blob: 2de608953d5e7d6b6a2c9458df1a046b01961527 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Evan Cheng17254e62008-01-11 09:12:49 +000090 std::set<const Value*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92 public:
93 static char ID;
94 CWriter(std::ostream &o)
95 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
96 TheModule(0), TAsm(0), TD(0) {}
97
98 virtual const char *getPassName() const { return "C backend"; }
99
100 void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addRequired<LoopInfo>();
102 AU.setPreservesAll();
103 }
104
105 virtual bool doInitialization(Module &M);
106
107 bool runOnFunction(Function &F) {
108 LI = &getAnalysis<LoopInfo>();
109
110 // Get rid of intrinsics we can't handle.
111 lowerIntrinsics(F);
112
113 // Output all floating point constants that cannot be printed accurately.
114 printFloatingPointConstants(F);
115
116 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000123 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
126 ByValParams.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 return false;
128 }
129
130 std::ostream &printType(std::ostream &Out, const Type *Ty,
131 bool isSigned = false,
132 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000133 bool IgnoreName = false,
134 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
136 bool isSigned,
137 const std::string &NameSoFar = "");
138
139 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000140 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 const PointerType *Ty);
142
143 void writeOperand(Value *Operand);
144 void writeOperandRaw(Value *Operand);
145 void writeOperandInternal(Value *Operand);
146 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000147 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 bool writeInstructionCast(const Instruction &I);
149
150 private :
151 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
152
153 void lowerIntrinsics(Function &F);
154
155 void printModule(Module *M);
156 void printModuleTypes(const TypeSymbolTable &ST);
157 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
158 void printFloatingPointConstants(Function &F);
159 void printFunctionSignature(const Function *F, bool Prototype);
160
161 void printFunction(Function &);
162 void printBasicBlock(BasicBlock *BB);
163 void printLoop(Loop *L);
164
165 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
166 void printConstant(Constant *CPV);
167 void printConstantWithCast(Constant *CPV, unsigned Opcode);
168 bool printConstExprCast(const ConstantExpr *CE);
169 void printConstantArray(ConstantArray *CPA);
170 void printConstantVector(ConstantVector *CP);
171
172 // isInlinableInst - Attempt to inline instructions into their uses to build
173 // trees as much as possible. To do this, we have to consistently decide
174 // what is acceptable to inline, so that variable declarations don't get
175 // printed and an extra copy of the expr is not emitted.
176 //
177 static bool isInlinableInst(const Instruction &I) {
178 // Always inline cmp instructions, even if they are shared by multiple
179 // expressions. GCC generates horrible code if we don't.
180 if (isa<CmpInst>(I))
181 return true;
182
183 // Must be an expression, must be used exactly once. If it is dead, we
184 // emit it inline where it would go.
185 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
186 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
187 isa<LoadInst>(I) || isa<VAArgInst>(I))
188 // Don't inline a load across a store or other bad things!
189 return false;
190
191 // Must not be used in inline asm
192 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
193
194 // Only inline instruction it if it's use is in the same BB as the inst.
195 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
196 }
197
198 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
199 // variables which are accessed with the & operator. This causes GCC to
200 // generate significantly better code than to emit alloca calls directly.
201 //
202 static const AllocaInst *isDirectAlloca(const Value *V) {
203 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
204 if (!AI) return false;
205 if (AI->isArrayAllocation())
206 return 0; // FIXME: we can also inline fixed size array allocas!
207 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
208 return 0;
209 return AI;
210 }
211
212 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
213 static bool isInlineAsm(const Instruction& I) {
214 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
215 return true;
216 return false;
217 }
218
219 // Instruction visitation functions
220 friend class InstVisitor<CWriter>;
221
222 void visitReturnInst(ReturnInst &I);
223 void visitBranchInst(BranchInst &I);
224 void visitSwitchInst(SwitchInst &I);
225 void visitInvokeInst(InvokeInst &I) {
226 assert(0 && "Lowerinvoke pass didn't work!");
227 }
228
229 void visitUnwindInst(UnwindInst &I) {
230 assert(0 && "Lowerinvoke pass didn't work!");
231 }
232 void visitUnreachableInst(UnreachableInst &I);
233
234 void visitPHINode(PHINode &I);
235 void visitBinaryOperator(Instruction &I);
236 void visitICmpInst(ICmpInst &I);
237 void visitFCmpInst(FCmpInst &I);
238
239 void visitCastInst (CastInst &I);
240 void visitSelectInst(SelectInst &I);
241 void visitCallInst (CallInst &I);
242 void visitInlineAsm(CallInst &I);
243
244 void visitMallocInst(MallocInst &I);
245 void visitAllocaInst(AllocaInst &I);
246 void visitFreeInst (FreeInst &I);
247 void visitLoadInst (LoadInst &I);
248 void visitStoreInst (StoreInst &I);
249 void visitGetElementPtrInst(GetElementPtrInst &I);
250 void visitVAArgInst (VAArgInst &I);
251
252 void visitInstruction(Instruction &I) {
253 cerr << "C Writer does not know about " << I;
254 abort();
255 }
256
257 void outputLValue(Instruction *I) {
258 Out << " " << GetValueName(I) << " = ";
259 }
260
261 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
262 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
263 BasicBlock *Successor, unsigned Indent);
264 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
265 unsigned Indent);
266 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
267 gep_type_iterator E);
268
269 std::string GetValueName(const Value *Operand);
270 };
271}
272
273char CWriter::ID = 0;
274
275/// This method inserts names for any unnamed structure types that are used by
276/// the program, and removes names from structure types that are not used by the
277/// program.
278///
279bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
280 // Get a set of types that are used by the program...
281 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
282
283 // Loop over the module symbol table, removing types from UT that are
284 // already named, and removing names for types that are not used.
285 //
286 TypeSymbolTable &TST = M.getTypeSymbolTable();
287 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
288 TI != TE; ) {
289 TypeSymbolTable::iterator I = TI++;
290
291 // If this isn't a struct type, remove it from our set of types to name.
292 // This simplifies emission later.
293 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
294 TST.remove(I);
295 } else {
296 // If this is not used, remove it from the symbol table.
297 std::set<const Type *>::iterator UTI = UT.find(I->second);
298 if (UTI == UT.end())
299 TST.remove(I);
300 else
301 UT.erase(UTI); // Only keep one name for this type.
302 }
303 }
304
305 // UT now contains types that are not named. Loop over it, naming
306 // structure types.
307 //
308 bool Changed = false;
309 unsigned RenameCounter = 0;
310 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
311 I != E; ++I)
312 if (const StructType *ST = dyn_cast<StructType>(*I)) {
313 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
314 ++RenameCounter;
315 Changed = true;
316 }
317
318
319 // Loop over all external functions and globals. If we have two with
320 // identical names, merge them.
321 // FIXME: This code should disappear when we don't allow values with the same
322 // names when they have different types!
323 std::map<std::string, GlobalValue*> ExtSymbols;
324 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
325 Function *GV = I++;
326 if (GV->isDeclaration() && GV->hasName()) {
327 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
328 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
329 if (!X.second) {
330 // Found a conflict, replace this global with the previous one.
331 GlobalValue *OldGV = X.first->second;
332 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
333 GV->eraseFromParent();
334 Changed = true;
335 }
336 }
337 }
338 // Do the same for globals.
339 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
340 I != E;) {
341 GlobalVariable *GV = I++;
342 if (GV->isDeclaration() && GV->hasName()) {
343 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
344 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
345 if (!X.second) {
346 // Found a conflict, replace this global with the previous one.
347 GlobalValue *OldGV = X.first->second;
348 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
349 GV->eraseFromParent();
350 Changed = true;
351 }
352 }
353 }
354
355 return Changed;
356}
357
358/// printStructReturnPointerFunctionType - This is like printType for a struct
359/// return type, except, instead of printing the type as void (*)(Struct*, ...)
360/// print it as "Struct (*)(...)", for struct return functions.
361void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000362 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000363 const PointerType *TheTy) {
364 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
365 std::stringstream FunctionInnards;
366 FunctionInnards << " (*) (";
367 bool PrintedType = false;
368
369 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
370 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
371 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000372 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000373 if (PrintedType)
374 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000375 const Type *ArgTy = *I;
Evan Cheng17254e62008-01-11 09:12:49 +0000376 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
377 assert(isa<PointerType>(ArgTy));
378 ArgTy = cast<PointerType>(ArgTy)->getElementType();
379 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000380 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000381 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000382 PrintedType = true;
383 }
384 if (FTy->isVarArg()) {
385 if (PrintedType)
386 FunctionInnards << ", ...";
387 } else if (!PrintedType) {
388 FunctionInnards << "void";
389 }
390 FunctionInnards << ')';
391 std::string tstr = FunctionInnards.str();
392 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000393 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394}
395
396std::ostream &
397CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
398 const std::string &NameSoFar) {
399 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
400 "Invalid type for printSimpleType");
401 switch (Ty->getTypeID()) {
402 case Type::VoidTyID: return Out << "void " << NameSoFar;
403 case Type::IntegerTyID: {
404 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
405 if (NumBits == 1)
406 return Out << "bool " << NameSoFar;
407 else if (NumBits <= 8)
408 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
409 else if (NumBits <= 16)
410 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
411 else if (NumBits <= 32)
412 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
413 else {
414 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
415 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
416 }
417 }
418 case Type::FloatTyID: return Out << "float " << NameSoFar;
419 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000420 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
421 // present matches host 'long double'.
422 case Type::X86_FP80TyID:
423 case Type::PPC_FP128TyID:
424 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000425 default :
426 cerr << "Unknown primitive type: " << *Ty << "\n";
427 abort();
428 }
429}
430
431// Pass the Type* and the variable name and this prints out the variable
432// declaration.
433//
434std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
435 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000436 bool IgnoreName, const ParamAttrsList* PAL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000437 if (Ty->isPrimitiveType() || Ty->isInteger()) {
438 printSimpleType(Out, Ty, isSigned, NameSoFar);
439 return Out;
440 }
441
442 // Check to see if the type is named.
443 if (!IgnoreName || isa<OpaqueType>(Ty)) {
444 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
445 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
446 }
447
448 switch (Ty->getTypeID()) {
449 case Type::FunctionTyID: {
450 const FunctionType *FTy = cast<FunctionType>(Ty);
451 std::stringstream FunctionInnards;
452 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000453 unsigned Idx = 1;
454 for (FunctionType::param_iterator I = FTy->param_begin(),
455 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000456 const Type *ArgTy = *I;
457 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
458 assert(isa<PointerType>(ArgTy));
459 ArgTy = cast<PointerType>(ArgTy)->getElementType();
460 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000461 if (I != FTy->param_begin())
462 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000463 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000464 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000465 ++Idx;
466 }
467 if (FTy->isVarArg()) {
468 if (FTy->getNumParams())
469 FunctionInnards << ", ...";
470 } else if (!FTy->getNumParams()) {
471 FunctionInnards << "void";
472 }
473 FunctionInnards << ')';
474 std::string tstr = FunctionInnards.str();
475 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000476 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000477 return Out;
478 }
479 case Type::StructTyID: {
480 const StructType *STy = cast<StructType>(Ty);
481 Out << NameSoFar + " {\n";
482 unsigned Idx = 0;
483 for (StructType::element_iterator I = STy->element_begin(),
484 E = STy->element_end(); I != E; ++I) {
485 Out << " ";
486 printType(Out, *I, false, "field" + utostr(Idx++));
487 Out << ";\n";
488 }
489 Out << '}';
490 if (STy->isPacked())
491 Out << " __attribute__ ((packed))";
492 return Out;
493 }
494
495 case Type::PointerTyID: {
496 const PointerType *PTy = cast<PointerType>(Ty);
497 std::string ptrName = "*" + NameSoFar;
498
499 if (isa<ArrayType>(PTy->getElementType()) ||
500 isa<VectorType>(PTy->getElementType()))
501 ptrName = "(" + ptrName + ")";
502
Evan Chengb8a072c2008-01-12 18:53:07 +0000503 if (PAL)
504 // Must be a function ptr cast!
505 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000506 return printType(Out, PTy->getElementType(), false, ptrName);
507 }
508
509 case Type::ArrayTyID: {
510 const ArrayType *ATy = cast<ArrayType>(Ty);
511 unsigned NumElements = ATy->getNumElements();
512 if (NumElements == 0) NumElements = 1;
513 return printType(Out, ATy->getElementType(), false,
514 NameSoFar + "[" + utostr(NumElements) + "]");
515 }
516
517 case Type::VectorTyID: {
518 const VectorType *PTy = cast<VectorType>(Ty);
519 unsigned NumElements = PTy->getNumElements();
520 if (NumElements == 0) NumElements = 1;
521 return printType(Out, PTy->getElementType(), false,
522 NameSoFar + "[" + utostr(NumElements) + "]");
523 }
524
525 case Type::OpaqueTyID: {
526 static int Count = 0;
527 std::string TyName = "struct opaque_" + itostr(Count++);
528 assert(TypeNames.find(Ty) == TypeNames.end());
529 TypeNames[Ty] = TyName;
530 return Out << TyName << ' ' << NameSoFar;
531 }
532 default:
533 assert(0 && "Unhandled case in getTypeProps!");
534 abort();
535 }
536
537 return Out;
538}
539
540void CWriter::printConstantArray(ConstantArray *CPA) {
541
542 // As a special case, print the array as a string if it is an array of
543 // ubytes or an array of sbytes with positive values.
544 //
545 const Type *ETy = CPA->getType()->getElementType();
546 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
547
548 // Make sure the last character is a null char, as automatically added by C
549 if (isString && (CPA->getNumOperands() == 0 ||
550 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
551 isString = false;
552
553 if (isString) {
554 Out << '\"';
555 // Keep track of whether the last number was a hexadecimal escape
556 bool LastWasHex = false;
557
558 // Do not include the last character, which we know is null
559 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
560 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
561
562 // Print it out literally if it is a printable character. The only thing
563 // to be careful about is when the last letter output was a hex escape
564 // code, in which case we have to be careful not to print out hex digits
565 // explicitly (the C compiler thinks it is a continuation of the previous
566 // character, sheesh...)
567 //
568 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
569 LastWasHex = false;
570 if (C == '"' || C == '\\')
571 Out << "\\" << C;
572 else
573 Out << C;
574 } else {
575 LastWasHex = false;
576 switch (C) {
577 case '\n': Out << "\\n"; break;
578 case '\t': Out << "\\t"; break;
579 case '\r': Out << "\\r"; break;
580 case '\v': Out << "\\v"; break;
581 case '\a': Out << "\\a"; break;
582 case '\"': Out << "\\\""; break;
583 case '\'': Out << "\\\'"; break;
584 default:
585 Out << "\\x";
586 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
587 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
588 LastWasHex = true;
589 break;
590 }
591 }
592 }
593 Out << '\"';
594 } else {
595 Out << '{';
596 if (CPA->getNumOperands()) {
597 Out << ' ';
598 printConstant(cast<Constant>(CPA->getOperand(0)));
599 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
600 Out << ", ";
601 printConstant(cast<Constant>(CPA->getOperand(i)));
602 }
603 }
604 Out << " }";
605 }
606}
607
608void CWriter::printConstantVector(ConstantVector *CP) {
609 Out << '{';
610 if (CP->getNumOperands()) {
611 Out << ' ';
612 printConstant(cast<Constant>(CP->getOperand(0)));
613 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
614 Out << ", ";
615 printConstant(cast<Constant>(CP->getOperand(i)));
616 }
617 }
618 Out << " }";
619}
620
621// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
622// textually as a double (rather than as a reference to a stack-allocated
623// variable). We decide this by converting CFP to a string and back into a
624// double, and then checking whether the conversion results in a bit-equal
625// double to the original value of CFP. This depends on us and the target C
626// compiler agreeing on the conversion process (which is pretty likely since we
627// only deal in IEEE FP).
628//
629static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000630 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000631 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
632 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000633 APFloat APF = APFloat(CFP->getValueAPF()); // copy
634 if (CFP->getType()==Type::FloatTy)
635 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000636#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
637 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000638 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639 if (!strncmp(Buffer, "0x", 2) ||
640 !strncmp(Buffer, "-0x", 3) ||
641 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000642 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000643 return false;
644#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000645 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000646
647 while (StrVal[0] == ' ')
648 StrVal.erase(StrVal.begin());
649
650 // Check to make sure that the stringized number is not some string like "Inf"
651 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
652 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
653 ((StrVal[0] == '-' || StrVal[0] == '+') &&
654 (StrVal[1] >= '0' && StrVal[1] <= '9')))
655 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000656 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000657 return false;
658#endif
659}
660
661/// Print out the casting for a cast operation. This does the double casting
662/// necessary for conversion to the destination type, if necessary.
663/// @brief Print a cast
664void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
665 // Print the destination type cast
666 switch (opc) {
667 case Instruction::UIToFP:
668 case Instruction::SIToFP:
669 case Instruction::IntToPtr:
670 case Instruction::Trunc:
671 case Instruction::BitCast:
672 case Instruction::FPExt:
673 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
674 Out << '(';
675 printType(Out, DstTy);
676 Out << ')';
677 break;
678 case Instruction::ZExt:
679 case Instruction::PtrToInt:
680 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
681 Out << '(';
682 printSimpleType(Out, DstTy, false);
683 Out << ')';
684 break;
685 case Instruction::SExt:
686 case Instruction::FPToSI: // For these, make sure we get a signed dest
687 Out << '(';
688 printSimpleType(Out, DstTy, true);
689 Out << ')';
690 break;
691 default:
692 assert(0 && "Invalid cast opcode");
693 }
694
695 // Print the source type cast
696 switch (opc) {
697 case Instruction::UIToFP:
698 case Instruction::ZExt:
699 Out << '(';
700 printSimpleType(Out, SrcTy, false);
701 Out << ')';
702 break;
703 case Instruction::SIToFP:
704 case Instruction::SExt:
705 Out << '(';
706 printSimpleType(Out, SrcTy, true);
707 Out << ')';
708 break;
709 case Instruction::IntToPtr:
710 case Instruction::PtrToInt:
711 // Avoid "cast to pointer from integer of different size" warnings
712 Out << "(unsigned long)";
713 break;
714 case Instruction::Trunc:
715 case Instruction::BitCast:
716 case Instruction::FPExt:
717 case Instruction::FPTrunc:
718 case Instruction::FPToSI:
719 case Instruction::FPToUI:
720 break; // These don't need a source cast.
721 default:
722 assert(0 && "Invalid cast opcode");
723 break;
724 }
725}
726
727// printConstant - The LLVM Constant to C Constant converter.
728void CWriter::printConstant(Constant *CPV) {
729 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
730 switch (CE->getOpcode()) {
731 case Instruction::Trunc:
732 case Instruction::ZExt:
733 case Instruction::SExt:
734 case Instruction::FPTrunc:
735 case Instruction::FPExt:
736 case Instruction::UIToFP:
737 case Instruction::SIToFP:
738 case Instruction::FPToUI:
739 case Instruction::FPToSI:
740 case Instruction::PtrToInt:
741 case Instruction::IntToPtr:
742 case Instruction::BitCast:
743 Out << "(";
744 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
745 if (CE->getOpcode() == Instruction::SExt &&
746 CE->getOperand(0)->getType() == Type::Int1Ty) {
747 // Make sure we really sext from bool here by subtracting from 0
748 Out << "0-";
749 }
750 printConstant(CE->getOperand(0));
751 if (CE->getType() == Type::Int1Ty &&
752 (CE->getOpcode() == Instruction::Trunc ||
753 CE->getOpcode() == Instruction::FPToUI ||
754 CE->getOpcode() == Instruction::FPToSI ||
755 CE->getOpcode() == Instruction::PtrToInt)) {
756 // Make sure we really truncate to bool here by anding with 1
757 Out << "&1u";
758 }
759 Out << ')';
760 return;
761
762 case Instruction::GetElementPtr:
763 Out << "(&(";
764 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
765 gep_type_end(CPV));
766 Out << "))";
767 return;
768 case Instruction::Select:
769 Out << '(';
770 printConstant(CE->getOperand(0));
771 Out << '?';
772 printConstant(CE->getOperand(1));
773 Out << ':';
774 printConstant(CE->getOperand(2));
775 Out << ')';
776 return;
777 case Instruction::Add:
778 case Instruction::Sub:
779 case Instruction::Mul:
780 case Instruction::SDiv:
781 case Instruction::UDiv:
782 case Instruction::FDiv:
783 case Instruction::URem:
784 case Instruction::SRem:
785 case Instruction::FRem:
786 case Instruction::And:
787 case Instruction::Or:
788 case Instruction::Xor:
789 case Instruction::ICmp:
790 case Instruction::Shl:
791 case Instruction::LShr:
792 case Instruction::AShr:
793 {
794 Out << '(';
795 bool NeedsClosingParens = printConstExprCast(CE);
796 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
797 switch (CE->getOpcode()) {
798 case Instruction::Add: Out << " + "; break;
799 case Instruction::Sub: Out << " - "; break;
800 case Instruction::Mul: Out << " * "; break;
801 case Instruction::URem:
802 case Instruction::SRem:
803 case Instruction::FRem: Out << " % "; break;
804 case Instruction::UDiv:
805 case Instruction::SDiv:
806 case Instruction::FDiv: Out << " / "; break;
807 case Instruction::And: Out << " & "; break;
808 case Instruction::Or: Out << " | "; break;
809 case Instruction::Xor: Out << " ^ "; break;
810 case Instruction::Shl: Out << " << "; break;
811 case Instruction::LShr:
812 case Instruction::AShr: Out << " >> "; break;
813 case Instruction::ICmp:
814 switch (CE->getPredicate()) {
815 case ICmpInst::ICMP_EQ: Out << " == "; break;
816 case ICmpInst::ICMP_NE: Out << " != "; break;
817 case ICmpInst::ICMP_SLT:
818 case ICmpInst::ICMP_ULT: Out << " < "; break;
819 case ICmpInst::ICMP_SLE:
820 case ICmpInst::ICMP_ULE: Out << " <= "; break;
821 case ICmpInst::ICMP_SGT:
822 case ICmpInst::ICMP_UGT: Out << " > "; break;
823 case ICmpInst::ICMP_SGE:
824 case ICmpInst::ICMP_UGE: Out << " >= "; break;
825 default: assert(0 && "Illegal ICmp predicate");
826 }
827 break;
828 default: assert(0 && "Illegal opcode here!");
829 }
830 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
831 if (NeedsClosingParens)
832 Out << "))";
833 Out << ')';
834 return;
835 }
836 case Instruction::FCmp: {
837 Out << '(';
838 bool NeedsClosingParens = printConstExprCast(CE);
839 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
840 Out << "0";
841 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
842 Out << "1";
843 else {
844 const char* op = 0;
845 switch (CE->getPredicate()) {
846 default: assert(0 && "Illegal FCmp predicate");
847 case FCmpInst::FCMP_ORD: op = "ord"; break;
848 case FCmpInst::FCMP_UNO: op = "uno"; break;
849 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
850 case FCmpInst::FCMP_UNE: op = "une"; break;
851 case FCmpInst::FCMP_ULT: op = "ult"; break;
852 case FCmpInst::FCMP_ULE: op = "ule"; break;
853 case FCmpInst::FCMP_UGT: op = "ugt"; break;
854 case FCmpInst::FCMP_UGE: op = "uge"; break;
855 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
856 case FCmpInst::FCMP_ONE: op = "one"; break;
857 case FCmpInst::FCMP_OLT: op = "olt"; break;
858 case FCmpInst::FCMP_OLE: op = "ole"; break;
859 case FCmpInst::FCMP_OGT: op = "ogt"; break;
860 case FCmpInst::FCMP_OGE: op = "oge"; break;
861 }
862 Out << "llvm_fcmp_" << op << "(";
863 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
864 Out << ", ";
865 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
866 Out << ")";
867 }
868 if (NeedsClosingParens)
869 Out << "))";
870 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000871 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000872 }
873 default:
874 cerr << "CWriter Error: Unhandled constant expression: "
875 << *CE << "\n";
876 abort();
877 }
878 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
879 Out << "((";
880 printType(Out, CPV->getType()); // sign doesn't matter
881 Out << ")/*UNDEF*/0)";
882 return;
883 }
884
885 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
886 const Type* Ty = CI->getType();
887 if (Ty == Type::Int1Ty)
888 Out << (CI->getZExtValue() ? '1' : '0') ;
889 else {
890 Out << "((";
891 printSimpleType(Out, Ty, false) << ')';
892 if (CI->isMinValue(true))
893 Out << CI->getZExtValue() << 'u';
894 else
895 Out << CI->getSExtValue();
896 if (Ty->getPrimitiveSizeInBits() > 32)
897 Out << "ll";
898 Out << ')';
899 }
900 return;
901 }
902
903 switch (CPV->getType()->getTypeID()) {
904 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000905 case Type::DoubleTyID:
906 case Type::X86_FP80TyID:
907 case Type::PPC_FP128TyID:
908 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909 ConstantFP *FPC = cast<ConstantFP>(CPV);
910 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
911 if (I != FPConstantMap.end()) {
912 // Because of FP precision problems we must load from a stack allocated
913 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000914 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
915 FPC->getType() == Type::DoubleTy ? "double" :
916 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000917 << "*)&FPConstant" << I->second << ')';
918 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000919 assert(FPC->getType() == Type::FloatTy ||
920 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000921 double V = FPC->getType() == Type::FloatTy ?
922 FPC->getValueAPF().convertToFloat() :
923 FPC->getValueAPF().convertToDouble();
924 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000925 // The value is NaN
926
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000927 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
929 // it's 0x7ff4.
930 const unsigned long QuietNaN = 0x7ff8UL;
931 //const unsigned long SignalNaN = 0x7ff4UL;
932
933 // We need to grab the first part of the FP #
934 char Buffer[100];
935
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000936 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000937 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
938
939 std::string Num(&Buffer[0], &Buffer[6]);
940 unsigned long Val = strtoul(Num.c_str(), 0, 16);
941
942 if (FPC->getType() == Type::FloatTy)
943 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
944 << Buffer << "\") /*nan*/ ";
945 else
946 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
947 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000948 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000949 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000950 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000951 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
952 << " /*inf*/ ";
953 } else {
954 std::string Num;
955#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
956 // Print out the constant as a floating point number.
957 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000958 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000959 Num = Buffer;
960#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000961 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000962#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000963 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964 }
965 }
966 break;
967 }
968
969 case Type::ArrayTyID:
970 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
971 const ArrayType *AT = cast<ArrayType>(CPV->getType());
972 Out << '{';
973 if (AT->getNumElements()) {
974 Out << ' ';
975 Constant *CZ = Constant::getNullValue(AT->getElementType());
976 printConstant(CZ);
977 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
978 Out << ", ";
979 printConstant(CZ);
980 }
981 }
982 Out << " }";
983 } else {
984 printConstantArray(cast<ConstantArray>(CPV));
985 }
986 break;
987
988 case Type::VectorTyID:
989 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
990 const VectorType *AT = cast<VectorType>(CPV->getType());
991 Out << '{';
992 if (AT->getNumElements()) {
993 Out << ' ';
994 Constant *CZ = Constant::getNullValue(AT->getElementType());
995 printConstant(CZ);
996 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
997 Out << ", ";
998 printConstant(CZ);
999 }
1000 }
1001 Out << " }";
1002 } else {
1003 printConstantVector(cast<ConstantVector>(CPV));
1004 }
1005 break;
1006
1007 case Type::StructTyID:
1008 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1009 const StructType *ST = cast<StructType>(CPV->getType());
1010 Out << '{';
1011 if (ST->getNumElements()) {
1012 Out << ' ';
1013 printConstant(Constant::getNullValue(ST->getElementType(0)));
1014 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1015 Out << ", ";
1016 printConstant(Constant::getNullValue(ST->getElementType(i)));
1017 }
1018 }
1019 Out << " }";
1020 } else {
1021 Out << '{';
1022 if (CPV->getNumOperands()) {
1023 Out << ' ';
1024 printConstant(cast<Constant>(CPV->getOperand(0)));
1025 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1026 Out << ", ";
1027 printConstant(cast<Constant>(CPV->getOperand(i)));
1028 }
1029 }
1030 Out << " }";
1031 }
1032 break;
1033
1034 case Type::PointerTyID:
1035 if (isa<ConstantPointerNull>(CPV)) {
1036 Out << "((";
1037 printType(Out, CPV->getType()); // sign doesn't matter
1038 Out << ")/*NULL*/0)";
1039 break;
1040 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1041 writeOperand(GV);
1042 break;
1043 }
1044 // FALL THROUGH
1045 default:
1046 cerr << "Unknown constant type: " << *CPV << "\n";
1047 abort();
1048 }
1049}
1050
1051// Some constant expressions need to be casted back to the original types
1052// because their operands were casted to the expected type. This function takes
1053// care of detecting that case and printing the cast for the ConstantExpr.
1054bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1055 bool NeedsExplicitCast = false;
1056 const Type *Ty = CE->getOperand(0)->getType();
1057 bool TypeIsSigned = false;
1058 switch (CE->getOpcode()) {
1059 case Instruction::LShr:
1060 case Instruction::URem:
1061 case Instruction::UDiv: NeedsExplicitCast = true; break;
1062 case Instruction::AShr:
1063 case Instruction::SRem:
1064 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1065 case Instruction::SExt:
1066 Ty = CE->getType();
1067 NeedsExplicitCast = true;
1068 TypeIsSigned = true;
1069 break;
1070 case Instruction::ZExt:
1071 case Instruction::Trunc:
1072 case Instruction::FPTrunc:
1073 case Instruction::FPExt:
1074 case Instruction::UIToFP:
1075 case Instruction::SIToFP:
1076 case Instruction::FPToUI:
1077 case Instruction::FPToSI:
1078 case Instruction::PtrToInt:
1079 case Instruction::IntToPtr:
1080 case Instruction::BitCast:
1081 Ty = CE->getType();
1082 NeedsExplicitCast = true;
1083 break;
1084 default: break;
1085 }
1086 if (NeedsExplicitCast) {
1087 Out << "((";
1088 if (Ty->isInteger() && Ty != Type::Int1Ty)
1089 printSimpleType(Out, Ty, TypeIsSigned);
1090 else
1091 printType(Out, Ty); // not integer, sign doesn't matter
1092 Out << ")(";
1093 }
1094 return NeedsExplicitCast;
1095}
1096
1097// Print a constant assuming that it is the operand for a given Opcode. The
1098// opcodes that care about sign need to cast their operands to the expected
1099// type before the operation proceeds. This function does the casting.
1100void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1101
1102 // Extract the operand's type, we'll need it.
1103 const Type* OpTy = CPV->getType();
1104
1105 // Indicate whether to do the cast or not.
1106 bool shouldCast = false;
1107 bool typeIsSigned = false;
1108
1109 // Based on the Opcode for which this Constant is being written, determine
1110 // the new type to which the operand should be casted by setting the value
1111 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1112 // casted below.
1113 switch (Opcode) {
1114 default:
1115 // for most instructions, it doesn't matter
1116 break;
1117 case Instruction::LShr:
1118 case Instruction::UDiv:
1119 case Instruction::URem:
1120 shouldCast = true;
1121 break;
1122 case Instruction::AShr:
1123 case Instruction::SDiv:
1124 case Instruction::SRem:
1125 shouldCast = true;
1126 typeIsSigned = true;
1127 break;
1128 }
1129
1130 // Write out the casted constant if we should, otherwise just write the
1131 // operand.
1132 if (shouldCast) {
1133 Out << "((";
1134 printSimpleType(Out, OpTy, typeIsSigned);
1135 Out << ")";
1136 printConstant(CPV);
1137 Out << ")";
1138 } else
1139 printConstant(CPV);
1140}
1141
1142std::string CWriter::GetValueName(const Value *Operand) {
1143 std::string Name;
1144
1145 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1146 std::string VarName;
1147
1148 Name = Operand->getName();
1149 VarName.reserve(Name.capacity());
1150
1151 for (std::string::iterator I = Name.begin(), E = Name.end();
1152 I != E; ++I) {
1153 char ch = *I;
1154
1155 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1156 (ch >= '0' && ch <= '9') || ch == '_'))
1157 VarName += '_';
1158 else
1159 VarName += ch;
1160 }
1161
1162 Name = "llvm_cbe_" + VarName;
1163 } else {
1164 Name = Mang->getValueName(Operand);
1165 }
1166
1167 return Name;
1168}
1169
1170void CWriter::writeOperandInternal(Value *Operand) {
1171 if (Instruction *I = dyn_cast<Instruction>(Operand))
1172 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1173 // Should we inline this instruction to build a tree?
1174 Out << '(';
1175 visit(*I);
1176 Out << ')';
1177 return;
1178 }
1179
1180 Constant* CPV = dyn_cast<Constant>(Operand);
1181
1182 if (CPV && !isa<GlobalValue>(CPV))
1183 printConstant(CPV);
1184 else
1185 Out << GetValueName(Operand);
1186}
1187
1188void CWriter::writeOperandRaw(Value *Operand) {
1189 Constant* CPV = dyn_cast<Constant>(Operand);
1190 if (CPV && !isa<GlobalValue>(CPV)) {
1191 printConstant(CPV);
1192 } else {
1193 Out << GetValueName(Operand);
1194 }
1195}
1196
1197void CWriter::writeOperand(Value *Operand) {
1198 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1199 Out << "(&"; // Global variables are referenced as their addresses by llvm
1200
1201 writeOperandInternal(Operand);
1202
1203 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1204 Out << ')';
1205}
1206
1207// Some instructions need to have their result value casted back to the
1208// original types because their operands were casted to the expected type.
1209// This function takes care of detecting that case and printing the cast
1210// for the Instruction.
1211bool CWriter::writeInstructionCast(const Instruction &I) {
1212 const Type *Ty = I.getOperand(0)->getType();
1213 switch (I.getOpcode()) {
1214 case Instruction::LShr:
1215 case Instruction::URem:
1216 case Instruction::UDiv:
1217 Out << "((";
1218 printSimpleType(Out, Ty, false);
1219 Out << ")(";
1220 return true;
1221 case Instruction::AShr:
1222 case Instruction::SRem:
1223 case Instruction::SDiv:
1224 Out << "((";
1225 printSimpleType(Out, Ty, true);
1226 Out << ")(";
1227 return true;
1228 default: break;
1229 }
1230 return false;
1231}
1232
1233// Write the operand with a cast to another type based on the Opcode being used.
1234// This will be used in cases where an instruction has specific type
1235// requirements (usually signedness) for its operands.
1236void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1237
1238 // Extract the operand's type, we'll need it.
1239 const Type* OpTy = Operand->getType();
1240
1241 // Indicate whether to do the cast or not.
1242 bool shouldCast = false;
1243
1244 // Indicate whether the cast should be to a signed type or not.
1245 bool castIsSigned = false;
1246
1247 // Based on the Opcode for which this Operand is being written, determine
1248 // the new type to which the operand should be casted by setting the value
1249 // of OpTy. If we change OpTy, also set shouldCast to true.
1250 switch (Opcode) {
1251 default:
1252 // for most instructions, it doesn't matter
1253 break;
1254 case Instruction::LShr:
1255 case Instruction::UDiv:
1256 case Instruction::URem: // Cast to unsigned first
1257 shouldCast = true;
1258 castIsSigned = false;
1259 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001260 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001261 case Instruction::AShr:
1262 case Instruction::SDiv:
1263 case Instruction::SRem: // Cast to signed first
1264 shouldCast = true;
1265 castIsSigned = true;
1266 break;
1267 }
1268
1269 // Write out the casted operand if we should, otherwise just write the
1270 // operand.
1271 if (shouldCast) {
1272 Out << "((";
1273 printSimpleType(Out, OpTy, castIsSigned);
1274 Out << ")";
1275 writeOperand(Operand);
1276 Out << ")";
1277 } else
1278 writeOperand(Operand);
1279}
1280
1281// Write the operand with a cast to another type based on the icmp predicate
1282// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001283void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1284 // This has to do a cast to ensure the operand has the right signedness.
1285 // Also, if the operand is a pointer, we make sure to cast to an integer when
1286 // doing the comparison both for signedness and so that the C compiler doesn't
1287 // optimize things like "p < NULL" to false (p may contain an integer value
1288 // f.e.).
1289 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001290
1291 // Write out the casted operand if we should, otherwise just write the
1292 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001293 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001294 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001295 return;
1296 }
1297
1298 // Should this be a signed comparison? If so, convert to signed.
1299 bool castIsSigned = Cmp.isSignedPredicate();
1300
1301 // If the operand was a pointer, convert to a large integer type.
1302 const Type* OpTy = Operand->getType();
1303 if (isa<PointerType>(OpTy))
1304 OpTy = TD->getIntPtrType();
1305
1306 Out << "((";
1307 printSimpleType(Out, OpTy, castIsSigned);
1308 Out << ")";
1309 writeOperand(Operand);
1310 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311}
1312
1313// generateCompilerSpecificCode - This is where we add conditional compilation
1314// directives to cater to specific compilers as need be.
1315//
1316static void generateCompilerSpecificCode(std::ostream& Out) {
1317 // Alloca is hard to get, and we don't want to include stdlib.h here.
1318 Out << "/* get a declaration for alloca */\n"
1319 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1320 << "#define alloca(x) __builtin_alloca((x))\n"
1321 << "#define _alloca(x) __builtin_alloca((x))\n"
1322 << "#elif defined(__APPLE__)\n"
1323 << "extern void *__builtin_alloca(unsigned long);\n"
1324 << "#define alloca(x) __builtin_alloca(x)\n"
1325 << "#define longjmp _longjmp\n"
1326 << "#define setjmp _setjmp\n"
1327 << "#elif defined(__sun__)\n"
1328 << "#if defined(__sparcv9)\n"
1329 << "extern void *__builtin_alloca(unsigned long);\n"
1330 << "#else\n"
1331 << "extern void *__builtin_alloca(unsigned int);\n"
1332 << "#endif\n"
1333 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001334 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001335 << "#define alloca(x) __builtin_alloca(x)\n"
1336 << "#elif defined(_MSC_VER)\n"
1337 << "#define inline _inline\n"
1338 << "#define alloca(x) _alloca(x)\n"
1339 << "#else\n"
1340 << "#include <alloca.h>\n"
1341 << "#endif\n\n";
1342
1343 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1344 // If we aren't being compiled with GCC, just drop these attributes.
1345 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1346 << "#define __attribute__(X)\n"
1347 << "#endif\n\n";
1348
1349 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1350 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1351 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1352 << "#elif defined(__GNUC__)\n"
1353 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1354 << "#else\n"
1355 << "#define __EXTERNAL_WEAK__\n"
1356 << "#endif\n\n";
1357
1358 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1359 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1360 << "#define __ATTRIBUTE_WEAK__\n"
1361 << "#elif defined(__GNUC__)\n"
1362 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1363 << "#else\n"
1364 << "#define __ATTRIBUTE_WEAK__\n"
1365 << "#endif\n\n";
1366
1367 // Add hidden visibility support. FIXME: APPLE_CC?
1368 Out << "#if defined(__GNUC__)\n"
1369 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1370 << "#endif\n\n";
1371
1372 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1373 // From the GCC documentation:
1374 //
1375 // double __builtin_nan (const char *str)
1376 //
1377 // This is an implementation of the ISO C99 function nan.
1378 //
1379 // Since ISO C99 defines this function in terms of strtod, which we do
1380 // not implement, a description of the parsing is in order. The string is
1381 // parsed as by strtol; that is, the base is recognized by leading 0 or
1382 // 0x prefixes. The number parsed is placed in the significand such that
1383 // the least significant bit of the number is at the least significant
1384 // bit of the significand. The number is truncated to fit the significand
1385 // field provided. The significand is forced to be a quiet NaN.
1386 //
1387 // This function, if given a string literal, is evaluated early enough
1388 // that it is considered a compile-time constant.
1389 //
1390 // float __builtin_nanf (const char *str)
1391 //
1392 // Similar to __builtin_nan, except the return type is float.
1393 //
1394 // double __builtin_inf (void)
1395 //
1396 // Similar to __builtin_huge_val, except a warning is generated if the
1397 // target floating-point format does not support infinities. This
1398 // function is suitable for implementing the ISO C99 macro INFINITY.
1399 //
1400 // float __builtin_inff (void)
1401 //
1402 // Similar to __builtin_inf, except the return type is float.
1403 Out << "#ifdef __GNUC__\n"
1404 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1405 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1406 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1407 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1408 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1409 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1410 << "#define LLVM_PREFETCH(addr,rw,locality) "
1411 "__builtin_prefetch(addr,rw,locality)\n"
1412 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1413 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1414 << "#define LLVM_ASM __asm__\n"
1415 << "#else\n"
1416 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1417 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1418 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1419 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1420 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1421 << "#define LLVM_INFF 0.0F /* Float */\n"
1422 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1423 << "#define __ATTRIBUTE_CTOR__\n"
1424 << "#define __ATTRIBUTE_DTOR__\n"
1425 << "#define LLVM_ASM(X)\n"
1426 << "#endif\n\n";
1427
1428 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1429 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1430 << "#define __builtin_stack_restore(X) /* noop */\n"
1431 << "#endif\n\n";
1432
1433 // Output target-specific code that should be inserted into main.
1434 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001435}
1436
1437/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1438/// the StaticTors set.
1439static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1440 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1441 if (!InitList) return;
1442
1443 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1444 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1445 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1446
1447 if (CS->getOperand(1)->isNullValue())
1448 return; // Found a null terminator, exit printing.
1449 Constant *FP = CS->getOperand(1);
1450 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1451 if (CE->isCast())
1452 FP = CE->getOperand(0);
1453 if (Function *F = dyn_cast<Function>(FP))
1454 StaticTors.insert(F);
1455 }
1456}
1457
1458enum SpecialGlobalClass {
1459 NotSpecial = 0,
1460 GlobalCtors, GlobalDtors,
1461 NotPrinted
1462};
1463
1464/// getGlobalVariableClass - If this is a global that is specially recognized
1465/// by LLVM, return a code that indicates how we should handle it.
1466static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1467 // If this is a global ctors/dtors list, handle it now.
1468 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1469 if (GV->getName() == "llvm.global_ctors")
1470 return GlobalCtors;
1471 else if (GV->getName() == "llvm.global_dtors")
1472 return GlobalDtors;
1473 }
1474
1475 // Otherwise, it it is other metadata, don't print it. This catches things
1476 // like debug information.
1477 if (GV->getSection() == "llvm.metadata")
1478 return NotPrinted;
1479
1480 return NotSpecial;
1481}
1482
1483
1484bool CWriter::doInitialization(Module &M) {
1485 // Initialize
1486 TheModule = &M;
1487
1488 TD = new TargetData(&M);
1489 IL = new IntrinsicLowering(*TD);
1490 IL->AddPrototypes(M);
1491
1492 // Ensure that all structure types have names...
1493 Mang = new Mangler(M);
1494 Mang->markCharUnacceptable('.');
1495
1496 // Keep track of which functions are static ctors/dtors so they can have
1497 // an attribute added to their prototypes.
1498 std::set<Function*> StaticCtors, StaticDtors;
1499 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1500 I != E; ++I) {
1501 switch (getGlobalVariableClass(I)) {
1502 default: break;
1503 case GlobalCtors:
1504 FindStaticTors(I, StaticCtors);
1505 break;
1506 case GlobalDtors:
1507 FindStaticTors(I, StaticDtors);
1508 break;
1509 }
1510 }
1511
1512 // get declaration for alloca
1513 Out << "/* Provide Declarations */\n";
1514 Out << "#include <stdarg.h>\n"; // Varargs support
1515 Out << "#include <setjmp.h>\n"; // Unwind support
1516 generateCompilerSpecificCode(Out);
1517
1518 // Provide a definition for `bool' if not compiling with a C++ compiler.
1519 Out << "\n"
1520 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1521
1522 << "\n\n/* Support for floating point constants */\n"
1523 << "typedef unsigned long long ConstantDoubleTy;\n"
1524 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001525 << "typedef struct { unsigned long long f1; unsigned short f2; "
1526 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001527 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001528 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1529 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001530 << "\n\n/* Global Declarations */\n";
1531
1532 // First output all the declarations for the program, because C requires
1533 // Functions & globals to be declared before they are used.
1534 //
1535
1536 // Loop over the symbol table, emitting all named constants...
1537 printModuleTypes(M.getTypeSymbolTable());
1538
1539 // Global variable declarations...
1540 if (!M.global_empty()) {
1541 Out << "\n/* External Global Variable Declarations */\n";
1542 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1543 I != E; ++I) {
1544
1545 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1546 Out << "extern ";
1547 else if (I->hasDLLImportLinkage())
1548 Out << "__declspec(dllimport) ";
1549 else
1550 continue; // Internal Global
1551
1552 // Thread Local Storage
1553 if (I->isThreadLocal())
1554 Out << "__thread ";
1555
1556 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1557
1558 if (I->hasExternalWeakLinkage())
1559 Out << " __EXTERNAL_WEAK__";
1560 Out << ";\n";
1561 }
1562 }
1563
1564 // Function declarations
1565 Out << "\n/* Function Declarations */\n";
1566 Out << "double fmod(double, double);\n"; // Support for FP rem
1567 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001568 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001569
1570 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1571 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001572 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001573 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1574 if (I->hasExternalWeakLinkage())
1575 Out << "extern ";
1576 printFunctionSignature(I, true);
1577 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1578 Out << " __ATTRIBUTE_WEAK__";
1579 if (I->hasExternalWeakLinkage())
1580 Out << " __EXTERNAL_WEAK__";
1581 if (StaticCtors.count(I))
1582 Out << " __ATTRIBUTE_CTOR__";
1583 if (StaticDtors.count(I))
1584 Out << " __ATTRIBUTE_DTOR__";
1585 if (I->hasHiddenVisibility())
1586 Out << " __HIDDEN__";
1587
1588 if (I->hasName() && I->getName()[0] == 1)
1589 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1590
1591 Out << ";\n";
1592 }
1593 }
1594
1595 // Output the global variable declarations
1596 if (!M.global_empty()) {
1597 Out << "\n\n/* Global Variable Declarations */\n";
1598 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1599 I != E; ++I)
1600 if (!I->isDeclaration()) {
1601 // Ignore special globals, such as debug info.
1602 if (getGlobalVariableClass(I))
1603 continue;
1604
1605 if (I->hasInternalLinkage())
1606 Out << "static ";
1607 else
1608 Out << "extern ";
1609
1610 // Thread Local Storage
1611 if (I->isThreadLocal())
1612 Out << "__thread ";
1613
1614 printType(Out, I->getType()->getElementType(), false,
1615 GetValueName(I));
1616
1617 if (I->hasLinkOnceLinkage())
1618 Out << " __attribute__((common))";
1619 else if (I->hasWeakLinkage())
1620 Out << " __ATTRIBUTE_WEAK__";
1621 else if (I->hasExternalWeakLinkage())
1622 Out << " __EXTERNAL_WEAK__";
1623 if (I->hasHiddenVisibility())
1624 Out << " __HIDDEN__";
1625 Out << ";\n";
1626 }
1627 }
1628
1629 // Output the global variable definitions and contents...
1630 if (!M.global_empty()) {
1631 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1632 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1633 I != E; ++I)
1634 if (!I->isDeclaration()) {
1635 // Ignore special globals, such as debug info.
1636 if (getGlobalVariableClass(I))
1637 continue;
1638
1639 if (I->hasInternalLinkage())
1640 Out << "static ";
1641 else if (I->hasDLLImportLinkage())
1642 Out << "__declspec(dllimport) ";
1643 else if (I->hasDLLExportLinkage())
1644 Out << "__declspec(dllexport) ";
1645
1646 // Thread Local Storage
1647 if (I->isThreadLocal())
1648 Out << "__thread ";
1649
1650 printType(Out, I->getType()->getElementType(), false,
1651 GetValueName(I));
1652 if (I->hasLinkOnceLinkage())
1653 Out << " __attribute__((common))";
1654 else if (I->hasWeakLinkage())
1655 Out << " __ATTRIBUTE_WEAK__";
1656
1657 if (I->hasHiddenVisibility())
1658 Out << " __HIDDEN__";
1659
1660 // If the initializer is not null, emit the initializer. If it is null,
1661 // we try to avoid emitting large amounts of zeros. The problem with
1662 // this, however, occurs when the variable has weak linkage. In this
1663 // case, the assembler will complain about the variable being both weak
1664 // and common, so we disable this optimization.
1665 if (!I->getInitializer()->isNullValue()) {
1666 Out << " = " ;
1667 writeOperand(I->getInitializer());
1668 } else if (I->hasWeakLinkage()) {
1669 // We have to specify an initializer, but it doesn't have to be
1670 // complete. If the value is an aggregate, print out { 0 }, and let
1671 // the compiler figure out the rest of the zeros.
1672 Out << " = " ;
1673 if (isa<StructType>(I->getInitializer()->getType()) ||
1674 isa<ArrayType>(I->getInitializer()->getType()) ||
1675 isa<VectorType>(I->getInitializer()->getType())) {
1676 Out << "{ 0 }";
1677 } else {
1678 // Just print it out normally.
1679 writeOperand(I->getInitializer());
1680 }
1681 }
1682 Out << ";\n";
1683 }
1684 }
1685
1686 if (!M.empty())
1687 Out << "\n\n/* Function Bodies */\n";
1688
1689 // Emit some helper functions for dealing with FCMP instruction's
1690 // predicates
1691 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1692 Out << "return X == X && Y == Y; }\n";
1693 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1694 Out << "return X != X || Y != Y; }\n";
1695 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1696 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1697 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1698 Out << "return X != Y; }\n";
1699 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1700 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1701 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1702 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1703 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1704 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1705 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1706 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1707 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1708 Out << "return X == Y ; }\n";
1709 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1710 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1711 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1712 Out << "return X < Y ; }\n";
1713 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1714 Out << "return X > Y ; }\n";
1715 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1716 Out << "return X <= Y ; }\n";
1717 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1718 Out << "return X >= Y ; }\n";
1719 return false;
1720}
1721
1722
1723/// Output all floating point constants that cannot be printed accurately...
1724void CWriter::printFloatingPointConstants(Function &F) {
1725 // Scan the module for floating point constants. If any FP constant is used
1726 // in the function, we want to redirect it here so that we do not depend on
1727 // the precision of the printed form, unless the printed form preserves
1728 // precision.
1729 //
1730 static unsigned FPCounter = 0;
1731 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1732 I != E; ++I)
1733 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1734 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1735 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001736 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1737
1738 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001739 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001740 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001741 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001742 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001743 << "ULL; /* " << Val << " */\n";
1744 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001745 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001746 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1747 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001748 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001749 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001750 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001751 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001752 // api needed to prevent premature destruction
1753 APInt api = FPC->getValueAPF().convertToAPInt();
1754 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001755 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1756 << " = { 0x" << std::hex
1757 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1758 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1759 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001760 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1761 APInt api = FPC->getValueAPF().convertToAPInt();
1762 const uint64_t *p = api.getRawData();
1763 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1764 << " = { 0x" << std::hex
1765 << p[0] << ", 0x" << p[1]
1766 << "}; /* Long double constant */\n" << std::dec;
1767
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768 } else
1769 assert(0 && "Unknown float type!");
1770 }
1771
1772 Out << '\n';
1773}
1774
1775
1776/// printSymbolTable - Run through symbol table looking for type names. If a
1777/// type name is found, emit its declaration...
1778///
1779void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1780 Out << "/* Helper union for bitcasts */\n";
1781 Out << "typedef union {\n";
1782 Out << " unsigned int Int32;\n";
1783 Out << " unsigned long long Int64;\n";
1784 Out << " float Float;\n";
1785 Out << " double Double;\n";
1786 Out << "} llvmBitCastUnion;\n";
1787
1788 // We are only interested in the type plane of the symbol table.
1789 TypeSymbolTable::const_iterator I = TST.begin();
1790 TypeSymbolTable::const_iterator End = TST.end();
1791
1792 // If there are no type names, exit early.
1793 if (I == End) return;
1794
1795 // Print out forward declarations for structure types before anything else!
1796 Out << "/* Structure forward decls */\n";
1797 for (; I != End; ++I) {
1798 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1799 Out << Name << ";\n";
1800 TypeNames.insert(std::make_pair(I->second, Name));
1801 }
1802
1803 Out << '\n';
1804
1805 // Now we can print out typedefs. Above, we guaranteed that this can only be
1806 // for struct or opaque types.
1807 Out << "/* Typedefs */\n";
1808 for (I = TST.begin(); I != End; ++I) {
1809 std::string Name = "l_" + Mang->makeNameProper(I->first);
1810 Out << "typedef ";
1811 printType(Out, I->second, false, Name);
1812 Out << ";\n";
1813 }
1814
1815 Out << '\n';
1816
1817 // Keep track of which structures have been printed so far...
1818 std::set<const StructType *> StructPrinted;
1819
1820 // Loop over all structures then push them into the stack so they are
1821 // printed in the correct order.
1822 //
1823 Out << "/* Structure contents */\n";
1824 for (I = TST.begin(); I != End; ++I)
1825 if (const StructType *STy = dyn_cast<StructType>(I->second))
1826 // Only print out used types!
1827 printContainedStructs(STy, StructPrinted);
1828}
1829
1830// Push the struct onto the stack and recursively push all structs
1831// this one depends on.
1832//
1833// TODO: Make this work properly with vector types
1834//
1835void CWriter::printContainedStructs(const Type *Ty,
1836 std::set<const StructType*> &StructPrinted){
1837 // Don't walk through pointers.
1838 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1839
1840 // Print all contained types first.
1841 for (Type::subtype_iterator I = Ty->subtype_begin(),
1842 E = Ty->subtype_end(); I != E; ++I)
1843 printContainedStructs(*I, StructPrinted);
1844
1845 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1846 // Check to see if we have already printed this struct.
1847 if (StructPrinted.insert(STy).second) {
1848 // Print structure type out.
1849 std::string Name = TypeNames[STy];
1850 printType(Out, STy, false, Name, true);
1851 Out << ";\n\n";
1852 }
1853 }
1854}
1855
1856void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1857 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001858 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001859
1860 if (F->hasInternalLinkage()) Out << "static ";
1861 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1862 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1863 switch (F->getCallingConv()) {
1864 case CallingConv::X86_StdCall:
1865 Out << "__stdcall ";
1866 break;
1867 case CallingConv::X86_FastCall:
1868 Out << "__fastcall ";
1869 break;
1870 }
1871
1872 // Loop over the arguments, printing them...
1873 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001874 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001875
1876 std::stringstream FunctionInnards;
1877
1878 // Print out the name...
1879 FunctionInnards << GetValueName(F) << '(';
1880
1881 bool PrintedArg = false;
1882 if (!F->isDeclaration()) {
1883 if (!F->arg_empty()) {
1884 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001885 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001886
1887 // If this is a struct-return function, don't print the hidden
1888 // struct-return argument.
1889 if (isStructReturn) {
1890 assert(I != E && "Invalid struct return function!");
1891 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001892 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001893 }
1894
1895 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896 for (; I != E; ++I) {
1897 if (PrintedArg) FunctionInnards << ", ";
1898 if (I->hasName() || !Prototype)
1899 ArgName = GetValueName(I);
1900 else
1901 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001902 const Type *ArgTy = I->getType();
Evan Cheng17254e62008-01-11 09:12:49 +00001903 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1904 assert(isa<PointerType>(ArgTy));
1905 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1906 const Value *Arg = &(*I);
1907 ByValParams.insert(Arg);
1908 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001909 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001910 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001911 ArgName);
1912 PrintedArg = true;
1913 ++Idx;
1914 }
1915 }
1916 } else {
1917 // Loop over the arguments, printing them.
1918 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001919 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920
1921 // If this is a struct-return function, don't print the hidden
1922 // struct-return argument.
1923 if (isStructReturn) {
1924 assert(I != E && "Invalid struct return function!");
1925 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001926 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001927 }
1928
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001929 for (; I != E; ++I) {
1930 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001931 const Type *ArgTy = *I;
1932 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1933 assert(isa<PointerType>(ArgTy));
1934 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1935 }
1936 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001937 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001938 PrintedArg = true;
1939 ++Idx;
1940 }
1941 }
1942
1943 // Finish printing arguments... if this is a vararg function, print the ...,
1944 // unless there are no known types, in which case, we just emit ().
1945 //
1946 if (FT->isVarArg() && PrintedArg) {
1947 if (PrintedArg) FunctionInnards << ", ";
1948 FunctionInnards << "..."; // Output varargs portion of signature!
1949 } else if (!FT->isVarArg() && !PrintedArg) {
1950 FunctionInnards << "void"; // ret() -> ret(void) in C.
1951 }
1952 FunctionInnards << ')';
1953
1954 // Get the return tpe for the function.
1955 const Type *RetTy;
1956 if (!isStructReturn)
1957 RetTy = F->getReturnType();
1958 else {
1959 // If this is a struct-return function, print the struct-return type.
1960 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1961 }
1962
1963 // Print out the return type and the signature built above.
1964 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001965 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001966 FunctionInnards.str());
1967}
1968
1969static inline bool isFPIntBitCast(const Instruction &I) {
1970 if (!isa<BitCastInst>(I))
1971 return false;
1972 const Type *SrcTy = I.getOperand(0)->getType();
1973 const Type *DstTy = I.getType();
1974 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1975 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1976}
1977
1978void CWriter::printFunction(Function &F) {
1979 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001980 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001981
1982 printFunctionSignature(&F, false);
1983 Out << " {\n";
1984
1985 // If this is a struct return function, handle the result with magic.
1986 if (isStructReturn) {
1987 const Type *StructTy =
1988 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1989 Out << " ";
1990 printType(Out, StructTy, false, "StructReturn");
1991 Out << "; /* Struct return temporary */\n";
1992
1993 Out << " ";
1994 printType(Out, F.arg_begin()->getType(), false,
1995 GetValueName(F.arg_begin()));
1996 Out << " = &StructReturn;\n";
1997 }
1998
1999 bool PrintedVar = false;
2000
2001 // print local variable information for the function
2002 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2003 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2004 Out << " ";
2005 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2006 Out << "; /* Address-exposed local */\n";
2007 PrintedVar = true;
2008 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2009 Out << " ";
2010 printType(Out, I->getType(), false, GetValueName(&*I));
2011 Out << ";\n";
2012
2013 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2014 Out << " ";
2015 printType(Out, I->getType(), false,
2016 GetValueName(&*I)+"__PHI_TEMPORARY");
2017 Out << ";\n";
2018 }
2019 PrintedVar = true;
2020 }
2021 // We need a temporary for the BitCast to use so it can pluck a value out
2022 // of a union to do the BitCast. This is separate from the need for a
2023 // variable to hold the result of the BitCast.
2024 if (isFPIntBitCast(*I)) {
2025 Out << " llvmBitCastUnion " << GetValueName(&*I)
2026 << "__BITCAST_TEMPORARY;\n";
2027 PrintedVar = true;
2028 }
2029 }
2030
2031 if (PrintedVar)
2032 Out << '\n';
2033
2034 if (F.hasExternalLinkage() && F.getName() == "main")
2035 Out << " CODE_FOR_MAIN();\n";
2036
2037 // print the basic blocks
2038 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2039 if (Loop *L = LI->getLoopFor(BB)) {
2040 if (L->getHeader() == BB && L->getParentLoop() == 0)
2041 printLoop(L);
2042 } else {
2043 printBasicBlock(BB);
2044 }
2045 }
2046
2047 Out << "}\n\n";
2048}
2049
2050void CWriter::printLoop(Loop *L) {
2051 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2052 << "' to make GCC happy */\n";
2053 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2054 BasicBlock *BB = L->getBlocks()[i];
2055 Loop *BBLoop = LI->getLoopFor(BB);
2056 if (BBLoop == L)
2057 printBasicBlock(BB);
2058 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2059 printLoop(BBLoop);
2060 }
2061 Out << " } while (1); /* end of syntactic loop '"
2062 << L->getHeader()->getName() << "' */\n";
2063}
2064
2065void CWriter::printBasicBlock(BasicBlock *BB) {
2066
2067 // Don't print the label for the basic block if there are no uses, or if
2068 // the only terminator use is the predecessor basic block's terminator.
2069 // We have to scan the use list because PHI nodes use basic blocks too but
2070 // do not require a label to be generated.
2071 //
2072 bool NeedsLabel = false;
2073 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2074 if (isGotoCodeNecessary(*PI, BB)) {
2075 NeedsLabel = true;
2076 break;
2077 }
2078
2079 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2080
2081 // Output all of the instructions in the basic block...
2082 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2083 ++II) {
2084 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2085 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2086 outputLValue(II);
2087 else
2088 Out << " ";
2089 visit(*II);
2090 Out << ";\n";
2091 }
2092 }
2093
2094 // Don't emit prefix or suffix for the terminator...
2095 visit(*BB->getTerminator());
2096}
2097
2098
2099// Specific Instruction type classes... note that all of the casts are
2100// necessary because we use the instruction classes as opaque types...
2101//
2102void CWriter::visitReturnInst(ReturnInst &I) {
2103 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002104 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002105
2106 if (isStructReturn) {
2107 Out << " return StructReturn;\n";
2108 return;
2109 }
2110
2111 // Don't output a void return if this is the last basic block in the function
2112 if (I.getNumOperands() == 0 &&
2113 &*--I.getParent()->getParent()->end() == I.getParent() &&
2114 !I.getParent()->size() == 1) {
2115 return;
2116 }
2117
2118 Out << " return";
2119 if (I.getNumOperands()) {
2120 Out << ' ';
2121 writeOperand(I.getOperand(0));
2122 }
2123 Out << ";\n";
2124}
2125
2126void CWriter::visitSwitchInst(SwitchInst &SI) {
2127
2128 Out << " switch (";
2129 writeOperand(SI.getOperand(0));
2130 Out << ") {\n default:\n";
2131 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2132 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2133 Out << ";\n";
2134 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2135 Out << " case ";
2136 writeOperand(SI.getOperand(i));
2137 Out << ":\n";
2138 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2139 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2140 printBranchToBlock(SI.getParent(), Succ, 2);
2141 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2142 Out << " break;\n";
2143 }
2144 Out << " }\n";
2145}
2146
2147void CWriter::visitUnreachableInst(UnreachableInst &I) {
2148 Out << " /*UNREACHABLE*/;\n";
2149}
2150
2151bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2152 /// FIXME: This should be reenabled, but loop reordering safe!!
2153 return true;
2154
2155 if (next(Function::iterator(From)) != Function::iterator(To))
2156 return true; // Not the direct successor, we need a goto.
2157
2158 //isa<SwitchInst>(From->getTerminator())
2159
2160 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2161 return true;
2162 return false;
2163}
2164
2165void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2166 BasicBlock *Successor,
2167 unsigned Indent) {
2168 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2169 PHINode *PN = cast<PHINode>(I);
2170 // Now we have to do the printing.
2171 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2172 if (!isa<UndefValue>(IV)) {
2173 Out << std::string(Indent, ' ');
2174 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2175 writeOperand(IV);
2176 Out << "; /* for PHI node */\n";
2177 }
2178 }
2179}
2180
2181void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2182 unsigned Indent) {
2183 if (isGotoCodeNecessary(CurBB, Succ)) {
2184 Out << std::string(Indent, ' ') << " goto ";
2185 writeOperand(Succ);
2186 Out << ";\n";
2187 }
2188}
2189
2190// Branch instruction printing - Avoid printing out a branch to a basic block
2191// that immediately succeeds the current one.
2192//
2193void CWriter::visitBranchInst(BranchInst &I) {
2194
2195 if (I.isConditional()) {
2196 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2197 Out << " if (";
2198 writeOperand(I.getCondition());
2199 Out << ") {\n";
2200
2201 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2202 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2203
2204 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2205 Out << " } else {\n";
2206 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2207 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2208 }
2209 } else {
2210 // First goto not necessary, assume second one is...
2211 Out << " if (!";
2212 writeOperand(I.getCondition());
2213 Out << ") {\n";
2214
2215 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2216 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2217 }
2218
2219 Out << " }\n";
2220 } else {
2221 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2222 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2223 }
2224 Out << "\n";
2225}
2226
2227// PHI nodes get copied into temporary values at the end of predecessor basic
2228// blocks. We now need to copy these temporary values into the REAL value for
2229// the PHI.
2230void CWriter::visitPHINode(PHINode &I) {
2231 writeOperand(&I);
2232 Out << "__PHI_TEMPORARY";
2233}
2234
2235
2236void CWriter::visitBinaryOperator(Instruction &I) {
2237 // binary instructions, shift instructions, setCond instructions.
2238 assert(!isa<PointerType>(I.getType()));
2239
2240 // We must cast the results of binary operations which might be promoted.
2241 bool needsCast = false;
2242 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2243 || (I.getType() == Type::FloatTy)) {
2244 needsCast = true;
2245 Out << "((";
2246 printType(Out, I.getType(), false);
2247 Out << ")(";
2248 }
2249
2250 // If this is a negation operation, print it out as such. For FP, we don't
2251 // want to print "-0.0 - X".
2252 if (BinaryOperator::isNeg(&I)) {
2253 Out << "-(";
2254 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2255 Out << ")";
2256 } else if (I.getOpcode() == Instruction::FRem) {
2257 // Output a call to fmod/fmodf instead of emitting a%b
2258 if (I.getType() == Type::FloatTy)
2259 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002260 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002261 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002262 else // all 3 flavors of long double
2263 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002264 writeOperand(I.getOperand(0));
2265 Out << ", ";
2266 writeOperand(I.getOperand(1));
2267 Out << ")";
2268 } else {
2269
2270 // Write out the cast of the instruction's value back to the proper type
2271 // if necessary.
2272 bool NeedsClosingParens = writeInstructionCast(I);
2273
2274 // Certain instructions require the operand to be forced to a specific type
2275 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2276 // below for operand 1
2277 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2278
2279 switch (I.getOpcode()) {
2280 case Instruction::Add: Out << " + "; break;
2281 case Instruction::Sub: Out << " - "; break;
2282 case Instruction::Mul: Out << " * "; break;
2283 case Instruction::URem:
2284 case Instruction::SRem:
2285 case Instruction::FRem: Out << " % "; break;
2286 case Instruction::UDiv:
2287 case Instruction::SDiv:
2288 case Instruction::FDiv: Out << " / "; break;
2289 case Instruction::And: Out << " & "; break;
2290 case Instruction::Or: Out << " | "; break;
2291 case Instruction::Xor: Out << " ^ "; break;
2292 case Instruction::Shl : Out << " << "; break;
2293 case Instruction::LShr:
2294 case Instruction::AShr: Out << " >> "; break;
2295 default: cerr << "Invalid operator type!" << I; abort();
2296 }
2297
2298 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2299 if (NeedsClosingParens)
2300 Out << "))";
2301 }
2302
2303 if (needsCast) {
2304 Out << "))";
2305 }
2306}
2307
2308void CWriter::visitICmpInst(ICmpInst &I) {
2309 // We must cast the results of icmp which might be promoted.
2310 bool needsCast = false;
2311
2312 // Write out the cast of the instruction's value back to the proper type
2313 // if necessary.
2314 bool NeedsClosingParens = writeInstructionCast(I);
2315
2316 // Certain icmp predicate require the operand to be forced to a specific type
2317 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2318 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002319 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002320
2321 switch (I.getPredicate()) {
2322 case ICmpInst::ICMP_EQ: Out << " == "; break;
2323 case ICmpInst::ICMP_NE: Out << " != "; break;
2324 case ICmpInst::ICMP_ULE:
2325 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2326 case ICmpInst::ICMP_UGE:
2327 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2328 case ICmpInst::ICMP_ULT:
2329 case ICmpInst::ICMP_SLT: Out << " < "; break;
2330 case ICmpInst::ICMP_UGT:
2331 case ICmpInst::ICMP_SGT: Out << " > "; break;
2332 default: cerr << "Invalid icmp predicate!" << I; abort();
2333 }
2334
Chris Lattner389c9142007-09-15 06:51:03 +00002335 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002336 if (NeedsClosingParens)
2337 Out << "))";
2338
2339 if (needsCast) {
2340 Out << "))";
2341 }
2342}
2343
2344void CWriter::visitFCmpInst(FCmpInst &I) {
2345 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2346 Out << "0";
2347 return;
2348 }
2349 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2350 Out << "1";
2351 return;
2352 }
2353
2354 const char* op = 0;
2355 switch (I.getPredicate()) {
2356 default: assert(0 && "Illegal FCmp predicate");
2357 case FCmpInst::FCMP_ORD: op = "ord"; break;
2358 case FCmpInst::FCMP_UNO: op = "uno"; break;
2359 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2360 case FCmpInst::FCMP_UNE: op = "une"; break;
2361 case FCmpInst::FCMP_ULT: op = "ult"; break;
2362 case FCmpInst::FCMP_ULE: op = "ule"; break;
2363 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2364 case FCmpInst::FCMP_UGE: op = "uge"; break;
2365 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2366 case FCmpInst::FCMP_ONE: op = "one"; break;
2367 case FCmpInst::FCMP_OLT: op = "olt"; break;
2368 case FCmpInst::FCMP_OLE: op = "ole"; break;
2369 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2370 case FCmpInst::FCMP_OGE: op = "oge"; break;
2371 }
2372
2373 Out << "llvm_fcmp_" << op << "(";
2374 // Write the first operand
2375 writeOperand(I.getOperand(0));
2376 Out << ", ";
2377 // Write the second operand
2378 writeOperand(I.getOperand(1));
2379 Out << ")";
2380}
2381
2382static const char * getFloatBitCastField(const Type *Ty) {
2383 switch (Ty->getTypeID()) {
2384 default: assert(0 && "Invalid Type");
2385 case Type::FloatTyID: return "Float";
2386 case Type::DoubleTyID: return "Double";
2387 case Type::IntegerTyID: {
2388 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2389 if (NumBits <= 32)
2390 return "Int32";
2391 else
2392 return "Int64";
2393 }
2394 }
2395}
2396
2397void CWriter::visitCastInst(CastInst &I) {
2398 const Type *DstTy = I.getType();
2399 const Type *SrcTy = I.getOperand(0)->getType();
2400 Out << '(';
2401 if (isFPIntBitCast(I)) {
2402 // These int<->float and long<->double casts need to be handled specially
2403 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2404 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2405 writeOperand(I.getOperand(0));
2406 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2407 << getFloatBitCastField(I.getType());
2408 } else {
2409 printCast(I.getOpcode(), SrcTy, DstTy);
2410 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2411 // Make sure we really get a sext from bool by subtracing the bool from 0
2412 Out << "0-";
2413 }
Evan Cheng17254e62008-01-11 09:12:49 +00002414 // If it's a byval parameter being casted, then takes its address.
2415 bool isByVal = ByValParams.count(I.getOperand(0));
2416 if (isByVal) {
2417 assert(I.getOpcode() == Instruction::BitCast &&
2418 "ByVal aggregate parameter must ptr type");
2419 Out << '&';
2420 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002421 writeOperand(I.getOperand(0));
2422 if (DstTy == Type::Int1Ty &&
2423 (I.getOpcode() == Instruction::Trunc ||
2424 I.getOpcode() == Instruction::FPToUI ||
2425 I.getOpcode() == Instruction::FPToSI ||
2426 I.getOpcode() == Instruction::PtrToInt)) {
2427 // Make sure we really get a trunc to bool by anding the operand with 1
2428 Out << "&1u";
2429 }
2430 }
2431 Out << ')';
2432}
2433
2434void CWriter::visitSelectInst(SelectInst &I) {
2435 Out << "((";
2436 writeOperand(I.getCondition());
2437 Out << ") ? (";
2438 writeOperand(I.getTrueValue());
2439 Out << ") : (";
2440 writeOperand(I.getFalseValue());
2441 Out << "))";
2442}
2443
2444
2445void CWriter::lowerIntrinsics(Function &F) {
2446 // This is used to keep track of intrinsics that get generated to a lowered
2447 // function. We must generate the prototypes before the function body which
2448 // will only be expanded on first use (by the loop below).
2449 std::vector<Function*> prototypesToGen;
2450
2451 // Examine all the instructions in this function to find the intrinsics that
2452 // need to be lowered.
2453 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2454 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2455 if (CallInst *CI = dyn_cast<CallInst>(I++))
2456 if (Function *F = CI->getCalledFunction())
2457 switch (F->getIntrinsicID()) {
2458 case Intrinsic::not_intrinsic:
2459 case Intrinsic::vastart:
2460 case Intrinsic::vacopy:
2461 case Intrinsic::vaend:
2462 case Intrinsic::returnaddress:
2463 case Intrinsic::frameaddress:
2464 case Intrinsic::setjmp:
2465 case Intrinsic::longjmp:
2466 case Intrinsic::prefetch:
2467 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002468 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002469 // We directly implement these intrinsics
2470 break;
2471 default:
2472 // If this is an intrinsic that directly corresponds to a GCC
2473 // builtin, we handle it.
2474 const char *BuiltinName = "";
2475#define GET_GCC_BUILTIN_NAME
2476#include "llvm/Intrinsics.gen"
2477#undef GET_GCC_BUILTIN_NAME
2478 // If we handle it, don't lower it.
2479 if (BuiltinName[0]) break;
2480
2481 // All other intrinsic calls we must lower.
2482 Instruction *Before = 0;
2483 if (CI != &BB->front())
2484 Before = prior(BasicBlock::iterator(CI));
2485
2486 IL->LowerIntrinsicCall(CI);
2487 if (Before) { // Move iterator to instruction after call
2488 I = Before; ++I;
2489 } else {
2490 I = BB->begin();
2491 }
2492 // If the intrinsic got lowered to another call, and that call has
2493 // a definition then we need to make sure its prototype is emitted
2494 // before any calls to it.
2495 if (CallInst *Call = dyn_cast<CallInst>(I))
2496 if (Function *NewF = Call->getCalledFunction())
2497 if (!NewF->isDeclaration())
2498 prototypesToGen.push_back(NewF);
2499
2500 break;
2501 }
2502
2503 // We may have collected some prototypes to emit in the loop above.
2504 // Emit them now, before the function that uses them is emitted. But,
2505 // be careful not to emit them twice.
2506 std::vector<Function*>::iterator I = prototypesToGen.begin();
2507 std::vector<Function*>::iterator E = prototypesToGen.end();
2508 for ( ; I != E; ++I) {
2509 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2510 Out << '\n';
2511 printFunctionSignature(*I, true);
2512 Out << ";\n";
2513 }
2514 }
2515}
2516
2517
2518void CWriter::visitCallInst(CallInst &I) {
2519 //check if we have inline asm
2520 if (isInlineAsm(I)) {
2521 visitInlineAsm(I);
2522 return;
2523 }
2524
2525 bool WroteCallee = false;
2526
2527 // Handle intrinsic function calls first...
2528 if (Function *F = I.getCalledFunction())
2529 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2530 switch (ID) {
2531 default: {
2532 // If this is an intrinsic that directly corresponds to a GCC
2533 // builtin, we emit it here.
2534 const char *BuiltinName = "";
2535#define GET_GCC_BUILTIN_NAME
2536#include "llvm/Intrinsics.gen"
2537#undef GET_GCC_BUILTIN_NAME
2538 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2539
2540 Out << BuiltinName;
2541 WroteCallee = true;
2542 break;
2543 }
2544 case Intrinsic::vastart:
2545 Out << "0; ";
2546
2547 Out << "va_start(*(va_list*)";
2548 writeOperand(I.getOperand(1));
2549 Out << ", ";
2550 // Output the last argument to the enclosing function...
2551 if (I.getParent()->getParent()->arg_empty()) {
2552 cerr << "The C backend does not currently support zero "
2553 << "argument varargs functions, such as '"
2554 << I.getParent()->getParent()->getName() << "'!\n";
2555 abort();
2556 }
2557 writeOperand(--I.getParent()->getParent()->arg_end());
2558 Out << ')';
2559 return;
2560 case Intrinsic::vaend:
2561 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2562 Out << "0; va_end(*(va_list*)";
2563 writeOperand(I.getOperand(1));
2564 Out << ')';
2565 } else {
2566 Out << "va_end(*(va_list*)0)";
2567 }
2568 return;
2569 case Intrinsic::vacopy:
2570 Out << "0; ";
2571 Out << "va_copy(*(va_list*)";
2572 writeOperand(I.getOperand(1));
2573 Out << ", *(va_list*)";
2574 writeOperand(I.getOperand(2));
2575 Out << ')';
2576 return;
2577 case Intrinsic::returnaddress:
2578 Out << "__builtin_return_address(";
2579 writeOperand(I.getOperand(1));
2580 Out << ')';
2581 return;
2582 case Intrinsic::frameaddress:
2583 Out << "__builtin_frame_address(";
2584 writeOperand(I.getOperand(1));
2585 Out << ')';
2586 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002587 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002588 Out << "__builtin_powi(";
2589 writeOperand(I.getOperand(1));
2590 Out << ", ";
2591 writeOperand(I.getOperand(2));
2592 Out << ')';
2593 return;
2594 case Intrinsic::setjmp:
2595 Out << "setjmp(*(jmp_buf*)";
2596 writeOperand(I.getOperand(1));
2597 Out << ')';
2598 return;
2599 case Intrinsic::longjmp:
2600 Out << "longjmp(*(jmp_buf*)";
2601 writeOperand(I.getOperand(1));
2602 Out << ", ";
2603 writeOperand(I.getOperand(2));
2604 Out << ')';
2605 return;
2606 case Intrinsic::prefetch:
2607 Out << "LLVM_PREFETCH((const void *)";
2608 writeOperand(I.getOperand(1));
2609 Out << ", ";
2610 writeOperand(I.getOperand(2));
2611 Out << ", ";
2612 writeOperand(I.getOperand(3));
2613 Out << ")";
2614 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002615 case Intrinsic::stacksave:
2616 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2617 // to work around GCC bugs (see PR1809).
2618 Out << "0; *((void**)&" << GetValueName(&I)
2619 << ") = __builtin_stack_save()";
2620 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002621 case Intrinsic::dbg_stoppoint: {
2622 // If we use writeOperand directly we get a "u" suffix which is rejected
2623 // by gcc.
2624 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2625
2626 Out << "\n#line "
2627 << SPI.getLine()
2628 << " \"" << SPI.getDirectory()
2629 << SPI.getFileName() << "\"\n";
2630 return;
2631 }
2632 }
2633 }
2634
2635 Value *Callee = I.getCalledValue();
2636
2637 const PointerType *PTy = cast<PointerType>(Callee->getType());
2638 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2639
2640 // If this is a call to a struct-return function, assign to the first
2641 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002642 const ParamAttrsList *PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002643 bool hasByVal = I.hasByValArgument();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002644 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002645 if (isStructRet) {
Evan Chengf8956382008-01-11 23:10:11 +00002646 bool isByVal = ByValParams.count(I.getOperand(1));
2647 if (!isByVal) Out << "*(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002648 writeOperand(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002649 if (!isByVal) Out << ")";
2650 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002651 }
2652
2653 if (I.isTailCall()) Out << " /*tail*/ ";
2654
2655 if (!WroteCallee) {
2656 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002657 // the pointer. Ditto for indirect calls with byval arguments.
2658 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002659
2660 // GCC is a real PITA. It does not permit codegening casts of functions to
2661 // function pointers if they are in a call (it generates a trap instruction
2662 // instead!). We work around this by inserting a cast to void* in between
2663 // the function and the function pointer cast. Unfortunately, we can't just
2664 // form the constant expression here, because the folder will immediately
2665 // nuke it.
2666 //
2667 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2668 // that void* and function pointers have the same size. :( To deal with this
2669 // in the common case, we handle casts where the number of arguments passed
2670 // match exactly.
2671 //
2672 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2673 if (CE->isCast())
2674 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2675 NeedsCast = true;
2676 Callee = RF;
2677 }
2678
2679 if (NeedsCast) {
2680 // Ok, just cast the pointer type.
2681 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002682 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002683 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002684 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002685 else if (hasByVal)
2686 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2687 else
2688 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002689 Out << ")(void*)";
2690 }
2691 writeOperand(Callee);
2692 if (NeedsCast) Out << ')';
2693 }
2694
2695 Out << '(';
2696
2697 unsigned NumDeclaredParams = FTy->getNumParams();
2698
2699 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2700 unsigned ArgNo = 0;
2701 if (isStructRet) { // Skip struct return argument.
2702 ++AI;
2703 ++ArgNo;
2704 }
2705
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002706 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002707 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002708 if (PrintedArg) Out << ", ";
2709 if (ArgNo < NumDeclaredParams &&
2710 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2711 Out << '(';
2712 printType(Out, FTy->getParamType(ArgNo),
Evan Chengf8956382008-01-11 23:10:11 +00002713 /*isSigned=*/PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002714 Out << ')';
2715 }
Evan Chengf8956382008-01-11 23:10:11 +00002716 // Check if the argument is expected to be passed by value.
2717 bool isOutByVal = PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::ByVal);
2718 // Check if this argument itself is passed in by reference.
2719 bool isInByVal = ByValParams.count(*AI);
2720 if (isOutByVal && !isInByVal)
2721 Out << "*(";
2722 else if (!isOutByVal && isInByVal)
2723 Out << "&(";
2724 writeOperand(*AI);
2725 if (isOutByVal ^ isInByVal)
2726 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002727 PrintedArg = true;
2728 }
2729 Out << ')';
2730}
2731
2732
2733//This converts the llvm constraint string to something gcc is expecting.
2734//TODO: work out platform independent constraints and factor those out
2735// of the per target tables
2736// handle multiple constraint codes
2737std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2738
2739 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2740
2741 const char** table = 0;
2742
2743 //Grab the translation table from TargetAsmInfo if it exists
2744 if (!TAsm) {
2745 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002746 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002747 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2748 if (Match) {
2749 //Per platform Target Machines don't exist, so create it
2750 // this must be done only once
2751 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2752 TAsm = TM->getTargetAsmInfo();
2753 }
2754 }
2755 if (TAsm)
2756 table = TAsm->getAsmCBE();
2757
2758 //Search the translation table if it exists
2759 for (int i = 0; table && table[i]; i += 2)
2760 if (c.Codes[0] == table[i])
2761 return table[i+1];
2762
2763 //default is identity
2764 return c.Codes[0];
2765}
2766
2767//TODO: import logic from AsmPrinter.cpp
2768static std::string gccifyAsm(std::string asmstr) {
2769 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2770 if (asmstr[i] == '\n')
2771 asmstr.replace(i, 1, "\\n");
2772 else if (asmstr[i] == '\t')
2773 asmstr.replace(i, 1, "\\t");
2774 else if (asmstr[i] == '$') {
2775 if (asmstr[i + 1] == '{') {
2776 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2777 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2778 std::string n = "%" +
2779 asmstr.substr(a + 1, b - a - 1) +
2780 asmstr.substr(i + 2, a - i - 2);
2781 asmstr.replace(i, b - i + 1, n);
2782 i += n.size() - 1;
2783 } else
2784 asmstr.replace(i, 1, "%");
2785 }
2786 else if (asmstr[i] == '%')//grr
2787 { asmstr.replace(i, 1, "%%"); ++i;}
2788
2789 return asmstr;
2790}
2791
2792//TODO: assumptions about what consume arguments from the call are likely wrong
2793// handle communitivity
2794void CWriter::visitInlineAsm(CallInst &CI) {
2795 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2796 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2797 std::vector<std::pair<std::string, Value*> > Input;
2798 std::vector<std::pair<std::string, Value*> > Output;
2799 std::string Clobber;
2800 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2801 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2802 E = Constraints.end(); I != E; ++I) {
2803 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2804 std::string c =
2805 InterpretASMConstraint(*I);
2806 switch(I->Type) {
2807 default:
2808 assert(0 && "Unknown asm constraint");
2809 break;
2810 case InlineAsm::isInput: {
2811 if (c.size()) {
2812 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2813 ++count; //consume arg
2814 }
2815 break;
2816 }
2817 case InlineAsm::isOutput: {
2818 if (c.size()) {
2819 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2820 count ? CI.getOperand(count) : &CI));
2821 ++count; //consume arg
2822 }
2823 break;
2824 }
2825 case InlineAsm::isClobber: {
2826 if (c.size())
2827 Clobber += ",\"" + c + "\"";
2828 break;
2829 }
2830 }
2831 }
2832
2833 //fix up the asm string for gcc
2834 std::string asmstr = gccifyAsm(as->getAsmString());
2835
2836 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2837 Out << " :";
2838 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2839 E = Output.end(); I != E; ++I) {
2840 Out << "\"" << I->first << "\"(";
2841 writeOperandRaw(I->second);
2842 Out << ")";
2843 if (I + 1 != E)
2844 Out << ",";
2845 }
2846 Out << "\n :";
2847 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2848 E = Input.end(); I != E; ++I) {
2849 Out << "\"" << I->first << "\"(";
2850 writeOperandRaw(I->second);
2851 Out << ")";
2852 if (I + 1 != E)
2853 Out << ",";
2854 }
2855 if (Clobber.size())
2856 Out << "\n :" << Clobber.substr(1);
2857 Out << ")";
2858}
2859
2860void CWriter::visitMallocInst(MallocInst &I) {
2861 assert(0 && "lowerallocations pass didn't work!");
2862}
2863
2864void CWriter::visitAllocaInst(AllocaInst &I) {
2865 Out << '(';
2866 printType(Out, I.getType());
2867 Out << ") alloca(sizeof(";
2868 printType(Out, I.getType()->getElementType());
2869 Out << ')';
2870 if (I.isArrayAllocation()) {
2871 Out << " * " ;
2872 writeOperand(I.getOperand(0));
2873 }
2874 Out << ')';
2875}
2876
2877void CWriter::visitFreeInst(FreeInst &I) {
2878 assert(0 && "lowerallocations pass didn't work!");
2879}
2880
2881void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2882 gep_type_iterator E) {
2883 bool HasImplicitAddress = false;
2884 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2885 if (isa<GlobalValue>(Ptr)) {
2886 HasImplicitAddress = true;
2887 } else if (isDirectAlloca(Ptr)) {
2888 HasImplicitAddress = true;
2889 }
2890
2891 if (I == E) {
2892 if (!HasImplicitAddress)
2893 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2894
2895 writeOperandInternal(Ptr);
2896 return;
2897 }
2898
2899 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2900 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2901 Out << "(&";
2902
2903 writeOperandInternal(Ptr);
2904
2905 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2906 Out << ')';
2907 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2908 }
2909
2910 assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
2911 "Can only have implicit address with direct accessing");
2912
2913 if (HasImplicitAddress) {
2914 ++I;
2915 } else if (CI && CI->isNullValue()) {
2916 gep_type_iterator TmpI = I; ++TmpI;
2917
2918 // Print out the -> operator if possible...
2919 if (TmpI != E && isa<StructType>(*TmpI)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002920 // Check if it's actually an aggregate parameter passed by value.
2921 bool isByVal = ByValParams.count(Ptr);
2922 Out << ((HasImplicitAddress || isByVal) ? "." : "->");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002923 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2924 I = ++TmpI;
2925 }
2926 }
2927
2928 for (; I != E; ++I)
2929 if (isa<StructType>(*I)) {
2930 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2931 } else {
2932 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002933 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002934 Out << ']';
2935 }
2936}
2937
2938void CWriter::visitLoadInst(LoadInst &I) {
2939 Out << '*';
2940 if (I.isVolatile()) {
2941 Out << "((";
2942 printType(Out, I.getType(), false, "volatile*");
2943 Out << ")";
2944 }
2945
2946 writeOperand(I.getOperand(0));
2947
2948 if (I.isVolatile())
2949 Out << ')';
2950}
2951
2952void CWriter::visitStoreInst(StoreInst &I) {
2953 Out << '*';
2954 if (I.isVolatile()) {
2955 Out << "((";
2956 printType(Out, I.getOperand(0)->getType(), false, " volatile*");
2957 Out << ")";
2958 }
2959 writeOperand(I.getPointerOperand());
2960 if (I.isVolatile()) Out << ')';
2961 Out << " = ";
2962 Value *Operand = I.getOperand(0);
2963 Constant *BitMask = 0;
2964 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2965 if (!ITy->isPowerOf2ByteWidth())
2966 // We have a bit width that doesn't match an even power-of-2 byte
2967 // size. Consequently we must & the value with the type's bit mask
2968 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
2969 if (BitMask)
2970 Out << "((";
2971 writeOperand(Operand);
2972 if (BitMask) {
2973 Out << ") & ";
2974 printConstant(BitMask);
2975 Out << ")";
2976 }
2977}
2978
2979void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
2980 Out << '&';
2981 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
2982 gep_type_end(I));
2983}
2984
2985void CWriter::visitVAArgInst(VAArgInst &I) {
2986 Out << "va_arg(*(va_list*)";
2987 writeOperand(I.getOperand(0));
2988 Out << ", ";
2989 printType(Out, I.getType());
2990 Out << ");\n ";
2991}
2992
2993//===----------------------------------------------------------------------===//
2994// External Interface declaration
2995//===----------------------------------------------------------------------===//
2996
2997bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2998 std::ostream &o,
2999 CodeGenFileType FileType,
3000 bool Fast) {
3001 if (FileType != TargetMachine::AssemblyFile) return true;
3002
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003003 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003004 PM.add(createLowerAllocationsPass(true));
3005 PM.add(createLowerInvokePass());
3006 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3007 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3008 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003009 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003010 return false;
3011}