blob: d6cf801e0e9d0daac1fa04894199ebd0978a82ec [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
26 reloc_pcrel_word = FirstTargetFixupKind,
27 reloc_picrel_word,
28 reloc_absolute_word,
29 reloc_absolute_word_sext,
30 reloc_absolute_dword
31};
32}
33}
34
Chris Lattner45762472010-02-03 21:24:49 +000035namespace {
36class X86MCCodeEmitter : public MCCodeEmitter {
37 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
38 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000039 const TargetMachine &TM;
40 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000041 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000042public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000043 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000044 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000045 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000046 }
47
48 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000049
50 unsigned getNumFixupKinds() const {
51 return 5;
52 }
53
54 MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
55 static MCFixupKindInfo Infos[] = {
56 { "reloc_pcrel_word", 0, 4 * 8 },
57 { "reloc_picrel_word", 0, 4 * 8 },
58 { "reloc_absolute_word", 0, 4 * 8 },
59 { "reloc_absolute_word_sext", 0, 4 * 8 },
60 { "reloc_absolute_dword", 0, 8 * 8 }
61 };
62
63 assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind &&
64 "Invalid kind!");
65 return Infos[Kind - FirstTargetFixupKind];
66 }
Chris Lattner45762472010-02-03 21:24:49 +000067
Chris Lattner28249d92010-02-05 01:53:19 +000068 static unsigned GetX86RegNum(const MCOperand &MO) {
69 return X86RegisterInfo::getX86RegNum(MO.getReg());
70 }
71
Chris Lattner37ce80e2010-02-10 06:41:02 +000072 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000073 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000074 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000075 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000076
Chris Lattner37ce80e2010-02-10 06:41:02 +000077 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
78 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000079 // Output the constant in little endian byte order.
80 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000081 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000082 Val >>= 8;
83 }
84 }
Chris Lattner0e73c392010-02-05 06:16:07 +000085
Chris Lattner0e410912010-02-11 06:51:36 +000086 void EmitDisplacementField(const MCOperand &Disp, unsigned &CurByte,
87 raw_ostream &OS,
Chris Lattner5dccfad2010-02-10 06:52:12 +000088 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +000089
90 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
91 unsigned RM) {
92 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
93 return RM | (RegOpcode << 3) | (Mod << 6);
94 }
95
96 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000097 unsigned &CurByte, raw_ostream &OS) const {
98 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000099 }
100
Chris Lattner0e73c392010-02-05 06:16:07 +0000101 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000102 unsigned &CurByte, raw_ostream &OS) const {
103 // SIB byte is in the same format as the ModRMByte.
104 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000105 }
106
107
Chris Lattner1ac23b12010-02-05 02:18:40 +0000108 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000109 unsigned RegOpcodeField,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000110 unsigned &CurByte, raw_ostream &OS,
111 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000112
Daniel Dunbar73c55742010-02-09 22:59:55 +0000113 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
114 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000115
Chris Lattner45762472010-02-03 21:24:49 +0000116};
117
118} // end anonymous namespace
119
120
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000121MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
122 TargetMachine &TM) {
123 return new X86MCCodeEmitter(TM, false);
124}
125
126MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
127 TargetMachine &TM) {
128 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000129}
130
131
Chris Lattner1ac23b12010-02-05 02:18:40 +0000132/// isDisp8 - Return true if this signed displacement fits in a 8-bit
133/// sign-extended field.
134static bool isDisp8(int Value) {
135 return Value == (signed char)Value;
136}
137
Chris Lattner0e73c392010-02-05 06:16:07 +0000138void X86MCCodeEmitter::
Chris Lattner0e410912010-02-11 06:51:36 +0000139EmitDisplacementField(const MCOperand &DispOp,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000140 unsigned &CurByte, raw_ostream &OS,
141 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000142 // If this is a simple integer displacement that doesn't require a relocation,
143 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000144 if (DispOp.isImm()) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000145 EmitConstant(DispOp.getImm(), 4, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000146 return;
147 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000148
Chris Lattner0e73c392010-02-05 06:16:07 +0000149#if 0
150 // Otherwise, this is something that requires a relocation. Emit it as such
151 // now.
152 unsigned RelocType = Is64BitMode ?
153 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
154 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
Chris Lattner0e73c392010-02-05 06:16:07 +0000155#endif
Chris Lattner5dccfad2010-02-10 06:52:12 +0000156
157 // Emit a symbolic constant as a fixup and 4 zeros.
158 Fixups.push_back(MCFixup::Create(CurByte, DispOp.getExpr(),
159 MCFixupKind(X86::reloc_absolute_word)));
160 EmitConstant(0, 4, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000161}
162
163
Chris Lattner1ac23b12010-02-05 02:18:40 +0000164void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
165 unsigned RegOpcodeField,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000166 unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000167 raw_ostream &OS,
168 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000169 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000170 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000171 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000172 const MCOperand &IndexReg = MI.getOperand(Op+2);
173 unsigned BaseReg = Base.getReg();
174
Chris Lattnera8168ec2010-02-09 21:57:34 +0000175 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000176 // If no BaseReg, issue a RIP relative instruction only if the MCE can
177 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
178 // 2-7) and absolute references.
Chris Lattnera8168ec2010-02-09 21:57:34 +0000179 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000180 IndexReg.getReg() == 0 &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000181 // The SIB byte must be used if the base is ESP/RSP.
182 BaseReg != X86::ESP && BaseReg != X86::RSP &&
183 // If there is no base register and we're in 64-bit mode, we need a SIB
184 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
185 (!Is64BitMode || BaseReg != 0)) {
186
187 if (BaseReg == 0 || // [disp32] in X86-32 mode
188 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000189 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattner0e410912010-02-11 06:51:36 +0000190 EmitDisplacementField(Disp, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000191 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000192 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000193
194 unsigned BaseRegNo = GetX86RegNum(Base);
195
196 // If the base is not EBP/ESP and there is no displacement, use simple
197 // indirect register encoding, this handles addresses like [EAX]. The
198 // encoding for [EBP] with no displacement means [disp32] so we handle it
199 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000200 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000201 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000202 return;
203 }
204
205 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000206 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000207 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
208 EmitConstant(Disp.getImm(), 1, CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000209 return;
210 }
211
212 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000213 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattner0e410912010-02-11 06:51:36 +0000214 EmitDisplacementField(Disp, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000215 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000216 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000217
218 // We need a SIB byte, so start by outputting the ModR/M byte first
219 assert(IndexReg.getReg() != X86::ESP &&
220 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
221
222 bool ForceDisp32 = false;
223 bool ForceDisp8 = false;
224 if (BaseReg == 0) {
225 // If there is no base register, we emit the special case SIB byte with
226 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000227 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000228 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000229 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000230 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000231 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000232 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000233 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000234 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000235 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000236 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000237 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000238 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000239 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
240 } else {
241 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000242 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000243 }
244
245 // Calculate what the SS field value should be...
246 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
247 unsigned SS = SSTable[Scale.getImm()];
248
249 if (BaseReg == 0) {
250 // Handle the SIB byte for the case where there is no base, see Intel
251 // Manual 2A, table 2-7. The displacement has already been output.
252 unsigned IndexRegNo;
253 if (IndexReg.getReg())
254 IndexRegNo = GetX86RegNum(IndexReg);
255 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
256 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000257 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000258 } else {
259 unsigned IndexRegNo;
260 if (IndexReg.getReg())
261 IndexRegNo = GetX86RegNum(IndexReg);
262 else
263 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000264 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000265 }
266
267 // Do we need to output a displacement?
268 if (ForceDisp8)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000269 EmitConstant(Disp.getImm(), 1, CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000270 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattner0e410912010-02-11 06:51:36 +0000271 EmitDisplacementField(Disp, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000272}
273
Chris Lattner39a612e2010-02-05 22:10:22 +0000274/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
275/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
276/// size, and 3) use of X86-64 extended registers.
277static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
278 const TargetInstrDesc &Desc) {
279 unsigned REX = 0;
280
281 // Pseudo instructions do not need REX prefix byte.
282 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
283 return 0;
284 if (TSFlags & X86II::REX_W)
285 REX |= 1 << 3;
286
287 if (MI.getNumOperands() == 0) return REX;
288
289 unsigned NumOps = MI.getNumOperands();
290 // FIXME: MCInst should explicitize the two-addrness.
291 bool isTwoAddr = NumOps > 1 &&
292 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
293
294 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
295 unsigned i = isTwoAddr ? 1 : 0;
296 for (; i != NumOps; ++i) {
297 const MCOperand &MO = MI.getOperand(i);
298 if (!MO.isReg()) continue;
299 unsigned Reg = MO.getReg();
300 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000301 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
302 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000303 REX |= 0x40;
304 break;
305 }
306
307 switch (TSFlags & X86II::FormMask) {
308 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
309 case X86II::MRMSrcReg:
310 if (MI.getOperand(0).isReg() &&
311 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
312 REX |= 1 << 2;
313 i = isTwoAddr ? 2 : 1;
314 for (; i != NumOps; ++i) {
315 const MCOperand &MO = MI.getOperand(i);
316 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
317 REX |= 1 << 0;
318 }
319 break;
320 case X86II::MRMSrcMem: {
321 if (MI.getOperand(0).isReg() &&
322 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
323 REX |= 1 << 2;
324 unsigned Bit = 0;
325 i = isTwoAddr ? 2 : 1;
326 for (; i != NumOps; ++i) {
327 const MCOperand &MO = MI.getOperand(i);
328 if (MO.isReg()) {
329 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
330 REX |= 1 << Bit;
331 Bit++;
332 }
333 }
334 break;
335 }
336 case X86II::MRM0m: case X86II::MRM1m:
337 case X86II::MRM2m: case X86II::MRM3m:
338 case X86II::MRM4m: case X86II::MRM5m:
339 case X86II::MRM6m: case X86II::MRM7m:
340 case X86II::MRMDestMem: {
341 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
342 i = isTwoAddr ? 1 : 0;
343 if (NumOps > e && MI.getOperand(e).isReg() &&
344 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
345 REX |= 1 << 2;
346 unsigned Bit = 0;
347 for (; i != e; ++i) {
348 const MCOperand &MO = MI.getOperand(i);
349 if (MO.isReg()) {
350 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
351 REX |= 1 << Bit;
352 Bit++;
353 }
354 }
355 break;
356 }
357 default:
358 if (MI.getOperand(0).isReg() &&
359 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
360 REX |= 1 << 0;
361 i = isTwoAddr ? 2 : 1;
362 for (unsigned e = NumOps; i != e; ++i) {
363 const MCOperand &MO = MI.getOperand(i);
364 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
365 REX |= 1 << 2;
366 }
367 break;
368 }
369 return REX;
370}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000371
372void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000373EncodeInstruction(const MCInst &MI, raw_ostream &OS,
374 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000375 unsigned Opcode = MI.getOpcode();
376 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000377 unsigned TSFlags = Desc.TSFlags;
378
Chris Lattner37ce80e2010-02-10 06:41:02 +0000379 // Keep track of the current byte being emitted.
380 unsigned CurByte = 0;
381
Chris Lattner1e80f402010-02-03 21:57:59 +0000382 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
383 // in order to provide diffability.
384
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000385 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000386 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000387 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000388
389 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000390 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000391 default: assert(0 && "Invalid segment!");
392 case 0: break; // No segment override!
393 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000394 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000395 break;
396 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000397 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000398 break;
399 }
400
Chris Lattner1e80f402010-02-03 21:57:59 +0000401 // Emit the repeat opcode prefix as needed.
402 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000403 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000404
Chris Lattner1e80f402010-02-03 21:57:59 +0000405 // Emit the operand size opcode prefix as needed.
406 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000407 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000408
409 // Emit the address size opcode prefix as needed.
410 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000411 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000412
413 bool Need0FPrefix = false;
414 switch (TSFlags & X86II::Op0Mask) {
415 default: assert(0 && "Invalid prefix!");
416 case 0: break; // No prefix!
417 case X86II::REP: break; // already handled.
418 case X86II::TB: // Two-byte opcode prefix
419 case X86II::T8: // 0F 38
420 case X86II::TA: // 0F 3A
421 Need0FPrefix = true;
422 break;
423 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000424 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000425 Need0FPrefix = true;
426 break;
427 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000428 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000429 Need0FPrefix = true;
430 break;
431 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000432 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000433 Need0FPrefix = true;
434 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000435 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
436 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
437 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
438 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
439 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
440 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
441 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
442 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000443 }
444
445 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000446 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000447 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000448 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000449 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000450 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000451
452 // 0x0F escape code must be emitted just before the opcode.
453 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000454 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000455
456 // FIXME: Pull this up into previous switch if REX can be moved earlier.
457 switch (TSFlags & X86II::Op0Mask) {
458 case X86II::TF: // F2 0F 38
459 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000460 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000461 break;
462 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000463 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000464 break;
465 }
466
467 // If this is a two-address instruction, skip one of the register operands.
468 unsigned NumOps = Desc.getNumOperands();
469 unsigned CurOp = 0;
470 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
471 ++CurOp;
472 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
473 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
474 --NumOps;
475
Chris Lattner74a21512010-02-05 19:24:13 +0000476 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000477 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000478 case X86II::MRMInitReg:
479 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000480 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
481 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000482 case X86II::RawFrm: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000483 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000484
485 if (CurOp == NumOps)
486 break;
487
Chris Lattner28249d92010-02-05 01:53:19 +0000488 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000489 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000490 }
Chris Lattner28249d92010-02-05 01:53:19 +0000491
492 case X86II::AddRegFrm: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000493 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000494 if (CurOp == NumOps)
495 break;
496
497 const MCOperand &MO1 = MI.getOperand(CurOp++);
498 if (MO1.isImm()) {
Chris Lattner74a21512010-02-05 19:24:13 +0000499 unsigned Size = X86II::getSizeOfImm(TSFlags);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000500 EmitConstant(MO1.getImm(), Size, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000501 break;
502 }
503
504 assert(0 && "Unimpl AddRegFrm expr");
505 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000506 }
Chris Lattner28249d92010-02-05 01:53:19 +0000507
508 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000509 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000510 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000511 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000512 CurOp += 2;
513 if (CurOp != NumOps)
514 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000515 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000516 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000517
518 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000519 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000520 EmitMemModRMByte(MI, CurOp,
521 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner1b670602010-02-11 06:49:52 +0000522 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000523 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000524 if (CurOp != NumOps)
525 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000526 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000527 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000528
529 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000530 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000531 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000532 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000533 CurOp += 2;
534 if (CurOp != NumOps)
535 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000536 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000537 break;
538
539 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000540 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000541
542 // FIXME: Maybe lea should have its own form? This is a horrible hack.
543 int AddrOperands;
544 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
545 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
546 AddrOperands = X86AddrNumOperands - 1; // No segment register
547 else
548 AddrOperands = X86AddrNumOperands;
549
Chris Lattnerdaa45552010-02-05 19:04:37 +0000550 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner1b670602010-02-11 06:49:52 +0000551 CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000552 CurOp += AddrOperands + 1;
553 if (CurOp != NumOps)
554 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000555 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000556 break;
557 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000558
559 case X86II::MRM0r: case X86II::MRM1r:
560 case X86II::MRM2r: case X86II::MRM3r:
561 case X86II::MRM4r: case X86II::MRM5r:
562 case X86II::MRM6r: case X86II::MRM7r: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000563 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000564
565 // Special handling of lfence, mfence, monitor, and mwait.
566 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
567 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
568 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000569 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0),
570 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000571
572 switch (Opcode) {
573 default: break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000574 case X86::MONITOR: EmitByte(0xC8, CurByte, OS); break;
575 case X86::MWAIT: EmitByte(0xC9, CurByte, OS); break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000576 }
577 } else {
578 EmitRegModRMByte(MI.getOperand(CurOp++),
579 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000580 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000581 }
582
583 if (CurOp == NumOps)
584 break;
585
586 const MCOperand &MO1 = MI.getOperand(CurOp++);
587 if (MO1.isImm()) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000588 EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000589 break;
590 }
591
592 assert(0 && "relo unimpl");
593#if 0
594 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
595 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
596 if (Opcode == X86::MOV64ri32)
597 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
598 if (MO1.isGlobal()) {
599 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
600 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
601 Indirect);
602 } else if (MO1.isSymbol())
603 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
604 else if (MO1.isCPI())
605 emitConstPoolAddress(MO1.getIndex(), rt);
606 else if (MO1.isJTI())
607 emitJumpTableAddress(MO1.getIndex(), rt);
608 break;
609#endif
610 }
611 case X86II::MRM0m: case X86II::MRM1m:
612 case X86II::MRM2m: case X86II::MRM3m:
613 case X86II::MRM4m: case X86II::MRM5m:
614 case X86II::MRM6m: case X86II::MRM7m: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000615 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000616 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner1b670602010-02-11 06:49:52 +0000617 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000618 CurOp += X86AddrNumOperands;
619
620 if (CurOp == NumOps)
621 break;
622
623 const MCOperand &MO = MI.getOperand(CurOp++);
624 if (MO.isImm()) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000625 EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000626 break;
627 }
628
629 assert(0 && "relo not handled");
630#if 0
631 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
632 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
633 if (Opcode == X86::MOV64mi32)
634 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
635 if (MO.isGlobal()) {
636 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
637 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
638 Indirect);
639 } else if (MO.isSymbol())
640 emitExternalSymbolAddress(MO.getSymbolName(), rt);
641 else if (MO.isCPI())
642 emitConstPoolAddress(MO.getIndex(), rt);
643 else if (MO.isJTI())
644 emitJumpTableAddress(MO.getIndex(), rt);
645#endif
646 break;
647 }
Chris Lattner28249d92010-02-05 01:53:19 +0000648 }
649
650#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000651 // FIXME: Verify.
652 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000653 errs() << "Cannot encode all operands of: ";
654 MI.dump();
655 errs() << '\n';
656 abort();
657 }
658#endif
Chris Lattner45762472010-02-03 21:24:49 +0000659}