blob: 93dd6f8f08089523fd49a6526d2ef4922d1d73d6 [file] [log] [blame]
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001//===--- HexagonBitSimplify.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10#define DEBUG_TYPE "hexbit"
11
Mehdi Aminib550cb12016-04-18 09:17:29 +000012#include "HexagonBitTracker.h"
13#include "HexagonTargetMachine.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000014#include "llvm/CodeGen/MachineDominators.h"
15#include "llvm/CodeGen/MachineFunctionPass.h"
16#include "llvm/CodeGen/MachineInstrBuilder.h"
17#include "llvm/CodeGen/MachineRegisterInfo.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000018#include "llvm/CodeGen/Passes.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000019#include "llvm/Support/Debug.h"
20#include "llvm/Support/raw_ostream.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000021#include "llvm/Target/TargetInstrInfo.h"
Mehdi Aminib550cb12016-04-18 09:17:29 +000022#include "llvm/Target/TargetMachine.h"
Krzysztof Parzyszekced99412015-10-20 22:57:13 +000023
24using namespace llvm;
25
26namespace llvm {
27 void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
28 FunctionPass *createHexagonBitSimplify();
29}
30
31namespace {
32 // Set of virtual registers, based on BitVector.
33 struct RegisterSet : private BitVector {
34 RegisterSet() : BitVector() {}
35 explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
36 RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
37
38 using BitVector::clear;
39 using BitVector::count;
40
41 unsigned find_first() const {
42 int First = BitVector::find_first();
43 if (First < 0)
44 return 0;
45 return x2v(First);
46 }
47
48 unsigned find_next(unsigned Prev) const {
49 int Next = BitVector::find_next(v2x(Prev));
50 if (Next < 0)
51 return 0;
52 return x2v(Next);
53 }
54
55 RegisterSet &insert(unsigned R) {
56 unsigned Idx = v2x(R);
57 ensure(Idx);
58 return static_cast<RegisterSet&>(BitVector::set(Idx));
59 }
60 RegisterSet &remove(unsigned R) {
61 unsigned Idx = v2x(R);
62 if (Idx >= size())
63 return *this;
64 return static_cast<RegisterSet&>(BitVector::reset(Idx));
65 }
66
67 RegisterSet &insert(const RegisterSet &Rs) {
68 return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
69 }
70 RegisterSet &remove(const RegisterSet &Rs) {
71 return static_cast<RegisterSet&>(BitVector::reset(Rs));
72 }
73
74 reference operator[](unsigned R) {
75 unsigned Idx = v2x(R);
76 ensure(Idx);
77 return BitVector::operator[](Idx);
78 }
79 bool operator[](unsigned R) const {
80 unsigned Idx = v2x(R);
81 assert(Idx < size());
82 return BitVector::operator[](Idx);
83 }
84 bool has(unsigned R) const {
85 unsigned Idx = v2x(R);
86 if (Idx >= size())
87 return false;
88 return BitVector::test(Idx);
89 }
90
91 bool empty() const {
92 return !BitVector::any();
93 }
94 bool includes(const RegisterSet &Rs) const {
95 // A.BitVector::test(B) <=> A-B != {}
96 return !Rs.BitVector::test(*this);
97 }
98 bool intersects(const RegisterSet &Rs) const {
99 return BitVector::anyCommon(Rs);
100 }
101
102 private:
103 void ensure(unsigned Idx) {
104 if (size() <= Idx)
105 resize(std::max(Idx+1, 32U));
106 }
107 static inline unsigned v2x(unsigned v) {
108 return TargetRegisterInfo::virtReg2Index(v);
109 }
110 static inline unsigned x2v(unsigned x) {
111 return TargetRegisterInfo::index2VirtReg(x);
112 }
113 };
114
115
116 struct PrintRegSet {
117 PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
118 : RS(S), TRI(RI) {}
119 friend raw_ostream &operator<< (raw_ostream &OS,
120 const PrintRegSet &P);
121 private:
122 const RegisterSet &RS;
123 const TargetRegisterInfo *TRI;
124 };
125
126 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
127 LLVM_ATTRIBUTE_UNUSED;
128 raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
129 OS << '{';
130 for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
131 OS << ' ' << PrintReg(R, P.TRI);
132 OS << " }";
133 return OS;
134 }
135}
136
137
138namespace {
139 class Transformation;
140
141 class HexagonBitSimplify : public MachineFunctionPass {
142 public:
143 static char ID;
144 HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
145 initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
146 }
147 virtual const char *getPassName() const {
148 return "Hexagon bit simplification";
149 }
150 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
151 AU.addRequired<MachineDominatorTree>();
152 AU.addPreserved<MachineDominatorTree>();
153 MachineFunctionPass::getAnalysisUsage(AU);
154 }
155 virtual bool runOnMachineFunction(MachineFunction &MF);
156
157 static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
158 static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
159 static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
160 const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +0000161 static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
162 uint16_t W);
163 static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
164 uint16_t W, uint64_t &U);
165 static bool replaceReg(unsigned OldR, unsigned NewR,
166 MachineRegisterInfo &MRI);
167 static bool getSubregMask(const BitTracker::RegisterRef &RR,
168 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
169 static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
170 unsigned NewSR, MachineRegisterInfo &MRI);
171 static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
172 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
173 static bool parseRegSequence(const MachineInstr &I,
174 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
175
176 static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
177 uint16_t Begin);
178 static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
179 uint16_t Begin, const HexagonInstrInfo &HII);
180
181 static const TargetRegisterClass *getFinalVRegClass(
182 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
183 static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
184 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
185
186 private:
187 MachineDominatorTree *MDT;
188
189 bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
190 };
191
192 char HexagonBitSimplify::ID = 0;
193 typedef HexagonBitSimplify HBS;
194
195
196 // The purpose of this class is to provide a common facility to traverse
197 // the function top-down or bottom-up via the dominator tree, and keep
198 // track of the available registers.
199 class Transformation {
200 public:
201 bool TopDown;
202 Transformation(bool TD) : TopDown(TD) {}
203 virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
204 virtual ~Transformation() {}
205 };
206}
207
208INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
209 "Hexagon bit simplification", false, false)
210INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
211INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
212 "Hexagon bit simplification", false, false)
213
214
215bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
216 RegisterSet &AVs) {
217 MachineDomTreeNode *N = MDT->getNode(&B);
218 typedef GraphTraits<MachineDomTreeNode*> GTN;
219 bool Changed = false;
220
221 if (T.TopDown)
222 Changed = T.processBlock(B, AVs);
223
224 RegisterSet Defs;
225 for (auto &I : B)
226 getInstrDefs(I, Defs);
227 RegisterSet NewAVs = AVs;
228 NewAVs.insert(Defs);
229
230 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
231 MachineBasicBlock *SB = (*I)->getBlock();
232 Changed |= visitBlock(*SB, T, NewAVs);
233 }
234 if (!T.TopDown)
235 Changed |= T.processBlock(B, AVs);
236
237 return Changed;
238}
239
240//
241// Utility functions:
242//
243void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
244 RegisterSet &Defs) {
245 for (auto &Op : MI.operands()) {
246 if (!Op.isReg() || !Op.isDef())
247 continue;
248 unsigned R = Op.getReg();
249 if (!TargetRegisterInfo::isVirtualRegister(R))
250 continue;
251 Defs.insert(R);
252 }
253}
254
255void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
256 RegisterSet &Uses) {
257 for (auto &Op : MI.operands()) {
258 if (!Op.isReg() || !Op.isUse())
259 continue;
260 unsigned R = Op.getReg();
261 if (!TargetRegisterInfo::isVirtualRegister(R))
262 continue;
263 Uses.insert(R);
264 }
265}
266
267// Check if all the bits in range [B, E) in both cells are equal.
268bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
269 uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
270 uint16_t W) {
271 for (uint16_t i = 0; i < W; ++i) {
272 // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
273 if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
274 return false;
275 // Same for RC2[i].
276 if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
277 return false;
278 if (RC1[B1+i] != RC2[B2+i])
279 return false;
280 }
281 return true;
282}
283
Krzysztof Parzyszekced99412015-10-20 22:57:13 +0000284bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
285 uint16_t B, uint16_t W) {
286 assert(B < RC.width() && B+W <= RC.width());
287 for (uint16_t i = B; i < B+W; ++i)
288 if (!RC[i].is(0))
289 return false;
290 return true;
291}
292
293
294bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
295 uint16_t B, uint16_t W, uint64_t &U) {
296 assert(B < RC.width() && B+W <= RC.width());
297 int64_t T = 0;
298 for (uint16_t i = B+W; i > B; --i) {
299 const BitTracker::BitValue &BV = RC[i-1];
300 T <<= 1;
301 if (BV.is(1))
302 T |= 1;
303 else if (!BV.is(0))
304 return false;
305 }
306 U = T;
307 return true;
308}
309
310
311bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
312 MachineRegisterInfo &MRI) {
313 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
314 !TargetRegisterInfo::isVirtualRegister(NewR))
315 return false;
316 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
317 decltype(End) NextI;
318 for (auto I = Begin; I != End; I = NextI) {
319 NextI = std::next(I);
320 I->setReg(NewR);
321 }
322 return Begin != End;
323}
324
325
326bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
327 unsigned NewSR, MachineRegisterInfo &MRI) {
328 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
329 !TargetRegisterInfo::isVirtualRegister(NewR))
330 return false;
331 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
332 decltype(End) NextI;
333 for (auto I = Begin; I != End; I = NextI) {
334 NextI = std::next(I);
335 I->setReg(NewR);
336 I->setSubReg(NewSR);
337 }
338 return Begin != End;
339}
340
341
342bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
343 unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
344 if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
345 !TargetRegisterInfo::isVirtualRegister(NewR))
346 return false;
347 auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
348 decltype(End) NextI;
349 for (auto I = Begin; I != End; I = NextI) {
350 NextI = std::next(I);
351 if (I->getSubReg() != OldSR)
352 continue;
353 I->setReg(NewR);
354 I->setSubReg(NewSR);
355 }
356 return Begin != End;
357}
358
359
360// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
361// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
362// if this succeeded, otherwise return false.
363bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
364 unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
365 const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
366 if (RC == &Hexagon::IntRegsRegClass) {
367 assert(RR.Sub == 0);
368 Begin = 0;
369 Width = 32;
370 return true;
371 }
372 if (RC == &Hexagon::DoubleRegsRegClass) {
373 if (RR.Sub == 0) {
374 Begin = 0;
375 Width = 64;
376 return true;
377 }
378 assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
379 Width = 32;
380 Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
381 return true;
382 }
383 return false;
384}
385
386
387// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
388// subregister.
389bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
390 BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
391 assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
392 unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
393 assert(Sub1 != Sub2);
394 if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
395 SL = I.getOperand(1);
396 SH = I.getOperand(3);
397 return true;
398 }
399 if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
400 SH = I.getOperand(1);
401 SL = I.getOperand(3);
402 return true;
403 }
404 return false;
405}
406
407
408// All stores (except 64-bit stores) take a 32-bit register as the source
409// of the value to be stored. If the instruction stores into a location
410// that is shorter than 32 bits, some bits of the source register are not
411// used. For each store instruction, calculate the set of used bits in
412// the source register, and set appropriate bits in Bits. Return true if
413// the bits are calculated, false otherwise.
414bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
415 uint16_t Begin) {
416 using namespace Hexagon;
417
418 switch (Opc) {
419 // Store byte
420 case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
421 case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
422 case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
423 case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
424 case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
425 case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
426 case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
427 case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
428 case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
429 case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
430 case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
431 case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
432 case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
433 case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
434 case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
435 case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
436 case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
437 case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
438 case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
439 case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
440 case S4_storerb_ap: // memb(Re32=#U6)=Rt32
441 case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
442 case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
443 case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
444 case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
445 case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
446 case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
447 case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
448 case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
449 case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
450 case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
451 case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
452 case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
453 case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
454 case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
455 case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
456 case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
457 case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
458 case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
459 case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
460 case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
461 case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
462 case S2_storerbgp: // memb(gp+#u16:0)=Rt32
463 case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
464 case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
465 case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
466 case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
467 case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
468 case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
469 case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
470 case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
471 case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
472 Bits.set(Begin, Begin+8);
473 return true;
474
475 // Store low half
476 case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
477 case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
478 case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
479 case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
480 case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
481 case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
482 case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
483 case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
484 case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
485 case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
486 case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
487 case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
488 case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
489 case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
490 case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
491 case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
492 case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
493 case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
494 case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
495 case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
496 case S4_storerh_ap: // memh(Re32=#U6)=Rt32
497 case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
498 case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
499 case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
500 case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
501 case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
502 case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
503 case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
504 case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
505 case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
506 case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
507 case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
508 case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
509 case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
510 case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
511 case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
512 case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
513 case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
514 case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
515 case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
516 case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
517 case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
518 case S2_storerhgp: // memh(gp+#u16:1)=Rt32
519 case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
520 case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
521 case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
522 case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
523 case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
524 case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
525 case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
526 case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
527 case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
528 Bits.set(Begin, Begin+16);
529 return true;
530
531 // Store high half
532 case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
533 case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
534 case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
535 case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
536 case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
537 case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
538 case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
539 case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
540 case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
541 case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
542 case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
543 case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
544 case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
545 case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
546 case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
547 case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
548 case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
549 case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
550 case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
551 case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
552 case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
553 case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
554 case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
555 case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
556 case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
557 case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
558 Bits.set(Begin+16, Begin+32);
559 return true;
560 }
561
562 return false;
563}
564
565
566// For an instruction with opcode Opc, calculate the set of bits that it
567// uses in a register in operand OpN. This only calculates the set of used
568// bits for cases where it does not depend on any operands (as is the case
569// in shifts, for example). For concrete instructions from a program, the
570// operand may be a subregister of a larger register, while Bits would
571// correspond to the larger register in its entirety. Because of that,
572// the parameter Begin can be used to indicate which bit of Bits should be
573// considered the LSB of of the operand.
574bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
575 BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
576 using namespace Hexagon;
577
578 const MCInstrDesc &D = HII.get(Opc);
579 if (D.mayStore()) {
580 if (OpN == D.getNumOperands()-1)
581 return getUsedBitsInStore(Opc, Bits, Begin);
582 return false;
583 }
584
585 switch (Opc) {
586 // One register source. Used bits: R1[0-7].
587 case A2_sxtb:
588 case A2_zxtb:
589 case A4_cmpbeqi:
590 case A4_cmpbgti:
591 case A4_cmpbgtui:
592 if (OpN == 1) {
593 Bits.set(Begin, Begin+8);
594 return true;
595 }
596 break;
597
598 // One register source. Used bits: R1[0-15].
599 case A2_aslh:
600 case A2_sxth:
601 case A2_zxth:
602 case A4_cmpheqi:
603 case A4_cmphgti:
604 case A4_cmphgtui:
605 if (OpN == 1) {
606 Bits.set(Begin, Begin+16);
607 return true;
608 }
609 break;
610
611 // One register source. Used bits: R1[16-31].
612 case A2_asrh:
613 if (OpN == 1) {
614 Bits.set(Begin+16, Begin+32);
615 return true;
616 }
617 break;
618
619 // Two register sources. Used bits: R1[0-7], R2[0-7].
620 case A4_cmpbeq:
621 case A4_cmpbgt:
622 case A4_cmpbgtu:
623 if (OpN == 1) {
624 Bits.set(Begin, Begin+8);
625 return true;
626 }
627 break;
628
629 // Two register sources. Used bits: R1[0-15], R2[0-15].
630 case A4_cmpheq:
631 case A4_cmphgt:
632 case A4_cmphgtu:
633 case A2_addh_h16_ll:
634 case A2_addh_h16_sat_ll:
635 case A2_addh_l16_ll:
636 case A2_addh_l16_sat_ll:
637 case A2_combine_ll:
638 case A2_subh_h16_ll:
639 case A2_subh_h16_sat_ll:
640 case A2_subh_l16_ll:
641 case A2_subh_l16_sat_ll:
642 case M2_mpy_acc_ll_s0:
643 case M2_mpy_acc_ll_s1:
644 case M2_mpy_acc_sat_ll_s0:
645 case M2_mpy_acc_sat_ll_s1:
646 case M2_mpy_ll_s0:
647 case M2_mpy_ll_s1:
648 case M2_mpy_nac_ll_s0:
649 case M2_mpy_nac_ll_s1:
650 case M2_mpy_nac_sat_ll_s0:
651 case M2_mpy_nac_sat_ll_s1:
652 case M2_mpy_rnd_ll_s0:
653 case M2_mpy_rnd_ll_s1:
654 case M2_mpy_sat_ll_s0:
655 case M2_mpy_sat_ll_s1:
656 case M2_mpy_sat_rnd_ll_s0:
657 case M2_mpy_sat_rnd_ll_s1:
658 case M2_mpyd_acc_ll_s0:
659 case M2_mpyd_acc_ll_s1:
660 case M2_mpyd_ll_s0:
661 case M2_mpyd_ll_s1:
662 case M2_mpyd_nac_ll_s0:
663 case M2_mpyd_nac_ll_s1:
664 case M2_mpyd_rnd_ll_s0:
665 case M2_mpyd_rnd_ll_s1:
666 case M2_mpyu_acc_ll_s0:
667 case M2_mpyu_acc_ll_s1:
668 case M2_mpyu_ll_s0:
669 case M2_mpyu_ll_s1:
670 case M2_mpyu_nac_ll_s0:
671 case M2_mpyu_nac_ll_s1:
672 case M2_mpyud_acc_ll_s0:
673 case M2_mpyud_acc_ll_s1:
674 case M2_mpyud_ll_s0:
675 case M2_mpyud_ll_s1:
676 case M2_mpyud_nac_ll_s0:
677 case M2_mpyud_nac_ll_s1:
678 if (OpN == 1 || OpN == 2) {
679 Bits.set(Begin, Begin+16);
680 return true;
681 }
682 break;
683
684 // Two register sources. Used bits: R1[0-15], R2[16-31].
685 case A2_addh_h16_lh:
686 case A2_addh_h16_sat_lh:
687 case A2_combine_lh:
688 case A2_subh_h16_lh:
689 case A2_subh_h16_sat_lh:
690 case M2_mpy_acc_lh_s0:
691 case M2_mpy_acc_lh_s1:
692 case M2_mpy_acc_sat_lh_s0:
693 case M2_mpy_acc_sat_lh_s1:
694 case M2_mpy_lh_s0:
695 case M2_mpy_lh_s1:
696 case M2_mpy_nac_lh_s0:
697 case M2_mpy_nac_lh_s1:
698 case M2_mpy_nac_sat_lh_s0:
699 case M2_mpy_nac_sat_lh_s1:
700 case M2_mpy_rnd_lh_s0:
701 case M2_mpy_rnd_lh_s1:
702 case M2_mpy_sat_lh_s0:
703 case M2_mpy_sat_lh_s1:
704 case M2_mpy_sat_rnd_lh_s0:
705 case M2_mpy_sat_rnd_lh_s1:
706 case M2_mpyd_acc_lh_s0:
707 case M2_mpyd_acc_lh_s1:
708 case M2_mpyd_lh_s0:
709 case M2_mpyd_lh_s1:
710 case M2_mpyd_nac_lh_s0:
711 case M2_mpyd_nac_lh_s1:
712 case M2_mpyd_rnd_lh_s0:
713 case M2_mpyd_rnd_lh_s1:
714 case M2_mpyu_acc_lh_s0:
715 case M2_mpyu_acc_lh_s1:
716 case M2_mpyu_lh_s0:
717 case M2_mpyu_lh_s1:
718 case M2_mpyu_nac_lh_s0:
719 case M2_mpyu_nac_lh_s1:
720 case M2_mpyud_acc_lh_s0:
721 case M2_mpyud_acc_lh_s1:
722 case M2_mpyud_lh_s0:
723 case M2_mpyud_lh_s1:
724 case M2_mpyud_nac_lh_s0:
725 case M2_mpyud_nac_lh_s1:
726 // These four are actually LH.
727 case A2_addh_l16_hl:
728 case A2_addh_l16_sat_hl:
729 case A2_subh_l16_hl:
730 case A2_subh_l16_sat_hl:
731 if (OpN == 1) {
732 Bits.set(Begin, Begin+16);
733 return true;
734 }
735 if (OpN == 2) {
736 Bits.set(Begin+16, Begin+32);
737 return true;
738 }
739 break;
740
741 // Two register sources, used bits: R1[16-31], R2[0-15].
742 case A2_addh_h16_hl:
743 case A2_addh_h16_sat_hl:
744 case A2_combine_hl:
745 case A2_subh_h16_hl:
746 case A2_subh_h16_sat_hl:
747 case M2_mpy_acc_hl_s0:
748 case M2_mpy_acc_hl_s1:
749 case M2_mpy_acc_sat_hl_s0:
750 case M2_mpy_acc_sat_hl_s1:
751 case M2_mpy_hl_s0:
752 case M2_mpy_hl_s1:
753 case M2_mpy_nac_hl_s0:
754 case M2_mpy_nac_hl_s1:
755 case M2_mpy_nac_sat_hl_s0:
756 case M2_mpy_nac_sat_hl_s1:
757 case M2_mpy_rnd_hl_s0:
758 case M2_mpy_rnd_hl_s1:
759 case M2_mpy_sat_hl_s0:
760 case M2_mpy_sat_hl_s1:
761 case M2_mpy_sat_rnd_hl_s0:
762 case M2_mpy_sat_rnd_hl_s1:
763 case M2_mpyd_acc_hl_s0:
764 case M2_mpyd_acc_hl_s1:
765 case M2_mpyd_hl_s0:
766 case M2_mpyd_hl_s1:
767 case M2_mpyd_nac_hl_s0:
768 case M2_mpyd_nac_hl_s1:
769 case M2_mpyd_rnd_hl_s0:
770 case M2_mpyd_rnd_hl_s1:
771 case M2_mpyu_acc_hl_s0:
772 case M2_mpyu_acc_hl_s1:
773 case M2_mpyu_hl_s0:
774 case M2_mpyu_hl_s1:
775 case M2_mpyu_nac_hl_s0:
776 case M2_mpyu_nac_hl_s1:
777 case M2_mpyud_acc_hl_s0:
778 case M2_mpyud_acc_hl_s1:
779 case M2_mpyud_hl_s0:
780 case M2_mpyud_hl_s1:
781 case M2_mpyud_nac_hl_s0:
782 case M2_mpyud_nac_hl_s1:
783 if (OpN == 1) {
784 Bits.set(Begin+16, Begin+32);
785 return true;
786 }
787 if (OpN == 2) {
788 Bits.set(Begin, Begin+16);
789 return true;
790 }
791 break;
792
793 // Two register sources, used bits: R1[16-31], R2[16-31].
794 case A2_addh_h16_hh:
795 case A2_addh_h16_sat_hh:
796 case A2_combine_hh:
797 case A2_subh_h16_hh:
798 case A2_subh_h16_sat_hh:
799 case M2_mpy_acc_hh_s0:
800 case M2_mpy_acc_hh_s1:
801 case M2_mpy_acc_sat_hh_s0:
802 case M2_mpy_acc_sat_hh_s1:
803 case M2_mpy_hh_s0:
804 case M2_mpy_hh_s1:
805 case M2_mpy_nac_hh_s0:
806 case M2_mpy_nac_hh_s1:
807 case M2_mpy_nac_sat_hh_s0:
808 case M2_mpy_nac_sat_hh_s1:
809 case M2_mpy_rnd_hh_s0:
810 case M2_mpy_rnd_hh_s1:
811 case M2_mpy_sat_hh_s0:
812 case M2_mpy_sat_hh_s1:
813 case M2_mpy_sat_rnd_hh_s0:
814 case M2_mpy_sat_rnd_hh_s1:
815 case M2_mpyd_acc_hh_s0:
816 case M2_mpyd_acc_hh_s1:
817 case M2_mpyd_hh_s0:
818 case M2_mpyd_hh_s1:
819 case M2_mpyd_nac_hh_s0:
820 case M2_mpyd_nac_hh_s1:
821 case M2_mpyd_rnd_hh_s0:
822 case M2_mpyd_rnd_hh_s1:
823 case M2_mpyu_acc_hh_s0:
824 case M2_mpyu_acc_hh_s1:
825 case M2_mpyu_hh_s0:
826 case M2_mpyu_hh_s1:
827 case M2_mpyu_nac_hh_s0:
828 case M2_mpyu_nac_hh_s1:
829 case M2_mpyud_acc_hh_s0:
830 case M2_mpyud_acc_hh_s1:
831 case M2_mpyud_hh_s0:
832 case M2_mpyud_hh_s1:
833 case M2_mpyud_nac_hh_s0:
834 case M2_mpyud_nac_hh_s1:
835 if (OpN == 1 || OpN == 2) {
836 Bits.set(Begin+16, Begin+32);
837 return true;
838 }
839 break;
840 }
841
842 return false;
843}
844
845
846// Calculate the register class that matches Reg:Sub. For example, if
847// vreg1 is a double register, then vreg1:subreg_hireg would match "int"
848// register class.
849const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
850 const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
851 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
852 return nullptr;
853 auto *RC = MRI.getRegClass(RR.Reg);
854 if (RR.Sub == 0)
855 return RC;
856
857 auto VerifySR = [] (unsigned Sub) -> void {
858 assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
859 };
860
861 switch (RC->getID()) {
862 case Hexagon::DoubleRegsRegClassID:
863 VerifySR(RR.Sub);
864 return &Hexagon::IntRegsRegClass;
Krzysztof Parzyszek5337a3e2016-01-14 21:45:43 +0000865 case Hexagon::VecDblRegsRegClassID:
866 VerifySR(RR.Sub);
867 return &Hexagon::VectorRegsRegClass;
868 case Hexagon::VecDblRegs128BRegClassID:
869 VerifySR(RR.Sub);
870 return &Hexagon::VectorRegs128BRegClass;
Krzysztof Parzyszekced99412015-10-20 22:57:13 +0000871 }
872 return nullptr;
873}
874
875
876// Check if RD could be replaced with RS at any possible use of RD.
877// For example a predicate register cannot be replaced with a integer
878// register, but a 64-bit register with a subregister can be replaced
879// with a 32-bit register.
880bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
881 const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
882 if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
883 !TargetRegisterInfo::isVirtualRegister(RS.Reg))
884 return false;
885 // Return false if one (or both) classes are nullptr.
886 auto *DRC = getFinalVRegClass(RD, MRI);
887 if (!DRC)
888 return false;
889
890 return DRC == getFinalVRegClass(RS, MRI);
891}
892
893
894//
895// Dead code elimination
896//
897namespace {
898 class DeadCodeElimination {
899 public:
900 DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
901 : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
902 MDT(mdt), MRI(mf.getRegInfo()) {}
903
904 bool run() {
905 return runOnNode(MDT.getRootNode());
906 }
907
908 private:
909 bool isDead(unsigned R) const;
910 bool runOnNode(MachineDomTreeNode *N);
911
912 MachineFunction &MF;
913 const HexagonInstrInfo &HII;
914 MachineDominatorTree &MDT;
915 MachineRegisterInfo &MRI;
916 };
917}
918
919
920bool DeadCodeElimination::isDead(unsigned R) const {
921 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
922 MachineInstr *UseI = I->getParent();
923 if (UseI->isDebugValue())
924 continue;
925 if (UseI->isPHI()) {
926 assert(!UseI->getOperand(0).getSubReg());
927 unsigned DR = UseI->getOperand(0).getReg();
928 if (DR == R)
929 continue;
930 }
931 return false;
932 }
933 return true;
934}
935
936
937bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
938 bool Changed = false;
939 typedef GraphTraits<MachineDomTreeNode*> GTN;
940 for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
941 Changed |= runOnNode(*I);
942
943 MachineBasicBlock *B = N->getBlock();
944 std::vector<MachineInstr*> Instrs;
945 for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
946 Instrs.push_back(&*I);
947
948 for (auto MI : Instrs) {
949 unsigned Opc = MI->getOpcode();
950 // Do not touch lifetime markers. This is why the target-independent DCE
951 // cannot be used.
952 if (Opc == TargetOpcode::LIFETIME_START ||
953 Opc == TargetOpcode::LIFETIME_END)
954 continue;
955 bool Store = false;
956 if (MI->isInlineAsm())
957 continue;
958 // Delete PHIs if possible.
959 if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
960 continue;
961
962 bool AllDead = true;
963 SmallVector<unsigned,2> Regs;
964 for (auto &Op : MI->operands()) {
965 if (!Op.isReg() || !Op.isDef())
966 continue;
967 unsigned R = Op.getReg();
968 if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
969 AllDead = false;
970 break;
971 }
972 Regs.push_back(R);
973 }
974 if (!AllDead)
975 continue;
976
977 B->erase(MI);
978 for (unsigned i = 0, n = Regs.size(); i != n; ++i)
979 MRI.markUsesInDebugValueAsUndef(Regs[i]);
980 Changed = true;
981 }
982
983 return Changed;
984}
985
986
987//
988// Eliminate redundant instructions
989//
990// This transformation will identify instructions where the output register
991// is the same as one of its input registers. This only works on instructions
992// that define a single register (unlike post-increment loads, for example).
993// The equality check is actually more detailed: the code calculates which
994// bits of the output are used, and only compares these bits with the input
995// registers.
996// If the output matches an input, the instruction is replaced with COPY.
997// The copies will be removed by another transformation.
998namespace {
999 class RedundantInstrElimination : public Transformation {
1000 public:
1001 RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
1002 MachineRegisterInfo &mri)
1003 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1004 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1005 private:
1006 bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
1007 unsigned &LostB, unsigned &LostE);
1008 bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
1009 unsigned &LostB, unsigned &LostE);
1010 bool computeUsedBits(unsigned Reg, BitVector &Bits);
1011 bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
1012 uint16_t Begin);
1013 bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
1014
1015 const HexagonInstrInfo &HII;
1016 MachineRegisterInfo &MRI;
1017 BitTracker &BT;
1018 };
1019}
1020
1021
1022// Check if the instruction is a lossy shift left, where the input being
1023// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1024// of bit indices that are lost.
1025bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
1026 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1027 using namespace Hexagon;
1028 unsigned Opc = MI.getOpcode();
1029 unsigned ImN, RegN, Width;
1030 switch (Opc) {
1031 case S2_asl_i_p:
1032 ImN = 2;
1033 RegN = 1;
1034 Width = 64;
1035 break;
1036 case S2_asl_i_p_acc:
1037 case S2_asl_i_p_and:
1038 case S2_asl_i_p_nac:
1039 case S2_asl_i_p_or:
1040 case S2_asl_i_p_xacc:
1041 ImN = 3;
1042 RegN = 2;
1043 Width = 64;
1044 break;
1045 case S2_asl_i_r:
1046 ImN = 2;
1047 RegN = 1;
1048 Width = 32;
1049 break;
1050 case S2_addasl_rrri:
1051 case S4_andi_asl_ri:
1052 case S4_ori_asl_ri:
1053 case S4_addi_asl_ri:
1054 case S4_subi_asl_ri:
1055 case S2_asl_i_r_acc:
1056 case S2_asl_i_r_and:
1057 case S2_asl_i_r_nac:
1058 case S2_asl_i_r_or:
1059 case S2_asl_i_r_sat:
1060 case S2_asl_i_r_xacc:
1061 ImN = 3;
1062 RegN = 2;
1063 Width = 32;
1064 break;
1065 default:
1066 return false;
1067 }
1068
1069 if (RegN != OpN)
1070 return false;
1071
1072 assert(MI.getOperand(ImN).isImm());
1073 unsigned S = MI.getOperand(ImN).getImm();
1074 if (S == 0)
1075 return false;
1076 LostB = Width-S;
1077 LostE = Width;
1078 return true;
1079}
1080
1081
1082// Check if the instruction is a lossy shift right, where the input being
1083// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
1084// of bit indices that are lost.
1085bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
1086 unsigned OpN, unsigned &LostB, unsigned &LostE) {
1087 using namespace Hexagon;
1088 unsigned Opc = MI.getOpcode();
1089 unsigned ImN, RegN;
1090 switch (Opc) {
1091 case S2_asr_i_p:
1092 case S2_lsr_i_p:
1093 ImN = 2;
1094 RegN = 1;
1095 break;
1096 case S2_asr_i_p_acc:
1097 case S2_asr_i_p_and:
1098 case S2_asr_i_p_nac:
1099 case S2_asr_i_p_or:
1100 case S2_lsr_i_p_acc:
1101 case S2_lsr_i_p_and:
1102 case S2_lsr_i_p_nac:
1103 case S2_lsr_i_p_or:
1104 case S2_lsr_i_p_xacc:
1105 ImN = 3;
1106 RegN = 2;
1107 break;
1108 case S2_asr_i_r:
1109 case S2_lsr_i_r:
1110 ImN = 2;
1111 RegN = 1;
1112 break;
1113 case S4_andi_lsr_ri:
1114 case S4_ori_lsr_ri:
1115 case S4_addi_lsr_ri:
1116 case S4_subi_lsr_ri:
1117 case S2_asr_i_r_acc:
1118 case S2_asr_i_r_and:
1119 case S2_asr_i_r_nac:
1120 case S2_asr_i_r_or:
1121 case S2_lsr_i_r_acc:
1122 case S2_lsr_i_r_and:
1123 case S2_lsr_i_r_nac:
1124 case S2_lsr_i_r_or:
1125 case S2_lsr_i_r_xacc:
1126 ImN = 3;
1127 RegN = 2;
1128 break;
1129
1130 default:
1131 return false;
1132 }
1133
1134 if (RegN != OpN)
1135 return false;
1136
1137 assert(MI.getOperand(ImN).isImm());
1138 unsigned S = MI.getOperand(ImN).getImm();
1139 LostB = 0;
1140 LostE = S;
1141 return true;
1142}
1143
1144
1145// Calculate the bit vector that corresponds to the used bits of register Reg.
1146// The vector Bits has the same size, as the size of Reg in bits. If the cal-
1147// culation fails (i.e. the used bits are unknown), it returns false. Other-
1148// wise, it returns true and sets the corresponding bits in Bits.
1149bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
1150 BitVector Used(Bits.size());
1151 RegisterSet Visited;
1152 std::vector<unsigned> Pending;
1153 Pending.push_back(Reg);
1154
1155 for (unsigned i = 0; i < Pending.size(); ++i) {
1156 unsigned R = Pending[i];
1157 if (Visited.has(R))
1158 continue;
1159 Visited.insert(R);
1160 for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
1161 BitTracker::RegisterRef UR = *I;
1162 unsigned B, W;
1163 if (!HBS::getSubregMask(UR, B, W, MRI))
1164 return false;
1165 MachineInstr &UseI = *I->getParent();
1166 if (UseI.isPHI() || UseI.isCopy()) {
1167 unsigned DefR = UseI.getOperand(0).getReg();
1168 if (!TargetRegisterInfo::isVirtualRegister(DefR))
1169 return false;
1170 Pending.push_back(DefR);
1171 } else {
1172 if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
1173 return false;
1174 }
1175 }
1176 }
1177 Bits |= Used;
1178 return true;
1179}
1180
1181
1182// Calculate the bits used by instruction MI in a register in operand OpN.
1183// Return true/false if the calculation succeeds/fails. If is succeeds, set
1184// used bits in Bits. This function does not reset any bits in Bits, so
1185// subsequent calls over different instructions will result in the union
1186// of the used bits in all these instructions.
1187// The register in question may be used with a sub-register, whereas Bits
1188// holds the bits for the entire register. To keep track of that, the
1189// argument Begin indicates where in Bits is the lowest-significant bit
1190// of the register used in operand OpN. For example, in instruction:
1191// vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
1192// the operand 1 is a 32-bit register, which happens to be a subregister
1193// of the 64-bit register vreg2, and that subregister starts at position 32.
1194// In this case Begin=32, since Bits[32] would be the lowest-significant bit
1195// of vreg2:subreg_hireg.
1196bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
1197 unsigned OpN, BitVector &Bits, uint16_t Begin) {
1198 unsigned Opc = MI.getOpcode();
1199 BitVector T(Bits.size());
1200 bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
1201 // Even if we don't have bits yet, we could still provide some information
1202 // if the instruction is a lossy shift: the lost bits will be marked as
1203 // not used.
1204 unsigned LB, LE;
1205 if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
1206 assert(MI.getOperand(OpN).isReg());
1207 BitTracker::RegisterRef RR = MI.getOperand(OpN);
1208 const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
1209 uint16_t Width = RC->getSize()*8;
1210
1211 if (!GotBits)
1212 T.set(Begin, Begin+Width);
1213 assert(LB <= LE && LB < Width && LE <= Width);
1214 T.reset(Begin+LB, Begin+LE);
1215 GotBits = true;
1216 }
1217 if (GotBits)
1218 Bits |= T;
1219 return GotBits;
1220}
1221
1222
1223// Calculates the used bits in RD ("defined register"), and checks if these
1224// bits in RS ("used register") and RD are identical.
1225bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
1226 BitTracker::RegisterRef RS) {
1227 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
1228 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1229
1230 unsigned DB, DW;
1231 if (!HBS::getSubregMask(RD, DB, DW, MRI))
1232 return false;
1233 unsigned SB, SW;
1234 if (!HBS::getSubregMask(RS, SB, SW, MRI))
1235 return false;
1236 if (SW != DW)
1237 return false;
1238
1239 BitVector Used(DC.width());
1240 if (!computeUsedBits(RD.Reg, Used))
1241 return false;
1242
1243 for (unsigned i = 0; i != DW; ++i)
1244 if (Used[i+DB] && DC[DB+i] != SC[SB+i])
1245 return false;
1246 return true;
1247}
1248
1249
1250bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
1251 const RegisterSet&) {
1252 bool Changed = false;
1253
1254 for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
1255 NextI = std::next(I);
1256 MachineInstr *MI = &*I;
1257
1258 if (MI->getOpcode() == TargetOpcode::COPY)
1259 continue;
1260 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
1261 continue;
1262 unsigned NumD = MI->getDesc().getNumDefs();
1263 if (NumD != 1)
1264 continue;
1265
1266 BitTracker::RegisterRef RD = MI->getOperand(0);
1267 if (!BT.has(RD.Reg))
1268 continue;
1269 const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001270 auto At = MI->isPHI() ? B.getFirstNonPHI()
1271 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001272
1273 // Find a source operand that is equal to the result.
1274 for (auto &Op : MI->uses()) {
1275 if (!Op.isReg())
1276 continue;
1277 BitTracker::RegisterRef RS = Op;
1278 if (!BT.has(RS.Reg))
1279 continue;
1280 if (!HBS::isTransparentCopy(RD, RS, MRI))
1281 continue;
1282
1283 unsigned BN, BW;
1284 if (!HBS::getSubregMask(RS, BN, BW, MRI))
1285 continue;
1286
1287 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
1288 if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
1289 continue;
1290
1291 // If found, replace the instruction with a COPY.
Benjamin Kramer4ca41fd2016-06-12 17:30:47 +00001292 const DebugLoc &DL = MI->getDebugLoc();
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001293 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
1294 unsigned NewR = MRI.createVirtualRegister(FRC);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001295 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001296 .addReg(RS.Reg, 0, RS.Sub);
1297 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1298 BT.put(BitTracker::RegisterRef(NewR), SC);
1299 Changed = true;
1300 break;
1301 }
1302 }
1303
1304 return Changed;
1305}
1306
1307
1308//
1309// Const generation
1310//
1311// Recognize instructions that produce constant values known at compile-time.
1312// Replace them with register definitions that load these constants directly.
1313namespace {
1314 class ConstGeneration : public Transformation {
1315 public:
1316 ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1317 MachineRegisterInfo &mri)
1318 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1319 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1320 private:
1321 bool isTfrConst(const MachineInstr *MI) const;
1322 bool isConst(unsigned R, int64_t &V) const;
1323 unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
1324 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
1325
1326 const HexagonInstrInfo &HII;
1327 MachineRegisterInfo &MRI;
1328 BitTracker &BT;
1329 };
1330}
1331
1332bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
1333 if (!BT.has(R))
1334 return false;
1335 const BitTracker::RegisterCell &RC = BT.lookup(R);
1336 int64_t T = 0;
1337 for (unsigned i = RC.width(); i > 0; --i) {
1338 const BitTracker::BitValue &V = RC[i-1];
1339 T <<= 1;
1340 if (V.is(1))
1341 T |= 1;
1342 else if (!V.is(0))
1343 return false;
1344 }
1345 C = T;
1346 return true;
1347}
1348
1349
1350bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
1351 unsigned Opc = MI->getOpcode();
1352 switch (Opc) {
1353 case Hexagon::A2_combineii:
1354 case Hexagon::A4_combineii:
1355 case Hexagon::A2_tfrsi:
1356 case Hexagon::A2_tfrpi:
1357 case Hexagon::TFR_PdTrue:
1358 case Hexagon::TFR_PdFalse:
1359 case Hexagon::CONST32_Int_Real:
1360 case Hexagon::CONST64_Int_Real:
1361 return true;
1362 }
1363 return false;
1364}
1365
1366
1367// Generate a transfer-immediate instruction that is appropriate for the
1368// register class and the actual value being transferred.
1369unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
1370 MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
1371 unsigned Reg = MRI.createVirtualRegister(RC);
1372 if (RC == &Hexagon::IntRegsRegClass) {
1373 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
1374 .addImm(int32_t(C));
1375 return Reg;
1376 }
1377
1378 if (RC == &Hexagon::DoubleRegsRegClass) {
1379 if (isInt<8>(C)) {
1380 BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
1381 .addImm(C);
1382 return Reg;
1383 }
1384
1385 unsigned Lo = Lo_32(C), Hi = Hi_32(C);
1386 if (isInt<8>(Lo) || isInt<8>(Hi)) {
1387 unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
1388 : Hexagon::A4_combineii;
1389 BuildMI(B, At, DL, HII.get(Opc), Reg)
1390 .addImm(int32_t(Hi))
1391 .addImm(int32_t(Lo));
1392 return Reg;
1393 }
1394
1395 BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
1396 .addImm(C);
1397 return Reg;
1398 }
1399
1400 if (RC == &Hexagon::PredRegsRegClass) {
1401 unsigned Opc;
1402 if (C == 0)
1403 Opc = Hexagon::TFR_PdFalse;
1404 else if ((C & 0xFF) == 0xFF)
1405 Opc = Hexagon::TFR_PdTrue;
1406 else
1407 return 0;
1408 BuildMI(B, At, DL, HII.get(Opc), Reg);
1409 return Reg;
1410 }
1411
1412 return 0;
1413}
1414
1415
1416bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1417 bool Changed = false;
1418 RegisterSet Defs;
1419
1420 for (auto I = B.begin(), E = B.end(); I != E; ++I) {
1421 if (isTfrConst(I))
1422 continue;
1423 Defs.clear();
1424 HBS::getInstrDefs(*I, Defs);
1425 if (Defs.count() != 1)
1426 continue;
1427 unsigned DR = Defs.find_first();
1428 if (!TargetRegisterInfo::isVirtualRegister(DR))
1429 continue;
1430 int64_t C;
1431 if (isConst(DR, C)) {
1432 DebugLoc DL = I->getDebugLoc();
1433 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1434 unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
1435 if (ImmReg) {
1436 HBS::replaceReg(DR, ImmReg, MRI);
1437 BT.put(ImmReg, BT.lookup(DR));
1438 Changed = true;
1439 }
1440 }
1441 }
1442 return Changed;
1443}
1444
1445
1446//
1447// Copy generation
1448//
1449// Identify pairs of available registers which hold identical values.
1450// In such cases, only one of them needs to be calculated, the other one
1451// will be defined as a copy of the first.
1452//
1453// Copy propagation
1454//
1455// Eliminate register copies RD = RS, by replacing the uses of RD with
1456// with uses of RS.
1457namespace {
1458 class CopyGeneration : public Transformation {
1459 public:
1460 CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
1461 MachineRegisterInfo &mri)
1462 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1463 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1464 private:
1465 bool findMatch(const BitTracker::RegisterRef &Inp,
1466 BitTracker::RegisterRef &Out, const RegisterSet &AVs);
1467
1468 const HexagonInstrInfo &HII;
1469 MachineRegisterInfo &MRI;
1470 BitTracker &BT;
1471 };
1472
1473 class CopyPropagation : public Transformation {
1474 public:
1475 CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
1476 : Transformation(false), MRI(mri) {}
1477 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1478 static bool isCopyReg(unsigned Opc);
1479 private:
1480 bool propagateRegCopy(MachineInstr &MI);
1481
1482 MachineRegisterInfo &MRI;
1483 };
1484
1485}
1486
1487
1488/// Check if there is a register in AVs that is identical to Inp. If so,
1489/// set Out to the found register. The output may be a pair Reg:Sub.
1490bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
1491 BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
1492 if (!BT.has(Inp.Reg))
1493 return false;
1494 const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
1495 unsigned B, W;
1496 if (!HBS::getSubregMask(Inp, B, W, MRI))
1497 return false;
1498
1499 for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
1500 if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
1501 continue;
1502 const BitTracker::RegisterCell &RC = BT.lookup(R);
1503 unsigned RW = RC.width();
1504 if (W == RW) {
1505 if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
1506 continue;
1507 if (!HBS::isEqual(InpRC, B, RC, 0, W))
1508 continue;
1509 Out.Reg = R;
1510 Out.Sub = 0;
1511 return true;
1512 }
1513 // Check if there is a super-register, whose part (with a subregister)
1514 // is equal to the input.
1515 // Only do double registers for now.
1516 if (W*2 != RW)
1517 continue;
1518 if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
1519 continue;
1520
1521 if (HBS::isEqual(InpRC, B, RC, 0, W))
1522 Out.Sub = Hexagon::subreg_loreg;
1523 else if (HBS::isEqual(InpRC, B, RC, W, W))
1524 Out.Sub = Hexagon::subreg_hireg;
1525 else
1526 continue;
1527 Out.Reg = R;
1528 return true;
1529 }
1530 return false;
1531}
1532
1533
1534bool CopyGeneration::processBlock(MachineBasicBlock &B,
1535 const RegisterSet &AVs) {
1536 RegisterSet AVB(AVs);
1537 bool Changed = false;
1538 RegisterSet Defs;
1539
1540 for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
1541 ++I, AVB.insert(Defs)) {
1542 NextI = std::next(I);
1543 Defs.clear();
1544 HBS::getInstrDefs(*I, Defs);
1545
1546 unsigned Opc = I->getOpcode();
1547 if (CopyPropagation::isCopyReg(Opc))
1548 continue;
1549
1550 for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
1551 BitTracker::RegisterRef MR;
1552 if (!findMatch(R, MR, AVB))
1553 continue;
1554 DebugLoc DL = I->getDebugLoc();
1555 auto *FRC = HBS::getFinalVRegClass(MR, MRI);
1556 unsigned NewR = MRI.createVirtualRegister(FRC);
1557 auto At = I->isPHI() ? B.getFirstNonPHI() : I;
1558 BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
1559 .addReg(MR.Reg, 0, MR.Sub);
1560 BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
1561 }
1562 }
1563
1564 return Changed;
1565}
1566
1567
1568bool CopyPropagation::isCopyReg(unsigned Opc) {
1569 switch (Opc) {
1570 case TargetOpcode::COPY:
1571 case TargetOpcode::REG_SEQUENCE:
1572 case Hexagon::A2_tfr:
1573 case Hexagon::A2_tfrp:
1574 case Hexagon::A2_combinew:
1575 case Hexagon::A4_combineir:
1576 case Hexagon::A4_combineri:
1577 return true;
1578 default:
1579 break;
1580 }
1581 return false;
1582}
1583
1584
1585bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
1586 bool Changed = false;
1587 unsigned Opc = MI.getOpcode();
1588 BitTracker::RegisterRef RD = MI.getOperand(0);
1589 assert(MI.getOperand(0).getSubReg() == 0);
1590
1591 switch (Opc) {
1592 case TargetOpcode::COPY:
1593 case Hexagon::A2_tfr:
1594 case Hexagon::A2_tfrp: {
1595 BitTracker::RegisterRef RS = MI.getOperand(1);
1596 if (!HBS::isTransparentCopy(RD, RS, MRI))
1597 break;
1598 if (RS.Sub != 0)
1599 Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
1600 else
1601 Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
1602 break;
1603 }
1604 case TargetOpcode::REG_SEQUENCE: {
1605 BitTracker::RegisterRef SL, SH;
1606 if (HBS::parseRegSequence(MI, SL, SH)) {
1607 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1608 SL.Reg, SL.Sub, MRI);
1609 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1610 SH.Reg, SH.Sub, MRI);
1611 }
1612 break;
1613 }
1614 case Hexagon::A2_combinew: {
1615 BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
1616 Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
1617 RL.Reg, RL.Sub, MRI);
1618 Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
1619 RH.Reg, RH.Sub, MRI);
1620 break;
1621 }
1622 case Hexagon::A4_combineir:
1623 case Hexagon::A4_combineri: {
1624 unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
1625 unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
1626 : Hexagon::subreg_hireg;
1627 BitTracker::RegisterRef RS = MI.getOperand(SrcX);
1628 Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
1629 break;
1630 }
1631 }
1632 return Changed;
1633}
1634
1635
1636bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
1637 std::vector<MachineInstr*> Instrs;
1638 for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
1639 Instrs.push_back(&*I);
1640
1641 bool Changed = false;
1642 for (auto I : Instrs) {
1643 unsigned Opc = I->getOpcode();
1644 if (!CopyPropagation::isCopyReg(Opc))
1645 continue;
1646 Changed |= propagateRegCopy(*I);
1647 }
1648
1649 return Changed;
1650}
1651
1652
1653//
1654// Bit simplification
1655//
1656// Recognize patterns that can be simplified and replace them with the
1657// simpler forms.
1658// This is by no means complete
1659namespace {
1660 class BitSimplification : public Transformation {
1661 public:
1662 BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
1663 MachineRegisterInfo &mri)
1664 : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
1665 bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
1666 private:
1667 struct RegHalf : public BitTracker::RegisterRef {
1668 bool Low; // Low/High halfword.
1669 };
1670
1671 bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
1672 unsigned B, RegHalf &RH);
1673
1674 bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
1675 BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
1676 unsigned getCombineOpcode(bool HLow, bool LLow);
1677
1678 bool genStoreUpperHalf(MachineInstr *MI);
1679 bool genStoreImmediate(MachineInstr *MI);
1680 bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
1681 const BitTracker::RegisterCell &RC);
1682 bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1683 const BitTracker::RegisterCell &RC);
1684 bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
1685 const BitTracker::RegisterCell &RC);
1686 bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
1687 const BitTracker::RegisterCell &RC);
1688 bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
1689 const BitTracker::RegisterCell &RC);
1690
1691 const HexagonInstrInfo &HII;
1692 MachineRegisterInfo &MRI;
1693 BitTracker &BT;
1694 };
1695}
1696
1697
1698// Check if the bits [B..B+16) in register cell RC form a valid halfword,
1699// i.e. [0..16), [16..32), etc. of some register. If so, return true and
1700// set the information about the found register in RH.
1701bool BitSimplification::matchHalf(unsigned SelfR,
1702 const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
1703 // XXX This could be searching in the set of available registers, in case
1704 // the match is not exact.
1705
1706 // Match 16-bit chunks, where the RC[B..B+15] references exactly one
1707 // register and all the bits B..B+15 match between RC and the register.
1708 // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
1709 // and RC = { [0]:0 [1-15]:v1[1-15]... }.
1710 bool Low = false;
1711 unsigned I = B;
1712 while (I < B+16 && RC[I].num())
1713 I++;
1714 if (I == B+16)
1715 return false;
1716
1717 unsigned Reg = RC[I].RefI.Reg;
1718 unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
1719 if (P < I-B)
1720 return false;
1721 unsigned Pos = P - (I-B);
1722
1723 if (Reg == 0 || Reg == SelfR) // Don't match "self".
1724 return false;
1725 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1726 return false;
1727 if (!BT.has(Reg))
1728 return false;
1729
1730 const BitTracker::RegisterCell &SC = BT.lookup(Reg);
1731 if (Pos+16 > SC.width())
1732 return false;
1733
1734 for (unsigned i = 0; i < 16; ++i) {
1735 const BitTracker::BitValue &RV = RC[i+B];
1736 if (RV.Type == BitTracker::BitValue::Ref) {
1737 if (RV.RefI.Reg != Reg)
1738 return false;
1739 if (RV.RefI.Pos != i+Pos)
1740 return false;
1741 continue;
1742 }
1743 if (RC[i+B] != SC[i+Pos])
1744 return false;
1745 }
1746
1747 unsigned Sub = 0;
1748 switch (Pos) {
1749 case 0:
1750 Sub = Hexagon::subreg_loreg;
1751 Low = true;
1752 break;
1753 case 16:
1754 Sub = Hexagon::subreg_loreg;
1755 Low = false;
1756 break;
1757 case 32:
1758 Sub = Hexagon::subreg_hireg;
1759 Low = true;
1760 break;
1761 case 48:
1762 Sub = Hexagon::subreg_hireg;
1763 Low = false;
1764 break;
1765 default:
1766 return false;
1767 }
1768
1769 RH.Reg = Reg;
1770 RH.Sub = Sub;
1771 RH.Low = Low;
1772 // If the subregister is not valid with the register, set it to 0.
1773 if (!HBS::getFinalVRegClass(RH, MRI))
1774 RH.Sub = 0;
1775
1776 return true;
1777}
1778
1779
1780// Check if RC matches the pattern of a S2_packhl. If so, return true and
1781// set the inputs Rs and Rt.
1782bool BitSimplification::matchPackhl(unsigned SelfR,
1783 const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
1784 BitTracker::RegisterRef &Rt) {
1785 RegHalf L1, H1, L2, H2;
1786
1787 if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
1788 return false;
1789 if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
1790 return false;
1791
1792 // Rs = H1.L1, Rt = H2.L2
1793 if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
1794 return false;
1795 if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
1796 return false;
1797
1798 Rs = H1;
1799 Rt = H2;
1800 return true;
1801}
1802
1803
1804unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
1805 return HLow ? LLow ? Hexagon::A2_combine_ll
1806 : Hexagon::A2_combine_lh
1807 : LLow ? Hexagon::A2_combine_hl
1808 : Hexagon::A2_combine_hh;
1809}
1810
1811
1812// If MI stores the upper halfword of a register (potentially obtained via
1813// shifts or extracts), replace it with a storerf instruction. This could
1814// cause the "extraction" code to become dead.
1815bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
1816 unsigned Opc = MI->getOpcode();
1817 if (Opc != Hexagon::S2_storerh_io)
1818 return false;
1819
1820 MachineOperand &ValOp = MI->getOperand(2);
1821 BitTracker::RegisterRef RS = ValOp;
1822 if (!BT.has(RS.Reg))
1823 return false;
1824 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1825 RegHalf H;
1826 if (!matchHalf(0, RC, 0, H))
1827 return false;
1828 if (H.Low)
1829 return false;
1830 MI->setDesc(HII.get(Hexagon::S2_storerf_io));
1831 ValOp.setReg(H.Reg);
1832 ValOp.setSubReg(H.Sub);
1833 return true;
1834}
1835
1836
1837// If MI stores a value known at compile-time, and the value is within a range
1838// that avoids using constant-extenders, replace it with a store-immediate.
1839bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
1840 unsigned Opc = MI->getOpcode();
1841 unsigned Align = 0;
1842 switch (Opc) {
1843 case Hexagon::S2_storeri_io:
1844 Align++;
1845 case Hexagon::S2_storerh_io:
1846 Align++;
1847 case Hexagon::S2_storerb_io:
1848 break;
1849 default:
1850 return false;
1851 }
1852
1853 // Avoid stores to frame-indices (due to an unknown offset).
1854 if (!MI->getOperand(0).isReg())
1855 return false;
1856 MachineOperand &OffOp = MI->getOperand(1);
1857 if (!OffOp.isImm())
1858 return false;
1859
1860 int64_t Off = OffOp.getImm();
1861 // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
1862 if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
1863 return false;
1864 // Source register:
1865 BitTracker::RegisterRef RS = MI->getOperand(2);
1866 if (!BT.has(RS.Reg))
1867 return false;
1868 const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
1869 uint64_t U;
1870 if (!HBS::getConst(RC, 0, RC.width(), U))
1871 return false;
1872
1873 // Only consider 8-bit values to avoid constant-extenders.
1874 int V;
1875 switch (Opc) {
1876 case Hexagon::S2_storerb_io:
1877 V = int8_t(U);
1878 break;
1879 case Hexagon::S2_storerh_io:
1880 V = int16_t(U);
1881 break;
1882 case Hexagon::S2_storeri_io:
1883 V = int32_t(U);
1884 break;
1885 }
1886 if (!isInt<8>(V))
1887 return false;
1888
1889 MI->RemoveOperand(2);
1890 switch (Opc) {
1891 case Hexagon::S2_storerb_io:
1892 MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
1893 break;
1894 case Hexagon::S2_storerh_io:
1895 MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
1896 break;
1897 case Hexagon::S2_storeri_io:
1898 MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
1899 break;
1900 }
1901 MI->addOperand(MachineOperand::CreateImm(V));
1902 return true;
1903}
1904
1905
1906// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
1907// last instruction in a sequence that results in something equivalent to
1908// the pack-halfwords. The intent is to cause the entire sequence to become
1909// dead.
1910bool BitSimplification::genPackhl(MachineInstr *MI,
1911 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1912 unsigned Opc = MI->getOpcode();
1913 if (Opc == Hexagon::S2_packhl)
1914 return false;
1915 BitTracker::RegisterRef Rs, Rt;
1916 if (!matchPackhl(RD.Reg, RC, Rs, Rt))
1917 return false;
1918
1919 MachineBasicBlock &B = *MI->getParent();
1920 unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
1921 DebugLoc DL = MI->getDebugLoc();
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001922 auto At = MI->isPHI() ? B.getFirstNonPHI()
1923 : MachineBasicBlock::iterator(MI);
1924 BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001925 .addReg(Rs.Reg, 0, Rs.Sub)
1926 .addReg(Rt.Reg, 0, Rt.Sub);
1927 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1928 BT.put(BitTracker::RegisterRef(NewR), RC);
1929 return true;
1930}
1931
1932
1933// If MI produces halfword of the input in the low half of the output,
1934// replace it with zero-extend or extractu.
1935bool BitSimplification::genExtractHalf(MachineInstr *MI,
1936 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1937 RegHalf L;
1938 // Check for halfword in low 16 bits, zeros elsewhere.
1939 if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
1940 return false;
1941
1942 unsigned Opc = MI->getOpcode();
1943 MachineBasicBlock &B = *MI->getParent();
1944 DebugLoc DL = MI->getDebugLoc();
1945
1946 // Prefer zxth, since zxth can go in any slot, while extractu only in
1947 // slots 2 and 3.
1948 unsigned NewR = 0;
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001949 auto At = MI->isPHI() ? B.getFirstNonPHI()
1950 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001951 if (L.Low && Opc != Hexagon::A2_zxth) {
1952 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001953 BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001954 .addReg(L.Reg, 0, L.Sub);
Krzysztof Parzyszek0d112122016-01-14 21:59:22 +00001955 } else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001956 NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszek0d112122016-01-14 21:59:22 +00001957 BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001958 .addReg(L.Reg, 0, L.Sub)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001959 .addImm(16);
1960 }
1961 if (NewR == 0)
1962 return false;
1963 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1964 BT.put(BitTracker::RegisterRef(NewR), RC);
1965 return true;
1966}
1967
1968
1969// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
1970// combine.
1971bool BitSimplification::genCombineHalf(MachineInstr *MI,
1972 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
1973 RegHalf L, H;
1974 // Check for combine h/l
1975 if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
1976 return false;
1977 // Do nothing if this is just a reg copy.
1978 if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
1979 return false;
1980
1981 unsigned Opc = MI->getOpcode();
1982 unsigned COpc = getCombineOpcode(H.Low, L.Low);
1983 if (COpc == Opc)
1984 return false;
1985
1986 MachineBasicBlock &B = *MI->getParent();
1987 DebugLoc DL = MI->getDebugLoc();
1988 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00001989 auto At = MI->isPHI() ? B.getFirstNonPHI()
1990 : MachineBasicBlock::iterator(MI);
1991 BuildMI(B, At, DL, HII.get(COpc), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00001992 .addReg(H.Reg, 0, H.Sub)
1993 .addReg(L.Reg, 0, L.Sub);
1994 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
1995 BT.put(BitTracker::RegisterRef(NewR), RC);
1996 return true;
1997}
1998
1999
2000// If MI resets high bits of a register and keeps the lower ones, replace it
2001// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
2002bool BitSimplification::genExtractLow(MachineInstr *MI,
2003 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2004 unsigned Opc = MI->getOpcode();
2005 switch (Opc) {
2006 case Hexagon::A2_zxtb:
2007 case Hexagon::A2_zxth:
2008 case Hexagon::S2_extractu:
2009 return false;
2010 }
2011 if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
2012 int32_t Imm = MI->getOperand(2).getImm();
2013 if (isInt<10>(Imm))
2014 return false;
2015 }
2016
2017 if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
2018 return false;
2019 unsigned W = RC.width();
2020 while (W > 0 && RC[W-1].is(0))
2021 W--;
2022 if (W == 0 || W == RC.width())
2023 return false;
2024 unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
2025 : (W == 16) ? Hexagon::A2_zxth
2026 : (W < 10) ? Hexagon::A2_andir
2027 : Hexagon::S2_extractu;
2028 MachineBasicBlock &B = *MI->getParent();
2029 DebugLoc DL = MI->getDebugLoc();
2030
2031 for (auto &Op : MI->uses()) {
2032 if (!Op.isReg())
2033 continue;
2034 BitTracker::RegisterRef RS = Op;
2035 if (!BT.has(RS.Reg))
2036 continue;
2037 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2038 unsigned BN, BW;
2039 if (!HBS::getSubregMask(RS, BN, BW, MRI))
2040 continue;
2041 if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
2042 continue;
2043
2044 unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002045 auto At = MI->isPHI() ? B.getFirstNonPHI()
2046 : MachineBasicBlock::iterator(MI);
2047 auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002048 .addReg(RS.Reg, 0, RS.Sub);
2049 if (NewOpc == Hexagon::A2_andir)
2050 MIB.addImm((1 << W) - 1);
2051 else if (NewOpc == Hexagon::S2_extractu)
2052 MIB.addImm(W).addImm(0);
2053 HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
2054 BT.put(BitTracker::RegisterRef(NewR), RC);
2055 return true;
2056 }
2057 return false;
2058}
2059
2060
2061// Check for tstbit simplification opportunity, where the bit being checked
2062// can be tracked back to another register. For example:
2063// vreg2 = S2_lsr_i_r vreg1, 5
2064// vreg3 = S2_tstbit_i vreg2, 0
2065// =>
2066// vreg3 = S2_tstbit_i vreg1, 5
2067bool BitSimplification::simplifyTstbit(MachineInstr *MI,
2068 BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
2069 unsigned Opc = MI->getOpcode();
2070 if (Opc != Hexagon::S2_tstbit_i)
2071 return false;
2072
2073 unsigned BN = MI->getOperand(2).getImm();
2074 BitTracker::RegisterRef RS = MI->getOperand(1);
2075 unsigned F, W;
2076 DebugLoc DL = MI->getDebugLoc();
2077 if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
2078 return false;
2079 MachineBasicBlock &B = *MI->getParent();
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002080 auto At = MI->isPHI() ? B.getFirstNonPHI()
2081 : MachineBasicBlock::iterator(MI);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002082
2083 const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
2084 const BitTracker::BitValue &V = SC[F+BN];
2085 if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
2086 const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
2087 // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
2088 // a double register, need to use a subregister and adjust bit
2089 // number.
2090 unsigned P = UINT_MAX;
2091 BitTracker::RegisterRef RR(V.RefI.Reg, 0);
2092 if (TC == &Hexagon::DoubleRegsRegClass) {
2093 P = V.RefI.Pos;
2094 RR.Sub = Hexagon::subreg_loreg;
2095 if (P >= 32) {
2096 P -= 32;
2097 RR.Sub = Hexagon::subreg_hireg;
2098 }
2099 } else if (TC == &Hexagon::IntRegsRegClass) {
2100 P = V.RefI.Pos;
2101 }
2102 if (P != UINT_MAX) {
2103 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002104 BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002105 .addReg(RR.Reg, 0, RR.Sub)
2106 .addImm(P);
2107 HBS::replaceReg(RD.Reg, NewR, MRI);
2108 BT.put(NewR, RC);
2109 return true;
2110 }
2111 } else if (V.is(0) || V.is(1)) {
2112 unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
2113 unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
Krzysztof Parzyszeka3c5d442016-01-13 15:48:18 +00002114 BuildMI(B, At, DL, HII.get(NewOpc), NewR);
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002115 HBS::replaceReg(RD.Reg, NewR, MRI);
2116 return true;
2117 }
2118
2119 return false;
2120}
2121
2122
2123bool BitSimplification::processBlock(MachineBasicBlock &B,
2124 const RegisterSet &AVs) {
2125 bool Changed = false;
2126 RegisterSet AVB = AVs;
2127 RegisterSet Defs;
2128
2129 for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
2130 MachineInstr *MI = &*I;
2131 Defs.clear();
2132 HBS::getInstrDefs(*MI, Defs);
2133
2134 unsigned Opc = MI->getOpcode();
2135 if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
2136 continue;
2137
2138 if (MI->mayStore()) {
2139 bool T = genStoreUpperHalf(MI);
2140 T = T || genStoreImmediate(MI);
2141 Changed |= T;
2142 continue;
2143 }
2144
2145 if (Defs.count() != 1)
2146 continue;
2147 const MachineOperand &Op0 = MI->getOperand(0);
2148 if (!Op0.isReg() || !Op0.isDef())
2149 continue;
2150 BitTracker::RegisterRef RD = Op0;
2151 if (!BT.has(RD.Reg))
2152 continue;
2153 const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
2154 const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
2155
2156 if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
2157 bool T = genPackhl(MI, RD, RC);
2158 Changed |= T;
2159 continue;
2160 }
2161
2162 if (FRC->getID() == Hexagon::IntRegsRegClassID) {
2163 bool T = genExtractHalf(MI, RD, RC);
2164 T = T || genCombineHalf(MI, RD, RC);
2165 T = T || genExtractLow(MI, RD, RC);
2166 Changed |= T;
2167 continue;
2168 }
2169
2170 if (FRC->getID() == Hexagon::PredRegsRegClassID) {
2171 bool T = simplifyTstbit(MI, RD, RC);
2172 Changed |= T;
2173 continue;
2174 }
2175 }
2176 return Changed;
2177}
2178
2179
2180bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
Andrew Kaylor5b444a22016-04-26 19:46:28 +00002181 if (skipFunction(*MF.getFunction()))
2182 return false;
2183
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002184 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2185 auto &HRI = *HST.getRegisterInfo();
2186 auto &HII = *HST.getInstrInfo();
2187
2188 MDT = &getAnalysis<MachineDominatorTree>();
2189 MachineRegisterInfo &MRI = MF.getRegInfo();
2190 bool Changed;
2191
2192 Changed = DeadCodeElimination(MF, *MDT).run();
2193
2194 const HexagonEvaluator HE(HRI, MRI, HII, MF);
2195 BitTracker BT(HE, MF);
2196 DEBUG(BT.trace(true));
2197 BT.run();
2198
2199 MachineBasicBlock &Entry = MF.front();
2200
2201 RegisterSet AIG; // Available registers for IG.
2202 ConstGeneration ImmG(BT, HII, MRI);
2203 Changed |= visitBlock(Entry, ImmG, AIG);
2204
2205 RegisterSet ARE; // Available registers for RIE.
2206 RedundantInstrElimination RIE(BT, HII, MRI);
2207 Changed |= visitBlock(Entry, RIE, ARE);
2208
2209 RegisterSet ACG; // Available registers for CG.
2210 CopyGeneration CopyG(BT, HII, MRI);
2211 Changed |= visitBlock(Entry, CopyG, ACG);
2212
2213 RegisterSet ACP; // Available registers for CP.
2214 CopyPropagation CopyP(HRI, MRI);
2215 Changed |= visitBlock(Entry, CopyP, ACP);
2216
2217 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2218
2219 BT.run();
2220 RegisterSet ABS; // Available registers for BS.
2221 BitSimplification BitS(BT, HII, MRI);
2222 Changed |= visitBlock(Entry, BitS, ABS);
2223
2224 Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
2225
2226 if (Changed) {
2227 for (auto &B : MF)
2228 for (auto &I : B)
2229 I.clearKillInfo();
2230 DeadCodeElimination(MF, *MDT).run();
2231 }
2232 return Changed;
2233}
2234
2235
2236// Recognize loops where the code at the end of the loop matches the code
2237// before the entry of the loop, and the matching code is such that is can
2238// be simplified. This pass relies on the bit simplification above and only
2239// prepares code in a way that can be handled by the bit simplifcation.
2240//
2241// This is the motivating testcase (and explanation):
2242//
2243// {
2244// loop0(.LBB0_2, r1) // %for.body.preheader
2245// r5:4 = memd(r0++#8)
2246// }
2247// {
2248// r3 = lsr(r4, #16)
2249// r7:6 = combine(r5, r5)
2250// }
2251// {
2252// r3 = insert(r5, #16, #16)
2253// r7:6 = vlsrw(r7:6, #16)
2254// }
2255// .LBB0_2:
2256// {
2257// memh(r2+#4) = r5
2258// memh(r2+#6) = r6 # R6 is really R5.H
2259// }
2260// {
2261// r2 = add(r2, #8)
2262// memh(r2+#0) = r4
2263// memh(r2+#2) = r3 # R3 is really R4.H
2264// }
2265// {
2266// r5:4 = memd(r0++#8)
2267// }
2268// { # "Shuffling" code that sets up R3 and R6
2269// r3 = lsr(r4, #16) # so that their halves can be stored in the
2270// r7:6 = combine(r5, r5) # next iteration. This could be folded into
2271// } # the stores if the code was at the beginning
2272// { # of the loop iteration. Since the same code
2273// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
2274// r7:6 = vlsrw(r7:6, #16) # there.
2275// }:endloop0
2276//
2277//
2278// The outcome:
2279//
2280// {
2281// loop0(.LBB0_2, r1)
2282// r5:4 = memd(r0++#8)
2283// }
2284// .LBB0_2:
2285// {
2286// memh(r2+#4) = r5
2287// memh(r2+#6) = r5.h
2288// }
2289// {
2290// r2 = add(r2, #8)
2291// memh(r2+#0) = r4
2292// memh(r2+#2) = r4.h
2293// }
2294// {
2295// r5:4 = memd(r0++#8)
2296// }:endloop0
2297
2298namespace llvm {
2299 FunctionPass *createHexagonLoopRescheduling();
2300 void initializeHexagonLoopReschedulingPass(PassRegistry&);
2301}
2302
2303namespace {
2304 class HexagonLoopRescheduling : public MachineFunctionPass {
2305 public:
2306 static char ID;
2307 HexagonLoopRescheduling() : MachineFunctionPass(ID),
2308 HII(0), HRI(0), MRI(0), BTP(0) {
2309 initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
2310 }
2311
2312 bool runOnMachineFunction(MachineFunction &MF) override;
2313
2314 private:
2315 const HexagonInstrInfo *HII;
2316 const HexagonRegisterInfo *HRI;
2317 MachineRegisterInfo *MRI;
2318 BitTracker *BTP;
2319
2320 struct LoopCand {
2321 LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
2322 MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
2323 MachineBasicBlock *LB, *PB, *EB;
2324 };
2325 typedef std::vector<MachineInstr*> InstrList;
2326 struct InstrGroup {
2327 BitTracker::RegisterRef Inp, Out;
2328 InstrList Ins;
2329 };
2330 struct PhiInfo {
2331 PhiInfo(MachineInstr &P, MachineBasicBlock &B);
2332 unsigned DefR;
2333 BitTracker::RegisterRef LR, PR;
2334 MachineBasicBlock *LB, *PB;
2335 };
2336
2337 static unsigned getDefReg(const MachineInstr *MI);
2338 bool isConst(unsigned Reg) const;
2339 bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
2340 bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
2341 bool isShuffleOf(unsigned OutR, unsigned InpR) const;
2342 bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
2343 unsigned &InpR2) const;
2344 void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
2345 MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
2346 bool processLoop(LoopCand &C);
2347 };
2348}
2349
2350char HexagonLoopRescheduling::ID = 0;
2351
2352INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
2353 "Hexagon Loop Rescheduling", false, false)
2354
2355
2356HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
2357 MachineBasicBlock &B) {
2358 DefR = HexagonLoopRescheduling::getDefReg(&P);
2359 LB = &B;
2360 PB = nullptr;
2361 for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
2362 const MachineOperand &OpB = P.getOperand(i+1);
2363 if (OpB.getMBB() == &B) {
2364 LR = P.getOperand(i);
2365 continue;
2366 }
2367 PB = OpB.getMBB();
2368 PR = P.getOperand(i);
2369 }
2370}
2371
2372
2373unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
2374 RegisterSet Defs;
2375 HBS::getInstrDefs(*MI, Defs);
2376 if (Defs.count() != 1)
2377 return 0;
2378 return Defs.find_first();
2379}
2380
2381
2382bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
2383 if (!BTP->has(Reg))
2384 return false;
2385 const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
2386 for (unsigned i = 0, w = RC.width(); i < w; ++i) {
2387 const BitTracker::BitValue &V = RC[i];
2388 if (!V.is(0) && !V.is(1))
2389 return false;
2390 }
2391 return true;
2392}
2393
2394
2395bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
2396 unsigned DefR) const {
2397 unsigned Opc = MI->getOpcode();
2398 switch (Opc) {
2399 case TargetOpcode::COPY:
2400 case Hexagon::S2_lsr_i_r:
2401 case Hexagon::S2_asr_i_r:
2402 case Hexagon::S2_asl_i_r:
2403 case Hexagon::S2_lsr_i_p:
2404 case Hexagon::S2_asr_i_p:
2405 case Hexagon::S2_asl_i_p:
2406 case Hexagon::S2_insert:
2407 case Hexagon::A2_or:
2408 case Hexagon::A2_orp:
2409 case Hexagon::A2_and:
2410 case Hexagon::A2_andp:
2411 case Hexagon::A2_combinew:
2412 case Hexagon::A4_combineri:
2413 case Hexagon::A4_combineir:
2414 case Hexagon::A2_combineii:
2415 case Hexagon::A4_combineii:
2416 case Hexagon::A2_combine_ll:
2417 case Hexagon::A2_combine_lh:
2418 case Hexagon::A2_combine_hl:
2419 case Hexagon::A2_combine_hh:
2420 return true;
2421 }
2422 return false;
2423}
2424
2425
2426bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
2427 unsigned InpR) const {
2428 for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
2429 const MachineOperand &Op = MI->getOperand(i);
2430 if (!Op.isReg())
2431 continue;
2432 if (Op.getReg() == InpR)
2433 return i == n-1;
2434 }
2435 return false;
2436}
2437
2438
2439bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
2440 if (!BTP->has(OutR) || !BTP->has(InpR))
2441 return false;
2442 const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
2443 for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
2444 const BitTracker::BitValue &V = OutC[i];
2445 if (V.Type != BitTracker::BitValue::Ref)
2446 continue;
2447 if (V.RefI.Reg != InpR)
2448 return false;
2449 }
2450 return true;
2451}
2452
2453
2454bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
2455 unsigned OutR2, unsigned &InpR2) const {
2456 if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
2457 return false;
2458 const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
2459 const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
2460 unsigned W = OutC1.width();
2461 unsigned MatchR = 0;
2462 if (W != OutC2.width())
2463 return false;
2464 for (unsigned i = 0; i < W; ++i) {
2465 const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
2466 if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
2467 return false;
2468 if (V1.Type != BitTracker::BitValue::Ref)
2469 continue;
2470 if (V1.RefI.Pos != V2.RefI.Pos)
2471 return false;
2472 if (V1.RefI.Reg != InpR1)
2473 return false;
2474 if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
2475 return false;
2476 if (!MatchR)
2477 MatchR = V2.RefI.Reg;
2478 else if (V2.RefI.Reg != MatchR)
2479 return false;
2480 }
2481 InpR2 = MatchR;
2482 return true;
2483}
2484
2485
2486void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
2487 MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
2488 unsigned NewPredR) {
2489 DenseMap<unsigned,unsigned> RegMap;
2490
2491 const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
2492 unsigned PhiR = MRI->createVirtualRegister(PhiRC);
2493 BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
2494 .addReg(NewPredR)
2495 .addMBB(&PB)
2496 .addReg(G.Inp.Reg)
2497 .addMBB(&LB);
2498 RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
2499
2500 for (unsigned i = G.Ins.size(); i > 0; --i) {
2501 const MachineInstr *SI = G.Ins[i-1];
2502 unsigned DR = getDefReg(SI);
2503 const TargetRegisterClass *RC = MRI->getRegClass(DR);
2504 unsigned NewDR = MRI->createVirtualRegister(RC);
2505 DebugLoc DL = SI->getDebugLoc();
2506
2507 auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
2508 for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
2509 const MachineOperand &Op = SI->getOperand(j);
2510 if (!Op.isReg()) {
2511 MIB.addOperand(Op);
2512 continue;
2513 }
2514 if (!Op.isUse())
2515 continue;
2516 unsigned UseR = RegMap[Op.getReg()];
2517 MIB.addReg(UseR, 0, Op.getSubReg());
2518 }
2519 RegMap.insert(std::make_pair(DR, NewDR));
2520 }
2521
2522 HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
2523}
2524
2525
2526bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
2527 DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
2528 std::vector<PhiInfo> Phis;
2529 for (auto &I : *C.LB) {
2530 if (!I.isPHI())
2531 break;
2532 unsigned PR = getDefReg(&I);
2533 if (isConst(PR))
2534 continue;
2535 bool BadUse = false, GoodUse = false;
2536 for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
2537 MachineInstr *UseI = UI->getParent();
2538 if (UseI->getParent() != C.LB) {
2539 BadUse = true;
2540 break;
2541 }
2542 if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
2543 GoodUse = true;
2544 }
2545 if (BadUse || !GoodUse)
2546 continue;
2547
2548 Phis.push_back(PhiInfo(I, *C.LB));
2549 }
2550
2551 DEBUG({
2552 dbgs() << "Phis: {";
2553 for (auto &I : Phis) {
2554 dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
2555 << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
2556 << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
2557 << I.LB->getNumber() << ')';
2558 }
2559 dbgs() << " }\n";
2560 });
2561
2562 if (Phis.empty())
2563 return false;
2564
2565 bool Changed = false;
2566 InstrList ShufIns;
2567
2568 // Go backwards in the block: for each bit shuffling instruction, check
2569 // if that instruction could potentially be moved to the front of the loop:
2570 // the output of the loop cannot be used in a non-shuffling instruction
2571 // in this loop.
2572 for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
2573 if (I->isTerminator())
2574 continue;
2575 if (I->isPHI())
2576 break;
2577
2578 RegisterSet Defs;
2579 HBS::getInstrDefs(*I, Defs);
2580 if (Defs.count() != 1)
2581 continue;
2582 unsigned DefR = Defs.find_first();
2583 if (!TargetRegisterInfo::isVirtualRegister(DefR))
2584 continue;
2585 if (!isBitShuffle(&*I, DefR))
2586 continue;
2587
2588 bool BadUse = false;
2589 for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
2590 MachineInstr *UseI = UI->getParent();
2591 if (UseI->getParent() == C.LB) {
2592 if (UseI->isPHI()) {
2593 // If the use is in a phi node in this loop, then it should be
2594 // the value corresponding to the back edge.
2595 unsigned Idx = UI.getOperandNo();
2596 if (UseI->getOperand(Idx+1).getMBB() != C.LB)
2597 BadUse = true;
2598 } else {
2599 auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
2600 if (F == ShufIns.end())
2601 BadUse = true;
2602 }
2603 } else {
2604 // There is a use outside of the loop, but there is no epilog block
2605 // suitable for a copy-out.
2606 if (C.EB == nullptr)
2607 BadUse = true;
2608 }
2609 if (BadUse)
2610 break;
2611 }
2612
2613 if (BadUse)
2614 continue;
2615 ShufIns.push_back(&*I);
2616 }
2617
2618 // Partition the list of shuffling instructions into instruction groups,
2619 // where each group has to be moved as a whole (i.e. a group is a chain of
2620 // dependent instructions). A group produces a single live output register,
2621 // which is meant to be the input of the loop phi node (although this is
2622 // not checked here yet). It also uses a single register as its input,
2623 // which is some value produced in the loop body. After moving the group
2624 // to the beginning of the loop, that input register would need to be
2625 // the loop-carried register (through a phi node) instead of the (currently
2626 // loop-carried) output register.
2627 typedef std::vector<InstrGroup> InstrGroupList;
2628 InstrGroupList Groups;
2629
2630 for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
2631 MachineInstr *SI = ShufIns[i];
2632 if (SI == nullptr)
2633 continue;
2634
2635 InstrGroup G;
2636 G.Ins.push_back(SI);
2637 G.Out.Reg = getDefReg(SI);
2638 RegisterSet Inputs;
2639 HBS::getInstrUses(*SI, Inputs);
2640
2641 for (unsigned j = i+1; j < n; ++j) {
2642 MachineInstr *MI = ShufIns[j];
2643 if (MI == nullptr)
2644 continue;
2645 RegisterSet Defs;
2646 HBS::getInstrDefs(*MI, Defs);
2647 // If this instruction does not define any pending inputs, skip it.
2648 if (!Defs.intersects(Inputs))
2649 continue;
2650 // Otherwise, add it to the current group and remove the inputs that
2651 // are defined by MI.
2652 G.Ins.push_back(MI);
2653 Inputs.remove(Defs);
2654 // Then add all registers used by MI.
2655 HBS::getInstrUses(*MI, Inputs);
2656 ShufIns[j] = nullptr;
2657 }
2658
2659 // Only add a group if it requires at most one register.
2660 if (Inputs.count() > 1)
2661 continue;
2662 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2663 return G.Out.Reg == P.LR.Reg;
2664 };
2665 if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
2666 continue;
2667
2668 G.Inp.Reg = Inputs.find_first();
2669 Groups.push_back(G);
2670 }
2671
2672 DEBUG({
2673 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2674 InstrGroup &G = Groups[i];
2675 dbgs() << "Group[" << i << "] inp: "
2676 << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
2677 << " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
2678 for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
2679 dbgs() << " " << *G.Ins[j];
2680 }
2681 });
2682
2683 for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
2684 InstrGroup &G = Groups[i];
2685 if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
2686 continue;
2687 auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
2688 return G.Out.Reg == P.LR.Reg;
2689 };
2690 auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
2691 if (F == Phis.end())
2692 continue;
2693 unsigned PredR = 0;
2694 if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
2695 const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
2696 unsigned Opc = DefPredR->getOpcode();
2697 if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
2698 continue;
2699 if (!DefPredR->getOperand(1).isImm())
2700 continue;
2701 if (DefPredR->getOperand(1).getImm() != 0)
2702 continue;
2703 const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
2704 if (RC != MRI->getRegClass(F->PR.Reg)) {
2705 PredR = MRI->createVirtualRegister(RC);
2706 unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
2707 : Hexagon::A2_tfrpi;
2708 auto T = C.PB->getFirstTerminator();
2709 DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
2710 BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
2711 .addImm(0);
2712 } else {
2713 PredR = F->PR.Reg;
2714 }
2715 }
2716 assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
2717 moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
2718 Changed = true;
2719 }
2720
2721 return Changed;
2722}
2723
2724
2725bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
Andrew Kaylor5b444a22016-04-26 19:46:28 +00002726 if (skipFunction(*MF.getFunction()))
2727 return false;
2728
Krzysztof Parzyszekced99412015-10-20 22:57:13 +00002729 auto &HST = MF.getSubtarget<HexagonSubtarget>();
2730 HII = HST.getInstrInfo();
2731 HRI = HST.getRegisterInfo();
2732 MRI = &MF.getRegInfo();
2733 const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
2734 BitTracker BT(HE, MF);
2735 DEBUG(BT.trace(true));
2736 BT.run();
2737 BTP = &BT;
2738
2739 std::vector<LoopCand> Cand;
2740
2741 for (auto &B : MF) {
2742 if (B.pred_size() != 2 || B.succ_size() != 2)
2743 continue;
2744 MachineBasicBlock *PB = nullptr;
2745 bool IsLoop = false;
2746 for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
2747 if (*PI != &B)
2748 PB = *PI;
2749 else
2750 IsLoop = true;
2751 }
2752 if (!IsLoop)
2753 continue;
2754
2755 MachineBasicBlock *EB = nullptr;
2756 for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
2757 if (*SI == &B)
2758 continue;
2759 // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
2760 // edge from B to EP is non-critical.
2761 if ((*SI)->pred_size() == 1)
2762 EB = *SI;
2763 break;
2764 }
2765
2766 Cand.push_back(LoopCand(&B, PB, EB));
2767 }
2768
2769 bool Changed = false;
2770 for (auto &C : Cand)
2771 Changed |= processLoop(C);
2772
2773 return Changed;
2774}
2775
2776//===----------------------------------------------------------------------===//
2777// Public Constructor Functions
2778//===----------------------------------------------------------------------===//
2779
2780FunctionPass *llvm::createHexagonLoopRescheduling() {
2781 return new HexagonLoopRescheduling();
2782}
2783
2784FunctionPass *llvm::createHexagonBitSimplify() {
2785 return new HexagonBitSimplify();
2786}
2787