blob: 7cbcef5b5cc25398e5927654cf0d70c8e1f445c3 [file] [log] [blame]
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
Misha Brukman9d0919f2003-11-08 01:05:38 +00003<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
Reid Spencer3921c742004-08-26 20:44:00 +00006 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
Misha Brukman9d0919f2003-11-08 01:05:38 +000010 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
Chris Lattnerd7923912004-05-23 21:06:01 +000012
Misha Brukman9d0919f2003-11-08 01:05:38 +000013<body>
Chris Lattnerd7923912004-05-23 21:06:01 +000014
Chris Lattner261efe92003-11-25 01:02:51 +000015<div class="doc_title"> LLVM Language Reference Manual </div>
Chris Lattner00950542001-06-06 20:29:01 +000016<ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000017 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000020 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
Chris Lattnere5d947b2004-12-09 16:36:40 +000023 <li><a href="#linkage">Linkage Types</a></li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +000024 <li><a href="#callingconv">Calling Conventions</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000025 <li><a href="#globalvars">Global Variables</a></li>
Chris Lattner4e9aba72006-01-23 23:23:47 +000026 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
Chris Lattnerfa730212004-12-09 16:11:40 +000028 </ol>
29 </li>
Chris Lattner00950542001-06-06 20:29:01 +000030 <li><a href="#typesystem">Type System</a>
31 <ol>
Robert Bocchino7b81c752006-02-17 21:18:08 +000032 <li><a href="#t_primitive">Primitive Types</a>
Chris Lattner261efe92003-11-25 01:02:51 +000033 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000034 <li><a href="#t_classifications">Type Classifications</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000035 </ol>
36 </li>
Chris Lattner00950542001-06-06 20:29:01 +000037 <li><a href="#t_derived">Derived Types</a>
38 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000039 <li><a href="#t_array">Array Type</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000040 <li><a href="#t_function">Function Type</a></li>
41 <li><a href="#t_pointer">Pointer Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000042 <li><a href="#t_struct">Structure Type</a></li>
Chris Lattnera58561b2004-08-12 19:12:28 +000043 <li><a href="#t_packed">Packed Type</a></li>
Chris Lattner69c11bb2005-04-25 17:34:15 +000044 <li><a href="#t_opaque">Opaque Type</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000045 </ol>
46 </li>
47 </ol>
48 </li>
Chris Lattnerfa730212004-12-09 16:11:40 +000049 <li><a href="#constants">Constants</a>
Chris Lattnerc3f59762004-12-09 17:30:23 +000050 <ol>
51 <li><a href="#simpleconstants">Simple Constants</a>
52 <li><a href="#aggregateconstants">Aggregate Constants</a>
53 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
54 <li><a href="#undefvalues">Undefined Values</a>
55 <li><a href="#constantexprs">Constant Expressions</a>
56 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +000057 </li>
Chris Lattnere87d6532006-01-25 23:47:57 +000058 <li><a href="#othervalues">Other Values</a>
59 <ol>
60 <li><a href="#inlineasm">Inline Assembler Expressions</a>
61 </ol>
62 </li>
Chris Lattner00950542001-06-06 20:29:01 +000063 <li><a href="#instref">Instruction Reference</a>
64 <ol>
65 <li><a href="#terminators">Terminator Instructions</a>
66 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000067 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
68 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000069 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
70 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000071 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
Chris Lattner35eca582004-10-16 18:04:13 +000072 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000073 </ol>
74 </li>
Chris Lattner00950542001-06-06 20:29:01 +000075 <li><a href="#binaryops">Binary Operations</a>
76 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +000077 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
78 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
79 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
Reid Spencer1628cec2006-10-26 06:15:43 +000080 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
81 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
82 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
Reid Spencer0a783f72006-11-02 01:53:59 +000083 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
84 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
85 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000086 </ol>
87 </li>
Chris Lattner00950542001-06-06 20:29:01 +000088 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
89 <ol>
Misha Brukman9d0919f2003-11-08 01:05:38 +000090 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000091 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
Misha Brukman9d0919f2003-11-08 01:05:38 +000092 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
93 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
Reid Spencer3822ff52006-11-08 06:47:33 +000094 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
95 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +000096 </ol>
97 </li>
Chris Lattner3df241e2006-04-08 23:07:04 +000098 <li><a href="#vectorops">Vector Operations</a>
99 <ol>
100 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
101 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
102 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
Chris Lattner3df241e2006-04-08 23:07:04 +0000103 </ol>
104 </li>
Chris Lattner884a9702006-08-15 00:45:58 +0000105 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
Chris Lattner00950542001-06-06 20:29:01 +0000106 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000107 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
108 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
109 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
Robert Bocchino7b81c752006-02-17 21:18:08 +0000110 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
111 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
112 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000113 </ol>
114 </li>
Reid Spencer2fd21e62006-11-08 01:18:52 +0000115 <li><a href="#convertops">Conversion Operations</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000116 <ol>
117 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
118 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
119 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
120 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
121 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
Reid Spencerd4448792006-11-09 23:03:26 +0000122 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
123 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
124 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
125 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
Reid Spencer72679252006-11-11 21:00:47 +0000126 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
127 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
Reid Spencer5c0ef472006-11-11 23:08:07 +0000128 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
Reid Spencer9dee3ac2006-11-08 01:11:31 +0000129 </ol>
Chris Lattner00950542001-06-06 20:29:01 +0000130 <li><a href="#otherops">Other Operations</a>
131 <ol>
Reid Spencerf3a70a62006-11-18 21:50:54 +0000132 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
133 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000134 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
Chris Lattnercc37aae2004-03-12 05:50:16 +0000135 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000136 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
Chris Lattnerfb6977d2006-01-13 23:26:01 +0000137 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
Chris Lattner00950542001-06-06 20:29:01 +0000138 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000139 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000140 </ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000141 </li>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000142 <li><a href="#intrinsics">Intrinsic Functions</a>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +0000143 <ol>
Chris Lattner261efe92003-11-25 01:02:51 +0000144 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
145 <ol>
146 <li><a href="#i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
147 <li><a href="#i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
148 <li><a href="#i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
149 </ol>
150 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000151 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
152 <ol>
153 <li><a href="#i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
154 <li><a href="#i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
155 <li><a href="#i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
156 </ol>
157 </li>
Chris Lattner10610642004-02-14 04:08:35 +0000158 <li><a href="#int_codegen">Code Generator Intrinsics</a>
159 <ol>
160 <li><a href="#i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
161 <li><a href="#i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
Chris Lattner57e1f392006-01-13 02:03:13 +0000162 <li><a href="#i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
163 <li><a href="#i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
Chris Lattner9a9d7ac2005-02-28 19:24:19 +0000164 <li><a href="#i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +0000165 <li><a href="#i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
Andrew Lenharth51b8d542005-11-11 16:47:30 +0000166 <li><a href="#i_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
John Criswell7123e272004-04-09 16:43:20 +0000167 </ol>
168 </li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000169 <li><a href="#int_libc">Standard C Library Intrinsics</a>
170 <ol>
Chris Lattner5b310c32006-03-03 00:07:20 +0000171 <li><a href="#i_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
172 <li><a href="#i_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
173 <li><a href="#i_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
Chris Lattnerec6cb612006-01-16 22:38:59 +0000174 <li><a href="#i_isunordered">'<tt>llvm.isunordered.*</tt>' Intrinsic</a></li>
175 <li><a href="#i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
Chris Lattnerf4d252d2006-09-08 06:34:02 +0000176 <li><a href="#i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Chris Lattner33aec9e2004-02-12 17:01:32 +0000177 </ol>
178 </li>
Nate Begeman7e36c472006-01-13 23:26:38 +0000179 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000180 <ol>
Nate Begeman7e36c472006-01-13 23:26:38 +0000181 <li><a href="#i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
Chris Lattner8a886be2006-01-16 22:34:14 +0000182 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
183 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
184 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
Andrew Lenharthec370fd2005-05-03 18:01:48 +0000185 </ol>
186 </li>
Chris Lattnerd7923912004-05-23 21:06:01 +0000187 <li><a href="#int_debugger">Debugger intrinsics</a></li>
Chris Lattner261efe92003-11-25 01:02:51 +0000188 </ol>
189 </li>
Chris Lattner00950542001-06-06 20:29:01 +0000190</ol>
Chris Lattnerd7923912004-05-23 21:06:01 +0000191
192<div class="doc_author">
193 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
194 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000195</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000196
Chris Lattner00950542001-06-06 20:29:01 +0000197<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000198<div class="doc_section"> <a name="abstract">Abstract </a></div>
199<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000200
Misha Brukman9d0919f2003-11-08 01:05:38 +0000201<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000202<p>This document is a reference manual for the LLVM assembly language.
203LLVM is an SSA based representation that provides type safety,
204low-level operations, flexibility, and the capability of representing
205'all' high-level languages cleanly. It is the common code
206representation used throughout all phases of the LLVM compilation
207strategy.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000208</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000209
Chris Lattner00950542001-06-06 20:29:01 +0000210<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000211<div class="doc_section"> <a name="introduction">Introduction</a> </div>
212<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000213
Misha Brukman9d0919f2003-11-08 01:05:38 +0000214<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000215
Chris Lattner261efe92003-11-25 01:02:51 +0000216<p>The LLVM code representation is designed to be used in three
217different forms: as an in-memory compiler IR, as an on-disk bytecode
218representation (suitable for fast loading by a Just-In-Time compiler),
219and as a human readable assembly language representation. This allows
220LLVM to provide a powerful intermediate representation for efficient
221compiler transformations and analysis, while providing a natural means
222to debug and visualize the transformations. The three different forms
223of LLVM are all equivalent. This document describes the human readable
224representation and notation.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000225
John Criswellc1f786c2005-05-13 22:25:59 +0000226<p>The LLVM representation aims to be light-weight and low-level
Chris Lattner261efe92003-11-25 01:02:51 +0000227while being expressive, typed, and extensible at the same time. It
228aims to be a "universal IR" of sorts, by being at a low enough level
229that high-level ideas may be cleanly mapped to it (similar to how
230microprocessors are "universal IR's", allowing many source languages to
231be mapped to them). By providing type information, LLVM can be used as
232the target of optimizations: for example, through pointer analysis, it
233can be proven that a C automatic variable is never accessed outside of
234the current function... allowing it to be promoted to a simple SSA
235value instead of a memory location.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000236
Misha Brukman9d0919f2003-11-08 01:05:38 +0000237</div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000238
Chris Lattner00950542001-06-06 20:29:01 +0000239<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000240<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000241
Misha Brukman9d0919f2003-11-08 01:05:38 +0000242<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000243
Chris Lattner261efe92003-11-25 01:02:51 +0000244<p>It is important to note that this document describes 'well formed'
245LLVM assembly language. There is a difference between what the parser
246accepts and what is considered 'well formed'. For example, the
247following instruction is syntactically okay, but not well formed:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000248
249<pre>
250 %x = <a href="#i_add">add</a> int 1, %x
251</pre>
252
Chris Lattner261efe92003-11-25 01:02:51 +0000253<p>...because the definition of <tt>%x</tt> does not dominate all of
254its uses. The LLVM infrastructure provides a verification pass that may
255be used to verify that an LLVM module is well formed. This pass is
John Criswellc1f786c2005-05-13 22:25:59 +0000256automatically run by the parser after parsing input assembly and by
Chris Lattner261efe92003-11-25 01:02:51 +0000257the optimizer before it outputs bytecode. The violations pointed out
258by the verifier pass indicate bugs in transformation passes or input to
259the parser.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000260
Chris Lattner261efe92003-11-25 01:02:51 +0000261<!-- Describe the typesetting conventions here. --> </div>
Chris Lattnerd7923912004-05-23 21:06:01 +0000262
Chris Lattner00950542001-06-06 20:29:01 +0000263<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000264<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
Chris Lattner00950542001-06-06 20:29:01 +0000265<!-- *********************************************************************** -->
Chris Lattnerd7923912004-05-23 21:06:01 +0000266
Misha Brukman9d0919f2003-11-08 01:05:38 +0000267<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +0000268
Chris Lattner261efe92003-11-25 01:02:51 +0000269<p>LLVM uses three different forms of identifiers, for different
270purposes:</p>
Chris Lattnerd7923912004-05-23 21:06:01 +0000271
Chris Lattner00950542001-06-06 20:29:01 +0000272<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000273 <li>Named values are represented as a string of characters with a '%' prefix.
274 For example, %foo, %DivisionByZero, %a.really.long.identifier. The actual
275 regular expression used is '<tt>%[a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
276 Identifiers which require other characters in their names can be surrounded
277 with quotes. In this way, anything except a <tt>"</tt> character can be used
278 in a name.</li>
279
280 <li>Unnamed values are represented as an unsigned numeric value with a '%'
281 prefix. For example, %12, %2, %44.</li>
282
Reid Spencercc16dc32004-12-09 18:02:53 +0000283 <li>Constants, which are described in a <a href="#constants">section about
284 constants</a>, below.</li>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000285</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000286
287<p>LLVM requires that values start with a '%' sign for two reasons: Compilers
288don't need to worry about name clashes with reserved words, and the set of
289reserved words may be expanded in the future without penalty. Additionally,
290unnamed identifiers allow a compiler to quickly come up with a temporary
291variable without having to avoid symbol table conflicts.</p>
292
Chris Lattner261efe92003-11-25 01:02:51 +0000293<p>Reserved words in LLVM are very similar to reserved words in other
Reid Spencer5c0ef472006-11-11 23:08:07 +0000294languages. There are keywords for different opcodes
295('<tt><a href="#i_add">add</a></tt>',
296 '<tt><a href="#i_bitcast">bitcast</a></tt>',
297 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
Chris Lattnere5d947b2004-12-09 16:36:40 +0000298href="#t_void">void</a></tt>', '<tt><a href="#t_uint">uint</a></tt>', etc...),
299and others. These reserved words cannot conflict with variable names, because
300none of them start with a '%' character.</p>
301
302<p>Here is an example of LLVM code to multiply the integer variable
303'<tt>%X</tt>' by 8:</p>
304
Misha Brukman9d0919f2003-11-08 01:05:38 +0000305<p>The easy way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000306
307<pre>
308 %result = <a href="#i_mul">mul</a> uint %X, 8
309</pre>
310
Misha Brukman9d0919f2003-11-08 01:05:38 +0000311<p>After strength reduction:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000312
313<pre>
314 %result = <a href="#i_shl">shl</a> uint %X, ubyte 3
315</pre>
316
Misha Brukman9d0919f2003-11-08 01:05:38 +0000317<p>And the hard way:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000318
319<pre>
320 <a href="#i_add">add</a> uint %X, %X <i>; yields {uint}:%0</i>
321 <a href="#i_add">add</a> uint %0, %0 <i>; yields {uint}:%1</i>
322 %result = <a href="#i_add">add</a> uint %1, %1
323</pre>
324
Chris Lattner261efe92003-11-25 01:02:51 +0000325<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
326important lexical features of LLVM:</p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000327
Chris Lattner00950542001-06-06 20:29:01 +0000328<ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000329
330 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
331 line.</li>
332
333 <li>Unnamed temporaries are created when the result of a computation is not
334 assigned to a named value.</li>
335
Misha Brukman9d0919f2003-11-08 01:05:38 +0000336 <li>Unnamed temporaries are numbered sequentially</li>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000337
Misha Brukman9d0919f2003-11-08 01:05:38 +0000338</ol>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000339
John Criswelle4c57cc2005-05-12 16:52:32 +0000340<p>...and it also shows a convention that we follow in this document. When
Chris Lattnere5d947b2004-12-09 16:36:40 +0000341demonstrating instructions, we will follow an instruction with a comment that
342defines the type and name of value produced. Comments are shown in italic
343text.</p>
344
Misha Brukman9d0919f2003-11-08 01:05:38 +0000345</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000346
347<!-- *********************************************************************** -->
348<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
349<!-- *********************************************************************** -->
350
351<!-- ======================================================================= -->
352<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
353</div>
354
355<div class="doc_text">
356
357<p>LLVM programs are composed of "Module"s, each of which is a
358translation unit of the input programs. Each module consists of
359functions, global variables, and symbol table entries. Modules may be
360combined together with the LLVM linker, which merges function (and
361global variable) definitions, resolves forward declarations, and merges
362symbol table entries. Here is an example of the "hello world" module:</p>
363
364<pre><i>; Declare the string constant as a global constant...</i>
365<a href="#identifiers">%.LC0</a> = <a href="#linkage_internal">internal</a> <a
366 href="#globalvars">constant</a> <a href="#t_array">[13 x sbyte]</a> c"hello world\0A\00" <i>; [13 x sbyte]*</i>
367
368<i>; External declaration of the puts function</i>
369<a href="#functionstructure">declare</a> int %puts(sbyte*) <i>; int(sbyte*)* </i>
370
Chris Lattner81c01f02006-06-13 03:05:47 +0000371<i>; Global variable / Function body section separator</i>
372implementation
373
Chris Lattnerfa730212004-12-09 16:11:40 +0000374<i>; Definition of main function</i>
375int %main() { <i>; int()* </i>
376 <i>; Convert [13x sbyte]* to sbyte *...</i>
377 %cast210 = <a
378 href="#i_getelementptr">getelementptr</a> [13 x sbyte]* %.LC0, long 0, long 0 <i>; sbyte*</i>
379
380 <i>; Call puts function to write out the string to stdout...</i>
381 <a
382 href="#i_call">call</a> int %puts(sbyte* %cast210) <i>; int</i>
383 <a
384 href="#i_ret">ret</a> int 0<br>}<br></pre>
385
386<p>This example is made up of a <a href="#globalvars">global variable</a>
387named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
388function, and a <a href="#functionstructure">function definition</a>
389for "<tt>main</tt>".</p>
390
Chris Lattnere5d947b2004-12-09 16:36:40 +0000391<p>In general, a module is made up of a list of global values,
392where both functions and global variables are global values. Global values are
393represented by a pointer to a memory location (in this case, a pointer to an
394array of char, and a pointer to a function), and have one of the following <a
395href="#linkage">linkage types</a>.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000396
Chris Lattner81c01f02006-06-13 03:05:47 +0000397<p>Due to a limitation in the current LLVM assembly parser (it is limited by
398one-token lookahead), modules are split into two pieces by the "implementation"
399keyword. Global variable prototypes and definitions must occur before the
400keyword, and function definitions must occur after it. Function prototypes may
401occur either before or after it. In the future, the implementation keyword may
402become a noop, if the parser gets smarter.</p>
403
Chris Lattnere5d947b2004-12-09 16:36:40 +0000404</div>
405
406<!-- ======================================================================= -->
407<div class="doc_subsection">
408 <a name="linkage">Linkage Types</a>
409</div>
410
411<div class="doc_text">
412
413<p>
414All Global Variables and Functions have one of the following types of linkage:
415</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000416
417<dl>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000418
Chris Lattnerfa730212004-12-09 16:11:40 +0000419 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000420
421 <dd>Global values with internal linkage are only directly accessible by
422 objects in the current module. In particular, linking code into a module with
423 an internal global value may cause the internal to be renamed as necessary to
424 avoid collisions. Because the symbol is internal to the module, all
425 references can be updated. This corresponds to the notion of the
426 '<tt>static</tt>' keyword in C, or the idea of "anonymous namespaces" in C++.
Chris Lattnerfa730212004-12-09 16:11:40 +0000427 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000428
Chris Lattnerfa730212004-12-09 16:11:40 +0000429 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000430
431 <dd>"<tt>linkonce</tt>" linkage is similar to <tt>internal</tt> linkage, with
432 the twist that linking together two modules defining the same
433 <tt>linkonce</tt> globals will cause one of the globals to be discarded. This
434 is typically used to implement inline functions. Unreferenced
435 <tt>linkonce</tt> globals are allowed to be discarded.
Chris Lattnerfa730212004-12-09 16:11:40 +0000436 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000437
Chris Lattnerfa730212004-12-09 16:11:40 +0000438 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000439
440 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
441 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
442 used to implement constructs in C such as "<tt>int X;</tt>" at global scope.
Chris Lattnerfa730212004-12-09 16:11:40 +0000443 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000444
Chris Lattnerfa730212004-12-09 16:11:40 +0000445 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000446
447 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
448 pointer to array type. When two global variables with appending linkage are
449 linked together, the two global arrays are appended together. This is the
450 LLVM, typesafe, equivalent of having the system linker append together
451 "sections" with identical names when .o files are linked.
Chris Lattnerfa730212004-12-09 16:11:40 +0000452 </dd>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000453
Chris Lattnerfa730212004-12-09 16:11:40 +0000454 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000455
456 <dd>If none of the above identifiers are used, the global is externally
457 visible, meaning that it participates in linkage and can be used to resolve
458 external symbol references.
Chris Lattnerfa730212004-12-09 16:11:40 +0000459 </dd>
Anton Korobeynikovb74ed072006-09-14 18:23:27 +0000460
461 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
462
463 <dd>"<tt>extern_weak</tt>" TBD
464 </dd>
465
466 <p>
467 The next two types of linkage are targeted for Microsoft Windows platform
468 only. They are designed to support importing (exporting) symbols from (to)
469 DLLs.
470 </p>
471
472 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
473
474 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
475 or variable via a global pointer to a pointer that is set up by the DLL
476 exporting the symbol. On Microsoft Windows targets, the pointer name is
477 formed by combining <code>_imp__</code> and the function or variable name.
478 </dd>
479
480 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
481
482 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
483 pointer to a pointer in a DLL, so that it can be referenced with the
484 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
485 name is formed by combining <code>_imp__</code> and the function or variable
486 name.
487 </dd>
488
Chris Lattnerfa730212004-12-09 16:11:40 +0000489</dl>
490
Chris Lattnerfa730212004-12-09 16:11:40 +0000491<p><a name="linkage_external">For example, since the "<tt>.LC0</tt>"
492variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
493variable and was linked with this one, one of the two would be renamed,
494preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
495external (i.e., lacking any linkage declarations), they are accessible
496outside of the current module. It is illegal for a function <i>declaration</i>
497to have any linkage type other than "externally visible".</a></p>
Chris Lattnere5d947b2004-12-09 16:36:40 +0000498
Chris Lattnerfa730212004-12-09 16:11:40 +0000499</div>
500
501<!-- ======================================================================= -->
502<div class="doc_subsection">
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000503 <a name="callingconv">Calling Conventions</a>
504</div>
505
506<div class="doc_text">
507
508<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
509and <a href="#i_invoke">invokes</a> can all have an optional calling convention
510specified for the call. The calling convention of any pair of dynamic
511caller/callee must match, or the behavior of the program is undefined. The
512following calling conventions are supported by LLVM, and more may be added in
513the future:</p>
514
515<dl>
516 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
517
518 <dd>This calling convention (the default if no other calling convention is
519 specified) matches the target C calling conventions. This calling convention
John Criswelle4c57cc2005-05-12 16:52:32 +0000520 supports varargs function calls and tolerates some mismatch in the declared
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000521 prototype and implemented declaration of the function (as does normal C).
522 </dd>
523
Chris Lattner5710ce92006-05-19 21:15:36 +0000524 <dt><b>"<tt>csretcc</tt>" - The C struct return calling convention</b>:</dt>
525
526 <dd>This calling convention matches the target C calling conventions, except
527 that functions with this convention are required to take a pointer as their
528 first argument, and the return type of the function must be void. This is
529 used for C functions that return aggregates by-value. In this case, the
530 function has been transformed to take a pointer to the struct as the first
531 argument to the function. For targets where the ABI specifies specific
532 behavior for structure-return calls, the calling convention can be used to
533 distinguish between struct return functions and other functions that take a
534 pointer to a struct as the first argument.
535 </dd>
536
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000537 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
538
539 <dd>This calling convention attempts to make calls as fast as possible
540 (e.g. by passing things in registers). This calling convention allows the
541 target to use whatever tricks it wants to produce fast code for the target,
Chris Lattner8cdc5bc2005-05-06 23:08:23 +0000542 without having to conform to an externally specified ABI. Implementations of
543 this convention should allow arbitrary tail call optimization to be supported.
544 This calling convention does not support varargs and requires the prototype of
545 all callees to exactly match the prototype of the function definition.
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000546 </dd>
547
548 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
549
550 <dd>This calling convention attempts to make code in the caller as efficient
551 as possible under the assumption that the call is not commonly executed. As
552 such, these calls often preserve all registers so that the call does not break
553 any live ranges in the caller side. This calling convention does not support
554 varargs and requires the prototype of all callees to exactly match the
555 prototype of the function definition.
556 </dd>
557
Chris Lattnercfe6b372005-05-07 01:46:40 +0000558 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000559
560 <dd>Any calling convention may be specified by number, allowing
561 target-specific calling conventions to be used. Target specific calling
562 conventions start at 64.
563 </dd>
Chris Lattnercfe6b372005-05-07 01:46:40 +0000564</dl>
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000565
566<p>More calling conventions can be added/defined on an as-needed basis, to
567support pascal conventions or any other well-known target-independent
568convention.</p>
569
570</div>
571
572<!-- ======================================================================= -->
573<div class="doc_subsection">
Chris Lattnerfa730212004-12-09 16:11:40 +0000574 <a name="globalvars">Global Variables</a>
575</div>
576
577<div class="doc_text">
578
Chris Lattner3689a342005-02-12 19:30:21 +0000579<p>Global variables define regions of memory allocated at compilation time
Chris Lattner88f6c462005-11-12 00:45:07 +0000580instead of run-time. Global variables may optionally be initialized, may have
581an explicit section to be placed in, and may
Chris Lattner2cbdc452005-11-06 08:02:57 +0000582have an optional explicit alignment specified. A
John Criswell0ec250c2005-10-24 16:17:18 +0000583variable may be defined as a global "constant," which indicates that the
Chris Lattner3689a342005-02-12 19:30:21 +0000584contents of the variable will <b>never</b> be modified (enabling better
585optimization, allowing the global data to be placed in the read-only section of
586an executable, etc). Note that variables that need runtime initialization
John Criswell0ec250c2005-10-24 16:17:18 +0000587cannot be marked "constant" as there is a store to the variable.</p>
Chris Lattner3689a342005-02-12 19:30:21 +0000588
589<p>
590LLVM explicitly allows <em>declarations</em> of global variables to be marked
591constant, even if the final definition of the global is not. This capability
592can be used to enable slightly better optimization of the program, but requires
593the language definition to guarantee that optimizations based on the
594'constantness' are valid for the translation units that do not include the
595definition.
596</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000597
598<p>As SSA values, global variables define pointer values that are in
599scope (i.e. they dominate) all basic blocks in the program. Global
600variables always define a pointer to their "content" type because they
601describe a region of memory, and all memory objects in LLVM are
602accessed through pointers.</p>
603
Chris Lattner88f6c462005-11-12 00:45:07 +0000604<p>LLVM allows an explicit section to be specified for globals. If the target
605supports it, it will emit globals to the section specified.</p>
606
Chris Lattner2cbdc452005-11-06 08:02:57 +0000607<p>An explicit alignment may be specified for a global. If not present, or if
608the alignment is set to zero, the alignment of the global is set by the target
609to whatever it feels convenient. If an explicit alignment is specified, the
610global is forced to have at least that much alignment. All alignments must be
611a power of 2.</p>
612
Chris Lattnerfa730212004-12-09 16:11:40 +0000613</div>
614
615
616<!-- ======================================================================= -->
617<div class="doc_subsection">
618 <a name="functionstructure">Functions</a>
619</div>
620
621<div class="doc_text">
622
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000623<p>LLVM function definitions consist of an optional <a href="#linkage">linkage
624type</a>, an optional <a href="#callingconv">calling convention</a>, a return
Chris Lattner88f6c462005-11-12 00:45:07 +0000625type, a function name, a (possibly empty) argument list, an optional section,
626an optional alignment, an opening curly brace,
Chris Lattnerbad10ee2005-05-06 22:57:40 +0000627a list of basic blocks, and a closing curly brace. LLVM function declarations
628are defined with the "<tt>declare</tt>" keyword, an optional <a
Chris Lattner2cbdc452005-11-06 08:02:57 +0000629href="#callingconv">calling convention</a>, a return type, a function name,
630a possibly empty list of arguments, and an optional alignment.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000631
632<p>A function definition contains a list of basic blocks, forming the CFG for
633the function. Each basic block may optionally start with a label (giving the
634basic block a symbol table entry), contains a list of instructions, and ends
635with a <a href="#terminators">terminator</a> instruction (such as a branch or
636function return).</p>
637
John Criswelle4c57cc2005-05-12 16:52:32 +0000638<p>The first basic block in a program is special in two ways: it is immediately
Chris Lattnerfa730212004-12-09 16:11:40 +0000639executed on entrance to the function, and it is not allowed to have predecessor
640basic blocks (i.e. there can not be any branches to the entry block of a
641function). Because the block can have no predecessors, it also cannot have any
642<a href="#i_phi">PHI nodes</a>.</p>
643
644<p>LLVM functions are identified by their name and type signature. Hence, two
645functions with the same name but different parameter lists or return values are
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000646considered different functions, and LLVM will resolve references to each
Chris Lattnerfa730212004-12-09 16:11:40 +0000647appropriately.</p>
648
Chris Lattner88f6c462005-11-12 00:45:07 +0000649<p>LLVM allows an explicit section to be specified for functions. If the target
650supports it, it will emit functions to the section specified.</p>
651
Chris Lattner2cbdc452005-11-06 08:02:57 +0000652<p>An explicit alignment may be specified for a function. If not present, or if
653the alignment is set to zero, the alignment of the function is set by the target
654to whatever it feels convenient. If an explicit alignment is specified, the
655function is forced to have at least that much alignment. All alignments must be
656a power of 2.</p>
657
Chris Lattnerfa730212004-12-09 16:11:40 +0000658</div>
659
Chris Lattner4e9aba72006-01-23 23:23:47 +0000660<!-- ======================================================================= -->
661<div class="doc_subsection">
Chris Lattner1eeeb0c2006-04-08 04:40:53 +0000662 <a name="moduleasm">Module-Level Inline Assembly</a>
Chris Lattner4e9aba72006-01-23 23:23:47 +0000663</div>
664
665<div class="doc_text">
666<p>
667Modules may contain "module-level inline asm" blocks, which corresponds to the
668GCC "file scope inline asm" blocks. These blocks are internally concatenated by
669LLVM and treated as a single unit, but may be separated in the .ll file if
670desired. The syntax is very simple:
671</p>
672
673<div class="doc_code"><pre>
Chris Lattner52599e12006-01-24 00:37:20 +0000674 module asm "inline asm code goes here"
675 module asm "more can go here"
Chris Lattner4e9aba72006-01-23 23:23:47 +0000676</pre></div>
677
678<p>The strings can contain any character by escaping non-printable characters.
679 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
680 for the number.
681</p>
682
683<p>
684 The inline asm code is simply printed to the machine code .s file when
685 assembly code is generated.
686</p>
687</div>
Chris Lattnerfa730212004-12-09 16:11:40 +0000688
689
Chris Lattner00950542001-06-06 20:29:01 +0000690<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +0000691<div class="doc_section"> <a name="typesystem">Type System</a> </div>
692<!-- *********************************************************************** -->
Chris Lattnerfa730212004-12-09 16:11:40 +0000693
Misha Brukman9d0919f2003-11-08 01:05:38 +0000694<div class="doc_text">
Chris Lattnerfa730212004-12-09 16:11:40 +0000695
Misha Brukman9d0919f2003-11-08 01:05:38 +0000696<p>The LLVM type system is one of the most important features of the
Chris Lattner261efe92003-11-25 01:02:51 +0000697intermediate representation. Being typed enables a number of
698optimizations to be performed on the IR directly, without having to do
699extra analyses on the side before the transformation. A strong type
700system makes it easier to read the generated code and enables novel
701analyses and transformations that are not feasible to perform on normal
702three address code representations.</p>
Chris Lattnerfa730212004-12-09 16:11:40 +0000703
704</div>
705
Chris Lattner00950542001-06-06 20:29:01 +0000706<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000707<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000708<div class="doc_text">
John Criswell4457dc92004-04-09 16:48:45 +0000709<p>The primitive types are the fundamental building blocks of the LLVM
Chris Lattnerd4f6b172005-03-07 22:13:59 +0000710system. The current set of primitive types is as follows:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000711
Reid Spencerd3f876c2004-11-01 08:19:36 +0000712<table class="layout">
713 <tr class="layout">
714 <td class="left">
715 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000716 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000717 <tr><th>Type</th><th>Description</th></tr>
718 <tr><td><tt>void</tt></td><td>No value</td></tr>
Misha Brukmancfa87bc2005-04-22 18:02:52 +0000719 <tr><td><tt>ubyte</tt></td><td>Unsigned 8-bit value</td></tr>
720 <tr><td><tt>ushort</tt></td><td>Unsigned 16-bit value</td></tr>
721 <tr><td><tt>uint</tt></td><td>Unsigned 32-bit value</td></tr>
722 <tr><td><tt>ulong</tt></td><td>Unsigned 64-bit value</td></tr>
723 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000724 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000725 </tbody>
726 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000727 </td>
728 <td class="right">
729 <table>
Chris Lattner261efe92003-11-25 01:02:51 +0000730 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000731 <tr><th>Type</th><th>Description</th></tr>
732 <tr><td><tt>bool</tt></td><td>True or False value</td></tr>
Misha Brukmancfa87bc2005-04-22 18:02:52 +0000733 <tr><td><tt>sbyte</tt></td><td>Signed 8-bit value</td></tr>
734 <tr><td><tt>short</tt></td><td>Signed 16-bit value</td></tr>
735 <tr><td><tt>int</tt></td><td>Signed 32-bit value</td></tr>
736 <tr><td><tt>long</tt></td><td>Signed 64-bit value</td></tr>
737 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000738 </tbody>
739 </table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000740 </td>
741 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000742</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000743</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000744
Chris Lattner00950542001-06-06 20:29:01 +0000745<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000746<div class="doc_subsubsection"> <a name="t_classifications">Type
747Classifications</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000748<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +0000749<p>These different primitive types fall into a few useful
750classifications:</p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000751
752<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +0000753 <tbody>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000754 <tr><th>Classification</th><th>Types</th></tr>
Chris Lattner261efe92003-11-25 01:02:51 +0000755 <tr>
756 <td><a name="t_signed">signed</a></td>
757 <td><tt>sbyte, short, int, long, float, double</tt></td>
758 </tr>
759 <tr>
760 <td><a name="t_unsigned">unsigned</a></td>
761 <td><tt>ubyte, ushort, uint, ulong</tt></td>
762 </tr>
763 <tr>
764 <td><a name="t_integer">integer</a></td>
765 <td><tt>ubyte, sbyte, ushort, short, uint, int, ulong, long</tt></td>
766 </tr>
767 <tr>
768 <td><a name="t_integral">integral</a></td>
Misha Brukmanc24b7582004-08-12 20:16:08 +0000769 <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long</tt>
770 </td>
Chris Lattner261efe92003-11-25 01:02:51 +0000771 </tr>
772 <tr>
773 <td><a name="t_floating">floating point</a></td>
774 <td><tt>float, double</tt></td>
775 </tr>
776 <tr>
777 <td><a name="t_firstclass">first class</a></td>
Misha Brukmanc24b7582004-08-12 20:16:08 +0000778 <td><tt>bool, ubyte, sbyte, ushort, short, uint, int, ulong, long,<br>
779 float, double, <a href="#t_pointer">pointer</a>,
780 <a href="#t_packed">packed</a></tt></td>
Chris Lattner261efe92003-11-25 01:02:51 +0000781 </tr>
782 </tbody>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000783</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000784
Chris Lattner261efe92003-11-25 01:02:51 +0000785<p>The <a href="#t_firstclass">first class</a> types are perhaps the
786most important. Values of these types are the only ones which can be
787produced by instructions, passed as arguments, or used as operands to
788instructions. This means that all structures and arrays must be
789manipulated either by pointer or by component.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000790</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000791
Chris Lattner00950542001-06-06 20:29:01 +0000792<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +0000793<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000794
Misha Brukman9d0919f2003-11-08 01:05:38 +0000795<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000796
Chris Lattner261efe92003-11-25 01:02:51 +0000797<p>The real power in LLVM comes from the derived types in the system.
798This is what allows a programmer to represent arrays, functions,
799pointers, and other useful types. Note that these derived types may be
800recursive: For example, it is possible to have a two dimensional array.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000801
Misha Brukman9d0919f2003-11-08 01:05:38 +0000802</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000803
Chris Lattner00950542001-06-06 20:29:01 +0000804<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000805<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000806
Misha Brukman9d0919f2003-11-08 01:05:38 +0000807<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +0000808
Chris Lattner00950542001-06-06 20:29:01 +0000809<h5>Overview:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000810
Misha Brukman9d0919f2003-11-08 01:05:38 +0000811<p>The array type is a very simple derived type that arranges elements
Chris Lattner261efe92003-11-25 01:02:51 +0000812sequentially in memory. The array type requires a size (number of
813elements) and an underlying data type.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000814
Chris Lattner7faa8832002-04-14 06:13:44 +0000815<h5>Syntax:</h5>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000816
817<pre>
818 [&lt;# elements&gt; x &lt;elementtype&gt;]
819</pre>
820
John Criswelle4c57cc2005-05-12 16:52:32 +0000821<p>The number of elements is a constant integer value; elementtype may
Chris Lattner261efe92003-11-25 01:02:51 +0000822be any type with a size.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +0000823
Chris Lattner7faa8832002-04-14 06:13:44 +0000824<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000825<table class="layout">
826 <tr class="layout">
827 <td class="left">
828 <tt>[40 x int ]</tt><br/>
829 <tt>[41 x int ]</tt><br/>
830 <tt>[40 x uint]</tt><br/>
831 </td>
832 <td class="left">
833 Array of 40 integer values.<br/>
834 Array of 41 integer values.<br/>
835 Array of 40 unsigned integer values.<br/>
836 </td>
837 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000838</table>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000839<p>Here are some examples of multidimensional arrays:</p>
840<table class="layout">
841 <tr class="layout">
842 <td class="left">
843 <tt>[3 x [4 x int]]</tt><br/>
844 <tt>[12 x [10 x float]]</tt><br/>
845 <tt>[2 x [3 x [4 x uint]]]</tt><br/>
846 </td>
847 <td class="left">
John Criswellc1f786c2005-05-13 22:25:59 +0000848 3x4 array of integer values.<br/>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000849 12x10 array of single precision floating point values.<br/>
850 2x3x4 array of unsigned integer values.<br/>
851 </td>
852 </tr>
853</table>
Chris Lattnere67a9512005-06-24 17:22:57 +0000854
John Criswell0ec250c2005-10-24 16:17:18 +0000855<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
856length array. Normally, accesses past the end of an array are undefined in
Chris Lattnere67a9512005-06-24 17:22:57 +0000857LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
858As a special case, however, zero length arrays are recognized to be variable
859length. This allows implementation of 'pascal style arrays' with the LLVM
860type "{ int, [0 x float]}", for example.</p>
861
Misha Brukman9d0919f2003-11-08 01:05:38 +0000862</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000863
Chris Lattner00950542001-06-06 20:29:01 +0000864<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000865<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000866<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +0000867<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000868<p>The function type can be thought of as a function signature. It
869consists of a return type and a list of formal parameter types.
John Criswell009900b2003-11-25 21:45:46 +0000870Function types are usually used to build virtual function tables
Chris Lattner261efe92003-11-25 01:02:51 +0000871(which are structures of pointers to functions), for indirect function
872calls, and when defining a function.</p>
John Criswell009900b2003-11-25 21:45:46 +0000873<p>
874The return type of a function type cannot be an aggregate type.
875</p>
Chris Lattner00950542001-06-06 20:29:01 +0000876<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000877<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
John Criswell0ec250c2005-10-24 16:17:18 +0000878<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
Misha Brukmanc24b7582004-08-12 20:16:08 +0000879specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
Chris Lattner27f71f22003-09-03 00:41:47 +0000880which indicates that the function takes a variable number of arguments.
881Variable argument functions can access their arguments with the <a
Chris Lattner261efe92003-11-25 01:02:51 +0000882 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
Chris Lattner00950542001-06-06 20:29:01 +0000883<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000884<table class="layout">
885 <tr class="layout">
886 <td class="left">
887 <tt>int (int)</tt> <br/>
888 <tt>float (int, int *) *</tt><br/>
889 <tt>int (sbyte *, ...)</tt><br/>
890 </td>
891 <td class="left">
892 function taking an <tt>int</tt>, returning an <tt>int</tt><br/>
893 <a href="#t_pointer">Pointer</a> to a function that takes an
Misha Brukmanc24b7582004-08-12 20:16:08 +0000894 <tt>int</tt> and a <a href="#t_pointer">pointer</a> to <tt>int</tt>,
Reid Spencerd3f876c2004-11-01 08:19:36 +0000895 returning <tt>float</tt>.<br/>
896 A vararg function that takes at least one <a href="#t_pointer">pointer</a>
897 to <tt>sbyte</tt> (signed char in C), which returns an integer. This is
898 the signature for <tt>printf</tt> in LLVM.<br/>
899 </td>
900 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000901</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +0000902
Misha Brukman9d0919f2003-11-08 01:05:38 +0000903</div>
Chris Lattner00950542001-06-06 20:29:01 +0000904<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000905<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000906<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +0000907<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000908<p>The structure type is used to represent a collection of data members
909together in memory. The packing of the field types is defined to match
910the ABI of the underlying processor. The elements of a structure may
911be any type that has a size.</p>
912<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
913and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
914field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
915instruction.</p>
Chris Lattner00950542001-06-06 20:29:01 +0000916<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000917<pre> { &lt;type list&gt; }<br></pre>
Chris Lattner00950542001-06-06 20:29:01 +0000918<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000919<table class="layout">
920 <tr class="layout">
921 <td class="left">
922 <tt>{ int, int, int }</tt><br/>
923 <tt>{ float, int (int) * }</tt><br/>
924 </td>
925 <td class="left">
926 a triple of three <tt>int</tt> values<br/>
927 A pair, where the first element is a <tt>float</tt> and the second element
928 is a <a href="#t_pointer">pointer</a> to a <a href="#t_function">function</a>
929 that takes an <tt>int</tt>, returning an <tt>int</tt>.<br/>
930 </td>
931 </tr>
Chris Lattner00950542001-06-06 20:29:01 +0000932</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000933</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000934
Chris Lattner00950542001-06-06 20:29:01 +0000935<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +0000936<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000937<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +0000938<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000939<p>As in many languages, the pointer type represents a pointer or
940reference to another object, which must live in memory.</p>
Chris Lattner7faa8832002-04-14 06:13:44 +0000941<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +0000942<pre> &lt;type&gt; *<br></pre>
Chris Lattner7faa8832002-04-14 06:13:44 +0000943<h5>Examples:</h5>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000944<table class="layout">
945 <tr class="layout">
946 <td class="left">
947 <tt>[4x int]*</tt><br/>
948 <tt>int (int *) *</tt><br/>
949 </td>
950 <td class="left">
951 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
952 four <tt>int</tt> values<br/>
953 A <a href="#t_pointer">pointer</a> to a <a
Chris Lattnera977c482005-02-19 02:22:14 +0000954 href="#t_function">function</a> that takes an <tt>int*</tt>, returning an
Reid Spencerd3f876c2004-11-01 08:19:36 +0000955 <tt>int</tt>.<br/>
956 </td>
957 </tr>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000958</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000959</div>
Reid Spencerd3f876c2004-11-01 08:19:36 +0000960
Chris Lattnera58561b2004-08-12 19:12:28 +0000961<!-- _______________________________________________________________________ -->
962<div class="doc_subsubsection"> <a name="t_packed">Packed Type</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +0000963<div class="doc_text">
Chris Lattner69c11bb2005-04-25 17:34:15 +0000964
Chris Lattnera58561b2004-08-12 19:12:28 +0000965<h5>Overview:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000966
Chris Lattnera58561b2004-08-12 19:12:28 +0000967<p>A packed type is a simple derived type that represents a vector
968of elements. Packed types are used when multiple primitive data
969are operated in parallel using a single instruction (SIMD).
970A packed type requires a size (number of
Chris Lattnerb8d172f2005-11-10 01:44:22 +0000971elements) and an underlying primitive data type. Vectors must have a power
972of two length (1, 2, 4, 8, 16 ...). Packed types are
Chris Lattnera58561b2004-08-12 19:12:28 +0000973considered <a href="#t_firstclass">first class</a>.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000974
Chris Lattnera58561b2004-08-12 19:12:28 +0000975<h5>Syntax:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000976
977<pre>
978 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
979</pre>
980
John Criswellc1f786c2005-05-13 22:25:59 +0000981<p>The number of elements is a constant integer value; elementtype may
Chris Lattnera58561b2004-08-12 19:12:28 +0000982be any integral or floating point type.</p>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000983
Chris Lattnera58561b2004-08-12 19:12:28 +0000984<h5>Examples:</h5>
Chris Lattner69c11bb2005-04-25 17:34:15 +0000985
Reid Spencerd3f876c2004-11-01 08:19:36 +0000986<table class="layout">
987 <tr class="layout">
988 <td class="left">
989 <tt>&lt;4 x int&gt;</tt><br/>
990 <tt>&lt;8 x float&gt;</tt><br/>
991 <tt>&lt;2 x uint&gt;</tt><br/>
992 </td>
993 <td class="left">
994 Packed vector of 4 integer values.<br/>
995 Packed vector of 8 floating-point values.<br/>
996 Packed vector of 2 unsigned integer values.<br/>
997 </td>
998 </tr>
999</table>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001000</div>
1001
Chris Lattner69c11bb2005-04-25 17:34:15 +00001002<!-- _______________________________________________________________________ -->
1003<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1004<div class="doc_text">
1005
1006<h5>Overview:</h5>
1007
1008<p>Opaque types are used to represent unknown types in the system. This
1009corresponds (for example) to the C notion of a foward declared structure type.
1010In LLVM, opaque types can eventually be resolved to any type (not just a
1011structure type).</p>
1012
1013<h5>Syntax:</h5>
1014
1015<pre>
1016 opaque
1017</pre>
1018
1019<h5>Examples:</h5>
1020
1021<table class="layout">
1022 <tr class="layout">
1023 <td class="left">
1024 <tt>opaque</tt>
1025 </td>
1026 <td class="left">
1027 An opaque type.<br/>
1028 </td>
1029 </tr>
1030</table>
1031</div>
1032
1033
Chris Lattnerc3f59762004-12-09 17:30:23 +00001034<!-- *********************************************************************** -->
1035<div class="doc_section"> <a name="constants">Constants</a> </div>
1036<!-- *********************************************************************** -->
1037
1038<div class="doc_text">
1039
1040<p>LLVM has several different basic types of constants. This section describes
1041them all and their syntax.</p>
1042
1043</div>
1044
1045<!-- ======================================================================= -->
Reid Spencercc16dc32004-12-09 18:02:53 +00001046<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001047
1048<div class="doc_text">
1049
1050<dl>
1051 <dt><b>Boolean constants</b></dt>
1052
1053 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1054 constants of the <tt><a href="#t_primitive">bool</a></tt> type.
1055 </dd>
1056
1057 <dt><b>Integer constants</b></dt>
1058
Reid Spencercc16dc32004-12-09 18:02:53 +00001059 <dd>Standard integers (such as '4') are constants of the <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001060 href="#t_integer">integer</a> type. Negative numbers may be used with signed
1061 integer types.
1062 </dd>
1063
1064 <dt><b>Floating point constants</b></dt>
1065
1066 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1067 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
Chris Lattnerc3f59762004-12-09 17:30:23 +00001068 notation (see below). Floating point constants must have a <a
1069 href="#t_floating">floating point</a> type. </dd>
1070
1071 <dt><b>Null pointer constants</b></dt>
1072
John Criswell9e2485c2004-12-10 15:51:16 +00001073 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
Chris Lattnerc3f59762004-12-09 17:30:23 +00001074 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1075
1076</dl>
1077
John Criswell9e2485c2004-12-10 15:51:16 +00001078<p>The one non-intuitive notation for constants is the optional hexadecimal form
Chris Lattnerc3f59762004-12-09 17:30:23 +00001079of floating point constants. For example, the form '<tt>double
10800x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
10814.5e+15</tt>'. The only time hexadecimal floating point constants are required
Reid Spencercc16dc32004-12-09 18:02:53 +00001082(and the only time that they are generated by the disassembler) is when a
1083floating point constant must be emitted but it cannot be represented as a
1084decimal floating point number. For example, NaN's, infinities, and other
1085special values are represented in their IEEE hexadecimal format so that
1086assembly and disassembly do not cause any bits to change in the constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001087
1088</div>
1089
1090<!-- ======================================================================= -->
1091<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1092</div>
1093
1094<div class="doc_text">
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001095<p>Aggregate constants arise from aggregation of simple constants
1096and smaller aggregate constants.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001097
1098<dl>
1099 <dt><b>Structure constants</b></dt>
1100
1101 <dd>Structure constants are represented with notation similar to structure
1102 type definitions (a comma separated list of elements, surrounded by braces
Chris Lattnerd4f6b172005-03-07 22:13:59 +00001103 (<tt>{}</tt>)). For example: "<tt>{ int 4, float 17.0, int* %G }</tt>",
1104 where "<tt>%G</tt>" is declared as "<tt>%G = external global int</tt>". Structure constants
1105 must have <a href="#t_struct">structure type</a>, and the number and
Chris Lattnerc3f59762004-12-09 17:30:23 +00001106 types of elements must match those specified by the type.
1107 </dd>
1108
1109 <dt><b>Array constants</b></dt>
1110
1111 <dd>Array constants are represented with notation similar to array type
1112 definitions (a comma separated list of elements, surrounded by square brackets
John Criswell9e2485c2004-12-10 15:51:16 +00001113 (<tt>[]</tt>)). For example: "<tt>[ int 42, int 11, int 74 ]</tt>". Array
Chris Lattnerc3f59762004-12-09 17:30:23 +00001114 constants must have <a href="#t_array">array type</a>, and the number and
1115 types of elements must match those specified by the type.
1116 </dd>
1117
1118 <dt><b>Packed constants</b></dt>
1119
1120 <dd>Packed constants are represented with notation similar to packed type
1121 definitions (a comma separated list of elements, surrounded by
John Criswell9e2485c2004-12-10 15:51:16 +00001122 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; int 42,
Chris Lattnerc3f59762004-12-09 17:30:23 +00001123 int 11, int 74, int 100 &gt;</tt>". Packed constants must have <a
1124 href="#t_packed">packed type</a>, and the number and types of elements must
1125 match those specified by the type.
1126 </dd>
1127
1128 <dt><b>Zero initialization</b></dt>
1129
1130 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1131 value to zero of <em>any</em> type, including scalar and aggregate types.
1132 This is often used to avoid having to print large zero initializers (e.g. for
John Criswell0ec250c2005-10-24 16:17:18 +00001133 large arrays) and is always exactly equivalent to using explicit zero
Chris Lattnerc3f59762004-12-09 17:30:23 +00001134 initializers.
1135 </dd>
1136</dl>
1137
1138</div>
1139
1140<!-- ======================================================================= -->
1141<div class="doc_subsection">
1142 <a name="globalconstants">Global Variable and Function Addresses</a>
1143</div>
1144
1145<div class="doc_text">
1146
1147<p>The addresses of <a href="#globalvars">global variables</a> and <a
1148href="#functionstructure">functions</a> are always implicitly valid (link-time)
John Criswell9e2485c2004-12-10 15:51:16 +00001149constants. These constants are explicitly referenced when the <a
1150href="#identifiers">identifier for the global</a> is used and always have <a
Chris Lattnerc3f59762004-12-09 17:30:23 +00001151href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1152file:</p>
1153
1154<pre>
1155 %X = global int 17
1156 %Y = global int 42
1157 %Z = global [2 x int*] [ int* %X, int* %Y ]
1158</pre>
1159
1160</div>
1161
1162<!-- ======================================================================= -->
Reid Spencer2dc45b82004-12-09 18:13:12 +00001163<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001164<div class="doc_text">
Reid Spencer2dc45b82004-12-09 18:13:12 +00001165 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
John Criswellc1f786c2005-05-13 22:25:59 +00001166 no specific value. Undefined values may be of any type and be used anywhere
Reid Spencer2dc45b82004-12-09 18:13:12 +00001167 a constant is permitted.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001168
Reid Spencer2dc45b82004-12-09 18:13:12 +00001169 <p>Undefined values indicate to the compiler that the program is well defined
1170 no matter what value is used, giving the compiler more freedom to optimize.
1171 </p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001172</div>
1173
1174<!-- ======================================================================= -->
1175<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1176</div>
1177
1178<div class="doc_text">
1179
1180<p>Constant expressions are used to allow expressions involving other constants
1181to be used as constants. Constant expressions may be of any <a
John Criswellc1f786c2005-05-13 22:25:59 +00001182href="#t_firstclass">first class</a> type and may involve any LLVM operation
Chris Lattnerc3f59762004-12-09 17:30:23 +00001183that does not have side effects (e.g. load and call are not supported). The
1184following is the syntax for constant expressions:</p>
1185
1186<dl>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001187 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1188 <dd>Truncate a constant to another type. The bit size of CST must be larger
1189 than the bit size of TYPE. Both types must be integral.</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001190
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001191 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1192 <dd>Zero extend a constant to another type. The bit size of CST must be
1193 smaller or equal to the bit size of TYPE. Both types must be integral.</dd>
1194
1195 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1196 <dd>Sign extend a constant to another type. The bit size of CST must be
1197 smaller or equal to the bit size of TYPE. Both types must be integral.</dd>
1198
1199 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1200 <dd>Truncate a floating point constant to another floating point type. The
1201 size of CST must be larger than the size of TYPE. Both types must be
1202 floating point.</dd>
1203
1204 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1205 <dd>Floating point extend a constant to another type. The size of CST must be
1206 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1207
1208 <dt><b><tt>fp2uint ( CST to TYPE )</tt></b></dt>
1209 <dd>Convert a floating point constant to the corresponding unsigned integer
1210 constant. TYPE must be an integer type. CST must be floating point. If the
1211 value won't fit in the integer type, the results are undefined.</dd>
1212
Reid Spencerd4448792006-11-09 23:03:26 +00001213 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001214 <dd>Convert a floating point constant to the corresponding signed integer
1215 constant. TYPE must be an integer type. CST must be floating point. If the
1216 value won't fit in the integer type, the results are undefined.</dd>
1217
Reid Spencerd4448792006-11-09 23:03:26 +00001218 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001219 <dd>Convert an unsigned integer constant to the corresponding floating point
1220 constant. TYPE must be floating point. CST must be of integer type. If the
1221 value won't fit in the floating point type, the results are undefined.</dd>
1222
Reid Spencerd4448792006-11-09 23:03:26 +00001223 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001224 <dd>Convert a signed integer constant to the corresponding floating point
1225 constant. TYPE must be floating point. CST must be of integer type. If the
1226 value won't fit in the floating point type, the results are undefined.</dd>
1227
Reid Spencer5c0ef472006-11-11 23:08:07 +00001228 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1229 <dd>Convert a pointer typed constant to the corresponding integer constant
1230 TYPE must be an integer type. CST must be of pointer type. The CST value is
1231 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1232
1233 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1234 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1235 pointer type. CST must be of integer type. The CST value is zero extended,
1236 truncated, or unchanged to make it fit in a pointer size. This one is
1237 <i>really</i> dangerous!</dd>
1238
1239 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001240 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1241 identical (same number of bits). The conversion is done as if the CST value
1242 was stored to memory and read back as TYPE. In other words, no bits change
Reid Spencer5c0ef472006-11-11 23:08:07 +00001243 with this operator, just the type. This can be used for conversion of
1244 packed types to any other type, as long as they have the same bit width. For
1245 pointers it is only valid to cast to another pointer type.
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001246 </dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001247
1248 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1249
1250 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1251 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1252 instruction, the index list may have zero or more indexes, which are required
1253 to make sense for the type of "CSTPTR".</dd>
1254
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001255 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1256
1257 <dd>Perform the <a href="#i_select">select operation</a> on
Reid Spencer01c42592006-12-04 19:23:19 +00001258 constants.</dd>
1259
1260 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1261 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1262
1263 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1264 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
Robert Bocchino9fbe1452006-01-10 19:31:34 +00001265
1266 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1267
1268 <dd>Perform the <a href="#i_extractelement">extractelement
1269 operation</a> on constants.
1270
Robert Bocchino05ccd702006-01-15 20:48:27 +00001271 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1272
1273 <dd>Perform the <a href="#i_insertelement">insertelement
Reid Spencer01c42592006-12-04 19:23:19 +00001274 operation</a> on constants.</dd>
Robert Bocchino05ccd702006-01-15 20:48:27 +00001275
Chris Lattnerc1989542006-04-08 00:13:41 +00001276
1277 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1278
1279 <dd>Perform the <a href="#i_shufflevector">shufflevector
Reid Spencer01c42592006-12-04 19:23:19 +00001280 operation</a> on constants.</dd>
Chris Lattnerc1989542006-04-08 00:13:41 +00001281
Chris Lattnerc3f59762004-12-09 17:30:23 +00001282 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1283
Reid Spencer2dc45b82004-12-09 18:13:12 +00001284 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1285 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
Chris Lattnerc3f59762004-12-09 17:30:23 +00001286 binary</a> operations. The constraints on operands are the same as those for
1287 the corresponding instruction (e.g. no bitwise operations on floating point
John Criswelle4c57cc2005-05-12 16:52:32 +00001288 values are allowed).</dd>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001289</dl>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001290</div>
Chris Lattner9ee5d222004-03-08 16:49:10 +00001291
Chris Lattner00950542001-06-06 20:29:01 +00001292<!-- *********************************************************************** -->
Chris Lattnere87d6532006-01-25 23:47:57 +00001293<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1294<!-- *********************************************************************** -->
1295
1296<!-- ======================================================================= -->
1297<div class="doc_subsection">
1298<a name="inlineasm">Inline Assembler Expressions</a>
1299</div>
1300
1301<div class="doc_text">
1302
1303<p>
1304LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1305Module-Level Inline Assembly</a>) through the use of a special value. This
1306value represents the inline assembler as a string (containing the instructions
1307to emit), a list of operand constraints (stored as a string), and a flag that
1308indicates whether or not the inline asm expression has side effects. An example
1309inline assembler expression is:
1310</p>
1311
1312<pre>
1313 int(int) asm "bswap $0", "=r,r"
1314</pre>
1315
1316<p>
1317Inline assembler expressions may <b>only</b> be used as the callee operand of
1318a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1319</p>
1320
1321<pre>
1322 %X = call int asm "<a href="#i_bswap">bswap</a> $0", "=r,r"(int %Y)
1323</pre>
1324
1325<p>
1326Inline asms with side effects not visible in the constraint list must be marked
1327as having side effects. This is done through the use of the
1328'<tt>sideeffect</tt>' keyword, like so:
1329</p>
1330
1331<pre>
1332 call void asm sideeffect "eieio", ""()
1333</pre>
1334
1335<p>TODO: The format of the asm and constraints string still need to be
1336documented here. Constraints on what can be done (e.g. duplication, moving, etc
1337need to be documented).
1338</p>
1339
1340</div>
1341
1342<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00001343<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1344<!-- *********************************************************************** -->
Chris Lattnerc3f59762004-12-09 17:30:23 +00001345
Misha Brukman9d0919f2003-11-08 01:05:38 +00001346<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001347
Chris Lattner261efe92003-11-25 01:02:51 +00001348<p>The LLVM instruction set consists of several different
1349classifications of instructions: <a href="#terminators">terminator
John Criswellc1f786c2005-05-13 22:25:59 +00001350instructions</a>, <a href="#binaryops">binary instructions</a>,
1351<a href="#bitwiseops">bitwise binary instructions</a>, <a
Chris Lattner261efe92003-11-25 01:02:51 +00001352 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1353instructions</a>.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001354
Misha Brukman9d0919f2003-11-08 01:05:38 +00001355</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001356
Chris Lattner00950542001-06-06 20:29:01 +00001357<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001358<div class="doc_subsection"> <a name="terminators">Terminator
1359Instructions</a> </div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001360
Misha Brukman9d0919f2003-11-08 01:05:38 +00001361<div class="doc_text">
Chris Lattnerc3f59762004-12-09 17:30:23 +00001362
Chris Lattner261efe92003-11-25 01:02:51 +00001363<p>As mentioned <a href="#functionstructure">previously</a>, every
1364basic block in a program ends with a "Terminator" instruction, which
1365indicates which block should be executed after the current block is
1366finished. These terminator instructions typically yield a '<tt>void</tt>'
1367value: they produce control flow, not values (the one exception being
1368the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
John Criswell9e2485c2004-12-10 15:51:16 +00001369<p>There are six different terminator instructions: the '<a
Chris Lattner261efe92003-11-25 01:02:51 +00001370 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1371instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
Chris Lattner35eca582004-10-16 18:04:13 +00001372the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1373 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1374 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001375
Misha Brukman9d0919f2003-11-08 01:05:38 +00001376</div>
Chris Lattnerc3f59762004-12-09 17:30:23 +00001377
Chris Lattner00950542001-06-06 20:29:01 +00001378<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001379<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1380Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001381<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001382<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001383<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001384 ret void <i>; Return from void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001385</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001386<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001387<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
John Criswellc1f786c2005-05-13 22:25:59 +00001388value) from a function back to the caller.</p>
John Criswell4457dc92004-04-09 16:48:45 +00001389<p>There are two forms of the '<tt>ret</tt>' instruction: one that
Chris Lattner261efe92003-11-25 01:02:51 +00001390returns a value and then causes control flow, and one that just causes
1391control flow to occur.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001392<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001393<p>The '<tt>ret</tt>' instruction may return any '<a
1394 href="#t_firstclass">first class</a>' type. Notice that a function is
1395not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1396instruction inside of the function that returns a value that does not
1397match the return type of the function.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001398<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001399<p>When the '<tt>ret</tt>' instruction is executed, control flow
1400returns back to the calling function's context. If the caller is a "<a
John Criswellfa081872004-06-25 15:16:57 +00001401 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
Chris Lattner261efe92003-11-25 01:02:51 +00001402the instruction after the call. If the caller was an "<a
1403 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
John Criswelle4c57cc2005-05-12 16:52:32 +00001404at the beginning of the "normal" destination block. If the instruction
Chris Lattner261efe92003-11-25 01:02:51 +00001405returns a value, that value shall set the call or invoke instruction's
1406return value.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001407<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001408<pre> ret int 5 <i>; Return an integer value of 5</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00001409 ret void <i>; Return from a void function</i>
Chris Lattner00950542001-06-06 20:29:01 +00001410</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001411</div>
Chris Lattner00950542001-06-06 20:29:01 +00001412<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001413<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001414<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001415<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001416<pre> br bool &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
Chris Lattner00950542001-06-06 20:29:01 +00001417</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001418<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001419<p>The '<tt>br</tt>' instruction is used to cause control flow to
1420transfer to a different basic block in the current function. There are
1421two forms of this instruction, corresponding to a conditional branch
1422and an unconditional branch.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001423<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001424<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1425single '<tt>bool</tt>' value and two '<tt>label</tt>' values. The
1426unconditional form of the '<tt>br</tt>' instruction takes a single '<tt>label</tt>'
1427value as a target.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001428<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001429<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>bool</tt>'
1430argument is evaluated. If the value is <tt>true</tt>, control flows
1431to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1432control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001433<h5>Example:</h5>
Reid Spencer36d68e42006-11-18 21:55:45 +00001434<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, int %a, %b<br> br bool %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
Chris Lattner261efe92003-11-25 01:02:51 +00001435 href="#i_ret">ret</a> int 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> int 0<br></pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001436</div>
Chris Lattner00950542001-06-06 20:29:01 +00001437<!-- _______________________________________________________________________ -->
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001438<div class="doc_subsubsection">
1439 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1440</div>
1441
Misha Brukman9d0919f2003-11-08 01:05:38 +00001442<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001443<h5>Syntax:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001444
1445<pre>
1446 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1447</pre>
1448
Chris Lattner00950542001-06-06 20:29:01 +00001449<h5>Overview:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001450
1451<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1452several different places. It is a generalization of the '<tt>br</tt>'
Misha Brukman9d0919f2003-11-08 01:05:38 +00001453instruction, allowing a branch to occur to one of many possible
1454destinations.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001455
1456
Chris Lattner00950542001-06-06 20:29:01 +00001457<h5>Arguments:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001458
1459<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1460comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1461an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1462table is not allowed to contain duplicate constant entries.</p>
1463
Chris Lattner00950542001-06-06 20:29:01 +00001464<h5>Semantics:</h5>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001465
Chris Lattner261efe92003-11-25 01:02:51 +00001466<p>The <tt>switch</tt> instruction specifies a table of values and
1467destinations. When the '<tt>switch</tt>' instruction is executed, this
John Criswell84114752004-06-25 16:05:06 +00001468table is searched for the given value. If the value is found, control flow is
1469transfered to the corresponding destination; otherwise, control flow is
1470transfered to the default destination.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001471
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001472<h5>Implementation:</h5>
1473
1474<p>Depending on properties of the target machine and the particular
1475<tt>switch</tt> instruction, this instruction may be code generated in different
John Criswell84114752004-06-25 16:05:06 +00001476ways. For example, it could be generated as a series of chained conditional
1477branches or with a lookup table.</p>
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001478
1479<h5>Example:</h5>
1480
1481<pre>
1482 <i>; Emulate a conditional br instruction</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00001483 %Val = <a href="#i_zext">zext</a> bool %value to int
Chris Lattnerc88c17b2004-02-24 04:54:45 +00001484 switch int %Val, label %truedest [int 0, label %falsedest ]
1485
1486 <i>; Emulate an unconditional br instruction</i>
1487 switch uint 0, label %dest [ ]
1488
1489 <i>; Implement a jump table:</i>
1490 switch uint %val, label %otherwise [ uint 0, label %onzero
1491 uint 1, label %onone
1492 uint 2, label %ontwo ]
Chris Lattner00950542001-06-06 20:29:01 +00001493</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001494</div>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001495
Chris Lattner00950542001-06-06 20:29:01 +00001496<!-- _______________________________________________________________________ -->
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001497<div class="doc_subsubsection">
1498 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1499</div>
1500
Misha Brukman9d0919f2003-11-08 01:05:38 +00001501<div class="doc_text">
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001502
Chris Lattner00950542001-06-06 20:29:01 +00001503<h5>Syntax:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001504
1505<pre>
1506 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
Chris Lattner76b8a332006-05-14 18:23:06 +00001507 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001508</pre>
1509
Chris Lattner6536cfe2002-05-06 22:08:29 +00001510<h5>Overview:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001511
1512<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1513function, with the possibility of control flow transfer to either the
John Criswelle4c57cc2005-05-12 16:52:32 +00001514'<tt>normal</tt>' label or the
1515'<tt>exception</tt>' label. If the callee function returns with the
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001516"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1517"normal" label. If the callee (or any indirect callees) returns with the "<a
John Criswelle4c57cc2005-05-12 16:52:32 +00001518href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1519continued at the dynamically nearest "exception" label.</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001520
Chris Lattner00950542001-06-06 20:29:01 +00001521<h5>Arguments:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001522
Misha Brukman9d0919f2003-11-08 01:05:38 +00001523<p>This instruction requires several arguments:</p>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001524
Chris Lattner00950542001-06-06 20:29:01 +00001525<ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001526 <li>
John Criswellc1f786c2005-05-13 22:25:59 +00001527 The optional "cconv" marker indicates which <a href="callingconv">calling
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001528 convention</a> the call should use. If none is specified, the call defaults
1529 to using C calling conventions.
1530 </li>
1531 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1532 function value being invoked. In most cases, this is a direct function
1533 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1534 an arbitrary pointer to function value.
1535 </li>
1536
1537 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1538 function to be invoked. </li>
1539
1540 <li>'<tt>function args</tt>': argument list whose types match the function
1541 signature argument types. If the function signature indicates the function
1542 accepts a variable number of arguments, the extra arguments can be
1543 specified. </li>
1544
1545 <li>'<tt>normal label</tt>': the label reached when the called function
1546 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1547
1548 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1549 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1550
Chris Lattner00950542001-06-06 20:29:01 +00001551</ol>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001552
Chris Lattner00950542001-06-06 20:29:01 +00001553<h5>Semantics:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001554
Misha Brukman9d0919f2003-11-08 01:05:38 +00001555<p>This instruction is designed to operate as a standard '<tt><a
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001556href="#i_call">call</a></tt>' instruction in most regards. The primary
1557difference is that it establishes an association with a label, which is used by
1558the runtime library to unwind the stack.</p>
1559
1560<p>This instruction is used in languages with destructors to ensure that proper
1561cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1562exception. Additionally, this is important for implementation of
1563'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1564
Chris Lattner00950542001-06-06 20:29:01 +00001565<h5>Example:</h5>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001566<pre>
1567 %retval = invoke int %Test(int 15) to label %Continue
Chris Lattner76b8a332006-05-14 18:23:06 +00001568 unwind label %TestCleanup <i>; {int}:retval set</i>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00001569 %retval = invoke <a href="#callingconv">coldcc</a> int %Test(int 15) to label %Continue
Chris Lattner76b8a332006-05-14 18:23:06 +00001570 unwind label %TestCleanup <i>; {int}:retval set</i>
Chris Lattner00950542001-06-06 20:29:01 +00001571</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001572</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001573
1574
Chris Lattner27f71f22003-09-03 00:41:47 +00001575<!-- _______________________________________________________________________ -->
Chris Lattner35eca582004-10-16 18:04:13 +00001576
Chris Lattner261efe92003-11-25 01:02:51 +00001577<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1578Instruction</a> </div>
Chris Lattner35eca582004-10-16 18:04:13 +00001579
Misha Brukman9d0919f2003-11-08 01:05:38 +00001580<div class="doc_text">
Chris Lattner35eca582004-10-16 18:04:13 +00001581
Chris Lattner27f71f22003-09-03 00:41:47 +00001582<h5>Syntax:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001583<pre>
1584 unwind
1585</pre>
1586
Chris Lattner27f71f22003-09-03 00:41:47 +00001587<h5>Overview:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001588
1589<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1590at the first callee in the dynamic call stack which used an <a
1591href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1592primarily used to implement exception handling.</p>
1593
Chris Lattner27f71f22003-09-03 00:41:47 +00001594<h5>Semantics:</h5>
Chris Lattner35eca582004-10-16 18:04:13 +00001595
1596<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1597immediately halt. The dynamic call stack is then searched for the first <a
1598href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1599execution continues at the "exceptional" destination block specified by the
1600<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1601dynamic call chain, undefined behavior results.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001602</div>
Chris Lattner35eca582004-10-16 18:04:13 +00001603
1604<!-- _______________________________________________________________________ -->
1605
1606<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1607Instruction</a> </div>
1608
1609<div class="doc_text">
1610
1611<h5>Syntax:</h5>
1612<pre>
1613 unreachable
1614</pre>
1615
1616<h5>Overview:</h5>
1617
1618<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1619instruction is used to inform the optimizer that a particular portion of the
1620code is not reachable. This can be used to indicate that the code after a
1621no-return function cannot be reached, and other facts.</p>
1622
1623<h5>Semantics:</h5>
1624
1625<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1626</div>
1627
1628
1629
Chris Lattner00950542001-06-06 20:29:01 +00001630<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001631<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001632<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001633<p>Binary operators are used to do most of the computation in a
1634program. They require two operands, execute an operation on them, and
John Criswell9e2485c2004-12-10 15:51:16 +00001635produce a single value. The operands might represent
Chris Lattnera58561b2004-08-12 19:12:28 +00001636multiple data, as is the case with the <a href="#t_packed">packed</a> data type.
1637The result value of a binary operator is not
Chris Lattner261efe92003-11-25 01:02:51 +00001638necessarily the same type as its operands.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001639<p>There are several different binary operators:</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001640</div>
Chris Lattner00950542001-06-06 20:29:01 +00001641<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001642<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1643Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001644<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001645<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001646<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001647</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001648<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001649<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001650<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001651<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
Chris Lattnera58561b2004-08-12 19:12:28 +00001652 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1653 This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1654Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001655<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001656<p>The value produced is the integer or floating point sum of the two
1657operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001658<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001659<pre> &lt;result&gt; = add int 4, %var <i>; yields {int}:result = 4 + %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001660</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001661</div>
Chris Lattner00950542001-06-06 20:29:01 +00001662<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001663<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1664Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001665<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001666<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001667<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001668</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001669<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001670<p>The '<tt>sub</tt>' instruction returns the difference of its two
1671operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001672<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1673instruction present in most other intermediate representations.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001674<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001675<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001676 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001677values.
1678This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1679Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001680<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001681<p>The value produced is the integer or floating point difference of
1682the two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001683<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001684<pre> &lt;result&gt; = sub int 4, %var <i>; yields {int}:result = 4 - %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001685 &lt;result&gt; = sub int 0, %val <i>; yields {int}:result = -%var</i>
1686</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001687</div>
Chris Lattner00950542001-06-06 20:29:01 +00001688<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001689<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
1690Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001691<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001692<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001693<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001694</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001695<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001696<p>The '<tt>mul</tt>' instruction returns the product of its two
1697operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001698<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001699<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
Chris Lattner261efe92003-11-25 01:02:51 +00001700 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
Chris Lattnera58561b2004-08-12 19:12:28 +00001701values.
1702This instruction can also take <a href="#t_packed">packed</a> versions of the values.
1703Both arguments must have identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001704<h5>Semantics:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001705<p>The value produced is the integer or floating point product of the
Misha Brukman9d0919f2003-11-08 01:05:38 +00001706two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001707<p>There is no signed vs unsigned multiplication. The appropriate
1708action is taken based on the type of the operand.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001709<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001710<pre> &lt;result&gt; = mul int 4, %var <i>; yields {int}:result = 4 * %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001711</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001712</div>
Chris Lattner00950542001-06-06 20:29:01 +00001713<!-- _______________________________________________________________________ -->
Reid Spencer1628cec2006-10-26 06:15:43 +00001714<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
1715</a></div>
1716<div class="doc_text">
1717<h5>Syntax:</h5>
1718<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1719</pre>
1720<h5>Overview:</h5>
1721<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
1722operands.</p>
1723<h5>Arguments:</h5>
1724<p>The two arguments to the '<tt>udiv</tt>' instruction must be
1725<a href="#t_integer">integer</a> values. Both arguments must have identical
1726types. This instruction can also take <a href="#t_packed">packed</a> versions
1727of the values in which case the elements must be integers.</p>
1728<h5>Semantics:</h5>
1729<p>The value produced is the unsigned integer quotient of the two operands. This
1730instruction always performs an unsigned division operation, regardless of
1731whether the arguments are unsigned or not.</p>
1732<h5>Example:</h5>
1733<pre> &lt;result&gt; = udiv uint 4, %var <i>; yields {uint}:result = 4 / %var</i>
1734</pre>
1735</div>
1736<!-- _______________________________________________________________________ -->
1737<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
1738</a> </div>
1739<div class="doc_text">
1740<h5>Syntax:</h5>
1741<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1742</pre>
1743<h5>Overview:</h5>
1744<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
1745operands.</p>
1746<h5>Arguments:</h5>
1747<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
1748<a href="#t_integer">integer</a> values. Both arguments must have identical
1749types. This instruction can also take <a href="#t_packed">packed</a> versions
1750of the values in which case the elements must be integers.</p>
1751<h5>Semantics:</h5>
1752<p>The value produced is the signed integer quotient of the two operands. This
1753instruction always performs a signed division operation, regardless of whether
1754the arguments are signed or not.</p>
1755<h5>Example:</h5>
1756<pre> &lt;result&gt; = sdiv int 4, %var <i>; yields {int}:result = 4 / %var</i>
1757</pre>
1758</div>
1759<!-- _______________________________________________________________________ -->
1760<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001761Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001762<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001763<h5>Syntax:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001764<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001765</pre>
1766<h5>Overview:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001767<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
Chris Lattner261efe92003-11-25 01:02:51 +00001768operands.</p>
1769<h5>Arguments:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001770<p>The two arguments to the '<tt>div</tt>' instruction must be
1771<a href="#t_floating">floating point</a> values. Both arguments must have
1772identical types. This instruction can also take <a href="#t_packed">packed</a>
1773versions of the values in which case the elements must be floating point.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001774<h5>Semantics:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001775<p>The value produced is the floating point quotient of the two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001776<h5>Example:</h5>
Reid Spencer1628cec2006-10-26 06:15:43 +00001777<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001778</pre>
1779</div>
1780<!-- _______________________________________________________________________ -->
Reid Spencer0a783f72006-11-02 01:53:59 +00001781<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
1782</div>
1783<div class="doc_text">
1784<h5>Syntax:</h5>
1785<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1786</pre>
1787<h5>Overview:</h5>
1788<p>The '<tt>urem</tt>' instruction returns the remainder from the
1789unsigned division of its two arguments.</p>
1790<h5>Arguments:</h5>
1791<p>The two arguments to the '<tt>urem</tt>' instruction must be
1792<a href="#t_integer">integer</a> values. Both arguments must have identical
1793types.</p>
1794<h5>Semantics:</h5>
1795<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
1796This instruction always performs an unsigned division to get the remainder,
1797regardless of whether the arguments are unsigned or not.</p>
1798<h5>Example:</h5>
1799<pre> &lt;result&gt; = urem uint 4, %var <i>; yields {uint}:result = 4 % %var</i>
1800</pre>
1801
1802</div>
1803<!-- _______________________________________________________________________ -->
1804<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00001805Instruction</a> </div>
1806<div class="doc_text">
1807<h5>Syntax:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001808<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001809</pre>
1810<h5>Overview:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001811<p>The '<tt>srem</tt>' instruction returns the remainder from the
1812signed division of its two operands.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001813<h5>Arguments:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001814<p>The two arguments to the '<tt>srem</tt>' instruction must be
1815<a href="#t_integer">integer</a> values. Both arguments must have identical
1816types.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001817<h5>Semantics:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001818<p>This instruction returns the <i>remainder</i> of a division (where the result
Chris Lattner261efe92003-11-25 01:02:51 +00001819has the same sign as the divisor), not the <i>modulus</i> (where the
1820result has the same sign as the dividend) of a value. For more
John Criswell0ec250c2005-10-24 16:17:18 +00001821information about the difference, see <a
Chris Lattner261efe92003-11-25 01:02:51 +00001822 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
1823Math Forum</a>.</p>
1824<h5>Example:</h5>
Reid Spencer0a783f72006-11-02 01:53:59 +00001825<pre> &lt;result&gt; = srem int 4, %var <i>; yields {int}:result = 4 % %var</i>
1826</pre>
1827
1828</div>
1829<!-- _______________________________________________________________________ -->
1830<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
1831Instruction</a> </div>
1832<div class="doc_text">
1833<h5>Syntax:</h5>
1834<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1835</pre>
1836<h5>Overview:</h5>
1837<p>The '<tt>frem</tt>' instruction returns the remainder from the
1838division of its two operands.</p>
1839<h5>Arguments:</h5>
1840<p>The two arguments to the '<tt>frem</tt>' instruction must be
1841<a href="#t_floating">floating point</a> values. Both arguments must have
1842identical types.</p>
1843<h5>Semantics:</h5>
1844<p>This instruction returns the <i>remainder</i> of a division.</p>
1845<h5>Example:</h5>
1846<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
Chris Lattner261efe92003-11-25 01:02:51 +00001847</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001848</div>
Robert Bocchino7b81c752006-02-17 21:18:08 +00001849
Chris Lattner00950542001-06-06 20:29:01 +00001850<!-- ======================================================================= -->
Chris Lattner261efe92003-11-25 01:02:51 +00001851<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
1852Operations</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001853<div class="doc_text">
Chris Lattner261efe92003-11-25 01:02:51 +00001854<p>Bitwise binary operators are used to do various forms of
1855bit-twiddling in a program. They are generally very efficient
John Criswell9e2485c2004-12-10 15:51:16 +00001856instructions and can commonly be strength reduced from other
Chris Lattner261efe92003-11-25 01:02:51 +00001857instructions. They require two operands, execute an operation on them,
1858and produce a single value. The resulting value of the bitwise binary
1859operators is always the same type as its first operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001860</div>
Chris Lattner00950542001-06-06 20:29:01 +00001861<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001862<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
1863Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001864<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001865<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001866<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001867</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001868<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001869<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
1870its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001871<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001872<p>The two arguments to the '<tt>and</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00001873 href="#t_integral">integral</a> values. Both arguments must have
1874identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001875<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001876<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001877<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001878<div style="align: center">
Misha Brukman9d0919f2003-11-08 01:05:38 +00001879<table border="1" cellspacing="0" cellpadding="4">
Chris Lattner261efe92003-11-25 01:02:51 +00001880 <tbody>
1881 <tr>
1882 <td>In0</td>
1883 <td>In1</td>
1884 <td>Out</td>
1885 </tr>
1886 <tr>
1887 <td>0</td>
1888 <td>0</td>
1889 <td>0</td>
1890 </tr>
1891 <tr>
1892 <td>0</td>
1893 <td>1</td>
1894 <td>0</td>
1895 </tr>
1896 <tr>
1897 <td>1</td>
1898 <td>0</td>
1899 <td>0</td>
1900 </tr>
1901 <tr>
1902 <td>1</td>
1903 <td>1</td>
1904 <td>1</td>
1905 </tr>
1906 </tbody>
1907</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001908</div>
Chris Lattner00950542001-06-06 20:29:01 +00001909<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001910<pre> &lt;result&gt; = and int 4, %var <i>; yields {int}:result = 4 &amp; %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001911 &lt;result&gt; = and int 15, 40 <i>; yields {int}:result = 8</i>
1912 &lt;result&gt; = and int 4, 8 <i>; yields {int}:result = 0</i>
1913</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001914</div>
Chris Lattner00950542001-06-06 20:29:01 +00001915<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001916<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001917<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001918<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001919<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001920</pre>
Chris Lattner261efe92003-11-25 01:02:51 +00001921<h5>Overview:</h5>
1922<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
1923or of its two operands.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001924<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001925<p>The two arguments to the '<tt>or</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00001926 href="#t_integral">integral</a> values. Both arguments must have
1927identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001928<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001929<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001930<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001931<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00001932<table border="1" cellspacing="0" cellpadding="4">
1933 <tbody>
1934 <tr>
1935 <td>In0</td>
1936 <td>In1</td>
1937 <td>Out</td>
1938 </tr>
1939 <tr>
1940 <td>0</td>
1941 <td>0</td>
1942 <td>0</td>
1943 </tr>
1944 <tr>
1945 <td>0</td>
1946 <td>1</td>
1947 <td>1</td>
1948 </tr>
1949 <tr>
1950 <td>1</td>
1951 <td>0</td>
1952 <td>1</td>
1953 </tr>
1954 <tr>
1955 <td>1</td>
1956 <td>1</td>
1957 <td>1</td>
1958 </tr>
1959 </tbody>
1960</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001961</div>
Chris Lattner00950542001-06-06 20:29:01 +00001962<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001963<pre> &lt;result&gt; = or int 4, %var <i>; yields {int}:result = 4 | %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00001964 &lt;result&gt; = or int 15, 40 <i>; yields {int}:result = 47</i>
1965 &lt;result&gt; = or int 4, 8 <i>; yields {int}:result = 12</i>
1966</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001967</div>
Chris Lattner00950542001-06-06 20:29:01 +00001968<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00001969<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
1970Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001971<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00001972<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001973<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00001974</pre>
Chris Lattner00950542001-06-06 20:29:01 +00001975<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00001976<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
1977or of its two operands. The <tt>xor</tt> is used to implement the
1978"one's complement" operation, which is the "~" operator in C.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001979<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001980<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
Chris Lattner261efe92003-11-25 01:02:51 +00001981 href="#t_integral">integral</a> values. Both arguments must have
1982identical types.</p>
Chris Lattner00950542001-06-06 20:29:01 +00001983<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00001984<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
Chris Lattner261efe92003-11-25 01:02:51 +00001985<p> </p>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00001986<div style="align: center">
Chris Lattner261efe92003-11-25 01:02:51 +00001987<table border="1" cellspacing="0" cellpadding="4">
1988 <tbody>
1989 <tr>
1990 <td>In0</td>
1991 <td>In1</td>
1992 <td>Out</td>
1993 </tr>
1994 <tr>
1995 <td>0</td>
1996 <td>0</td>
1997 <td>0</td>
1998 </tr>
1999 <tr>
2000 <td>0</td>
2001 <td>1</td>
2002 <td>1</td>
2003 </tr>
2004 <tr>
2005 <td>1</td>
2006 <td>0</td>
2007 <td>1</td>
2008 </tr>
2009 <tr>
2010 <td>1</td>
2011 <td>1</td>
2012 <td>0</td>
2013 </tr>
2014 </tbody>
2015</table>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00002016</div>
Chris Lattner261efe92003-11-25 01:02:51 +00002017<p> </p>
Chris Lattner00950542001-06-06 20:29:01 +00002018<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002019<pre> &lt;result&gt; = xor int 4, %var <i>; yields {int}:result = 4 ^ %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002020 &lt;result&gt; = xor int 15, 40 <i>; yields {int}:result = 39</i>
2021 &lt;result&gt; = xor int 4, 8 <i>; yields {int}:result = 12</i>
Chris Lattner27f71f22003-09-03 00:41:47 +00002022 &lt;result&gt; = xor int %V, -1 <i>; yields {int}:result = ~%V</i>
Chris Lattner00950542001-06-06 20:29:01 +00002023</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002024</div>
Chris Lattner00950542001-06-06 20:29:01 +00002025<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002026<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2027Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002028<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002029<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002030<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002031</pre>
Chris Lattner00950542001-06-06 20:29:01 +00002032<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002033<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2034the left a specified number of bits.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002035<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002036<p>The first argument to the '<tt>shl</tt>' instruction must be an <a
Chris Lattner261efe92003-11-25 01:02:51 +00002037 href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>'
2038type.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002039<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002040<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>.</p>
Chris Lattner00950542001-06-06 20:29:01 +00002041<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002042<pre> &lt;result&gt; = shl int 4, ubyte %var <i>; yields {int}:result = 4 &lt;&lt; %var</i>
Chris Lattner00950542001-06-06 20:29:01 +00002043 &lt;result&gt; = shl int 4, ubyte 2 <i>; yields {int}:result = 16</i>
2044 &lt;result&gt; = shl int 1, ubyte 10 <i>; yields {int}:result = 1024</i>
2045</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002046</div>
Chris Lattner00950542001-06-06 20:29:01 +00002047<!-- _______________________________________________________________________ -->
Reid Spencer3822ff52006-11-08 06:47:33 +00002048<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002049Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002050<div class="doc_text">
Chris Lattner00950542001-06-06 20:29:01 +00002051<h5>Syntax:</h5>
Reid Spencer3822ff52006-11-08 06:47:33 +00002052<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002053</pre>
Reid Spencer3822ff52006-11-08 06:47:33 +00002054
Chris Lattner00950542001-06-06 20:29:01 +00002055<h5>Overview:</h5>
Reid Spencer3822ff52006-11-08 06:47:33 +00002056<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2057operand shifted to the right a specified number of bits.</p>
2058
Chris Lattner00950542001-06-06 20:29:01 +00002059<h5>Arguments:</h5>
Reid Spencer3822ff52006-11-08 06:47:33 +00002060<p>The first argument to the '<tt>lshr</tt>' instruction must be an <a
2061 href="#t_integer">integer</a> type. The second argument must be an '<tt>ubyte</tt>' type.</p>
2062
Chris Lattner00950542001-06-06 20:29:01 +00002063<h5>Semantics:</h5>
Reid Spencer3822ff52006-11-08 06:47:33 +00002064<p>This instruction always performs a logical shift right operation, regardless
2065of whether the arguments are unsigned or not. The <tt>var2</tt> most significant
2066bits will be filled with zero bits after the shift.</p>
2067
Chris Lattner00950542001-06-06 20:29:01 +00002068<h5>Example:</h5>
Reid Spencer3822ff52006-11-08 06:47:33 +00002069<pre>
2070 &lt;result&gt; = lshr uint 4, ubyte 1 <i>; yields {uint}:result = 2</i>
2071 &lt;result&gt; = lshr int 4, ubyte 2 <i>; yields {uint}:result = 1</i>
2072 &lt;result&gt; = lshr sbyte 4, ubyte 3 <i>; yields {sbyte}:result = 0</i>
2073 &lt;result&gt; = lshr sbyte -2, ubyte 1 <i>; yields {sbyte}:result = 0x7FFFFFFF </i>
2074</pre>
2075</div>
2076
2077<!-- ======================================================================= -->
2078<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2079Instruction</a> </div>
2080<div class="doc_text">
2081
2082<h5>Syntax:</h5>
2083<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, ubyte &lt;var2&gt; <i>; yields {ty}:result</i>
2084</pre>
2085
2086<h5>Overview:</h5>
2087<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2088operand shifted to the right a specified number of bits.</p>
2089
2090<h5>Arguments:</h5>
2091<p>The first argument to the '<tt>ashr</tt>' instruction must be an
2092<a href="#t_integer">integer</a> type. The second argument must be an
2093'<tt>ubyte</tt>' type.</p>
2094
2095<h5>Semantics:</h5>
2096<p>This instruction always performs an arithmetic shift right operation,
2097regardless of whether the arguments are signed or not. The <tt>var2</tt> most
2098significant bits will be filled with the sign bit of <tt>var1</tt>.</p>
2099
2100<h5>Example:</h5>
2101<pre>
2102 &lt;result&gt; = ashr uint 4, ubyte 1 <i>; yields {uint}:result = 2</i>
2103 &lt;result&gt; = ashr int 4, ubyte 2 <i>; yields {int}:result = 1</i>
2104 &lt;result&gt; = ashr ubyte 4, ubyte 3 <i>; yields {ubyte}:result = 0</i>
2105 &lt;result&gt; = ashr sbyte -2, ubyte 1 <i>; yields {sbyte}:result = -1</i>
Chris Lattner00950542001-06-06 20:29:01 +00002106</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002107</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002108
Chris Lattner00950542001-06-06 20:29:01 +00002109<!-- ======================================================================= -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002110<div class="doc_subsection">
Chris Lattner3df241e2006-04-08 23:07:04 +00002111 <a name="vectorops">Vector Operations</a>
2112</div>
2113
2114<div class="doc_text">
2115
2116<p>LLVM supports several instructions to represent vector operations in a
2117target-independent manner. This instructions cover the element-access and
2118vector-specific operations needed to process vectors effectively. While LLVM
2119does directly support these vector operations, many sophisticated algorithms
2120will want to use target-specific intrinsics to take full advantage of a specific
2121target.</p>
2122
2123</div>
2124
2125<!-- _______________________________________________________________________ -->
2126<div class="doc_subsubsection">
2127 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2128</div>
2129
2130<div class="doc_text">
2131
2132<h5>Syntax:</h5>
2133
2134<pre>
2135 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, uint &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2136</pre>
2137
2138<h5>Overview:</h5>
2139
2140<p>
2141The '<tt>extractelement</tt>' instruction extracts a single scalar
2142element from a packed vector at a specified index.
2143</p>
2144
2145
2146<h5>Arguments:</h5>
2147
2148<p>
2149The first operand of an '<tt>extractelement</tt>' instruction is a
2150value of <a href="#t_packed">packed</a> type. The second operand is
2151an index indicating the position from which to extract the element.
2152The index may be a variable.</p>
2153
2154<h5>Semantics:</h5>
2155
2156<p>
2157The result is a scalar of the same type as the element type of
2158<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2159<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2160results are undefined.
2161</p>
2162
2163<h5>Example:</h5>
2164
2165<pre>
2166 %result = extractelement &lt;4 x int&gt; %vec, uint 0 <i>; yields int</i>
2167</pre>
2168</div>
2169
2170
2171<!-- _______________________________________________________________________ -->
2172<div class="doc_subsubsection">
2173 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2174</div>
2175
2176<div class="doc_text">
2177
2178<h5>Syntax:</h5>
2179
2180<pre>
2181 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, uint &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2182</pre>
2183
2184<h5>Overview:</h5>
2185
2186<p>
2187The '<tt>insertelement</tt>' instruction inserts a scalar
2188element into a packed vector at a specified index.
2189</p>
2190
2191
2192<h5>Arguments:</h5>
2193
2194<p>
2195The first operand of an '<tt>insertelement</tt>' instruction is a
2196value of <a href="#t_packed">packed</a> type. The second operand is a
2197scalar value whose type must equal the element type of the first
2198operand. The third operand is an index indicating the position at
2199which to insert the value. The index may be a variable.</p>
2200
2201<h5>Semantics:</h5>
2202
2203<p>
2204The result is a packed vector of the same type as <tt>val</tt>. Its
2205element values are those of <tt>val</tt> except at position
2206<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2207exceeds the length of <tt>val</tt>, the results are undefined.
2208</p>
2209
2210<h5>Example:</h5>
2211
2212<pre>
2213 %result = insertelement &lt;4 x int&gt; %vec, int 1, uint 0 <i>; yields &lt;4 x int&gt;</i>
2214</pre>
2215</div>
2216
2217<!-- _______________________________________________________________________ -->
2218<div class="doc_subsubsection">
2219 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2220</div>
2221
2222<div class="doc_text">
2223
2224<h5>Syntax:</h5>
2225
2226<pre>
2227 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x uint&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2228</pre>
2229
2230<h5>Overview:</h5>
2231
2232<p>
2233The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2234from two input vectors, returning a vector of the same type.
2235</p>
2236
2237<h5>Arguments:</h5>
2238
2239<p>
2240The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2241with types that match each other and types that match the result of the
2242instruction. The third argument is a shuffle mask, which has the same number
2243of elements as the other vector type, but whose element type is always 'uint'.
2244</p>
2245
2246<p>
2247The shuffle mask operand is required to be a constant vector with either
2248constant integer or undef values.
2249</p>
2250
2251<h5>Semantics:</h5>
2252
2253<p>
2254The elements of the two input vectors are numbered from left to right across
2255both of the vectors. The shuffle mask operand specifies, for each element of
2256the result vector, which element of the two input registers the result element
2257gets. The element selector may be undef (meaning "don't care") and the second
2258operand may be undef if performing a shuffle from only one vector.
2259</p>
2260
2261<h5>Example:</h5>
2262
2263<pre>
2264 %result = shufflevector &lt;4 x int&gt; %v1, &lt;4 x int&gt; %v2,
2265 &lt;4 x uint&gt; &lt;uint 0, uint 4, uint 1, uint 5&gt; <i>; yields &lt;4 x int&gt;</i>
2266 %result = shufflevector &lt;4 x int&gt; %v1, &lt;4 x int&gt; undef,
2267 &lt;4 x uint&gt; &lt;uint 0, uint 1, uint 2, uint 3&gt; <i>; yields &lt;4 x int&gt;</i> - Identity shuffle.
2268</pre>
2269</div>
2270
Tanya Lattner09474292006-04-14 19:24:33 +00002271
Chris Lattner3df241e2006-04-08 23:07:04 +00002272<!-- ======================================================================= -->
2273<div class="doc_subsection">
Chris Lattner884a9702006-08-15 00:45:58 +00002274 <a name="memoryops">Memory Access and Addressing Operations</a>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002275</div>
2276
Misha Brukman9d0919f2003-11-08 01:05:38 +00002277<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002278
Chris Lattner261efe92003-11-25 01:02:51 +00002279<p>A key design point of an SSA-based representation is how it
2280represents memory. In LLVM, no memory locations are in SSA form, which
2281makes things very simple. This section describes how to read, write,
John Criswell9e2485c2004-12-10 15:51:16 +00002282allocate, and free memory in LLVM.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002283
Misha Brukman9d0919f2003-11-08 01:05:38 +00002284</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002285
Chris Lattner00950542001-06-06 20:29:01 +00002286<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002287<div class="doc_subsubsection">
2288 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2289</div>
2290
Misha Brukman9d0919f2003-11-08 01:05:38 +00002291<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002292
Chris Lattner00950542001-06-06 20:29:01 +00002293<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002294
2295<pre>
2296 &lt;result&gt; = malloc &lt;type&gt;[, uint &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002297</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002298
Chris Lattner00950542001-06-06 20:29:01 +00002299<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002300
Chris Lattner261efe92003-11-25 01:02:51 +00002301<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2302heap and returns a pointer to it.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002303
Chris Lattner00950542001-06-06 20:29:01 +00002304<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002305
2306<p>The '<tt>malloc</tt>' instruction allocates
2307<tt>sizeof(&lt;type&gt;)*NumElements</tt>
John Criswell6e4ca612004-02-24 16:13:56 +00002308bytes of memory from the operating system and returns a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002309appropriate type to the program. If "NumElements" is specified, it is the
2310number of elements allocated. If an alignment is specified, the value result
2311of the allocation is guaranteed to be aligned to at least that boundary. If
2312not specified, or if zero, the target can choose to align the allocation on any
2313convenient boundary.</p>
2314
Misha Brukman9d0919f2003-11-08 01:05:38 +00002315<p>'<tt>type</tt>' must be a sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002316
Chris Lattner00950542001-06-06 20:29:01 +00002317<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002318
Chris Lattner261efe92003-11-25 01:02:51 +00002319<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2320a pointer is returned.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002321
Chris Lattner2cbdc452005-11-06 08:02:57 +00002322<h5>Example:</h5>
2323
2324<pre>
2325 %array = malloc [4 x ubyte ] <i>; yields {[%4 x ubyte]*}:array</i>
2326
2327 %size = <a href="#i_add">add</a> uint 2, 2 <i>; yields {uint}:size = uint 4</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002328 %array1 = malloc ubyte, uint 4 <i>; yields {ubyte*}:array1</i>
2329 %array2 = malloc [12 x ubyte], uint %size <i>; yields {[12 x ubyte]*}:array2</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002330 %array3 = malloc int, uint 4, align 1024 <i>; yields {int*}:array3</i>
2331 %array4 = malloc int, align 1024 <i>; yields {int*}:array4</i>
Chris Lattner00950542001-06-06 20:29:01 +00002332</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002333</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002334
Chris Lattner00950542001-06-06 20:29:01 +00002335<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002336<div class="doc_subsubsection">
2337 <a name="i_free">'<tt>free</tt>' Instruction</a>
2338</div>
2339
Misha Brukman9d0919f2003-11-08 01:05:38 +00002340<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002341
Chris Lattner00950542001-06-06 20:29:01 +00002342<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002343
2344<pre>
2345 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
Chris Lattner00950542001-06-06 20:29:01 +00002346</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002347
Chris Lattner00950542001-06-06 20:29:01 +00002348<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002349
Chris Lattner261efe92003-11-25 01:02:51 +00002350<p>The '<tt>free</tt>' instruction returns memory back to the unused
John Criswellc1f786c2005-05-13 22:25:59 +00002351memory heap to be reallocated in the future.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002352
Chris Lattner00950542001-06-06 20:29:01 +00002353<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002354
Chris Lattner261efe92003-11-25 01:02:51 +00002355<p>'<tt>value</tt>' shall be a pointer value that points to a value
2356that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2357instruction.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002358
Chris Lattner00950542001-06-06 20:29:01 +00002359<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002360
John Criswell9e2485c2004-12-10 15:51:16 +00002361<p>Access to the memory pointed to by the pointer is no longer defined
Chris Lattner261efe92003-11-25 01:02:51 +00002362after this instruction executes.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002363
Chris Lattner00950542001-06-06 20:29:01 +00002364<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002365
2366<pre>
2367 %array = <a href="#i_malloc">malloc</a> [4 x ubyte] <i>; yields {[4 x ubyte]*}:array</i>
Chris Lattner00950542001-06-06 20:29:01 +00002368 free [4 x ubyte]* %array
2369</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002370</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002371
Chris Lattner00950542001-06-06 20:29:01 +00002372<!-- _______________________________________________________________________ -->
Chris Lattner2cbdc452005-11-06 08:02:57 +00002373<div class="doc_subsubsection">
2374 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2375</div>
2376
Misha Brukman9d0919f2003-11-08 01:05:38 +00002377<div class="doc_text">
Chris Lattner2cbdc452005-11-06 08:02:57 +00002378
Chris Lattner00950542001-06-06 20:29:01 +00002379<h5>Syntax:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002380
2381<pre>
2382 &lt;result&gt; = alloca &lt;type&gt;[, uint &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
Chris Lattner00950542001-06-06 20:29:01 +00002383</pre>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002384
Chris Lattner00950542001-06-06 20:29:01 +00002385<h5>Overview:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002386
Chris Lattner261efe92003-11-25 01:02:51 +00002387<p>The '<tt>alloca</tt>' instruction allocates memory on the current
2388stack frame of the procedure that is live until the current function
2389returns to its caller.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002390
Chris Lattner00950542001-06-06 20:29:01 +00002391<h5>Arguments:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002392
John Criswell9e2485c2004-12-10 15:51:16 +00002393<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00002394bytes of memory on the runtime stack, returning a pointer of the
Chris Lattner2cbdc452005-11-06 08:02:57 +00002395appropriate type to the program. If "NumElements" is specified, it is the
2396number of elements allocated. If an alignment is specified, the value result
2397of the allocation is guaranteed to be aligned to at least that boundary. If
2398not specified, or if zero, the target can choose to align the allocation on any
2399convenient boundary.</p>
2400
Misha Brukman9d0919f2003-11-08 01:05:38 +00002401<p>'<tt>type</tt>' may be any sized type.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002402
Chris Lattner00950542001-06-06 20:29:01 +00002403<h5>Semantics:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002404
John Criswellc1f786c2005-05-13 22:25:59 +00002405<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
Chris Lattner261efe92003-11-25 01:02:51 +00002406memory is automatically released when the function returns. The '<tt>alloca</tt>'
2407instruction is commonly used to represent automatic variables that must
2408have an address available. When the function returns (either with the <tt><a
John Criswelldae2e932005-05-12 16:55:34 +00002409 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002410instructions), the memory is reclaimed.</p>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002411
Chris Lattner00950542001-06-06 20:29:01 +00002412<h5>Example:</h5>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002413
2414<pre>
2415 %ptr = alloca int <i>; yields {int*}:ptr</i>
Chris Lattner7faa8832002-04-14 06:13:44 +00002416 %ptr = alloca int, uint 4 <i>; yields {int*}:ptr</i>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002417 %ptr = alloca int, uint 4, align 1024 <i>; yields {int*}:ptr</i>
2418 %ptr = alloca int, align 1024 <i>; yields {int*}:ptr</i>
Chris Lattner00950542001-06-06 20:29:01 +00002419</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002420</div>
Chris Lattner2cbdc452005-11-06 08:02:57 +00002421
Chris Lattner00950542001-06-06 20:29:01 +00002422<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002423<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2424Instruction</a> </div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002425<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002426<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002427<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;<br></pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002428<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002429<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002430<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002431<p>The argument to the '<tt>load</tt>' instruction specifies the memory
John Criswell0ec250c2005-10-24 16:17:18 +00002432address from which to load. The pointer must point to a <a
Chris Lattnere53e5082004-06-03 22:57:15 +00002433 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
John Criswell0ec250c2005-10-24 16:17:18 +00002434marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
Chris Lattner261efe92003-11-25 01:02:51 +00002435the number or order of execution of this <tt>load</tt> with other
2436volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2437instructions. </p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002438<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002439<p>The location of memory pointed to is loaded.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002440<h5>Examples:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002441<pre> %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
2442 <a
2443 href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002444 %val = load int* %ptr <i>; yields {int}:val = int 3</i>
2445</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002446</div>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002447<!-- _______________________________________________________________________ -->
Chris Lattner261efe92003-11-25 01:02:51 +00002448<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2449Instruction</a> </div>
Reid Spencer035ab572006-11-09 21:18:01 +00002450<div class="doc_text">
Chris Lattner2b7d3202002-05-06 03:03:22 +00002451<h5>Syntax:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002452<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattnerf0651072003-09-08 18:27:49 +00002453 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt; <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002454</pre>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002455<h5>Overview:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002456<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002457<h5>Arguments:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002458<p>There are two arguments to the '<tt>store</tt>' instruction: a value
John Criswell0ec250c2005-10-24 16:17:18 +00002459to store and an address in which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
Chris Lattner261efe92003-11-25 01:02:51 +00002460operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
John Criswellc1f786c2005-05-13 22:25:59 +00002461operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
Chris Lattner261efe92003-11-25 01:02:51 +00002462optimizer is not allowed to modify the number or order of execution of
2463this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2464 href="#i_store">store</a></tt> instructions.</p>
2465<h5>Semantics:</h5>
2466<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2467at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002468<h5>Example:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00002469<pre> %ptr = <a href="#i_alloca">alloca</a> int <i>; yields {int*}:ptr</i>
2470 <a
2471 href="#i_store">store</a> int 3, int* %ptr <i>; yields {void}</i>
Chris Lattner2b7d3202002-05-06 03:03:22 +00002472 %val = load int* %ptr <i>; yields {int}:val = int 3</i>
2473</pre>
Reid Spencer47ce1792006-11-09 21:15:49 +00002474</div>
2475
Chris Lattner2b7d3202002-05-06 03:03:22 +00002476<!-- _______________________________________________________________________ -->
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002477<div class="doc_subsubsection">
2478 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2479</div>
2480
Misha Brukman9d0919f2003-11-08 01:05:38 +00002481<div class="doc_text">
Chris Lattner7faa8832002-04-14 06:13:44 +00002482<h5>Syntax:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002483<pre>
2484 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2485</pre>
2486
Chris Lattner7faa8832002-04-14 06:13:44 +00002487<h5>Overview:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002488
2489<p>
2490The '<tt>getelementptr</tt>' instruction is used to get the address of a
2491subelement of an aggregate data structure.</p>
2492
Chris Lattner7faa8832002-04-14 06:13:44 +00002493<h5>Arguments:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002494
2495<p>This instruction takes a list of integer constants that indicate what
2496elements of the aggregate object to index to. The actual types of the arguments
2497provided depend on the type of the first pointer argument. The
2498'<tt>getelementptr</tt>' instruction is used to index down through the type
John Criswellfc6b8952005-05-16 16:17:45 +00002499levels of a structure or to a specific index in an array. When indexing into a
Reid Spencer42ddd842006-12-03 16:53:48 +00002500structure, only <tt>uint</tt> integer constants are allowed. When indexing
2501into an array or pointer, integers of any size are allowed, and will be sign
2502extended to 64-bit values.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002503
Chris Lattner261efe92003-11-25 01:02:51 +00002504<p>For example, let's consider a C code fragment and how it gets
2505compiled to LLVM:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002506
2507<pre>
2508 struct RT {
2509 char A;
2510 int B[10][20];
2511 char C;
2512 };
2513 struct ST {
2514 int X;
2515 double Y;
2516 struct RT Z;
2517 };
2518
2519 int *foo(struct ST *s) {
2520 return &amp;s[1].Z.B[5][13];
2521 }
2522</pre>
2523
Misha Brukman9d0919f2003-11-08 01:05:38 +00002524<p>The LLVM code generated by the GCC frontend is:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002525
2526<pre>
2527 %RT = type { sbyte, [10 x [20 x int]], sbyte }
2528 %ST = type { int, double, %RT }
2529
Brian Gaeke7283e7c2004-07-02 21:08:14 +00002530 implementation
2531
2532 int* %foo(%ST* %s) {
2533 entry:
2534 %reg = getelementptr %ST* %s, int 1, uint 2, uint 1, int 5, int 13
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002535 ret int* %reg
2536 }
2537</pre>
2538
Chris Lattner7faa8832002-04-14 06:13:44 +00002539<h5>Semantics:</h5>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002540
2541<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
John Criswellc1f786c2005-05-13 22:25:59 +00002542on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
Reid Spencer42ddd842006-12-03 16:53:48 +00002543and <a href="#t_array">array</a> types can use any
2544<a href="#t_integer">integer</a> type but the value will always be sign extended
2545to 64-bits. <a href="#t_struct">Structure</a> types, require <tt>uint</tt>
2546<b>constants</b>.</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002547
Misha Brukman9d0919f2003-11-08 01:05:38 +00002548<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002549type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ int, double, %RT
2550}</tt>' type, a structure. The second index indexes into the third element of
2551the structure, yielding a '<tt>%RT</tt>' = '<tt>{ sbyte, [10 x [20 x int]],
2552sbyte }</tt>' type, another structure. The third index indexes into the second
2553element of the structure, yielding a '<tt>[10 x [20 x int]]</tt>' type, an
2554array. The two dimensions of the array are subscripted into, yielding an
John Criswellfc6b8952005-05-16 16:17:45 +00002555'<tt>int</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002556to this element, thus computing a value of '<tt>int*</tt>' type.</p>
2557
Chris Lattner261efe92003-11-25 01:02:51 +00002558<p>Note that it is perfectly legal to index partially through a
2559structure, returning a pointer to an inner element. Because of this,
2560the LLVM code for the given testcase is equivalent to:</p>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002561
2562<pre>
Chris Lattnerd4f6b172005-03-07 22:13:59 +00002563 int* %foo(%ST* %s) {
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002564 %t1 = getelementptr %ST* %s, int 1 <i>; yields %ST*:%t1</i>
2565 %t2 = getelementptr %ST* %t1, int 0, uint 2 <i>; yields %RT*:%t2</i>
2566 %t3 = getelementptr %RT* %t2, int 0, uint 1 <i>; yields [10 x [20 x int]]*:%t3</i>
2567 %t4 = getelementptr [10 x [20 x int]]* %t3, int 0, int 5 <i>; yields [20 x int]*:%t4</i>
2568 %t5 = getelementptr [20 x int]* %t4, int 0, int 13 <i>; yields int*:%t5</i>
2569 ret int* %t5
2570 }
Chris Lattner6536cfe2002-05-06 22:08:29 +00002571</pre>
Chris Lattnere67a9512005-06-24 17:22:57 +00002572
2573<p>Note that it is undefined to access an array out of bounds: array and
2574pointer indexes must always be within the defined bounds of the array type.
2575The one exception for this rules is zero length arrays. These arrays are
2576defined to be accessible as variable length arrays, which requires access
2577beyond the zero'th element.</p>
2578
Chris Lattner884a9702006-08-15 00:45:58 +00002579<p>The getelementptr instruction is often confusing. For some more insight
2580into how it works, see <a href="GetElementPtr.html">the getelementptr
2581FAQ</a>.</p>
2582
Chris Lattner7faa8832002-04-14 06:13:44 +00002583<h5>Example:</h5>
Chris Lattnere67a9512005-06-24 17:22:57 +00002584
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002585<pre>
2586 <i>; yields [12 x ubyte]*:aptr</i>
2587 %aptr = getelementptr {int, [12 x ubyte]}* %sptr, long 0, uint 1
2588</pre>
Chris Lattnerf74d5c72004-04-05 01:30:49 +00002589</div>
Reid Spencer47ce1792006-11-09 21:15:49 +00002590
Chris Lattner00950542001-06-06 20:29:01 +00002591<!-- ======================================================================= -->
Reid Spencer2fd21e62006-11-08 01:18:52 +00002592<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002593</div>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002594<div class="doc_text">
Reid Spencer2fd21e62006-11-08 01:18:52 +00002595<p>The instructions in this category are the conversion instructions (casting)
2596which all take a single operand and a type. They perform various bit conversions
2597on the operand.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00002598</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002599
Chris Lattner6536cfe2002-05-06 22:08:29 +00002600<!-- _______________________________________________________________________ -->
Chris Lattnercc37aae2004-03-12 05:50:16 +00002601<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002602 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2603</div>
2604<div class="doc_text">
2605
2606<h5>Syntax:</h5>
2607<pre>
2608 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2609</pre>
2610
2611<h5>Overview:</h5>
2612<p>
2613The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2614</p>
2615
2616<h5>Arguments:</h5>
2617<p>
2618The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2619be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2620and type of the result, which must be an <a href="#t_integral">integral</a>
Reid Spencerd4448792006-11-09 23:03:26 +00002621type. The bit size of <tt>value</tt> must be larger than the bit size of
2622<tt>ty2</tt>. Equal sized types are not allowed.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002623
2624<h5>Semantics:</h5>
2625<p>
2626The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
Reid Spencerd4448792006-11-09 23:03:26 +00002627and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2628larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2629It will always truncate bits.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002630
2631<h5>Example:</h5>
2632<pre>
2633 %X = trunc int 257 to ubyte <i>; yields ubyte:1</i>
2634 %Y = trunc int 123 to bool <i>; yields bool:true</i>
2635</pre>
2636</div>
2637
2638<!-- _______________________________________________________________________ -->
2639<div class="doc_subsubsection">
2640 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2641</div>
2642<div class="doc_text">
2643
2644<h5>Syntax:</h5>
2645<pre>
2646 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2647</pre>
2648
2649<h5>Overview:</h5>
2650<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2651<tt>ty2</tt>.</p>
2652
2653
2654<h5>Arguments:</h5>
2655<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2656<a href="#t_integral">integral</a> type, and a type to cast it to, which must
2657also be of <a href="#t_integral">integral</a> type. The bit size of the
Reid Spencerd4448792006-11-09 23:03:26 +00002658<tt>value</tt> must be smaller than the bit size of the destination type,
2659<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002660
2661<h5>Semantics:</h5>
2662<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
2663bits until it reaches the size of the destination type, <tt>ty2</tt>. When the
2664the operand and the type are the same size, no bit filling is done and the
2665cast is considered a <i>no-op cast</i> because no bits change (only the type
2666changes).</p>
2667
Reid Spencerd4448792006-11-09 23:03:26 +00002668<p>When zero extending from bool, the result will alwasy be either 0 or 1.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002669
2670<h5>Example:</h5>
2671<pre>
2672 %X = zext int 257 to ulong <i>; yields ulong:257</i>
2673 %Y = zext bool true to int <i>; yields int:1</i>
2674</pre>
2675</div>
2676
2677<!-- _______________________________________________________________________ -->
2678<div class="doc_subsubsection">
2679 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
2680</div>
2681<div class="doc_text">
2682
2683<h5>Syntax:</h5>
2684<pre>
2685 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2686</pre>
2687
2688<h5>Overview:</h5>
2689<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
2690
2691<h5>Arguments:</h5>
2692<p>
2693The '<tt>sext</tt>' instruction takes a value to cast, which must be of
2694<a href="#t_integral">integral</a> type, and a type to cast it to, which must
Reid Spencerd4448792006-11-09 23:03:26 +00002695also be of <a href="#t_integral">integral</a> type. The bit size of the
2696<tt>value</tt> must be smaller than the bit size of the destination type,
2697<tt>ty2</tt>.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002698
2699<h5>Semantics:</h5>
2700<p>
2701The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
2702bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
2703the type <tt>ty2</tt>. When the the operand and the type are the same size,
2704no bit filling is done and the cast is considered a <i>no-op cast</i> because
2705no bits change (only the type changes).</p>
2706
Reid Spencerd4448792006-11-09 23:03:26 +00002707<p>When sign extending from bool, the extension always results in -1 or 0.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002708
2709<h5>Example:</h5>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002710<pre>
2711 %X = sext sbyte -1 to ushort <i>; yields ushort:65535</i>
2712 %Y = sext bool true to int <i>; yields int:-1</i>
2713</pre>
2714</div>
2715
2716<!-- _______________________________________________________________________ -->
2717<div class="doc_subsubsection">
Reid Spencer3fa91b02006-11-09 21:48:10 +00002718 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
2719</div>
2720
2721<div class="doc_text">
2722
2723<h5>Syntax:</h5>
2724
2725<pre>
2726 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2727</pre>
2728
2729<h5>Overview:</h5>
2730<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
2731<tt>ty2</tt>.</p>
2732
2733
2734<h5>Arguments:</h5>
2735<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
2736 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
2737cast it to. The size of <tt>value</tt> must be larger than the size of
2738<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
2739<i>no-op cast</i>.</p>
2740
2741<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002742<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
2743<a href="#t_floating">floating point</a> type to a smaller
2744<a href="#t_floating">floating point</a> type. If the value cannot fit within
2745the destination type, <tt>ty2</tt>, then the results are undefined.</p>
Reid Spencer3fa91b02006-11-09 21:48:10 +00002746
2747<h5>Example:</h5>
2748<pre>
2749 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
2750 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
2751</pre>
2752</div>
2753
2754<!-- _______________________________________________________________________ -->
2755<div class="doc_subsubsection">
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002756 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
2757</div>
2758<div class="doc_text">
2759
2760<h5>Syntax:</h5>
2761<pre>
2762 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2763</pre>
2764
2765<h5>Overview:</h5>
2766<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
2767floating point value.</p>
2768
2769<h5>Arguments:</h5>
2770<p>The '<tt>fpext</tt>' instruction takes a
2771<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
Reid Spencerd4448792006-11-09 23:03:26 +00002772and a <a href="#t_floating">floating point</a> type to cast it to. The source
2773type must be smaller than the destination type.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002774
2775<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002776<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
2777<a href="t_floating">floating point</a> type to a larger
2778<a href="t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
2779used to make a <i>no-op cast</i> because it always changes bits. Use
Reid Spencer5c0ef472006-11-11 23:08:07 +00002780<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002781
2782<h5>Example:</h5>
2783<pre>
2784 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
2785 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
2786</pre>
2787</div>
2788
2789<!-- _______________________________________________________________________ -->
2790<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00002791 <a name="i_fp2uint">'<tt>fptoui .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002792</div>
2793<div class="doc_text">
2794
2795<h5>Syntax:</h5>
2796<pre>
2797 &lt;result&gt; = fp2uint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2798</pre>
2799
2800<h5>Overview:</h5>
2801<p>The '<tt>fp2uint</tt>' converts a floating point <tt>value</tt> to its
2802unsigned integer equivalent of type <tt>ty2</tt>.
2803</p>
2804
2805<h5>Arguments:</h5>
2806<p>The '<tt>fp2uint</tt>' instruction takes a value to cast, which must be a
2807<a href="#t_floating">floating point</a> value, and a type to cast it to, which
2808must be an <a href="#t_integral">integral</a> type.</p>
2809
2810<h5>Semantics:</h5>
2811<p> The '<tt>fp2uint</tt>' instruction converts its
2812<a href="#t_floating">floating point</a> operand into the nearest (rounding
2813towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
2814the results are undefined.</p>
2815
2816<p>When converting to bool, the conversion is done as a comparison against
2817zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
2818If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
2819
2820<h5>Example:</h5>
2821<pre>
2822 %X = fp2uint double 123.0 to int <i>; yields int:123</i>
2823 %Y = fp2uint float 1.0E+300 to bool <i>; yields bool:true</i>
2824 %X = fp2uint float 1.04E+17 to ubyte <i>; yields undefined:1</i>
2825</pre>
2826</div>
2827
2828<!-- _______________________________________________________________________ -->
2829<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00002830 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002831</div>
2832<div class="doc_text">
2833
2834<h5>Syntax:</h5>
2835<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002836 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002837</pre>
2838
2839<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002840<p>The '<tt>fptosi</tt>' instruction converts
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002841<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
Chris Lattnercc37aae2004-03-12 05:50:16 +00002842</p>
2843
2844
Chris Lattner6536cfe2002-05-06 22:08:29 +00002845<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002846<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002847<a href="#t_floating">floating point</a> value, and a type to cast it to, which
2848must also be an <a href="#t_integral">integral</a> type.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002849
Chris Lattner6536cfe2002-05-06 22:08:29 +00002850<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002851<p>The '<tt>fptosi</tt>' instruction converts its
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002852<a href="#t_floating">floating point</a> operand into the nearest (rounding
2853towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
2854the results are undefined.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002855
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002856<p>When converting to bool, the conversion is done as a comparison against
2857zero. If the <tt>value</tt> was zero, the bool result will be <tt>false</tt>.
2858If the <tt>value</tt> was non-zero, the bool result will be <tt>true</tt>.</p>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002859
Chris Lattner33ba0d92001-07-09 00:26:23 +00002860<h5>Example:</h5>
Chris Lattnercc37aae2004-03-12 05:50:16 +00002861<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002862 %X = fptosi double -123.0 to int <i>; yields int:-123</i>
2863 %Y = fptosi float 1.0E-247 to bool <i>; yields bool:true</i>
2864 %X = fptosi float 1.04E+17 to sbyte <i>; yields undefined:1</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002865</pre>
2866</div>
2867
2868<!-- _______________________________________________________________________ -->
2869<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00002870 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002871</div>
2872<div class="doc_text">
2873
2874<h5>Syntax:</h5>
2875<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002876 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002877</pre>
2878
2879<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002880<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002881integer and converts that value to the <tt>ty2</tt> type.</p>
2882
2883
2884<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002885<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002886<a href="#t_integral">integral</a> value, and a type to cast it to, which must
2887be a <a href="#t_floating">floating point</a> type.</p>
2888
2889<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002890<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002891integer quantity and converts it to the corresponding floating point value. If
2892the value cannot fit in the floating point value, the results are undefined.</p>
2893
2894
2895<h5>Example:</h5>
2896<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002897 %X = uitofp int 257 to float <i>; yields float:257.0</i>
2898 %Y = uitofp sbyte -1 to double <i>; yields double:255.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002899</pre>
2900</div>
2901
2902<!-- _______________________________________________________________________ -->
2903<div class="doc_subsubsection">
Reid Spencerd4448792006-11-09 23:03:26 +00002904 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002905</div>
2906<div class="doc_text">
2907
2908<h5>Syntax:</h5>
2909<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002910 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002911</pre>
2912
2913<h5>Overview:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002914<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002915integer and converts that value to the <tt>ty2</tt> type.</p>
2916
2917<h5>Arguments:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002918<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002919<a href="#t_integral">integral</a> value, and a type to cast it to, which must be
2920a <a href="#t_floating">floating point</a> type.</p>
2921
2922<h5>Semantics:</h5>
Reid Spencerd4448792006-11-09 23:03:26 +00002923<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002924integer quantity and converts it to the corresponding floating point value. If
2925the value cannot fit in the floating point value, the results are undefined.</p>
2926
2927<h5>Example:</h5>
2928<pre>
Reid Spencerd4448792006-11-09 23:03:26 +00002929 %X = sitofp int 257 to float <i>; yields float:257.0</i>
2930 %Y = sitofp sbyte -1 to double <i>; yields double:-1.0</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00002931</pre>
2932</div>
2933
2934<!-- _______________________________________________________________________ -->
2935<div class="doc_subsubsection">
Reid Spencer72679252006-11-11 21:00:47 +00002936 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
2937</div>
2938<div class="doc_text">
2939
2940<h5>Syntax:</h5>
2941<pre>
2942 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2943</pre>
2944
2945<h5>Overview:</h5>
2946<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
2947the integer type <tt>ty2</tt>.</p>
2948
2949<h5>Arguments:</h5>
2950<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
2951must be a <a href="t_pointer">pointer</a> value, and a type to cast it to
2952<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
2953
2954<h5>Semantics:</h5>
2955<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
2956<tt>ty2</tt> by interpreting the pointer value as an integer and either
2957truncating or zero extending that value to the size of the integer type. If
2958<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
2959<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
2960are the same size, then nothing is done (<i>no-op cast</i>).</p>
2961
2962<h5>Example:</h5>
2963<pre>
2964 %X = ptrtoint int* %X to sbyte <i>; yields truncation on 32-bit</i>
2965 %Y = ptrtoint int* %x to ulong <i>; yields zero extend on 32-bit</i>
2966</pre>
2967</div>
2968
2969<!-- _______________________________________________________________________ -->
2970<div class="doc_subsubsection">
2971 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
2972</div>
2973<div class="doc_text">
2974
2975<h5>Syntax:</h5>
2976<pre>
2977 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2978</pre>
2979
2980<h5>Overview:</h5>
2981<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
2982a pointer type, <tt>ty2</tt>.</p>
2983
2984<h5>Arguments:</h5>
2985<p>The '<tt>inttoptr</tt>' instruction takes an <a href="i_integer">integer</a>
2986value to cast, and a type to cast it to, which must be a
2987<a href="#t_pointer">pointer</a> type. </tt>
2988
2989<h5>Semantics:</h5>
2990<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
2991<tt>ty2</tt> by applying either a zero extension or a truncation depending on
2992the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
2993size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
2994the size of a pointer then a zero extension is done. If they are the same size,
2995nothing is done (<i>no-op cast</i>).</p>
2996
2997<h5>Example:</h5>
2998<pre>
2999 %X = inttoptr int 255 to int* <i>; yields zero extend on 64-bit</i>
3000 %X = inttoptr int 255 to int* <i>; yields no-op on 32-bit </i>
3001 %Y = inttoptr short 0 to int* <i>; yields zero extend on 32-bit</i>
3002</pre>
3003</div>
3004
3005<!-- _______________________________________________________________________ -->
3006<div class="doc_subsubsection">
Reid Spencer5c0ef472006-11-11 23:08:07 +00003007 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003008</div>
3009<div class="doc_text">
3010
3011<h5>Syntax:</h5>
3012<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003013 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003014</pre>
3015
3016<h5>Overview:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003017<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003018<tt>ty2</tt> without changing any bits.</p>
3019
3020<h5>Arguments:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003021<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003022a first class value, and a type to cast it to, which must also be a <a
3023 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3024and the destination type, <tt>ty2</tt>, must be identical.</p>
3025
3026<h5>Semantics:</h5>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003027<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
Reid Spencer72679252006-11-11 21:00:47 +00003028<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3029this conversion. The conversion is done as if the <tt>value</tt> had been
3030stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3031converted to other pointer types with this instruction. To convert pointers to
3032other types, use the <a href="#i_inttoptr">inttoptr</a> or
3033<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
Reid Spencer9dee3ac2006-11-08 01:11:31 +00003034
3035<h5>Example:</h5>
3036<pre>
Reid Spencer5c0ef472006-11-11 23:08:07 +00003037 %X = bitcast ubyte 255 to sbyte <i>; yields sbyte:-1</i>
3038 %Y = bitcast uint* %x to sint* <i>; yields sint*:%x</i>
3039 %Z = bitcast <2xint> %V to long; <i>; yields long: %V</i>
Chris Lattner33ba0d92001-07-09 00:26:23 +00003040</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003041</div>
Chris Lattnercc37aae2004-03-12 05:50:16 +00003042
Reid Spencer2fd21e62006-11-08 01:18:52 +00003043<!-- ======================================================================= -->
3044<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3045<div class="doc_text">
3046<p>The instructions in this category are the "miscellaneous"
3047instructions, which defy better classification.</p>
3048</div>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003049
3050<!-- _______________________________________________________________________ -->
3051<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3052</div>
3053<div class="doc_text">
3054<h5>Syntax:</h5>
3055<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
3056</pre>
3057<h5>Overview:</h5>
3058<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3059of its two integer operands.</p>
3060<h5>Arguments:</h5>
3061<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3062the condition code which indicates the kind of comparison to perform. It is not
3063a value, just a keyword. The possibilities for the condition code are:
3064<ol>
3065 <li><tt>eq</tt>: equal</li>
3066 <li><tt>ne</tt>: not equal </li>
3067 <li><tt>ugt</tt>: unsigned greater than</li>
3068 <li><tt>uge</tt>: unsigned greater or equal</li>
3069 <li><tt>ult</tt>: unsigned less than</li>
3070 <li><tt>ule</tt>: unsigned less or equal</li>
3071 <li><tt>sgt</tt>: signed greater than</li>
3072 <li><tt>sge</tt>: signed greater or equal</li>
3073 <li><tt>slt</tt>: signed less than</li>
3074 <li><tt>sle</tt>: signed less or equal</li>
3075</ol>
3076<p>The remaining two arguments must be of <a href="#t_integral">integral</a>,
3077<a href="#t_pointer">pointer</a> or a <a href="#t_packed">packed</a> integral
3078type. They must have identical types.</p>
3079<h5>Semantics:</h5>
3080<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3081the condition code given as <tt>cond</tt>. The comparison performed always
3082yields a <a href="#t_bool">bool</a> result, as follows:
3083<ol>
3084 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3085 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3086 </li>
3087 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3088 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3089 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3090 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3091 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3092 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3093 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3094 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3095 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3096 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3097 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3098 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3099 <li><tt>sge</tt>: interprets the operands as signed values and yields
3100 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3101 <li><tt>slt</tt>: interprets the operands as signed values and yields
3102 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3103 <li><tt>sle</tt>: interprets the operands as signed values and yields
3104 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3105 </li>
3106</ol>
3107<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3108values are treated as integers and then compared.</p>
3109<p>If the operands are <a href="#t_packed">packed</a> typed, the elements of
Reid Spencerb7f26282006-11-19 03:00:14 +00003110the vector are compared in turn and the predicate must hold for all
3111elements.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003112
3113<h5>Example:</h5>
3114<pre> &lt;result&gt; = icmp eq int 4, 5 <i>; yields: result=false</i>
3115 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3116 &lt;result&gt; = icmp ult short 4, 5 <i>; yields: result=true</i>
3117 &lt;result&gt; = icmp sgt sbyte 4, 5 <i>; yields: result=false</i>
3118 &lt;result&gt; = icmp ule sbyte -4, 5 <i>; yields: result=false</i>
3119 &lt;result&gt; = icmp sge sbyte 4, 5 <i>; yields: result=false</i>
3120</pre>
3121</div>
3122
3123<!-- _______________________________________________________________________ -->
3124<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3125</div>
3126<div class="doc_text">
3127<h5>Syntax:</h5>
3128<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {bool}:result</i>
3129</pre>
3130<h5>Overview:</h5>
3131<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3132of its floating point operands.</p>
3133<h5>Arguments:</h5>
3134<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3135the condition code which indicates the kind of comparison to perform. It is not
3136a value, just a keyword. The possibilities for the condition code are:
3137<ol>
Reid Spencerb7f26282006-11-19 03:00:14 +00003138 <li><tt>false</tt>: no comparison, always returns false</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003139 <li><tt>oeq</tt>: ordered and equal</li>
3140 <li><tt>ogt</tt>: ordered and greater than </li>
3141 <li><tt>oge</tt>: ordered and greater than or equal</li>
3142 <li><tt>olt</tt>: ordered and less than </li>
3143 <li><tt>ole</tt>: ordered and less than or equal</li>
3144 <li><tt>one</tt>: ordered and not equal</li>
3145 <li><tt>ord</tt>: ordered (no nans)</li>
3146 <li><tt>ueq</tt>: unordered or equal</li>
3147 <li><tt>ugt</tt>: unordered or greater than </li>
3148 <li><tt>uge</tt>: unordered or greater than or equal</li>
3149 <li><tt>ult</tt>: unordered or less than </li>
3150 <li><tt>ule</tt>: unordered or less than or equal</li>
3151 <li><tt>une</tt>: unordered or not equal</li>
3152 <li><tt>uno</tt>: unordered (either nans)</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003153 <li><tt>true</tt>: no comparison, always returns true</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003154</ol>
3155<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be of
3156<a href="#t_floating">floating point</a>, or a <a href="#t_packed">packed</a>
3157floating point type. They must have identical types.</p>
Reid Spencerb7f26282006-11-19 03:00:14 +00003158<p>In the foregoing, <i>ordered</i> means that neither operand is a QNAN and
3159<i>unordered</i> means that either operand is a QNAN.</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003160<h5>Semantics:</h5>
3161<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3162the condition code given as <tt>cond</tt>. The comparison performed always
3163yields a <a href="#t_bool">bool</a> result, as follows:
3164<ol>
3165 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003166 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003167 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003168 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003169 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003170 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003171 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003172 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003173 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003174 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003175 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003176 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
Reid Spencerf3a70a62006-11-18 21:50:54 +00003177 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003178 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3179 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003180 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003181 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003182 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003183 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003184 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003185 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003186 <tt>var1</tt> is less than <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003187 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003188 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003189 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
Reid Spencerf3a70a62006-11-18 21:50:54 +00003190 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
Reid Spencerb7f26282006-11-19 03:00:14 +00003191 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003192 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3193</ol>
3194<p>If the operands are <a href="#t_packed">packed</a> typed, the elements of
3195the vector are compared in turn and the predicate must hold for all elements.
Reid Spencerb7f26282006-11-19 03:00:14 +00003196</p>
Reid Spencerf3a70a62006-11-18 21:50:54 +00003197
3198<h5>Example:</h5>
3199<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3200 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3201 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3202 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3203</pre>
3204</div>
3205
Reid Spencer2fd21e62006-11-08 01:18:52 +00003206<!-- _______________________________________________________________________ -->
3207<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3208Instruction</a> </div>
3209<div class="doc_text">
3210<h5>Syntax:</h5>
3211<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3212<h5>Overview:</h5>
3213<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3214the SSA graph representing the function.</p>
3215<h5>Arguments:</h5>
3216<p>The type of the incoming values are specified with the first type
3217field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3218as arguments, with one pair for each predecessor basic block of the
3219current block. Only values of <a href="#t_firstclass">first class</a>
3220type may be used as the value arguments to the PHI node. Only labels
3221may be used as the label arguments.</p>
3222<p>There must be no non-phi instructions between the start of a basic
3223block and the PHI instructions: i.e. PHI instructions must be first in
3224a basic block.</p>
3225<h5>Semantics:</h5>
3226<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the
3227value specified by the parameter, depending on which basic block we
3228came from in the last <a href="#terminators">terminator</a> instruction.</p>
3229<h5>Example:</h5>
3230<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi uint [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add uint %indvar, 1<br> br label %Loop<br></pre>
3231</div>
3232
Chris Lattnercc37aae2004-03-12 05:50:16 +00003233<!-- _______________________________________________________________________ -->
3234<div class="doc_subsubsection">
3235 <a name="i_select">'<tt>select</tt>' Instruction</a>
3236</div>
3237
3238<div class="doc_text">
3239
3240<h5>Syntax:</h5>
3241
3242<pre>
3243 &lt;result&gt; = select bool &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3244</pre>
3245
3246<h5>Overview:</h5>
3247
3248<p>
3249The '<tt>select</tt>' instruction is used to choose one value based on a
3250condition, without branching.
3251</p>
3252
3253
3254<h5>Arguments:</h5>
3255
3256<p>
3257The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3258</p>
3259
3260<h5>Semantics:</h5>
3261
3262<p>
3263If the boolean condition evaluates to true, the instruction returns the first
John Criswellfc6b8952005-05-16 16:17:45 +00003264value argument; otherwise, it returns the second value argument.
Chris Lattnercc37aae2004-03-12 05:50:16 +00003265</p>
3266
3267<h5>Example:</h5>
3268
3269<pre>
3270 %X = select bool true, ubyte 17, ubyte 42 <i>; yields ubyte:17</i>
3271</pre>
3272</div>
3273
Robert Bocchino05ccd702006-01-15 20:48:27 +00003274
3275<!-- _______________________________________________________________________ -->
3276<div class="doc_subsubsection">
Chris Lattner2bff5242005-05-06 05:47:36 +00003277 <a name="i_call">'<tt>call</tt>' Instruction</a>
3278</div>
3279
Misha Brukman9d0919f2003-11-08 01:05:38 +00003280<div class="doc_text">
Chris Lattner2bff5242005-05-06 05:47:36 +00003281
Chris Lattner00950542001-06-06 20:29:01 +00003282<h5>Syntax:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003283<pre>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003284 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt;* &lt;fnptrval&gt;(&lt;param list&gt;)
Chris Lattner2bff5242005-05-06 05:47:36 +00003285</pre>
3286
Chris Lattner00950542001-06-06 20:29:01 +00003287<h5>Overview:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003288
Misha Brukman9d0919f2003-11-08 01:05:38 +00003289<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003290
Chris Lattner00950542001-06-06 20:29:01 +00003291<h5>Arguments:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003292
Misha Brukman9d0919f2003-11-08 01:05:38 +00003293<p>This instruction requires several arguments:</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003294
Chris Lattner6536cfe2002-05-06 22:08:29 +00003295<ol>
Chris Lattner261efe92003-11-25 01:02:51 +00003296 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003297 <p>The optional "tail" marker indicates whether the callee function accesses
3298 any allocas or varargs in the caller. If the "tail" marker is present, the
Chris Lattner2bff5242005-05-06 05:47:36 +00003299 function call is eligible for tail call optimization. Note that calls may
3300 be marked "tail" even if they do not occur before a <a
3301 href="#i_ret"><tt>ret</tt></a> instruction.
Chris Lattner261efe92003-11-25 01:02:51 +00003302 </li>
3303 <li>
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003304 <p>The optional "cconv" marker indicates which <a href="callingconv">calling
3305 convention</a> the call should use. If none is specified, the call defaults
3306 to using C calling conventions.
3307 </li>
3308 <li>
Chris Lattner2bff5242005-05-06 05:47:36 +00003309 <p>'<tt>ty</tt>': shall be the signature of the pointer to function value
3310 being invoked. The argument types must match the types implied by this
John Criswellfc6b8952005-05-16 16:17:45 +00003311 signature. This type can be omitted if the function is not varargs and
3312 if the function type does not return a pointer to a function.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003313 </li>
3314 <li>
3315 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3316 be invoked. In most cases, this is a direct function invocation, but
3317 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
John Criswellfc6b8952005-05-16 16:17:45 +00003318 to function value.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003319 </li>
3320 <li>
3321 <p>'<tt>function args</tt>': argument list whose types match the
Reid Spencera7e302a2005-05-01 22:22:57 +00003322 function signature argument types. All arguments must be of
3323 <a href="#t_firstclass">first class</a> type. If the function signature
3324 indicates the function accepts a variable number of arguments, the extra
3325 arguments can be specified.</p>
Chris Lattner261efe92003-11-25 01:02:51 +00003326 </li>
Chris Lattner6536cfe2002-05-06 22:08:29 +00003327</ol>
Chris Lattner2bff5242005-05-06 05:47:36 +00003328
Chris Lattner00950542001-06-06 20:29:01 +00003329<h5>Semantics:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003330
Chris Lattner261efe92003-11-25 01:02:51 +00003331<p>The '<tt>call</tt>' instruction is used to cause control flow to
3332transfer to a specified function, with its incoming arguments bound to
3333the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3334instruction in the called function, control flow continues with the
3335instruction after the function call, and the return value of the
3336function is bound to the result argument. This is a simpler case of
3337the <a href="#i_invoke">invoke</a> instruction.</p>
Chris Lattner2bff5242005-05-06 05:47:36 +00003338
Chris Lattner00950542001-06-06 20:29:01 +00003339<h5>Example:</h5>
Chris Lattner2bff5242005-05-06 05:47:36 +00003340
3341<pre>
3342 %retval = call int %test(int %argc)
3343 call int(sbyte*, ...) *%printf(sbyte* %msg, int 12, sbyte 42);
3344 %X = tail call int %foo()
Chris Lattnerbad10ee2005-05-06 22:57:40 +00003345 %Y = tail call <a href="#callingconv">fastcc</a> int %foo()
Chris Lattner2bff5242005-05-06 05:47:36 +00003346</pre>
3347
Misha Brukman9d0919f2003-11-08 01:05:38 +00003348</div>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003349
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003350<!-- _______________________________________________________________________ -->
Chris Lattnere19d7a72004-09-27 21:51:25 +00003351<div class="doc_subsubsection">
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003352 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003353</div>
3354
Misha Brukman9d0919f2003-11-08 01:05:38 +00003355<div class="doc_text">
Chris Lattnere19d7a72004-09-27 21:51:25 +00003356
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003357<h5>Syntax:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003358
3359<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003360 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
Chris Lattnere19d7a72004-09-27 21:51:25 +00003361</pre>
3362
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003363<h5>Overview:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003364
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003365<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
Chris Lattnere19d7a72004-09-27 21:51:25 +00003366the "variable argument" area of a function call. It is used to implement the
3367<tt>va_arg</tt> macro in C.</p>
3368
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003369<h5>Arguments:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003370
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003371<p>This instruction takes a <tt>va_list*</tt> value and the type of
3372the argument. It returns a value of the specified argument type and
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00003373increments the <tt>va_list</tt> to point to the next argument. Again, the
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003374actual type of <tt>va_list</tt> is target specific.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003375
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003376<h5>Semantics:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003377
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003378<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3379type from the specified <tt>va_list</tt> and causes the
3380<tt>va_list</tt> to point to the next argument. For more information,
3381see the variable argument handling <a href="#int_varargs">Intrinsic
3382Functions</a>.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003383
3384<p>It is legal for this instruction to be called in a function which does not
3385take a variable number of arguments, for example, the <tt>vfprintf</tt>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003386function.</p>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003387
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003388<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
John Criswellfc6b8952005-05-16 16:17:45 +00003389href="#intrinsics">intrinsic function</a> because it takes a type as an
Chris Lattnere19d7a72004-09-27 21:51:25 +00003390argument.</p>
3391
Chris Lattner8d1a81d2003-10-18 05:51:36 +00003392<h5>Example:</h5>
Chris Lattnere19d7a72004-09-27 21:51:25 +00003393
3394<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3395
Misha Brukman9d0919f2003-11-08 01:05:38 +00003396</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003397
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003398<!-- *********************************************************************** -->
Chris Lattner261efe92003-11-25 01:02:51 +00003399<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3400<!-- *********************************************************************** -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003401
Misha Brukman9d0919f2003-11-08 01:05:38 +00003402<div class="doc_text">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003403
3404<p>LLVM supports the notion of an "intrinsic function". These functions have
John Criswellfc6b8952005-05-16 16:17:45 +00003405well known names and semantics and are required to follow certain
Chris Lattner33aec9e2004-02-12 17:01:32 +00003406restrictions. Overall, these instructions represent an extension mechanism for
3407the LLVM language that does not require changing all of the transformations in
3408LLVM to add to the language (or the bytecode reader/writer, the parser,
3409etc...).</p>
3410
John Criswellfc6b8952005-05-16 16:17:45 +00003411<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3412prefix is reserved in LLVM for intrinsic names; thus, functions may not be named
Chris Lattner33aec9e2004-02-12 17:01:32 +00003413this. Intrinsic functions must always be external functions: you cannot define
3414the body of intrinsic functions. Intrinsic functions may only be used in call
3415or invoke instructions: it is illegal to take the address of an intrinsic
3416function. Additionally, because intrinsic functions are part of the LLVM
3417language, it is required that they all be documented here if any are added.</p>
3418
3419
John Criswellfc6b8952005-05-16 16:17:45 +00003420<p>To learn how to add an intrinsic function, please see the <a
Chris Lattner590cff32005-05-11 03:35:57 +00003421href="ExtendingLLVM.html">Extending LLVM Guide</a>.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003422</p>
3423
Misha Brukman9d0919f2003-11-08 01:05:38 +00003424</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003425
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003426<!-- ======================================================================= -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003427<div class="doc_subsection">
3428 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3429</div>
3430
Misha Brukman9d0919f2003-11-08 01:05:38 +00003431<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003432
Misha Brukman9d0919f2003-11-08 01:05:38 +00003433<p>Variable argument support is defined in LLVM with the <a
Chris Lattnerfb6977d2006-01-13 23:26:01 +00003434 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
Chris Lattner261efe92003-11-25 01:02:51 +00003435intrinsic functions. These functions are related to the similarly
3436named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003437
Chris Lattner261efe92003-11-25 01:02:51 +00003438<p>All of these functions operate on arguments that use a
3439target-specific value type "<tt>va_list</tt>". The LLVM assembly
3440language reference manual does not define what this type is, so all
3441transformations should be prepared to handle intrinsics with any type
3442used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003443
Chris Lattner374ab302006-05-15 17:26:46 +00003444<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
Chris Lattner261efe92003-11-25 01:02:51 +00003445instruction and the variable argument handling intrinsic functions are
3446used.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003447
Chris Lattner33aec9e2004-02-12 17:01:32 +00003448<pre>
3449int %test(int %X, ...) {
3450 ; Initialize variable argument processing
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003451 %ap = alloca sbyte*
3452 call void %<a href="#i_va_start">llvm.va_start</a>(sbyte** %ap)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003453
3454 ; Read a single integer argument
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003455 %tmp = va_arg sbyte** %ap, int
Chris Lattner33aec9e2004-02-12 17:01:32 +00003456
3457 ; Demonstrate usage of llvm.va_copy and llvm.va_end
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003458 %aq = alloca sbyte*
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003459 call void %<a href="#i_va_copy">llvm.va_copy</a>(sbyte** %aq, sbyte** %ap)
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003460 call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %aq)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003461
3462 ; Stop processing of arguments.
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003463 call void %<a href="#i_va_end">llvm.va_end</a>(sbyte** %ap)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003464 ret int %tmp
3465}
3466</pre>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003467</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003468
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003469<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003470<div class="doc_subsubsection">
3471 <a name="i_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3472</div>
3473
3474
Misha Brukman9d0919f2003-11-08 01:05:38 +00003475<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003476<h5>Syntax:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003477<pre> declare void %llvm.va_start(&lt;va_list&gt;* &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003478<h5>Overview:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003479<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3480<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3481href="#i_va_arg">va_arg</a></tt>.</p>
3482
3483<h5>Arguments:</h5>
3484
3485<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3486
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003487<h5>Semantics:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003488
3489<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3490macro available in C. In a target-dependent way, it initializes the
3491<tt>va_list</tt> element the argument points to, so that the next call to
3492<tt>va_arg</tt> will produce the first variable argument passed to the function.
3493Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3494last argument of the function, the compiler can figure that out.</p>
3495
Misha Brukman9d0919f2003-11-08 01:05:38 +00003496</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003497
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003498<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003499<div class="doc_subsubsection">
3500 <a name="i_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3501</div>
3502
Misha Brukman9d0919f2003-11-08 01:05:38 +00003503<div class="doc_text">
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003504<h5>Syntax:</h5>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003505<pre> declare void %llvm.va_end(&lt;va_list*&gt; &lt;arglist&gt;)<br></pre>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003506<h5>Overview:</h5>
Chris Lattner261efe92003-11-25 01:02:51 +00003507<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>&lt;arglist&gt;</tt>
3508which has been initialized previously with <tt><a href="#i_va_start">llvm.va_start</a></tt>
3509or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003510<h5>Arguments:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003511<p>The argument is a <tt>va_list</tt> to destroy.</p>
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003512<h5>Semantics:</h5>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003513<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
Chris Lattner261efe92003-11-25 01:02:51 +00003514macro available in C. In a target-dependent way, it destroys the <tt>va_list</tt>.
3515Calls to <a href="#i_va_start"><tt>llvm.va_start</tt></a> and <a
3516 href="#i_va_copy"><tt>llvm.va_copy</tt></a> must be matched exactly
3517with calls to <tt>llvm.va_end</tt>.</p>
Misha Brukman9d0919f2003-11-08 01:05:38 +00003518</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003519
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003520<!-- _______________________________________________________________________ -->
Chris Lattner8ff75902004-01-06 05:31:32 +00003521<div class="doc_subsubsection">
3522 <a name="i_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3523</div>
3524
Misha Brukman9d0919f2003-11-08 01:05:38 +00003525<div class="doc_text">
Chris Lattnerd7923912004-05-23 21:06:01 +00003526
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003527<h5>Syntax:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003528
3529<pre>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003530 declare void %llvm.va_copy(&lt;va_list&gt;* &lt;destarglist&gt;,
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003531 &lt;va_list&gt;* &lt;srcarglist&gt;)
Chris Lattnerd7923912004-05-23 21:06:01 +00003532</pre>
3533
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003534<h5>Overview:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003535
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003536<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position from
3537the source argument list to the destination argument list.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003538
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003539<h5>Arguments:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003540
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003541<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
Andrew Lenharthd0a4c622005-06-22 20:38:11 +00003542The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003543
Chris Lattnerd7923912004-05-23 21:06:01 +00003544
Chris Lattnerd9ad5b32003-05-08 04:57:36 +00003545<h5>Semantics:</h5>
Chris Lattnerd7923912004-05-23 21:06:01 +00003546
Andrew Lenharth8bf607a2005-06-18 18:28:17 +00003547<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt> macro
3548available in C. In a target-dependent way, it copies the source
3549<tt>va_list</tt> element into the destination list. This intrinsic is necessary
3550because the <tt><a href="i_va_begin">llvm.va_begin</a></tt> intrinsic may be
Chris Lattnerd7923912004-05-23 21:06:01 +00003551arbitrarily complex and require memory allocation, for example.</p>
3552
Misha Brukman9d0919f2003-11-08 01:05:38 +00003553</div>
Chris Lattner8ff75902004-01-06 05:31:32 +00003554
Chris Lattner33aec9e2004-02-12 17:01:32 +00003555<!-- ======================================================================= -->
3556<div class="doc_subsection">
Chris Lattnerd7923912004-05-23 21:06:01 +00003557 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3558</div>
3559
3560<div class="doc_text">
3561
3562<p>
3563LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3564Collection</a> requires the implementation and generation of these intrinsics.
3565These intrinsics allow identification of <a href="#i_gcroot">GC roots on the
3566stack</a>, as well as garbage collector implementations that require <a
3567href="#i_gcread">read</a> and <a href="#i_gcwrite">write</a> barriers.
3568Front-ends for type-safe garbage collected languages should generate these
3569intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3570href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3571</p>
3572</div>
3573
3574<!-- _______________________________________________________________________ -->
3575<div class="doc_subsubsection">
3576 <a name="i_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3577</div>
3578
3579<div class="doc_text">
3580
3581<h5>Syntax:</h5>
3582
3583<pre>
Reid Spencera8d451e2005-04-26 20:50:44 +00003584 declare void %llvm.gcroot(&lt;ty&gt;** %ptrloc, &lt;ty2&gt;* %metadata)
Chris Lattnerd7923912004-05-23 21:06:01 +00003585</pre>
3586
3587<h5>Overview:</h5>
3588
John Criswell9e2485c2004-12-10 15:51:16 +00003589<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
Chris Lattnerd7923912004-05-23 21:06:01 +00003590the code generator, and allows some metadata to be associated with it.</p>
3591
3592<h5>Arguments:</h5>
3593
3594<p>The first argument specifies the address of a stack object that contains the
3595root pointer. The second pointer (which must be either a constant or a global
3596value address) contains the meta-data to be associated with the root.</p>
3597
3598<h5>Semantics:</h5>
3599
3600<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3601location. At compile-time, the code generator generates information to allow
3602the runtime to find the pointer at GC safe points.
3603</p>
3604
3605</div>
3606
3607
3608<!-- _______________________________________________________________________ -->
3609<div class="doc_subsubsection">
3610 <a name="i_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3611</div>
3612
3613<div class="doc_text">
3614
3615<h5>Syntax:</h5>
3616
3617<pre>
Chris Lattner80626e92006-03-14 20:02:51 +00003618 declare sbyte* %llvm.gcread(sbyte* %ObjPtr, sbyte** %Ptr)
Chris Lattnerd7923912004-05-23 21:06:01 +00003619</pre>
3620
3621<h5>Overview:</h5>
3622
3623<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3624locations, allowing garbage collector implementations that require read
3625barriers.</p>
3626
3627<h5>Arguments:</h5>
3628
Chris Lattner80626e92006-03-14 20:02:51 +00003629<p>The second argument is the address to read from, which should be an address
3630allocated from the garbage collector. The first object is a pointer to the
3631start of the referenced object, if needed by the language runtime (otherwise
3632null).</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003633
3634<h5>Semantics:</h5>
3635
3636<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3637instruction, but may be replaced with substantially more complex code by the
3638garbage collector runtime, as needed.</p>
3639
3640</div>
3641
3642
3643<!-- _______________________________________________________________________ -->
3644<div class="doc_subsubsection">
3645 <a name="i_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
3646</div>
3647
3648<div class="doc_text">
3649
3650<h5>Syntax:</h5>
3651
3652<pre>
Chris Lattner80626e92006-03-14 20:02:51 +00003653 declare void %llvm.gcwrite(sbyte* %P1, sbyte* %Obj, sbyte** %P2)
Chris Lattnerd7923912004-05-23 21:06:01 +00003654</pre>
3655
3656<h5>Overview:</h5>
3657
3658<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
3659locations, allowing garbage collector implementations that require write
3660barriers (such as generational or reference counting collectors).</p>
3661
3662<h5>Arguments:</h5>
3663
Chris Lattner80626e92006-03-14 20:02:51 +00003664<p>The first argument is the reference to store, the second is the start of the
3665object to store it to, and the third is the address of the field of Obj to
3666store to. If the runtime does not require a pointer to the object, Obj may be
3667null.</p>
Chris Lattnerd7923912004-05-23 21:06:01 +00003668
3669<h5>Semantics:</h5>
3670
3671<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
3672instruction, but may be replaced with substantially more complex code by the
3673garbage collector runtime, as needed.</p>
3674
3675</div>
3676
3677
3678
3679<!-- ======================================================================= -->
3680<div class="doc_subsection">
Chris Lattner10610642004-02-14 04:08:35 +00003681 <a name="int_codegen">Code Generator Intrinsics</a>
3682</div>
3683
3684<div class="doc_text">
3685<p>
3686These intrinsics are provided by LLVM to expose special features that may only
3687be implemented with code generator support.
3688</p>
3689
3690</div>
3691
3692<!-- _______________________________________________________________________ -->
3693<div class="doc_subsubsection">
3694 <a name="i_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
3695</div>
3696
3697<div class="doc_text">
3698
3699<h5>Syntax:</h5>
3700<pre>
Chris Lattnerfcf39d42006-01-13 01:20:27 +00003701 declare sbyte *%llvm.returnaddress(uint &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003702</pre>
3703
3704<h5>Overview:</h5>
3705
3706<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003707The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
3708target-specific value indicating the return address of the current function
3709or one of its callers.
Chris Lattner10610642004-02-14 04:08:35 +00003710</p>
3711
3712<h5>Arguments:</h5>
3713
3714<p>
3715The argument to this intrinsic indicates which function to return the address
3716for. Zero indicates the calling function, one indicates its caller, etc. The
3717argument is <b>required</b> to be a constant integer value.
3718</p>
3719
3720<h5>Semantics:</h5>
3721
3722<p>
3723The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
3724the return address of the specified call frame, or zero if it cannot be
3725identified. The value returned by this intrinsic is likely to be incorrect or 0
3726for arguments other than zero, so it should only be used for debugging purposes.
3727</p>
3728
3729<p>
3730Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003731aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003732source-language caller.
3733</p>
3734</div>
3735
3736
3737<!-- _______________________________________________________________________ -->
3738<div class="doc_subsubsection">
3739 <a name="i_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
3740</div>
3741
3742<div class="doc_text">
3743
3744<h5>Syntax:</h5>
3745<pre>
Chris Lattnerfcf39d42006-01-13 01:20:27 +00003746 declare sbyte *%llvm.frameaddress(uint &lt;level&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00003747</pre>
3748
3749<h5>Overview:</h5>
3750
3751<p>
Chris Lattner32b5d712006-10-15 20:05:59 +00003752The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
3753target-specific frame pointer value for the specified stack frame.
Chris Lattner10610642004-02-14 04:08:35 +00003754</p>
3755
3756<h5>Arguments:</h5>
3757
3758<p>
3759The argument to this intrinsic indicates which function to return the frame
3760pointer for. Zero indicates the calling function, one indicates its caller,
3761etc. The argument is <b>required</b> to be a constant integer value.
3762</p>
3763
3764<h5>Semantics:</h5>
3765
3766<p>
3767The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
3768the frame address of the specified call frame, or zero if it cannot be
3769identified. The value returned by this intrinsic is likely to be incorrect or 0
3770for arguments other than zero, so it should only be used for debugging purposes.
3771</p>
3772
3773<p>
3774Note that calling this intrinsic does not prevent function inlining or other
Chris Lattnerb40bb382005-03-07 20:30:51 +00003775aggressive transformations, so the value returned may not be that of the obvious
Chris Lattner10610642004-02-14 04:08:35 +00003776source-language caller.
3777</p>
3778</div>
3779
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003780<!-- _______________________________________________________________________ -->
3781<div class="doc_subsubsection">
Chris Lattner57e1f392006-01-13 02:03:13 +00003782 <a name="i_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
3783</div>
3784
3785<div class="doc_text">
3786
3787<h5>Syntax:</h5>
3788<pre>
3789 declare sbyte *%llvm.stacksave()
3790</pre>
3791
3792<h5>Overview:</h5>
3793
3794<p>
3795The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
3796the function stack, for use with <a href="#i_stackrestore">
3797<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
3798features like scoped automatic variable sized arrays in C99.
3799</p>
3800
3801<h5>Semantics:</h5>
3802
3803<p>
3804This intrinsic returns a opaque pointer value that can be passed to <a
3805href="#i_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
3806<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
3807<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
3808state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
3809practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
3810that were allocated after the <tt>llvm.stacksave</tt> was executed.
3811</p>
3812
3813</div>
3814
3815<!-- _______________________________________________________________________ -->
3816<div class="doc_subsubsection">
3817 <a name="i_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
3818</div>
3819
3820<div class="doc_text">
3821
3822<h5>Syntax:</h5>
3823<pre>
3824 declare void %llvm.stackrestore(sbyte* %ptr)
3825</pre>
3826
3827<h5>Overview:</h5>
3828
3829<p>
3830The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
3831the function stack to the state it was in when the corresponding <a
3832href="#llvm.stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
3833useful for implementing language features like scoped automatic variable sized
3834arrays in C99.
3835</p>
3836
3837<h5>Semantics:</h5>
3838
3839<p>
3840See the description for <a href="#i_stacksave"><tt>llvm.stacksave</tt></a>.
3841</p>
3842
3843</div>
3844
3845
3846<!-- _______________________________________________________________________ -->
3847<div class="doc_subsubsection">
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003848 <a name="i_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
3849</div>
3850
3851<div class="doc_text">
3852
3853<h5>Syntax:</h5>
3854<pre>
Reid Spencera8d451e2005-04-26 20:50:44 +00003855 declare void %llvm.prefetch(sbyte * &lt;address&gt;,
3856 uint &lt;rw&gt;, uint &lt;locality&gt;)
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003857</pre>
3858
3859<h5>Overview:</h5>
3860
3861
3862<p>
3863The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
John Criswellfc6b8952005-05-16 16:17:45 +00003864a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
3865no
3866effect on the behavior of the program but can change its performance
Chris Lattner2a615362005-02-28 19:47:14 +00003867characteristics.
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003868</p>
3869
3870<h5>Arguments:</h5>
3871
3872<p>
3873<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
3874determining if the fetch should be for a read (0) or write (1), and
3875<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
Chris Lattneraeffb4a2005-03-07 20:31:38 +00003876locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
Chris Lattner9a9d7ac2005-02-28 19:24:19 +00003877<tt>locality</tt> arguments must be constant integers.
3878</p>
3879
3880<h5>Semantics:</h5>
3881
3882<p>
3883This intrinsic does not modify the behavior of the program. In particular,
3884prefetches cannot trap and do not produce a value. On targets that support this
3885intrinsic, the prefetch can provide hints to the processor cache for better
3886performance.
3887</p>
3888
3889</div>
3890
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003891<!-- _______________________________________________________________________ -->
3892<div class="doc_subsubsection">
3893 <a name="i_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
3894</div>
3895
3896<div class="doc_text">
3897
3898<h5>Syntax:</h5>
3899<pre>
Reid Spencera8d451e2005-04-26 20:50:44 +00003900 declare void %llvm.pcmarker( uint &lt;id&gt; )
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003901</pre>
3902
3903<h5>Overview:</h5>
3904
3905
3906<p>
John Criswellfc6b8952005-05-16 16:17:45 +00003907The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
3908(PC) in a region of
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003909code to simulators and other tools. The method is target specific, but it is
3910expected that the marker will use exported symbols to transmit the PC of the marker.
Jeff Cohen25d4f7e2005-11-11 02:15:27 +00003911The marker makes no guarantees that it will remain with any specific instruction
Chris Lattnerd07c3f42005-11-15 06:07:55 +00003912after optimizations. It is possible that the presence of a marker will inhibit
Chris Lattnerb3e7afd2006-03-24 07:16:10 +00003913optimizations. The intended use is to be inserted after optimizations to allow
John Criswellfc6b8952005-05-16 16:17:45 +00003914correlations of simulation runs.
Andrew Lenharth7f4ec3b2005-03-28 20:05:49 +00003915</p>
3916
3917<h5>Arguments:</h5>
3918
3919<p>
3920<tt>id</tt> is a numerical id identifying the marker.
3921</p>
3922
3923<h5>Semantics:</h5>
3924
3925<p>
3926This intrinsic does not modify the behavior of the program. Backends that do not
3927support this intrinisic may ignore it.
3928</p>
3929
3930</div>
3931
Andrew Lenharth51b8d542005-11-11 16:47:30 +00003932<!-- _______________________________________________________________________ -->
3933<div class="doc_subsubsection">
3934 <a name="i_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
3935</div>
3936
3937<div class="doc_text">
3938
3939<h5>Syntax:</h5>
3940<pre>
3941 declare ulong %llvm.readcyclecounter( )
3942</pre>
3943
3944<h5>Overview:</h5>
3945
3946
3947<p>
3948The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
3949counter register (or similar low latency, high accuracy clocks) on those targets
3950that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
3951As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
3952should only be used for small timings.
3953</p>
3954
3955<h5>Semantics:</h5>
3956
3957<p>
3958When directly supported, reading the cycle counter should not modify any memory.
3959Implementations are allowed to either return a application specific value or a
3960system wide value. On backends without support, this is lowered to a constant 0.
3961</p>
3962
3963</div>
3964
Chris Lattner10610642004-02-14 04:08:35 +00003965<!-- ======================================================================= -->
3966<div class="doc_subsection">
Chris Lattner33aec9e2004-02-12 17:01:32 +00003967 <a name="int_libc">Standard C Library Intrinsics</a>
3968</div>
3969
3970<div class="doc_text">
3971<p>
Chris Lattner10610642004-02-14 04:08:35 +00003972LLVM provides intrinsics for a few important standard C library functions.
3973These intrinsics allow source-language front-ends to pass information about the
3974alignment of the pointer arguments to the code generator, providing opportunity
3975for more efficient code generation.
Chris Lattner33aec9e2004-02-12 17:01:32 +00003976</p>
3977
3978</div>
3979
3980<!-- _______________________________________________________________________ -->
3981<div class="doc_subsubsection">
3982 <a name="i_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
3983</div>
3984
3985<div class="doc_text">
3986
3987<h5>Syntax:</h5>
3988<pre>
Chris Lattner5b310c32006-03-03 00:07:20 +00003989 declare void %llvm.memcpy.i32(sbyte* &lt;dest&gt;, sbyte* &lt;src&gt;,
3990 uint &lt;len&gt;, uint &lt;align&gt;)
3991 declare void %llvm.memcpy.i64(sbyte* &lt;dest&gt;, sbyte* &lt;src&gt;,
3992 ulong &lt;len&gt;, uint &lt;align&gt;)
Chris Lattner33aec9e2004-02-12 17:01:32 +00003993</pre>
3994
3995<h5>Overview:</h5>
3996
3997<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00003998The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00003999location to the destination location.
4000</p>
4001
4002<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004003Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4004intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner33aec9e2004-02-12 17:01:32 +00004005</p>
4006
4007<h5>Arguments:</h5>
4008
4009<p>
4010The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004011the source. The third argument is an integer argument
Chris Lattner33aec9e2004-02-12 17:01:32 +00004012specifying the number of bytes to copy, and the fourth argument is the alignment
4013of the source and destination locations.
4014</p>
4015
Chris Lattner3301ced2004-02-12 21:18:15 +00004016<p>
4017If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004018the caller guarantees that both the source and destination pointers are aligned
4019to that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004020</p>
4021
Chris Lattner33aec9e2004-02-12 17:01:32 +00004022<h5>Semantics:</h5>
4023
4024<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004025The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner33aec9e2004-02-12 17:01:32 +00004026location to the destination location, which are not allowed to overlap. It
4027copies "len" bytes of memory over. If the argument is known to be aligned to
4028some boundary, this can be specified as the fourth argument, otherwise it should
4029be set to 0 or 1.
4030</p>
4031</div>
4032
4033
Chris Lattner0eb51b42004-02-12 18:10:10 +00004034<!-- _______________________________________________________________________ -->
4035<div class="doc_subsubsection">
4036 <a name="i_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4037</div>
4038
4039<div class="doc_text">
4040
4041<h5>Syntax:</h5>
4042<pre>
Chris Lattner5b310c32006-03-03 00:07:20 +00004043 declare void %llvm.memmove.i32(sbyte* &lt;dest&gt;, sbyte* &lt;src&gt;,
4044 uint &lt;len&gt;, uint &lt;align&gt;)
4045 declare void %llvm.memmove.i64(sbyte* &lt;dest&gt;, sbyte* &lt;src&gt;,
4046 ulong &lt;len&gt;, uint &lt;align&gt;)
Chris Lattner0eb51b42004-02-12 18:10:10 +00004047</pre>
4048
4049<h5>Overview:</h5>
4050
4051<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004052The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4053location to the destination location. It is similar to the
4054'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004055</p>
4056
4057<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004058Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4059intrinsics do not return a value, and takes an extra alignment argument.
Chris Lattner0eb51b42004-02-12 18:10:10 +00004060</p>
4061
4062<h5>Arguments:</h5>
4063
4064<p>
4065The first argument is a pointer to the destination, the second is a pointer to
Chris Lattner5b310c32006-03-03 00:07:20 +00004066the source. The third argument is an integer argument
Chris Lattner0eb51b42004-02-12 18:10:10 +00004067specifying the number of bytes to copy, and the fourth argument is the alignment
4068of the source and destination locations.
4069</p>
4070
Chris Lattner3301ced2004-02-12 21:18:15 +00004071<p>
4072If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004073the caller guarantees that the source and destination pointers are aligned to
4074that boundary.
Chris Lattner3301ced2004-02-12 21:18:15 +00004075</p>
4076
Chris Lattner0eb51b42004-02-12 18:10:10 +00004077<h5>Semantics:</h5>
4078
4079<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004080The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
Chris Lattner0eb51b42004-02-12 18:10:10 +00004081location to the destination location, which may overlap. It
4082copies "len" bytes of memory over. If the argument is known to be aligned to
4083some boundary, this can be specified as the fourth argument, otherwise it should
4084be set to 0 or 1.
4085</p>
4086</div>
4087
Chris Lattner8ff75902004-01-06 05:31:32 +00004088
Chris Lattner10610642004-02-14 04:08:35 +00004089<!-- _______________________________________________________________________ -->
4090<div class="doc_subsubsection">
Chris Lattner5b310c32006-03-03 00:07:20 +00004091 <a name="i_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
Chris Lattner10610642004-02-14 04:08:35 +00004092</div>
4093
4094<div class="doc_text">
4095
4096<h5>Syntax:</h5>
4097<pre>
Chris Lattner5b310c32006-03-03 00:07:20 +00004098 declare void %llvm.memset.i32(sbyte* &lt;dest&gt;, ubyte &lt;val&gt;,
4099 uint &lt;len&gt;, uint &lt;align&gt;)
4100 declare void %llvm.memset.i64(sbyte* &lt;dest&gt;, ubyte &lt;val&gt;,
4101 ulong &lt;len&gt;, uint &lt;align&gt;)
Chris Lattner10610642004-02-14 04:08:35 +00004102</pre>
4103
4104<h5>Overview:</h5>
4105
4106<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004107The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
Chris Lattner10610642004-02-14 04:08:35 +00004108byte value.
4109</p>
4110
4111<p>
4112Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4113does not return a value, and takes an extra alignment argument.
4114</p>
4115
4116<h5>Arguments:</h5>
4117
4118<p>
4119The first argument is a pointer to the destination to fill, the second is the
Chris Lattner5b310c32006-03-03 00:07:20 +00004120byte value to fill it with, the third argument is an integer
Chris Lattner10610642004-02-14 04:08:35 +00004121argument specifying the number of bytes to fill, and the fourth argument is the
4122known alignment of destination location.
4123</p>
4124
4125<p>
4126If the call to this intrinisic has an alignment value that is not 0 or 1, then
Chris Lattnerf0afc2c2006-03-04 00:02:10 +00004127the caller guarantees that the destination pointer is aligned to that boundary.
Chris Lattner10610642004-02-14 04:08:35 +00004128</p>
4129
4130<h5>Semantics:</h5>
4131
4132<p>
Chris Lattner5b310c32006-03-03 00:07:20 +00004133The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4134the
Chris Lattner10610642004-02-14 04:08:35 +00004135destination location. If the argument is known to be aligned to some boundary,
4136this can be specified as the fourth argument, otherwise it should be set to 0 or
41371.
4138</p>
4139</div>
4140
4141
Chris Lattner32006282004-06-11 02:28:03 +00004142<!-- _______________________________________________________________________ -->
4143<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004144 <a name="i_isunordered">'<tt>llvm.isunordered.*</tt>' Intrinsic</a>
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004145</div>
4146
4147<div class="doc_text">
4148
4149<h5>Syntax:</h5>
4150<pre>
Reid Spencer0b118202006-01-16 21:12:35 +00004151 declare bool %llvm.isunordered.f32(float Val1, float Val2)
4152 declare bool %llvm.isunordered.f64(double Val1, double Val2)
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004153</pre>
4154
4155<h5>Overview:</h5>
4156
4157<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004158The '<tt>llvm.isunordered</tt>' intrinsics return true if either or both of the
Alkis Evlogimenos26bbe932004-06-13 01:16:15 +00004159specified floating point values is a NAN.
4160</p>
4161
4162<h5>Arguments:</h5>
4163
4164<p>
4165The arguments are floating point numbers of the same type.
4166</p>
4167
4168<h5>Semantics:</h5>
4169
4170<p>
4171If either or both of the arguments is a SNAN or QNAN, it returns true, otherwise
4172false.
4173</p>
4174</div>
4175
4176
Chris Lattnera4d74142005-07-21 01:29:16 +00004177<!-- _______________________________________________________________________ -->
4178<div class="doc_subsubsection">
Chris Lattnerec6cb612006-01-16 22:38:59 +00004179 <a name="i_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
Chris Lattnera4d74142005-07-21 01:29:16 +00004180</div>
4181
4182<div class="doc_text">
4183
4184<h5>Syntax:</h5>
4185<pre>
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004186 declare float %llvm.sqrt.f32(float %Val)
4187 declare double %llvm.sqrt.f64(double %Val)
Chris Lattnera4d74142005-07-21 01:29:16 +00004188</pre>
4189
4190<h5>Overview:</h5>
4191
4192<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004193The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Chris Lattnera4d74142005-07-21 01:29:16 +00004194returning the same value as the libm '<tt>sqrt</tt>' function would. Unlike
4195<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4196negative numbers (which allows for better optimization).
4197</p>
4198
4199<h5>Arguments:</h5>
4200
4201<p>
4202The argument and return value are floating point numbers of the same type.
4203</p>
4204
4205<h5>Semantics:</h5>
4206
4207<p>
4208This function returns the sqrt of the specified operand if it is a positive
4209floating point number.
4210</p>
4211</div>
4212
Chris Lattnerf4d252d2006-09-08 06:34:02 +00004213<!-- _______________________________________________________________________ -->
4214<div class="doc_subsubsection">
4215 <a name="i_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4216</div>
4217
4218<div class="doc_text">
4219
4220<h5>Syntax:</h5>
4221<pre>
4222 declare float %llvm.powi.f32(float %Val, int %power)
4223 declare double %llvm.powi.f64(double %Val, int %power)
4224</pre>
4225
4226<h5>Overview:</h5>
4227
4228<p>
4229The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4230specified (positive or negative) power. The order of evaluation of
4231multiplications is not defined.
4232</p>
4233
4234<h5>Arguments:</h5>
4235
4236<p>
4237The second argument is an integer power, and the first is a value to raise to
4238that power.
4239</p>
4240
4241<h5>Semantics:</h5>
4242
4243<p>
4244This function returns the first value raised to the second power with an
4245unspecified sequence of rounding operations.</p>
4246</div>
4247
4248
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004249<!-- ======================================================================= -->
4250<div class="doc_subsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004251 <a name="int_manip">Bit Manipulation Intrinsics</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004252</div>
4253
4254<div class="doc_text">
4255<p>
Nate Begeman7e36c472006-01-13 23:26:38 +00004256LLVM provides intrinsics for a few important bit manipulation operations.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004257These allow efficient code generation for some algorithms.
4258</p>
4259
4260</div>
4261
4262<!-- _______________________________________________________________________ -->
4263<div class="doc_subsubsection">
Nate Begeman7e36c472006-01-13 23:26:38 +00004264 <a name="i_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4265</div>
4266
4267<div class="doc_text">
4268
4269<h5>Syntax:</h5>
4270<pre>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004271 declare ushort %llvm.bswap.i16(ushort &lt;id&gt;)
4272 declare uint %llvm.bswap.i32(uint &lt;id&gt;)
4273 declare ulong %llvm.bswap.i64(ulong &lt;id&gt;)
Nate Begeman7e36c472006-01-13 23:26:38 +00004274</pre>
4275
4276<h5>Overview:</h5>
4277
4278<p>
4279The '<tt>llvm.bwsap</tt>' family of intrinsics is used to byteswap a 16, 32 or
428064 bit quantity. These are useful for performing operations on data that is not
4281in the target's native byte order.
4282</p>
4283
4284<h5>Semantics:</h5>
4285
4286<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004287The <tt>llvm.bswap.16</tt> intrinsic returns a ushort value that has the high and low
4288byte of the input ushort swapped. Similarly, the <tt>llvm.bswap.i32</tt> intrinsic
Nate Begeman7e36c472006-01-13 23:26:38 +00004289returns a uint value that has the four bytes of the input uint swapped, so that
4290if the input bytes are numbered 0, 1, 2, 3 then the returned uint will have its
Chris Lattnerec6cb612006-01-16 22:38:59 +00004291bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i64</tt> intrinsic extends this concept
Nate Begeman7e36c472006-01-13 23:26:38 +00004292to 64 bits.
4293</p>
4294
4295</div>
4296
4297<!-- _______________________________________________________________________ -->
4298<div class="doc_subsubsection">
Reid Spencer0b118202006-01-16 21:12:35 +00004299 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004300</div>
4301
4302<div class="doc_text">
4303
4304<h5>Syntax:</h5>
4305<pre>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004306 declare ubyte %llvm.ctpop.i8 (ubyte &lt;src&gt;)
4307 declare ushort %llvm.ctpop.i16(ushort &lt;src&gt;)
4308 declare uint %llvm.ctpop.i32(uint &lt;src&gt;)
4309 declare ulong %llvm.ctpop.i64(ulong &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004310</pre>
4311
4312<h5>Overview:</h5>
4313
4314<p>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004315The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4316value.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004317</p>
4318
4319<h5>Arguments:</h5>
4320
4321<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004322The only argument is the value to be counted. The argument may be of any
Chris Lattnerec6cb612006-01-16 22:38:59 +00004323unsigned integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004324</p>
4325
4326<h5>Semantics:</h5>
4327
4328<p>
4329The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4330</p>
4331</div>
4332
4333<!-- _______________________________________________________________________ -->
4334<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004335 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004336</div>
4337
4338<div class="doc_text">
4339
4340<h5>Syntax:</h5>
4341<pre>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004342 declare ubyte %llvm.ctlz.i8 (ubyte &lt;src&gt;)
4343 declare ushort %llvm.ctlz.i16(ushort &lt;src&gt;)
4344 declare uint %llvm.ctlz.i32(uint &lt;src&gt;)
4345 declare ulong %llvm.ctlz.i64(ulong &lt;src&gt;)
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004346</pre>
4347
4348<h5>Overview:</h5>
4349
4350<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004351The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4352leading zeros in a variable.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004353</p>
4354
4355<h5>Arguments:</h5>
4356
4357<p>
Chris Lattnercfe6b372005-05-07 01:46:40 +00004358The only argument is the value to be counted. The argument may be of any
Chris Lattnerec6cb612006-01-16 22:38:59 +00004359unsigned integer type. The return type must match the argument type.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004360</p>
4361
4362<h5>Semantics:</h5>
4363
4364<p>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004365The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4366in a variable. If the src == 0 then the result is the size in bits of the type
Chris Lattner99d3c272006-04-21 21:37:40 +00004367of src. For example, <tt>llvm.ctlz(int 2) = 30</tt>.
Andrew Lenharthec370fd2005-05-03 18:01:48 +00004368</p>
4369</div>
Chris Lattner32006282004-06-11 02:28:03 +00004370
4371
Chris Lattnereff29ab2005-05-15 19:39:26 +00004372
4373<!-- _______________________________________________________________________ -->
4374<div class="doc_subsubsection">
Chris Lattner8a886be2006-01-16 22:34:14 +00004375 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
Chris Lattnereff29ab2005-05-15 19:39:26 +00004376</div>
4377
4378<div class="doc_text">
4379
4380<h5>Syntax:</h5>
4381<pre>
Chris Lattnerec6cb612006-01-16 22:38:59 +00004382 declare ubyte %llvm.cttz.i8 (ubyte &lt;src&gt;)
4383 declare ushort %llvm.cttz.i16(ushort &lt;src&gt;)
4384 declare uint %llvm.cttz.i32(uint &lt;src&gt;)
4385 declare ulong %llvm.cttz.i64(ulong &lt;src&gt;)
Chris Lattnereff29ab2005-05-15 19:39:26 +00004386</pre>
4387
4388<h5>Overview:</h5>
4389
4390<p>
Reid Spencer0b118202006-01-16 21:12:35 +00004391The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4392trailing zeros.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004393</p>
4394
4395<h5>Arguments:</h5>
4396
4397<p>
4398The only argument is the value to be counted. The argument may be of any
Chris Lattnerec6cb612006-01-16 22:38:59 +00004399unsigned integer type. The return type must match the argument type.
Chris Lattnereff29ab2005-05-15 19:39:26 +00004400</p>
4401
4402<h5>Semantics:</h5>
4403
4404<p>
4405The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4406in a variable. If the src == 0 then the result is the size in bits of the type
4407of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4408</p>
4409</div>
4410
Chris Lattner8ff75902004-01-06 05:31:32 +00004411<!-- ======================================================================= -->
4412<div class="doc_subsection">
4413 <a name="int_debugger">Debugger Intrinsics</a>
4414</div>
4415
4416<div class="doc_text">
4417<p>
4418The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4419are described in the <a
4420href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4421Debugging</a> document.
4422</p>
4423</div>
4424
4425
Chris Lattner00950542001-06-06 20:29:01 +00004426<!-- *********************************************************************** -->
Chris Lattner00950542001-06-06 20:29:01 +00004427<hr>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004428<address>
4429 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
4430 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
4431 <a href="http://validator.w3.org/check/referer"><img
4432 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
4433
4434 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
Reid Spencer05fe4b02006-03-14 05:39:39 +00004435 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
Misha Brukmandaa4cb02004-03-01 17:47:27 +00004436 Last modified: $Date$
4437</address>
Misha Brukman9d0919f2003-11-08 01:05:38 +00004438</body>
4439</html>