blob: 23e9b275d810b77d14de47ecbf3a6290d44765de [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
90
91 public:
92 static char ID;
93 CWriter(std::ostream &o)
94 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
116 FPConstantMap.clear();
117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
123 TypeNames.clear();
124 return false;
125 }
126
127 std::ostream &printType(std::ostream &Out, const Type *Ty,
128 bool isSigned = false,
129 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000130 bool IgnoreName = false,
131 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000132 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
133 bool isSigned,
134 const std::string &NameSoFar = "");
135
136 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000137 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138 const PointerType *Ty);
139
140 void writeOperand(Value *Operand);
141 void writeOperandRaw(Value *Operand);
142 void writeOperandInternal(Value *Operand);
143 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000144 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 bool writeInstructionCast(const Instruction &I);
146
147 private :
148 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
149
150 void lowerIntrinsics(Function &F);
151
152 void printModule(Module *M);
153 void printModuleTypes(const TypeSymbolTable &ST);
154 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
155 void printFloatingPointConstants(Function &F);
156 void printFunctionSignature(const Function *F, bool Prototype);
157
158 void printFunction(Function &);
159 void printBasicBlock(BasicBlock *BB);
160 void printLoop(Loop *L);
161
162 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
163 void printConstant(Constant *CPV);
164 void printConstantWithCast(Constant *CPV, unsigned Opcode);
165 bool printConstExprCast(const ConstantExpr *CE);
166 void printConstantArray(ConstantArray *CPA);
167 void printConstantVector(ConstantVector *CP);
168
169 // isInlinableInst - Attempt to inline instructions into their uses to build
170 // trees as much as possible. To do this, we have to consistently decide
171 // what is acceptable to inline, so that variable declarations don't get
172 // printed and an extra copy of the expr is not emitted.
173 //
174 static bool isInlinableInst(const Instruction &I) {
175 // Always inline cmp instructions, even if they are shared by multiple
176 // expressions. GCC generates horrible code if we don't.
177 if (isa<CmpInst>(I))
178 return true;
179
180 // Must be an expression, must be used exactly once. If it is dead, we
181 // emit it inline where it would go.
182 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
183 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
184 isa<LoadInst>(I) || isa<VAArgInst>(I))
185 // Don't inline a load across a store or other bad things!
186 return false;
187
188 // Must not be used in inline asm
189 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
190
191 // Only inline instruction it if it's use is in the same BB as the inst.
192 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
193 }
194
195 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
196 // variables which are accessed with the & operator. This causes GCC to
197 // generate significantly better code than to emit alloca calls directly.
198 //
199 static const AllocaInst *isDirectAlloca(const Value *V) {
200 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
201 if (!AI) return false;
202 if (AI->isArrayAllocation())
203 return 0; // FIXME: we can also inline fixed size array allocas!
204 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
205 return 0;
206 return AI;
207 }
208
209 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
210 static bool isInlineAsm(const Instruction& I) {
211 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
212 return true;
213 return false;
214 }
215
216 // Instruction visitation functions
217 friend class InstVisitor<CWriter>;
218
219 void visitReturnInst(ReturnInst &I);
220 void visitBranchInst(BranchInst &I);
221 void visitSwitchInst(SwitchInst &I);
222 void visitInvokeInst(InvokeInst &I) {
223 assert(0 && "Lowerinvoke pass didn't work!");
224 }
225
226 void visitUnwindInst(UnwindInst &I) {
227 assert(0 && "Lowerinvoke pass didn't work!");
228 }
229 void visitUnreachableInst(UnreachableInst &I);
230
231 void visitPHINode(PHINode &I);
232 void visitBinaryOperator(Instruction &I);
233 void visitICmpInst(ICmpInst &I);
234 void visitFCmpInst(FCmpInst &I);
235
236 void visitCastInst (CastInst &I);
237 void visitSelectInst(SelectInst &I);
238 void visitCallInst (CallInst &I);
239 void visitInlineAsm(CallInst &I);
240
241 void visitMallocInst(MallocInst &I);
242 void visitAllocaInst(AllocaInst &I);
243 void visitFreeInst (FreeInst &I);
244 void visitLoadInst (LoadInst &I);
245 void visitStoreInst (StoreInst &I);
246 void visitGetElementPtrInst(GetElementPtrInst &I);
247 void visitVAArgInst (VAArgInst &I);
248
249 void visitInstruction(Instruction &I) {
250 cerr << "C Writer does not know about " << I;
251 abort();
252 }
253
254 void outputLValue(Instruction *I) {
255 Out << " " << GetValueName(I) << " = ";
256 }
257
258 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
259 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
260 BasicBlock *Successor, unsigned Indent);
261 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
262 unsigned Indent);
263 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
264 gep_type_iterator E);
265
266 std::string GetValueName(const Value *Operand);
267 };
268}
269
270char CWriter::ID = 0;
271
272/// This method inserts names for any unnamed structure types that are used by
273/// the program, and removes names from structure types that are not used by the
274/// program.
275///
276bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
277 // Get a set of types that are used by the program...
278 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
279
280 // Loop over the module symbol table, removing types from UT that are
281 // already named, and removing names for types that are not used.
282 //
283 TypeSymbolTable &TST = M.getTypeSymbolTable();
284 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
285 TI != TE; ) {
286 TypeSymbolTable::iterator I = TI++;
287
288 // If this isn't a struct type, remove it from our set of types to name.
289 // This simplifies emission later.
290 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
291 TST.remove(I);
292 } else {
293 // If this is not used, remove it from the symbol table.
294 std::set<const Type *>::iterator UTI = UT.find(I->second);
295 if (UTI == UT.end())
296 TST.remove(I);
297 else
298 UT.erase(UTI); // Only keep one name for this type.
299 }
300 }
301
302 // UT now contains types that are not named. Loop over it, naming
303 // structure types.
304 //
305 bool Changed = false;
306 unsigned RenameCounter = 0;
307 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
308 I != E; ++I)
309 if (const StructType *ST = dyn_cast<StructType>(*I)) {
310 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
311 ++RenameCounter;
312 Changed = true;
313 }
314
315
316 // Loop over all external functions and globals. If we have two with
317 // identical names, merge them.
318 // FIXME: This code should disappear when we don't allow values with the same
319 // names when they have different types!
320 std::map<std::string, GlobalValue*> ExtSymbols;
321 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
322 Function *GV = I++;
323 if (GV->isDeclaration() && GV->hasName()) {
324 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
325 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
326 if (!X.second) {
327 // Found a conflict, replace this global with the previous one.
328 GlobalValue *OldGV = X.first->second;
329 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
330 GV->eraseFromParent();
331 Changed = true;
332 }
333 }
334 }
335 // Do the same for globals.
336 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
337 I != E;) {
338 GlobalVariable *GV = I++;
339 if (GV->isDeclaration() && GV->hasName()) {
340 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
341 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
342 if (!X.second) {
343 // Found a conflict, replace this global with the previous one.
344 GlobalValue *OldGV = X.first->second;
345 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
346 GV->eraseFromParent();
347 Changed = true;
348 }
349 }
350 }
351
352 return Changed;
353}
354
355/// printStructReturnPointerFunctionType - This is like printType for a struct
356/// return type, except, instead of printing the type as void (*)(Struct*, ...)
357/// print it as "Struct (*)(...)", for struct return functions.
358void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000359 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000360 const PointerType *TheTy) {
361 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
362 std::stringstream FunctionInnards;
363 FunctionInnards << " (*) (";
364 bool PrintedType = false;
365
366 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
367 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
368 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000369 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000370 if (PrintedType)
371 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000372 const Type *ArgTy = *I;
373 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000374 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375 PrintedType = true;
376 }
377 if (FTy->isVarArg()) {
378 if (PrintedType)
379 FunctionInnards << ", ...";
380 } else if (!PrintedType) {
381 FunctionInnards << "void";
382 }
383 FunctionInnards << ')';
384 std::string tstr = FunctionInnards.str();
385 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000386 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000387}
388
389std::ostream &
390CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
391 const std::string &NameSoFar) {
392 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
393 "Invalid type for printSimpleType");
394 switch (Ty->getTypeID()) {
395 case Type::VoidTyID: return Out << "void " << NameSoFar;
396 case Type::IntegerTyID: {
397 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
398 if (NumBits == 1)
399 return Out << "bool " << NameSoFar;
400 else if (NumBits <= 8)
401 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
402 else if (NumBits <= 16)
403 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
404 else if (NumBits <= 32)
405 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
406 else {
407 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
408 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
409 }
410 }
411 case Type::FloatTyID: return Out << "float " << NameSoFar;
412 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000413 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
414 // present matches host 'long double'.
415 case Type::X86_FP80TyID:
416 case Type::PPC_FP128TyID:
417 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 default :
419 cerr << "Unknown primitive type: " << *Ty << "\n";
420 abort();
421 }
422}
423
424// Pass the Type* and the variable name and this prints out the variable
425// declaration.
426//
427std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
428 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000429 bool IgnoreName, const ParamAttrsList* PAL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000430 if (Ty->isPrimitiveType() || Ty->isInteger()) {
431 printSimpleType(Out, Ty, isSigned, NameSoFar);
432 return Out;
433 }
434
435 // Check to see if the type is named.
436 if (!IgnoreName || isa<OpaqueType>(Ty)) {
437 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
438 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
439 }
440
441 switch (Ty->getTypeID()) {
442 case Type::FunctionTyID: {
443 const FunctionType *FTy = cast<FunctionType>(Ty);
444 std::stringstream FunctionInnards;
445 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000446 unsigned Idx = 1;
447 for (FunctionType::param_iterator I = FTy->param_begin(),
448 E = FTy->param_end(); I != E; ++I) {
449 if (I != FTy->param_begin())
450 FunctionInnards << ", ";
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000451 printType(FunctionInnards, *I,
452 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 ++Idx;
454 }
455 if (FTy->isVarArg()) {
456 if (FTy->getNumParams())
457 FunctionInnards << ", ...";
458 } else if (!FTy->getNumParams()) {
459 FunctionInnards << "void";
460 }
461 FunctionInnards << ')';
462 std::string tstr = FunctionInnards.str();
463 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000464 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000465 return Out;
466 }
467 case Type::StructTyID: {
468 const StructType *STy = cast<StructType>(Ty);
469 Out << NameSoFar + " {\n";
470 unsigned Idx = 0;
471 for (StructType::element_iterator I = STy->element_begin(),
472 E = STy->element_end(); I != E; ++I) {
473 Out << " ";
474 printType(Out, *I, false, "field" + utostr(Idx++));
475 Out << ";\n";
476 }
477 Out << '}';
478 if (STy->isPacked())
479 Out << " __attribute__ ((packed))";
480 return Out;
481 }
482
483 case Type::PointerTyID: {
484 const PointerType *PTy = cast<PointerType>(Ty);
485 std::string ptrName = "*" + NameSoFar;
486
487 if (isa<ArrayType>(PTy->getElementType()) ||
488 isa<VectorType>(PTy->getElementType()))
489 ptrName = "(" + ptrName + ")";
490
491 return printType(Out, PTy->getElementType(), false, ptrName);
492 }
493
494 case Type::ArrayTyID: {
495 const ArrayType *ATy = cast<ArrayType>(Ty);
496 unsigned NumElements = ATy->getNumElements();
497 if (NumElements == 0) NumElements = 1;
498 return printType(Out, ATy->getElementType(), false,
499 NameSoFar + "[" + utostr(NumElements) + "]");
500 }
501
502 case Type::VectorTyID: {
503 const VectorType *PTy = cast<VectorType>(Ty);
504 unsigned NumElements = PTy->getNumElements();
505 if (NumElements == 0) NumElements = 1;
506 return printType(Out, PTy->getElementType(), false,
507 NameSoFar + "[" + utostr(NumElements) + "]");
508 }
509
510 case Type::OpaqueTyID: {
511 static int Count = 0;
512 std::string TyName = "struct opaque_" + itostr(Count++);
513 assert(TypeNames.find(Ty) == TypeNames.end());
514 TypeNames[Ty] = TyName;
515 return Out << TyName << ' ' << NameSoFar;
516 }
517 default:
518 assert(0 && "Unhandled case in getTypeProps!");
519 abort();
520 }
521
522 return Out;
523}
524
525void CWriter::printConstantArray(ConstantArray *CPA) {
526
527 // As a special case, print the array as a string if it is an array of
528 // ubytes or an array of sbytes with positive values.
529 //
530 const Type *ETy = CPA->getType()->getElementType();
531 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
532
533 // Make sure the last character is a null char, as automatically added by C
534 if (isString && (CPA->getNumOperands() == 0 ||
535 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
536 isString = false;
537
538 if (isString) {
539 Out << '\"';
540 // Keep track of whether the last number was a hexadecimal escape
541 bool LastWasHex = false;
542
543 // Do not include the last character, which we know is null
544 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
545 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
546
547 // Print it out literally if it is a printable character. The only thing
548 // to be careful about is when the last letter output was a hex escape
549 // code, in which case we have to be careful not to print out hex digits
550 // explicitly (the C compiler thinks it is a continuation of the previous
551 // character, sheesh...)
552 //
553 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
554 LastWasHex = false;
555 if (C == '"' || C == '\\')
556 Out << "\\" << C;
557 else
558 Out << C;
559 } else {
560 LastWasHex = false;
561 switch (C) {
562 case '\n': Out << "\\n"; break;
563 case '\t': Out << "\\t"; break;
564 case '\r': Out << "\\r"; break;
565 case '\v': Out << "\\v"; break;
566 case '\a': Out << "\\a"; break;
567 case '\"': Out << "\\\""; break;
568 case '\'': Out << "\\\'"; break;
569 default:
570 Out << "\\x";
571 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
572 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
573 LastWasHex = true;
574 break;
575 }
576 }
577 }
578 Out << '\"';
579 } else {
580 Out << '{';
581 if (CPA->getNumOperands()) {
582 Out << ' ';
583 printConstant(cast<Constant>(CPA->getOperand(0)));
584 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
585 Out << ", ";
586 printConstant(cast<Constant>(CPA->getOperand(i)));
587 }
588 }
589 Out << " }";
590 }
591}
592
593void CWriter::printConstantVector(ConstantVector *CP) {
594 Out << '{';
595 if (CP->getNumOperands()) {
596 Out << ' ';
597 printConstant(cast<Constant>(CP->getOperand(0)));
598 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
599 Out << ", ";
600 printConstant(cast<Constant>(CP->getOperand(i)));
601 }
602 }
603 Out << " }";
604}
605
606// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
607// textually as a double (rather than as a reference to a stack-allocated
608// variable). We decide this by converting CFP to a string and back into a
609// double, and then checking whether the conversion results in a bit-equal
610// double to the original value of CFP. This depends on us and the target C
611// compiler agreeing on the conversion process (which is pretty likely since we
612// only deal in IEEE FP).
613//
614static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000615 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000616 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
617 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000618 APFloat APF = APFloat(CFP->getValueAPF()); // copy
619 if (CFP->getType()==Type::FloatTy)
620 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000621#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
622 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000623 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000624 if (!strncmp(Buffer, "0x", 2) ||
625 !strncmp(Buffer, "-0x", 3) ||
626 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000627 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628 return false;
629#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000630 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631
632 while (StrVal[0] == ' ')
633 StrVal.erase(StrVal.begin());
634
635 // Check to make sure that the stringized number is not some string like "Inf"
636 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
637 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
638 ((StrVal[0] == '-' || StrVal[0] == '+') &&
639 (StrVal[1] >= '0' && StrVal[1] <= '9')))
640 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000641 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642 return false;
643#endif
644}
645
646/// Print out the casting for a cast operation. This does the double casting
647/// necessary for conversion to the destination type, if necessary.
648/// @brief Print a cast
649void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
650 // Print the destination type cast
651 switch (opc) {
652 case Instruction::UIToFP:
653 case Instruction::SIToFP:
654 case Instruction::IntToPtr:
655 case Instruction::Trunc:
656 case Instruction::BitCast:
657 case Instruction::FPExt:
658 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
659 Out << '(';
660 printType(Out, DstTy);
661 Out << ')';
662 break;
663 case Instruction::ZExt:
664 case Instruction::PtrToInt:
665 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
666 Out << '(';
667 printSimpleType(Out, DstTy, false);
668 Out << ')';
669 break;
670 case Instruction::SExt:
671 case Instruction::FPToSI: // For these, make sure we get a signed dest
672 Out << '(';
673 printSimpleType(Out, DstTy, true);
674 Out << ')';
675 break;
676 default:
677 assert(0 && "Invalid cast opcode");
678 }
679
680 // Print the source type cast
681 switch (opc) {
682 case Instruction::UIToFP:
683 case Instruction::ZExt:
684 Out << '(';
685 printSimpleType(Out, SrcTy, false);
686 Out << ')';
687 break;
688 case Instruction::SIToFP:
689 case Instruction::SExt:
690 Out << '(';
691 printSimpleType(Out, SrcTy, true);
692 Out << ')';
693 break;
694 case Instruction::IntToPtr:
695 case Instruction::PtrToInt:
696 // Avoid "cast to pointer from integer of different size" warnings
697 Out << "(unsigned long)";
698 break;
699 case Instruction::Trunc:
700 case Instruction::BitCast:
701 case Instruction::FPExt:
702 case Instruction::FPTrunc:
703 case Instruction::FPToSI:
704 case Instruction::FPToUI:
705 break; // These don't need a source cast.
706 default:
707 assert(0 && "Invalid cast opcode");
708 break;
709 }
710}
711
712// printConstant - The LLVM Constant to C Constant converter.
713void CWriter::printConstant(Constant *CPV) {
714 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
715 switch (CE->getOpcode()) {
716 case Instruction::Trunc:
717 case Instruction::ZExt:
718 case Instruction::SExt:
719 case Instruction::FPTrunc:
720 case Instruction::FPExt:
721 case Instruction::UIToFP:
722 case Instruction::SIToFP:
723 case Instruction::FPToUI:
724 case Instruction::FPToSI:
725 case Instruction::PtrToInt:
726 case Instruction::IntToPtr:
727 case Instruction::BitCast:
728 Out << "(";
729 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
730 if (CE->getOpcode() == Instruction::SExt &&
731 CE->getOperand(0)->getType() == Type::Int1Ty) {
732 // Make sure we really sext from bool here by subtracting from 0
733 Out << "0-";
734 }
735 printConstant(CE->getOperand(0));
736 if (CE->getType() == Type::Int1Ty &&
737 (CE->getOpcode() == Instruction::Trunc ||
738 CE->getOpcode() == Instruction::FPToUI ||
739 CE->getOpcode() == Instruction::FPToSI ||
740 CE->getOpcode() == Instruction::PtrToInt)) {
741 // Make sure we really truncate to bool here by anding with 1
742 Out << "&1u";
743 }
744 Out << ')';
745 return;
746
747 case Instruction::GetElementPtr:
748 Out << "(&(";
749 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
750 gep_type_end(CPV));
751 Out << "))";
752 return;
753 case Instruction::Select:
754 Out << '(';
755 printConstant(CE->getOperand(0));
756 Out << '?';
757 printConstant(CE->getOperand(1));
758 Out << ':';
759 printConstant(CE->getOperand(2));
760 Out << ')';
761 return;
762 case Instruction::Add:
763 case Instruction::Sub:
764 case Instruction::Mul:
765 case Instruction::SDiv:
766 case Instruction::UDiv:
767 case Instruction::FDiv:
768 case Instruction::URem:
769 case Instruction::SRem:
770 case Instruction::FRem:
771 case Instruction::And:
772 case Instruction::Or:
773 case Instruction::Xor:
774 case Instruction::ICmp:
775 case Instruction::Shl:
776 case Instruction::LShr:
777 case Instruction::AShr:
778 {
779 Out << '(';
780 bool NeedsClosingParens = printConstExprCast(CE);
781 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
782 switch (CE->getOpcode()) {
783 case Instruction::Add: Out << " + "; break;
784 case Instruction::Sub: Out << " - "; break;
785 case Instruction::Mul: Out << " * "; break;
786 case Instruction::URem:
787 case Instruction::SRem:
788 case Instruction::FRem: Out << " % "; break;
789 case Instruction::UDiv:
790 case Instruction::SDiv:
791 case Instruction::FDiv: Out << " / "; break;
792 case Instruction::And: Out << " & "; break;
793 case Instruction::Or: Out << " | "; break;
794 case Instruction::Xor: Out << " ^ "; break;
795 case Instruction::Shl: Out << " << "; break;
796 case Instruction::LShr:
797 case Instruction::AShr: Out << " >> "; break;
798 case Instruction::ICmp:
799 switch (CE->getPredicate()) {
800 case ICmpInst::ICMP_EQ: Out << " == "; break;
801 case ICmpInst::ICMP_NE: Out << " != "; break;
802 case ICmpInst::ICMP_SLT:
803 case ICmpInst::ICMP_ULT: Out << " < "; break;
804 case ICmpInst::ICMP_SLE:
805 case ICmpInst::ICMP_ULE: Out << " <= "; break;
806 case ICmpInst::ICMP_SGT:
807 case ICmpInst::ICMP_UGT: Out << " > "; break;
808 case ICmpInst::ICMP_SGE:
809 case ICmpInst::ICMP_UGE: Out << " >= "; break;
810 default: assert(0 && "Illegal ICmp predicate");
811 }
812 break;
813 default: assert(0 && "Illegal opcode here!");
814 }
815 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
816 if (NeedsClosingParens)
817 Out << "))";
818 Out << ')';
819 return;
820 }
821 case Instruction::FCmp: {
822 Out << '(';
823 bool NeedsClosingParens = printConstExprCast(CE);
824 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
825 Out << "0";
826 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
827 Out << "1";
828 else {
829 const char* op = 0;
830 switch (CE->getPredicate()) {
831 default: assert(0 && "Illegal FCmp predicate");
832 case FCmpInst::FCMP_ORD: op = "ord"; break;
833 case FCmpInst::FCMP_UNO: op = "uno"; break;
834 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
835 case FCmpInst::FCMP_UNE: op = "une"; break;
836 case FCmpInst::FCMP_ULT: op = "ult"; break;
837 case FCmpInst::FCMP_ULE: op = "ule"; break;
838 case FCmpInst::FCMP_UGT: op = "ugt"; break;
839 case FCmpInst::FCMP_UGE: op = "uge"; break;
840 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
841 case FCmpInst::FCMP_ONE: op = "one"; break;
842 case FCmpInst::FCMP_OLT: op = "olt"; break;
843 case FCmpInst::FCMP_OLE: op = "ole"; break;
844 case FCmpInst::FCMP_OGT: op = "ogt"; break;
845 case FCmpInst::FCMP_OGE: op = "oge"; break;
846 }
847 Out << "llvm_fcmp_" << op << "(";
848 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
849 Out << ", ";
850 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
851 Out << ")";
852 }
853 if (NeedsClosingParens)
854 Out << "))";
855 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000856 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000857 }
858 default:
859 cerr << "CWriter Error: Unhandled constant expression: "
860 << *CE << "\n";
861 abort();
862 }
863 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
864 Out << "((";
865 printType(Out, CPV->getType()); // sign doesn't matter
866 Out << ")/*UNDEF*/0)";
867 return;
868 }
869
870 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
871 const Type* Ty = CI->getType();
872 if (Ty == Type::Int1Ty)
873 Out << (CI->getZExtValue() ? '1' : '0') ;
874 else {
875 Out << "((";
876 printSimpleType(Out, Ty, false) << ')';
877 if (CI->isMinValue(true))
878 Out << CI->getZExtValue() << 'u';
879 else
880 Out << CI->getSExtValue();
881 if (Ty->getPrimitiveSizeInBits() > 32)
882 Out << "ll";
883 Out << ')';
884 }
885 return;
886 }
887
888 switch (CPV->getType()->getTypeID()) {
889 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000890 case Type::DoubleTyID:
891 case Type::X86_FP80TyID:
892 case Type::PPC_FP128TyID:
893 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000894 ConstantFP *FPC = cast<ConstantFP>(CPV);
895 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
896 if (I != FPConstantMap.end()) {
897 // Because of FP precision problems we must load from a stack allocated
898 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000899 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
900 FPC->getType() == Type::DoubleTy ? "double" :
901 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000902 << "*)&FPConstant" << I->second << ')';
903 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000904 assert(FPC->getType() == Type::FloatTy ||
905 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000906 double V = FPC->getType() == Type::FloatTy ?
907 FPC->getValueAPF().convertToFloat() :
908 FPC->getValueAPF().convertToDouble();
909 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000910 // The value is NaN
911
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000912 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000913 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
914 // it's 0x7ff4.
915 const unsigned long QuietNaN = 0x7ff8UL;
916 //const unsigned long SignalNaN = 0x7ff4UL;
917
918 // We need to grab the first part of the FP #
919 char Buffer[100];
920
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000921 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000922 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
923
924 std::string Num(&Buffer[0], &Buffer[6]);
925 unsigned long Val = strtoul(Num.c_str(), 0, 16);
926
927 if (FPC->getType() == Type::FloatTy)
928 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
929 << Buffer << "\") /*nan*/ ";
930 else
931 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
932 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000933 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000934 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000935 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
937 << " /*inf*/ ";
938 } else {
939 std::string Num;
940#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
941 // Print out the constant as a floating point number.
942 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000943 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 Num = Buffer;
945#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000946 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000948 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000949 }
950 }
951 break;
952 }
953
954 case Type::ArrayTyID:
955 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
956 const ArrayType *AT = cast<ArrayType>(CPV->getType());
957 Out << '{';
958 if (AT->getNumElements()) {
959 Out << ' ';
960 Constant *CZ = Constant::getNullValue(AT->getElementType());
961 printConstant(CZ);
962 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
963 Out << ", ";
964 printConstant(CZ);
965 }
966 }
967 Out << " }";
968 } else {
969 printConstantArray(cast<ConstantArray>(CPV));
970 }
971 break;
972
973 case Type::VectorTyID:
974 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
975 const VectorType *AT = cast<VectorType>(CPV->getType());
976 Out << '{';
977 if (AT->getNumElements()) {
978 Out << ' ';
979 Constant *CZ = Constant::getNullValue(AT->getElementType());
980 printConstant(CZ);
981 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
982 Out << ", ";
983 printConstant(CZ);
984 }
985 }
986 Out << " }";
987 } else {
988 printConstantVector(cast<ConstantVector>(CPV));
989 }
990 break;
991
992 case Type::StructTyID:
993 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
994 const StructType *ST = cast<StructType>(CPV->getType());
995 Out << '{';
996 if (ST->getNumElements()) {
997 Out << ' ';
998 printConstant(Constant::getNullValue(ST->getElementType(0)));
999 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1000 Out << ", ";
1001 printConstant(Constant::getNullValue(ST->getElementType(i)));
1002 }
1003 }
1004 Out << " }";
1005 } else {
1006 Out << '{';
1007 if (CPV->getNumOperands()) {
1008 Out << ' ';
1009 printConstant(cast<Constant>(CPV->getOperand(0)));
1010 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1011 Out << ", ";
1012 printConstant(cast<Constant>(CPV->getOperand(i)));
1013 }
1014 }
1015 Out << " }";
1016 }
1017 break;
1018
1019 case Type::PointerTyID:
1020 if (isa<ConstantPointerNull>(CPV)) {
1021 Out << "((";
1022 printType(Out, CPV->getType()); // sign doesn't matter
1023 Out << ")/*NULL*/0)";
1024 break;
1025 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1026 writeOperand(GV);
1027 break;
1028 }
1029 // FALL THROUGH
1030 default:
1031 cerr << "Unknown constant type: " << *CPV << "\n";
1032 abort();
1033 }
1034}
1035
1036// Some constant expressions need to be casted back to the original types
1037// because their operands were casted to the expected type. This function takes
1038// care of detecting that case and printing the cast for the ConstantExpr.
1039bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1040 bool NeedsExplicitCast = false;
1041 const Type *Ty = CE->getOperand(0)->getType();
1042 bool TypeIsSigned = false;
1043 switch (CE->getOpcode()) {
1044 case Instruction::LShr:
1045 case Instruction::URem:
1046 case Instruction::UDiv: NeedsExplicitCast = true; break;
1047 case Instruction::AShr:
1048 case Instruction::SRem:
1049 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1050 case Instruction::SExt:
1051 Ty = CE->getType();
1052 NeedsExplicitCast = true;
1053 TypeIsSigned = true;
1054 break;
1055 case Instruction::ZExt:
1056 case Instruction::Trunc:
1057 case Instruction::FPTrunc:
1058 case Instruction::FPExt:
1059 case Instruction::UIToFP:
1060 case Instruction::SIToFP:
1061 case Instruction::FPToUI:
1062 case Instruction::FPToSI:
1063 case Instruction::PtrToInt:
1064 case Instruction::IntToPtr:
1065 case Instruction::BitCast:
1066 Ty = CE->getType();
1067 NeedsExplicitCast = true;
1068 break;
1069 default: break;
1070 }
1071 if (NeedsExplicitCast) {
1072 Out << "((";
1073 if (Ty->isInteger() && Ty != Type::Int1Ty)
1074 printSimpleType(Out, Ty, TypeIsSigned);
1075 else
1076 printType(Out, Ty); // not integer, sign doesn't matter
1077 Out << ")(";
1078 }
1079 return NeedsExplicitCast;
1080}
1081
1082// Print a constant assuming that it is the operand for a given Opcode. The
1083// opcodes that care about sign need to cast their operands to the expected
1084// type before the operation proceeds. This function does the casting.
1085void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1086
1087 // Extract the operand's type, we'll need it.
1088 const Type* OpTy = CPV->getType();
1089
1090 // Indicate whether to do the cast or not.
1091 bool shouldCast = false;
1092 bool typeIsSigned = false;
1093
1094 // Based on the Opcode for which this Constant is being written, determine
1095 // the new type to which the operand should be casted by setting the value
1096 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1097 // casted below.
1098 switch (Opcode) {
1099 default:
1100 // for most instructions, it doesn't matter
1101 break;
1102 case Instruction::LShr:
1103 case Instruction::UDiv:
1104 case Instruction::URem:
1105 shouldCast = true;
1106 break;
1107 case Instruction::AShr:
1108 case Instruction::SDiv:
1109 case Instruction::SRem:
1110 shouldCast = true;
1111 typeIsSigned = true;
1112 break;
1113 }
1114
1115 // Write out the casted constant if we should, otherwise just write the
1116 // operand.
1117 if (shouldCast) {
1118 Out << "((";
1119 printSimpleType(Out, OpTy, typeIsSigned);
1120 Out << ")";
1121 printConstant(CPV);
1122 Out << ")";
1123 } else
1124 printConstant(CPV);
1125}
1126
1127std::string CWriter::GetValueName(const Value *Operand) {
1128 std::string Name;
1129
1130 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1131 std::string VarName;
1132
1133 Name = Operand->getName();
1134 VarName.reserve(Name.capacity());
1135
1136 for (std::string::iterator I = Name.begin(), E = Name.end();
1137 I != E; ++I) {
1138 char ch = *I;
1139
1140 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1141 (ch >= '0' && ch <= '9') || ch == '_'))
1142 VarName += '_';
1143 else
1144 VarName += ch;
1145 }
1146
1147 Name = "llvm_cbe_" + VarName;
1148 } else {
1149 Name = Mang->getValueName(Operand);
1150 }
1151
1152 return Name;
1153}
1154
1155void CWriter::writeOperandInternal(Value *Operand) {
1156 if (Instruction *I = dyn_cast<Instruction>(Operand))
1157 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1158 // Should we inline this instruction to build a tree?
1159 Out << '(';
1160 visit(*I);
1161 Out << ')';
1162 return;
1163 }
1164
1165 Constant* CPV = dyn_cast<Constant>(Operand);
1166
1167 if (CPV && !isa<GlobalValue>(CPV))
1168 printConstant(CPV);
1169 else
1170 Out << GetValueName(Operand);
1171}
1172
1173void CWriter::writeOperandRaw(Value *Operand) {
1174 Constant* CPV = dyn_cast<Constant>(Operand);
1175 if (CPV && !isa<GlobalValue>(CPV)) {
1176 printConstant(CPV);
1177 } else {
1178 Out << GetValueName(Operand);
1179 }
1180}
1181
1182void CWriter::writeOperand(Value *Operand) {
1183 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1184 Out << "(&"; // Global variables are referenced as their addresses by llvm
1185
1186 writeOperandInternal(Operand);
1187
1188 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1189 Out << ')';
1190}
1191
1192// Some instructions need to have their result value casted back to the
1193// original types because their operands were casted to the expected type.
1194// This function takes care of detecting that case and printing the cast
1195// for the Instruction.
1196bool CWriter::writeInstructionCast(const Instruction &I) {
1197 const Type *Ty = I.getOperand(0)->getType();
1198 switch (I.getOpcode()) {
1199 case Instruction::LShr:
1200 case Instruction::URem:
1201 case Instruction::UDiv:
1202 Out << "((";
1203 printSimpleType(Out, Ty, false);
1204 Out << ")(";
1205 return true;
1206 case Instruction::AShr:
1207 case Instruction::SRem:
1208 case Instruction::SDiv:
1209 Out << "((";
1210 printSimpleType(Out, Ty, true);
1211 Out << ")(";
1212 return true;
1213 default: break;
1214 }
1215 return false;
1216}
1217
1218// Write the operand with a cast to another type based on the Opcode being used.
1219// This will be used in cases where an instruction has specific type
1220// requirements (usually signedness) for its operands.
1221void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1222
1223 // Extract the operand's type, we'll need it.
1224 const Type* OpTy = Operand->getType();
1225
1226 // Indicate whether to do the cast or not.
1227 bool shouldCast = false;
1228
1229 // Indicate whether the cast should be to a signed type or not.
1230 bool castIsSigned = false;
1231
1232 // Based on the Opcode for which this Operand is being written, determine
1233 // the new type to which the operand should be casted by setting the value
1234 // of OpTy. If we change OpTy, also set shouldCast to true.
1235 switch (Opcode) {
1236 default:
1237 // for most instructions, it doesn't matter
1238 break;
1239 case Instruction::LShr:
1240 case Instruction::UDiv:
1241 case Instruction::URem: // Cast to unsigned first
1242 shouldCast = true;
1243 castIsSigned = false;
1244 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001245 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 case Instruction::AShr:
1247 case Instruction::SDiv:
1248 case Instruction::SRem: // Cast to signed first
1249 shouldCast = true;
1250 castIsSigned = true;
1251 break;
1252 }
1253
1254 // Write out the casted operand if we should, otherwise just write the
1255 // operand.
1256 if (shouldCast) {
1257 Out << "((";
1258 printSimpleType(Out, OpTy, castIsSigned);
1259 Out << ")";
1260 writeOperand(Operand);
1261 Out << ")";
1262 } else
1263 writeOperand(Operand);
1264}
1265
1266// Write the operand with a cast to another type based on the icmp predicate
1267// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001268void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1269 // This has to do a cast to ensure the operand has the right signedness.
1270 // Also, if the operand is a pointer, we make sure to cast to an integer when
1271 // doing the comparison both for signedness and so that the C compiler doesn't
1272 // optimize things like "p < NULL" to false (p may contain an integer value
1273 // f.e.).
1274 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001275
1276 // Write out the casted operand if we should, otherwise just write the
1277 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001278 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001280 return;
1281 }
1282
1283 // Should this be a signed comparison? If so, convert to signed.
1284 bool castIsSigned = Cmp.isSignedPredicate();
1285
1286 // If the operand was a pointer, convert to a large integer type.
1287 const Type* OpTy = Operand->getType();
1288 if (isa<PointerType>(OpTy))
1289 OpTy = TD->getIntPtrType();
1290
1291 Out << "((";
1292 printSimpleType(Out, OpTy, castIsSigned);
1293 Out << ")";
1294 writeOperand(Operand);
1295 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001296}
1297
1298// generateCompilerSpecificCode - This is where we add conditional compilation
1299// directives to cater to specific compilers as need be.
1300//
1301static void generateCompilerSpecificCode(std::ostream& Out) {
1302 // Alloca is hard to get, and we don't want to include stdlib.h here.
1303 Out << "/* get a declaration for alloca */\n"
1304 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1305 << "#define alloca(x) __builtin_alloca((x))\n"
1306 << "#define _alloca(x) __builtin_alloca((x))\n"
1307 << "#elif defined(__APPLE__)\n"
1308 << "extern void *__builtin_alloca(unsigned long);\n"
1309 << "#define alloca(x) __builtin_alloca(x)\n"
1310 << "#define longjmp _longjmp\n"
1311 << "#define setjmp _setjmp\n"
1312 << "#elif defined(__sun__)\n"
1313 << "#if defined(__sparcv9)\n"
1314 << "extern void *__builtin_alloca(unsigned long);\n"
1315 << "#else\n"
1316 << "extern void *__builtin_alloca(unsigned int);\n"
1317 << "#endif\n"
1318 << "#define alloca(x) __builtin_alloca(x)\n"
1319 << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
1320 << "#define alloca(x) __builtin_alloca(x)\n"
1321 << "#elif defined(_MSC_VER)\n"
1322 << "#define inline _inline\n"
1323 << "#define alloca(x) _alloca(x)\n"
1324 << "#else\n"
1325 << "#include <alloca.h>\n"
1326 << "#endif\n\n";
1327
1328 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1329 // If we aren't being compiled with GCC, just drop these attributes.
1330 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1331 << "#define __attribute__(X)\n"
1332 << "#endif\n\n";
1333
1334 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1335 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1336 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1337 << "#elif defined(__GNUC__)\n"
1338 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1339 << "#else\n"
1340 << "#define __EXTERNAL_WEAK__\n"
1341 << "#endif\n\n";
1342
1343 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1344 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1345 << "#define __ATTRIBUTE_WEAK__\n"
1346 << "#elif defined(__GNUC__)\n"
1347 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1348 << "#else\n"
1349 << "#define __ATTRIBUTE_WEAK__\n"
1350 << "#endif\n\n";
1351
1352 // Add hidden visibility support. FIXME: APPLE_CC?
1353 Out << "#if defined(__GNUC__)\n"
1354 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1355 << "#endif\n\n";
1356
1357 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1358 // From the GCC documentation:
1359 //
1360 // double __builtin_nan (const char *str)
1361 //
1362 // This is an implementation of the ISO C99 function nan.
1363 //
1364 // Since ISO C99 defines this function in terms of strtod, which we do
1365 // not implement, a description of the parsing is in order. The string is
1366 // parsed as by strtol; that is, the base is recognized by leading 0 or
1367 // 0x prefixes. The number parsed is placed in the significand such that
1368 // the least significant bit of the number is at the least significant
1369 // bit of the significand. The number is truncated to fit the significand
1370 // field provided. The significand is forced to be a quiet NaN.
1371 //
1372 // This function, if given a string literal, is evaluated early enough
1373 // that it is considered a compile-time constant.
1374 //
1375 // float __builtin_nanf (const char *str)
1376 //
1377 // Similar to __builtin_nan, except the return type is float.
1378 //
1379 // double __builtin_inf (void)
1380 //
1381 // Similar to __builtin_huge_val, except a warning is generated if the
1382 // target floating-point format does not support infinities. This
1383 // function is suitable for implementing the ISO C99 macro INFINITY.
1384 //
1385 // float __builtin_inff (void)
1386 //
1387 // Similar to __builtin_inf, except the return type is float.
1388 Out << "#ifdef __GNUC__\n"
1389 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1390 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1391 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1392 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1393 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1394 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1395 << "#define LLVM_PREFETCH(addr,rw,locality) "
1396 "__builtin_prefetch(addr,rw,locality)\n"
1397 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1398 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1399 << "#define LLVM_ASM __asm__\n"
1400 << "#else\n"
1401 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1402 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1403 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1404 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1405 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1406 << "#define LLVM_INFF 0.0F /* Float */\n"
1407 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1408 << "#define __ATTRIBUTE_CTOR__\n"
1409 << "#define __ATTRIBUTE_DTOR__\n"
1410 << "#define LLVM_ASM(X)\n"
1411 << "#endif\n\n";
1412
1413 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1414 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1415 << "#define __builtin_stack_restore(X) /* noop */\n"
1416 << "#endif\n\n";
1417
1418 // Output target-specific code that should be inserted into main.
1419 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001420}
1421
1422/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1423/// the StaticTors set.
1424static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1425 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1426 if (!InitList) return;
1427
1428 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1429 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1430 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1431
1432 if (CS->getOperand(1)->isNullValue())
1433 return; // Found a null terminator, exit printing.
1434 Constant *FP = CS->getOperand(1);
1435 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1436 if (CE->isCast())
1437 FP = CE->getOperand(0);
1438 if (Function *F = dyn_cast<Function>(FP))
1439 StaticTors.insert(F);
1440 }
1441}
1442
1443enum SpecialGlobalClass {
1444 NotSpecial = 0,
1445 GlobalCtors, GlobalDtors,
1446 NotPrinted
1447};
1448
1449/// getGlobalVariableClass - If this is a global that is specially recognized
1450/// by LLVM, return a code that indicates how we should handle it.
1451static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1452 // If this is a global ctors/dtors list, handle it now.
1453 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1454 if (GV->getName() == "llvm.global_ctors")
1455 return GlobalCtors;
1456 else if (GV->getName() == "llvm.global_dtors")
1457 return GlobalDtors;
1458 }
1459
1460 // Otherwise, it it is other metadata, don't print it. This catches things
1461 // like debug information.
1462 if (GV->getSection() == "llvm.metadata")
1463 return NotPrinted;
1464
1465 return NotSpecial;
1466}
1467
1468
1469bool CWriter::doInitialization(Module &M) {
1470 // Initialize
1471 TheModule = &M;
1472
1473 TD = new TargetData(&M);
1474 IL = new IntrinsicLowering(*TD);
1475 IL->AddPrototypes(M);
1476
1477 // Ensure that all structure types have names...
1478 Mang = new Mangler(M);
1479 Mang->markCharUnacceptable('.');
1480
1481 // Keep track of which functions are static ctors/dtors so they can have
1482 // an attribute added to their prototypes.
1483 std::set<Function*> StaticCtors, StaticDtors;
1484 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1485 I != E; ++I) {
1486 switch (getGlobalVariableClass(I)) {
1487 default: break;
1488 case GlobalCtors:
1489 FindStaticTors(I, StaticCtors);
1490 break;
1491 case GlobalDtors:
1492 FindStaticTors(I, StaticDtors);
1493 break;
1494 }
1495 }
1496
1497 // get declaration for alloca
1498 Out << "/* Provide Declarations */\n";
1499 Out << "#include <stdarg.h>\n"; // Varargs support
1500 Out << "#include <setjmp.h>\n"; // Unwind support
1501 generateCompilerSpecificCode(Out);
1502
1503 // Provide a definition for `bool' if not compiling with a C++ compiler.
1504 Out << "\n"
1505 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1506
1507 << "\n\n/* Support for floating point constants */\n"
1508 << "typedef unsigned long long ConstantDoubleTy;\n"
1509 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001510 << "typedef struct { unsigned long long f1; unsigned short f2; "
1511 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001512 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001513 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1514 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001515 << "\n\n/* Global Declarations */\n";
1516
1517 // First output all the declarations for the program, because C requires
1518 // Functions & globals to be declared before they are used.
1519 //
1520
1521 // Loop over the symbol table, emitting all named constants...
1522 printModuleTypes(M.getTypeSymbolTable());
1523
1524 // Global variable declarations...
1525 if (!M.global_empty()) {
1526 Out << "\n/* External Global Variable Declarations */\n";
1527 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1528 I != E; ++I) {
1529
1530 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1531 Out << "extern ";
1532 else if (I->hasDLLImportLinkage())
1533 Out << "__declspec(dllimport) ";
1534 else
1535 continue; // Internal Global
1536
1537 // Thread Local Storage
1538 if (I->isThreadLocal())
1539 Out << "__thread ";
1540
1541 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1542
1543 if (I->hasExternalWeakLinkage())
1544 Out << " __EXTERNAL_WEAK__";
1545 Out << ";\n";
1546 }
1547 }
1548
1549 // Function declarations
1550 Out << "\n/* Function Declarations */\n";
1551 Out << "double fmod(double, double);\n"; // Support for FP rem
1552 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001553 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001554
1555 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1556 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001557 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001558 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1559 if (I->hasExternalWeakLinkage())
1560 Out << "extern ";
1561 printFunctionSignature(I, true);
1562 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1563 Out << " __ATTRIBUTE_WEAK__";
1564 if (I->hasExternalWeakLinkage())
1565 Out << " __EXTERNAL_WEAK__";
1566 if (StaticCtors.count(I))
1567 Out << " __ATTRIBUTE_CTOR__";
1568 if (StaticDtors.count(I))
1569 Out << " __ATTRIBUTE_DTOR__";
1570 if (I->hasHiddenVisibility())
1571 Out << " __HIDDEN__";
1572
1573 if (I->hasName() && I->getName()[0] == 1)
1574 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1575
1576 Out << ";\n";
1577 }
1578 }
1579
1580 // Output the global variable declarations
1581 if (!M.global_empty()) {
1582 Out << "\n\n/* Global Variable Declarations */\n";
1583 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1584 I != E; ++I)
1585 if (!I->isDeclaration()) {
1586 // Ignore special globals, such as debug info.
1587 if (getGlobalVariableClass(I))
1588 continue;
1589
1590 if (I->hasInternalLinkage())
1591 Out << "static ";
1592 else
1593 Out << "extern ";
1594
1595 // Thread Local Storage
1596 if (I->isThreadLocal())
1597 Out << "__thread ";
1598
1599 printType(Out, I->getType()->getElementType(), false,
1600 GetValueName(I));
1601
1602 if (I->hasLinkOnceLinkage())
1603 Out << " __attribute__((common))";
1604 else if (I->hasWeakLinkage())
1605 Out << " __ATTRIBUTE_WEAK__";
1606 else if (I->hasExternalWeakLinkage())
1607 Out << " __EXTERNAL_WEAK__";
1608 if (I->hasHiddenVisibility())
1609 Out << " __HIDDEN__";
1610 Out << ";\n";
1611 }
1612 }
1613
1614 // Output the global variable definitions and contents...
1615 if (!M.global_empty()) {
1616 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1617 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1618 I != E; ++I)
1619 if (!I->isDeclaration()) {
1620 // Ignore special globals, such as debug info.
1621 if (getGlobalVariableClass(I))
1622 continue;
1623
1624 if (I->hasInternalLinkage())
1625 Out << "static ";
1626 else if (I->hasDLLImportLinkage())
1627 Out << "__declspec(dllimport) ";
1628 else if (I->hasDLLExportLinkage())
1629 Out << "__declspec(dllexport) ";
1630
1631 // Thread Local Storage
1632 if (I->isThreadLocal())
1633 Out << "__thread ";
1634
1635 printType(Out, I->getType()->getElementType(), false,
1636 GetValueName(I));
1637 if (I->hasLinkOnceLinkage())
1638 Out << " __attribute__((common))";
1639 else if (I->hasWeakLinkage())
1640 Out << " __ATTRIBUTE_WEAK__";
1641
1642 if (I->hasHiddenVisibility())
1643 Out << " __HIDDEN__";
1644
1645 // If the initializer is not null, emit the initializer. If it is null,
1646 // we try to avoid emitting large amounts of zeros. The problem with
1647 // this, however, occurs when the variable has weak linkage. In this
1648 // case, the assembler will complain about the variable being both weak
1649 // and common, so we disable this optimization.
1650 if (!I->getInitializer()->isNullValue()) {
1651 Out << " = " ;
1652 writeOperand(I->getInitializer());
1653 } else if (I->hasWeakLinkage()) {
1654 // We have to specify an initializer, but it doesn't have to be
1655 // complete. If the value is an aggregate, print out { 0 }, and let
1656 // the compiler figure out the rest of the zeros.
1657 Out << " = " ;
1658 if (isa<StructType>(I->getInitializer()->getType()) ||
1659 isa<ArrayType>(I->getInitializer()->getType()) ||
1660 isa<VectorType>(I->getInitializer()->getType())) {
1661 Out << "{ 0 }";
1662 } else {
1663 // Just print it out normally.
1664 writeOperand(I->getInitializer());
1665 }
1666 }
1667 Out << ";\n";
1668 }
1669 }
1670
1671 if (!M.empty())
1672 Out << "\n\n/* Function Bodies */\n";
1673
1674 // Emit some helper functions for dealing with FCMP instruction's
1675 // predicates
1676 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1677 Out << "return X == X && Y == Y; }\n";
1678 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1679 Out << "return X != X || Y != Y; }\n";
1680 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1681 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1682 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1683 Out << "return X != Y; }\n";
1684 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1685 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1686 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1687 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1688 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1689 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1690 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1691 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1692 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1693 Out << "return X == Y ; }\n";
1694 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1695 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1696 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1697 Out << "return X < Y ; }\n";
1698 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1699 Out << "return X > Y ; }\n";
1700 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1701 Out << "return X <= Y ; }\n";
1702 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1703 Out << "return X >= Y ; }\n";
1704 return false;
1705}
1706
1707
1708/// Output all floating point constants that cannot be printed accurately...
1709void CWriter::printFloatingPointConstants(Function &F) {
1710 // Scan the module for floating point constants. If any FP constant is used
1711 // in the function, we want to redirect it here so that we do not depend on
1712 // the precision of the printed form, unless the printed form preserves
1713 // precision.
1714 //
1715 static unsigned FPCounter = 0;
1716 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1717 I != E; ++I)
1718 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1719 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1720 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001721 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1722
1723 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001724 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001725 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001726 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001727 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001728 << "ULL; /* " << Val << " */\n";
1729 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001730 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001731 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1732 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001733 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001734 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001735 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001736 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001737 // api needed to prevent premature destruction
1738 APInt api = FPC->getValueAPF().convertToAPInt();
1739 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001740 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1741 << " = { 0x" << std::hex
1742 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1743 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1744 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001745 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1746 APInt api = FPC->getValueAPF().convertToAPInt();
1747 const uint64_t *p = api.getRawData();
1748 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1749 << " = { 0x" << std::hex
1750 << p[0] << ", 0x" << p[1]
1751 << "}; /* Long double constant */\n" << std::dec;
1752
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001753 } else
1754 assert(0 && "Unknown float type!");
1755 }
1756
1757 Out << '\n';
1758}
1759
1760
1761/// printSymbolTable - Run through symbol table looking for type names. If a
1762/// type name is found, emit its declaration...
1763///
1764void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1765 Out << "/* Helper union for bitcasts */\n";
1766 Out << "typedef union {\n";
1767 Out << " unsigned int Int32;\n";
1768 Out << " unsigned long long Int64;\n";
1769 Out << " float Float;\n";
1770 Out << " double Double;\n";
1771 Out << "} llvmBitCastUnion;\n";
1772
1773 // We are only interested in the type plane of the symbol table.
1774 TypeSymbolTable::const_iterator I = TST.begin();
1775 TypeSymbolTable::const_iterator End = TST.end();
1776
1777 // If there are no type names, exit early.
1778 if (I == End) return;
1779
1780 // Print out forward declarations for structure types before anything else!
1781 Out << "/* Structure forward decls */\n";
1782 for (; I != End; ++I) {
1783 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1784 Out << Name << ";\n";
1785 TypeNames.insert(std::make_pair(I->second, Name));
1786 }
1787
1788 Out << '\n';
1789
1790 // Now we can print out typedefs. Above, we guaranteed that this can only be
1791 // for struct or opaque types.
1792 Out << "/* Typedefs */\n";
1793 for (I = TST.begin(); I != End; ++I) {
1794 std::string Name = "l_" + Mang->makeNameProper(I->first);
1795 Out << "typedef ";
1796 printType(Out, I->second, false, Name);
1797 Out << ";\n";
1798 }
1799
1800 Out << '\n';
1801
1802 // Keep track of which structures have been printed so far...
1803 std::set<const StructType *> StructPrinted;
1804
1805 // Loop over all structures then push them into the stack so they are
1806 // printed in the correct order.
1807 //
1808 Out << "/* Structure contents */\n";
1809 for (I = TST.begin(); I != End; ++I)
1810 if (const StructType *STy = dyn_cast<StructType>(I->second))
1811 // Only print out used types!
1812 printContainedStructs(STy, StructPrinted);
1813}
1814
1815// Push the struct onto the stack and recursively push all structs
1816// this one depends on.
1817//
1818// TODO: Make this work properly with vector types
1819//
1820void CWriter::printContainedStructs(const Type *Ty,
1821 std::set<const StructType*> &StructPrinted){
1822 // Don't walk through pointers.
1823 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1824
1825 // Print all contained types first.
1826 for (Type::subtype_iterator I = Ty->subtype_begin(),
1827 E = Ty->subtype_end(); I != E; ++I)
1828 printContainedStructs(*I, StructPrinted);
1829
1830 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1831 // Check to see if we have already printed this struct.
1832 if (StructPrinted.insert(STy).second) {
1833 // Print structure type out.
1834 std::string Name = TypeNames[STy];
1835 printType(Out, STy, false, Name, true);
1836 Out << ";\n\n";
1837 }
1838 }
1839}
1840
1841void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1842 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001843 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001844
1845 if (F->hasInternalLinkage()) Out << "static ";
1846 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1847 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1848 switch (F->getCallingConv()) {
1849 case CallingConv::X86_StdCall:
1850 Out << "__stdcall ";
1851 break;
1852 case CallingConv::X86_FastCall:
1853 Out << "__fastcall ";
1854 break;
1855 }
1856
1857 // Loop over the arguments, printing them...
1858 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001859 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001860
1861 std::stringstream FunctionInnards;
1862
1863 // Print out the name...
1864 FunctionInnards << GetValueName(F) << '(';
1865
1866 bool PrintedArg = false;
1867 if (!F->isDeclaration()) {
1868 if (!F->arg_empty()) {
1869 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001870 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001871
1872 // If this is a struct-return function, don't print the hidden
1873 // struct-return argument.
1874 if (isStructReturn) {
1875 assert(I != E && "Invalid struct return function!");
1876 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001877 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001878 }
1879
1880 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881 for (; I != E; ++I) {
1882 if (PrintedArg) FunctionInnards << ", ";
1883 if (I->hasName() || !Prototype)
1884 ArgName = GetValueName(I);
1885 else
1886 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001887 const Type *ArgTy = I->getType();
1888 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001889 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001890 ArgName);
1891 PrintedArg = true;
1892 ++Idx;
1893 }
1894 }
1895 } else {
1896 // Loop over the arguments, printing them.
1897 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
1898
1899 // If this is a struct-return function, don't print the hidden
1900 // struct-return argument.
1901 if (isStructReturn) {
1902 assert(I != E && "Invalid struct return function!");
1903 ++I;
1904 }
1905
1906 unsigned Idx = 1;
1907 for (; I != E; ++I) {
1908 if (PrintedArg) FunctionInnards << ", ";
1909 printType(FunctionInnards, *I,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001910 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001911 PrintedArg = true;
1912 ++Idx;
1913 }
1914 }
1915
1916 // Finish printing arguments... if this is a vararg function, print the ...,
1917 // unless there are no known types, in which case, we just emit ().
1918 //
1919 if (FT->isVarArg() && PrintedArg) {
1920 if (PrintedArg) FunctionInnards << ", ";
1921 FunctionInnards << "..."; // Output varargs portion of signature!
1922 } else if (!FT->isVarArg() && !PrintedArg) {
1923 FunctionInnards << "void"; // ret() -> ret(void) in C.
1924 }
1925 FunctionInnards << ')';
1926
1927 // Get the return tpe for the function.
1928 const Type *RetTy;
1929 if (!isStructReturn)
1930 RetTy = F->getReturnType();
1931 else {
1932 // If this is a struct-return function, print the struct-return type.
1933 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1934 }
1935
1936 // Print out the return type and the signature built above.
1937 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001938 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001939 FunctionInnards.str());
1940}
1941
1942static inline bool isFPIntBitCast(const Instruction &I) {
1943 if (!isa<BitCastInst>(I))
1944 return false;
1945 const Type *SrcTy = I.getOperand(0)->getType();
1946 const Type *DstTy = I.getType();
1947 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1948 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1949}
1950
1951void CWriter::printFunction(Function &F) {
1952 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001953 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001954
1955 printFunctionSignature(&F, false);
1956 Out << " {\n";
1957
1958 // If this is a struct return function, handle the result with magic.
1959 if (isStructReturn) {
1960 const Type *StructTy =
1961 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1962 Out << " ";
1963 printType(Out, StructTy, false, "StructReturn");
1964 Out << "; /* Struct return temporary */\n";
1965
1966 Out << " ";
1967 printType(Out, F.arg_begin()->getType(), false,
1968 GetValueName(F.arg_begin()));
1969 Out << " = &StructReturn;\n";
1970 }
1971
1972 bool PrintedVar = false;
1973
1974 // print local variable information for the function
1975 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
1976 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
1977 Out << " ";
1978 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
1979 Out << "; /* Address-exposed local */\n";
1980 PrintedVar = true;
1981 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
1982 Out << " ";
1983 printType(Out, I->getType(), false, GetValueName(&*I));
1984 Out << ";\n";
1985
1986 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
1987 Out << " ";
1988 printType(Out, I->getType(), false,
1989 GetValueName(&*I)+"__PHI_TEMPORARY");
1990 Out << ";\n";
1991 }
1992 PrintedVar = true;
1993 }
1994 // We need a temporary for the BitCast to use so it can pluck a value out
1995 // of a union to do the BitCast. This is separate from the need for a
1996 // variable to hold the result of the BitCast.
1997 if (isFPIntBitCast(*I)) {
1998 Out << " llvmBitCastUnion " << GetValueName(&*I)
1999 << "__BITCAST_TEMPORARY;\n";
2000 PrintedVar = true;
2001 }
2002 }
2003
2004 if (PrintedVar)
2005 Out << '\n';
2006
2007 if (F.hasExternalLinkage() && F.getName() == "main")
2008 Out << " CODE_FOR_MAIN();\n";
2009
2010 // print the basic blocks
2011 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2012 if (Loop *L = LI->getLoopFor(BB)) {
2013 if (L->getHeader() == BB && L->getParentLoop() == 0)
2014 printLoop(L);
2015 } else {
2016 printBasicBlock(BB);
2017 }
2018 }
2019
2020 Out << "}\n\n";
2021}
2022
2023void CWriter::printLoop(Loop *L) {
2024 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2025 << "' to make GCC happy */\n";
2026 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2027 BasicBlock *BB = L->getBlocks()[i];
2028 Loop *BBLoop = LI->getLoopFor(BB);
2029 if (BBLoop == L)
2030 printBasicBlock(BB);
2031 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2032 printLoop(BBLoop);
2033 }
2034 Out << " } while (1); /* end of syntactic loop '"
2035 << L->getHeader()->getName() << "' */\n";
2036}
2037
2038void CWriter::printBasicBlock(BasicBlock *BB) {
2039
2040 // Don't print the label for the basic block if there are no uses, or if
2041 // the only terminator use is the predecessor basic block's terminator.
2042 // We have to scan the use list because PHI nodes use basic blocks too but
2043 // do not require a label to be generated.
2044 //
2045 bool NeedsLabel = false;
2046 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2047 if (isGotoCodeNecessary(*PI, BB)) {
2048 NeedsLabel = true;
2049 break;
2050 }
2051
2052 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2053
2054 // Output all of the instructions in the basic block...
2055 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2056 ++II) {
2057 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2058 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2059 outputLValue(II);
2060 else
2061 Out << " ";
2062 visit(*II);
2063 Out << ";\n";
2064 }
2065 }
2066
2067 // Don't emit prefix or suffix for the terminator...
2068 visit(*BB->getTerminator());
2069}
2070
2071
2072// Specific Instruction type classes... note that all of the casts are
2073// necessary because we use the instruction classes as opaque types...
2074//
2075void CWriter::visitReturnInst(ReturnInst &I) {
2076 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002077 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002078
2079 if (isStructReturn) {
2080 Out << " return StructReturn;\n";
2081 return;
2082 }
2083
2084 // Don't output a void return if this is the last basic block in the function
2085 if (I.getNumOperands() == 0 &&
2086 &*--I.getParent()->getParent()->end() == I.getParent() &&
2087 !I.getParent()->size() == 1) {
2088 return;
2089 }
2090
2091 Out << " return";
2092 if (I.getNumOperands()) {
2093 Out << ' ';
2094 writeOperand(I.getOperand(0));
2095 }
2096 Out << ";\n";
2097}
2098
2099void CWriter::visitSwitchInst(SwitchInst &SI) {
2100
2101 Out << " switch (";
2102 writeOperand(SI.getOperand(0));
2103 Out << ") {\n default:\n";
2104 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2105 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2106 Out << ";\n";
2107 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2108 Out << " case ";
2109 writeOperand(SI.getOperand(i));
2110 Out << ":\n";
2111 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2112 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2113 printBranchToBlock(SI.getParent(), Succ, 2);
2114 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2115 Out << " break;\n";
2116 }
2117 Out << " }\n";
2118}
2119
2120void CWriter::visitUnreachableInst(UnreachableInst &I) {
2121 Out << " /*UNREACHABLE*/;\n";
2122}
2123
2124bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2125 /// FIXME: This should be reenabled, but loop reordering safe!!
2126 return true;
2127
2128 if (next(Function::iterator(From)) != Function::iterator(To))
2129 return true; // Not the direct successor, we need a goto.
2130
2131 //isa<SwitchInst>(From->getTerminator())
2132
2133 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2134 return true;
2135 return false;
2136}
2137
2138void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2139 BasicBlock *Successor,
2140 unsigned Indent) {
2141 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2142 PHINode *PN = cast<PHINode>(I);
2143 // Now we have to do the printing.
2144 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2145 if (!isa<UndefValue>(IV)) {
2146 Out << std::string(Indent, ' ');
2147 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2148 writeOperand(IV);
2149 Out << "; /* for PHI node */\n";
2150 }
2151 }
2152}
2153
2154void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2155 unsigned Indent) {
2156 if (isGotoCodeNecessary(CurBB, Succ)) {
2157 Out << std::string(Indent, ' ') << " goto ";
2158 writeOperand(Succ);
2159 Out << ";\n";
2160 }
2161}
2162
2163// Branch instruction printing - Avoid printing out a branch to a basic block
2164// that immediately succeeds the current one.
2165//
2166void CWriter::visitBranchInst(BranchInst &I) {
2167
2168 if (I.isConditional()) {
2169 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2170 Out << " if (";
2171 writeOperand(I.getCondition());
2172 Out << ") {\n";
2173
2174 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2175 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2176
2177 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2178 Out << " } else {\n";
2179 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2180 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2181 }
2182 } else {
2183 // First goto not necessary, assume second one is...
2184 Out << " if (!";
2185 writeOperand(I.getCondition());
2186 Out << ") {\n";
2187
2188 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2189 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2190 }
2191
2192 Out << " }\n";
2193 } else {
2194 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2195 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2196 }
2197 Out << "\n";
2198}
2199
2200// PHI nodes get copied into temporary values at the end of predecessor basic
2201// blocks. We now need to copy these temporary values into the REAL value for
2202// the PHI.
2203void CWriter::visitPHINode(PHINode &I) {
2204 writeOperand(&I);
2205 Out << "__PHI_TEMPORARY";
2206}
2207
2208
2209void CWriter::visitBinaryOperator(Instruction &I) {
2210 // binary instructions, shift instructions, setCond instructions.
2211 assert(!isa<PointerType>(I.getType()));
2212
2213 // We must cast the results of binary operations which might be promoted.
2214 bool needsCast = false;
2215 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2216 || (I.getType() == Type::FloatTy)) {
2217 needsCast = true;
2218 Out << "((";
2219 printType(Out, I.getType(), false);
2220 Out << ")(";
2221 }
2222
2223 // If this is a negation operation, print it out as such. For FP, we don't
2224 // want to print "-0.0 - X".
2225 if (BinaryOperator::isNeg(&I)) {
2226 Out << "-(";
2227 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2228 Out << ")";
2229 } else if (I.getOpcode() == Instruction::FRem) {
2230 // Output a call to fmod/fmodf instead of emitting a%b
2231 if (I.getType() == Type::FloatTy)
2232 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002233 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002234 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002235 else // all 3 flavors of long double
2236 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002237 writeOperand(I.getOperand(0));
2238 Out << ", ";
2239 writeOperand(I.getOperand(1));
2240 Out << ")";
2241 } else {
2242
2243 // Write out the cast of the instruction's value back to the proper type
2244 // if necessary.
2245 bool NeedsClosingParens = writeInstructionCast(I);
2246
2247 // Certain instructions require the operand to be forced to a specific type
2248 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2249 // below for operand 1
2250 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2251
2252 switch (I.getOpcode()) {
2253 case Instruction::Add: Out << " + "; break;
2254 case Instruction::Sub: Out << " - "; break;
2255 case Instruction::Mul: Out << " * "; break;
2256 case Instruction::URem:
2257 case Instruction::SRem:
2258 case Instruction::FRem: Out << " % "; break;
2259 case Instruction::UDiv:
2260 case Instruction::SDiv:
2261 case Instruction::FDiv: Out << " / "; break;
2262 case Instruction::And: Out << " & "; break;
2263 case Instruction::Or: Out << " | "; break;
2264 case Instruction::Xor: Out << " ^ "; break;
2265 case Instruction::Shl : Out << " << "; break;
2266 case Instruction::LShr:
2267 case Instruction::AShr: Out << " >> "; break;
2268 default: cerr << "Invalid operator type!" << I; abort();
2269 }
2270
2271 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2272 if (NeedsClosingParens)
2273 Out << "))";
2274 }
2275
2276 if (needsCast) {
2277 Out << "))";
2278 }
2279}
2280
2281void CWriter::visitICmpInst(ICmpInst &I) {
2282 // We must cast the results of icmp which might be promoted.
2283 bool needsCast = false;
2284
2285 // Write out the cast of the instruction's value back to the proper type
2286 // if necessary.
2287 bool NeedsClosingParens = writeInstructionCast(I);
2288
2289 // Certain icmp predicate require the operand to be forced to a specific type
2290 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2291 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002292 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002293
2294 switch (I.getPredicate()) {
2295 case ICmpInst::ICMP_EQ: Out << " == "; break;
2296 case ICmpInst::ICMP_NE: Out << " != "; break;
2297 case ICmpInst::ICMP_ULE:
2298 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2299 case ICmpInst::ICMP_UGE:
2300 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2301 case ICmpInst::ICMP_ULT:
2302 case ICmpInst::ICMP_SLT: Out << " < "; break;
2303 case ICmpInst::ICMP_UGT:
2304 case ICmpInst::ICMP_SGT: Out << " > "; break;
2305 default: cerr << "Invalid icmp predicate!" << I; abort();
2306 }
2307
Chris Lattner389c9142007-09-15 06:51:03 +00002308 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002309 if (NeedsClosingParens)
2310 Out << "))";
2311
2312 if (needsCast) {
2313 Out << "))";
2314 }
2315}
2316
2317void CWriter::visitFCmpInst(FCmpInst &I) {
2318 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2319 Out << "0";
2320 return;
2321 }
2322 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2323 Out << "1";
2324 return;
2325 }
2326
2327 const char* op = 0;
2328 switch (I.getPredicate()) {
2329 default: assert(0 && "Illegal FCmp predicate");
2330 case FCmpInst::FCMP_ORD: op = "ord"; break;
2331 case FCmpInst::FCMP_UNO: op = "uno"; break;
2332 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2333 case FCmpInst::FCMP_UNE: op = "une"; break;
2334 case FCmpInst::FCMP_ULT: op = "ult"; break;
2335 case FCmpInst::FCMP_ULE: op = "ule"; break;
2336 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2337 case FCmpInst::FCMP_UGE: op = "uge"; break;
2338 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2339 case FCmpInst::FCMP_ONE: op = "one"; break;
2340 case FCmpInst::FCMP_OLT: op = "olt"; break;
2341 case FCmpInst::FCMP_OLE: op = "ole"; break;
2342 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2343 case FCmpInst::FCMP_OGE: op = "oge"; break;
2344 }
2345
2346 Out << "llvm_fcmp_" << op << "(";
2347 // Write the first operand
2348 writeOperand(I.getOperand(0));
2349 Out << ", ";
2350 // Write the second operand
2351 writeOperand(I.getOperand(1));
2352 Out << ")";
2353}
2354
2355static const char * getFloatBitCastField(const Type *Ty) {
2356 switch (Ty->getTypeID()) {
2357 default: assert(0 && "Invalid Type");
2358 case Type::FloatTyID: return "Float";
2359 case Type::DoubleTyID: return "Double";
2360 case Type::IntegerTyID: {
2361 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2362 if (NumBits <= 32)
2363 return "Int32";
2364 else
2365 return "Int64";
2366 }
2367 }
2368}
2369
2370void CWriter::visitCastInst(CastInst &I) {
2371 const Type *DstTy = I.getType();
2372 const Type *SrcTy = I.getOperand(0)->getType();
2373 Out << '(';
2374 if (isFPIntBitCast(I)) {
2375 // These int<->float and long<->double casts need to be handled specially
2376 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2377 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2378 writeOperand(I.getOperand(0));
2379 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2380 << getFloatBitCastField(I.getType());
2381 } else {
2382 printCast(I.getOpcode(), SrcTy, DstTy);
2383 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2384 // Make sure we really get a sext from bool by subtracing the bool from 0
2385 Out << "0-";
2386 }
2387 writeOperand(I.getOperand(0));
2388 if (DstTy == Type::Int1Ty &&
2389 (I.getOpcode() == Instruction::Trunc ||
2390 I.getOpcode() == Instruction::FPToUI ||
2391 I.getOpcode() == Instruction::FPToSI ||
2392 I.getOpcode() == Instruction::PtrToInt)) {
2393 // Make sure we really get a trunc to bool by anding the operand with 1
2394 Out << "&1u";
2395 }
2396 }
2397 Out << ')';
2398}
2399
2400void CWriter::visitSelectInst(SelectInst &I) {
2401 Out << "((";
2402 writeOperand(I.getCondition());
2403 Out << ") ? (";
2404 writeOperand(I.getTrueValue());
2405 Out << ") : (";
2406 writeOperand(I.getFalseValue());
2407 Out << "))";
2408}
2409
2410
2411void CWriter::lowerIntrinsics(Function &F) {
2412 // This is used to keep track of intrinsics that get generated to a lowered
2413 // function. We must generate the prototypes before the function body which
2414 // will only be expanded on first use (by the loop below).
2415 std::vector<Function*> prototypesToGen;
2416
2417 // Examine all the instructions in this function to find the intrinsics that
2418 // need to be lowered.
2419 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2420 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2421 if (CallInst *CI = dyn_cast<CallInst>(I++))
2422 if (Function *F = CI->getCalledFunction())
2423 switch (F->getIntrinsicID()) {
2424 case Intrinsic::not_intrinsic:
2425 case Intrinsic::vastart:
2426 case Intrinsic::vacopy:
2427 case Intrinsic::vaend:
2428 case Intrinsic::returnaddress:
2429 case Intrinsic::frameaddress:
2430 case Intrinsic::setjmp:
2431 case Intrinsic::longjmp:
2432 case Intrinsic::prefetch:
2433 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002434 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002435 // We directly implement these intrinsics
2436 break;
2437 default:
2438 // If this is an intrinsic that directly corresponds to a GCC
2439 // builtin, we handle it.
2440 const char *BuiltinName = "";
2441#define GET_GCC_BUILTIN_NAME
2442#include "llvm/Intrinsics.gen"
2443#undef GET_GCC_BUILTIN_NAME
2444 // If we handle it, don't lower it.
2445 if (BuiltinName[0]) break;
2446
2447 // All other intrinsic calls we must lower.
2448 Instruction *Before = 0;
2449 if (CI != &BB->front())
2450 Before = prior(BasicBlock::iterator(CI));
2451
2452 IL->LowerIntrinsicCall(CI);
2453 if (Before) { // Move iterator to instruction after call
2454 I = Before; ++I;
2455 } else {
2456 I = BB->begin();
2457 }
2458 // If the intrinsic got lowered to another call, and that call has
2459 // a definition then we need to make sure its prototype is emitted
2460 // before any calls to it.
2461 if (CallInst *Call = dyn_cast<CallInst>(I))
2462 if (Function *NewF = Call->getCalledFunction())
2463 if (!NewF->isDeclaration())
2464 prototypesToGen.push_back(NewF);
2465
2466 break;
2467 }
2468
2469 // We may have collected some prototypes to emit in the loop above.
2470 // Emit them now, before the function that uses them is emitted. But,
2471 // be careful not to emit them twice.
2472 std::vector<Function*>::iterator I = prototypesToGen.begin();
2473 std::vector<Function*>::iterator E = prototypesToGen.end();
2474 for ( ; I != E; ++I) {
2475 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2476 Out << '\n';
2477 printFunctionSignature(*I, true);
2478 Out << ";\n";
2479 }
2480 }
2481}
2482
2483
2484void CWriter::visitCallInst(CallInst &I) {
2485 //check if we have inline asm
2486 if (isInlineAsm(I)) {
2487 visitInlineAsm(I);
2488 return;
2489 }
2490
2491 bool WroteCallee = false;
2492
2493 // Handle intrinsic function calls first...
2494 if (Function *F = I.getCalledFunction())
2495 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2496 switch (ID) {
2497 default: {
2498 // If this is an intrinsic that directly corresponds to a GCC
2499 // builtin, we emit it here.
2500 const char *BuiltinName = "";
2501#define GET_GCC_BUILTIN_NAME
2502#include "llvm/Intrinsics.gen"
2503#undef GET_GCC_BUILTIN_NAME
2504 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2505
2506 Out << BuiltinName;
2507 WroteCallee = true;
2508 break;
2509 }
2510 case Intrinsic::vastart:
2511 Out << "0; ";
2512
2513 Out << "va_start(*(va_list*)";
2514 writeOperand(I.getOperand(1));
2515 Out << ", ";
2516 // Output the last argument to the enclosing function...
2517 if (I.getParent()->getParent()->arg_empty()) {
2518 cerr << "The C backend does not currently support zero "
2519 << "argument varargs functions, such as '"
2520 << I.getParent()->getParent()->getName() << "'!\n";
2521 abort();
2522 }
2523 writeOperand(--I.getParent()->getParent()->arg_end());
2524 Out << ')';
2525 return;
2526 case Intrinsic::vaend:
2527 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2528 Out << "0; va_end(*(va_list*)";
2529 writeOperand(I.getOperand(1));
2530 Out << ')';
2531 } else {
2532 Out << "va_end(*(va_list*)0)";
2533 }
2534 return;
2535 case Intrinsic::vacopy:
2536 Out << "0; ";
2537 Out << "va_copy(*(va_list*)";
2538 writeOperand(I.getOperand(1));
2539 Out << ", *(va_list*)";
2540 writeOperand(I.getOperand(2));
2541 Out << ')';
2542 return;
2543 case Intrinsic::returnaddress:
2544 Out << "__builtin_return_address(";
2545 writeOperand(I.getOperand(1));
2546 Out << ')';
2547 return;
2548 case Intrinsic::frameaddress:
2549 Out << "__builtin_frame_address(";
2550 writeOperand(I.getOperand(1));
2551 Out << ')';
2552 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002553 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002554 Out << "__builtin_powi(";
2555 writeOperand(I.getOperand(1));
2556 Out << ", ";
2557 writeOperand(I.getOperand(2));
2558 Out << ')';
2559 return;
2560 case Intrinsic::setjmp:
2561 Out << "setjmp(*(jmp_buf*)";
2562 writeOperand(I.getOperand(1));
2563 Out << ')';
2564 return;
2565 case Intrinsic::longjmp:
2566 Out << "longjmp(*(jmp_buf*)";
2567 writeOperand(I.getOperand(1));
2568 Out << ", ";
2569 writeOperand(I.getOperand(2));
2570 Out << ')';
2571 return;
2572 case Intrinsic::prefetch:
2573 Out << "LLVM_PREFETCH((const void *)";
2574 writeOperand(I.getOperand(1));
2575 Out << ", ";
2576 writeOperand(I.getOperand(2));
2577 Out << ", ";
2578 writeOperand(I.getOperand(3));
2579 Out << ")";
2580 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002581 case Intrinsic::stacksave:
2582 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2583 // to work around GCC bugs (see PR1809).
2584 Out << "0; *((void**)&" << GetValueName(&I)
2585 << ") = __builtin_stack_save()";
2586 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002587 case Intrinsic::dbg_stoppoint: {
2588 // If we use writeOperand directly we get a "u" suffix which is rejected
2589 // by gcc.
2590 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2591
2592 Out << "\n#line "
2593 << SPI.getLine()
2594 << " \"" << SPI.getDirectory()
2595 << SPI.getFileName() << "\"\n";
2596 return;
2597 }
2598 }
2599 }
2600
2601 Value *Callee = I.getCalledValue();
2602
2603 const PointerType *PTy = cast<PointerType>(Callee->getType());
2604 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2605
2606 // If this is a call to a struct-return function, assign to the first
2607 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002608 const ParamAttrsList *PAL = I.getParamAttrs();
2609 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002610 if (isStructRet) {
2611 Out << "*(";
2612 writeOperand(I.getOperand(1));
2613 Out << ") = ";
2614 }
2615
2616 if (I.isTailCall()) Out << " /*tail*/ ";
2617
2618 if (!WroteCallee) {
2619 // If this is an indirect call to a struct return function, we need to cast
2620 // the pointer.
2621 bool NeedsCast = isStructRet && !isa<Function>(Callee);
2622
2623 // GCC is a real PITA. It does not permit codegening casts of functions to
2624 // function pointers if they are in a call (it generates a trap instruction
2625 // instead!). We work around this by inserting a cast to void* in between
2626 // the function and the function pointer cast. Unfortunately, we can't just
2627 // form the constant expression here, because the folder will immediately
2628 // nuke it.
2629 //
2630 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2631 // that void* and function pointers have the same size. :( To deal with this
2632 // in the common case, we handle casts where the number of arguments passed
2633 // match exactly.
2634 //
2635 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2636 if (CE->isCast())
2637 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2638 NeedsCast = true;
2639 Callee = RF;
2640 }
2641
2642 if (NeedsCast) {
2643 // Ok, just cast the pointer type.
2644 Out << "((";
2645 if (!isStructRet)
2646 printType(Out, I.getCalledValue()->getType());
2647 else
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002648 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002649 cast<PointerType>(I.getCalledValue()->getType()));
2650 Out << ")(void*)";
2651 }
2652 writeOperand(Callee);
2653 if (NeedsCast) Out << ')';
2654 }
2655
2656 Out << '(';
2657
2658 unsigned NumDeclaredParams = FTy->getNumParams();
2659
2660 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2661 unsigned ArgNo = 0;
2662 if (isStructRet) { // Skip struct return argument.
2663 ++AI;
2664 ++ArgNo;
2665 }
2666
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002667 bool PrintedArg = false;
2668 unsigned Idx = 1;
2669 for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
2670 if (PrintedArg) Out << ", ";
2671 if (ArgNo < NumDeclaredParams &&
2672 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2673 Out << '(';
2674 printType(Out, FTy->getParamType(ArgNo),
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002675 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002676 Out << ')';
2677 }
2678 writeOperand(*AI);
2679 PrintedArg = true;
2680 }
2681 Out << ')';
2682}
2683
2684
2685//This converts the llvm constraint string to something gcc is expecting.
2686//TODO: work out platform independent constraints and factor those out
2687// of the per target tables
2688// handle multiple constraint codes
2689std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2690
2691 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2692
2693 const char** table = 0;
2694
2695 //Grab the translation table from TargetAsmInfo if it exists
2696 if (!TAsm) {
2697 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002698 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002699 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2700 if (Match) {
2701 //Per platform Target Machines don't exist, so create it
2702 // this must be done only once
2703 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2704 TAsm = TM->getTargetAsmInfo();
2705 }
2706 }
2707 if (TAsm)
2708 table = TAsm->getAsmCBE();
2709
2710 //Search the translation table if it exists
2711 for (int i = 0; table && table[i]; i += 2)
2712 if (c.Codes[0] == table[i])
2713 return table[i+1];
2714
2715 //default is identity
2716 return c.Codes[0];
2717}
2718
2719//TODO: import logic from AsmPrinter.cpp
2720static std::string gccifyAsm(std::string asmstr) {
2721 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2722 if (asmstr[i] == '\n')
2723 asmstr.replace(i, 1, "\\n");
2724 else if (asmstr[i] == '\t')
2725 asmstr.replace(i, 1, "\\t");
2726 else if (asmstr[i] == '$') {
2727 if (asmstr[i + 1] == '{') {
2728 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2729 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2730 std::string n = "%" +
2731 asmstr.substr(a + 1, b - a - 1) +
2732 asmstr.substr(i + 2, a - i - 2);
2733 asmstr.replace(i, b - i + 1, n);
2734 i += n.size() - 1;
2735 } else
2736 asmstr.replace(i, 1, "%");
2737 }
2738 else if (asmstr[i] == '%')//grr
2739 { asmstr.replace(i, 1, "%%"); ++i;}
2740
2741 return asmstr;
2742}
2743
2744//TODO: assumptions about what consume arguments from the call are likely wrong
2745// handle communitivity
2746void CWriter::visitInlineAsm(CallInst &CI) {
2747 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2748 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2749 std::vector<std::pair<std::string, Value*> > Input;
2750 std::vector<std::pair<std::string, Value*> > Output;
2751 std::string Clobber;
2752 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2753 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2754 E = Constraints.end(); I != E; ++I) {
2755 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2756 std::string c =
2757 InterpretASMConstraint(*I);
2758 switch(I->Type) {
2759 default:
2760 assert(0 && "Unknown asm constraint");
2761 break;
2762 case InlineAsm::isInput: {
2763 if (c.size()) {
2764 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2765 ++count; //consume arg
2766 }
2767 break;
2768 }
2769 case InlineAsm::isOutput: {
2770 if (c.size()) {
2771 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2772 count ? CI.getOperand(count) : &CI));
2773 ++count; //consume arg
2774 }
2775 break;
2776 }
2777 case InlineAsm::isClobber: {
2778 if (c.size())
2779 Clobber += ",\"" + c + "\"";
2780 break;
2781 }
2782 }
2783 }
2784
2785 //fix up the asm string for gcc
2786 std::string asmstr = gccifyAsm(as->getAsmString());
2787
2788 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2789 Out << " :";
2790 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2791 E = Output.end(); I != E; ++I) {
2792 Out << "\"" << I->first << "\"(";
2793 writeOperandRaw(I->second);
2794 Out << ")";
2795 if (I + 1 != E)
2796 Out << ",";
2797 }
2798 Out << "\n :";
2799 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2800 E = Input.end(); I != E; ++I) {
2801 Out << "\"" << I->first << "\"(";
2802 writeOperandRaw(I->second);
2803 Out << ")";
2804 if (I + 1 != E)
2805 Out << ",";
2806 }
2807 if (Clobber.size())
2808 Out << "\n :" << Clobber.substr(1);
2809 Out << ")";
2810}
2811
2812void CWriter::visitMallocInst(MallocInst &I) {
2813 assert(0 && "lowerallocations pass didn't work!");
2814}
2815
2816void CWriter::visitAllocaInst(AllocaInst &I) {
2817 Out << '(';
2818 printType(Out, I.getType());
2819 Out << ") alloca(sizeof(";
2820 printType(Out, I.getType()->getElementType());
2821 Out << ')';
2822 if (I.isArrayAllocation()) {
2823 Out << " * " ;
2824 writeOperand(I.getOperand(0));
2825 }
2826 Out << ')';
2827}
2828
2829void CWriter::visitFreeInst(FreeInst &I) {
2830 assert(0 && "lowerallocations pass didn't work!");
2831}
2832
2833void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2834 gep_type_iterator E) {
2835 bool HasImplicitAddress = false;
2836 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2837 if (isa<GlobalValue>(Ptr)) {
2838 HasImplicitAddress = true;
2839 } else if (isDirectAlloca(Ptr)) {
2840 HasImplicitAddress = true;
2841 }
2842
2843 if (I == E) {
2844 if (!HasImplicitAddress)
2845 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2846
2847 writeOperandInternal(Ptr);
2848 return;
2849 }
2850
2851 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2852 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2853 Out << "(&";
2854
2855 writeOperandInternal(Ptr);
2856
2857 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2858 Out << ')';
2859 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2860 }
2861
2862 assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
2863 "Can only have implicit address with direct accessing");
2864
2865 if (HasImplicitAddress) {
2866 ++I;
2867 } else if (CI && CI->isNullValue()) {
2868 gep_type_iterator TmpI = I; ++TmpI;
2869
2870 // Print out the -> operator if possible...
2871 if (TmpI != E && isa<StructType>(*TmpI)) {
2872 Out << (HasImplicitAddress ? "." : "->");
2873 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2874 I = ++TmpI;
2875 }
2876 }
2877
2878 for (; I != E; ++I)
2879 if (isa<StructType>(*I)) {
2880 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2881 } else {
2882 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002883 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002884 Out << ']';
2885 }
2886}
2887
2888void CWriter::visitLoadInst(LoadInst &I) {
2889 Out << '*';
2890 if (I.isVolatile()) {
2891 Out << "((";
2892 printType(Out, I.getType(), false, "volatile*");
2893 Out << ")";
2894 }
2895
2896 writeOperand(I.getOperand(0));
2897
2898 if (I.isVolatile())
2899 Out << ')';
2900}
2901
2902void CWriter::visitStoreInst(StoreInst &I) {
2903 Out << '*';
2904 if (I.isVolatile()) {
2905 Out << "((";
2906 printType(Out, I.getOperand(0)->getType(), false, " volatile*");
2907 Out << ")";
2908 }
2909 writeOperand(I.getPointerOperand());
2910 if (I.isVolatile()) Out << ')';
2911 Out << " = ";
2912 Value *Operand = I.getOperand(0);
2913 Constant *BitMask = 0;
2914 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2915 if (!ITy->isPowerOf2ByteWidth())
2916 // We have a bit width that doesn't match an even power-of-2 byte
2917 // size. Consequently we must & the value with the type's bit mask
2918 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
2919 if (BitMask)
2920 Out << "((";
2921 writeOperand(Operand);
2922 if (BitMask) {
2923 Out << ") & ";
2924 printConstant(BitMask);
2925 Out << ")";
2926 }
2927}
2928
2929void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
2930 Out << '&';
2931 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
2932 gep_type_end(I));
2933}
2934
2935void CWriter::visitVAArgInst(VAArgInst &I) {
2936 Out << "va_arg(*(va_list*)";
2937 writeOperand(I.getOperand(0));
2938 Out << ", ";
2939 printType(Out, I.getType());
2940 Out << ");\n ";
2941}
2942
2943//===----------------------------------------------------------------------===//
2944// External Interface declaration
2945//===----------------------------------------------------------------------===//
2946
2947bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2948 std::ostream &o,
2949 CodeGenFileType FileType,
2950 bool Fast) {
2951 if (FileType != TargetMachine::AssemblyFile) return true;
2952
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00002953 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002954 PM.add(createLowerAllocationsPass(true));
2955 PM.add(createLowerInvokePass());
2956 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
2957 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
2958 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00002959 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002960 return false;
2961}