Separate memory aliasing and ordering into two different chains so that we
1550 // can precisely represent both "what memory will this read/write/is clobbered
1551 // by" and "what instructions can I move this past".
Alina Sbirlea63d22502017-12-05 20:12:23 +00001552 bool Def = isModSet(ModRef) || isOrdered(I);
1553 bool Use = isRefSet(ModRef);
George Burgess IVe1100f52016-02-02 22:46:49 +00001554
1555 // It's possible for an instruction to not modify memory at all. During
1556 // construction, we ignore them.
Peter Collingbourneffecb142016-05-26 01:19:17 +00001557 if (!Def && !Use)
George Burgess IVe1100f52016-02-02 22:46:49 +00001558 return nullptr;
1559
George Burgess IVb42b7622016-03-11 19:34:03 +00001560 MemoryUseOrDef *MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001561 if (Def)
George Burgess IVb42b7622016-03-11 19:34:03 +00001562 MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++);
George Burgess IVe1100f52016-02-02 22:46:49 +00001563 else
George Burgess IVb42b7622016-03-11 19:34:03 +00001564 MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent());
Daniel Berlin5130cc82016-07-31 21:08:20 +00001565 ValueToMemoryAccess[I] = MUD;
George Burgess IVb42b7622016-03-11 19:34:03 +00001566 return MUD;
George Burgess IVe1100f52016-02-02 22:46:49 +00001567}
1568
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001569/// Returns true if \p Replacer dominates \p Replacee .
George Burgess IVe1100f52016-02-02 22:46:49 +00001570bool MemorySSA::dominatesUse(const MemoryAccess *Replacer,
1571 const MemoryAccess *Replacee) const {
1572 if (isa<MemoryUseOrDef>(Replacee))
1573 return DT->dominates(Replacer->getBlock(), Replacee->getBlock());
1574 const auto *MP = cast<MemoryPhi>(Replacee);
1575 // For a phi node, the use occurs in the predecessor block of the phi node.
1576 // Since we may occur multiple times in the phi node, we have to check each
1577 // operand to ensure Replacer dominates each operand where Replacee occurs.
1578 for (const Use &Arg : MP->operands()) {
George Burgess IVb5a229f2016-02-02 23:15:26 +00001579 if (Arg.get() != Replacee &&
George Burgess IVe1100f52016-02-02 22:46:49 +00001580 !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg)))
1581 return false;
1582 }
1583 return true;
1584}
1585
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001586/// Properly remove \p MA from all of MemorySSA's lookup tables.
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001587void MemorySSA::removeFromLookups(MemoryAccess *MA) {
1588 assert(MA->use_empty() &&
1589 "Trying to remove memory access that still has uses");
Daniel Berlin5c46b942016-07-19 22:49:43 +00001590 BlockNumbering.erase(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001591 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001592 MUD->setDefiningAccess(nullptr);
1593 // Invalidate our walker's cache if necessary
1594 if (!isa<MemoryUse>(MA))
1595 Walker->invalidateInfo(MA);
George Burgess IV2cbf9732018-06-22 22:34:07 +00001596
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001597 Value *MemoryInst;
George Burgess IV2cbf9732018-06-22 22:34:07 +00001598 if (const auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001599 MemoryInst = MUD->getMemoryInst();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001600 else
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001601 MemoryInst = MA->getBlock();
George Burgess IV2cbf9732018-06-22 22:34:07 +00001602
Daniel Berlin5130cc82016-07-31 21:08:20 +00001603 auto VMA = ValueToMemoryAccess.find(MemoryInst);
1604 if (VMA->second == MA)
1605 ValueToMemoryAccess.erase(VMA);
Daniel Berlin60ead052017-01-28 01:23:13 +00001606}
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001607
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001608/// Properly remove \p MA from all of MemorySSA's lists.
Daniel Berlin60ead052017-01-28 01:23:13 +00001609///
1610/// Because of the way the intrusive list and use lists work, it is important to
1611/// do removal in the right order.
1612/// ShouldDelete defaults to true, and will cause the memory access to also be
1613/// deleted, not just removed.
1614void MemorySSA::removeFromLists(MemoryAccess *MA, bool ShouldDelete) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001615 BasicBlock *BB = MA->getBlock();
Daniel Berlind602e042017-01-25 20:56:19 +00001616 // The access list owns the reference, so we erase it from the non-owning list
1617 // first.
1618 if (!isa<MemoryUse>(MA)) {
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001619 auto DefsIt = PerBlockDefs.find(BB);
Daniel Berlind602e042017-01-25 20:56:19 +00001620 std::unique_ptr<DefsList> &Defs = DefsIt->second;
1621 Defs->remove(*MA);
1622 if (Defs->empty())
1623 PerBlockDefs.erase(DefsIt);
1624 }
1625
Daniel Berlin60ead052017-01-28 01:23:13 +00001626 // The erase call here will delete it. If we don't want it deleted, we call
1627 // remove instead.
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001628 auto AccessIt = PerBlockAccesses.find(BB);
Daniel Berlinada263d2016-06-20 20:21:33 +00001629 std::unique_ptr<AccessList> &Accesses = AccessIt->second;
Daniel Berlin60ead052017-01-28 01:23:13 +00001630 if (ShouldDelete)
1631 Accesses->erase(MA);
1632 else
1633 Accesses->remove(MA);
1634
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001635 if (Accesses->empty()) {
George Burgess IVe0e6e482016-03-02 02:35:04 +00001636 PerBlockAccesses.erase(AccessIt);
Alina Sbirleada1e80f2018-06-29 20:46:16 +00001637 BlockNumberingValid.erase(BB);
1638 }
Daniel Berlin83fc77b2016-03-01 18:46:54 +00001639}
1640
George Burgess IVe1100f52016-02-02 22:46:49 +00001641void MemorySSA::print(raw_ostream &OS) const {
1642 MemorySSAAnnotatedWriter Writer(this);
1643 F.print(OS, &Writer);
1644}
1645
Aaron Ballman615eb472017-10-15 14:32:27 +00001646#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
Daniel Berlin78cbd282017-02-20 22:26:03 +00001647LLVM_DUMP_METHOD void MemorySSA::dump() const { print(dbgs()); }
Matthias Braun8c209aa2017-01-28 02:02:38 +00001648#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001649
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001650void MemorySSA::verifyMemorySSA() const {
1651 verifyDefUses(F);
1652 verifyDomination(F);
Daniel Berlin14300262016-06-21 18:39:20 +00001653 verifyOrdering(F);
George Burgess IV97ec6242018-06-25 05:30:36 +00001654 verifyDominationNumbers(F);
Geoff Berrycdf53332016-08-08 17:52:01 +00001655 Walker->verify(this);
Daniel Berlin14300262016-06-21 18:39:20 +00001656}
1657
George Burgess IV97ec6242018-06-25 05:30:36 +00001658/// Verify that all of the blocks we believe to have valid domination numbers
1659/// actually have valid domination numbers.
1660void MemorySSA::verifyDominationNumbers(const Function &F) const {
1661#ifndef NDEBUG
1662 if (BlockNumberingValid.empty())
1663 return;
1664
1665 SmallPtrSet<const BasicBlock *, 16> ValidBlocks = BlockNumberingValid;
1666 for (const BasicBlock &BB : F) {
1667 if (!ValidBlocks.count(&BB))
1668 continue;
1669
1670 ValidBlocks.erase(&BB);
1671
1672 const AccessList *Accesses = getBlockAccesses(&BB);
1673 // It's correct to say an empty block has valid numbering.
1674 if (!Accesses)
1675 continue;
1676
1677 // Block numbering starts at 1.
1678 unsigned long LastNumber = 0;
1679 for (const MemoryAccess &MA : *Accesses) {
1680 auto ThisNumberIter = BlockNumbering.find(&MA);
1681 assert(ThisNumberIter != BlockNumbering.end() &&
1682 "MemoryAccess has no domination number in a valid block!");
1683
1684 unsigned long ThisNumber = ThisNumberIter->second;
1685 assert(ThisNumber > LastNumber &&
1686 "Domination numbers should be strictly increasing!");
1687 LastNumber = ThisNumber;
1688 }
1689 }
1690
1691 assert(ValidBlocks.empty() &&
1692 "All valid BasicBlocks should exist in F -- dangling pointers?");
1693#endif
1694}
1695
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001696/// Verify that the order and existence of MemoryAccesses matches the
Daniel Berlin14300262016-06-21 18:39:20 +00001697/// order and existence of memory affecting instructions.
1698void MemorySSA::verifyOrdering(Function &F) const {
1699 // Walk all the blocks, comparing what the lookups think and what the access
1700 // lists think, as well as the order in the blocks vs the order in the access
1701 // lists.
1702 SmallVector<MemoryAccess *, 32> ActualAccesses;
Daniel Berlind602e042017-01-25 20:56:19 +00001703 SmallVector<MemoryAccess *, 32> ActualDefs;
Daniel Berlin14300262016-06-21 18:39:20 +00001704 for (BasicBlock &B : F) {
1705 const AccessList *AL = getBlockAccesses(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001706 const auto *DL = getBlockDefs(&B);
Daniel Berlin14300262016-06-21 18:39:20 +00001707 MemoryAccess *Phi = getMemoryAccess(&B);
Daniel Berlind602e042017-01-25 20:56:19 +00001708 if (Phi) {
Daniel Berlin14300262016-06-21 18:39:20 +00001709 ActualAccesses.push_back(Phi);
Daniel Berlind602e042017-01-25 20:56:19 +00001710 ActualDefs.push_back(Phi);
1711 }
1712
Daniel Berlin14300262016-06-21 18:39:20 +00001713 for (Instruction &I : B) {
1714 MemoryAccess *MA = getMemoryAccess(&I);
Daniel Berlind602e042017-01-25 20:56:19 +00001715 assert((!MA || (AL && (isa<MemoryUse>(MA) || DL))) &&
1716 "We have memory affecting instructions "
1717 "in this block but they are not in the "
1718 "access list or defs list");
1719 if (MA) {
Daniel Berlin14300262016-06-21 18:39:20 +00001720 ActualAccesses.push_back(MA);
Daniel Berlind602e042017-01-25 20:56:19 +00001721 if (isa<MemoryDef>(MA))
1722 ActualDefs.push_back(MA);
1723 }
Daniel Berlin14300262016-06-21 18:39:20 +00001724 }
1725 // Either we hit the assert, really have no accesses, or we have both
Daniel Berlind602e042017-01-25 20:56:19 +00001726 // accesses and an access list.
1727 // Same with defs.
1728 if (!AL && !DL)
Daniel Berlin14300262016-06-21 18:39:20 +00001729 continue;
1730 assert(AL->size() == ActualAccesses.size() &&
1731 "We don't have the same number of accesses in the block as on the "
1732 "access list");
Davide Italiano6c77de02017-01-30 03:16:43 +00001733 assert((DL || ActualDefs.size() == 0) &&
1734 "Either we should have a defs list, or we should have no defs");
Daniel Berlind602e042017-01-25 20:56:19 +00001735 assert((!DL || DL->size() == ActualDefs.size()) &&
1736 "We don't have the same number of defs in the block as on the "
1737 "def list");
Daniel Berlin14300262016-06-21 18:39:20 +00001738 auto ALI = AL->begin();
1739 auto AAI = ActualAccesses.begin();
1740 while (ALI != AL->end() && AAI != ActualAccesses.end()) {
1741 assert(&*ALI == *AAI && "Not the same accesses in the same order");
1742 ++ALI;
1743 ++AAI;
1744 }
1745 ActualAccesses.clear();
Daniel Berlind602e042017-01-25 20:56:19 +00001746 if (DL) {
1747 auto DLI = DL->begin();
1748 auto ADI = ActualDefs.begin();
1749 while (DLI != DL->end() && ADI != ActualDefs.end()) {
1750 assert(&*DLI == *ADI && "Not the same defs in the same order");
1751 ++DLI;
1752 ++ADI;
1753 }
1754 }
1755 ActualDefs.clear();
Daniel Berlin14300262016-06-21 18:39:20 +00001756 }
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001757}
1758
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001759/// Verify the domination properties of MemorySSA by checking that each
George Burgess IVe1100f52016-02-02 22:46:49 +00001760/// definition dominates all of its uses.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001761void MemorySSA::verifyDomination(Function &F) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001762#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001763 for (BasicBlock &B : F) {
1764 // Phi nodes are attached to basic blocks
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001765 if (MemoryPhi *MP = getMemoryAccess(&B))
1766 for (const Use &U : MP->uses())
1767 assert(dominates(MP, U) && "Memory PHI does not dominate it's uses");
Daniel Berlin7af95872016-08-05 21:47:20 +00001768
George Burgess IVe1100f52016-02-02 22:46:49 +00001769 for (Instruction &I : B) {
1770 MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I));
1771 if (!MD)
1772 continue;
1773
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001774 for (const Use &U : MD->uses())
1775 assert(dominates(MD, U) && "Memory Def does not dominate it's uses");
George Burgess IVe1100f52016-02-02 22:46:49 +00001776 }
1777 }
Daniel Berlin7af95872016-08-05 21:47:20 +00001778#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001779}
1780
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001781/// Verify the def-use lists in MemorySSA, by verifying that \p Use
George Burgess IVe1100f52016-02-02 22:46:49 +00001782/// appears in the use list of \p Def.
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001783void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const {
Daniel Berlin7af95872016-08-05 21:47:20 +00001784#ifndef NDEBUG
George Burgess IVe1100f52016-02-02 22:46:49 +00001785 // The live on entry use may cause us to get a NULL def here
Daniel Berlin7af95872016-08-05 21:47:20 +00001786 if (!Def)
1787 assert(isLiveOnEntryDef(Use) &&
1788 "Null def but use not point to live on entry def");
1789 else
Daniel Berlinda2f38e2016-08-11 21:26:50 +00001790 assert(is_contained(Def->users(), Use) &&
Daniel Berlin7af95872016-08-05 21:47:20 +00001791 "Did not find use in def's use list");
1792#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001793}
1794
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001795/// Verify the immediate use information, by walking all the memory
George Burgess IVe1100f52016-02-02 22:46:49 +00001796/// accesses and verifying that, for each use, it appears in the
1797/// appropriate def's use list
Daniel Berlin932b4cb2016-02-10 17:39:43 +00001798void MemorySSA::verifyDefUses(Function &F) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00001799 for (BasicBlock &B : F) {
1800 // Phi nodes are attached to basic blocks
Daniel Berlin14300262016-06-21 18:39:20 +00001801 if (MemoryPhi *Phi = getMemoryAccess(&B)) {
David Majnemer580e7542016-06-25 00:04:06 +00001802 assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance(
1803 pred_begin(&B), pred_end(&B))) &&
Daniel Berlin14300262016-06-21 18:39:20 +00001804 "Incomplete MemoryPhi Node");
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001805 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
George Burgess IVe1100f52016-02-02 22:46:49 +00001806 verifyUseInDefs(Phi->getIncomingValue(I), Phi);
Alina Sbirlea201d02c2018-06-20 21:06:13 +00001807 assert(find(predecessors(&B), Phi->getIncomingBlock(I)) !=
1808 pred_end(&B) &&
1809 "Incoming phi block not a block predecessor");
1810 }
Daniel Berlin14300262016-06-21 18:39:20 +00001811 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001812
1813 for (Instruction &I : B) {
George Burgess IV66837ab2016-11-01 21:17:46 +00001814 if (MemoryUseOrDef *MA = getMemoryAccess(&I)) {
1815 verifyUseInDefs(MA->getDefiningAccess(), MA);
George Burgess IVe1100f52016-02-02 22:46:49 +00001816 }
1817 }
1818 }
1819}
1820
George Burgess IV66837ab2016-11-01 21:17:46 +00001821MemoryUseOrDef *MemorySSA::getMemoryAccess(const Instruction *I) const {
1822 return cast_or_null<MemoryUseOrDef>(ValueToMemoryAccess.lookup(I));
George Burgess IVe1100f52016-02-02 22:46:49 +00001823}
1824
1825MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const {
George Burgess IV66837ab2016-11-01 21:17:46 +00001826 return cast_or_null<MemoryPhi>(ValueToMemoryAccess.lookup(cast<Value>(BB)));
George Burgess IVe1100f52016-02-02 22:46:49 +00001827}
1828
Daniel Berlin5c46b942016-07-19 22:49:43 +00001829/// Perform a local numbering on blocks so that instruction ordering can be
1830/// determined in constant time.
1831/// TODO: We currently just number in order. If we numbered by N, we could
1832/// allow at least N-1 sequences of insertBefore or insertAfter (and at least
1833/// log2(N) sequences of mixed before and after) without needing to invalidate
1834/// the numbering.
1835void MemorySSA::renumberBlock(const BasicBlock *B) const {
1836 // The pre-increment ensures the numbers really start at 1.
1837 unsigned long CurrentNumber = 0;
1838 const AccessList *AL = getBlockAccesses(B);
1839 assert(AL != nullptr && "Asking to renumber an empty block");
1840 for (const auto &I : *AL)
1841 BlockNumbering[&I] = ++CurrentNumber;
1842 BlockNumberingValid.insert(B);
1843}
1844
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00001845/// Determine, for two memory accesses in the same block,
George Burgess IVe1100f52016-02-02 22:46:49 +00001846/// whether \p Dominator dominates \p Dominatee.
1847/// \returns True if \p Dominator dominates \p Dominatee.
1848bool MemorySSA::locallyDominates(const MemoryAccess *Dominator,
1849 const MemoryAccess *Dominatee) const {
Daniel Berlin5c46b942016-07-19 22:49:43 +00001850 const BasicBlock *DominatorBlock = Dominator->getBlock();
Daniel Berlin5c46b942016-07-19 22:49:43 +00001851
Daniel Berlin19860302016-07-19 23:08:08 +00001852 assert((DominatorBlock == Dominatee->getBlock()) &&
Daniel Berlin5c46b942016-07-19 22:49:43 +00001853 "Asking for local domination when accesses are in different blocks!");
Sebastian Pope1f60b12016-06-10 21:36:41 +00001854 // A node dominates itself.
1855 if (Dominatee == Dominator)
1856 return true;
1857
1858 // When Dominatee is defined on function entry, it is not dominated by another
1859 // memory access.
1860 if (isLiveOnEntryDef(Dominatee))
1861 return false;
1862
1863 // When Dominator is defined on function entry, it dominates the other memory
1864 // access.
1865 if (isLiveOnEntryDef(Dominator))
1866 return true;
1867
Daniel Berlin5c46b942016-07-19 22:49:43 +00001868 if (!BlockNumberingValid.count(DominatorBlock))
1869 renumberBlock(DominatorBlock);
George Burgess IVe1100f52016-02-02 22:46:49 +00001870
Daniel Berlin5c46b942016-07-19 22:49:43 +00001871 unsigned long DominatorNum = BlockNumbering.lookup(Dominator);
1872 // All numbers start with 1
1873 assert(DominatorNum != 0 && "Block was not numbered properly");
1874 unsigned long DominateeNum = BlockNumbering.lookup(Dominatee);
1875 assert(DominateeNum != 0 && "Block was not numbered properly");
1876 return DominatorNum < DominateeNum;
George Burgess IVe1100f52016-02-02 22:46:49 +00001877}
1878
George Burgess IV5f308972016-07-19 01:29:15 +00001879bool MemorySSA::dominates(const MemoryAccess *Dominator,
1880 const MemoryAccess *Dominatee) const {
1881 if (Dominator == Dominatee)
1882 return true;
1883
1884 if (isLiveOnEntryDef(Dominatee))
1885 return false;
1886
1887 if (Dominator->getBlock() != Dominatee->getBlock())
1888 return DT->dominates(Dominator->getBlock(), Dominatee->getBlock());
1889 return locallyDominates(Dominator, Dominatee);
1890}
1891
Daniel Berlin2919b1c2016-08-05 21:46:52 +00001892bool MemorySSA::dominates(const MemoryAccess *Dominator,
1893 const Use &Dominatee) const {
1894 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Dominatee.getUser())) {
1895 BasicBlock *UseBB = MP->getIncomingBlock(Dominatee);
1896 // The def must dominate the incoming block of the phi.
1897 if (UseBB != Dominator->getBlock())
1898 return DT->dominates(Dominator->getBlock(), UseBB);
1899 // If the UseBB and the DefBB are the same, compare locally.
1900 return locallyDominates(Dominator, cast<MemoryAccess>(Dominatee));
1901 }
1902 // If it's not a PHI node use, the normal dominates can already handle it.
1903 return dominates(Dominator, cast<MemoryAccess>(Dominatee.getUser()));
1904}
1905
George Burgess IVe1100f52016-02-02 22:46:49 +00001906const static char LiveOnEntryStr[] = "liveOnEntry";
1907
Reid Kleckner96ab8722017-05-18 17:24:10 +00001908void MemoryAccess::print(raw_ostream &OS) const {
1909 switch (getValueID()) {
1910 case MemoryPhiVal: return static_cast<const MemoryPhi *>(this)->print(OS);
1911 case MemoryDefVal: return static_cast<const MemoryDef *>(this)->print(OS);
1912 case MemoryUseVal: return static_cast<const MemoryUse *>(this)->print(OS);
1913 }
1914 llvm_unreachable("invalid value id");
1915}
1916
George Burgess IVe1100f52016-02-02 22:46:49 +00001917void MemoryDef::print(raw_ostream &OS) const {
1918 MemoryAccess *UO = getDefiningAccess();
1919
George Burgess IVaa283d82018-06-14 19:55:53 +00001920 auto printID = [&OS](MemoryAccess *A) {
1921 if (A && A->getID())
1922 OS << A->getID();
1923 else
1924 OS << LiveOnEntryStr;
1925 };
1926
George Burgess IVe1100f52016-02-02 22:46:49 +00001927 OS << getID() << " = MemoryDef(";
George Burgess IVaa283d82018-06-14 19:55:53 +00001928 printID(UO);
1929 OS << ")";
1930
1931 if (isOptimized()) {
1932 OS << "->";
1933 printID(getOptimized());
1934
1935 if (Optional<AliasResult> AR = getOptimizedAccessType())
1936 OS << " " << *AR;
1937 }
George Burgess IVe1100f52016-02-02 22:46:49 +00001938}
1939
1940void MemoryPhi::print(raw_ostream &OS) const {
1941 bool First = true;
1942 OS << getID() << " = MemoryPhi(";
1943 for (const auto &Op : operands()) {
1944 BasicBlock *BB = getIncomingBlock(Op);
1945 MemoryAccess *MA = cast<MemoryAccess>(Op);
1946 if (!First)
1947 OS << ',';
1948 else
1949 First = false;
1950
1951 OS << '{';
1952 if (BB->hasName())
1953 OS << BB->getName();
1954 else
1955 BB->printAsOperand(OS, false);
1956 OS << ',';
1957 if (unsigned ID = MA->getID())
1958 OS << ID;
1959 else
1960 OS << LiveOnEntryStr;
1961 OS << '}';
1962 }
1963 OS << ')';
1964}
1965
George Burgess IVe1100f52016-02-02 22:46:49 +00001966void MemoryUse::print(raw_ostream &OS) const {
1967 MemoryAccess *UO = getDefiningAccess();
1968 OS << "MemoryUse(";
1969 if (UO && UO->getID())
1970 OS << UO->getID();
1971 else
1972 OS << LiveOnEntryStr;
1973 OS << ')';
George Burgess IVaa283d82018-06-14 19:55:53 +00001974
1975 if (Optional<AliasResult> AR = getOptimizedAccessType())
1976 OS << " " << *AR;
George Burgess IVe1100f52016-02-02 22:46:49 +00001977}
1978
1979void MemoryAccess::dump() const {
Daniel Berlin78cbd282017-02-20 22:26:03 +00001980// Cannot completely remove virtual function even in release mode.
Aaron Ballman615eb472017-10-15 14:32:27 +00001981#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
George Burgess IVe1100f52016-02-02 22:46:49 +00001982 print(dbgs());
1983 dbgs() << "\n";
Matthias Braun8c209aa2017-01-28 02:02:38 +00001984#endif
George Burgess IVe1100f52016-02-02 22:46:49 +00001985}
1986
Chad Rosier232e29e2016-07-06 21:20:47 +00001987char MemorySSAPrinterLegacyPass::ID = 0;
1988
1989MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) {
1990 initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry());
1991}
1992
1993void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
1994 AU.setPreservesAll();
1995 AU.addRequired<MemorySSAWrapperPass>();
Chad Rosier232e29e2016-07-06 21:20:47 +00001996}
1997
1998bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) {
1999 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
2000 MSSA.print(dbgs());
2001 if (VerifyMemorySSA)
2002 MSSA.verifyMemorySSA();
2003 return false;
2004}
2005
Chandler Carruthdab4eae2016-11-23 17:53:26 +00002006AnalysisKey MemorySSAAnalysis::Key;
George Burgess IVe1100f52016-02-02 22:46:49 +00002007
Daniel Berlin1e98c042016-09-26 17:22:54 +00002008MemorySSAAnalysis::Result MemorySSAAnalysis::run(Function &F,
2009 FunctionAnalysisManager &AM) {
Geoff Berryb96d3b22016-06-01 21:30:40 +00002010 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
2011 auto &AA = AM.getResult<AAManager>(F);
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002012 return MemorySSAAnalysis::Result(llvm::make_unique<MemorySSA>(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002013}
2014
Geoff Berryb96d3b22016-06-01 21:30:40 +00002015PreservedAnalyses MemorySSAPrinterPass::run(Function &F,
2016 FunctionAnalysisManager &AM) {
2017 OS << "MemorySSA for function: " << F.getName() << "\n";
Geoff Berry290a13e2016-08-08 18:27:22 +00002018 AM.getResult<MemorySSAAnalysis>(F).getMSSA().print(OS);
Geoff Berryb96d3b22016-06-01 21:30:40 +00002019
2020 return PreservedAnalyses::all();
George Burgess IVe1100f52016-02-02 22:46:49 +00002021}
2022
Geoff Berryb96d3b22016-06-01 21:30:40 +00002023PreservedAnalyses MemorySSAVerifierPass::run(Function &F,
2024 FunctionAnalysisManager &AM) {
Geoff Berry290a13e2016-08-08 18:27:22 +00002025 AM.getResult<MemorySSAAnalysis>(F).getMSSA().verifyMemorySSA();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002026
2027 return PreservedAnalyses::all();
2028}
2029
2030char MemorySSAWrapperPass::ID = 0;
2031
2032MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) {
2033 initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry());
2034}
2035
2036void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); }
2037
2038void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002039 AU.setPreservesAll();
Geoff Berryb96d3b22016-06-01 21:30:40 +00002040 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
2041 AU.addRequiredTransitive<AAResultsWrapperPass>();
George Burgess IVe1100f52016-02-02 22:46:49 +00002042}
2043
Geoff Berryb96d3b22016-06-01 21:30:40 +00002044bool MemorySSAWrapperPass::runOnFunction(Function &F) {
2045 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2046 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
2047 MSSA.reset(new MemorySSA(F, &AA, &DT));
George Burgess IVe1100f52016-02-02 22:46:49 +00002048 return false;
2049}
2050
Geoff Berryb96d3b22016-06-01 21:30:40 +00002051void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); }
George Burgess IVe1100f52016-02-02 22:46:49 +00002052
Geoff Berryb96d3b22016-06-01 21:30:40 +00002053void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const {
George Burgess IVe1100f52016-02-02 22:46:49 +00002054 MSSA->print(OS);
2055}
2056
George Burgess IVe1100f52016-02-02 22:46:49 +00002057MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {}
2058
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002059MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A,
2060 DominatorTree *D)
Eugene Zelenkobb1b2d02017-08-16 22:07:40 +00002061 : MemorySSAWalker(M), Walker(*M, *A, *D) {}
George Burgess IVe1100f52016-02-02 22:46:49 +00002062
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002063void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) {
Daniel Berlind7a7ae02017-04-05 19:01:58 +00002064 if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA))
2065 MUD->resetOptimized();
Daniel Berlin83fc77b2016-03-01 18:46:54 +00002066}
2067
Adrian Prantl5f8f34e42018-05-01 15:54:18 +00002068/// Walk the use-def chains starting at \p MA and find
George Burgess IVe1100f52016-02-02 22:46:49 +00002069/// the MemoryAccess that actually clobbers Loc.
2070///
2071/// \returns our clobbering memory access
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002072MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
2073 MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) {
George Burgess IV0034e392018-04-09 23:09:27 +00002074 return Walker.findClobber(StartingAccess, Q);
George Burgess IVe1100f52016-02-02 22:46:49 +00002075}
2076
George Burgess IVfd1f2f82016-06-24 21:02:12 +00002077MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002078 MemoryAccess *StartingAccess, const MemoryLocation &Loc) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002079 if (isa<MemoryPhi>(StartingAccess))
2080 return StartingAccess;
2081
2082 auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess);
2083 if (MSSA->isLiveOnEntryDef(StartingUseOrDef))
2084 return StartingUseOrDef;
2085
2086 Instruction *I = StartingUseOrDef->getMemoryInst();
2087
2088 // Conservatively, fences are always clobbers, so don't perform the walk if we
2089 // hit a fence.
David Majnemera940f362016-07-15 17:19:24 +00002090 if (!ImmutableCallSite(I) && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002091 return StartingUseOrDef;
2092
2093 UpwardsMemoryQuery Q;
2094 Q.OriginalAccess = StartingUseOrDef;
2095 Q.StartingLoc = Loc;
George Burgess IV5f308972016-07-19 01:29:15 +00002096 Q.Inst = I;
George Burgess IVe1100f52016-02-02 22:46:49 +00002097 Q.IsCall = false;
George Burgess IVe1100f52016-02-02 22:46:49 +00002098
George Burgess IVe1100f52016-02-02 22:46:49 +00002099 // Unlike the other function, do not walk to the def of a def, because we are
2100 // handed something we already believe is the clobbering access.
2101 MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef)
2102 ? StartingUseOrDef->getDefiningAccess()
2103 : StartingUseOrDef;
2104
2105 MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002106 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2107 LLVM_DEBUG(dbgs() << *StartingUseOrDef << "\n");
2108 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2109 LLVM_DEBUG(dbgs() << *Clobber << "\n");
George Burgess IVe1100f52016-02-02 22:46:49 +00002110 return Clobber;
2111}
2112
2113MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002114MemorySSA::CachingWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
2115 auto *StartingAccess = dyn_cast<MemoryUseOrDef>(MA);
2116 // If this is a MemoryPhi, we can't do anything.
2117 if (!StartingAccess)
2118 return MA;
George Burgess IVe1100f52016-02-02 22:46:49 +00002119
Daniel Berlincd2deac2016-10-20 20:13:45 +00002120 // If this is an already optimized use or def, return the optimized result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002121 // Note: Currently, we store the optimized def result in a separate field,
2122 // since we can't use the defining access.
George Burgess IV6f49f4a2018-02-24 00:15:21 +00002123 if (StartingAccess->isOptimized())
2124 return StartingAccess->getOptimized();
Daniel Berlincd2deac2016-10-20 20:13:45 +00002125
George Burgess IV400ae402016-07-20 19:51:34 +00002126 const Instruction *I = StartingAccess->getMemoryInst();
George Burgess IV5f308972016-07-19 01:29:15 +00002127 UpwardsMemoryQuery Q(I, StartingAccess);
George Burgess IV44477c62018-03-11 04:16:12 +00002128 // We can't sanely do anything with a fence, since they conservatively clobber
2129 // all memory, and have no locations to get pointers from to try to
2130 // disambiguate.
George Burgess IV5f308972016-07-19 01:29:15 +00002131 if (!Q.IsCall && I->isFenceLike())
George Burgess IVe1100f52016-02-02 22:46:49 +00002132 return StartingAccess;
2133
George Burgess IV024f3d22016-08-03 19:57:02 +00002134 if (isUseTriviallyOptimizableToLiveOnEntry(*MSSA->AA, I)) {
2135 MemoryAccess *LiveOnEntry = MSSA->getLiveOnEntryDef();
George Burgess IV44477c62018-03-11 04:16:12 +00002136 StartingAccess->setOptimized(LiveOnEntry);
2137 StartingAccess->setOptimizedAccessType(None);
George Burgess IV024f3d22016-08-03 19:57:02 +00002138 return LiveOnEntry;
2139 }
2140
George Burgess IVe1100f52016-02-02 22:46:49 +00002141 // Start with the thing we already think clobbers this location
2142 MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess();
2143
2144 // At this point, DefiningAccess may be the live on entry def.
2145 // If it is, we will not get a better result.
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002146 if (MSSA->isLiveOnEntryDef(DefiningAccess)) {
George Burgess IV44477c62018-03-11 04:16:12 +00002147 StartingAccess->setOptimized(DefiningAccess);
2148 StartingAccess->setOptimizedAccessType(None);
George Burgess IVe1100f52016-02-02 22:46:49 +00002149 return DefiningAccess;
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002150 }
George Burgess IVe1100f52016-02-02 22:46:49 +00002151
2152 MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q);
Nicola Zaghend34e60c2018-05-14 12:53:11 +00002153 LLVM_DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is ");
2154 LLVM_DEBUG(dbgs() << *DefiningAccess << "\n");
2155 LLVM_DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is ");
2156 LLVM_DEBUG(dbgs() << *Result << "\n");
Alina Sbirlead90c9f42018-03-08 18:03:14 +00002157
George Burgess IV44477c62018-03-11 04:16:12 +00002158 StartingAccess->setOptimized(Result);
2159 if (MSSA->isLiveOnEntryDef(Result))
2160 StartingAccess->setOptimizedAccessType(None);
2161 else if (Q.AR == MustAlias)
2162 StartingAccess->setOptimizedAccessType(MustAlias);
George Burgess IVe1100f52016-02-02 22:46:49 +00002163
2164 return Result;
2165}
2166
George Burgess IVe1100f52016-02-02 22:46:49 +00002167MemoryAccess *
George Burgess IV400ae402016-07-20 19:51:34 +00002168DoNothingMemorySSAWalker::getClobberingMemoryAccess(MemoryAccess *MA) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002169 if (auto *Use = dyn_cast<MemoryUseOrDef>(MA))
2170 return Use->getDefiningAccess();
2171 return MA;
2172}
2173
2174MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess(
George Burgess IV013fd732016-10-28 19:22:46 +00002175 MemoryAccess *StartingAccess, const MemoryLocation &) {
George Burgess IVe1100f52016-02-02 22:46:49 +00002176 if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess))
2177 return Use->getDefiningAccess();
2178 return StartingAccess;
2179}
Reid Kleckner96ab8722017-05-18 17:24:10 +00002180
2181void MemoryPhi::deleteMe(DerivedUser *Self) {
2182 delete static_cast<MemoryPhi *>(Self);
2183}
2184
2185void MemoryDef::deleteMe(DerivedUser *Self) {
2186 delete static_cast<MemoryDef *>(Self);
2187}
2188
2189void MemoryUse::deleteMe(DerivedUser *Self) {
2190 delete static_cast<MemoryUse *>(Self);
2191}