blob: dc9cf99fde6438863140effccc5fa1d606a556af [file] [log] [blame]
Arnold Schwaighofera70fe792007-10-12 21:53:12 +00001//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that X86 uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "X86.h"
16#include "X86InstrBuilder.h"
17#include "X86ISelLowering.h"
18#include "X86MachineFunctionInfo.h"
19#include "X86TargetMachine.h"
20#include "llvm/CallingConv.h"
21#include "llvm/Constants.h"
22#include "llvm/DerivedTypes.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/Function.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/ADT/VectorExtras.h"
27#include "llvm/Analysis/ScalarEvolutionExpressions.h"
28#include "llvm/CodeGen/CallingConvLower.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/SelectionDAG.h"
33#include "llvm/CodeGen/SSARegMap.h"
34#include "llvm/Support/MathExtras.h"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000035#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000037#include "llvm/Target/TargetOptions.h"
38#include "llvm/ADT/StringExtras.h"
Duncan Sandsd8455ca2007-07-27 20:02:49 +000039#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000040using namespace llvm;
41
42X86TargetLowering::X86TargetLowering(TargetMachine &TM)
43 : TargetLowering(TM) {
44 Subtarget = &TM.getSubtarget<X86Subtarget>();
Dale Johannesene0e0fd02007-09-23 14:52:20 +000045 X86ScalarSSEf64 = Subtarget->hasSSE2();
46 X86ScalarSSEf32 = Subtarget->hasSSE1();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +000048
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049
50 RegInfo = TM.getRegisterInfo();
51
52 // Set up the TargetLowering object.
53
54 // X86 is weird, it always uses i8 for shift amounts and setcc results.
55 setShiftAmountType(MVT::i8);
56 setSetCCResultType(MVT::i8);
57 setSetCCResultContents(ZeroOrOneSetCCResult);
58 setSchedulingPreference(SchedulingForRegPressure);
59 setShiftAmountFlavor(Mask); // shl X, 32 == shl X, 0
60 setStackPointerRegisterToSaveRestore(X86StackPtr);
61
62 if (Subtarget->isTargetDarwin()) {
63 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
64 setUseUnderscoreSetJmp(false);
65 setUseUnderscoreLongJmp(false);
66 } else if (Subtarget->isTargetMingw()) {
67 // MS runtime is weird: it exports _setjmp, but longjmp!
68 setUseUnderscoreSetJmp(true);
69 setUseUnderscoreLongJmp(false);
70 } else {
71 setUseUnderscoreSetJmp(true);
72 setUseUnderscoreLongJmp(true);
73 }
74
75 // Set up the register classes.
76 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
77 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
78 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
79 if (Subtarget->is64Bit())
80 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
81
82 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
83
84 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
85 // operation.
86 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
87 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
88 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
89
90 if (Subtarget->is64Bit()) {
91 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
92 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
93 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +000094 if (X86ScalarSSEf64)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000095 // If SSE i64 SINT_TO_FP is not available, expand i32 UINT_TO_FP.
96 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Expand);
97 else
98 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
99 }
100
101 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
102 // this operation.
103 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
104 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
105 // SSE has no i16 to fp conversion, only i32
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000106 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000108 // f32 and f64 cases are Legal, f80 case is not
109 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
110 } else {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000111 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
112 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
113 }
114
Dale Johannesen958b08b2007-09-19 23:55:34 +0000115 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
116 // are Legal, f80 is custom lowered.
117 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
118 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000119
120 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
121 // this operation.
122 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
123 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
124
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000125 if (X86ScalarSSEf32) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000126 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000127 // f32 and f64 cases are Legal, f80 case is not
128 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000129 } else {
130 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
131 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
132 }
133
134 // Handle FP_TO_UINT by promoting the destination to a larger signed
135 // conversion.
136 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
137 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
138 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
139
140 if (Subtarget->is64Bit()) {
141 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
142 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
143 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000144 if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 // Expand FP_TO_UINT into a select.
146 // FIXME: We would like to use a Custom expander here eventually to do
147 // the optimal thing for SSE vs. the default expansion in the legalizer.
148 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
149 else
150 // With SSE3 we can use fisttpll to convert to a signed i64.
151 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
152 }
153
154 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000155 if (!X86ScalarSSEf64) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
157 setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
158 }
159
Dan Gohman5a199552007-10-08 18:33:35 +0000160 // Scalar integer multiply, multiply-high, divide, and remainder are
161 // lowered to use operations that produce two results, to match the
162 // available instructions. This exposes the two-result form to trivial
163 // CSE, which is able to combine x/y and x%y into a single instruction,
164 // for example. The single-result multiply instructions are introduced
165 // in X86ISelDAGToDAG.cpp, after CSE, for uses where the the high part
166 // is not needed.
167 setOperationAction(ISD::MUL , MVT::i8 , Expand);
168 setOperationAction(ISD::MULHS , MVT::i8 , Expand);
169 setOperationAction(ISD::MULHU , MVT::i8 , Expand);
170 setOperationAction(ISD::SDIV , MVT::i8 , Expand);
171 setOperationAction(ISD::UDIV , MVT::i8 , Expand);
172 setOperationAction(ISD::SREM , MVT::i8 , Expand);
173 setOperationAction(ISD::UREM , MVT::i8 , Expand);
174 setOperationAction(ISD::MUL , MVT::i16 , Expand);
175 setOperationAction(ISD::MULHS , MVT::i16 , Expand);
176 setOperationAction(ISD::MULHU , MVT::i16 , Expand);
177 setOperationAction(ISD::SDIV , MVT::i16 , Expand);
178 setOperationAction(ISD::UDIV , MVT::i16 , Expand);
179 setOperationAction(ISD::SREM , MVT::i16 , Expand);
180 setOperationAction(ISD::UREM , MVT::i16 , Expand);
181 setOperationAction(ISD::MUL , MVT::i32 , Expand);
182 setOperationAction(ISD::MULHS , MVT::i32 , Expand);
183 setOperationAction(ISD::MULHU , MVT::i32 , Expand);
184 setOperationAction(ISD::SDIV , MVT::i32 , Expand);
185 setOperationAction(ISD::UDIV , MVT::i32 , Expand);
186 setOperationAction(ISD::SREM , MVT::i32 , Expand);
187 setOperationAction(ISD::UREM , MVT::i32 , Expand);
188 setOperationAction(ISD::MUL , MVT::i64 , Expand);
189 setOperationAction(ISD::MULHS , MVT::i64 , Expand);
190 setOperationAction(ISD::MULHU , MVT::i64 , Expand);
191 setOperationAction(ISD::SDIV , MVT::i64 , Expand);
192 setOperationAction(ISD::UDIV , MVT::i64 , Expand);
193 setOperationAction(ISD::SREM , MVT::i64 , Expand);
194 setOperationAction(ISD::UREM , MVT::i64 , Expand);
Dan Gohman242a5ba2007-09-25 18:23:27 +0000195
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
197 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
198 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
199 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
200 setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
201 if (Subtarget->is64Bit())
Christopher Lamb0a7c8662007-08-10 21:48:46 +0000202 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
203 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
204 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
206 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
207 setOperationAction(ISD::FREM , MVT::f64 , Expand);
208
209 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
210 setOperationAction(ISD::CTTZ , MVT::i8 , Expand);
211 setOperationAction(ISD::CTLZ , MVT::i8 , Expand);
212 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
213 setOperationAction(ISD::CTTZ , MVT::i16 , Expand);
214 setOperationAction(ISD::CTLZ , MVT::i16 , Expand);
215 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
216 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
217 setOperationAction(ISD::CTLZ , MVT::i32 , Expand);
218 if (Subtarget->is64Bit()) {
219 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
220 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
221 setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
222 }
223
224 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
225 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
226
227 // These should be promoted to a larger select which is supported.
228 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
229 setOperationAction(ISD::SELECT , MVT::i8 , Promote);
230 // X86 wants to expand cmov itself.
231 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
232 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
233 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
234 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000235 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
237 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
238 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
239 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
240 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000241 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 if (Subtarget->is64Bit()) {
243 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
244 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
245 }
246 // X86 ret instruction may pop stack.
247 setOperationAction(ISD::RET , MVT::Other, Custom);
248 if (!Subtarget->is64Bit())
249 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
250
251 // Darwin ABI issue.
252 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
253 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
254 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
255 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
256 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
257 if (Subtarget->is64Bit()) {
258 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
259 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
260 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
261 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
262 }
263 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
264 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
265 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
266 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
267 // X86 wants to expand memset / memcpy itself.
268 setOperationAction(ISD::MEMSET , MVT::Other, Custom);
269 setOperationAction(ISD::MEMCPY , MVT::Other, Custom);
270
Dan Gohman21442852007-09-25 15:10:49 +0000271 // Use the default ISD::LOCATION expansion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000272 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000273 // FIXME - use subtarget debug flags
274 if (!Subtarget->isTargetDarwin() &&
275 !Subtarget->isTargetELF() &&
276 !Subtarget->isTargetCygMing())
277 setOperationAction(ISD::LABEL, MVT::Other, Expand);
278
279 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
280 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
281 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
282 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
283 if (Subtarget->is64Bit()) {
284 // FIXME: Verify
285 setExceptionPointerRegister(X86::RAX);
286 setExceptionSelectorRegister(X86::RDX);
287 } else {
288 setExceptionPointerRegister(X86::EAX);
289 setExceptionSelectorRegister(X86::EDX);
290 }
Anton Korobeynikov23ca9c52007-09-03 00:36:06 +0000291 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292
Duncan Sands7407a9f2007-09-11 14:10:23 +0000293 setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
Duncan Sandsd8455ca2007-07-27 20:02:49 +0000294
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
296 setOperationAction(ISD::VASTART , MVT::Other, Custom);
297 setOperationAction(ISD::VAARG , MVT::Other, Expand);
298 setOperationAction(ISD::VAEND , MVT::Other, Expand);
299 if (Subtarget->is64Bit())
300 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
301 else
302 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
303
304 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
305 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
306 if (Subtarget->is64Bit())
307 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
308 if (Subtarget->isTargetCygMing())
309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
310 else
311 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
312
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000313 if (X86ScalarSSEf64) {
314 // f32 and f64 use SSE.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000315 // Set up the FP register classes.
316 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
317 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
318
319 // Use ANDPD to simulate FABS.
320 setOperationAction(ISD::FABS , MVT::f64, Custom);
321 setOperationAction(ISD::FABS , MVT::f32, Custom);
322
323 // Use XORP to simulate FNEG.
324 setOperationAction(ISD::FNEG , MVT::f64, Custom);
325 setOperationAction(ISD::FNEG , MVT::f32, Custom);
326
327 // Use ANDPD and ORPD to simulate FCOPYSIGN.
328 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
329 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
330
331 // We don't support sin/cos/fmod
332 setOperationAction(ISD::FSIN , MVT::f64, Expand);
333 setOperationAction(ISD::FCOS , MVT::f64, Expand);
334 setOperationAction(ISD::FREM , MVT::f64, Expand);
335 setOperationAction(ISD::FSIN , MVT::f32, Expand);
336 setOperationAction(ISD::FCOS , MVT::f32, Expand);
337 setOperationAction(ISD::FREM , MVT::f32, Expand);
338
339 // Expand FP immediates into loads from the stack, except for the special
340 // cases we handle.
341 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
342 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000343 addLegalFPImmediate(APFloat(+0.0)); // xorpd
344 addLegalFPImmediate(APFloat(+0.0f)); // xorps
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000345
346 // Conversions to long double (in X87) go through memory.
347 setConvertAction(MVT::f32, MVT::f80, Expand);
348 setConvertAction(MVT::f64, MVT::f80, Expand);
349
350 // Conversions from long double (in X87) go through memory.
351 setConvertAction(MVT::f80, MVT::f32, Expand);
352 setConvertAction(MVT::f80, MVT::f64, Expand);
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000353 } else if (X86ScalarSSEf32) {
354 // Use SSE for f32, x87 for f64.
355 // Set up the FP register classes.
356 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
357 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
358
359 // Use ANDPS to simulate FABS.
360 setOperationAction(ISD::FABS , MVT::f32, Custom);
361
362 // Use XORP to simulate FNEG.
363 setOperationAction(ISD::FNEG , MVT::f32, Custom);
364
365 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
366
367 // Use ANDPS and ORPS to simulate FCOPYSIGN.
368 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
369 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
370
371 // We don't support sin/cos/fmod
372 setOperationAction(ISD::FSIN , MVT::f32, Expand);
373 setOperationAction(ISD::FCOS , MVT::f32, Expand);
374 setOperationAction(ISD::FREM , MVT::f32, Expand);
375
376 // Expand FP immediates into loads from the stack, except for the special
377 // cases we handle.
378 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
379 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
380 addLegalFPImmediate(APFloat(+0.0f)); // xorps
381 addLegalFPImmediate(APFloat(+0.0)); // FLD0
382 addLegalFPImmediate(APFloat(+1.0)); // FLD1
383 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
384 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
385
386 // SSE->x87 conversions go through memory.
387 setConvertAction(MVT::f32, MVT::f64, Expand);
388 setConvertAction(MVT::f32, MVT::f80, Expand);
389
390 // x87->SSE truncations need to go through memory.
391 setConvertAction(MVT::f80, MVT::f32, Expand);
392 setConvertAction(MVT::f64, MVT::f32, Expand);
393 // And x87->x87 truncations also.
394 setConvertAction(MVT::f80, MVT::f64, Expand);
395
396 if (!UnsafeFPMath) {
397 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
398 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
399 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 } else {
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000401 // f32 and f64 in x87.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 // Set up the FP register classes.
403 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
404 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
405
406 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
407 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
408 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
409 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
Dale Johannesen8f83a6b2007-08-09 01:04:01 +0000410
411 // Floating truncations need to go through memory.
412 setConvertAction(MVT::f80, MVT::f32, Expand);
413 setConvertAction(MVT::f64, MVT::f32, Expand);
414 setConvertAction(MVT::f80, MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000415
416 if (!UnsafeFPMath) {
417 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
418 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
419 }
420
421 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
422 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000423 addLegalFPImmediate(APFloat(+0.0)); // FLD0
424 addLegalFPImmediate(APFloat(+1.0)); // FLD1
425 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
426 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000427 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
428 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
429 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
430 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000431 }
432
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000433 // Long double always uses X87.
434 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000435 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
436 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
437 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
Dale Johannesen7f1076b2007-09-26 21:10:55 +0000438 if (!UnsafeFPMath) {
439 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
440 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
441 }
Dale Johannesen4ab00bd2007-08-05 18:49:15 +0000442
Dan Gohman2f7b1982007-10-11 23:21:31 +0000443 // Always use a library call for pow.
444 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
445 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
446 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
447
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000448 // First set operation action for all vector types to expand. Then we
449 // will selectively turn on ones that can be effectively codegen'd.
450 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
451 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
452 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Expand);
453 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Expand);
454 setOperationAction(ISD::FADD, (MVT::ValueType)VT, Expand);
455 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
456 setOperationAction(ISD::FSUB, (MVT::ValueType)VT, Expand);
457 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
458 setOperationAction(ISD::FMUL, (MVT::ValueType)VT, Expand);
459 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
460 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
461 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
462 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
463 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
464 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Expand);
465 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Expand);
466 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
467 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
468 setOperationAction(ISD::FABS, (MVT::ValueType)VT, Expand);
469 setOperationAction(ISD::FSIN, (MVT::ValueType)VT, Expand);
470 setOperationAction(ISD::FCOS, (MVT::ValueType)VT, Expand);
471 setOperationAction(ISD::FREM, (MVT::ValueType)VT, Expand);
472 setOperationAction(ISD::FPOWI, (MVT::ValueType)VT, Expand);
473 setOperationAction(ISD::FSQRT, (MVT::ValueType)VT, Expand);
474 setOperationAction(ISD::FCOPYSIGN, (MVT::ValueType)VT, Expand);
Dan Gohman5a199552007-10-08 18:33:35 +0000475 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
476 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
477 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
478 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000479 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
Dan Gohman1d2dc2c2007-10-12 14:09:42 +0000480 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
481 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
482 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000483 }
484
485 if (Subtarget->hasMMX()) {
486 addRegisterClass(MVT::v8i8, X86::VR64RegisterClass);
487 addRegisterClass(MVT::v4i16, X86::VR64RegisterClass);
488 addRegisterClass(MVT::v2i32, X86::VR64RegisterClass);
489 addRegisterClass(MVT::v1i64, X86::VR64RegisterClass);
490
491 // FIXME: add MMX packed arithmetics
492
493 setOperationAction(ISD::ADD, MVT::v8i8, Legal);
494 setOperationAction(ISD::ADD, MVT::v4i16, Legal);
495 setOperationAction(ISD::ADD, MVT::v2i32, Legal);
496 setOperationAction(ISD::ADD, MVT::v1i64, Legal);
497
498 setOperationAction(ISD::SUB, MVT::v8i8, Legal);
499 setOperationAction(ISD::SUB, MVT::v4i16, Legal);
500 setOperationAction(ISD::SUB, MVT::v2i32, Legal);
Dale Johannesen6b65c332007-10-30 01:18:38 +0000501 setOperationAction(ISD::SUB, MVT::v1i64, Legal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000502
503 setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
504 setOperationAction(ISD::MUL, MVT::v4i16, Legal);
505
506 setOperationAction(ISD::AND, MVT::v8i8, Promote);
507 AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
508 setOperationAction(ISD::AND, MVT::v4i16, Promote);
509 AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
510 setOperationAction(ISD::AND, MVT::v2i32, Promote);
511 AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
512 setOperationAction(ISD::AND, MVT::v1i64, Legal);
513
514 setOperationAction(ISD::OR, MVT::v8i8, Promote);
515 AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
516 setOperationAction(ISD::OR, MVT::v4i16, Promote);
517 AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
518 setOperationAction(ISD::OR, MVT::v2i32, Promote);
519 AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
520 setOperationAction(ISD::OR, MVT::v1i64, Legal);
521
522 setOperationAction(ISD::XOR, MVT::v8i8, Promote);
523 AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
524 setOperationAction(ISD::XOR, MVT::v4i16, Promote);
525 AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
526 setOperationAction(ISD::XOR, MVT::v2i32, Promote);
527 AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
528 setOperationAction(ISD::XOR, MVT::v1i64, Legal);
529
530 setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
531 AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
532 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
533 AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
534 setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
535 AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
536 setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
537
538 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
539 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
540 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
541 setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
542
543 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
544 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
545 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
546 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
547
548 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
549 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
550 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Custom);
551 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
552 }
553
554 if (Subtarget->hasSSE1()) {
555 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
556
557 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
558 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
559 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
560 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
561 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
562 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000563 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
564 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
565 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
566 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
567 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
568 }
569
570 if (Subtarget->hasSSE2()) {
571 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
572 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
573 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
574 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
575 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
576
577 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
578 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
579 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
580 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
581 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
582 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
583 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
584 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
585 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
586 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
587 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
588 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
589 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
590 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
591 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000592
593 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
594 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
595 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
596 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
597 // Implement v4f32 insert_vector_elt in terms of SSE2 v8i16 ones.
598 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
599
600 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
601 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
602 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Custom);
603 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Custom);
604 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Custom);
605 }
606 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
607 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
608 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
609 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
610 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
Dale Johannesen2ff963d2007-10-31 00:32:36 +0000611 if (Subtarget->is64Bit())
612 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613
614 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
615 for (unsigned VT = (unsigned)MVT::v16i8; VT != (unsigned)MVT::v2i64; VT++) {
616 setOperationAction(ISD::AND, (MVT::ValueType)VT, Promote);
617 AddPromotedToType (ISD::AND, (MVT::ValueType)VT, MVT::v2i64);
618 setOperationAction(ISD::OR, (MVT::ValueType)VT, Promote);
619 AddPromotedToType (ISD::OR, (MVT::ValueType)VT, MVT::v2i64);
620 setOperationAction(ISD::XOR, (MVT::ValueType)VT, Promote);
621 AddPromotedToType (ISD::XOR, (MVT::ValueType)VT, MVT::v2i64);
622 setOperationAction(ISD::LOAD, (MVT::ValueType)VT, Promote);
623 AddPromotedToType (ISD::LOAD, (MVT::ValueType)VT, MVT::v2i64);
624 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
625 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v2i64);
626 }
627
628 // Custom lower v2i64 and v2f64 selects.
629 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
630 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
631 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
632 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
633 }
634
635 // We want to custom lower some of our intrinsics.
636 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
637
638 // We have target-specific dag combine patterns for the following nodes:
639 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640 setTargetDAGCombine(ISD::SELECT);
641
642 computeRegisterProperties();
643
644 // FIXME: These should be based on subtarget info. Plus, the values should
645 // be smaller when we are in optimizing for size mode.
646 maxStoresPerMemset = 16; // For %llvm.memset -> sequence of stores
647 maxStoresPerMemcpy = 16; // For %llvm.memcpy -> sequence of stores
648 maxStoresPerMemmove = 16; // For %llvm.memmove -> sequence of stores
649 allowUnalignedMemoryAccesses = true; // x86 supports it!
650}
651
652
653//===----------------------------------------------------------------------===//
654// Return Value Calling Convention Implementation
655//===----------------------------------------------------------------------===//
656
657#include "X86GenCallingConv.inc"
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000658
659/// GetPossiblePreceedingTailCall - Get preceeding X86ISD::TAILCALL node if it
660/// exists skip possible ISD:TokenFactor.
661static SDOperand GetPossiblePreceedingTailCall(SDOperand Chain) {
662 if (Chain.getOpcode()==X86ISD::TAILCALL) {
663 return Chain;
664 } else if (Chain.getOpcode()==ISD::TokenFactor) {
665 if (Chain.getNumOperands() &&
666 Chain.getOperand(0).getOpcode()==X86ISD::TAILCALL)
667 return Chain.getOperand(0);
668 }
669 return Chain;
670}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000671
672/// LowerRET - Lower an ISD::RET node.
673SDOperand X86TargetLowering::LowerRET(SDOperand Op, SelectionDAG &DAG) {
674 assert((Op.getNumOperands() & 1) == 1 && "ISD::RET should have odd # args");
675
676 SmallVector<CCValAssign, 16> RVLocs;
677 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
678 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
679 CCState CCInfo(CC, isVarArg, getTargetMachine(), RVLocs);
680 CCInfo.AnalyzeReturn(Op.Val, RetCC_X86);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000681
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000682 // If this is the first return lowered for this function, add the regs to the
683 // liveout set for the function.
684 if (DAG.getMachineFunction().liveout_empty()) {
685 for (unsigned i = 0; i != RVLocs.size(); ++i)
686 if (RVLocs[i].isRegLoc())
687 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
688 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000689 SDOperand Chain = Op.getOperand(0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000690
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000691 // Handle tail call return.
692 Chain = GetPossiblePreceedingTailCall(Chain);
693 if (Chain.getOpcode() == X86ISD::TAILCALL) {
694 SDOperand TailCall = Chain;
695 SDOperand TargetAddress = TailCall.getOperand(1);
696 SDOperand StackAdjustment = TailCall.getOperand(2);
697 assert ( ((TargetAddress.getOpcode() == ISD::Register &&
698 (cast<RegisterSDNode>(TargetAddress)->getReg() == X86::ECX ||
699 cast<RegisterSDNode>(TargetAddress)->getReg() == X86::R9)) ||
700 TargetAddress.getOpcode() == ISD::TargetExternalSymbol ||
701 TargetAddress.getOpcode() == ISD::TargetGlobalAddress) &&
702 "Expecting an global address, external symbol, or register");
703 assert( StackAdjustment.getOpcode() == ISD::Constant &&
704 "Expecting a const value");
705
706 SmallVector<SDOperand,8> Operands;
707 Operands.push_back(Chain.getOperand(0));
708 Operands.push_back(TargetAddress);
709 Operands.push_back(StackAdjustment);
710 // Copy registers used by the call. Last operand is a flag so it is not
711 // copied.
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000712 for (unsigned i=3; i < TailCall.getNumOperands()-1; i++) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000713 Operands.push_back(Chain.getOperand(i));
714 }
Arnold Schwaighofer10202b32007-10-16 09:05:00 +0000715 return DAG.getNode(X86ISD::TC_RETURN, MVT::Other, &Operands[0],
716 Operands.size());
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000717 }
718
719 // Regular return.
720 SDOperand Flag;
721
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722 // Copy the result values into the output registers.
723 if (RVLocs.size() != 1 || !RVLocs[0].isRegLoc() ||
724 RVLocs[0].getLocReg() != X86::ST0) {
725 for (unsigned i = 0; i != RVLocs.size(); ++i) {
726 CCValAssign &VA = RVLocs[i];
727 assert(VA.isRegLoc() && "Can only return in registers!");
728 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1),
729 Flag);
730 Flag = Chain.getValue(1);
731 }
732 } else {
733 // We need to handle a destination of ST0 specially, because it isn't really
734 // a register.
735 SDOperand Value = Op.getOperand(1);
736
737 // If this is an FP return with ScalarSSE, we need to move the value from
738 // an XMM register onto the fp-stack.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000739 if ((X86ScalarSSEf32 && RVLocs[0].getValVT()==MVT::f32) ||
740 (X86ScalarSSEf64 && RVLocs[0].getValVT()==MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000741 SDOperand MemLoc;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000742
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000743 // If this is a load into a scalarsse value, don't store the loaded value
744 // back to the stack, only to reload it: just replace the scalar-sse load.
745 if (ISD::isNON_EXTLoad(Value.Val) &&
746 (Chain == Value.getValue(1) || Chain == Value.getOperand(0))) {
747 Chain = Value.getOperand(0);
748 MemLoc = Value.getOperand(1);
749 } else {
750 // Spill the value to memory and reload it into top of stack.
751 unsigned Size = MVT::getSizeInBits(RVLocs[0].getValVT())/8;
752 MachineFunction &MF = DAG.getMachineFunction();
753 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
754 MemLoc = DAG.getFrameIndex(SSFI, getPointerTy());
755 Chain = DAG.getStore(Op.getOperand(0), Value, MemLoc, NULL, 0);
756 }
757 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other);
758 SDOperand Ops[] = {Chain, MemLoc, DAG.getValueType(RVLocs[0].getValVT())};
759 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
760 Chain = Value.getValue(1);
761 }
762
763 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
764 SDOperand Ops[] = { Chain, Value };
765 Chain = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops, 2);
766 Flag = Chain.getValue(1);
767 }
768
769 SDOperand BytesToPop = DAG.getConstant(getBytesToPopOnReturn(), MVT::i16);
770 if (Flag.Val)
771 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop, Flag);
772 else
773 return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Chain, BytesToPop);
774}
775
776
777/// LowerCallResult - Lower the result values of an ISD::CALL into the
778/// appropriate copies out of appropriate physical registers. This assumes that
779/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
780/// being lowered. The returns a SDNode with the same number of values as the
781/// ISD::CALL.
782SDNode *X86TargetLowering::
783LowerCallResult(SDOperand Chain, SDOperand InFlag, SDNode *TheCall,
784 unsigned CallingConv, SelectionDAG &DAG) {
785
786 // Assign locations to each value returned by this call.
787 SmallVector<CCValAssign, 16> RVLocs;
788 bool isVarArg = cast<ConstantSDNode>(TheCall->getOperand(2))->getValue() != 0;
789 CCState CCInfo(CallingConv, isVarArg, getTargetMachine(), RVLocs);
790 CCInfo.AnalyzeCallResult(TheCall, RetCC_X86);
791
792
793 SmallVector<SDOperand, 8> ResultVals;
794
795 // Copy all of the result registers out of their specified physreg.
796 if (RVLocs.size() != 1 || RVLocs[0].getLocReg() != X86::ST0) {
797 for (unsigned i = 0; i != RVLocs.size(); ++i) {
798 Chain = DAG.getCopyFromReg(Chain, RVLocs[i].getLocReg(),
799 RVLocs[i].getValVT(), InFlag).getValue(1);
800 InFlag = Chain.getValue(2);
801 ResultVals.push_back(Chain.getValue(0));
802 }
803 } else {
804 // Copies from the FP stack are special, as ST0 isn't a valid register
805 // before the fp stackifier runs.
806
807 // Copy ST0 into an RFP register with FP_GET_RESULT.
808 SDVTList Tys = DAG.getVTList(RVLocs[0].getValVT(), MVT::Other, MVT::Flag);
809 SDOperand GROps[] = { Chain, InFlag };
810 SDOperand RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, GROps, 2);
811 Chain = RetVal.getValue(1);
812 InFlag = RetVal.getValue(2);
813
814 // If we are using ScalarSSE, store ST(0) to the stack and reload it into
815 // an XMM register.
Dale Johannesene0e0fd02007-09-23 14:52:20 +0000816 if ((X86ScalarSSEf32 && RVLocs[0].getValVT() == MVT::f32) ||
817 (X86ScalarSSEf64 && RVLocs[0].getValVT() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000818 // FIXME: Currently the FST is flagged to the FP_GET_RESULT. This
819 // shouldn't be necessary except that RFP cannot be live across
820 // multiple blocks. When stackifier is fixed, they can be uncoupled.
821 MachineFunction &MF = DAG.getMachineFunction();
822 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
823 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
824 SDOperand Ops[] = {
825 Chain, RetVal, StackSlot, DAG.getValueType(RVLocs[0].getValVT()), InFlag
826 };
827 Chain = DAG.getNode(X86ISD::FST, MVT::Other, Ops, 5);
828 RetVal = DAG.getLoad(RVLocs[0].getValVT(), Chain, StackSlot, NULL, 0);
829 Chain = RetVal.getValue(1);
830 }
831 ResultVals.push_back(RetVal);
832 }
833
834 // Merge everything together with a MERGE_VALUES node.
835 ResultVals.push_back(Chain);
836 return DAG.getNode(ISD::MERGE_VALUES, TheCall->getVTList(),
837 &ResultVals[0], ResultVals.size()).Val;
838}
839
840
841//===----------------------------------------------------------------------===//
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000842// C & StdCall & Fast Calling Convention implementation
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000843//===----------------------------------------------------------------------===//
844// StdCall calling convention seems to be standard for many Windows' API
845// routines and around. It differs from C calling convention just a little:
846// callee should clean up the stack, not caller. Symbols should be also
847// decorated in some fancy way :) It doesn't support any vector arguments.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000848// For info on fast calling convention see Fast Calling Convention (tail call)
849// implementation LowerX86_32FastCCCallTo.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000850
851/// AddLiveIn - This helper function adds the specified physical register to the
852/// MachineFunction as a live in value. It also creates a corresponding virtual
853/// register for it.
854static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg,
855 const TargetRegisterClass *RC) {
856 assert(RC->contains(PReg) && "Not the correct regclass!");
857 unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC);
858 MF.addLiveIn(PReg, VReg);
859 return VReg;
860}
861
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000862// align stack arguments according to platform alignment needed for tail calls
863unsigned GetAlignedArgumentStackSize(unsigned StackSize, SelectionDAG& DAG);
864
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000865SDOperand X86TargetLowering::LowerMemArgument(SDOperand Op, SelectionDAG &DAG,
866 const CCValAssign &VA,
867 MachineFrameInfo *MFI,
868 SDOperand Root, unsigned i) {
869 // Create the nodes corresponding to a load from this parameter slot.
870 int FI = MFI->CreateFixedObject(MVT::getSizeInBits(VA.getValVT())/8,
871 VA.getLocMemOffset());
872 SDOperand FIN = DAG.getFrameIndex(FI, getPointerTy());
873
874 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(3 + i))->getValue();
875
876 if (Flags & ISD::ParamFlags::ByVal)
877 return FIN;
878 else
879 return DAG.getLoad(VA.getValVT(), Root, FIN, NULL, 0);
880}
881
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000882SDOperand X86TargetLowering::LowerCCCArguments(SDOperand Op, SelectionDAG &DAG,
883 bool isStdCall) {
884 unsigned NumArgs = Op.Val->getNumValues() - 1;
885 MachineFunction &MF = DAG.getMachineFunction();
886 MachineFrameInfo *MFI = MF.getFrameInfo();
887 SDOperand Root = Op.getOperand(0);
888 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000889 unsigned CC = MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890 // Assign locations to all of the incoming arguments.
891 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000892 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000893 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000894 // Check for possible tail call calling convention.
895 if (CC == CallingConv::Fast && PerformTailCallOpt)
896 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_TailCall);
897 else
898 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_C);
899
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000900 SmallVector<SDOperand, 8> ArgValues;
901 unsigned LastVal = ~0U;
902 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
903 CCValAssign &VA = ArgLocs[i];
904 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
905 // places.
906 assert(VA.getValNo() != LastVal &&
907 "Don't support value assigned to multiple locs yet");
908 LastVal = VA.getValNo();
909
910 if (VA.isRegLoc()) {
911 MVT::ValueType RegVT = VA.getLocVT();
912 TargetRegisterClass *RC;
913 if (RegVT == MVT::i32)
914 RC = X86::GR32RegisterClass;
915 else {
916 assert(MVT::isVector(RegVT));
917 RC = X86::VR128RegisterClass;
918 }
919
920 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
921 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
922
923 // If this is an 8 or 16-bit value, it is really passed promoted to 32
924 // bits. Insert an assert[sz]ext to capture this, then truncate to the
925 // right size.
926 if (VA.getLocInfo() == CCValAssign::SExt)
927 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
928 DAG.getValueType(VA.getValVT()));
929 else if (VA.getLocInfo() == CCValAssign::ZExt)
930 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
931 DAG.getValueType(VA.getValVT()));
932
933 if (VA.getLocInfo() != CCValAssign::Full)
934 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
935
936 ArgValues.push_back(ArgValue);
937 } else {
938 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +0000939 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000940 }
941 }
942
943 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000944 // align stack specially for tail calls
945 if (CC==CallingConv::Fast)
946 StackSize = GetAlignedArgumentStackSize(StackSize,DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947
948 ArgValues.push_back(Root);
949
950 // If the function takes variable number of arguments, make a frame index for
951 // the start of the first vararg value... for expansion of llvm.va_start.
952 if (isVarArg)
953 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
954
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000955 // Tail call calling convention (CallingConv::Fast) does not support varargs.
956 assert( !(isVarArg && CC == CallingConv::Fast) &&
957 "CallingConv::Fast does not support varargs.");
958
959 if (isStdCall && !isVarArg &&
960 (CC==CallingConv::Fast && PerformTailCallOpt || CC!=CallingConv::Fast)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 BytesToPopOnReturn = StackSize; // Callee pops everything..
962 BytesCallerReserves = 0;
963 } else {
964 BytesToPopOnReturn = 0; // Callee pops nothing.
965
966 // If this is an sret function, the return should pop the hidden pointer.
967 if (NumArgs &&
968 (cast<ConstantSDNode>(Op.getOperand(3))->getValue() &
969 ISD::ParamFlags::StructReturn))
970 BytesToPopOnReturn = 4;
971
972 BytesCallerReserves = StackSize;
973 }
Anton Korobeynikove844e472007-08-15 17:12:32 +0000974
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000975 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000976
Anton Korobeynikove844e472007-08-15 17:12:32 +0000977 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
978 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000979
980 // Return the new list of results.
981 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
982 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
983}
984
985SDOperand X86TargetLowering::LowerCCCCallTo(SDOperand Op, SelectionDAG &DAG,
986 unsigned CC) {
987 SDOperand Chain = Op.getOperand(0);
988 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000989 SDOperand Callee = Op.getOperand(4);
990 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000991
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000992 // Analyze operands of the call, assigning locations to each operand.
993 SmallVector<CCValAssign, 16> ArgLocs;
994 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +0000995 if(CC==CallingConv::Fast && PerformTailCallOpt)
996 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
997 else
998 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000999
1000 // Get a count of how many bytes are to be pushed on the stack.
1001 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001002 if (CC==CallingConv::Fast)
1003 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001004
1005 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1006
1007 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1008 SmallVector<SDOperand, 8> MemOpChains;
1009
1010 SDOperand StackPtr;
1011
1012 // Walk the register/memloc assignments, inserting copies/loads.
1013 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1014 CCValAssign &VA = ArgLocs[i];
1015 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1016
1017 // Promote the value if needed.
1018 switch (VA.getLocInfo()) {
1019 default: assert(0 && "Unknown loc info!");
1020 case CCValAssign::Full: break;
1021 case CCValAssign::SExt:
1022 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1023 break;
1024 case CCValAssign::ZExt:
1025 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1026 break;
1027 case CCValAssign::AExt:
1028 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1029 break;
1030 }
1031
1032 if (VA.isRegLoc()) {
1033 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1034 } else {
1035 assert(VA.isMemLoc());
1036 if (StackPtr.Val == 0)
1037 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001038
1039 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1040 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001041 }
1042 }
1043
1044 // If the first argument is an sret pointer, remember it.
1045 bool isSRet = NumOps &&
1046 (cast<ConstantSDNode>(Op.getOperand(6))->getValue() &
1047 ISD::ParamFlags::StructReturn);
1048
1049 if (!MemOpChains.empty())
1050 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1051 &MemOpChains[0], MemOpChains.size());
1052
1053 // Build a sequence of copy-to-reg nodes chained together with token chain
1054 // and flag operands which copy the outgoing args into registers.
1055 SDOperand InFlag;
1056 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1057 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1058 InFlag);
1059 InFlag = Chain.getValue(1);
1060 }
1061
1062 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1063 // GOT pointer.
1064 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1065 Subtarget->isPICStyleGOT()) {
1066 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1067 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1068 InFlag);
1069 InFlag = Chain.getValue(1);
1070 }
1071
1072 // If the callee is a GlobalAddress node (quite common, every direct call is)
1073 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1074 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1075 // We should use extra load for direct calls to dllimported functions in
1076 // non-JIT mode.
1077 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1078 getTargetMachine(), true))
1079 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1080 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1081 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1082
1083 // Returns a chain & a flag for retval copy to use.
1084 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1085 SmallVector<SDOperand, 8> Ops;
1086 Ops.push_back(Chain);
1087 Ops.push_back(Callee);
1088
1089 // Add argument registers to the end of the list so that they are known live
1090 // into the call.
1091 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1092 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1093 RegsToPass[i].second.getValueType()));
1094
1095 // Add an implicit use GOT pointer in EBX.
1096 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1097 Subtarget->isPICStyleGOT())
1098 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1099
1100 if (InFlag.Val)
1101 Ops.push_back(InFlag);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001102
1103 Chain = DAG.getNode(X86ISD::CALL, NodeTys, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001104 InFlag = Chain.getValue(1);
1105
1106 // Create the CALLSEQ_END node.
1107 unsigned NumBytesForCalleeToPush = 0;
1108
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001109 if (CC == CallingConv::X86_StdCall ||
1110 (CC == CallingConv::Fast && PerformTailCallOpt)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001111 if (isVarArg)
1112 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1113 else
1114 NumBytesForCalleeToPush = NumBytes;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001115 assert(!(isVarArg && CC==CallingConv::Fast) &&
1116 "CallingConv::Fast does not support varargs.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001117 } else {
1118 // If this is is a call to a struct-return function, the callee
1119 // pops the hidden struct pointer, so we have to push it back.
1120 // This is common for Darwin/X86, Linux & Mingw32 targets.
1121 NumBytesForCalleeToPush = isSRet ? 4 : 0;
1122 }
1123
1124 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1125 Ops.clear();
1126 Ops.push_back(Chain);
1127 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1128 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
1129 Ops.push_back(InFlag);
1130 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1131 InFlag = Chain.getValue(1);
1132
1133 // Handle result values, copying them out of physregs into vregs that we
1134 // return.
1135 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1136}
1137
1138
1139//===----------------------------------------------------------------------===//
1140// FastCall Calling Convention implementation
1141//===----------------------------------------------------------------------===//
1142//
1143// The X86 'fastcall' calling convention passes up to two integer arguments in
1144// registers (an appropriate portion of ECX/EDX), passes arguments in C order,
1145// and requires that the callee pop its arguments off the stack (allowing proper
1146// tail calls), and has the same return value conventions as C calling convs.
1147//
1148// This calling convention always arranges for the callee pop value to be 8n+4
1149// bytes, which is needed for tail recursion elimination and stack alignment
1150// reasons.
1151SDOperand
1152X86TargetLowering::LowerFastCCArguments(SDOperand Op, SelectionDAG &DAG) {
1153 MachineFunction &MF = DAG.getMachineFunction();
1154 MachineFrameInfo *MFI = MF.getFrameInfo();
1155 SDOperand Root = Op.getOperand(0);
1156 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1157
1158 // Assign locations to all of the incoming arguments.
1159 SmallVector<CCValAssign, 16> ArgLocs;
1160 CCState CCInfo(MF.getFunction()->getCallingConv(), isVarArg,
1161 getTargetMachine(), ArgLocs);
1162 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_32_FastCall);
1163
1164 SmallVector<SDOperand, 8> ArgValues;
1165 unsigned LastVal = ~0U;
1166 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1167 CCValAssign &VA = ArgLocs[i];
1168 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1169 // places.
1170 assert(VA.getValNo() != LastVal &&
1171 "Don't support value assigned to multiple locs yet");
1172 LastVal = VA.getValNo();
1173
1174 if (VA.isRegLoc()) {
1175 MVT::ValueType RegVT = VA.getLocVT();
1176 TargetRegisterClass *RC;
1177 if (RegVT == MVT::i32)
1178 RC = X86::GR32RegisterClass;
1179 else {
1180 assert(MVT::isVector(RegVT));
1181 RC = X86::VR128RegisterClass;
1182 }
1183
1184 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1185 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1186
1187 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1188 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1189 // right size.
1190 if (VA.getLocInfo() == CCValAssign::SExt)
1191 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1192 DAG.getValueType(VA.getValVT()));
1193 else if (VA.getLocInfo() == CCValAssign::ZExt)
1194 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1195 DAG.getValueType(VA.getValVT()));
1196
1197 if (VA.getLocInfo() != CCValAssign::Full)
1198 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1199
1200 ArgValues.push_back(ArgValue);
1201 } else {
1202 assert(VA.isMemLoc());
Rafael Espindolab53ef122007-09-21 14:55:38 +00001203 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001204 }
1205 }
1206
1207 ArgValues.push_back(Root);
1208
1209 unsigned StackSize = CCInfo.getNextStackOffset();
1210
1211 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1212 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001213 // arguments and the arguments after the retaddr has been pushed are
1214 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001215 if ((StackSize & 7) == 0)
1216 StackSize += 4;
1217 }
1218
1219 VarArgsFrameIndex = 0xAAAAAAA; // fastcc functions can't have varargs.
1220 RegSaveFrameIndex = 0xAAAAAAA; // X86-64 only.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001221 BytesToPopOnReturn = StackSize; // Callee pops all stack arguments.
1222 BytesCallerReserves = 0;
1223
Anton Korobeynikove844e472007-08-15 17:12:32 +00001224 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1225 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001226
1227 // Return the new list of results.
1228 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1229 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1230}
1231
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001232SDOperand
1233X86TargetLowering::LowerMemOpCallTo(SDOperand Op, SelectionDAG &DAG,
1234 const SDOperand &StackPtr,
1235 const CCValAssign &VA,
1236 SDOperand Chain,
1237 SDOperand Arg) {
1238 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1239 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1240 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1241 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1242 if (Flags & ISD::ParamFlags::ByVal) {
1243 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1244 ISD::ParamFlags::ByValAlignOffs);
1245
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001246 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1247 ISD::ParamFlags::ByValSizeOffs;
1248
1249 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1250 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
Rafael Espindola80825902007-10-19 10:41:11 +00001251 SDOperand AlwaysInline = DAG.getConstant(1, MVT::i1);
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001252
Rafael Espindola80825902007-10-19 10:41:11 +00001253 return DAG.getMemcpy(Chain, PtrOff, Arg, SizeNode, AlignNode,
1254 AlwaysInline);
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001255 } else {
1256 return DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1257 }
1258}
1259
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001260SDOperand X86TargetLowering::LowerFastCCCallTo(SDOperand Op, SelectionDAG &DAG,
1261 unsigned CC) {
1262 SDOperand Chain = Op.getOperand(0);
1263 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1264 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1265 SDOperand Callee = Op.getOperand(4);
1266
1267 // Analyze operands of the call, assigning locations to each operand.
1268 SmallVector<CCValAssign, 16> ArgLocs;
1269 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1270 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_FastCall);
1271
1272 // Get a count of how many bytes are to be pushed on the stack.
1273 unsigned NumBytes = CCInfo.getNextStackOffset();
1274
1275 if (!Subtarget->isTargetCygMing() && !Subtarget->isTargetWindows()) {
1276 // Make sure the instruction takes 8n+4 bytes to make sure the start of the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001277 // arguments and the arguments after the retaddr has been pushed are
1278 // aligned.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001279 if ((NumBytes & 7) == 0)
1280 NumBytes += 4;
1281 }
1282
1283 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1284
1285 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1286 SmallVector<SDOperand, 8> MemOpChains;
1287
1288 SDOperand StackPtr;
1289
1290 // Walk the register/memloc assignments, inserting copies/loads.
1291 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1292 CCValAssign &VA = ArgLocs[i];
1293 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1294
1295 // Promote the value if needed.
1296 switch (VA.getLocInfo()) {
1297 default: assert(0 && "Unknown loc info!");
1298 case CCValAssign::Full: break;
1299 case CCValAssign::SExt:
1300 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1301 break;
1302 case CCValAssign::ZExt:
1303 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1304 break;
1305 case CCValAssign::AExt:
1306 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1307 break;
1308 }
1309
1310 if (VA.isRegLoc()) {
1311 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1312 } else {
1313 assert(VA.isMemLoc());
1314 if (StackPtr.Val == 0)
1315 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindola007b7142007-09-21 15:50:22 +00001316
1317 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1318 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001319 }
1320 }
1321
1322 if (!MemOpChains.empty())
1323 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1324 &MemOpChains[0], MemOpChains.size());
1325
1326 // Build a sequence of copy-to-reg nodes chained together with token chain
1327 // and flag operands which copy the outgoing args into registers.
1328 SDOperand InFlag;
1329 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1330 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1331 InFlag);
1332 InFlag = Chain.getValue(1);
1333 }
1334
1335 // If the callee is a GlobalAddress node (quite common, every direct call is)
1336 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1337 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1338 // We should use extra load for direct calls to dllimported functions in
1339 // non-JIT mode.
1340 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1341 getTargetMachine(), true))
1342 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1343 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1344 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1345
1346 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1347 // GOT pointer.
1348 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1349 Subtarget->isPICStyleGOT()) {
1350 Chain = DAG.getCopyToReg(Chain, X86::EBX,
1351 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
1352 InFlag);
1353 InFlag = Chain.getValue(1);
1354 }
1355
1356 // Returns a chain & a flag for retval copy to use.
1357 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1358 SmallVector<SDOperand, 8> Ops;
1359 Ops.push_back(Chain);
1360 Ops.push_back(Callee);
1361
1362 // Add argument registers to the end of the list so that they are known live
1363 // into the call.
1364 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1365 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1366 RegsToPass[i].second.getValueType()));
1367
1368 // Add an implicit use GOT pointer in EBX.
1369 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1370 Subtarget->isPICStyleGOT())
1371 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
1372
1373 if (InFlag.Val)
1374 Ops.push_back(InFlag);
1375
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001376 assert(isTailCall==false && "no tail call here");
1377 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001378 NodeTys, &Ops[0], Ops.size());
1379 InFlag = Chain.getValue(1);
1380
1381 // Returns a flag for retval copy to use.
1382 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1383 Ops.clear();
1384 Ops.push_back(Chain);
1385 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1386 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
1387 Ops.push_back(InFlag);
1388 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1389 InFlag = Chain.getValue(1);
1390
1391 // Handle result values, copying them out of physregs into vregs that we
1392 // return.
1393 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
1394}
1395
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001396//===----------------------------------------------------------------------===//
1397// Fast Calling Convention (tail call) implementation
1398//===----------------------------------------------------------------------===//
1399
1400// Like std call, callee cleans arguments, convention except that ECX is
1401// reserved for storing the tail called function address. Only 2 registers are
1402// free for argument passing (inreg). Tail call optimization is performed
1403// provided:
1404// * tailcallopt is enabled
1405// * caller/callee are fastcc
1406// * elf/pic is disabled OR
1407// * elf/pic enabled + callee is in module + callee has
1408// visibility protected or hidden
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001409// To keep the stack aligned according to platform abi the function
1410// GetAlignedArgumentStackSize ensures that argument delta is always multiples
1411// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001412// If a tail called function callee has more arguments than the caller the
1413// caller needs to make sure that there is room to move the RETADDR to. This is
Arnold Schwaighofer373e8652007-10-12 21:30:57 +00001414// achieved by reserving an area the size of the argument delta right after the
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001415// original REtADDR, but before the saved framepointer or the spilled registers
1416// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
1417// stack layout:
1418// arg1
1419// arg2
1420// RETADDR
1421// [ new RETADDR
1422// move area ]
1423// (possible EBP)
1424// ESI
1425// EDI
1426// local1 ..
1427
1428/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
1429/// for a 16 byte align requirement.
1430unsigned X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
1431 SelectionDAG& DAG) {
1432 if (PerformTailCallOpt) {
1433 MachineFunction &MF = DAG.getMachineFunction();
1434 const TargetMachine &TM = MF.getTarget();
1435 const TargetFrameInfo &TFI = *TM.getFrameInfo();
1436 unsigned StackAlignment = TFI.getStackAlignment();
1437 uint64_t AlignMask = StackAlignment - 1;
1438 int64_t Offset = StackSize;
1439 unsigned SlotSize = Subtarget->is64Bit() ? 8 : 4;
1440 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
1441 // Number smaller than 12 so just add the difference.
1442 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
1443 } else {
1444 // Mask out lower bits, add stackalignment once plus the 12 bytes.
1445 Offset = ((~AlignMask) & Offset) + StackAlignment +
1446 (StackAlignment-SlotSize);
1447 }
1448 StackSize = Offset;
1449 }
1450 return StackSize;
1451}
1452
1453/// IsEligibleForTailCallElimination - Check to see whether the next instruction
Evan Chenge7a87392007-11-02 01:26:22 +00001454/// following the call is a return. A function is eligible if caller/callee
1455/// calling conventions match, currently only fastcc supports tail calls, and
1456/// the function CALL is immediatly followed by a RET.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001457bool X86TargetLowering::IsEligibleForTailCallOptimization(SDOperand Call,
1458 SDOperand Ret,
1459 SelectionDAG& DAG) const {
Evan Chenge7a87392007-11-02 01:26:22 +00001460 if (!PerformTailCallOpt)
1461 return false;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001462
1463 // Check whether CALL node immediatly preceeds the RET node and whether the
1464 // return uses the result of the node or is a void return.
Evan Chenge7a87392007-11-02 01:26:22 +00001465 unsigned NumOps = Ret.getNumOperands();
1466 if ((NumOps == 1 &&
1467 (Ret.getOperand(0) == SDOperand(Call.Val,1) ||
1468 Ret.getOperand(0) == SDOperand(Call.Val,0))) ||
Evan Cheng26c0e982007-11-02 17:45:40 +00001469 (NumOps > 1 &&
Evan Chenge7a87392007-11-02 01:26:22 +00001470 Ret.getOperand(0) == SDOperand(Call.Val,Call.Val->getNumValues()-1) &&
1471 Ret.getOperand(1) == SDOperand(Call.Val,0))) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001472 MachineFunction &MF = DAG.getMachineFunction();
1473 unsigned CallerCC = MF.getFunction()->getCallingConv();
1474 unsigned CalleeCC = cast<ConstantSDNode>(Call.getOperand(1))->getValue();
1475 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
1476 SDOperand Callee = Call.getOperand(4);
1477 // On elf/pic %ebx needs to be livein.
Evan Chenge7a87392007-11-02 01:26:22 +00001478 if (getTargetMachine().getRelocationModel() != Reloc::PIC_ ||
1479 !Subtarget->isPICStyleGOT())
1480 return true;
1481
1482 // Can only do local tail calls with PIC.
1483 GlobalValue * GV = 0;
1484 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
1485 if(G != 0 &&
1486 (GV = G->getGlobal()) &&
1487 (GV->hasHiddenVisibility() || GV->hasProtectedVisibility()))
1488 return true;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001489 }
1490 }
Evan Chenge7a87392007-11-02 01:26:22 +00001491
1492 return false;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001493}
1494
1495SDOperand X86TargetLowering::LowerX86_TailCallTo(SDOperand Op,
1496 SelectionDAG &DAG,
1497 unsigned CC) {
1498 SDOperand Chain = Op.getOperand(0);
1499 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1500 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
1501 SDOperand Callee = Op.getOperand(4);
1502 bool is64Bit = Subtarget->is64Bit();
1503
1504 assert(isTailCall && PerformTailCallOpt && "Should only emit tail calls.");
1505
1506 // Analyze operands of the call, assigning locations to each operand.
1507 SmallVector<CCValAssign, 16> ArgLocs;
1508 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
1509 if (is64Bit)
1510 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1511 else
1512 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_32_TailCall);
1513
1514
1515 // Lower arguments at fp - stackoffset + fpdiff.
1516 MachineFunction &MF = DAG.getMachineFunction();
1517
1518 unsigned NumBytesToBePushed =
1519 GetAlignedArgumentStackSize(CCInfo.getNextStackOffset(), DAG);
1520
1521 unsigned NumBytesCallerPushed =
1522 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
1523 int FPDiff = NumBytesCallerPushed - NumBytesToBePushed;
1524
1525 // Set the delta of movement of the returnaddr stackslot.
1526 // But only set if delta is greater than previous delta.
1527 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
1528 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
1529
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001530 Chain = DAG.
1531 getCALLSEQ_START(Chain, DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1532
1533 // Adjust the Return address stack slot.
1534 SDOperand RetAddrFrIdx, NewRetAddrFrIdx;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001535 if (FPDiff) {
1536 MVT::ValueType VT = is64Bit ? MVT::i64 : MVT::i32;
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001537 RetAddrFrIdx = getReturnAddressFrameIndex(DAG);
1538 // Load the "old" Return address.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001539 RetAddrFrIdx =
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001540 DAG.getLoad(VT, Chain,RetAddrFrIdx, NULL, 0);
1541 // Calculate the new stack slot for the return address.
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001542 int SlotSize = is64Bit ? 8 : 4;
1543 int NewReturnAddrFI =
1544 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize);
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001545 NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
1546 Chain = SDOperand(RetAddrFrIdx.Val, 1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001547 }
1548
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001549 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1550 SmallVector<SDOperand, 8> MemOpChains;
1551 SmallVector<SDOperand, 8> MemOpChains2;
1552 SDOperand FramePtr, StackPtr;
1553 SDOperand PtrOff;
1554 SDOperand FIN;
1555 int FI = 0;
1556
1557 // Walk the register/memloc assignments, inserting copies/loads. Lower
1558 // arguments first to the stack slot where they would normally - in case of a
1559 // normal function call - be.
1560 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1561 CCValAssign &VA = ArgLocs[i];
1562 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1563
1564 // Promote the value if needed.
1565 switch (VA.getLocInfo()) {
1566 default: assert(0 && "Unknown loc info!");
1567 case CCValAssign::Full: break;
1568 case CCValAssign::SExt:
1569 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1570 break;
1571 case CCValAssign::ZExt:
1572 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1573 break;
1574 case CCValAssign::AExt:
1575 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1576 break;
1577 }
1578
1579 if (VA.isRegLoc()) {
1580 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1581 } else {
1582 assert(VA.isMemLoc());
1583 if (StackPtr.Val == 0)
1584 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
1585
1586 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1587 Arg));
1588 }
1589 }
1590
1591 if (!MemOpChains.empty())
1592 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1593 &MemOpChains[0], MemOpChains.size());
1594
1595 // Build a sequence of copy-to-reg nodes chained together with token chain
1596 // and flag operands which copy the outgoing args into registers.
1597 SDOperand InFlag;
1598 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1599 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1600 InFlag);
1601 InFlag = Chain.getValue(1);
1602 }
1603 InFlag = SDOperand();
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001604
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001605 // Copy from stack slots to stack slot of a tail called function. This needs
1606 // to be done because if we would lower the arguments directly to their real
1607 // stack slot we might end up overwriting each other.
1608 // TODO: To make this more efficient (sometimes saving a store/load) we could
1609 // analyse the arguments and emit this store/load/store sequence only for
1610 // arguments which would be overwritten otherwise.
1611 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1612 CCValAssign &VA = ArgLocs[i];
1613 if (!VA.isRegLoc()) {
1614 SDOperand FlagsOp = Op.getOperand(6+2*VA.getValNo());
1615 unsigned Flags = cast<ConstantSDNode>(FlagsOp)->getValue();
1616
1617 // Get source stack slot.
1618 SDOperand PtrOff = DAG.getConstant(VA.getLocMemOffset(), getPointerTy());
1619 PtrOff = DAG.getNode(ISD::ADD, getPointerTy(), StackPtr, PtrOff);
1620 // Create frame index.
1621 int32_t Offset = VA.getLocMemOffset()+FPDiff;
1622 uint32_t OpSize = (MVT::getSizeInBits(VA.getLocVT())+7)/8;
1623 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset);
1624 FIN = DAG.getFrameIndex(FI, MVT::i32);
1625 if (Flags & ISD::ParamFlags::ByVal) {
1626 // Copy relative to framepointer.
1627 unsigned Align = 1 << ((Flags & ISD::ParamFlags::ByValAlign) >>
1628 ISD::ParamFlags::ByValAlignOffs);
1629
1630 unsigned Size = (Flags & ISD::ParamFlags::ByValSize) >>
1631 ISD::ParamFlags::ByValSizeOffs;
1632
1633 SDOperand AlignNode = DAG.getConstant(Align, MVT::i32);
1634 SDOperand SizeNode = DAG.getConstant(Size, MVT::i32);
1635 // Copy relative to framepointer.
1636 MemOpChains2.push_back(DAG.getNode(ISD::MEMCPY, MVT::Other, Chain, FIN,
1637 PtrOff, SizeNode, AlignNode));
1638 } else {
1639 SDOperand LoadedArg = DAG.getLoad(VA.getValVT(), Chain, PtrOff, NULL,0);
1640 // Store relative to framepointer.
1641 MemOpChains2.push_back(DAG.getStore(Chain, LoadedArg, FIN, NULL, 0));
1642 }
1643 }
1644 }
1645
1646 if (!MemOpChains2.empty())
1647 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1648 &MemOpChains2[0], MemOpChains.size());
1649
Arnold Schwaighofer10202b32007-10-16 09:05:00 +00001650 // Store the return address to the appropriate stack slot.
1651 if (FPDiff)
1652 Chain = DAG.getStore(Chain,RetAddrFrIdx, NewRetAddrFrIdx, NULL, 0);
1653
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001654 // ELF / PIC requires GOT in the EBX register before function calls via PLT
1655 // GOT pointer.
1656 // Does not work with tail call since ebx is not restored correctly by
1657 // tailcaller. TODO: at least for x86 - verify for x86-64
1658
1659 // If the callee is a GlobalAddress node (quite common, every direct call is)
1660 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1661 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1662 // We should use extra load for direct calls to dllimported functions in
1663 // non-JIT mode.
1664 if (!Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1665 getTargetMachine(), true))
1666 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1667 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1668 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1669 else {
1670 assert(Callee.getOpcode() == ISD::LOAD &&
1671 "Function destination must be loaded into virtual register");
1672 unsigned Opc = is64Bit ? X86::R9 : X86::ECX;
1673
1674 Chain = DAG.getCopyToReg(Chain,
1675 DAG.getRegister(Opc, getPointerTy()) ,
1676 Callee,InFlag);
1677 Callee = DAG.getRegister(Opc, getPointerTy());
1678 // Add register as live out.
1679 DAG.getMachineFunction().addLiveOut(Opc);
1680 }
1681
1682 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1683 SmallVector<SDOperand, 8> Ops;
1684
1685 Ops.push_back(Chain);
1686 Ops.push_back(DAG.getConstant(NumBytesToBePushed, getPointerTy()));
1687 Ops.push_back(DAG.getConstant(0, getPointerTy()));
1688 if (InFlag.Val)
1689 Ops.push_back(InFlag);
1690 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
1691 InFlag = Chain.getValue(1);
1692
1693 // Returns a chain & a flag for retval copy to use.
1694 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1695 Ops.clear();
1696 Ops.push_back(Chain);
1697 Ops.push_back(Callee);
1698 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
1699 // Add argument registers to the end of the list so that they are known live
1700 // into the call.
1701 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1702 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1703 RegsToPass[i].second.getValueType()));
1704 if (InFlag.Val)
1705 Ops.push_back(InFlag);
1706 assert(InFlag.Val &&
1707 "Flag must be set. Depend on flag being set in LowerRET");
1708 Chain = DAG.getNode(X86ISD::TAILCALL,
1709 Op.Val->getVTList(), &Ops[0], Ops.size());
1710
1711 return SDOperand(Chain.Val, Op.ResNo);
1712}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001713
1714//===----------------------------------------------------------------------===//
1715// X86-64 C Calling Convention implementation
1716//===----------------------------------------------------------------------===//
1717
1718SDOperand
1719X86TargetLowering::LowerX86_64CCCArguments(SDOperand Op, SelectionDAG &DAG) {
1720 MachineFunction &MF = DAG.getMachineFunction();
1721 MachineFrameInfo *MFI = MF.getFrameInfo();
1722 SDOperand Root = Op.getOperand(0);
1723 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001724 unsigned CC= MF.getFunction()->getCallingConv();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001725
1726 static const unsigned GPR64ArgRegs[] = {
1727 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1728 };
1729 static const unsigned XMMArgRegs[] = {
1730 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1731 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1732 };
1733
1734
1735 // Assign locations to all of the incoming arguments.
1736 SmallVector<CCValAssign, 16> ArgLocs;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001737 CCState CCInfo(CC, isVarArg,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001738 getTargetMachine(), ArgLocs);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001739 if (CC == CallingConv::Fast && PerformTailCallOpt)
1740 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_TailCall);
1741 else
1742 CCInfo.AnalyzeFormalArguments(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001743
1744 SmallVector<SDOperand, 8> ArgValues;
1745 unsigned LastVal = ~0U;
1746 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1747 CCValAssign &VA = ArgLocs[i];
1748 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1749 // places.
1750 assert(VA.getValNo() != LastVal &&
1751 "Don't support value assigned to multiple locs yet");
1752 LastVal = VA.getValNo();
1753
1754 if (VA.isRegLoc()) {
1755 MVT::ValueType RegVT = VA.getLocVT();
1756 TargetRegisterClass *RC;
1757 if (RegVT == MVT::i32)
1758 RC = X86::GR32RegisterClass;
1759 else if (RegVT == MVT::i64)
1760 RC = X86::GR64RegisterClass;
1761 else if (RegVT == MVT::f32)
1762 RC = X86::FR32RegisterClass;
1763 else if (RegVT == MVT::f64)
1764 RC = X86::FR64RegisterClass;
1765 else {
1766 assert(MVT::isVector(RegVT));
1767 if (MVT::getSizeInBits(RegVT) == 64) {
1768 RC = X86::GR64RegisterClass; // MMX values are passed in GPRs.
1769 RegVT = MVT::i64;
1770 } else
1771 RC = X86::VR128RegisterClass;
1772 }
1773
1774 unsigned Reg = AddLiveIn(DAG.getMachineFunction(), VA.getLocReg(), RC);
1775 SDOperand ArgValue = DAG.getCopyFromReg(Root, Reg, RegVT);
1776
1777 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1778 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1779 // right size.
1780 if (VA.getLocInfo() == CCValAssign::SExt)
1781 ArgValue = DAG.getNode(ISD::AssertSext, RegVT, ArgValue,
1782 DAG.getValueType(VA.getValVT()));
1783 else if (VA.getLocInfo() == CCValAssign::ZExt)
1784 ArgValue = DAG.getNode(ISD::AssertZext, RegVT, ArgValue,
1785 DAG.getValueType(VA.getValVT()));
1786
1787 if (VA.getLocInfo() != CCValAssign::Full)
1788 ArgValue = DAG.getNode(ISD::TRUNCATE, VA.getValVT(), ArgValue);
1789
1790 // Handle MMX values passed in GPRs.
1791 if (RegVT != VA.getLocVT() && RC == X86::GR64RegisterClass &&
1792 MVT::getSizeInBits(RegVT) == 64)
1793 ArgValue = DAG.getNode(ISD::BIT_CONVERT, VA.getLocVT(), ArgValue);
1794
1795 ArgValues.push_back(ArgValue);
1796 } else {
1797 assert(VA.isMemLoc());
Rafael Espindola03cbeb72007-09-14 15:48:13 +00001798 ArgValues.push_back(LowerMemArgument(Op, DAG, VA, MFI, Root, i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001799 }
1800 }
1801
1802 unsigned StackSize = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001803 if (CC==CallingConv::Fast)
1804 StackSize =GetAlignedArgumentStackSize(StackSize, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001805
1806 // If the function takes variable number of arguments, make a frame index for
1807 // the start of the first vararg value... for expansion of llvm.va_start.
1808 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001809 assert(CC!=CallingConv::Fast
1810 && "Var arg not supported with calling convention fastcc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001811 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, 6);
1812 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1813
1814 // For X86-64, if there are vararg parameters that are passed via
1815 // registers, then we must store them to their spots on the stack so they
1816 // may be loaded by deferencing the result of va_next.
1817 VarArgsGPOffset = NumIntRegs * 8;
1818 VarArgsFPOffset = 6 * 8 + NumXMMRegs * 16;
1819 VarArgsFrameIndex = MFI->CreateFixedObject(1, StackSize);
1820 RegSaveFrameIndex = MFI->CreateStackObject(6 * 8 + 8 * 16, 16);
1821
1822 // Store the integer parameter registers.
1823 SmallVector<SDOperand, 8> MemOps;
1824 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
1825 SDOperand FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1826 DAG.getConstant(VarArgsGPOffset, getPointerTy()));
1827 for (; NumIntRegs != 6; ++NumIntRegs) {
1828 unsigned VReg = AddLiveIn(MF, GPR64ArgRegs[NumIntRegs],
1829 X86::GR64RegisterClass);
1830 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1831 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1832 MemOps.push_back(Store);
1833 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1834 DAG.getConstant(8, getPointerTy()));
1835 }
1836
1837 // Now store the XMM (fp + vector) parameter registers.
1838 FIN = DAG.getNode(ISD::ADD, getPointerTy(), RSFIN,
1839 DAG.getConstant(VarArgsFPOffset, getPointerTy()));
1840 for (; NumXMMRegs != 8; ++NumXMMRegs) {
1841 unsigned VReg = AddLiveIn(MF, XMMArgRegs[NumXMMRegs],
1842 X86::VR128RegisterClass);
1843 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::v4f32);
1844 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1845 MemOps.push_back(Store);
1846 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
1847 DAG.getConstant(16, getPointerTy()));
1848 }
1849 if (!MemOps.empty())
1850 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
1851 &MemOps[0], MemOps.size());
1852 }
1853
1854 ArgValues.push_back(Root);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001855 // Tail call convention (fastcc) needs callee pop.
Evan Cheng778fa0f2007-10-14 10:09:39 +00001856 if (CC == CallingConv::Fast && PerformTailCallOpt) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001857 BytesToPopOnReturn = StackSize; // Callee pops everything.
1858 BytesCallerReserves = 0;
1859 } else {
1860 BytesToPopOnReturn = 0; // Callee pops nothing.
1861 BytesCallerReserves = StackSize;
1862 }
Anton Korobeynikove844e472007-08-15 17:12:32 +00001863 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1864 FuncInfo->setBytesToPopOnReturn(BytesToPopOnReturn);
1865
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001866 // Return the new list of results.
1867 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(),
1868 &ArgValues[0], ArgValues.size()).getValue(Op.ResNo);
1869}
1870
1871SDOperand
1872X86TargetLowering::LowerX86_64CCCCallTo(SDOperand Op, SelectionDAG &DAG,
1873 unsigned CC) {
1874 SDOperand Chain = Op.getOperand(0);
1875 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001876 SDOperand Callee = Op.getOperand(4);
1877
1878 // Analyze operands of the call, assigning locations to each operand.
1879 SmallVector<CCValAssign, 16> ArgLocs;
1880 CCState CCInfo(CC, isVarArg, getTargetMachine(), ArgLocs);
Evan Cheng778fa0f2007-10-14 10:09:39 +00001881 if (CC==CallingConv::Fast && PerformTailCallOpt)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001882 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_TailCall);
1883 else
1884 CCInfo.AnalyzeCallOperands(Op.Val, CC_X86_64_C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001885
1886 // Get a count of how many bytes are to be pushed on the stack.
1887 unsigned NumBytes = CCInfo.getNextStackOffset();
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001888 if (CC == CallingConv::Fast)
1889 NumBytes = GetAlignedArgumentStackSize(NumBytes,DAG);
1890
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001891 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, getPointerTy()));
1892
1893 SmallVector<std::pair<unsigned, SDOperand>, 8> RegsToPass;
1894 SmallVector<SDOperand, 8> MemOpChains;
1895
1896 SDOperand StackPtr;
1897
1898 // Walk the register/memloc assignments, inserting copies/loads.
1899 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1900 CCValAssign &VA = ArgLocs[i];
1901 SDOperand Arg = Op.getOperand(5+2*VA.getValNo());
1902
1903 // Promote the value if needed.
1904 switch (VA.getLocInfo()) {
1905 default: assert(0 && "Unknown loc info!");
1906 case CCValAssign::Full: break;
1907 case CCValAssign::SExt:
1908 Arg = DAG.getNode(ISD::SIGN_EXTEND, VA.getLocVT(), Arg);
1909 break;
1910 case CCValAssign::ZExt:
1911 Arg = DAG.getNode(ISD::ZERO_EXTEND, VA.getLocVT(), Arg);
1912 break;
1913 case CCValAssign::AExt:
1914 Arg = DAG.getNode(ISD::ANY_EXTEND, VA.getLocVT(), Arg);
1915 break;
1916 }
1917
1918 if (VA.isRegLoc()) {
1919 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1920 } else {
1921 assert(VA.isMemLoc());
1922 if (StackPtr.Val == 0)
1923 StackPtr = DAG.getRegister(getStackPtrReg(), getPointerTy());
Rafael Espindolab8bcfcd2007-08-20 15:18:24 +00001924
Rafael Espindoladdb88da2007-08-31 15:06:30 +00001925 MemOpChains.push_back(LowerMemOpCallTo(Op, DAG, StackPtr, VA, Chain,
1926 Arg));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001927 }
1928 }
1929
1930 if (!MemOpChains.empty())
1931 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1932 &MemOpChains[0], MemOpChains.size());
1933
1934 // Build a sequence of copy-to-reg nodes chained together with token chain
1935 // and flag operands which copy the outgoing args into registers.
1936 SDOperand InFlag;
1937 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1938 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1939 InFlag);
1940 InFlag = Chain.getValue(1);
1941 }
1942
1943 if (isVarArg) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001944 assert ( CallingConv::Fast != CC &&
1945 "Var args not supported with calling convention fastcc");
1946
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001947 // From AMD64 ABI document:
1948 // For calls that may call functions that use varargs or stdargs
1949 // (prototype-less calls or calls to functions containing ellipsis (...) in
1950 // the declaration) %al is used as hidden argument to specify the number
1951 // of SSE registers used. The contents of %al do not need to match exactly
1952 // the number of registers, but must be an ubound on the number of SSE
1953 // registers used and is in the range 0 - 8 inclusive.
1954
1955 // Count the number of XMM registers allocated.
1956 static const unsigned XMMArgRegs[] = {
1957 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1958 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1959 };
1960 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
1961
1962 Chain = DAG.getCopyToReg(Chain, X86::AL,
1963 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
1964 InFlag = Chain.getValue(1);
1965 }
1966
1967 // If the callee is a GlobalAddress node (quite common, every direct call is)
1968 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1969 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1970 // We should use extra load for direct calls to dllimported functions in
1971 // non-JIT mode.
1972 if (getTargetMachine().getCodeModel() != CodeModel::Large
1973 && !Subtarget->GVRequiresExtraLoad(G->getGlobal(),
1974 getTargetMachine(), true))
1975 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
1976 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1977 if (getTargetMachine().getCodeModel() != CodeModel::Large)
1978 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
1979
1980 // Returns a chain & a flag for retval copy to use.
1981 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
1982 SmallVector<SDOperand, 8> Ops;
1983 Ops.push_back(Chain);
1984 Ops.push_back(Callee);
1985
1986 // Add argument registers to the end of the list so that they are known live
1987 // into the call.
1988 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1989 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1990 RegsToPass[i].second.getValueType()));
1991
1992 if (InFlag.Val)
1993 Ops.push_back(InFlag);
1994
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001995 Chain = DAG.getNode(X86ISD::CALL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001996 NodeTys, &Ops[0], Ops.size());
1997 InFlag = Chain.getValue(1);
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00001998 int NumBytesForCalleeToPush = 0;
Evan Cheng778fa0f2007-10-14 10:09:39 +00001999 if (CC==CallingConv::Fast && PerformTailCallOpt) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002000 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002001 } else {
2002 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2003 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002004 // Returns a flag for retval copy to use.
2005 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
2006 Ops.clear();
2007 Ops.push_back(Chain);
2008 Ops.push_back(DAG.getConstant(NumBytes, getPointerTy()));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002009 Ops.push_back(DAG.getConstant(NumBytesForCalleeToPush, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002010 Ops.push_back(InFlag);
2011 Chain = DAG.getNode(ISD::CALLSEQ_END, NodeTys, &Ops[0], Ops.size());
2012 InFlag = Chain.getValue(1);
2013
2014 // Handle result values, copying them out of physregs into vregs that we
2015 // return.
2016 return SDOperand(LowerCallResult(Chain, InFlag, Op.Val, CC, DAG), Op.ResNo);
2017}
2018
2019
2020//===----------------------------------------------------------------------===//
2021// Other Lowering Hooks
2022//===----------------------------------------------------------------------===//
2023
2024
2025SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) {
Anton Korobeynikove844e472007-08-15 17:12:32 +00002026 MachineFunction &MF = DAG.getMachineFunction();
2027 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2028 int ReturnAddrIndex = FuncInfo->getRAIndex();
2029
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002030 if (ReturnAddrIndex == 0) {
2031 // Set up a frame object for the return address.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002032 if (Subtarget->is64Bit())
2033 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(8, -8);
2034 else
2035 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4);
Anton Korobeynikove844e472007-08-15 17:12:32 +00002036
2037 FuncInfo->setRAIndex(ReturnAddrIndex);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002038 }
2039
2040 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2041}
2042
2043
2044
2045/// translateX86CC - do a one to one translation of a ISD::CondCode to the X86
2046/// specific condition code. It returns a false if it cannot do a direct
2047/// translation. X86CC is the translated CondCode. LHS/RHS are modified as
2048/// needed.
2049static bool translateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2050 unsigned &X86CC, SDOperand &LHS, SDOperand &RHS,
2051 SelectionDAG &DAG) {
2052 X86CC = X86::COND_INVALID;
2053 if (!isFP) {
2054 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2055 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2056 // X > -1 -> X == 0, jump !sign.
2057 RHS = DAG.getConstant(0, RHS.getValueType());
2058 X86CC = X86::COND_NS;
2059 return true;
2060 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2061 // X < 0 -> X == 0, jump on sign.
2062 X86CC = X86::COND_S;
2063 return true;
Dan Gohman37b34262007-09-17 14:49:27 +00002064 } else if (SetCCOpcode == ISD::SETLT && RHSC->getValue() == 1) {
2065 // X < 1 -> X <= 0
2066 RHS = DAG.getConstant(0, RHS.getValueType());
2067 X86CC = X86::COND_LE;
2068 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069 }
2070 }
2071
2072 switch (SetCCOpcode) {
2073 default: break;
2074 case ISD::SETEQ: X86CC = X86::COND_E; break;
2075 case ISD::SETGT: X86CC = X86::COND_G; break;
2076 case ISD::SETGE: X86CC = X86::COND_GE; break;
2077 case ISD::SETLT: X86CC = X86::COND_L; break;
2078 case ISD::SETLE: X86CC = X86::COND_LE; break;
2079 case ISD::SETNE: X86CC = X86::COND_NE; break;
2080 case ISD::SETULT: X86CC = X86::COND_B; break;
2081 case ISD::SETUGT: X86CC = X86::COND_A; break;
2082 case ISD::SETULE: X86CC = X86::COND_BE; break;
2083 case ISD::SETUGE: X86CC = X86::COND_AE; break;
2084 }
2085 } else {
2086 // On a floating point condition, the flags are set as follows:
2087 // ZF PF CF op
2088 // 0 | 0 | 0 | X > Y
2089 // 0 | 0 | 1 | X < Y
2090 // 1 | 0 | 0 | X == Y
2091 // 1 | 1 | 1 | unordered
2092 bool Flip = false;
2093 switch (SetCCOpcode) {
2094 default: break;
2095 case ISD::SETUEQ:
2096 case ISD::SETEQ: X86CC = X86::COND_E; break;
2097 case ISD::SETOLT: Flip = true; // Fallthrough
2098 case ISD::SETOGT:
2099 case ISD::SETGT: X86CC = X86::COND_A; break;
2100 case ISD::SETOLE: Flip = true; // Fallthrough
2101 case ISD::SETOGE:
2102 case ISD::SETGE: X86CC = X86::COND_AE; break;
2103 case ISD::SETUGT: Flip = true; // Fallthrough
2104 case ISD::SETULT:
2105 case ISD::SETLT: X86CC = X86::COND_B; break;
2106 case ISD::SETUGE: Flip = true; // Fallthrough
2107 case ISD::SETULE:
2108 case ISD::SETLE: X86CC = X86::COND_BE; break;
2109 case ISD::SETONE:
2110 case ISD::SETNE: X86CC = X86::COND_NE; break;
2111 case ISD::SETUO: X86CC = X86::COND_P; break;
2112 case ISD::SETO: X86CC = X86::COND_NP; break;
2113 }
2114 if (Flip)
2115 std::swap(LHS, RHS);
2116 }
2117
2118 return X86CC != X86::COND_INVALID;
2119}
2120
2121/// hasFPCMov - is there a floating point cmov for the specific X86 condition
2122/// code. Current x86 isa includes the following FP cmov instructions:
2123/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
2124static bool hasFPCMov(unsigned X86CC) {
2125 switch (X86CC) {
2126 default:
2127 return false;
2128 case X86::COND_B:
2129 case X86::COND_BE:
2130 case X86::COND_E:
2131 case X86::COND_P:
2132 case X86::COND_A:
2133 case X86::COND_AE:
2134 case X86::COND_NE:
2135 case X86::COND_NP:
2136 return true;
2137 }
2138}
2139
2140/// isUndefOrInRange - Op is either an undef node or a ConstantSDNode. Return
2141/// true if Op is undef or if its value falls within the specified range (L, H].
2142static bool isUndefOrInRange(SDOperand Op, unsigned Low, unsigned Hi) {
2143 if (Op.getOpcode() == ISD::UNDEF)
2144 return true;
2145
2146 unsigned Val = cast<ConstantSDNode>(Op)->getValue();
2147 return (Val >= Low && Val < Hi);
2148}
2149
2150/// isUndefOrEqual - Op is either an undef node or a ConstantSDNode. Return
2151/// true if Op is undef or if its value equal to the specified value.
2152static bool isUndefOrEqual(SDOperand Op, unsigned Val) {
2153 if (Op.getOpcode() == ISD::UNDEF)
2154 return true;
2155 return cast<ConstantSDNode>(Op)->getValue() == Val;
2156}
2157
2158/// isPSHUFDMask - Return true if the specified VECTOR_SHUFFLE operand
2159/// specifies a shuffle of elements that is suitable for input to PSHUFD.
2160bool X86::isPSHUFDMask(SDNode *N) {
2161 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2162
Dan Gohman7dc19012007-08-02 21:17:01 +00002163 if (N->getNumOperands() != 2 && N->getNumOperands() != 4)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002164 return false;
2165
2166 // Check if the value doesn't reference the second vector.
2167 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2168 SDOperand Arg = N->getOperand(i);
2169 if (Arg.getOpcode() == ISD::UNDEF) continue;
2170 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
Dan Gohman7dc19012007-08-02 21:17:01 +00002171 if (cast<ConstantSDNode>(Arg)->getValue() >= e)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002172 return false;
2173 }
2174
2175 return true;
2176}
2177
2178/// isPSHUFHWMask - Return true if the specified VECTOR_SHUFFLE operand
2179/// specifies a shuffle of elements that is suitable for input to PSHUFHW.
2180bool X86::isPSHUFHWMask(SDNode *N) {
2181 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2182
2183 if (N->getNumOperands() != 8)
2184 return false;
2185
2186 // Lower quadword copied in order.
2187 for (unsigned i = 0; i != 4; ++i) {
2188 SDOperand Arg = N->getOperand(i);
2189 if (Arg.getOpcode() == ISD::UNDEF) continue;
2190 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2191 if (cast<ConstantSDNode>(Arg)->getValue() != i)
2192 return false;
2193 }
2194
2195 // Upper quadword shuffled.
2196 for (unsigned i = 4; i != 8; ++i) {
2197 SDOperand Arg = N->getOperand(i);
2198 if (Arg.getOpcode() == ISD::UNDEF) continue;
2199 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2200 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2201 if (Val < 4 || Val > 7)
2202 return false;
2203 }
2204
2205 return true;
2206}
2207
2208/// isPSHUFLWMask - Return true if the specified VECTOR_SHUFFLE operand
2209/// specifies a shuffle of elements that is suitable for input to PSHUFLW.
2210bool X86::isPSHUFLWMask(SDNode *N) {
2211 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2212
2213 if (N->getNumOperands() != 8)
2214 return false;
2215
2216 // Upper quadword copied in order.
2217 for (unsigned i = 4; i != 8; ++i)
2218 if (!isUndefOrEqual(N->getOperand(i), i))
2219 return false;
2220
2221 // Lower quadword shuffled.
2222 for (unsigned i = 0; i != 4; ++i)
2223 if (!isUndefOrInRange(N->getOperand(i), 0, 4))
2224 return false;
2225
2226 return true;
2227}
2228
2229/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
2230/// specifies a shuffle of elements that is suitable for input to SHUFP*.
2231static bool isSHUFPMask(const SDOperand *Elems, unsigned NumElems) {
2232 if (NumElems != 2 && NumElems != 4) return false;
2233
2234 unsigned Half = NumElems / 2;
2235 for (unsigned i = 0; i < Half; ++i)
2236 if (!isUndefOrInRange(Elems[i], 0, NumElems))
2237 return false;
2238 for (unsigned i = Half; i < NumElems; ++i)
2239 if (!isUndefOrInRange(Elems[i], NumElems, NumElems*2))
2240 return false;
2241
2242 return true;
2243}
2244
2245bool X86::isSHUFPMask(SDNode *N) {
2246 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2247 return ::isSHUFPMask(N->op_begin(), N->getNumOperands());
2248}
2249
2250/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
2251/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
2252/// half elements to come from vector 1 (which would equal the dest.) and
2253/// the upper half to come from vector 2.
2254static bool isCommutedSHUFP(const SDOperand *Ops, unsigned NumOps) {
2255 if (NumOps != 2 && NumOps != 4) return false;
2256
2257 unsigned Half = NumOps / 2;
2258 for (unsigned i = 0; i < Half; ++i)
2259 if (!isUndefOrInRange(Ops[i], NumOps, NumOps*2))
2260 return false;
2261 for (unsigned i = Half; i < NumOps; ++i)
2262 if (!isUndefOrInRange(Ops[i], 0, NumOps))
2263 return false;
2264 return true;
2265}
2266
2267static bool isCommutedSHUFP(SDNode *N) {
2268 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2269 return isCommutedSHUFP(N->op_begin(), N->getNumOperands());
2270}
2271
2272/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
2273/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
2274bool X86::isMOVHLPSMask(SDNode *N) {
2275 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2276
2277 if (N->getNumOperands() != 4)
2278 return false;
2279
2280 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
2281 return isUndefOrEqual(N->getOperand(0), 6) &&
2282 isUndefOrEqual(N->getOperand(1), 7) &&
2283 isUndefOrEqual(N->getOperand(2), 2) &&
2284 isUndefOrEqual(N->getOperand(3), 3);
2285}
2286
2287/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
2288/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
2289/// <2, 3, 2, 3>
2290bool X86::isMOVHLPS_v_undef_Mask(SDNode *N) {
2291 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2292
2293 if (N->getNumOperands() != 4)
2294 return false;
2295
2296 // Expect bit0 == 2, bit1 == 3, bit2 == 2, bit3 == 3
2297 return isUndefOrEqual(N->getOperand(0), 2) &&
2298 isUndefOrEqual(N->getOperand(1), 3) &&
2299 isUndefOrEqual(N->getOperand(2), 2) &&
2300 isUndefOrEqual(N->getOperand(3), 3);
2301}
2302
2303/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
2304/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
2305bool X86::isMOVLPMask(SDNode *N) {
2306 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2307
2308 unsigned NumElems = N->getNumOperands();
2309 if (NumElems != 2 && NumElems != 4)
2310 return false;
2311
2312 for (unsigned i = 0; i < NumElems/2; ++i)
2313 if (!isUndefOrEqual(N->getOperand(i), i + NumElems))
2314 return false;
2315
2316 for (unsigned i = NumElems/2; i < NumElems; ++i)
2317 if (!isUndefOrEqual(N->getOperand(i), i))
2318 return false;
2319
2320 return true;
2321}
2322
2323/// isMOVHPMask - Return true if the specified VECTOR_SHUFFLE operand
2324/// specifies a shuffle of elements that is suitable for input to MOVHP{S|D}
2325/// and MOVLHPS.
2326bool X86::isMOVHPMask(SDNode *N) {
2327 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2328
2329 unsigned NumElems = N->getNumOperands();
2330 if (NumElems != 2 && NumElems != 4)
2331 return false;
2332
2333 for (unsigned i = 0; i < NumElems/2; ++i)
2334 if (!isUndefOrEqual(N->getOperand(i), i))
2335 return false;
2336
2337 for (unsigned i = 0; i < NumElems/2; ++i) {
2338 SDOperand Arg = N->getOperand(i + NumElems/2);
2339 if (!isUndefOrEqual(Arg, i + NumElems))
2340 return false;
2341 }
2342
2343 return true;
2344}
2345
2346/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
2347/// specifies a shuffle of elements that is suitable for input to UNPCKL.
2348bool static isUNPCKLMask(const SDOperand *Elts, unsigned NumElts,
2349 bool V2IsSplat = false) {
2350 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2351 return false;
2352
2353 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2354 SDOperand BitI = Elts[i];
2355 SDOperand BitI1 = Elts[i+1];
2356 if (!isUndefOrEqual(BitI, j))
2357 return false;
2358 if (V2IsSplat) {
2359 if (isUndefOrEqual(BitI1, NumElts))
2360 return false;
2361 } else {
2362 if (!isUndefOrEqual(BitI1, j + NumElts))
2363 return false;
2364 }
2365 }
2366
2367 return true;
2368}
2369
2370bool X86::isUNPCKLMask(SDNode *N, bool V2IsSplat) {
2371 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2372 return ::isUNPCKLMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2373}
2374
2375/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
2376/// specifies a shuffle of elements that is suitable for input to UNPCKH.
2377bool static isUNPCKHMask(const SDOperand *Elts, unsigned NumElts,
2378 bool V2IsSplat = false) {
2379 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2380 return false;
2381
2382 for (unsigned i = 0, j = 0; i != NumElts; i += 2, ++j) {
2383 SDOperand BitI = Elts[i];
2384 SDOperand BitI1 = Elts[i+1];
2385 if (!isUndefOrEqual(BitI, j + NumElts/2))
2386 return false;
2387 if (V2IsSplat) {
2388 if (isUndefOrEqual(BitI1, NumElts))
2389 return false;
2390 } else {
2391 if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
2392 return false;
2393 }
2394 }
2395
2396 return true;
2397}
2398
2399bool X86::isUNPCKHMask(SDNode *N, bool V2IsSplat) {
2400 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2401 return ::isUNPCKHMask(N->op_begin(), N->getNumOperands(), V2IsSplat);
2402}
2403
2404/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
2405/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
2406/// <0, 0, 1, 1>
2407bool X86::isUNPCKL_v_undef_Mask(SDNode *N) {
2408 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2409
2410 unsigned NumElems = N->getNumOperands();
2411 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2412 return false;
2413
2414 for (unsigned i = 0, j = 0; i != NumElems; i += 2, ++j) {
2415 SDOperand BitI = N->getOperand(i);
2416 SDOperand BitI1 = N->getOperand(i+1);
2417
2418 if (!isUndefOrEqual(BitI, j))
2419 return false;
2420 if (!isUndefOrEqual(BitI1, j))
2421 return false;
2422 }
2423
2424 return true;
2425}
2426
2427/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
2428/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
2429/// <2, 2, 3, 3>
2430bool X86::isUNPCKH_v_undef_Mask(SDNode *N) {
2431 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2432
2433 unsigned NumElems = N->getNumOperands();
2434 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
2435 return false;
2436
2437 for (unsigned i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
2438 SDOperand BitI = N->getOperand(i);
2439 SDOperand BitI1 = N->getOperand(i + 1);
2440
2441 if (!isUndefOrEqual(BitI, j))
2442 return false;
2443 if (!isUndefOrEqual(BitI1, j))
2444 return false;
2445 }
2446
2447 return true;
2448}
2449
2450/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
2451/// specifies a shuffle of elements that is suitable for input to MOVSS,
2452/// MOVSD, and MOVD, i.e. setting the lowest element.
2453static bool isMOVLMask(const SDOperand *Elts, unsigned NumElts) {
2454 if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
2455 return false;
2456
2457 if (!isUndefOrEqual(Elts[0], NumElts))
2458 return false;
2459
2460 for (unsigned i = 1; i < NumElts; ++i) {
2461 if (!isUndefOrEqual(Elts[i], i))
2462 return false;
2463 }
2464
2465 return true;
2466}
2467
2468bool X86::isMOVLMask(SDNode *N) {
2469 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2470 return ::isMOVLMask(N->op_begin(), N->getNumOperands());
2471}
2472
2473/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
2474/// of what x86 movss want. X86 movs requires the lowest element to be lowest
2475/// element of vector 2 and the other elements to come from vector 1 in order.
2476static bool isCommutedMOVL(const SDOperand *Ops, unsigned NumOps,
2477 bool V2IsSplat = false,
2478 bool V2IsUndef = false) {
2479 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
2480 return false;
2481
2482 if (!isUndefOrEqual(Ops[0], 0))
2483 return false;
2484
2485 for (unsigned i = 1; i < NumOps; ++i) {
2486 SDOperand Arg = Ops[i];
2487 if (!(isUndefOrEqual(Arg, i+NumOps) ||
2488 (V2IsUndef && isUndefOrInRange(Arg, NumOps, NumOps*2)) ||
2489 (V2IsSplat && isUndefOrEqual(Arg, NumOps))))
2490 return false;
2491 }
2492
2493 return true;
2494}
2495
2496static bool isCommutedMOVL(SDNode *N, bool V2IsSplat = false,
2497 bool V2IsUndef = false) {
2498 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2499 return isCommutedMOVL(N->op_begin(), N->getNumOperands(),
2500 V2IsSplat, V2IsUndef);
2501}
2502
2503/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2504/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
2505bool X86::isMOVSHDUPMask(SDNode *N) {
2506 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2507
2508 if (N->getNumOperands() != 4)
2509 return false;
2510
2511 // Expect 1, 1, 3, 3
2512 for (unsigned i = 0; i < 2; ++i) {
2513 SDOperand Arg = N->getOperand(i);
2514 if (Arg.getOpcode() == ISD::UNDEF) continue;
2515 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2516 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2517 if (Val != 1) return false;
2518 }
2519
2520 bool HasHi = false;
2521 for (unsigned i = 2; i < 4; ++i) {
2522 SDOperand Arg = N->getOperand(i);
2523 if (Arg.getOpcode() == ISD::UNDEF) continue;
2524 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2525 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2526 if (Val != 3) return false;
2527 HasHi = true;
2528 }
2529
2530 // Don't use movshdup if it can be done with a shufps.
2531 return HasHi;
2532}
2533
2534/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
2535/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
2536bool X86::isMOVSLDUPMask(SDNode *N) {
2537 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2538
2539 if (N->getNumOperands() != 4)
2540 return false;
2541
2542 // Expect 0, 0, 2, 2
2543 for (unsigned i = 0; i < 2; ++i) {
2544 SDOperand Arg = N->getOperand(i);
2545 if (Arg.getOpcode() == ISD::UNDEF) continue;
2546 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2547 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2548 if (Val != 0) return false;
2549 }
2550
2551 bool HasHi = false;
2552 for (unsigned i = 2; i < 4; ++i) {
2553 SDOperand Arg = N->getOperand(i);
2554 if (Arg.getOpcode() == ISD::UNDEF) continue;
2555 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2556 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2557 if (Val != 2) return false;
2558 HasHi = true;
2559 }
2560
2561 // Don't use movshdup if it can be done with a shufps.
2562 return HasHi;
2563}
2564
2565/// isIdentityMask - Return true if the specified VECTOR_SHUFFLE operand
2566/// specifies a identity operation on the LHS or RHS.
2567static bool isIdentityMask(SDNode *N, bool RHS = false) {
2568 unsigned NumElems = N->getNumOperands();
2569 for (unsigned i = 0; i < NumElems; ++i)
2570 if (!isUndefOrEqual(N->getOperand(i), i + (RHS ? NumElems : 0)))
2571 return false;
2572 return true;
2573}
2574
2575/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2576/// a splat of a single element.
2577static bool isSplatMask(SDNode *N) {
2578 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2579
2580 // This is a splat operation if each element of the permute is the same, and
2581 // if the value doesn't reference the second vector.
2582 unsigned NumElems = N->getNumOperands();
2583 SDOperand ElementBase;
2584 unsigned i = 0;
2585 for (; i != NumElems; ++i) {
2586 SDOperand Elt = N->getOperand(i);
2587 if (isa<ConstantSDNode>(Elt)) {
2588 ElementBase = Elt;
2589 break;
2590 }
2591 }
2592
2593 if (!ElementBase.Val)
2594 return false;
2595
2596 for (; i != NumElems; ++i) {
2597 SDOperand Arg = N->getOperand(i);
2598 if (Arg.getOpcode() == ISD::UNDEF) continue;
2599 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2600 if (Arg != ElementBase) return false;
2601 }
2602
2603 // Make sure it is a splat of the first vector operand.
2604 return cast<ConstantSDNode>(ElementBase)->getValue() < NumElems;
2605}
2606
2607/// isSplatMask - Return true if the specified VECTOR_SHUFFLE operand specifies
2608/// a splat of a single element and it's a 2 or 4 element mask.
2609bool X86::isSplatMask(SDNode *N) {
2610 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2611
2612 // We can only splat 64-bit, and 32-bit quantities with a single instruction.
2613 if (N->getNumOperands() != 4 && N->getNumOperands() != 2)
2614 return false;
2615 return ::isSplatMask(N);
2616}
2617
2618/// isSplatLoMask - Return true if the specified VECTOR_SHUFFLE operand
2619/// specifies a splat of zero element.
2620bool X86::isSplatLoMask(SDNode *N) {
2621 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2622
2623 for (unsigned i = 0, e = N->getNumOperands(); i < e; ++i)
2624 if (!isUndefOrEqual(N->getOperand(i), 0))
2625 return false;
2626 return true;
2627}
2628
2629/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
2630/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUF* and SHUFP*
2631/// instructions.
2632unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
2633 unsigned NumOperands = N->getNumOperands();
2634 unsigned Shift = (NumOperands == 4) ? 2 : 1;
2635 unsigned Mask = 0;
2636 for (unsigned i = 0; i < NumOperands; ++i) {
2637 unsigned Val = 0;
2638 SDOperand Arg = N->getOperand(NumOperands-i-1);
2639 if (Arg.getOpcode() != ISD::UNDEF)
2640 Val = cast<ConstantSDNode>(Arg)->getValue();
2641 if (Val >= NumOperands) Val -= NumOperands;
2642 Mask |= Val;
2643 if (i != NumOperands - 1)
2644 Mask <<= Shift;
2645 }
2646
2647 return Mask;
2648}
2649
2650/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
2651/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFHW
2652/// instructions.
2653unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
2654 unsigned Mask = 0;
2655 // 8 nodes, but we only care about the last 4.
2656 for (unsigned i = 7; i >= 4; --i) {
2657 unsigned Val = 0;
2658 SDOperand Arg = N->getOperand(i);
2659 if (Arg.getOpcode() != ISD::UNDEF)
2660 Val = cast<ConstantSDNode>(Arg)->getValue();
2661 Mask |= (Val - 4);
2662 if (i != 4)
2663 Mask <<= 2;
2664 }
2665
2666 return Mask;
2667}
2668
2669/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
2670/// the specified isShuffleMask VECTOR_SHUFFLE mask with PSHUFLW
2671/// instructions.
2672unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
2673 unsigned Mask = 0;
2674 // 8 nodes, but we only care about the first 4.
2675 for (int i = 3; i >= 0; --i) {
2676 unsigned Val = 0;
2677 SDOperand Arg = N->getOperand(i);
2678 if (Arg.getOpcode() != ISD::UNDEF)
2679 Val = cast<ConstantSDNode>(Arg)->getValue();
2680 Mask |= Val;
2681 if (i != 0)
2682 Mask <<= 2;
2683 }
2684
2685 return Mask;
2686}
2687
2688/// isPSHUFHW_PSHUFLWMask - true if the specified VECTOR_SHUFFLE operand
2689/// specifies a 8 element shuffle that can be broken into a pair of
2690/// PSHUFHW and PSHUFLW.
2691static bool isPSHUFHW_PSHUFLWMask(SDNode *N) {
2692 assert(N->getOpcode() == ISD::BUILD_VECTOR);
2693
2694 if (N->getNumOperands() != 8)
2695 return false;
2696
2697 // Lower quadword shuffled.
2698 for (unsigned i = 0; i != 4; ++i) {
2699 SDOperand Arg = N->getOperand(i);
2700 if (Arg.getOpcode() == ISD::UNDEF) continue;
2701 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2702 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2703 if (Val > 4)
2704 return false;
2705 }
2706
2707 // Upper quadword shuffled.
2708 for (unsigned i = 4; i != 8; ++i) {
2709 SDOperand Arg = N->getOperand(i);
2710 if (Arg.getOpcode() == ISD::UNDEF) continue;
2711 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2712 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2713 if (Val < 4 || Val > 7)
2714 return false;
2715 }
2716
2717 return true;
2718}
2719
2720/// CommuteVectorShuffle - Swap vector_shuffle operandsas well as
2721/// values in ther permute mask.
2722static SDOperand CommuteVectorShuffle(SDOperand Op, SDOperand &V1,
2723 SDOperand &V2, SDOperand &Mask,
2724 SelectionDAG &DAG) {
2725 MVT::ValueType VT = Op.getValueType();
2726 MVT::ValueType MaskVT = Mask.getValueType();
2727 MVT::ValueType EltVT = MVT::getVectorElementType(MaskVT);
2728 unsigned NumElems = Mask.getNumOperands();
2729 SmallVector<SDOperand, 8> MaskVec;
2730
2731 for (unsigned i = 0; i != NumElems; ++i) {
2732 SDOperand Arg = Mask.getOperand(i);
2733 if (Arg.getOpcode() == ISD::UNDEF) {
2734 MaskVec.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2735 continue;
2736 }
2737 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2738 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2739 if (Val < NumElems)
2740 MaskVec.push_back(DAG.getConstant(Val + NumElems, EltVT));
2741 else
2742 MaskVec.push_back(DAG.getConstant(Val - NumElems, EltVT));
2743 }
2744
2745 std::swap(V1, V2);
2746 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2747 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2748}
2749
2750/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
2751/// match movhlps. The lower half elements should come from upper half of
2752/// V1 (and in order), and the upper half elements should come from the upper
2753/// half of V2 (and in order).
2754static bool ShouldXformToMOVHLPS(SDNode *Mask) {
2755 unsigned NumElems = Mask->getNumOperands();
2756 if (NumElems != 4)
2757 return false;
2758 for (unsigned i = 0, e = 2; i != e; ++i)
2759 if (!isUndefOrEqual(Mask->getOperand(i), i+2))
2760 return false;
2761 for (unsigned i = 2; i != 4; ++i)
2762 if (!isUndefOrEqual(Mask->getOperand(i), i+4))
2763 return false;
2764 return true;
2765}
2766
2767/// isScalarLoadToVector - Returns true if the node is a scalar load that
2768/// is promoted to a vector.
2769static inline bool isScalarLoadToVector(SDNode *N) {
2770 if (N->getOpcode() == ISD::SCALAR_TO_VECTOR) {
2771 N = N->getOperand(0).Val;
2772 return ISD::isNON_EXTLoad(N);
2773 }
2774 return false;
2775}
2776
2777/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
2778/// match movlp{s|d}. The lower half elements should come from lower half of
2779/// V1 (and in order), and the upper half elements should come from the upper
2780/// half of V2 (and in order). And since V1 will become the source of the
2781/// MOVLP, it must be either a vector load or a scalar load to vector.
2782static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, SDNode *Mask) {
2783 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
2784 return false;
2785 // Is V2 is a vector load, don't do this transformation. We will try to use
2786 // load folding shufps op.
2787 if (ISD::isNON_EXTLoad(V2))
2788 return false;
2789
2790 unsigned NumElems = Mask->getNumOperands();
2791 if (NumElems != 2 && NumElems != 4)
2792 return false;
2793 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
2794 if (!isUndefOrEqual(Mask->getOperand(i), i))
2795 return false;
2796 for (unsigned i = NumElems/2; i != NumElems; ++i)
2797 if (!isUndefOrEqual(Mask->getOperand(i), i+NumElems))
2798 return false;
2799 return true;
2800}
2801
2802/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
2803/// all the same.
2804static bool isSplatVector(SDNode *N) {
2805 if (N->getOpcode() != ISD::BUILD_VECTOR)
2806 return false;
2807
2808 SDOperand SplatValue = N->getOperand(0);
2809 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
2810 if (N->getOperand(i) != SplatValue)
2811 return false;
2812 return true;
2813}
2814
2815/// isUndefShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2816/// to an undef.
2817static bool isUndefShuffle(SDNode *N) {
2818 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2819 return false;
2820
2821 SDOperand V1 = N->getOperand(0);
2822 SDOperand V2 = N->getOperand(1);
2823 SDOperand Mask = N->getOperand(2);
2824 unsigned NumElems = Mask.getNumOperands();
2825 for (unsigned i = 0; i != NumElems; ++i) {
2826 SDOperand Arg = Mask.getOperand(i);
2827 if (Arg.getOpcode() != ISD::UNDEF) {
2828 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2829 if (Val < NumElems && V1.getOpcode() != ISD::UNDEF)
2830 return false;
2831 else if (Val >= NumElems && V2.getOpcode() != ISD::UNDEF)
2832 return false;
2833 }
2834 }
2835 return true;
2836}
2837
2838/// isZeroNode - Returns true if Elt is a constant zero or a floating point
2839/// constant +0.0.
2840static inline bool isZeroNode(SDOperand Elt) {
2841 return ((isa<ConstantSDNode>(Elt) &&
2842 cast<ConstantSDNode>(Elt)->getValue() == 0) ||
2843 (isa<ConstantFPSDNode>(Elt) &&
Dale Johannesendf8a8312007-08-31 04:03:46 +00002844 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002845}
2846
2847/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
2848/// to an zero vector.
2849static bool isZeroShuffle(SDNode *N) {
2850 if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
2851 return false;
2852
2853 SDOperand V1 = N->getOperand(0);
2854 SDOperand V2 = N->getOperand(1);
2855 SDOperand Mask = N->getOperand(2);
2856 unsigned NumElems = Mask.getNumOperands();
2857 for (unsigned i = 0; i != NumElems; ++i) {
2858 SDOperand Arg = Mask.getOperand(i);
2859 if (Arg.getOpcode() != ISD::UNDEF) {
2860 unsigned Idx = cast<ConstantSDNode>(Arg)->getValue();
2861 if (Idx < NumElems) {
2862 unsigned Opc = V1.Val->getOpcode();
2863 if (Opc == ISD::UNDEF)
2864 continue;
2865 if (Opc != ISD::BUILD_VECTOR ||
2866 !isZeroNode(V1.Val->getOperand(Idx)))
2867 return false;
2868 } else if (Idx >= NumElems) {
2869 unsigned Opc = V2.Val->getOpcode();
2870 if (Opc == ISD::UNDEF)
2871 continue;
2872 if (Opc != ISD::BUILD_VECTOR ||
2873 !isZeroNode(V2.Val->getOperand(Idx - NumElems)))
2874 return false;
2875 }
2876 }
2877 }
2878 return true;
2879}
2880
2881/// getZeroVector - Returns a vector of specified type with all zero elements.
2882///
2883static SDOperand getZeroVector(MVT::ValueType VT, SelectionDAG &DAG) {
2884 assert(MVT::isVector(VT) && "Expected a vector type");
2885 unsigned NumElems = MVT::getVectorNumElements(VT);
2886 MVT::ValueType EVT = MVT::getVectorElementType(VT);
2887 bool isFP = MVT::isFloatingPoint(EVT);
2888 SDOperand Zero = isFP ? DAG.getConstantFP(0.0, EVT) : DAG.getConstant(0, EVT);
2889 SmallVector<SDOperand, 8> ZeroVec(NumElems, Zero);
2890 return DAG.getNode(ISD::BUILD_VECTOR, VT, &ZeroVec[0], ZeroVec.size());
2891}
2892
2893/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
2894/// that point to V2 points to its first element.
2895static SDOperand NormalizeMask(SDOperand Mask, SelectionDAG &DAG) {
2896 assert(Mask.getOpcode() == ISD::BUILD_VECTOR);
2897
2898 bool Changed = false;
2899 SmallVector<SDOperand, 8> MaskVec;
2900 unsigned NumElems = Mask.getNumOperands();
2901 for (unsigned i = 0; i != NumElems; ++i) {
2902 SDOperand Arg = Mask.getOperand(i);
2903 if (Arg.getOpcode() != ISD::UNDEF) {
2904 unsigned Val = cast<ConstantSDNode>(Arg)->getValue();
2905 if (Val > NumElems) {
2906 Arg = DAG.getConstant(NumElems, Arg.getValueType());
2907 Changed = true;
2908 }
2909 }
2910 MaskVec.push_back(Arg);
2911 }
2912
2913 if (Changed)
2914 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2915 &MaskVec[0], MaskVec.size());
2916 return Mask;
2917}
2918
2919/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
2920/// operation of specified width.
2921static SDOperand getMOVLMask(unsigned NumElems, SelectionDAG &DAG) {
2922 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2923 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2924
2925 SmallVector<SDOperand, 8> MaskVec;
2926 MaskVec.push_back(DAG.getConstant(NumElems, BaseVT));
2927 for (unsigned i = 1; i != NumElems; ++i)
2928 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2929 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2930}
2931
2932/// getUnpacklMask - Returns a vector_shuffle mask for an unpackl operation
2933/// of specified width.
2934static SDOperand getUnpacklMask(unsigned NumElems, SelectionDAG &DAG) {
2935 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2936 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2937 SmallVector<SDOperand, 8> MaskVec;
2938 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
2939 MaskVec.push_back(DAG.getConstant(i, BaseVT));
2940 MaskVec.push_back(DAG.getConstant(i + NumElems, BaseVT));
2941 }
2942 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2943}
2944
2945/// getUnpackhMask - Returns a vector_shuffle mask for an unpackh operation
2946/// of specified width.
2947static SDOperand getUnpackhMask(unsigned NumElems, SelectionDAG &DAG) {
2948 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2949 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
2950 unsigned Half = NumElems/2;
2951 SmallVector<SDOperand, 8> MaskVec;
2952 for (unsigned i = 0; i != Half; ++i) {
2953 MaskVec.push_back(DAG.getConstant(i + Half, BaseVT));
2954 MaskVec.push_back(DAG.getConstant(i + NumElems + Half, BaseVT));
2955 }
2956 return DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0], MaskVec.size());
2957}
2958
2959/// PromoteSplat - Promote a splat of v8i16 or v16i8 to v4i32.
2960///
2961static SDOperand PromoteSplat(SDOperand Op, SelectionDAG &DAG) {
2962 SDOperand V1 = Op.getOperand(0);
2963 SDOperand Mask = Op.getOperand(2);
2964 MVT::ValueType VT = Op.getValueType();
2965 unsigned NumElems = Mask.getNumOperands();
2966 Mask = getUnpacklMask(NumElems, DAG);
2967 while (NumElems != 4) {
2968 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1, Mask);
2969 NumElems >>= 1;
2970 }
2971 V1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, V1);
2972
2973 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
2974 Mask = getZeroVector(MaskVT, DAG);
2975 SDOperand Shuffle = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v4i32, V1,
2976 DAG.getNode(ISD::UNDEF, MVT::v4i32), Mask);
2977 return DAG.getNode(ISD::BIT_CONVERT, VT, Shuffle);
2978}
2979
2980/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
2981/// vector of zero or undef vector.
2982static SDOperand getShuffleVectorZeroOrUndef(SDOperand V2, MVT::ValueType VT,
2983 unsigned NumElems, unsigned Idx,
2984 bool isZero, SelectionDAG &DAG) {
2985 SDOperand V1 = isZero ? getZeroVector(VT, DAG) : DAG.getNode(ISD::UNDEF, VT);
2986 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
2987 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
2988 SDOperand Zero = DAG.getConstant(0, EVT);
2989 SmallVector<SDOperand, 8> MaskVec(NumElems, Zero);
2990 MaskVec[Idx] = DAG.getConstant(NumElems, EVT);
2991 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
2992 &MaskVec[0], MaskVec.size());
2993 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
2994}
2995
2996/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
2997///
2998static SDOperand LowerBuildVectorv16i8(SDOperand Op, unsigned NonZeros,
2999 unsigned NumNonZero, unsigned NumZero,
3000 SelectionDAG &DAG, TargetLowering &TLI) {
3001 if (NumNonZero > 8)
3002 return SDOperand();
3003
3004 SDOperand V(0, 0);
3005 bool First = true;
3006 for (unsigned i = 0; i < 16; ++i) {
3007 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
3008 if (ThisIsNonZero && First) {
3009 if (NumZero)
3010 V = getZeroVector(MVT::v8i16, DAG);
3011 else
3012 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3013 First = false;
3014 }
3015
3016 if ((i & 1) != 0) {
3017 SDOperand ThisElt(0, 0), LastElt(0, 0);
3018 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
3019 if (LastIsNonZero) {
3020 LastElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i-1));
3021 }
3022 if (ThisIsNonZero) {
3023 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, MVT::i16, Op.getOperand(i));
3024 ThisElt = DAG.getNode(ISD::SHL, MVT::i16,
3025 ThisElt, DAG.getConstant(8, MVT::i8));
3026 if (LastIsNonZero)
3027 ThisElt = DAG.getNode(ISD::OR, MVT::i16, ThisElt, LastElt);
3028 } else
3029 ThisElt = LastElt;
3030
3031 if (ThisElt.Val)
3032 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, ThisElt,
3033 DAG.getConstant(i/2, TLI.getPointerTy()));
3034 }
3035 }
3036
3037 return DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, V);
3038}
3039
3040/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
3041///
3042static SDOperand LowerBuildVectorv8i16(SDOperand Op, unsigned NonZeros,
3043 unsigned NumNonZero, unsigned NumZero,
3044 SelectionDAG &DAG, TargetLowering &TLI) {
3045 if (NumNonZero > 4)
3046 return SDOperand();
3047
3048 SDOperand V(0, 0);
3049 bool First = true;
3050 for (unsigned i = 0; i < 8; ++i) {
3051 bool isNonZero = (NonZeros & (1 << i)) != 0;
3052 if (isNonZero) {
3053 if (First) {
3054 if (NumZero)
3055 V = getZeroVector(MVT::v8i16, DAG);
3056 else
3057 V = DAG.getNode(ISD::UNDEF, MVT::v8i16);
3058 First = false;
3059 }
3060 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, MVT::v8i16, V, Op.getOperand(i),
3061 DAG.getConstant(i, TLI.getPointerTy()));
3062 }
3063 }
3064
3065 return V;
3066}
3067
3068SDOperand
3069X86TargetLowering::LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3070 // All zero's are handled with pxor.
3071 if (ISD::isBuildVectorAllZeros(Op.Val))
3072 return Op;
3073
3074 // All one's are handled with pcmpeqd.
3075 if (ISD::isBuildVectorAllOnes(Op.Val))
3076 return Op;
3077
3078 MVT::ValueType VT = Op.getValueType();
3079 MVT::ValueType EVT = MVT::getVectorElementType(VT);
3080 unsigned EVTBits = MVT::getSizeInBits(EVT);
3081
3082 unsigned NumElems = Op.getNumOperands();
3083 unsigned NumZero = 0;
3084 unsigned NumNonZero = 0;
3085 unsigned NonZeros = 0;
Dan Gohman21463242007-07-24 22:55:08 +00003086 unsigned NumNonZeroImms = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003087 std::set<SDOperand> Values;
3088 for (unsigned i = 0; i < NumElems; ++i) {
3089 SDOperand Elt = Op.getOperand(i);
3090 if (Elt.getOpcode() != ISD::UNDEF) {
3091 Values.insert(Elt);
3092 if (isZeroNode(Elt))
3093 NumZero++;
3094 else {
3095 NonZeros |= (1 << i);
3096 NumNonZero++;
Dan Gohman21463242007-07-24 22:55:08 +00003097 if (Elt.getOpcode() == ISD::Constant ||
3098 Elt.getOpcode() == ISD::ConstantFP)
3099 NumNonZeroImms++;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003100 }
3101 }
3102 }
3103
3104 if (NumNonZero == 0) {
3105 if (NumZero == 0)
3106 // All undef vector. Return an UNDEF.
3107 return DAG.getNode(ISD::UNDEF, VT);
3108 else
3109 // A mix of zero and undef. Return a zero vector.
3110 return getZeroVector(VT, DAG);
3111 }
3112
3113 // Splat is obviously ok. Let legalizer expand it to a shuffle.
3114 if (Values.size() == 1)
3115 return SDOperand();
3116
3117 // Special case for single non-zero element.
3118 if (NumNonZero == 1) {
3119 unsigned Idx = CountTrailingZeros_32(NonZeros);
3120 SDOperand Item = Op.getOperand(Idx);
3121 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Item);
3122 if (Idx == 0)
3123 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
3124 return getShuffleVectorZeroOrUndef(Item, VT, NumElems, Idx,
3125 NumZero > 0, DAG);
3126
3127 if (EVTBits == 32) {
3128 // Turn it into a shuffle of zero and zero-extended scalar to vector.
3129 Item = getShuffleVectorZeroOrUndef(Item, VT, NumElems, 0, NumZero > 0,
3130 DAG);
3131 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3132 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3133 SmallVector<SDOperand, 8> MaskVec;
3134 for (unsigned i = 0; i < NumElems; i++)
3135 MaskVec.push_back(DAG.getConstant((i == Idx) ? 0 : 1, MaskEVT));
3136 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3137 &MaskVec[0], MaskVec.size());
3138 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, Item,
3139 DAG.getNode(ISD::UNDEF, VT), Mask);
3140 }
3141 }
3142
Dan Gohman21463242007-07-24 22:55:08 +00003143 // A vector full of immediates; various special cases are already
3144 // handled, so this is best done with a single constant-pool load.
3145 if (NumNonZero == NumNonZeroImms)
3146 return SDOperand();
3147
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003148 // Let legalizer expand 2-wide build_vectors.
3149 if (EVTBits == 64)
3150 return SDOperand();
3151
3152 // If element VT is < 32 bits, convert it to inserts into a zero vector.
3153 if (EVTBits == 8 && NumElems == 16) {
3154 SDOperand V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
3155 *this);
3156 if (V.Val) return V;
3157 }
3158
3159 if (EVTBits == 16 && NumElems == 8) {
3160 SDOperand V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
3161 *this);
3162 if (V.Val) return V;
3163 }
3164
3165 // If element VT is == 32 bits, turn it into a number of shuffles.
3166 SmallVector<SDOperand, 8> V;
3167 V.resize(NumElems);
3168 if (NumElems == 4 && NumZero > 0) {
3169 for (unsigned i = 0; i < 4; ++i) {
3170 bool isZero = !(NonZeros & (1 << i));
3171 if (isZero)
3172 V[i] = getZeroVector(VT, DAG);
3173 else
3174 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3175 }
3176
3177 for (unsigned i = 0; i < 2; ++i) {
3178 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
3179 default: break;
3180 case 0:
3181 V[i] = V[i*2]; // Must be a zero vector.
3182 break;
3183 case 1:
3184 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2+1], V[i*2],
3185 getMOVLMask(NumElems, DAG));
3186 break;
3187 case 2:
3188 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3189 getMOVLMask(NumElems, DAG));
3190 break;
3191 case 3:
3192 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i*2], V[i*2+1],
3193 getUnpacklMask(NumElems, DAG));
3194 break;
3195 }
3196 }
3197
3198 // Take advantage of the fact GR32 to VR128 scalar_to_vector (i.e. movd)
3199 // clears the upper bits.
3200 // FIXME: we can do the same for v4f32 case when we know both parts of
3201 // the lower half come from scalar_to_vector (loadf32). We should do
3202 // that in post legalizer dag combiner with target specific hooks.
3203 if (MVT::isInteger(EVT) && (NonZeros & (0x3 << 2)) == 0)
3204 return V[0];
3205 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3206 MVT::ValueType EVT = MVT::getVectorElementType(MaskVT);
3207 SmallVector<SDOperand, 8> MaskVec;
3208 bool Reverse = (NonZeros & 0x3) == 2;
3209 for (unsigned i = 0; i < 2; ++i)
3210 if (Reverse)
3211 MaskVec.push_back(DAG.getConstant(1-i, EVT));
3212 else
3213 MaskVec.push_back(DAG.getConstant(i, EVT));
3214 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
3215 for (unsigned i = 0; i < 2; ++i)
3216 if (Reverse)
3217 MaskVec.push_back(DAG.getConstant(1-i+NumElems, EVT));
3218 else
3219 MaskVec.push_back(DAG.getConstant(i+NumElems, EVT));
3220 SDOperand ShufMask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3221 &MaskVec[0], MaskVec.size());
3222 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[0], V[1], ShufMask);
3223 }
3224
3225 if (Values.size() > 2) {
3226 // Expand into a number of unpckl*.
3227 // e.g. for v4f32
3228 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
3229 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
3230 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
3231 SDOperand UnpckMask = getUnpacklMask(NumElems, DAG);
3232 for (unsigned i = 0; i < NumElems; ++i)
3233 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, Op.getOperand(i));
3234 NumElems >>= 1;
3235 while (NumElems != 0) {
3236 for (unsigned i = 0; i < NumElems; ++i)
3237 V[i] = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V[i], V[i + NumElems],
3238 UnpckMask);
3239 NumElems >>= 1;
3240 }
3241 return V[0];
3242 }
3243
3244 return SDOperand();
3245}
3246
3247SDOperand
3248X86TargetLowering::LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
3249 SDOperand V1 = Op.getOperand(0);
3250 SDOperand V2 = Op.getOperand(1);
3251 SDOperand PermMask = Op.getOperand(2);
3252 MVT::ValueType VT = Op.getValueType();
3253 unsigned NumElems = PermMask.getNumOperands();
3254 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
3255 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
3256 bool V1IsSplat = false;
3257 bool V2IsSplat = false;
3258
3259 if (isUndefShuffle(Op.Val))
3260 return DAG.getNode(ISD::UNDEF, VT);
3261
3262 if (isZeroShuffle(Op.Val))
3263 return getZeroVector(VT, DAG);
3264
3265 if (isIdentityMask(PermMask.Val))
3266 return V1;
3267 else if (isIdentityMask(PermMask.Val, true))
3268 return V2;
3269
3270 if (isSplatMask(PermMask.Val)) {
3271 if (NumElems <= 4) return Op;
3272 // Promote it to a v4i32 splat.
3273 return PromoteSplat(Op, DAG);
3274 }
3275
3276 if (X86::isMOVLMask(PermMask.Val))
3277 return (V1IsUndef) ? V2 : Op;
3278
3279 if (X86::isMOVSHDUPMask(PermMask.Val) ||
3280 X86::isMOVSLDUPMask(PermMask.Val) ||
3281 X86::isMOVHLPSMask(PermMask.Val) ||
3282 X86::isMOVHPMask(PermMask.Val) ||
3283 X86::isMOVLPMask(PermMask.Val))
3284 return Op;
3285
3286 if (ShouldXformToMOVHLPS(PermMask.Val) ||
3287 ShouldXformToMOVLP(V1.Val, V2.Val, PermMask.Val))
3288 return CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3289
3290 bool Commuted = false;
3291 V1IsSplat = isSplatVector(V1.Val);
3292 V2IsSplat = isSplatVector(V2.Val);
3293 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
3294 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3295 std::swap(V1IsSplat, V2IsSplat);
3296 std::swap(V1IsUndef, V2IsUndef);
3297 Commuted = true;
3298 }
3299
3300 if (isCommutedMOVL(PermMask.Val, V2IsSplat, V2IsUndef)) {
3301 if (V2IsUndef) return V1;
3302 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3303 if (V2IsSplat) {
3304 // V2 is a splat, so the mask may be malformed. That is, it may point
3305 // to any V2 element. The instruction selectior won't like this. Get
3306 // a corrected mask and commute to form a proper MOVS{S|D}.
3307 SDOperand NewMask = getMOVLMask(NumElems, DAG);
3308 if (NewMask.Val != PermMask.Val)
3309 Op = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3310 }
3311 return Op;
3312 }
3313
3314 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3315 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3316 X86::isUNPCKLMask(PermMask.Val) ||
3317 X86::isUNPCKHMask(PermMask.Val))
3318 return Op;
3319
3320 if (V2IsSplat) {
3321 // Normalize mask so all entries that point to V2 points to its first
3322 // element then try to match unpck{h|l} again. If match, return a
3323 // new vector_shuffle with the corrected mask.
3324 SDOperand NewMask = NormalizeMask(PermMask, DAG);
3325 if (NewMask.Val != PermMask.Val) {
3326 if (X86::isUNPCKLMask(PermMask.Val, true)) {
3327 SDOperand NewMask = getUnpacklMask(NumElems, DAG);
3328 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3329 } else if (X86::isUNPCKHMask(PermMask.Val, true)) {
3330 SDOperand NewMask = getUnpackhMask(NumElems, DAG);
3331 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, NewMask);
3332 }
3333 }
3334 }
3335
3336 // Normalize the node to match x86 shuffle ops if needed
3337 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(PermMask.Val))
3338 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3339
3340 if (Commuted) {
3341 // Commute is back and try unpck* again.
3342 Op = CommuteVectorShuffle(Op, V1, V2, PermMask, DAG);
3343 if (X86::isUNPCKL_v_undef_Mask(PermMask.Val) ||
3344 X86::isUNPCKH_v_undef_Mask(PermMask.Val) ||
3345 X86::isUNPCKLMask(PermMask.Val) ||
3346 X86::isUNPCKHMask(PermMask.Val))
3347 return Op;
3348 }
3349
3350 // If VT is integer, try PSHUF* first, then SHUFP*.
3351 if (MVT::isInteger(VT)) {
Dan Gohman7dc19012007-08-02 21:17:01 +00003352 // MMX doesn't have PSHUFD; it does have PSHUFW. While it's theoretically
3353 // possible to shuffle a v2i32 using PSHUFW, that's not yet implemented.
3354 if (((MVT::getSizeInBits(VT) != 64 || NumElems == 4) &&
3355 X86::isPSHUFDMask(PermMask.Val)) ||
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003356 X86::isPSHUFHWMask(PermMask.Val) ||
3357 X86::isPSHUFLWMask(PermMask.Val)) {
3358 if (V2.getOpcode() != ISD::UNDEF)
3359 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3360 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3361 return Op;
3362 }
3363
3364 if (X86::isSHUFPMask(PermMask.Val) &&
3365 MVT::getSizeInBits(VT) != 64) // Don't do this for MMX.
3366 return Op;
3367
3368 // Handle v8i16 shuffle high / low shuffle node pair.
3369 if (VT == MVT::v8i16 && isPSHUFHW_PSHUFLWMask(PermMask.Val)) {
3370 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(NumElems);
3371 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3372 SmallVector<SDOperand, 8> MaskVec;
3373 for (unsigned i = 0; i != 4; ++i)
3374 MaskVec.push_back(PermMask.getOperand(i));
3375 for (unsigned i = 4; i != 8; ++i)
3376 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3377 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3378 &MaskVec[0], MaskVec.size());
3379 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3380 MaskVec.clear();
3381 for (unsigned i = 0; i != 4; ++i)
3382 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3383 for (unsigned i = 4; i != 8; ++i)
3384 MaskVec.push_back(PermMask.getOperand(i));
3385 Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT, &MaskVec[0],MaskVec.size());
3386 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask);
3387 }
3388 } else {
3389 // Floating point cases in the other order.
3390 if (X86::isSHUFPMask(PermMask.Val))
3391 return Op;
3392 if (X86::isPSHUFDMask(PermMask.Val) ||
3393 X86::isPSHUFHWMask(PermMask.Val) ||
3394 X86::isPSHUFLWMask(PermMask.Val)) {
3395 if (V2.getOpcode() != ISD::UNDEF)
3396 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1,
3397 DAG.getNode(ISD::UNDEF, V1.getValueType()),PermMask);
3398 return Op;
3399 }
3400 }
3401
3402 if (NumElems == 4 &&
3403 // Don't do this for MMX.
3404 MVT::getSizeInBits(VT) != 64) {
3405 MVT::ValueType MaskVT = PermMask.getValueType();
3406 MVT::ValueType MaskEVT = MVT::getVectorElementType(MaskVT);
3407 SmallVector<std::pair<int, int>, 8> Locs;
3408 Locs.reserve(NumElems);
3409 SmallVector<SDOperand, 8> Mask1(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3410 SmallVector<SDOperand, 8> Mask2(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3411 unsigned NumHi = 0;
3412 unsigned NumLo = 0;
3413 // If no more than two elements come from either vector. This can be
3414 // implemented with two shuffles. First shuffle gather the elements.
3415 // The second shuffle, which takes the first shuffle as both of its
3416 // vector operands, put the elements into the right order.
3417 for (unsigned i = 0; i != NumElems; ++i) {
3418 SDOperand Elt = PermMask.getOperand(i);
3419 if (Elt.getOpcode() == ISD::UNDEF) {
3420 Locs[i] = std::make_pair(-1, -1);
3421 } else {
3422 unsigned Val = cast<ConstantSDNode>(Elt)->getValue();
3423 if (Val < NumElems) {
3424 Locs[i] = std::make_pair(0, NumLo);
3425 Mask1[NumLo] = Elt;
3426 NumLo++;
3427 } else {
3428 Locs[i] = std::make_pair(1, NumHi);
3429 if (2+NumHi < NumElems)
3430 Mask1[2+NumHi] = Elt;
3431 NumHi++;
3432 }
3433 }
3434 }
3435 if (NumLo <= 2 && NumHi <= 2) {
3436 V1 = DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3437 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3438 &Mask1[0], Mask1.size()));
3439 for (unsigned i = 0; i != NumElems; ++i) {
3440 if (Locs[i].first == -1)
3441 continue;
3442 else {
3443 unsigned Idx = (i < NumElems/2) ? 0 : NumElems;
3444 Idx += Locs[i].first * (NumElems/2) + Locs[i].second;
3445 Mask2[i] = DAG.getConstant(Idx, MaskEVT);
3446 }
3447 }
3448
3449 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V1,
3450 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3451 &Mask2[0], Mask2.size()));
3452 }
3453
3454 // Break it into (shuffle shuffle_hi, shuffle_lo).
3455 Locs.clear();
3456 SmallVector<SDOperand,8> LoMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3457 SmallVector<SDOperand,8> HiMask(NumElems, DAG.getNode(ISD::UNDEF, MaskEVT));
3458 SmallVector<SDOperand,8> *MaskPtr = &LoMask;
3459 unsigned MaskIdx = 0;
3460 unsigned LoIdx = 0;
3461 unsigned HiIdx = NumElems/2;
3462 for (unsigned i = 0; i != NumElems; ++i) {
3463 if (i == NumElems/2) {
3464 MaskPtr = &HiMask;
3465 MaskIdx = 1;
3466 LoIdx = 0;
3467 HiIdx = NumElems/2;
3468 }
3469 SDOperand Elt = PermMask.getOperand(i);
3470 if (Elt.getOpcode() == ISD::UNDEF) {
3471 Locs[i] = std::make_pair(-1, -1);
3472 } else if (cast<ConstantSDNode>(Elt)->getValue() < NumElems) {
3473 Locs[i] = std::make_pair(MaskIdx, LoIdx);
3474 (*MaskPtr)[LoIdx] = Elt;
3475 LoIdx++;
3476 } else {
3477 Locs[i] = std::make_pair(MaskIdx, HiIdx);
3478 (*MaskPtr)[HiIdx] = Elt;
3479 HiIdx++;
3480 }
3481 }
3482
3483 SDOperand LoShuffle =
3484 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3485 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3486 &LoMask[0], LoMask.size()));
3487 SDOperand HiShuffle =
3488 DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2,
3489 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3490 &HiMask[0], HiMask.size()));
3491 SmallVector<SDOperand, 8> MaskOps;
3492 for (unsigned i = 0; i != NumElems; ++i) {
3493 if (Locs[i].first == -1) {
3494 MaskOps.push_back(DAG.getNode(ISD::UNDEF, MaskEVT));
3495 } else {
3496 unsigned Idx = Locs[i].first * NumElems + Locs[i].second;
3497 MaskOps.push_back(DAG.getConstant(Idx, MaskEVT));
3498 }
3499 }
3500 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, LoShuffle, HiShuffle,
3501 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3502 &MaskOps[0], MaskOps.size()));
3503 }
3504
3505 return SDOperand();
3506}
3507
3508SDOperand
3509X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3510 if (!isa<ConstantSDNode>(Op.getOperand(1)))
3511 return SDOperand();
3512
3513 MVT::ValueType VT = Op.getValueType();
3514 // TODO: handle v16i8.
3515 if (MVT::getSizeInBits(VT) == 16) {
3516 // Transform it so it match pextrw which produces a 32-bit result.
3517 MVT::ValueType EVT = (MVT::ValueType)(VT+1);
3518 SDOperand Extract = DAG.getNode(X86ISD::PEXTRW, EVT,
3519 Op.getOperand(0), Op.getOperand(1));
3520 SDOperand Assert = DAG.getNode(ISD::AssertZext, EVT, Extract,
3521 DAG.getValueType(VT));
3522 return DAG.getNode(ISD::TRUNCATE, VT, Assert);
3523 } else if (MVT::getSizeInBits(VT) == 32) {
3524 SDOperand Vec = Op.getOperand(0);
3525 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3526 if (Idx == 0)
3527 return Op;
3528 // SHUFPS the element to the lowest double word, then movss.
3529 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3530 SmallVector<SDOperand, 8> IdxVec;
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003531 IdxVec.
3532 push_back(DAG.getConstant(Idx, MVT::getVectorElementType(MaskVT)));
3533 IdxVec.
3534 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3535 IdxVec.
3536 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
3537 IdxVec.
3538 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003539 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3540 &IdxVec[0], IdxVec.size());
3541 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3542 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3543 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3544 DAG.getConstant(0, getPointerTy()));
3545 } else if (MVT::getSizeInBits(VT) == 64) {
3546 SDOperand Vec = Op.getOperand(0);
3547 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
3548 if (Idx == 0)
3549 return Op;
3550
3551 // UNPCKHPD the element to the lowest double word, then movsd.
3552 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
3553 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
3554 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3555 SmallVector<SDOperand, 8> IdxVec;
3556 IdxVec.push_back(DAG.getConstant(1, MVT::getVectorElementType(MaskVT)));
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00003557 IdxVec.
3558 push_back(DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(MaskVT)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003559 SDOperand Mask = DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3560 &IdxVec[0], IdxVec.size());
3561 Vec = DAG.getNode(ISD::VECTOR_SHUFFLE, Vec.getValueType(),
3562 Vec, DAG.getNode(ISD::UNDEF, Vec.getValueType()), Mask);
3563 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, VT, Vec,
3564 DAG.getConstant(0, getPointerTy()));
3565 }
3566
3567 return SDOperand();
3568}
3569
3570SDOperand
3571X86TargetLowering::LowerINSERT_VECTOR_ELT(SDOperand Op, SelectionDAG &DAG) {
3572 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
3573 // as its second argument.
3574 MVT::ValueType VT = Op.getValueType();
3575 MVT::ValueType BaseVT = MVT::getVectorElementType(VT);
3576 SDOperand N0 = Op.getOperand(0);
3577 SDOperand N1 = Op.getOperand(1);
3578 SDOperand N2 = Op.getOperand(2);
3579 if (MVT::getSizeInBits(BaseVT) == 16) {
3580 if (N1.getValueType() != MVT::i32)
3581 N1 = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, N1);
3582 if (N2.getValueType() != MVT::i32)
3583 N2 = DAG.getConstant(cast<ConstantSDNode>(N2)->getValue(),getPointerTy());
3584 return DAG.getNode(X86ISD::PINSRW, VT, N0, N1, N2);
3585 } else if (MVT::getSizeInBits(BaseVT) == 32) {
3586 unsigned Idx = cast<ConstantSDNode>(N2)->getValue();
3587 if (Idx == 0) {
3588 // Use a movss.
3589 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, VT, N1);
3590 MVT::ValueType MaskVT = MVT::getIntVectorWithNumElements(4);
3591 MVT::ValueType BaseVT = MVT::getVectorElementType(MaskVT);
3592 SmallVector<SDOperand, 8> MaskVec;
3593 MaskVec.push_back(DAG.getConstant(4, BaseVT));
3594 for (unsigned i = 1; i <= 3; ++i)
3595 MaskVec.push_back(DAG.getConstant(i, BaseVT));
3596 return DAG.getNode(ISD::VECTOR_SHUFFLE, VT, N0, N1,
3597 DAG.getNode(ISD::BUILD_VECTOR, MaskVT,
3598 &MaskVec[0], MaskVec.size()));
3599 } else {
3600 // Use two pinsrw instructions to insert a 32 bit value.
3601 Idx <<= 1;
3602 if (MVT::isFloatingPoint(N1.getValueType())) {
Evan Cheng1eea6752007-07-31 06:21:44 +00003603 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v4f32, N1);
3604 N1 = DAG.getNode(ISD::BIT_CONVERT, MVT::v4i32, N1);
3605 N1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::i32, N1,
3606 DAG.getConstant(0, getPointerTy()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003607 }
3608 N0 = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, N0);
3609 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3610 DAG.getConstant(Idx, getPointerTy()));
3611 N1 = DAG.getNode(ISD::SRL, MVT::i32, N1, DAG.getConstant(16, MVT::i8));
3612 N0 = DAG.getNode(X86ISD::PINSRW, MVT::v8i16, N0, N1,
3613 DAG.getConstant(Idx+1, getPointerTy()));
3614 return DAG.getNode(ISD::BIT_CONVERT, VT, N0);
3615 }
3616 }
3617
3618 return SDOperand();
3619}
3620
3621SDOperand
3622X86TargetLowering::LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
3623 SDOperand AnyExt = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, Op.getOperand(0));
3624 return DAG.getNode(X86ISD::S2VEC, Op.getValueType(), AnyExt);
3625}
3626
3627// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3628// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
3629// one of the above mentioned nodes. It has to be wrapped because otherwise
3630// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3631// be used to form addressing mode. These wrapped nodes will be selected
3632// into MOV32ri.
3633SDOperand
3634X86TargetLowering::LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
3635 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3636 SDOperand Result = DAG.getTargetConstantPool(CP->getConstVal(),
3637 getPointerTy(),
3638 CP->getAlignment());
3639 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3640 // With PIC, the address is actually $g + Offset.
3641 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3642 !Subtarget->isPICStyleRIPRel()) {
3643 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3644 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3645 Result);
3646 }
3647
3648 return Result;
3649}
3650
3651SDOperand
3652X86TargetLowering::LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
3653 GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3654 SDOperand Result = DAG.getTargetGlobalAddress(GV, getPointerTy());
3655 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3656 // With PIC, the address is actually $g + Offset.
3657 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3658 !Subtarget->isPICStyleRIPRel()) {
3659 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3660 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3661 Result);
3662 }
3663
3664 // For Darwin & Mingw32, external and weak symbols are indirect, so we want to
3665 // load the value at address GV, not the value of GV itself. This means that
3666 // the GlobalAddress must be in the base or index register of the address, not
3667 // the GV offset field. Platform check is inside GVRequiresExtraLoad() call
3668 // The same applies for external symbols during PIC codegen
3669 if (Subtarget->GVRequiresExtraLoad(GV, getTargetMachine(), false))
3670 Result = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), Result, NULL, 0);
3671
3672 return Result;
3673}
3674
3675// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3676static SDOperand
3677LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3678 const MVT::ValueType PtrVT) {
3679 SDOperand InFlag;
3680 SDOperand Chain = DAG.getCopyToReg(DAG.getEntryNode(), X86::EBX,
3681 DAG.getNode(X86ISD::GlobalBaseReg,
3682 PtrVT), InFlag);
3683 InFlag = Chain.getValue(1);
3684
3685 // emit leal symbol@TLSGD(,%ebx,1), %eax
3686 SDVTList NodeTys = DAG.getVTList(PtrVT, MVT::Other, MVT::Flag);
3687 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3688 GA->getValueType(0),
3689 GA->getOffset());
3690 SDOperand Ops[] = { Chain, TGA, InFlag };
3691 SDOperand Result = DAG.getNode(X86ISD::TLSADDR, NodeTys, Ops, 3);
3692 InFlag = Result.getValue(2);
3693 Chain = Result.getValue(1);
3694
3695 // call ___tls_get_addr. This function receives its argument in
3696 // the register EAX.
3697 Chain = DAG.getCopyToReg(Chain, X86::EAX, Result, InFlag);
3698 InFlag = Chain.getValue(1);
3699
3700 NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
3701 SDOperand Ops1[] = { Chain,
3702 DAG.getTargetExternalSymbol("___tls_get_addr",
3703 PtrVT),
3704 DAG.getRegister(X86::EAX, PtrVT),
3705 DAG.getRegister(X86::EBX, PtrVT),
3706 InFlag };
3707 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops1, 5);
3708 InFlag = Chain.getValue(1);
3709
3710 return DAG.getCopyFromReg(Chain, X86::EAX, PtrVT, InFlag);
3711}
3712
3713// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
3714// "local exec" model.
3715static SDOperand
3716LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
3717 const MVT::ValueType PtrVT) {
3718 // Get the Thread Pointer
3719 SDOperand ThreadPointer = DAG.getNode(X86ISD::THREAD_POINTER, PtrVT);
3720 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
3721 // exec)
3722 SDOperand TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
3723 GA->getValueType(0),
3724 GA->getOffset());
3725 SDOperand Offset = DAG.getNode(X86ISD::Wrapper, PtrVT, TGA);
3726
3727 if (GA->getGlobal()->isDeclaration()) // initial exec TLS model
3728 Offset = DAG.getLoad(PtrVT, DAG.getEntryNode(), Offset, NULL, 0);
3729
3730 // The address of the thread local variable is the add of the thread
3731 // pointer with the offset of the variable.
3732 return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset);
3733}
3734
3735SDOperand
3736X86TargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
3737 // TODO: implement the "local dynamic" model
3738 // TODO: implement the "initial exec"model for pic executables
3739 assert(!Subtarget->is64Bit() && Subtarget->isTargetELF() &&
3740 "TLS not implemented for non-ELF and 64-bit targets");
3741 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3742 // If the relocation model is PIC, use the "General Dynamic" TLS Model,
3743 // otherwise use the "Local Exec"TLS Model
3744 if (getTargetMachine().getRelocationModel() == Reloc::PIC_)
3745 return LowerToTLSGeneralDynamicModel(GA, DAG, getPointerTy());
3746 else
3747 return LowerToTLSExecModel(GA, DAG, getPointerTy());
3748}
3749
3750SDOperand
3751X86TargetLowering::LowerExternalSymbol(SDOperand Op, SelectionDAG &DAG) {
3752 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
3753 SDOperand Result = DAG.getTargetExternalSymbol(Sym, getPointerTy());
3754 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3755 // With PIC, the address is actually $g + Offset.
3756 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3757 !Subtarget->isPICStyleRIPRel()) {
3758 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3759 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3760 Result);
3761 }
3762
3763 return Result;
3764}
3765
3766SDOperand X86TargetLowering::LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
3767 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3768 SDOperand Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
3769 Result = DAG.getNode(X86ISD::Wrapper, getPointerTy(), Result);
3770 // With PIC, the address is actually $g + Offset.
3771 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
3772 !Subtarget->isPICStyleRIPRel()) {
3773 Result = DAG.getNode(ISD::ADD, getPointerTy(),
3774 DAG.getNode(X86ISD::GlobalBaseReg, getPointerTy()),
3775 Result);
3776 }
3777
3778 return Result;
3779}
3780
Chris Lattner62814a32007-10-17 06:02:13 +00003781/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
3782/// take a 2 x i32 value to shift plus a shift amount.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003783SDOperand X86TargetLowering::LowerShift(SDOperand Op, SelectionDAG &DAG) {
Chris Lattner62814a32007-10-17 06:02:13 +00003784 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
3785 "Not an i64 shift!");
3786 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
3787 SDOperand ShOpLo = Op.getOperand(0);
3788 SDOperand ShOpHi = Op.getOperand(1);
3789 SDOperand ShAmt = Op.getOperand(2);
3790 SDOperand Tmp1 = isSRA ?
3791 DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, DAG.getConstant(31, MVT::i8)) :
3792 DAG.getConstant(0, MVT::i32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003793
Chris Lattner62814a32007-10-17 06:02:13 +00003794 SDOperand Tmp2, Tmp3;
3795 if (Op.getOpcode() == ISD::SHL_PARTS) {
3796 Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt);
3797 Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt);
3798 } else {
3799 Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt);
3800 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, MVT::i32, ShOpHi, ShAmt);
3801 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003802
Chris Lattner62814a32007-10-17 06:02:13 +00003803 const MVT::ValueType *VTs = DAG.getNodeValueTypes(MVT::Other, MVT::Flag);
3804 SDOperand AndNode = DAG.getNode(ISD::AND, MVT::i8, ShAmt,
3805 DAG.getConstant(32, MVT::i8));
3806 SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::i32,
3807 AndNode, DAG.getConstant(0, MVT::i8));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003808
Chris Lattner62814a32007-10-17 06:02:13 +00003809 SDOperand Hi, Lo;
3810 SDOperand CC = DAG.getConstant(X86::COND_NE, MVT::i8);
3811 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::Flag);
3812 SmallVector<SDOperand, 4> Ops;
3813 if (Op.getOpcode() == ISD::SHL_PARTS) {
3814 Ops.push_back(Tmp2);
3815 Ops.push_back(Tmp3);
3816 Ops.push_back(CC);
3817 Ops.push_back(Cond);
3818 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003819
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003820 Ops.clear();
Chris Lattner62814a32007-10-17 06:02:13 +00003821 Ops.push_back(Tmp3);
3822 Ops.push_back(Tmp1);
3823 Ops.push_back(CC);
3824 Ops.push_back(Cond);
3825 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3826 } else {
3827 Ops.push_back(Tmp2);
3828 Ops.push_back(Tmp3);
3829 Ops.push_back(CC);
3830 Ops.push_back(Cond);
3831 Lo = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3832
3833 Ops.clear();
3834 Ops.push_back(Tmp3);
3835 Ops.push_back(Tmp1);
3836 Ops.push_back(CC);
3837 Ops.push_back(Cond);
3838 Hi = DAG.getNode(X86ISD::CMOV, MVT::i32, &Ops[0], Ops.size());
3839 }
3840
3841 VTs = DAG.getNodeValueTypes(MVT::i32, MVT::i32);
3842 Ops.clear();
3843 Ops.push_back(Lo);
3844 Ops.push_back(Hi);
3845 return DAG.getNode(ISD::MERGE_VALUES, VTs, 2, &Ops[0], Ops.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003846}
3847
3848SDOperand X86TargetLowering::LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
3849 assert(Op.getOperand(0).getValueType() <= MVT::i64 &&
3850 Op.getOperand(0).getValueType() >= MVT::i16 &&
3851 "Unknown SINT_TO_FP to lower!");
3852
3853 SDOperand Result;
3854 MVT::ValueType SrcVT = Op.getOperand(0).getValueType();
3855 unsigned Size = MVT::getSizeInBits(SrcVT)/8;
3856 MachineFunction &MF = DAG.getMachineFunction();
3857 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size);
3858 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3859 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Op.getOperand(0),
3860 StackSlot, NULL, 0);
3861
Dale Johannesen2fc20782007-09-14 22:26:36 +00003862 // These are really Legal; caller falls through into that case.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003863 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f32 && X86ScalarSSEf32)
3864 return Result;
3865 if (SrcVT==MVT::i32 && Op.getValueType() == MVT::f64 && X86ScalarSSEf64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003866 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003867 if (SrcVT==MVT::i64 && Op.getValueType() != MVT::f80 &&
3868 Subtarget->is64Bit())
3869 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003870
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003871 // Build the FILD
3872 SDVTList Tys;
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003873 bool useSSE = (X86ScalarSSEf32 && Op.getValueType() == MVT::f32) ||
3874 (X86ScalarSSEf64 && Op.getValueType() == MVT::f64);
Dale Johannesen2fc20782007-09-14 22:26:36 +00003875 if (useSSE)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003876 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
3877 else
3878 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
3879 SmallVector<SDOperand, 8> Ops;
3880 Ops.push_back(Chain);
3881 Ops.push_back(StackSlot);
3882 Ops.push_back(DAG.getValueType(SrcVT));
Dale Johannesen2fc20782007-09-14 22:26:36 +00003883 Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG :X86ISD::FILD,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003884 Tys, &Ops[0], Ops.size());
3885
Dale Johannesen2fc20782007-09-14 22:26:36 +00003886 if (useSSE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003887 Chain = Result.getValue(1);
3888 SDOperand InFlag = Result.getValue(2);
3889
3890 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
3891 // shouldn't be necessary except that RFP cannot be live across
3892 // multiple blocks. When stackifier is fixed, they can be uncoupled.
3893 MachineFunction &MF = DAG.getMachineFunction();
3894 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8);
3895 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3896 Tys = DAG.getVTList(MVT::Other);
3897 SmallVector<SDOperand, 8> Ops;
3898 Ops.push_back(Chain);
3899 Ops.push_back(Result);
3900 Ops.push_back(StackSlot);
3901 Ops.push_back(DAG.getValueType(Op.getValueType()));
3902 Ops.push_back(InFlag);
3903 Chain = DAG.getNode(X86ISD::FST, Tys, &Ops[0], Ops.size());
3904 Result = DAG.getLoad(Op.getValueType(), Chain, StackSlot, NULL, 0);
3905 }
3906
3907 return Result;
3908}
3909
3910SDOperand X86TargetLowering::LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
3911 assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 &&
3912 "Unknown FP_TO_SINT to lower!");
Dale Johannesen2fc20782007-09-14 22:26:36 +00003913 SDOperand Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003914
Dale Johannesen2fc20782007-09-14 22:26:36 +00003915 // These are really Legal.
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003916 if (Op.getValueType() == MVT::i32 &&
3917 X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32)
3918 return Result;
3919 if (Op.getValueType() == MVT::i32 &&
3920 X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)
Dale Johannesen2fc20782007-09-14 22:26:36 +00003921 return Result;
Dale Johannesen958b08b2007-09-19 23:55:34 +00003922 if (Subtarget->is64Bit() &&
3923 Op.getValueType() == MVT::i64 &&
3924 Op.getOperand(0).getValueType() != MVT::f80)
3925 return Result;
Dale Johannesen2fc20782007-09-14 22:26:36 +00003926
Evan Cheng05441e62007-10-15 20:11:21 +00003927 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
3928 // stack slot.
3929 MachineFunction &MF = DAG.getMachineFunction();
3930 unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8;
3931 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3932 SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003933 unsigned Opc;
3934 switch (Op.getValueType()) {
3935 default: assert(0 && "Invalid FP_TO_SINT to lower!");
3936 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
3937 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
3938 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
3939 }
3940
3941 SDOperand Chain = DAG.getEntryNode();
3942 SDOperand Value = Op.getOperand(0);
Dale Johannesene0e0fd02007-09-23 14:52:20 +00003943 if ((X86ScalarSSEf32 && Op.getOperand(0).getValueType() == MVT::f32) ||
3944 (X86ScalarSSEf64 && Op.getOperand(0).getValueType() == MVT::f64)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003945 assert(Op.getValueType() == MVT::i64 && "Invalid FP_TO_SINT to lower!");
3946 Chain = DAG.getStore(Chain, Value, StackSlot, NULL, 0);
3947 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
3948 SDOperand Ops[] = {
3949 Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
3950 };
3951 Value = DAG.getNode(X86ISD::FLD, Tys, Ops, 3);
3952 Chain = Value.getValue(1);
3953 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize);
3954 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
3955 }
3956
3957 // Build the FP_TO_INT*_IN_MEM
3958 SDOperand Ops[] = { Chain, Value, StackSlot };
3959 SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops, 3);
3960
Chris Lattner79b8afe2007-10-17 06:17:29 +00003961 // Load the result. If this is an i64 load on an x86-32 host, expand the
3962 // load.
3963 if (Op.getValueType() != MVT::i64 || Subtarget->is64Bit())
3964 return DAG.getLoad(Op.getValueType(), FIST, StackSlot, NULL, 0);
3965
3966 SDOperand Lo = DAG.getLoad(MVT::i32, FIST, StackSlot, NULL, 0);
3967 StackSlot = DAG.getNode(ISD::ADD, StackSlot.getValueType(), StackSlot,
3968 DAG.getConstant(StackSlot.getValueType(), 4));
3969 SDOperand Hi = DAG.getLoad(MVT::i32, FIST, StackSlot, NULL, 0);
3970
3971
3972 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003973}
3974
3975SDOperand X86TargetLowering::LowerFABS(SDOperand Op, SelectionDAG &DAG) {
3976 MVT::ValueType VT = Op.getValueType();
3977 MVT::ValueType EltVT = VT;
3978 if (MVT::isVector(VT))
3979 EltVT = MVT::getVectorElementType(VT);
3980 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
3981 std::vector<Constant*> CV;
3982 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00003983 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, ~(1ULL << 63))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003984 CV.push_back(C);
3985 CV.push_back(C);
3986 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00003987 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, ~(1U << 31))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003988 CV.push_back(C);
3989 CV.push_back(C);
3990 CV.push_back(C);
3991 CV.push_back(C);
3992 }
Dan Gohman11821702007-07-27 17:16:43 +00003993 Constant *C = ConstantVector::get(CV);
3994 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
3995 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
3996 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003997 return DAG.getNode(X86ISD::FAND, VT, Op.getOperand(0), Mask);
3998}
3999
4000SDOperand X86TargetLowering::LowerFNEG(SDOperand Op, SelectionDAG &DAG) {
4001 MVT::ValueType VT = Op.getValueType();
4002 MVT::ValueType EltVT = VT;
Evan Cheng92b8f782007-07-19 23:36:01 +00004003 unsigned EltNum = 1;
4004 if (MVT::isVector(VT)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004005 EltVT = MVT::getVectorElementType(VT);
Evan Cheng92b8f782007-07-19 23:36:01 +00004006 EltNum = MVT::getVectorNumElements(VT);
4007 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004008 const Type *OpNTy = MVT::getTypeForValueType(EltVT);
4009 std::vector<Constant*> CV;
4010 if (EltVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004011 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(64, 1ULL << 63)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004012 CV.push_back(C);
4013 CV.push_back(C);
4014 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004015 Constant *C = ConstantFP::get(OpNTy, APFloat(APInt(32, 1U << 31)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004016 CV.push_back(C);
4017 CV.push_back(C);
4018 CV.push_back(C);
4019 CV.push_back(C);
4020 }
Dan Gohman11821702007-07-27 17:16:43 +00004021 Constant *C = ConstantVector::get(CV);
4022 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4023 SDOperand Mask = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4024 false, 16);
Evan Cheng92b8f782007-07-19 23:36:01 +00004025 if (MVT::isVector(VT)) {
Evan Cheng92b8f782007-07-19 23:36:01 +00004026 return DAG.getNode(ISD::BIT_CONVERT, VT,
4027 DAG.getNode(ISD::XOR, MVT::v2i64,
4028 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Op.getOperand(0)),
4029 DAG.getNode(ISD::BIT_CONVERT, MVT::v2i64, Mask)));
4030 } else {
Evan Cheng92b8f782007-07-19 23:36:01 +00004031 return DAG.getNode(X86ISD::FXOR, VT, Op.getOperand(0), Mask);
4032 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004033}
4034
4035SDOperand X86TargetLowering::LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) {
4036 SDOperand Op0 = Op.getOperand(0);
4037 SDOperand Op1 = Op.getOperand(1);
4038 MVT::ValueType VT = Op.getValueType();
4039 MVT::ValueType SrcVT = Op1.getValueType();
4040 const Type *SrcTy = MVT::getTypeForValueType(SrcVT);
4041
4042 // If second operand is smaller, extend it first.
4043 if (MVT::getSizeInBits(SrcVT) < MVT::getSizeInBits(VT)) {
4044 Op1 = DAG.getNode(ISD::FP_EXTEND, VT, Op1);
4045 SrcVT = VT;
Dale Johannesenb9de9f02007-09-06 18:13:44 +00004046 SrcTy = MVT::getTypeForValueType(SrcVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004047 }
Dale Johannesenfb0fa912007-10-21 01:07:44 +00004048 // And if it is bigger, shrink it first.
4049 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4050 Op1 = DAG.getNode(ISD::FP_ROUND, VT, Op1);
4051 SrcVT = VT;
4052 SrcTy = MVT::getTypeForValueType(SrcVT);
4053 }
4054
4055 // At this point the operands and the result should have the same
4056 // type, and that won't be f80 since that is not custom lowered.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004057
4058 // First get the sign bit of second operand.
4059 std::vector<Constant*> CV;
4060 if (SrcVT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004061 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 1ULL << 63))));
4062 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004063 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004064 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 1U << 31))));
4065 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4066 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4067 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004068 }
Dan Gohman11821702007-07-27 17:16:43 +00004069 Constant *C = ConstantVector::get(CV);
4070 SDOperand CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4071 SDOperand Mask1 = DAG.getLoad(SrcVT, DAG.getEntryNode(), CPIdx, NULL, 0,
4072 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004073 SDOperand SignBit = DAG.getNode(X86ISD::FAND, SrcVT, Op1, Mask1);
4074
4075 // Shift sign bit right or left if the two operands have different types.
4076 if (MVT::getSizeInBits(SrcVT) > MVT::getSizeInBits(VT)) {
4077 // Op0 is MVT::f32, Op1 is MVT::f64.
4078 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, MVT::v2f64, SignBit);
4079 SignBit = DAG.getNode(X86ISD::FSRL, MVT::v2f64, SignBit,
4080 DAG.getConstant(32, MVT::i32));
4081 SignBit = DAG.getNode(ISD::BIT_CONVERT, MVT::v4f32, SignBit);
4082 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, MVT::f32, SignBit,
4083 DAG.getConstant(0, getPointerTy()));
4084 }
4085
4086 // Clear first operand sign bit.
4087 CV.clear();
4088 if (VT == MVT::f64) {
Dale Johannesen1616e902007-09-11 18:32:33 +00004089 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, ~(1ULL << 63)))));
4090 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(64, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004091 } else {
Dale Johannesen1616e902007-09-11 18:32:33 +00004092 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, ~(1U << 31)))));
4093 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4094 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
4095 CV.push_back(ConstantFP::get(SrcTy, APFloat(APInt(32, 0))));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004096 }
Dan Gohman11821702007-07-27 17:16:43 +00004097 C = ConstantVector::get(CV);
4098 CPIdx = DAG.getConstantPool(C, getPointerTy(), 4);
4099 SDOperand Mask2 = DAG.getLoad(VT, DAG.getEntryNode(), CPIdx, NULL, 0,
4100 false, 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004101 SDOperand Val = DAG.getNode(X86ISD::FAND, VT, Op0, Mask2);
4102
4103 // Or the value with the sign bit.
4104 return DAG.getNode(X86ISD::FOR, VT, Val, SignBit);
4105}
4106
Evan Cheng621216e2007-09-29 00:00:36 +00004107SDOperand X86TargetLowering::LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
Evan Cheng950aac02007-09-25 01:57:46 +00004108 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
Evan Cheng6afec3d2007-09-26 00:45:55 +00004109 SDOperand Cond;
Evan Cheng950aac02007-09-25 01:57:46 +00004110 SDOperand Op0 = Op.getOperand(0);
4111 SDOperand Op1 = Op.getOperand(1);
4112 SDOperand CC = Op.getOperand(2);
4113 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
4114 bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType());
4115 unsigned X86CC;
4116
Evan Cheng950aac02007-09-25 01:57:46 +00004117 if (translateX86CC(cast<CondCodeSDNode>(CC)->get(), isFP, X86CC,
Evan Cheng6afec3d2007-09-26 00:45:55 +00004118 Op0, Op1, DAG)) {
Evan Cheng621216e2007-09-29 00:00:36 +00004119 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
4120 return DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004121 DAG.getConstant(X86CC, MVT::i8), Cond);
Evan Cheng6afec3d2007-09-26 00:45:55 +00004122 }
Evan Cheng950aac02007-09-25 01:57:46 +00004123
4124 assert(isFP && "Illegal integer SetCC!");
4125
Evan Cheng621216e2007-09-29 00:00:36 +00004126 Cond = DAG.getNode(X86ISD::CMP, MVT::i32, Op0, Op1);
Evan Cheng950aac02007-09-25 01:57:46 +00004127 switch (SetCCOpcode) {
4128 default: assert(false && "Illegal floating point SetCC!");
4129 case ISD::SETOEQ: { // !PF & ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004130 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004131 DAG.getConstant(X86::COND_NP, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004132 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004133 DAG.getConstant(X86::COND_E, MVT::i8), Cond);
4134 return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2);
4135 }
4136 case ISD::SETUNE: { // PF | !ZF
Evan Cheng621216e2007-09-29 00:00:36 +00004137 SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004138 DAG.getConstant(X86::COND_P, MVT::i8), Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004139 SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8,
Evan Cheng950aac02007-09-25 01:57:46 +00004140 DAG.getConstant(X86::COND_NE, MVT::i8), Cond);
4141 return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2);
4142 }
4143 }
4144}
4145
4146
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004147SDOperand X86TargetLowering::LowerSELECT(SDOperand Op, SelectionDAG &DAG) {
4148 bool addTest = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004149 SDOperand Cond = Op.getOperand(0);
4150 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004151
4152 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004153 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004154
Evan Cheng50d37ab2007-10-08 22:16:29 +00004155 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4156 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004157 if (Cond.getOpcode() == X86ISD::SETCC) {
4158 CC = Cond.getOperand(0);
4159
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004160 SDOperand Cmp = Cond.getOperand(1);
4161 unsigned Opc = Cmp.getOpcode();
Evan Cheng50d37ab2007-10-08 22:16:29 +00004162 MVT::ValueType VT = Op.getValueType();
4163 bool IllegalFPCMov = false;
4164 if (VT == MVT::f32 && !X86ScalarSSEf32)
4165 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
4166 else if (VT == MVT::f64 && !X86ScalarSSEf64)
4167 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Dale Johannesen3b955db2007-10-16 18:09:08 +00004168 else if (VT == MVT::f80)
4169 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended());
Evan Cheng621216e2007-09-29 00:00:36 +00004170 if ((Opc == X86ISD::CMP ||
4171 Opc == X86ISD::COMI ||
4172 Opc == X86ISD::UCOMI) && !IllegalFPCMov) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004173 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004174 addTest = false;
4175 }
4176 }
4177
4178 if (addTest) {
4179 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng50d37ab2007-10-08 22:16:29 +00004180 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004181 }
4182
4183 const MVT::ValueType *VTs = DAG.getNodeValueTypes(Op.getValueType(),
4184 MVT::Flag);
4185 SmallVector<SDOperand, 4> Ops;
4186 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
4187 // condition is true.
4188 Ops.push_back(Op.getOperand(2));
4189 Ops.push_back(Op.getOperand(1));
4190 Ops.push_back(CC);
4191 Ops.push_back(Cond);
Evan Cheng621216e2007-09-29 00:00:36 +00004192 return DAG.getNode(X86ISD::CMOV, VTs, 2, &Ops[0], Ops.size());
Evan Cheng950aac02007-09-25 01:57:46 +00004193}
4194
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004195SDOperand X86TargetLowering::LowerBRCOND(SDOperand Op, SelectionDAG &DAG) {
4196 bool addTest = true;
4197 SDOperand Chain = Op.getOperand(0);
4198 SDOperand Cond = Op.getOperand(1);
4199 SDOperand Dest = Op.getOperand(2);
4200 SDOperand CC;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004201
4202 if (Cond.getOpcode() == ISD::SETCC)
Evan Cheng621216e2007-09-29 00:00:36 +00004203 Cond = LowerSETCC(Cond, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004204
Evan Cheng50d37ab2007-10-08 22:16:29 +00004205 // If condition flag is set by a X86ISD::CMP, then use it as the condition
4206 // setting operand in place of the X86ISD::SETCC.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004207 if (Cond.getOpcode() == X86ISD::SETCC) {
4208 CC = Cond.getOperand(0);
4209
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004210 SDOperand Cmp = Cond.getOperand(1);
4211 unsigned Opc = Cmp.getOpcode();
Evan Cheng621216e2007-09-29 00:00:36 +00004212 if (Opc == X86ISD::CMP ||
4213 Opc == X86ISD::COMI ||
4214 Opc == X86ISD::UCOMI) {
Evan Cheng50d37ab2007-10-08 22:16:29 +00004215 Cond = Cmp;
Evan Cheng950aac02007-09-25 01:57:46 +00004216 addTest = false;
4217 }
4218 }
4219
4220 if (addTest) {
4221 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
Evan Cheng621216e2007-09-29 00:00:36 +00004222 Cond= DAG.getNode(X86ISD::CMP, MVT::i32, Cond, DAG.getConstant(0, MVT::i8));
Evan Cheng950aac02007-09-25 01:57:46 +00004223 }
Evan Cheng621216e2007-09-29 00:00:36 +00004224 return DAG.getNode(X86ISD::BRCOND, Op.getValueType(),
Evan Cheng950aac02007-09-25 01:57:46 +00004225 Chain, Op.getOperand(2), CC, Cond);
4226}
4227
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004228SDOperand X86TargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004229 unsigned CallingConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4230 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004231
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004232 if (Subtarget->is64Bit())
4233 if(CallingConv==CallingConv::Fast && isTailCall && PerformTailCallOpt)
4234 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4235 else
4236 return LowerX86_64CCCCallTo(Op, DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004237 else
4238 switch (CallingConv) {
4239 default:
4240 assert(0 && "Unsupported calling convention");
4241 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004242 if (isTailCall && PerformTailCallOpt)
4243 return LowerX86_TailCallTo(Op, DAG, CallingConv);
4244 else
4245 return LowerCCCCallTo(Op,DAG, CallingConv);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004246 case CallingConv::C:
4247 case CallingConv::X86_StdCall:
4248 return LowerCCCCallTo(Op, DAG, CallingConv);
4249 case CallingConv::X86_FastCall:
4250 return LowerFastCCCallTo(Op, DAG, CallingConv);
4251 }
4252}
4253
4254
4255// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
4256// Calls to _alloca is needed to probe the stack when allocating more than 4k
4257// bytes in one go. Touching the stack at 4K increments is necessary to ensure
4258// that the guard pages used by the OS virtual memory manager are allocated in
4259// correct sequence.
4260SDOperand
4261X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDOperand Op,
4262 SelectionDAG &DAG) {
4263 assert(Subtarget->isTargetCygMing() &&
4264 "This should be used only on Cygwin/Mingw targets");
4265
4266 // Get the inputs.
4267 SDOperand Chain = Op.getOperand(0);
4268 SDOperand Size = Op.getOperand(1);
4269 // FIXME: Ensure alignment here
4270
4271 SDOperand Flag;
4272
4273 MVT::ValueType IntPtr = getPointerTy();
4274 MVT::ValueType SPTy = (Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
4275
4276 Chain = DAG.getCopyToReg(Chain, X86::EAX, Size, Flag);
4277 Flag = Chain.getValue(1);
4278
4279 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
4280 SDOperand Ops[] = { Chain,
4281 DAG.getTargetExternalSymbol("_alloca", IntPtr),
4282 DAG.getRegister(X86::EAX, IntPtr),
4283 Flag };
4284 Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops, 4);
4285 Flag = Chain.getValue(1);
4286
4287 Chain = DAG.getCopyFromReg(Chain, X86StackPtr, SPTy).getValue(1);
4288
4289 std::vector<MVT::ValueType> Tys;
4290 Tys.push_back(SPTy);
4291 Tys.push_back(MVT::Other);
4292 SDOperand Ops1[2] = { Chain.getValue(0), Chain };
4293 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops1, 2);
4294}
4295
4296SDOperand
4297X86TargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) {
4298 MachineFunction &MF = DAG.getMachineFunction();
4299 const Function* Fn = MF.getFunction();
4300 if (Fn->hasExternalLinkage() &&
4301 Subtarget->isTargetCygMing() &&
4302 Fn->getName() == "main")
4303 MF.getInfo<X86MachineFunctionInfo>()->setForceFramePointer(true);
4304
4305 unsigned CC = cast<ConstantSDNode>(Op.getOperand(1))->getValue();
4306 if (Subtarget->is64Bit())
4307 return LowerX86_64CCCArguments(Op, DAG);
4308 else
4309 switch(CC) {
4310 default:
4311 assert(0 && "Unsupported calling convention");
4312 case CallingConv::Fast:
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004313 return LowerCCCArguments(Op,DAG, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004314 // Falls through
4315 case CallingConv::C:
4316 return LowerCCCArguments(Op, DAG);
4317 case CallingConv::X86_StdCall:
4318 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(StdCall);
4319 return LowerCCCArguments(Op, DAG, true);
4320 case CallingConv::X86_FastCall:
4321 MF.getInfo<X86MachineFunctionInfo>()->setDecorationStyle(FastCall);
4322 return LowerFastCCArguments(Op, DAG);
4323 }
4324}
4325
4326SDOperand X86TargetLowering::LowerMEMSET(SDOperand Op, SelectionDAG &DAG) {
4327 SDOperand InFlag(0, 0);
4328 SDOperand Chain = Op.getOperand(0);
4329 unsigned Align =
4330 (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue();
4331 if (Align == 0) Align = 1;
4332
4333 ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3));
Rafael Espindola5d3e7622007-08-27 10:18:20 +00004334 // If not DWORD aligned or size is more than the threshold, call memset.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004335 // The libc version is likely to be faster for these cases. It can use the
4336 // address value and run time information about the CPU.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004337 if ((Align & 3) != 0 ||
Rafael Espindola7afa9b12007-10-31 11:52:06 +00004338 (I && I->getValue() > Subtarget->getMaxInlineSizeThreshold())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004339 MVT::ValueType IntPtr = getPointerTy();
4340 const Type *IntPtrTy = getTargetData()->getIntPtrType();
4341 TargetLowering::ArgListTy Args;
4342 TargetLowering::ArgListEntry Entry;
4343 Entry.Node = Op.getOperand(1);
4344 Entry.Ty = IntPtrTy;
4345 Args.push_back(Entry);
4346 // Extend the unsigned i8 argument to be an int value for the call.
4347 Entry.Node = DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Op.getOperand(2));
4348 Entry.Ty = IntPtrTy;
4349 Args.push_back(Entry);
4350 Entry.Node = Op.getOperand(3);
4351 Args.push_back(Entry);
4352 std::pair<SDOperand,SDOperand> CallResult =
4353 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4354 DAG.getExternalSymbol("memset", IntPtr), Args, DAG);
4355 return CallResult.second;
4356 }
4357
4358 MVT::ValueType AVT;
4359 SDOperand Count;
4360 ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4361 unsigned BytesLeft = 0;
4362 bool TwoRepStos = false;
4363 if (ValC) {
4364 unsigned ValReg;
4365 uint64_t Val = ValC->getValue() & 255;
4366
4367 // If the value is a constant, then we can potentially use larger sets.
4368 switch (Align & 3) {
4369 case 2: // WORD aligned
4370 AVT = MVT::i16;
4371 ValReg = X86::AX;
4372 Val = (Val << 8) | Val;
4373 break;
4374 case 0: // DWORD aligned
4375 AVT = MVT::i32;
4376 ValReg = X86::EAX;
4377 Val = (Val << 8) | Val;
4378 Val = (Val << 16) | Val;
4379 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) { // QWORD aligned
4380 AVT = MVT::i64;
4381 ValReg = X86::RAX;
4382 Val = (Val << 32) | Val;
4383 }
4384 break;
4385 default: // Byte aligned
4386 AVT = MVT::i8;
4387 ValReg = X86::AL;
4388 Count = Op.getOperand(3);
4389 break;
4390 }
4391
4392 if (AVT > MVT::i8) {
4393 if (I) {
4394 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4395 Count = DAG.getConstant(I->getValue() / UBytes, getPointerTy());
4396 BytesLeft = I->getValue() % UBytes;
4397 } else {
4398 assert(AVT >= MVT::i32 &&
4399 "Do not use rep;stos if not at least DWORD aligned");
4400 Count = DAG.getNode(ISD::SRL, Op.getOperand(3).getValueType(),
4401 Op.getOperand(3), DAG.getConstant(2, MVT::i8));
4402 TwoRepStos = true;
4403 }
4404 }
4405
4406 Chain = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT),
4407 InFlag);
4408 InFlag = Chain.getValue(1);
4409 } else {
4410 AVT = MVT::i8;
4411 Count = Op.getOperand(3);
4412 Chain = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag);
4413 InFlag = Chain.getValue(1);
4414 }
4415
4416 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4417 Count, InFlag);
4418 InFlag = Chain.getValue(1);
4419 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
4420 Op.getOperand(1), InFlag);
4421 InFlag = Chain.getValue(1);
4422
4423 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4424 SmallVector<SDOperand, 8> Ops;
4425 Ops.push_back(Chain);
4426 Ops.push_back(DAG.getValueType(AVT));
4427 Ops.push_back(InFlag);
4428 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4429
4430 if (TwoRepStos) {
4431 InFlag = Chain.getValue(1);
4432 Count = Op.getOperand(3);
4433 MVT::ValueType CVT = Count.getValueType();
4434 SDOperand Left = DAG.getNode(ISD::AND, CVT, Count,
4435 DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
4436 Chain = DAG.getCopyToReg(Chain, (CVT == MVT::i64) ? X86::RCX : X86::ECX,
4437 Left, InFlag);
4438 InFlag = Chain.getValue(1);
4439 Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4440 Ops.clear();
4441 Ops.push_back(Chain);
4442 Ops.push_back(DAG.getValueType(MVT::i8));
4443 Ops.push_back(InFlag);
4444 Chain = DAG.getNode(X86ISD::REP_STOS, Tys, &Ops[0], Ops.size());
4445 } else if (BytesLeft) {
4446 // Issue stores for the last 1 - 7 bytes.
4447 SDOperand Value;
4448 unsigned Val = ValC->getValue() & 255;
4449 unsigned Offset = I->getValue() - BytesLeft;
4450 SDOperand DstAddr = Op.getOperand(1);
4451 MVT::ValueType AddrVT = DstAddr.getValueType();
4452 if (BytesLeft >= 4) {
4453 Val = (Val << 8) | Val;
4454 Val = (Val << 16) | Val;
4455 Value = DAG.getConstant(Val, MVT::i32);
4456 Chain = DAG.getStore(Chain, Value,
4457 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4458 DAG.getConstant(Offset, AddrVT)),
4459 NULL, 0);
4460 BytesLeft -= 4;
4461 Offset += 4;
4462 }
4463 if (BytesLeft >= 2) {
4464 Value = DAG.getConstant((Val << 8) | Val, MVT::i16);
4465 Chain = DAG.getStore(Chain, Value,
4466 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4467 DAG.getConstant(Offset, AddrVT)),
4468 NULL, 0);
4469 BytesLeft -= 2;
4470 Offset += 2;
4471 }
4472 if (BytesLeft == 1) {
4473 Value = DAG.getConstant(Val, MVT::i8);
4474 Chain = DAG.getStore(Chain, Value,
4475 DAG.getNode(ISD::ADD, AddrVT, DstAddr,
4476 DAG.getConstant(Offset, AddrVT)),
4477 NULL, 0);
4478 }
4479 }
4480
4481 return Chain;
4482}
4483
4484SDOperand X86TargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) {
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004485 SDOperand ChainOp = Op.getOperand(0);
4486 SDOperand DestOp = Op.getOperand(1);
4487 SDOperand SourceOp = Op.getOperand(2);
4488 SDOperand CountOp = Op.getOperand(3);
4489 SDOperand AlignOp = Op.getOperand(4);
Rafael Espindola80825902007-10-19 10:41:11 +00004490 SDOperand AlwaysInlineOp = Op.getOperand(5);
4491
4492 bool AlwaysInline = (bool)cast<ConstantSDNode>(AlwaysInlineOp)->getValue();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004493 unsigned Align = (unsigned)cast<ConstantSDNode>(AlignOp)->getValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004494 if (Align == 0) Align = 1;
4495
Rafael Espindola80825902007-10-19 10:41:11 +00004496 // If size is unknown, call memcpy.
4497 ConstantSDNode *I = dyn_cast<ConstantSDNode>(CountOp);
4498 if (!I) {
4499 assert(!AlwaysInline && "Cannot inline copy of unknown size");
4500 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
4501 }
Rafael Espindola80825902007-10-19 10:41:11 +00004502
Rafael Espindola948da402007-10-31 14:39:58 +00004503 // If not DWORD aligned or if size is more than threshold, then call memcpy.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004504 // The libc version is likely to be faster for the following cases. It can
4505 // use the address value and run time information about the CPU.
Rafael Espindolab2e7a6b2007-08-27 17:48:26 +00004506 // With glibc 2.6.1 on a core 2, coping an array of 100M longs was 30% faster
Rafael Espindola948da402007-10-31 14:39:58 +00004507 unsigned Size = I->getValue();
4508 if (AlwaysInline ||
4509 (Size <= Subtarget->getMaxInlineSizeThreshold() &&
4510 (Align & 3) == 0))
4511 return LowerMEMCPYInline(ChainOp, DestOp, SourceOp, Size, Align, DAG);
4512 return LowerMEMCPYCall(ChainOp, DestOp, SourceOp, CountOp, DAG);
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004513}
4514
4515SDOperand X86TargetLowering::LowerMEMCPYCall(SDOperand Chain,
4516 SDOperand Dest,
4517 SDOperand Source,
4518 SDOperand Count,
4519 SelectionDAG &DAG) {
4520 MVT::ValueType IntPtr = getPointerTy();
4521 TargetLowering::ArgListTy Args;
4522 TargetLowering::ArgListEntry Entry;
4523 Entry.Ty = getTargetData()->getIntPtrType();
4524 Entry.Node = Dest; Args.push_back(Entry);
4525 Entry.Node = Source; Args.push_back(Entry);
4526 Entry.Node = Count; Args.push_back(Entry);
4527 std::pair<SDOperand,SDOperand> CallResult =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004528 LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false,
4529 DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG);
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004530 return CallResult.second;
4531}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004532
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004533SDOperand X86TargetLowering::LowerMEMCPYInline(SDOperand Chain,
4534 SDOperand Dest,
4535 SDOperand Source,
4536 unsigned Size,
4537 unsigned Align,
4538 SelectionDAG &DAG) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004539 MVT::ValueType AVT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004540 unsigned BytesLeft = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004541 switch (Align & 3) {
4542 case 2: // WORD aligned
4543 AVT = MVT::i16;
4544 break;
4545 case 0: // DWORD aligned
4546 AVT = MVT::i32;
4547 if (Subtarget->is64Bit() && ((Align & 0xF) == 0)) // QWORD aligned
4548 AVT = MVT::i64;
4549 break;
4550 default: // Byte aligned
4551 AVT = MVT::i8;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004552 break;
4553 }
4554
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004555 unsigned UBytes = MVT::getSizeInBits(AVT) / 8;
4556 SDOperand Count = DAG.getConstant(Size / UBytes, getPointerTy());
4557 BytesLeft = Size % UBytes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004558
4559 SDOperand InFlag(0, 0);
4560 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RCX : X86::ECX,
4561 Count, InFlag);
4562 InFlag = Chain.getValue(1);
4563 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RDI : X86::EDI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004564 Dest, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004565 InFlag = Chain.getValue(1);
4566 Chain = DAG.getCopyToReg(Chain, Subtarget->is64Bit() ? X86::RSI : X86::ESI,
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004567 Source, InFlag);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004568 InFlag = Chain.getValue(1);
4569
4570 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4571 SmallVector<SDOperand, 8> Ops;
4572 Ops.push_back(Chain);
4573 Ops.push_back(DAG.getValueType(AVT));
4574 Ops.push_back(InFlag);
4575 Chain = DAG.getNode(X86ISD::REP_MOVS, Tys, &Ops[0], Ops.size());
4576
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004577 if (BytesLeft) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004578 // Issue loads and stores for the last 1 - 7 bytes.
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004579 unsigned Offset = Size - BytesLeft;
4580 SDOperand DstAddr = Dest;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004581 MVT::ValueType DstVT = DstAddr.getValueType();
Rafael Espindolaf12f3a92007-09-28 12:53:01 +00004582 SDOperand SrcAddr = Source;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004583 MVT::ValueType SrcVT = SrcAddr.getValueType();
4584 SDOperand Value;
4585 if (BytesLeft >= 4) {
4586 Value = DAG.getLoad(MVT::i32, Chain,
4587 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4588 DAG.getConstant(Offset, SrcVT)),
4589 NULL, 0);
4590 Chain = Value.getValue(1);
4591 Chain = DAG.getStore(Chain, Value,
4592 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4593 DAG.getConstant(Offset, DstVT)),
4594 NULL, 0);
4595 BytesLeft -= 4;
4596 Offset += 4;
4597 }
4598 if (BytesLeft >= 2) {
4599 Value = DAG.getLoad(MVT::i16, Chain,
4600 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4601 DAG.getConstant(Offset, SrcVT)),
4602 NULL, 0);
4603 Chain = Value.getValue(1);
4604 Chain = DAG.getStore(Chain, Value,
4605 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4606 DAG.getConstant(Offset, DstVT)),
4607 NULL, 0);
4608 BytesLeft -= 2;
4609 Offset += 2;
4610 }
4611
4612 if (BytesLeft == 1) {
4613 Value = DAG.getLoad(MVT::i8, Chain,
4614 DAG.getNode(ISD::ADD, SrcVT, SrcAddr,
4615 DAG.getConstant(Offset, SrcVT)),
4616 NULL, 0);
4617 Chain = Value.getValue(1);
4618 Chain = DAG.getStore(Chain, Value,
4619 DAG.getNode(ISD::ADD, DstVT, DstAddr,
4620 DAG.getConstant(Offset, DstVT)),
4621 NULL, 0);
4622 }
4623 }
4624
4625 return Chain;
4626}
4627
4628SDOperand
4629X86TargetLowering::LowerREADCYCLCECOUNTER(SDOperand Op, SelectionDAG &DAG) {
4630 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
4631 SDOperand TheOp = Op.getOperand(0);
4632 SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, &TheOp, 1);
4633 if (Subtarget->is64Bit()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00004634 SDOperand Copy1 =
4635 DAG.getCopyFromReg(rd, X86::RAX, MVT::i64, rd.getValue(1));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004636 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::RDX,
4637 MVT::i64, Copy1.getValue(2));
4638 SDOperand Tmp = DAG.getNode(ISD::SHL, MVT::i64, Copy2,
4639 DAG.getConstant(32, MVT::i8));
4640 SDOperand Ops[] = {
4641 DAG.getNode(ISD::OR, MVT::i64, Copy1, Tmp), Copy2.getValue(1)
4642 };
4643
4644 Tys = DAG.getVTList(MVT::i64, MVT::Other);
4645 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 2);
4646 }
4647
4648 SDOperand Copy1 = DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1));
4649 SDOperand Copy2 = DAG.getCopyFromReg(Copy1.getValue(1), X86::EDX,
4650 MVT::i32, Copy1.getValue(2));
4651 SDOperand Ops[] = { Copy1, Copy2, Copy2.getValue(1) };
4652 Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
4653 return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops, 3);
4654}
4655
4656SDOperand X86TargetLowering::LowerVASTART(SDOperand Op, SelectionDAG &DAG) {
4657 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
4658
4659 if (!Subtarget->is64Bit()) {
4660 // vastart just stores the address of the VarArgsFrameIndex slot into the
4661 // memory location argument.
4662 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4663 return DAG.getStore(Op.getOperand(0), FR,Op.getOperand(1), SV->getValue(),
4664 SV->getOffset());
4665 }
4666
4667 // __va_list_tag:
4668 // gp_offset (0 - 6 * 8)
4669 // fp_offset (48 - 48 + 8 * 16)
4670 // overflow_arg_area (point to parameters coming in memory).
4671 // reg_save_area
4672 SmallVector<SDOperand, 8> MemOps;
4673 SDOperand FIN = Op.getOperand(1);
4674 // Store gp_offset
4675 SDOperand Store = DAG.getStore(Op.getOperand(0),
4676 DAG.getConstant(VarArgsGPOffset, MVT::i32),
4677 FIN, SV->getValue(), SV->getOffset());
4678 MemOps.push_back(Store);
4679
4680 // Store fp_offset
4681 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4682 DAG.getConstant(4, getPointerTy()));
4683 Store = DAG.getStore(Op.getOperand(0),
4684 DAG.getConstant(VarArgsFPOffset, MVT::i32),
4685 FIN, SV->getValue(), SV->getOffset());
4686 MemOps.push_back(Store);
4687
4688 // Store ptr to overflow_arg_area
4689 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4690 DAG.getConstant(4, getPointerTy()));
4691 SDOperand OVFIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy());
4692 Store = DAG.getStore(Op.getOperand(0), OVFIN, FIN, SV->getValue(),
4693 SV->getOffset());
4694 MemOps.push_back(Store);
4695
4696 // Store ptr to reg_save_area.
4697 FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN,
4698 DAG.getConstant(8, getPointerTy()));
4699 SDOperand RSFIN = DAG.getFrameIndex(RegSaveFrameIndex, getPointerTy());
4700 Store = DAG.getStore(Op.getOperand(0), RSFIN, FIN, SV->getValue(),
4701 SV->getOffset());
4702 MemOps.push_back(Store);
4703 return DAG.getNode(ISD::TokenFactor, MVT::Other, &MemOps[0], MemOps.size());
4704}
4705
4706SDOperand X86TargetLowering::LowerVACOPY(SDOperand Op, SelectionDAG &DAG) {
4707 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
4708 SDOperand Chain = Op.getOperand(0);
4709 SDOperand DstPtr = Op.getOperand(1);
4710 SDOperand SrcPtr = Op.getOperand(2);
4711 SrcValueSDNode *DstSV = cast<SrcValueSDNode>(Op.getOperand(3));
4712 SrcValueSDNode *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4));
4713
4714 SrcPtr = DAG.getLoad(getPointerTy(), Chain, SrcPtr,
4715 SrcSV->getValue(), SrcSV->getOffset());
4716 Chain = SrcPtr.getValue(1);
4717 for (unsigned i = 0; i < 3; ++i) {
4718 SDOperand Val = DAG.getLoad(MVT::i64, Chain, SrcPtr,
4719 SrcSV->getValue(), SrcSV->getOffset());
4720 Chain = Val.getValue(1);
4721 Chain = DAG.getStore(Chain, Val, DstPtr,
4722 DstSV->getValue(), DstSV->getOffset());
4723 if (i == 2)
4724 break;
4725 SrcPtr = DAG.getNode(ISD::ADD, getPointerTy(), SrcPtr,
4726 DAG.getConstant(8, getPointerTy()));
4727 DstPtr = DAG.getNode(ISD::ADD, getPointerTy(), DstPtr,
4728 DAG.getConstant(8, getPointerTy()));
4729 }
4730 return Chain;
4731}
4732
4733SDOperand
4734X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
4735 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
4736 switch (IntNo) {
4737 default: return SDOperand(); // Don't custom lower most intrinsics.
4738 // Comparison intrinsics.
4739 case Intrinsic::x86_sse_comieq_ss:
4740 case Intrinsic::x86_sse_comilt_ss:
4741 case Intrinsic::x86_sse_comile_ss:
4742 case Intrinsic::x86_sse_comigt_ss:
4743 case Intrinsic::x86_sse_comige_ss:
4744 case Intrinsic::x86_sse_comineq_ss:
4745 case Intrinsic::x86_sse_ucomieq_ss:
4746 case Intrinsic::x86_sse_ucomilt_ss:
4747 case Intrinsic::x86_sse_ucomile_ss:
4748 case Intrinsic::x86_sse_ucomigt_ss:
4749 case Intrinsic::x86_sse_ucomige_ss:
4750 case Intrinsic::x86_sse_ucomineq_ss:
4751 case Intrinsic::x86_sse2_comieq_sd:
4752 case Intrinsic::x86_sse2_comilt_sd:
4753 case Intrinsic::x86_sse2_comile_sd:
4754 case Intrinsic::x86_sse2_comigt_sd:
4755 case Intrinsic::x86_sse2_comige_sd:
4756 case Intrinsic::x86_sse2_comineq_sd:
4757 case Intrinsic::x86_sse2_ucomieq_sd:
4758 case Intrinsic::x86_sse2_ucomilt_sd:
4759 case Intrinsic::x86_sse2_ucomile_sd:
4760 case Intrinsic::x86_sse2_ucomigt_sd:
4761 case Intrinsic::x86_sse2_ucomige_sd:
4762 case Intrinsic::x86_sse2_ucomineq_sd: {
4763 unsigned Opc = 0;
4764 ISD::CondCode CC = ISD::SETCC_INVALID;
4765 switch (IntNo) {
4766 default: break;
4767 case Intrinsic::x86_sse_comieq_ss:
4768 case Intrinsic::x86_sse2_comieq_sd:
4769 Opc = X86ISD::COMI;
4770 CC = ISD::SETEQ;
4771 break;
4772 case Intrinsic::x86_sse_comilt_ss:
4773 case Intrinsic::x86_sse2_comilt_sd:
4774 Opc = X86ISD::COMI;
4775 CC = ISD::SETLT;
4776 break;
4777 case Intrinsic::x86_sse_comile_ss:
4778 case Intrinsic::x86_sse2_comile_sd:
4779 Opc = X86ISD::COMI;
4780 CC = ISD::SETLE;
4781 break;
4782 case Intrinsic::x86_sse_comigt_ss:
4783 case Intrinsic::x86_sse2_comigt_sd:
4784 Opc = X86ISD::COMI;
4785 CC = ISD::SETGT;
4786 break;
4787 case Intrinsic::x86_sse_comige_ss:
4788 case Intrinsic::x86_sse2_comige_sd:
4789 Opc = X86ISD::COMI;
4790 CC = ISD::SETGE;
4791 break;
4792 case Intrinsic::x86_sse_comineq_ss:
4793 case Intrinsic::x86_sse2_comineq_sd:
4794 Opc = X86ISD::COMI;
4795 CC = ISD::SETNE;
4796 break;
4797 case Intrinsic::x86_sse_ucomieq_ss:
4798 case Intrinsic::x86_sse2_ucomieq_sd:
4799 Opc = X86ISD::UCOMI;
4800 CC = ISD::SETEQ;
4801 break;
4802 case Intrinsic::x86_sse_ucomilt_ss:
4803 case Intrinsic::x86_sse2_ucomilt_sd:
4804 Opc = X86ISD::UCOMI;
4805 CC = ISD::SETLT;
4806 break;
4807 case Intrinsic::x86_sse_ucomile_ss:
4808 case Intrinsic::x86_sse2_ucomile_sd:
4809 Opc = X86ISD::UCOMI;
4810 CC = ISD::SETLE;
4811 break;
4812 case Intrinsic::x86_sse_ucomigt_ss:
4813 case Intrinsic::x86_sse2_ucomigt_sd:
4814 Opc = X86ISD::UCOMI;
4815 CC = ISD::SETGT;
4816 break;
4817 case Intrinsic::x86_sse_ucomige_ss:
4818 case Intrinsic::x86_sse2_ucomige_sd:
4819 Opc = X86ISD::UCOMI;
4820 CC = ISD::SETGE;
4821 break;
4822 case Intrinsic::x86_sse_ucomineq_ss:
4823 case Intrinsic::x86_sse2_ucomineq_sd:
4824 Opc = X86ISD::UCOMI;
4825 CC = ISD::SETNE;
4826 break;
4827 }
4828
4829 unsigned X86CC;
4830 SDOperand LHS = Op.getOperand(1);
4831 SDOperand RHS = Op.getOperand(2);
4832 translateX86CC(CC, true, X86CC, LHS, RHS, DAG);
4833
Evan Cheng621216e2007-09-29 00:00:36 +00004834 SDOperand Cond = DAG.getNode(Opc, MVT::i32, LHS, RHS);
4835 SDOperand SetCC = DAG.getNode(X86ISD::SETCC, MVT::i8,
4836 DAG.getConstant(X86CC, MVT::i8), Cond);
4837 return DAG.getNode(ISD::ANY_EXTEND, MVT::i32, SetCC);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004838 }
4839 }
4840}
4841
4842SDOperand X86TargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
4843 // Depths > 0 not supported yet!
4844 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4845 return SDOperand();
4846
4847 // Just load the return address
4848 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4849 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
4850}
4851
4852SDOperand X86TargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
4853 // Depths > 0 not supported yet!
4854 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
4855 return SDOperand();
4856
4857 SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG);
4858 return DAG.getNode(ISD::SUB, getPointerTy(), RetAddrFI,
4859 DAG.getConstant(4, getPointerTy()));
4860}
4861
4862SDOperand X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDOperand Op,
4863 SelectionDAG &DAG) {
4864 // Is not yet supported on x86-64
4865 if (Subtarget->is64Bit())
4866 return SDOperand();
4867
4868 return DAG.getConstant(8, getPointerTy());
4869}
4870
4871SDOperand X86TargetLowering::LowerEH_RETURN(SDOperand Op, SelectionDAG &DAG)
4872{
4873 assert(!Subtarget->is64Bit() &&
4874 "Lowering of eh_return builtin is not supported yet on x86-64");
4875
4876 MachineFunction &MF = DAG.getMachineFunction();
4877 SDOperand Chain = Op.getOperand(0);
4878 SDOperand Offset = Op.getOperand(1);
4879 SDOperand Handler = Op.getOperand(2);
4880
4881 SDOperand Frame = DAG.getRegister(RegInfo->getFrameRegister(MF),
4882 getPointerTy());
4883
4884 SDOperand StoreAddr = DAG.getNode(ISD::SUB, getPointerTy(), Frame,
4885 DAG.getConstant(-4UL, getPointerTy()));
4886 StoreAddr = DAG.getNode(ISD::ADD, getPointerTy(), StoreAddr, Offset);
4887 Chain = DAG.getStore(Chain, Handler, StoreAddr, NULL, 0);
4888 Chain = DAG.getCopyToReg(Chain, X86::ECX, StoreAddr);
4889 MF.addLiveOut(X86::ECX);
4890
4891 return DAG.getNode(X86ISD::EH_RETURN, MVT::Other,
4892 Chain, DAG.getRegister(X86::ECX, getPointerTy()));
4893}
4894
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004895SDOperand X86TargetLowering::LowerTRAMPOLINE(SDOperand Op,
4896 SelectionDAG &DAG) {
4897 SDOperand Root = Op.getOperand(0);
4898 SDOperand Trmp = Op.getOperand(1); // trampoline
4899 SDOperand FPtr = Op.getOperand(2); // nested function
4900 SDOperand Nest = Op.getOperand(3); // 'nest' parameter value
4901
4902 SrcValueSDNode *TrmpSV = cast<SrcValueSDNode>(Op.getOperand(4));
4903
4904 if (Subtarget->is64Bit()) {
4905 return SDOperand(); // not yet supported
4906 } else {
4907 Function *Func = (Function *)
4908 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
4909 unsigned CC = Func->getCallingConv();
Duncan Sands466eadd2007-08-29 19:01:20 +00004910 unsigned NestReg;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004911
4912 switch (CC) {
4913 default:
4914 assert(0 && "Unsupported calling convention");
4915 case CallingConv::C:
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004916 case CallingConv::X86_StdCall: {
4917 // Pass 'nest' parameter in ECX.
4918 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004919 NestReg = X86::ECX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004920
4921 // Check that ECX wasn't needed by an 'inreg' parameter.
4922 const FunctionType *FTy = Func->getFunctionType();
4923 const ParamAttrsList *Attrs = FTy->getParamAttrs();
4924
4925 if (Attrs && !Func->isVarArg()) {
4926 unsigned InRegCount = 0;
4927 unsigned Idx = 1;
4928
4929 for (FunctionType::param_iterator I = FTy->param_begin(),
4930 E = FTy->param_end(); I != E; ++I, ++Idx)
4931 if (Attrs->paramHasAttr(Idx, ParamAttr::InReg))
4932 // FIXME: should only count parameters that are lowered to integers.
4933 InRegCount += (getTargetData()->getTypeSizeInBits(*I) + 31) / 32;
4934
4935 if (InRegCount > 2) {
4936 cerr << "Nest register in use - reduce number of inreg parameters!\n";
4937 abort();
4938 }
4939 }
4940 break;
4941 }
4942 case CallingConv::X86_FastCall:
4943 // Pass 'nest' parameter in EAX.
4944 // Must be kept in sync with X86CallingConv.td
Duncan Sands466eadd2007-08-29 19:01:20 +00004945 NestReg = X86::EAX;
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004946 break;
4947 }
4948
Duncan Sands466eadd2007-08-29 19:01:20 +00004949 const X86InstrInfo *TII =
4950 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
4951
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004952 SDOperand OutChains[4];
4953 SDOperand Addr, Disp;
4954
4955 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(10, MVT::i32));
4956 Disp = DAG.getNode(ISD::SUB, MVT::i32, FPtr, Addr);
4957
Duncan Sands466eadd2007-08-29 19:01:20 +00004958 unsigned char MOV32ri = TII->getBaseOpcodeFor(X86::MOV32ri);
4959 unsigned char N86Reg = ((X86RegisterInfo&)RegInfo).getX86RegNum(NestReg);
4960 OutChains[0] = DAG.getStore(Root, DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004961 Trmp, TrmpSV->getValue(), TrmpSV->getOffset());
4962
4963 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(1, MVT::i32));
4964 OutChains[1] = DAG.getStore(Root, Nest, Addr, TrmpSV->getValue(),
4965 TrmpSV->getOffset() + 1, false, 1);
4966
Duncan Sands466eadd2007-08-29 19:01:20 +00004967 unsigned char JMP = TII->getBaseOpcodeFor(X86::JMP);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004968 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(5, MVT::i32));
4969 OutChains[2] = DAG.getStore(Root, DAG.getConstant(JMP, MVT::i8), Addr,
4970 TrmpSV->getValue() + 5, TrmpSV->getOffset());
4971
4972 Addr = DAG.getNode(ISD::ADD, MVT::i32, Trmp, DAG.getConstant(6, MVT::i32));
4973 OutChains[3] = DAG.getStore(Root, Disp, Addr, TrmpSV->getValue(),
4974 TrmpSV->getOffset() + 6, false, 1);
4975
Duncan Sands7407a9f2007-09-11 14:10:23 +00004976 SDOperand Ops[] =
4977 { Trmp, DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains, 4) };
4978 return DAG.getNode(ISD::MERGE_VALUES, Op.Val->getVTList(), Ops, 2);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00004979 }
4980}
4981
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004982/// LowerOperation - Provide custom lowering hooks for some operations.
4983///
4984SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
4985 switch (Op.getOpcode()) {
4986 default: assert(0 && "Should not custom lower this!");
4987 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
4988 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
4989 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
4990 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
4991 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
4992 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
4993 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
4994 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
4995 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
4996 case ISD::SHL_PARTS:
4997 case ISD::SRA_PARTS:
4998 case ISD::SRL_PARTS: return LowerShift(Op, DAG);
4999 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
5000 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
5001 case ISD::FABS: return LowerFABS(Op, DAG);
5002 case ISD::FNEG: return LowerFNEG(Op, DAG);
5003 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
Evan Cheng621216e2007-09-29 00:00:36 +00005004 case ISD::SETCC: return LowerSETCC(Op, DAG);
5005 case ISD::SELECT: return LowerSELECT(Op, DAG);
5006 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005007 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
5008 case ISD::CALL: return LowerCALL(Op, DAG);
5009 case ISD::RET: return LowerRET(Op, DAG);
5010 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG);
5011 case ISD::MEMSET: return LowerMEMSET(Op, DAG);
5012 case ISD::MEMCPY: return LowerMEMCPY(Op, DAG);
5013 case ISD::READCYCLECOUNTER: return LowerREADCYCLCECOUNTER(Op, DAG);
5014 case ISD::VASTART: return LowerVASTART(Op, DAG);
5015 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
5016 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5017 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5018 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5019 case ISD::FRAME_TO_ARGS_OFFSET:
5020 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
5021 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
5022 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
Duncan Sandsd8455ca2007-07-27 20:02:49 +00005023 case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005024 }
5025 return SDOperand();
5026}
5027
5028const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
5029 switch (Opcode) {
5030 default: return NULL;
5031 case X86ISD::SHLD: return "X86ISD::SHLD";
5032 case X86ISD::SHRD: return "X86ISD::SHRD";
5033 case X86ISD::FAND: return "X86ISD::FAND";
5034 case X86ISD::FOR: return "X86ISD::FOR";
5035 case X86ISD::FXOR: return "X86ISD::FXOR";
5036 case X86ISD::FSRL: return "X86ISD::FSRL";
5037 case X86ISD::FILD: return "X86ISD::FILD";
5038 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
5039 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
5040 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
5041 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
5042 case X86ISD::FLD: return "X86ISD::FLD";
5043 case X86ISD::FST: return "X86ISD::FST";
5044 case X86ISD::FP_GET_RESULT: return "X86ISD::FP_GET_RESULT";
5045 case X86ISD::FP_SET_RESULT: return "X86ISD::FP_SET_RESULT";
5046 case X86ISD::CALL: return "X86ISD::CALL";
5047 case X86ISD::TAILCALL: return "X86ISD::TAILCALL";
5048 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
5049 case X86ISD::CMP: return "X86ISD::CMP";
5050 case X86ISD::COMI: return "X86ISD::COMI";
5051 case X86ISD::UCOMI: return "X86ISD::UCOMI";
5052 case X86ISD::SETCC: return "X86ISD::SETCC";
5053 case X86ISD::CMOV: return "X86ISD::CMOV";
5054 case X86ISD::BRCOND: return "X86ISD::BRCOND";
5055 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
5056 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
5057 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005058 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
5059 case X86ISD::Wrapper: return "X86ISD::Wrapper";
5060 case X86ISD::S2VEC: return "X86ISD::S2VEC";
5061 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
5062 case X86ISD::PINSRW: return "X86ISD::PINSRW";
5063 case X86ISD::FMAX: return "X86ISD::FMAX";
5064 case X86ISD::FMIN: return "X86ISD::FMIN";
5065 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
5066 case X86ISD::FRCP: return "X86ISD::FRCP";
5067 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
5068 case X86ISD::THREAD_POINTER: return "X86ISD::THREAD_POINTER";
5069 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005070 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005071 }
5072}
5073
5074// isLegalAddressingMode - Return true if the addressing mode represented
5075// by AM is legal for this target, for a load/store of the specified type.
5076bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
5077 const Type *Ty) const {
5078 // X86 supports extremely general addressing modes.
5079
5080 // X86 allows a sign-extended 32-bit immediate field as a displacement.
5081 if (AM.BaseOffs <= -(1LL << 32) || AM.BaseOffs >= (1LL << 32)-1)
5082 return false;
5083
5084 if (AM.BaseGV) {
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005085 // We can only fold this if we don't need an extra load.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005086 if (Subtarget->GVRequiresExtraLoad(AM.BaseGV, getTargetMachine(), false))
5087 return false;
Evan Cheng6a1f3f12007-08-01 23:46:47 +00005088
5089 // X86-64 only supports addr of globals in small code model.
5090 if (Subtarget->is64Bit()) {
5091 if (getTargetMachine().getCodeModel() != CodeModel::Small)
5092 return false;
5093 // If lower 4G is not available, then we must use rip-relative addressing.
5094 if (AM.BaseOffs || AM.Scale > 1)
5095 return false;
5096 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005097 }
5098
5099 switch (AM.Scale) {
5100 case 0:
5101 case 1:
5102 case 2:
5103 case 4:
5104 case 8:
5105 // These scales always work.
5106 break;
5107 case 3:
5108 case 5:
5109 case 9:
5110 // These scales are formed with basereg+scalereg. Only accept if there is
5111 // no basereg yet.
5112 if (AM.HasBaseReg)
5113 return false;
5114 break;
5115 default: // Other stuff never works.
5116 return false;
5117 }
5118
5119 return true;
5120}
5121
5122
Evan Cheng27a820a2007-10-26 01:56:11 +00005123bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
5124 if (!Ty1->isInteger() || !Ty2->isInteger())
5125 return false;
Evan Cheng7f152602007-10-29 07:57:50 +00005126 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
5127 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
5128 if (NumBits1 <= NumBits2)
5129 return false;
5130 return Subtarget->is64Bit() || NumBits1 < 64;
Evan Cheng27a820a2007-10-26 01:56:11 +00005131}
5132
Evan Cheng9decb332007-10-29 19:58:20 +00005133bool X86TargetLowering::isTruncateFree(MVT::ValueType VT1,
5134 MVT::ValueType VT2) const {
5135 if (!MVT::isInteger(VT1) || !MVT::isInteger(VT2))
5136 return false;
5137 unsigned NumBits1 = MVT::getSizeInBits(VT1);
5138 unsigned NumBits2 = MVT::getSizeInBits(VT2);
5139 if (NumBits1 <= NumBits2)
5140 return false;
5141 return Subtarget->is64Bit() || NumBits1 < 64;
5142}
Evan Cheng27a820a2007-10-26 01:56:11 +00005143
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005144/// isShuffleMaskLegal - Targets can use this to indicate that they only
5145/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
5146/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
5147/// are assumed to be legal.
5148bool
5149X86TargetLowering::isShuffleMaskLegal(SDOperand Mask, MVT::ValueType VT) const {
5150 // Only do shuffles on 128-bit vector types for now.
5151 if (MVT::getSizeInBits(VT) == 64) return false;
5152 return (Mask.Val->getNumOperands() <= 4 ||
5153 isIdentityMask(Mask.Val) ||
5154 isIdentityMask(Mask.Val, true) ||
5155 isSplatMask(Mask.Val) ||
5156 isPSHUFHW_PSHUFLWMask(Mask.Val) ||
5157 X86::isUNPCKLMask(Mask.Val) ||
5158 X86::isUNPCKHMask(Mask.Val) ||
5159 X86::isUNPCKL_v_undef_Mask(Mask.Val) ||
5160 X86::isUNPCKH_v_undef_Mask(Mask.Val));
5161}
5162
5163bool X86TargetLowering::isVectorClearMaskLegal(std::vector<SDOperand> &BVOps,
5164 MVT::ValueType EVT,
5165 SelectionDAG &DAG) const {
5166 unsigned NumElts = BVOps.size();
5167 // Only do shuffles on 128-bit vector types for now.
5168 if (MVT::getSizeInBits(EVT) * NumElts == 64) return false;
5169 if (NumElts == 2) return true;
5170 if (NumElts == 4) {
5171 return (isMOVLMask(&BVOps[0], 4) ||
5172 isCommutedMOVL(&BVOps[0], 4, true) ||
5173 isSHUFPMask(&BVOps[0], 4) ||
5174 isCommutedSHUFP(&BVOps[0], 4));
5175 }
5176 return false;
5177}
5178
5179//===----------------------------------------------------------------------===//
5180// X86 Scheduler Hooks
5181//===----------------------------------------------------------------------===//
5182
5183MachineBasicBlock *
5184X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
5185 MachineBasicBlock *BB) {
5186 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5187 switch (MI->getOpcode()) {
5188 default: assert(false && "Unexpected instr type to insert");
5189 case X86::CMOV_FR32:
5190 case X86::CMOV_FR64:
5191 case X86::CMOV_V4F32:
5192 case X86::CMOV_V2F64:
Evan Cheng621216e2007-09-29 00:00:36 +00005193 case X86::CMOV_V2I64: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005194 // To "insert" a SELECT_CC instruction, we actually have to insert the
5195 // diamond control-flow pattern. The incoming instruction knows the
5196 // destination vreg to set, the condition code register to branch on, the
5197 // true/false values to select between, and a branch opcode to use.
5198 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5199 ilist<MachineBasicBlock>::iterator It = BB;
5200 ++It;
5201
5202 // thisMBB:
5203 // ...
5204 // TrueVal = ...
5205 // cmpTY ccX, r1, r2
5206 // bCC copy1MBB
5207 // fallthrough --> copy0MBB
5208 MachineBasicBlock *thisMBB = BB;
5209 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
5210 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
5211 unsigned Opc =
5212 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
5213 BuildMI(BB, TII->get(Opc)).addMBB(sinkMBB);
5214 MachineFunction *F = BB->getParent();
5215 F->getBasicBlockList().insert(It, copy0MBB);
5216 F->getBasicBlockList().insert(It, sinkMBB);
5217 // Update machine-CFG edges by first adding all successors of the current
5218 // block to the new block which will contain the Phi node for the select.
5219 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
5220 e = BB->succ_end(); i != e; ++i)
5221 sinkMBB->addSuccessor(*i);
5222 // Next, remove all successors of the current block, and add the true
5223 // and fallthrough blocks as its successors.
5224 while(!BB->succ_empty())
5225 BB->removeSuccessor(BB->succ_begin());
5226 BB->addSuccessor(copy0MBB);
5227 BB->addSuccessor(sinkMBB);
5228
5229 // copy0MBB:
5230 // %FalseValue = ...
5231 // # fallthrough to sinkMBB
5232 BB = copy0MBB;
5233
5234 // Update machine-CFG edges
5235 BB->addSuccessor(sinkMBB);
5236
5237 // sinkMBB:
5238 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
5239 // ...
5240 BB = sinkMBB;
5241 BuildMI(BB, TII->get(X86::PHI), MI->getOperand(0).getReg())
5242 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
5243 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
5244
5245 delete MI; // The pseudo instruction is gone now.
5246 return BB;
5247 }
5248
5249 case X86::FP32_TO_INT16_IN_MEM:
5250 case X86::FP32_TO_INT32_IN_MEM:
5251 case X86::FP32_TO_INT64_IN_MEM:
5252 case X86::FP64_TO_INT16_IN_MEM:
5253 case X86::FP64_TO_INT32_IN_MEM:
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005254 case X86::FP64_TO_INT64_IN_MEM:
5255 case X86::FP80_TO_INT16_IN_MEM:
5256 case X86::FP80_TO_INT32_IN_MEM:
5257 case X86::FP80_TO_INT64_IN_MEM: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005258 // Change the floating point control register to use "round towards zero"
5259 // mode when truncating to an integer value.
5260 MachineFunction *F = BB->getParent();
5261 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
5262 addFrameReference(BuildMI(BB, TII->get(X86::FNSTCW16m)), CWFrameIdx);
5263
5264 // Load the old value of the high byte of the control word...
5265 unsigned OldCW =
5266 F->getSSARegMap()->createVirtualRegister(X86::GR16RegisterClass);
5267 addFrameReference(BuildMI(BB, TII->get(X86::MOV16rm), OldCW), CWFrameIdx);
5268
5269 // Set the high part to be round to zero...
5270 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mi)), CWFrameIdx)
5271 .addImm(0xC7F);
5272
5273 // Reload the modified control word now...
5274 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5275
5276 // Restore the memory image of control word to original value
5277 addFrameReference(BuildMI(BB, TII->get(X86::MOV16mr)), CWFrameIdx)
5278 .addReg(OldCW);
5279
5280 // Get the X86 opcode to use.
5281 unsigned Opc;
5282 switch (MI->getOpcode()) {
5283 default: assert(0 && "illegal opcode!");
5284 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
5285 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
5286 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
5287 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
5288 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
5289 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
Dale Johannesen6d0e36a2007-08-07 01:17:37 +00005290 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
5291 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
5292 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005293 }
5294
5295 X86AddressMode AM;
5296 MachineOperand &Op = MI->getOperand(0);
5297 if (Op.isRegister()) {
5298 AM.BaseType = X86AddressMode::RegBase;
5299 AM.Base.Reg = Op.getReg();
5300 } else {
5301 AM.BaseType = X86AddressMode::FrameIndexBase;
5302 AM.Base.FrameIndex = Op.getFrameIndex();
5303 }
5304 Op = MI->getOperand(1);
5305 if (Op.isImmediate())
5306 AM.Scale = Op.getImm();
5307 Op = MI->getOperand(2);
5308 if (Op.isImmediate())
5309 AM.IndexReg = Op.getImm();
5310 Op = MI->getOperand(3);
5311 if (Op.isGlobalAddress()) {
5312 AM.GV = Op.getGlobal();
5313 } else {
5314 AM.Disp = Op.getImm();
5315 }
5316 addFullAddress(BuildMI(BB, TII->get(Opc)), AM)
5317 .addReg(MI->getOperand(4).getReg());
5318
5319 // Reload the original control word now.
5320 addFrameReference(BuildMI(BB, TII->get(X86::FLDCW16m)), CWFrameIdx);
5321
5322 delete MI; // The pseudo instruction is gone now.
5323 return BB;
5324 }
5325 }
5326}
5327
5328//===----------------------------------------------------------------------===//
5329// X86 Optimization Hooks
5330//===----------------------------------------------------------------------===//
5331
5332void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
5333 uint64_t Mask,
5334 uint64_t &KnownZero,
5335 uint64_t &KnownOne,
5336 const SelectionDAG &DAG,
5337 unsigned Depth) const {
5338 unsigned Opc = Op.getOpcode();
5339 assert((Opc >= ISD::BUILTIN_OP_END ||
5340 Opc == ISD::INTRINSIC_WO_CHAIN ||
5341 Opc == ISD::INTRINSIC_W_CHAIN ||
5342 Opc == ISD::INTRINSIC_VOID) &&
5343 "Should use MaskedValueIsZero if you don't know whether Op"
5344 " is a target node!");
5345
5346 KnownZero = KnownOne = 0; // Don't know anything.
5347 switch (Opc) {
5348 default: break;
5349 case X86ISD::SETCC:
5350 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
5351 break;
5352 }
5353}
5354
5355/// getShuffleScalarElt - Returns the scalar element that will make up the ith
5356/// element of the result of the vector shuffle.
5357static SDOperand getShuffleScalarElt(SDNode *N, unsigned i, SelectionDAG &DAG) {
5358 MVT::ValueType VT = N->getValueType(0);
5359 SDOperand PermMask = N->getOperand(2);
5360 unsigned NumElems = PermMask.getNumOperands();
5361 SDOperand V = (i < NumElems) ? N->getOperand(0) : N->getOperand(1);
5362 i %= NumElems;
5363 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5364 return (i == 0)
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00005365 ? V.getOperand(0) : DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005366 } else if (V.getOpcode() == ISD::VECTOR_SHUFFLE) {
5367 SDOperand Idx = PermMask.getOperand(i);
5368 if (Idx.getOpcode() == ISD::UNDEF)
5369 return DAG.getNode(ISD::UNDEF, MVT::getVectorElementType(VT));
5370 return getShuffleScalarElt(V.Val,cast<ConstantSDNode>(Idx)->getValue(),DAG);
5371 }
5372 return SDOperand();
5373}
5374
5375/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
5376/// node is a GlobalAddress + an offset.
5377static bool isGAPlusOffset(SDNode *N, GlobalValue* &GA, int64_t &Offset) {
5378 unsigned Opc = N->getOpcode();
5379 if (Opc == X86ISD::Wrapper) {
5380 if (dyn_cast<GlobalAddressSDNode>(N->getOperand(0))) {
5381 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
5382 return true;
5383 }
5384 } else if (Opc == ISD::ADD) {
5385 SDOperand N1 = N->getOperand(0);
5386 SDOperand N2 = N->getOperand(1);
5387 if (isGAPlusOffset(N1.Val, GA, Offset)) {
5388 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
5389 if (V) {
5390 Offset += V->getSignExtended();
5391 return true;
5392 }
5393 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
5394 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
5395 if (V) {
5396 Offset += V->getSignExtended();
5397 return true;
5398 }
5399 }
5400 }
5401 return false;
5402}
5403
5404/// isConsecutiveLoad - Returns true if N is loading from an address of Base
5405/// + Dist * Size.
5406static bool isConsecutiveLoad(SDNode *N, SDNode *Base, int Dist, int Size,
5407 MachineFrameInfo *MFI) {
5408 if (N->getOperand(0).Val != Base->getOperand(0).Val)
5409 return false;
5410
5411 SDOperand Loc = N->getOperand(1);
5412 SDOperand BaseLoc = Base->getOperand(1);
5413 if (Loc.getOpcode() == ISD::FrameIndex) {
5414 if (BaseLoc.getOpcode() != ISD::FrameIndex)
5415 return false;
Dan Gohman53491e92007-07-23 20:24:29 +00005416 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
5417 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005418 int FS = MFI->getObjectSize(FI);
5419 int BFS = MFI->getObjectSize(BFI);
5420 if (FS != BFS || FS != Size) return false;
5421 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Size);
5422 } else {
5423 GlobalValue *GV1 = NULL;
5424 GlobalValue *GV2 = NULL;
5425 int64_t Offset1 = 0;
5426 int64_t Offset2 = 0;
5427 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
5428 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
5429 if (isGA1 && isGA2 && GV1 == GV2)
5430 return Offset1 == (Offset2 + Dist*Size);
5431 }
5432
5433 return false;
5434}
5435
5436static bool isBaseAlignment16(SDNode *Base, MachineFrameInfo *MFI,
5437 const X86Subtarget *Subtarget) {
5438 GlobalValue *GV;
5439 int64_t Offset;
5440 if (isGAPlusOffset(Base, GV, Offset))
5441 return (GV->getAlignment() >= 16 && (Offset % 16) == 0);
5442 else {
5443 assert(Base->getOpcode() == ISD::FrameIndex && "Unexpected base node!");
Dan Gohman53491e92007-07-23 20:24:29 +00005444 int BFI = cast<FrameIndexSDNode>(Base)->getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005445 if (BFI < 0)
5446 // Fixed objects do not specify alignment, however the offsets are known.
5447 return ((Subtarget->getStackAlignment() % 16) == 0 &&
5448 (MFI->getObjectOffset(BFI) % 16) == 0);
5449 else
5450 return MFI->getObjectAlignment(BFI) >= 16;
5451 }
5452 return false;
5453}
5454
5455
5456/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
5457/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
5458/// if the load addresses are consecutive, non-overlapping, and in the right
5459/// order.
5460static SDOperand PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
5461 const X86Subtarget *Subtarget) {
5462 MachineFunction &MF = DAG.getMachineFunction();
5463 MachineFrameInfo *MFI = MF.getFrameInfo();
5464 MVT::ValueType VT = N->getValueType(0);
5465 MVT::ValueType EVT = MVT::getVectorElementType(VT);
5466 SDOperand PermMask = N->getOperand(2);
5467 int NumElems = (int)PermMask.getNumOperands();
5468 SDNode *Base = NULL;
5469 for (int i = 0; i < NumElems; ++i) {
5470 SDOperand Idx = PermMask.getOperand(i);
5471 if (Idx.getOpcode() == ISD::UNDEF) {
5472 if (!Base) return SDOperand();
5473 } else {
5474 SDOperand Arg =
5475 getShuffleScalarElt(N, cast<ConstantSDNode>(Idx)->getValue(), DAG);
5476 if (!Arg.Val || !ISD::isNON_EXTLoad(Arg.Val))
5477 return SDOperand();
5478 if (!Base)
5479 Base = Arg.Val;
5480 else if (!isConsecutiveLoad(Arg.Val, Base,
5481 i, MVT::getSizeInBits(EVT)/8,MFI))
5482 return SDOperand();
5483 }
5484 }
5485
5486 bool isAlign16 = isBaseAlignment16(Base->getOperand(1).Val, MFI, Subtarget);
Dan Gohman11821702007-07-27 17:16:43 +00005487 LoadSDNode *LD = cast<LoadSDNode>(Base);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005488 if (isAlign16) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005489 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
Dan Gohman11821702007-07-27 17:16:43 +00005490 LD->getSrcValueOffset(), LD->isVolatile());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005491 } else {
Dan Gohman11821702007-07-27 17:16:43 +00005492 return DAG.getLoad(VT, LD->getChain(), LD->getBasePtr(), LD->getSrcValue(),
5493 LD->getSrcValueOffset(), LD->isVolatile(),
5494 LD->getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005495 }
5496}
5497
5498/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
5499static SDOperand PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
5500 const X86Subtarget *Subtarget) {
5501 SDOperand Cond = N->getOperand(0);
5502
5503 // If we have SSE[12] support, try to form min/max nodes.
5504 if (Subtarget->hasSSE2() &&
5505 (N->getValueType(0) == MVT::f32 || N->getValueType(0) == MVT::f64)) {
5506 if (Cond.getOpcode() == ISD::SETCC) {
5507 // Get the LHS/RHS of the select.
5508 SDOperand LHS = N->getOperand(1);
5509 SDOperand RHS = N->getOperand(2);
5510 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
5511
5512 unsigned Opcode = 0;
5513 if (LHS == Cond.getOperand(0) && RHS == Cond.getOperand(1)) {
5514 switch (CC) {
5515 default: break;
5516 case ISD::SETOLE: // (X <= Y) ? X : Y -> min
5517 case ISD::SETULE:
5518 case ISD::SETLE:
5519 if (!UnsafeFPMath) break;
5520 // FALL THROUGH.
5521 case ISD::SETOLT: // (X olt/lt Y) ? X : Y -> min
5522 case ISD::SETLT:
5523 Opcode = X86ISD::FMIN;
5524 break;
5525
5526 case ISD::SETOGT: // (X > Y) ? X : Y -> max
5527 case ISD::SETUGT:
5528 case ISD::SETGT:
5529 if (!UnsafeFPMath) break;
5530 // FALL THROUGH.
5531 case ISD::SETUGE: // (X uge/ge Y) ? X : Y -> max
5532 case ISD::SETGE:
5533 Opcode = X86ISD::FMAX;
5534 break;
5535 }
5536 } else if (LHS == Cond.getOperand(1) && RHS == Cond.getOperand(0)) {
5537 switch (CC) {
5538 default: break;
5539 case ISD::SETOGT: // (X > Y) ? Y : X -> min
5540 case ISD::SETUGT:
5541 case ISD::SETGT:
5542 if (!UnsafeFPMath) break;
5543 // FALL THROUGH.
5544 case ISD::SETUGE: // (X uge/ge Y) ? Y : X -> min
5545 case ISD::SETGE:
5546 Opcode = X86ISD::FMIN;
5547 break;
5548
5549 case ISD::SETOLE: // (X <= Y) ? Y : X -> max
5550 case ISD::SETULE:
5551 case ISD::SETLE:
5552 if (!UnsafeFPMath) break;
5553 // FALL THROUGH.
5554 case ISD::SETOLT: // (X olt/lt Y) ? Y : X -> max
5555 case ISD::SETLT:
5556 Opcode = X86ISD::FMAX;
5557 break;
5558 }
5559 }
5560
5561 if (Opcode)
5562 return DAG.getNode(Opcode, N->getValueType(0), LHS, RHS);
5563 }
5564
5565 }
5566
5567 return SDOperand();
5568}
5569
5570
5571SDOperand X86TargetLowering::PerformDAGCombine(SDNode *N,
5572 DAGCombinerInfo &DCI) const {
5573 SelectionDAG &DAG = DCI.DAG;
5574 switch (N->getOpcode()) {
5575 default: break;
5576 case ISD::VECTOR_SHUFFLE:
5577 return PerformShuffleCombine(N, DAG, Subtarget);
5578 case ISD::SELECT:
5579 return PerformSELECTCombine(N, DAG, Subtarget);
5580 }
5581
5582 return SDOperand();
5583}
5584
5585//===----------------------------------------------------------------------===//
5586// X86 Inline Assembly Support
5587//===----------------------------------------------------------------------===//
5588
5589/// getConstraintType - Given a constraint letter, return the type of
5590/// constraint it is for this target.
5591X86TargetLowering::ConstraintType
5592X86TargetLowering::getConstraintType(const std::string &Constraint) const {
5593 if (Constraint.size() == 1) {
5594 switch (Constraint[0]) {
5595 case 'A':
5596 case 'r':
5597 case 'R':
5598 case 'l':
5599 case 'q':
5600 case 'Q':
5601 case 'x':
5602 case 'Y':
5603 return C_RegisterClass;
5604 default:
5605 break;
5606 }
5607 }
5608 return TargetLowering::getConstraintType(Constraint);
5609}
5610
Chris Lattnera531abc2007-08-25 00:47:38 +00005611/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5612/// vector. If it is invalid, don't add anything to Ops.
5613void X86TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
5614 char Constraint,
5615 std::vector<SDOperand>&Ops,
5616 SelectionDAG &DAG) {
5617 SDOperand Result(0, 0);
5618
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005619 switch (Constraint) {
5620 default: break;
5621 case 'I':
5622 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005623 if (C->getValue() <= 31) {
5624 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5625 break;
5626 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005627 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005628 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005629 case 'N':
5630 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
Chris Lattnera531abc2007-08-25 00:47:38 +00005631 if (C->getValue() <= 255) {
5632 Result = DAG.getTargetConstant(C->getValue(), Op.getValueType());
5633 break;
5634 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005635 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005636 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005637 case 'i': {
5638 // Literal immediates are always ok.
Chris Lattnera531abc2007-08-25 00:47:38 +00005639 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
5640 Result = DAG.getTargetConstant(CST->getValue(), Op.getValueType());
5641 break;
5642 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005643
5644 // If we are in non-pic codegen mode, we allow the address of a global (with
5645 // an optional displacement) to be used with 'i'.
5646 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
5647 int64_t Offset = 0;
5648
5649 // Match either (GA) or (GA+C)
5650 if (GA) {
5651 Offset = GA->getOffset();
5652 } else if (Op.getOpcode() == ISD::ADD) {
5653 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5654 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5655 if (C && GA) {
5656 Offset = GA->getOffset()+C->getValue();
5657 } else {
5658 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5659 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
5660 if (C && GA)
5661 Offset = GA->getOffset()+C->getValue();
5662 else
5663 C = 0, GA = 0;
5664 }
5665 }
5666
5667 if (GA) {
5668 // If addressing this global requires a load (e.g. in PIC mode), we can't
5669 // match.
5670 if (Subtarget->GVRequiresExtraLoad(GA->getGlobal(), getTargetMachine(),
5671 false))
Chris Lattnera531abc2007-08-25 00:47:38 +00005672 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005673
5674 Op = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
5675 Offset);
Chris Lattnera531abc2007-08-25 00:47:38 +00005676 Result = Op;
5677 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005678 }
5679
5680 // Otherwise, not valid for this mode.
Chris Lattnera531abc2007-08-25 00:47:38 +00005681 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005682 }
5683 }
Chris Lattnera531abc2007-08-25 00:47:38 +00005684
5685 if (Result.Val) {
5686 Ops.push_back(Result);
5687 return;
5688 }
5689 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005690}
5691
5692std::vector<unsigned> X86TargetLowering::
5693getRegClassForInlineAsmConstraint(const std::string &Constraint,
5694 MVT::ValueType VT) const {
5695 if (Constraint.size() == 1) {
5696 // FIXME: not handling fp-stack yet!
5697 switch (Constraint[0]) { // GCC X86 Constraint Letters
5698 default: break; // Unknown constraint letter
5699 case 'A': // EAX/EDX
5700 if (VT == MVT::i32 || VT == MVT::i64)
5701 return make_vector<unsigned>(X86::EAX, X86::EDX, 0);
5702 break;
5703 case 'q': // Q_REGS (GENERAL_REGS in 64-bit mode)
5704 case 'Q': // Q_REGS
5705 if (VT == MVT::i32)
5706 return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
5707 else if (VT == MVT::i16)
5708 return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
5709 else if (VT == MVT::i8)
Evan Chengf85c10f2007-08-13 23:27:11 +00005710 return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005711 break;
5712 }
5713 }
5714
5715 return std::vector<unsigned>();
5716}
5717
5718std::pair<unsigned, const TargetRegisterClass*>
5719X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5720 MVT::ValueType VT) const {
5721 // First, see if this is a constraint that directly corresponds to an LLVM
5722 // register class.
5723 if (Constraint.size() == 1) {
5724 // GCC Constraint Letters
5725 switch (Constraint[0]) {
5726 default: break;
5727 case 'r': // GENERAL_REGS
5728 case 'R': // LEGACY_REGS
5729 case 'l': // INDEX_REGS
5730 if (VT == MVT::i64 && Subtarget->is64Bit())
5731 return std::make_pair(0U, X86::GR64RegisterClass);
5732 if (VT == MVT::i32)
5733 return std::make_pair(0U, X86::GR32RegisterClass);
5734 else if (VT == MVT::i16)
5735 return std::make_pair(0U, X86::GR16RegisterClass);
5736 else if (VT == MVT::i8)
5737 return std::make_pair(0U, X86::GR8RegisterClass);
5738 break;
5739 case 'y': // MMX_REGS if MMX allowed.
5740 if (!Subtarget->hasMMX()) break;
5741 return std::make_pair(0U, X86::VR64RegisterClass);
5742 break;
5743 case 'Y': // SSE_REGS if SSE2 allowed
5744 if (!Subtarget->hasSSE2()) break;
5745 // FALL THROUGH.
5746 case 'x': // SSE_REGS if SSE1 allowed
5747 if (!Subtarget->hasSSE1()) break;
5748
5749 switch (VT) {
5750 default: break;
5751 // Scalar SSE types.
5752 case MVT::f32:
5753 case MVT::i32:
5754 return std::make_pair(0U, X86::FR32RegisterClass);
5755 case MVT::f64:
5756 case MVT::i64:
5757 return std::make_pair(0U, X86::FR64RegisterClass);
5758 // Vector types.
5759 case MVT::v16i8:
5760 case MVT::v8i16:
5761 case MVT::v4i32:
5762 case MVT::v2i64:
5763 case MVT::v4f32:
5764 case MVT::v2f64:
5765 return std::make_pair(0U, X86::VR128RegisterClass);
5766 }
5767 break;
5768 }
5769 }
5770
5771 // Use the default implementation in TargetLowering to convert the register
5772 // constraint into a member of a register class.
5773 std::pair<unsigned, const TargetRegisterClass*> Res;
5774 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5775
5776 // Not found as a standard register?
5777 if (Res.second == 0) {
5778 // GCC calls "st(0)" just plain "st".
5779 if (StringsEqualNoCase("{st}", Constraint)) {
5780 Res.first = X86::ST0;
Chris Lattner3cfe51b2007-09-24 05:27:37 +00005781 Res.second = X86::RFP80RegisterClass;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005782 }
5783
5784 return Res;
5785 }
5786
5787 // Otherwise, check to see if this is a register class of the wrong value
5788 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
5789 // turn into {ax},{dx}.
5790 if (Res.second->hasType(VT))
5791 return Res; // Correct type already, nothing to do.
5792
5793 // All of the single-register GCC register classes map their values onto
5794 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
5795 // really want an 8-bit or 32-bit register, map to the appropriate register
5796 // class and return the appropriate register.
5797 if (Res.second != X86::GR16RegisterClass)
5798 return Res;
5799
5800 if (VT == MVT::i8) {
5801 unsigned DestReg = 0;
5802 switch (Res.first) {
5803 default: break;
5804 case X86::AX: DestReg = X86::AL; break;
5805 case X86::DX: DestReg = X86::DL; break;
5806 case X86::CX: DestReg = X86::CL; break;
5807 case X86::BX: DestReg = X86::BL; break;
5808 }
5809 if (DestReg) {
5810 Res.first = DestReg;
5811 Res.second = Res.second = X86::GR8RegisterClass;
5812 }
5813 } else if (VT == MVT::i32) {
5814 unsigned DestReg = 0;
5815 switch (Res.first) {
5816 default: break;
5817 case X86::AX: DestReg = X86::EAX; break;
5818 case X86::DX: DestReg = X86::EDX; break;
5819 case X86::CX: DestReg = X86::ECX; break;
5820 case X86::BX: DestReg = X86::EBX; break;
5821 case X86::SI: DestReg = X86::ESI; break;
5822 case X86::DI: DestReg = X86::EDI; break;
5823 case X86::BP: DestReg = X86::EBP; break;
5824 case X86::SP: DestReg = X86::ESP; break;
5825 }
5826 if (DestReg) {
5827 Res.first = DestReg;
5828 Res.second = Res.second = X86::GR32RegisterClass;
5829 }
5830 } else if (VT == MVT::i64) {
5831 unsigned DestReg = 0;
5832 switch (Res.first) {
5833 default: break;
5834 case X86::AX: DestReg = X86::RAX; break;
5835 case X86::DX: DestReg = X86::RDX; break;
5836 case X86::CX: DestReg = X86::RCX; break;
5837 case X86::BX: DestReg = X86::RBX; break;
5838 case X86::SI: DestReg = X86::RSI; break;
5839 case X86::DI: DestReg = X86::RDI; break;
5840 case X86::BP: DestReg = X86::RBP; break;
5841 case X86::SP: DestReg = X86::RSP; break;
5842 }
5843 if (DestReg) {
5844 Res.first = DestReg;
5845 Res.second = Res.second = X86::GR64RegisterClass;
5846 }
5847 }
5848
5849 return Res;
5850}