blob: 767e985ed0cf6d9ea0567993de9f514e5eff085b [file] [log] [blame]
Evan Chengb1290a62008-10-02 18:29:27 +00001//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Misha Brukman2a835f92009-01-08 15:50:22 +00009//
Evan Chengb1290a62008-10-02 18:29:27 +000010// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
Misha Brukman2a835f92009-01-08 15:50:22 +000015// code is inserted and the process repeated.
Evan Chengb1290a62008-10-02 18:29:27 +000016//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
Misha Brukmance07e992009-01-08 16:40:25 +000019// allocation, see the following papers:
Evan Chengb1290a62008-10-02 18:29:27 +000020//
21// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26// architectures. In Proceedings of the Joint Conference on Languages,
27// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28// NY, USA, 139-148.
Misha Brukman2a835f92009-01-08 15:50:22 +000029//
Evan Chengb1290a62008-10-02 18:29:27 +000030//===----------------------------------------------------------------------===//
31
Evan Chengb1290a62008-10-02 18:29:27 +000032#define DEBUG_TYPE "regalloc"
33
34#include "PBQP.h"
35#include "VirtRegMap.h"
Owen Anderson1ed5b712009-03-11 22:31:21 +000036#include "Spiller.h"
Evan Chengb1290a62008-10-02 18:29:27 +000037#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Lang Hames27601ef2008-11-16 12:12:54 +000038#include "llvm/CodeGen/LiveStackAnalysis.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000039#include "llvm/CodeGen/MachineFunctionPass.h"
Evan Chengb1290a62008-10-02 18:29:27 +000040#include "llvm/CodeGen/MachineLoopInfo.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000041#include "llvm/CodeGen/MachineRegisterInfo.h"
42#include "llvm/CodeGen/RegAllocRegistry.h"
43#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Chengb1290a62008-10-02 18:29:27 +000044#include "llvm/Support/Debug.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000045#include "llvm/Target/TargetInstrInfo.h"
46#include "llvm/Target/TargetMachine.h"
47#include <limits>
Evan Chengb1290a62008-10-02 18:29:27 +000048#include <map>
Misha Brukman2a835f92009-01-08 15:50:22 +000049#include <memory>
Evan Chengb1290a62008-10-02 18:29:27 +000050#include <set>
51#include <vector>
Evan Chengb1290a62008-10-02 18:29:27 +000052
53using namespace llvm;
54
55static RegisterRegAlloc
Dan Gohmanb8cab922008-10-14 20:25:08 +000056registerPBQPRepAlloc("pbqp", "PBQP register allocator",
Evan Chengb1290a62008-10-02 18:29:27 +000057 createPBQPRegisterAllocator);
58
Evan Chengb1290a62008-10-02 18:29:27 +000059namespace {
60
61 //!
62 //! PBQP based allocators solve the register allocation problem by mapping
63 //! register allocation problems to Partitioned Boolean Quadratic
64 //! Programming problems.
65 class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
66 public:
67
68 static char ID;
Misha Brukman2a835f92009-01-08 15:50:22 +000069
Evan Chengb1290a62008-10-02 18:29:27 +000070 //! Construct a PBQP register allocator.
71 PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
72
73 //! Return the pass name.
74 virtual const char* getPassName() const throw() {
75 return "PBQP Register Allocator";
76 }
77
78 //! PBQP analysis usage.
79 virtual void getAnalysisUsage(AnalysisUsage &au) const {
80 au.addRequired<LiveIntervals>();
Lang Hames27601ef2008-11-16 12:12:54 +000081 au.addRequiredTransitive<RegisterCoalescer>();
82 au.addRequired<LiveStacks>();
83 au.addPreserved<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +000084 au.addRequired<MachineLoopInfo>();
Lang Hames27601ef2008-11-16 12:12:54 +000085 au.addPreserved<MachineLoopInfo>();
Evan Chengb1290a62008-10-02 18:29:27 +000086 MachineFunctionPass::getAnalysisUsage(au);
87 }
88
89 //! Perform register allocation
90 virtual bool runOnMachineFunction(MachineFunction &MF);
91
92 private:
93 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
94 typedef std::vector<const LiveInterval*> Node2LIMap;
95 typedef std::vector<unsigned> AllowedSet;
96 typedef std::vector<AllowedSet> AllowedSetMap;
Lang Hames27601ef2008-11-16 12:12:54 +000097 typedef std::set<unsigned> RegSet;
98 typedef std::pair<unsigned, unsigned> RegPair;
99 typedef std::map<RegPair, PBQPNum> CoalesceMap;
100
101 typedef std::set<LiveInterval*> LiveIntervalSet;
Evan Chengb1290a62008-10-02 18:29:27 +0000102
103 MachineFunction *mf;
104 const TargetMachine *tm;
105 const TargetRegisterInfo *tri;
106 const TargetInstrInfo *tii;
107 const MachineLoopInfo *loopInfo;
108 MachineRegisterInfo *mri;
109
Lang Hames27601ef2008-11-16 12:12:54 +0000110 LiveIntervals *lis;
111 LiveStacks *lss;
Evan Chengb1290a62008-10-02 18:29:27 +0000112 VirtRegMap *vrm;
113
114 LI2NodeMap li2Node;
115 Node2LIMap node2LI;
116 AllowedSetMap allowedSets;
Lang Hames27601ef2008-11-16 12:12:54 +0000117 LiveIntervalSet vregIntervalsToAlloc,
118 emptyVRegIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000119
Misha Brukman2a835f92009-01-08 15:50:22 +0000120
Evan Chengb1290a62008-10-02 18:29:27 +0000121 //! Builds a PBQP cost vector.
Lang Hames27601ef2008-11-16 12:12:54 +0000122 template <typename RegContainer>
123 PBQPVector* buildCostVector(unsigned vReg,
124 const RegContainer &allowed,
125 const CoalesceMap &cealesces,
Evan Chengb1290a62008-10-02 18:29:27 +0000126 PBQPNum spillCost) const;
127
Evan Cheng17a82ea2008-10-03 17:11:58 +0000128 //! \brief Builds a PBQP interference matrix.
Evan Chengb1290a62008-10-02 18:29:27 +0000129 //!
130 //! @return Either a pointer to a non-zero PBQP matrix representing the
131 //! allocation option costs, or a null pointer for a zero matrix.
132 //!
133 //! Expects allowed sets for two interfering LiveIntervals. These allowed
134 //! sets should contain only allocable registers from the LiveInterval's
135 //! register class, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000136 template <typename RegContainer>
137 PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
138 const RegContainer &allowed2) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000139
140 //!
141 //! Expects allowed sets for two potentially coalescable LiveIntervals,
142 //! and an estimated benefit due to coalescing. The allowed sets should
143 //! contain only allocable registers from the LiveInterval's register
144 //! classes, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000145 template <typename RegContainer>
146 PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
147 const RegContainer &allowed2,
Evan Chengb1290a62008-10-02 18:29:27 +0000148 PBQPNum cBenefit) const;
149
Lang Hames27601ef2008-11-16 12:12:54 +0000150 //! \brief Finds coalescing opportunities and returns them as a map.
Evan Chengb1290a62008-10-02 18:29:27 +0000151 //!
Lang Hames27601ef2008-11-16 12:12:54 +0000152 //! Any entries in the map are guaranteed coalescable, even if their
153 //! corresponding live intervals overlap.
154 CoalesceMap findCoalesces();
Evan Chengb1290a62008-10-02 18:29:27 +0000155
Lang Hames27601ef2008-11-16 12:12:54 +0000156 //! \brief Finds the initial set of vreg intervals to allocate.
157 void findVRegIntervalsToAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000158
159 //! \brief Constructs a PBQP problem representation of the register
160 //! allocation problem for this function.
161 //!
162 //! @return a PBQP solver object for the register allocation problem.
163 pbqp* constructPBQPProblem();
164
Lang Hames27601ef2008-11-16 12:12:54 +0000165 //! \brief Adds a stack interval if the given live interval has been
166 //! spilled. Used to support stack slot coloring.
167 void addStackInterval(const LiveInterval *spilled, float &weight);
168
Evan Chengb1290a62008-10-02 18:29:27 +0000169 //! \brief Given a solved PBQP problem maps this solution back to a register
170 //! assignment.
Misha Brukman2a835f92009-01-08 15:50:22 +0000171 bool mapPBQPToRegAlloc(pbqp *problem);
Evan Chengb1290a62008-10-02 18:29:27 +0000172
Lang Hames27601ef2008-11-16 12:12:54 +0000173 //! \brief Postprocessing before final spilling. Sets basic block "live in"
174 //! variables.
175 void finalizeAlloc() const;
176
Evan Chengb1290a62008-10-02 18:29:27 +0000177 };
178
179 char PBQPRegAlloc::ID = 0;
180}
181
182
Lang Hames27601ef2008-11-16 12:12:54 +0000183template <typename RegContainer>
184PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
185 const RegContainer &allowed,
186 const CoalesceMap &coalesces,
Evan Chengb1290a62008-10-02 18:29:27 +0000187 PBQPNum spillCost) const {
188
Lang Hames27601ef2008-11-16 12:12:54 +0000189 typedef typename RegContainer::const_iterator AllowedItr;
190
Evan Chengb1290a62008-10-02 18:29:27 +0000191 // Allocate vector. Additional element (0th) used for spill option
192 PBQPVector *v = new PBQPVector(allowed.size() + 1);
193
194 (*v)[0] = spillCost;
195
Lang Hames27601ef2008-11-16 12:12:54 +0000196 // Iterate over the allowed registers inserting coalesce benefits if there
197 // are any.
198 unsigned ai = 0;
199 for (AllowedItr itr = allowed.begin(), end = allowed.end();
200 itr != end; ++itr, ++ai) {
201
202 unsigned pReg = *itr;
203
204 CoalesceMap::const_iterator cmItr =
205 coalesces.find(RegPair(vReg, pReg));
206
207 // No coalesce - on to the next preg.
208 if (cmItr == coalesces.end())
209 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000210
211 // We have a coalesce - insert the benefit.
212 (*v)[ai + 1] = -cmItr->second;
Lang Hames27601ef2008-11-16 12:12:54 +0000213 }
214
Evan Chengb1290a62008-10-02 18:29:27 +0000215 return v;
216}
217
Lang Hames27601ef2008-11-16 12:12:54 +0000218template <typename RegContainer>
Evan Chengb1290a62008-10-02 18:29:27 +0000219PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000220 const RegContainer &allowed1, const RegContainer &allowed2) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000221
Lang Hames27601ef2008-11-16 12:12:54 +0000222 typedef typename RegContainer::const_iterator RegContainerIterator;
Evan Chengb1290a62008-10-02 18:29:27 +0000223
224 // Construct a PBQP matrix representing the cost of allocation options. The
225 // rows and columns correspond to the allocation options for the two live
226 // intervals. Elements will be infinite where corresponding registers alias,
227 // since we cannot allocate aliasing registers to interfering live intervals.
228 // All other elements (non-aliasing combinations) will have zero cost. Note
229 // that the spill option (element 0,0) has zero cost, since we can allocate
230 // both intervals to memory safely (the cost for each individual allocation
231 // to memory is accounted for by the cost vectors for each live interval).
232 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
Misha Brukman2a835f92009-01-08 15:50:22 +0000233
Evan Chengb1290a62008-10-02 18:29:27 +0000234 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
235 // between interfering live ranges with non-overlapping register sets (e.g.
236 // non-overlapping reg classes, or disjoint sets of allowed regs within the
237 // same class). The term "overlapping" is used advisedly: sets which do not
238 // intersect, but contain registers which alias, will have non-zero matrices.
239 // We optimize zero matrices away to improve solver speed.
240 bool isZeroMatrix = true;
241
242
243 // Row index. Starts at 1, since the 0th row is for the spill option, which
244 // is always zero.
Misha Brukman2a835f92009-01-08 15:50:22 +0000245 unsigned ri = 1;
Evan Chengb1290a62008-10-02 18:29:27 +0000246
Misha Brukman2a835f92009-01-08 15:50:22 +0000247 // Iterate over allowed sets, insert infinities where required.
Lang Hames27601ef2008-11-16 12:12:54 +0000248 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000249 a1Itr != a1End; ++a1Itr) {
250
251 // Column index, starts at 1 as for row index.
252 unsigned ci = 1;
253 unsigned reg1 = *a1Itr;
254
Lang Hames27601ef2008-11-16 12:12:54 +0000255 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000256 a2Itr != a2End; ++a2Itr) {
257
258 unsigned reg2 = *a2Itr;
259
260 // If the row/column regs are identical or alias insert an infinity.
261 if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
262 (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
263 isZeroMatrix = false;
264 }
265
266 ++ci;
267 }
268
269 ++ri;
270 }
271
272 // If this turns out to be a zero matrix...
273 if (isZeroMatrix) {
274 // free it and return null.
275 delete m;
276 return 0;
277 }
278
279 // ...otherwise return the cost matrix.
280 return m;
281}
282
Lang Hames27601ef2008-11-16 12:12:54 +0000283template <typename RegContainer>
284PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
285 const RegContainer &allowed1, const RegContainer &allowed2,
286 PBQPNum cBenefit) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000287
Lang Hames27601ef2008-11-16 12:12:54 +0000288 typedef typename RegContainer::const_iterator RegContainerIterator;
289
290 // Construct a PBQP Matrix representing the benefits of coalescing. As with
291 // interference matrices the rows and columns represent allowed registers
292 // for the LiveIntervals which are (potentially) to be coalesced. The amount
293 // -cBenefit will be placed in any element representing the same register
294 // for both intervals.
295 PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
296
297 // Reset costs to zero.
298 m->reset(0);
299
300 // Assume the matrix is zero till proven otherwise. Zero matrices will be
301 // optimized away as in the interference case.
302 bool isZeroMatrix = true;
303
304 // Row index. Starts at 1, since the 0th row is for the spill option, which
305 // is always zero.
306 unsigned ri = 1;
307
308 // Iterate over the allowed sets, insert coalescing benefits where
309 // appropriate.
310 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
311 a1Itr != a1End; ++a1Itr) {
312
313 // Column index, starts at 1 as for row index.
314 unsigned ci = 1;
315 unsigned reg1 = *a1Itr;
316
317 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
318 a2Itr != a2End; ++a2Itr) {
319
320 // If the row and column represent the same register insert a beneficial
321 // cost to preference this allocation - it would allow us to eliminate a
Misha Brukman2a835f92009-01-08 15:50:22 +0000322 // move instruction.
Lang Hames27601ef2008-11-16 12:12:54 +0000323 if (reg1 == *a2Itr) {
324 (*m)[ri][ci] = -cBenefit;
325 isZeroMatrix = false;
326 }
327
328 ++ci;
329 }
330
331 ++ri;
332 }
333
334 // If this turns out to be a zero matrix...
335 if (isZeroMatrix) {
336 // ...free it and return null.
337 delete m;
338 return 0;
339 }
340
341 return m;
342}
343
344PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
345
346 typedef MachineFunction::const_iterator MFIterator;
347 typedef MachineBasicBlock::const_iterator MBBIterator;
348 typedef LiveInterval::const_vni_iterator VNIIterator;
Misha Brukman2a835f92009-01-08 15:50:22 +0000349
Lang Hames27601ef2008-11-16 12:12:54 +0000350 CoalesceMap coalescesFound;
351
352 // To find coalesces we need to iterate over the function looking for
353 // copy instructions.
354 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000355 bbItr != bbEnd; ++bbItr) {
356
357 const MachineBasicBlock *mbb = &*bbItr;
Evan Chengb1290a62008-10-02 18:29:27 +0000358
Lang Hames27601ef2008-11-16 12:12:54 +0000359 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
360 iItr != iEnd; ++iItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000361
362 const MachineInstr *instr = &*iItr;
Evan Cheng04ee5a12009-01-20 19:12:24 +0000363 unsigned srcReg, dstReg, srcSubReg, dstSubReg;
Evan Chengb1290a62008-10-02 18:29:27 +0000364
Lang Hames27601ef2008-11-16 12:12:54 +0000365 // If this isn't a copy then continue to the next instruction.
Evan Cheng04ee5a12009-01-20 19:12:24 +0000366 if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
Lang Hames27601ef2008-11-16 12:12:54 +0000367 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000368
Lang Hames27601ef2008-11-16 12:12:54 +0000369 // If the registers are already the same our job is nice and easy.
370 if (dstReg == srcReg)
371 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000372
Lang Hames27601ef2008-11-16 12:12:54 +0000373 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
374 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
375
376 // If both registers are physical then we can't coalesce.
377 if (srcRegIsPhysical && dstRegIsPhysical)
378 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000379
Lang Hames27601ef2008-11-16 12:12:54 +0000380 // If it's a copy that includes a virtual register but the source and
381 // destination classes differ then we can't coalesce, so continue with
382 // the next instruction.
383 const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
384 tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
385
386 const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
387 tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
388
389 if (srcRegClass != dstRegClass)
390 continue;
391
392 // We also need any physical regs to be allocable, coalescing with
393 // a non-allocable register is invalid.
394 if (srcRegIsPhysical) {
395 if (std::find(srcRegClass->allocation_order_begin(*mf),
396 srcRegClass->allocation_order_end(*mf), srcReg) ==
397 srcRegClass->allocation_order_end(*mf))
Evan Chengb1290a62008-10-02 18:29:27 +0000398 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000399 }
400
Lang Hames27601ef2008-11-16 12:12:54 +0000401 if (dstRegIsPhysical) {
402 if (std::find(dstRegClass->allocation_order_begin(*mf),
403 dstRegClass->allocation_order_end(*mf), dstReg) ==
404 dstRegClass->allocation_order_end(*mf))
405 continue;
406 }
407
408 // If we've made it here we have a copy with compatible register classes.
Misha Brukman2a835f92009-01-08 15:50:22 +0000409 // We can probably coalesce, but we need to consider overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000410 const LiveInterval *srcLI = &lis->getInterval(srcReg),
411 *dstLI = &lis->getInterval(dstReg);
412
413 if (srcLI->overlaps(*dstLI)) {
414 // Even in the case of an overlap we might still be able to coalesce,
415 // but we need to make sure that no definition of either range occurs
416 // while the other range is live.
417
418 // Otherwise start by assuming we're ok.
419 bool badDef = false;
420
421 // Test all defs of the source range.
Misha Brukman2a835f92009-01-08 15:50:22 +0000422 for (VNIIterator
Lang Hames27601ef2008-11-16 12:12:54 +0000423 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
424 vniItr != vniEnd; ++vniItr) {
425
426 // If we find a def that kills the coalescing opportunity then
427 // record it and break from the loop.
428 if (dstLI->liveAt((*vniItr)->def)) {
429 badDef = true;
430 break;
431 }
432 }
433
434 // If we have a bad def give up, continue to the next instruction.
435 if (badDef)
436 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000437
Lang Hames27601ef2008-11-16 12:12:54 +0000438 // Otherwise test definitions of the destination range.
439 for (VNIIterator
440 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
441 vniItr != vniEnd; ++vniItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000442
Lang Hames27601ef2008-11-16 12:12:54 +0000443 // We want to make sure we skip the copy instruction itself.
444 if ((*vniItr)->copy == instr)
445 continue;
446
447 if (srcLI->liveAt((*vniItr)->def)) {
448 badDef = true;
449 break;
450 }
451 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000452
Lang Hames27601ef2008-11-16 12:12:54 +0000453 // As before a bad def we give up and continue to the next instr.
454 if (badDef)
455 continue;
456 }
457
458 // If we make it to here then either the ranges didn't overlap, or they
459 // did, but none of their definitions would prevent us from coalescing.
460 // We're good to go with the coalesce.
461
462 float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000463
Lang Hames27601ef2008-11-16 12:12:54 +0000464 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
465 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
Evan Chengb1290a62008-10-02 18:29:27 +0000466 }
467
468 }
469
Lang Hames27601ef2008-11-16 12:12:54 +0000470 return coalescesFound;
471}
472
473void PBQPRegAlloc::findVRegIntervalsToAlloc() {
474
475 // Iterate over all live ranges.
476 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
477 itr != end; ++itr) {
478
479 // Ignore physical ones.
480 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
481 continue;
482
483 LiveInterval *li = itr->second;
484
485 // If this live interval is non-empty we will use pbqp to allocate it.
486 // Empty intervals we allocate in a simple post-processing stage in
487 // finalizeAlloc.
488 if (!li->empty()) {
489 vregIntervalsToAlloc.insert(li);
490 }
491 else {
492 emptyVRegIntervals.insert(li);
493 }
494 }
Evan Chengb1290a62008-10-02 18:29:27 +0000495}
496
497pbqp* PBQPRegAlloc::constructPBQPProblem() {
498
499 typedef std::vector<const LiveInterval*> LIVector;
Lang Hames27601ef2008-11-16 12:12:54 +0000500 typedef std::vector<unsigned> RegVector;
Evan Chengb1290a62008-10-02 18:29:27 +0000501
Lang Hames27601ef2008-11-16 12:12:54 +0000502 // This will store the physical intervals for easy reference.
503 LIVector physIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000504
505 // Start by clearing the old node <-> live interval mappings & allowed sets
506 li2Node.clear();
507 node2LI.clear();
508 allowedSets.clear();
509
Lang Hames27601ef2008-11-16 12:12:54 +0000510 // Populate physIntervals, update preg use:
511 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000512 itr != end; ++itr) {
513
Evan Chengb1290a62008-10-02 18:29:27 +0000514 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
515 physIntervals.push_back(itr->second);
516 mri->setPhysRegUsed(itr->second->reg);
517 }
Evan Chengb1290a62008-10-02 18:29:27 +0000518 }
519
Lang Hames27601ef2008-11-16 12:12:54 +0000520 // Iterate over vreg intervals, construct live interval <-> node number
521 // mappings.
Misha Brukman2a835f92009-01-08 15:50:22 +0000522 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000523 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
524 itr != end; ++itr) {
525 const LiveInterval *li = *itr;
526
527 li2Node[li] = node2LI.size();
528 node2LI.push_back(li);
529 }
530
531 // Get the set of potential coalesces.
532 CoalesceMap coalesces(findCoalesces());
Evan Chengb1290a62008-10-02 18:29:27 +0000533
534 // Construct a PBQP solver for this problem
Lang Hames27601ef2008-11-16 12:12:54 +0000535 pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000536
537 // Resize allowedSets container appropriately.
Lang Hames27601ef2008-11-16 12:12:54 +0000538 allowedSets.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000539
540 // Iterate over virtual register intervals to compute allowed sets...
541 for (unsigned node = 0; node < node2LI.size(); ++node) {
542
543 // Grab pointers to the interval and its register class.
544 const LiveInterval *li = node2LI[node];
545 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000546
Evan Chengb1290a62008-10-02 18:29:27 +0000547 // Start by assuming all allocable registers in the class are allowed...
Lang Hames27601ef2008-11-16 12:12:54 +0000548 RegVector liAllowed(liRC->allocation_order_begin(*mf),
549 liRC->allocation_order_end(*mf));
Evan Chengb1290a62008-10-02 18:29:27 +0000550
Lang Hames27601ef2008-11-16 12:12:54 +0000551 // Eliminate the physical registers which overlap with this range, along
552 // with all their aliases.
553 for (LIVector::iterator pItr = physIntervals.begin(),
554 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000555
Lang Hames27601ef2008-11-16 12:12:54 +0000556 if (!li->overlaps(**pItr))
557 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000558
Lang Hames27601ef2008-11-16 12:12:54 +0000559 unsigned pReg = (*pItr)->reg;
Evan Chengb1290a62008-10-02 18:29:27 +0000560
Lang Hames27601ef2008-11-16 12:12:54 +0000561 // If we get here then the live intervals overlap, but we're still ok
562 // if they're coalescable.
563 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
564 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000565
Lang Hames27601ef2008-11-16 12:12:54 +0000566 // If we get here then we have a genuine exclusion.
Evan Chengb1290a62008-10-02 18:29:27 +0000567
Lang Hames27601ef2008-11-16 12:12:54 +0000568 // Remove the overlapping reg...
569 RegVector::iterator eraseItr =
570 std::find(liAllowed.begin(), liAllowed.end(), pReg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000571
Lang Hames27601ef2008-11-16 12:12:54 +0000572 if (eraseItr != liAllowed.end())
573 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000574
Lang Hames27601ef2008-11-16 12:12:54 +0000575 const unsigned *aliasItr = tri->getAliasSet(pReg);
576
577 if (aliasItr != 0) {
578 // ...and its aliases.
579 for (; *aliasItr != 0; ++aliasItr) {
580 RegVector::iterator eraseItr =
581 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
Misha Brukman2a835f92009-01-08 15:50:22 +0000582
Lang Hames27601ef2008-11-16 12:12:54 +0000583 if (eraseItr != liAllowed.end()) {
584 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000585 }
Evan Chengb1290a62008-10-02 18:29:27 +0000586 }
Evan Chengb1290a62008-10-02 18:29:27 +0000587 }
Evan Chengb1290a62008-10-02 18:29:27 +0000588 }
589
590 // Copy the allowed set into a member vector for use when constructing cost
591 // vectors & matrices, and mapping PBQP solutions back to assignments.
592 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
593
594 // Set the spill cost to the interval weight, or epsilon if the
595 // interval weight is zero
Misha Brukman2a835f92009-01-08 15:50:22 +0000596 PBQPNum spillCost = (li->weight != 0.0) ?
Evan Chengb1290a62008-10-02 18:29:27 +0000597 li->weight : std::numeric_limits<PBQPNum>::min();
598
599 // Build a cost vector for this interval.
600 add_pbqp_nodecosts(solver, node,
Lang Hames27601ef2008-11-16 12:12:54 +0000601 buildCostVector(li->reg, allowedSets[node], coalesces,
602 spillCost));
Evan Chengb1290a62008-10-02 18:29:27 +0000603
604 }
605
Lang Hames27601ef2008-11-16 12:12:54 +0000606
Evan Chengb1290a62008-10-02 18:29:27 +0000607 // Now add the cost matrices...
608 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
Evan Chengb1290a62008-10-02 18:29:27 +0000609 const LiveInterval *li = node2LI[node1];
610
Evan Chengb1290a62008-10-02 18:29:27 +0000611 // Test for live range overlaps and insert interference matrices.
612 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
613 const LiveInterval *li2 = node2LI[node2];
614
Lang Hames27601ef2008-11-16 12:12:54 +0000615 CoalesceMap::const_iterator cmItr =
616 coalesces.find(RegPair(li->reg, li2->reg));
Evan Chengb1290a62008-10-02 18:29:27 +0000617
Lang Hames27601ef2008-11-16 12:12:54 +0000618 PBQPMatrix *m = 0;
Evan Chengb1290a62008-10-02 18:29:27 +0000619
Lang Hames27601ef2008-11-16 12:12:54 +0000620 if (cmItr != coalesces.end()) {
621 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
622 cmItr->second);
623 }
624 else if (li->overlaps(*li2)) {
625 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
626 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000627
Lang Hames27601ef2008-11-16 12:12:54 +0000628 if (m != 0) {
629 add_pbqp_edgecosts(solver, node1, node2, m);
630 delete m;
Evan Chengb1290a62008-10-02 18:29:27 +0000631 }
632 }
633 }
634
635 // We're done, PBQP problem constructed - return it.
Misha Brukman2a835f92009-01-08 15:50:22 +0000636 return solver;
Evan Chengb1290a62008-10-02 18:29:27 +0000637}
638
Lang Hames27601ef2008-11-16 12:12:54 +0000639void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled, float &weight) {
640 int stackSlot = vrm->getStackSlot(spilled->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000641
642 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
Lang Hames27601ef2008-11-16 12:12:54 +0000643 return;
644
645 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot);
646 stackInterval.weight += weight;
647
648 VNInfo *vni;
649 if (stackInterval.getNumValNums() != 0)
650 vni = stackInterval.getValNumInfo(0);
651 else
652 vni = stackInterval.getNextValue(-0U, 0, lss->getVNInfoAllocator());
653
654 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
655 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
656}
657
Evan Chengb1290a62008-10-02 18:29:27 +0000658bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000659
Evan Chengb1290a62008-10-02 18:29:27 +0000660 // Set to true if we have any spills
661 bool anotherRoundNeeded = false;
662
663 // Clear the existing allocation.
664 vrm->clearAllVirt();
Misha Brukman2a835f92009-01-08 15:50:22 +0000665
Evan Chengb1290a62008-10-02 18:29:27 +0000666 // Iterate over the nodes mapping the PBQP solution to a register assignment.
667 for (unsigned node = 0; node < node2LI.size(); ++node) {
Lang Hames27601ef2008-11-16 12:12:54 +0000668 unsigned virtReg = node2LI[node]->reg,
Evan Chengb1290a62008-10-02 18:29:27 +0000669 allocSelection = get_pbqp_solution(problem, node);
670
671 // If the PBQP solution is non-zero it's a physical register...
672 if (allocSelection != 0) {
673 // Get the physical reg, subtracting 1 to account for the spill option.
674 unsigned physReg = allowedSets[node][allocSelection - 1];
675
Lang Hames27601ef2008-11-16 12:12:54 +0000676 DOUT << "VREG " << virtReg << " -> " << tri->getName(physReg) << "\n";
677
678 assert(physReg != 0);
679
Evan Chengb1290a62008-10-02 18:29:27 +0000680 // Add to the virt reg map and update the used phys regs.
Lang Hames27601ef2008-11-16 12:12:54 +0000681 vrm->assignVirt2Phys(virtReg, physReg);
Evan Chengb1290a62008-10-02 18:29:27 +0000682 }
683 // ...Otherwise it's a spill.
684 else {
685
686 // Make sure we ignore this virtual reg on the next round
687 // of allocation
Lang Hames27601ef2008-11-16 12:12:54 +0000688 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
Evan Chengb1290a62008-10-02 18:29:27 +0000689
Lang Hames27601ef2008-11-16 12:12:54 +0000690 float ssWeight;
Evan Chengb1290a62008-10-02 18:29:27 +0000691
692 // Insert spill ranges for this live range
Lang Hames27601ef2008-11-16 12:12:54 +0000693 const LiveInterval *spillInterval = node2LI[node];
694 double oldSpillWeight = spillInterval->weight;
Evan Chengb1290a62008-10-02 18:29:27 +0000695 SmallVector<LiveInterval*, 8> spillIs;
696 std::vector<LiveInterval*> newSpills =
Lang Hames27601ef2008-11-16 12:12:54 +0000697 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm,
698 ssWeight);
699 addStackInterval(spillInterval, ssWeight);
700
701 DOUT << "VREG " << virtReg << " -> SPILLED (Cost: "
702 << oldSpillWeight << ", New vregs: ";
703
704 // Copy any newly inserted live intervals into the list of regs to
705 // allocate.
706 for (std::vector<LiveInterval*>::const_iterator
707 itr = newSpills.begin(), end = newSpills.end();
708 itr != end; ++itr) {
709
710 assert(!(*itr)->empty() && "Empty spill range.");
711
712 DOUT << (*itr)->reg << " ";
713
714 vregIntervalsToAlloc.insert(*itr);
715 }
716
717 DOUT << ")\n";
Evan Chengb1290a62008-10-02 18:29:27 +0000718
719 // We need another round if spill intervals were added.
720 anotherRoundNeeded |= !newSpills.empty();
721 }
722 }
723
724 return !anotherRoundNeeded;
725}
726
Lang Hames27601ef2008-11-16 12:12:54 +0000727void PBQPRegAlloc::finalizeAlloc() const {
728 typedef LiveIntervals::iterator LIIterator;
729 typedef LiveInterval::Ranges::const_iterator LRIterator;
730
731 // First allocate registers for the empty intervals.
Argyrios Kyrtzidis3713c0b2008-11-19 12:56:21 +0000732 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000733 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
734 itr != end; ++itr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000735 LiveInterval *li = *itr;
Lang Hames27601ef2008-11-16 12:12:54 +0000736
737 unsigned physReg = li->preference;
738
739 if (physReg == 0) {
740 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000741 physReg = *liRC->allocation_order_begin(*mf);
Lang Hames27601ef2008-11-16 12:12:54 +0000742 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000743
744 vrm->assignVirt2Phys(li->reg, physReg);
Lang Hames27601ef2008-11-16 12:12:54 +0000745 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000746
Lang Hames27601ef2008-11-16 12:12:54 +0000747 // Finally iterate over the basic blocks to compute and set the live-in sets.
748 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
749 MachineBasicBlock *entryMBB = &*mf->begin();
750
751 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
752 liItr != liEnd; ++liItr) {
753
754 const LiveInterval *li = liItr->second;
755 unsigned reg = 0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000756
Lang Hames27601ef2008-11-16 12:12:54 +0000757 // Get the physical register for this interval
758 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
759 reg = li->reg;
760 }
761 else if (vrm->isAssignedReg(li->reg)) {
762 reg = vrm->getPhys(li->reg);
763 }
764 else {
765 // Ranges which are assigned a stack slot only are ignored.
766 continue;
767 }
768
769 // Iterate over the ranges of the current interval...
770 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
771 lrItr != lrEnd; ++lrItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000772
Lang Hames27601ef2008-11-16 12:12:54 +0000773 // Find the set of basic blocks which this range is live into...
774 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
775 // And add the physreg for this interval to their live-in sets.
776 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
777 if (liveInMBBs[i] != entryMBB) {
778 if (!liveInMBBs[i]->isLiveIn(reg)) {
779 liveInMBBs[i]->addLiveIn(reg);
780 }
781 }
782 }
783 liveInMBBs.clear();
784 }
785 }
786 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000787
Lang Hames27601ef2008-11-16 12:12:54 +0000788}
789
Evan Chengb1290a62008-10-02 18:29:27 +0000790bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
Lang Hames27601ef2008-11-16 12:12:54 +0000791
Evan Chengb1290a62008-10-02 18:29:27 +0000792 mf = &MF;
793 tm = &mf->getTarget();
794 tri = tm->getRegisterInfo();
Lang Hames27601ef2008-11-16 12:12:54 +0000795 tii = tm->getInstrInfo();
Evan Chengb1290a62008-10-02 18:29:27 +0000796 mri = &mf->getRegInfo();
797
Lang Hames27601ef2008-11-16 12:12:54 +0000798 lis = &getAnalysis<LiveIntervals>();
799 lss = &getAnalysis<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +0000800 loopInfo = &getAnalysis<MachineLoopInfo>();
801
802 std::auto_ptr<VirtRegMap> vrmAutoPtr(new VirtRegMap(*mf));
803 vrm = vrmAutoPtr.get();
804
Lang Hames27601ef2008-11-16 12:12:54 +0000805 DOUT << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n";
806
Evan Chengb1290a62008-10-02 18:29:27 +0000807 // Allocator main loop:
Misha Brukman2a835f92009-01-08 15:50:22 +0000808 //
Evan Chengb1290a62008-10-02 18:29:27 +0000809 // * Map current regalloc problem to a PBQP problem
810 // * Solve the PBQP problem
811 // * Map the solution back to a register allocation
812 // * Spill if necessary
Misha Brukman2a835f92009-01-08 15:50:22 +0000813 //
Evan Chengb1290a62008-10-02 18:29:27 +0000814 // This process is continued till no more spills are generated.
815
Lang Hames27601ef2008-11-16 12:12:54 +0000816 // Find the vreg intervals in need of allocation.
817 findVRegIntervalsToAlloc();
Misha Brukman2a835f92009-01-08 15:50:22 +0000818
Lang Hames27601ef2008-11-16 12:12:54 +0000819 // If there aren't any then we're done here.
820 if (vregIntervalsToAlloc.empty() && emptyVRegIntervals.empty())
821 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000822
Lang Hames27601ef2008-11-16 12:12:54 +0000823 // If there are non-empty intervals allocate them using pbqp.
824 if (!vregIntervalsToAlloc.empty()) {
Evan Chengb1290a62008-10-02 18:29:27 +0000825
Lang Hames27601ef2008-11-16 12:12:54 +0000826 bool pbqpAllocComplete = false;
827 unsigned round = 0;
828
829 while (!pbqpAllocComplete) {
830 DOUT << " PBQP Regalloc round " << round << ":\n";
831
832 pbqp *problem = constructPBQPProblem();
Misha Brukman2a835f92009-01-08 15:50:22 +0000833
Lang Hames27601ef2008-11-16 12:12:54 +0000834 solve_pbqp(problem);
Misha Brukman2a835f92009-01-08 15:50:22 +0000835
Lang Hames27601ef2008-11-16 12:12:54 +0000836 pbqpAllocComplete = mapPBQPToRegAlloc(problem);
837
Misha Brukman2a835f92009-01-08 15:50:22 +0000838 free_pbqp(problem);
Lang Hames27601ef2008-11-16 12:12:54 +0000839
840 ++round;
841 }
Evan Chengb1290a62008-10-02 18:29:27 +0000842 }
843
Lang Hames27601ef2008-11-16 12:12:54 +0000844 // Finalise allocation, allocate empty ranges.
845 finalizeAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000846
Lang Hames27601ef2008-11-16 12:12:54 +0000847 vregIntervalsToAlloc.clear();
848 emptyVRegIntervals.clear();
849 li2Node.clear();
850 node2LI.clear();
851 allowedSets.clear();
852
853 DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
854
855 // Run spiller
Evan Chengb1290a62008-10-02 18:29:27 +0000856 std::auto_ptr<Spiller> spiller(createSpiller());
Evan Chengb1290a62008-10-02 18:29:27 +0000857 spiller->runOnMachineFunction(*mf, *vrm);
Lang Hames27601ef2008-11-16 12:12:54 +0000858
Misha Brukman2a835f92009-01-08 15:50:22 +0000859 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000860}
861
862FunctionPass* llvm::createPBQPRegisterAllocator() {
863 return new PBQPRegAlloc();
864}
865
866
867#undef DEBUG_TYPE