blob: cba90bbb96e9445a0a43424adaabcf52cf1af255 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattner986618e2004-02-22 19:47:26 +000031#include "Support/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner986618e2004-02-22 19:47:26 +000034namespace {
35 Statistic<>
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000037
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
39 /// Representation.
40 ///
41 enum TypeClass {
42 cByte, cShort, cInt, cFP, cLong
43 };
44}
45
46/// getClass - Turn a primitive type into a "class" number which is based on the
47/// size of the type, and whether or not it is floating point.
48///
49static inline TypeClass getClass(const Type *Ty) {
50 switch (Ty->getPrimitiveID()) {
51 case Type::SByteTyID:
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
53 case Type::ShortTyID:
54 case Type::UShortTyID: return cShort; // Short operands are class #1
55 case Type::IntTyID:
56 case Type::UIntTyID:
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
58
59 case Type::FloatTyID:
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
61
62 case Type::LongTyID:
63 case Type::ULongTyID: return cLong; // Longs are class #4
64 default:
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
67 }
68}
69
70// getClassB - Just like getClass, but treat boolean values as bytes.
71static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
73 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000074}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000075
Chris Lattner72614082002-10-25 22:55:53 +000076namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000077 struct ISel : public FunctionPass, InstVisitor<ISel> {
78 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000079 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000082 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000083
Chris Lattner72614082002-10-25 22:55:53 +000084 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
85
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
Chris Lattnerf70e0c22003-12-28 21:23:38 +000089 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000090
91 /// runOnFunction - Top level implementation of instruction selection for
92 /// the entire function.
93 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000094 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000095 // First pass over the function, lower any unknown intrinsic functions
96 // with the IntrinsicLowering class.
97 LowerUnknownIntrinsicFunctionCalls(Fn);
98
Chris Lattner36b36032002-10-29 23:40:58 +000099 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000100
Chris Lattner065faeb2002-12-28 20:24:02 +0000101 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000102 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
103 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
104
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000105 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000106
Chris Lattner0e5b79c2004-02-15 01:04:03 +0000107 // Set up a frame object for the return address. This is used by the
108 // llvm.returnaddress & llvm.frameaddress intrinisics.
109 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
110
Chris Lattnerdbd73722003-05-06 21:32:22 +0000111 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000112 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000113
Chris Lattner333b2fa2002-12-13 10:09:43 +0000114 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000115 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000116
117 // Select the PHI nodes
118 SelectPHINodes();
119
Chris Lattner986618e2004-02-22 19:47:26 +0000120 // Insert the FP_REG_KILL instructions into blocks that need them.
121 InsertFPRegKills();
122
Chris Lattner72614082002-10-25 22:55:53 +0000123 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000124 MBBMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000125 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000126 // We always build a machine code representation for the function
127 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000128 }
129
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000130 virtual const char *getPassName() const {
131 return "X86 Simple Instruction Selection";
132 }
133
Chris Lattner72614082002-10-25 22:55:53 +0000134 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000135 /// block. This simply creates a new MachineBasicBlock to emit code into
136 /// and adds it to the current MachineFunction. Subsequent visit* for
137 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000138 ///
139 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000140 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000141 }
142
Chris Lattner44827152003-12-28 09:47:19 +0000143 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
144 /// function, lowering any calls to unknown intrinsic functions into the
145 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000146 ///
Chris Lattner44827152003-12-28 09:47:19 +0000147 void LowerUnknownIntrinsicFunctionCalls(Function &F);
148
Chris Lattner065faeb2002-12-28 20:24:02 +0000149 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
150 /// from the stack into virtual registers.
151 ///
152 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000153
154 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
155 /// because we have to generate our sources into the source basic blocks,
156 /// not the current one.
157 ///
158 void SelectPHINodes();
159
Chris Lattner986618e2004-02-22 19:47:26 +0000160 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
161 /// that need them. This only occurs due to the floating point stackifier
162 /// not being aggressive enough to handle arbitrary global stackification.
163 ///
164 void InsertFPRegKills();
165
Chris Lattner72614082002-10-25 22:55:53 +0000166 // Visitation methods for various instructions. These methods simply emit
167 // fixed X86 code for each instruction.
168 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000169
170 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000171 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000172 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000173
174 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000175 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000176 unsigned Reg;
177 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000178 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
179 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000180 };
181 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000182 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000183 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000184 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000185
186 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000187 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000188 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
189 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000190 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000191
Chris Lattnerf01729e2002-11-02 20:54:46 +0000192 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
193 void visitRem(BinaryOperator &B) { visitDivRem(B); }
194 void visitDivRem(BinaryOperator &B);
195
Chris Lattnere2954c82002-11-02 20:04:26 +0000196 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000197 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
198 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
199 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000200
Chris Lattner6d40c192003-01-16 16:43:00 +0000201 // Comparison operators...
202 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000203 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
204 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000205 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000206 void visitSelectInst(SelectInst &SI);
207
Chris Lattnerb2acc512003-10-19 21:09:10 +0000208
Chris Lattner6fc3c522002-11-17 21:11:55 +0000209 // Memory Instructions
210 void visitLoadInst(LoadInst &I);
211 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000212 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000213 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000214 void visitMallocInst(MallocInst &I);
215 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000216
Chris Lattnere2954c82002-11-02 20:04:26 +0000217 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000218 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000219 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000220 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000221 void visitVANextInst(VANextInst &I);
222 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000223
224 void visitInstruction(Instruction &I) {
225 std::cerr << "Cannot instruction select: " << I;
226 abort();
227 }
228
Brian Gaeke95780cc2002-12-13 07:56:18 +0000229 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000230 ///
231 void promote32(unsigned targetReg, const ValueRecord &VR);
232
Chris Lattner721d2d42004-03-08 01:18:36 +0000233 /// getAddressingMode - Get the addressing mode to use to address the
234 /// specified value. The returned value should be used with addFullAddress.
235 void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
236 unsigned &IndexReg, unsigned &Disp);
237
238
239 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
240 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000241 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
242 std::vector<Value*> &GEPOps,
243 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
244 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
245
246 /// isGEPFoldable - Return true if the specified GEP can be completely
247 /// folded into the addressing mode of a load/store or lea instruction.
248 bool isGEPFoldable(MachineBasicBlock *MBB,
249 Value *Src, User::op_iterator IdxBegin,
250 User::op_iterator IdxEnd, unsigned &BaseReg,
251 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
252
Chris Lattner3e130a22003-01-13 00:32:26 +0000253 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
254 /// constant expression GEP support.
255 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000256 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000257 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000258 User::op_iterator IdxEnd, unsigned TargetReg);
259
Chris Lattner548f61d2003-04-23 17:22:12 +0000260 /// emitCastOperation - Common code shared between visitCastInst and
261 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000262 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000263 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000264 Value *Src, const Type *DestTy, unsigned TargetReg);
265
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000266 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
267 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000268 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000269 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000270 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000271 Value *Op0, Value *Op1,
272 unsigned OperatorClass, unsigned TargetReg);
273
Chris Lattner6621ed92004-04-11 21:23:56 +0000274 /// emitBinaryFPOperation - This method handles emission of floating point
275 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
276 void emitBinaryFPOperation(MachineBasicBlock *BB,
277 MachineBasicBlock::iterator IP,
278 Value *Op0, Value *Op1,
279 unsigned OperatorClass, unsigned TargetReg);
280
Chris Lattner462fa822004-04-11 20:56:28 +0000281 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
282 Value *Op0, Value *Op1, unsigned TargetReg);
283
284 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
285 unsigned DestReg, const Type *DestTy,
286 unsigned Op0Reg, unsigned Op1Reg);
287 void doMultiplyConst(MachineBasicBlock *MBB,
288 MachineBasicBlock::iterator MBBI,
289 unsigned DestReg, const Type *DestTy,
290 unsigned Op0Reg, unsigned Op1Val);
291
Chris Lattnercadff442003-10-23 17:21:43 +0000292 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000293 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000294 Value *Op0, Value *Op1, bool isDiv,
295 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000296
Chris Lattner58c41fe2003-08-24 19:19:47 +0000297 /// emitSetCCOperation - Common code shared between visitSetCondInst and
298 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000299 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000300 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000301 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000302 Value *Op0, Value *Op1, unsigned Opcode,
303 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000304
305 /// emitShiftOperation - Common code shared between visitShiftInst and
306 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000307 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000308 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000309 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000310 Value *Op, Value *ShiftAmount, bool isLeftShift,
311 const Type *ResultTy, unsigned DestReg);
312
Chris Lattner12d96a02004-03-30 21:22:00 +0000313 /// emitSelectOperation - Common code shared between visitSelectInst and the
314 /// constant expression support.
315 void emitSelectOperation(MachineBasicBlock *MBB,
316 MachineBasicBlock::iterator IP,
317 Value *Cond, Value *TrueVal, Value *FalseVal,
318 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000319
Chris Lattnerc5291f52002-10-27 21:16:59 +0000320 /// copyConstantToRegister - Output the instructions required to put the
321 /// specified constant into the specified register.
322 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000323 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000324 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000325 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000326
Chris Lattner3e130a22003-01-13 00:32:26 +0000327 /// makeAnotherReg - This method returns the next register number we haven't
328 /// yet used.
329 ///
330 /// Long values are handled somewhat specially. They are always allocated
331 /// as pairs of 32 bit integer values. The register number returned is the
332 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
333 /// of the long value.
334 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000335 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000336 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
337 "Current target doesn't have X86 reg info??");
338 const X86RegisterInfo *MRI =
339 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000340 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000341 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
342 // Create the lower part
343 F->getSSARegMap()->createVirtualRegister(RC);
344 // Create the upper part.
345 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000346 }
347
Chris Lattnerc0812d82002-12-13 06:56:29 +0000348 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000349 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000350 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000351 }
352
Chris Lattner72614082002-10-25 22:55:53 +0000353 /// getReg - This method turns an LLVM value into a register number. This
354 /// is guaranteed to produce the same register number for a particular value
355 /// every time it is queried.
356 ///
357 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000358 unsigned getReg(Value *V) {
359 // Just append to the end of the current bb.
360 MachineBasicBlock::iterator It = BB->end();
361 return getReg(V, BB, It);
362 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000363 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000364 MachineBasicBlock::iterator IPt) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000365 // If this operand is a constant, emit the code to copy the constant into
366 // the register here...
367 //
368 if (Constant *C = dyn_cast<Constant>(V)) {
369 unsigned Reg = makeAnotherReg(V->getType());
370 copyConstantToRegister(MBB, IPt, C, Reg);
371 return Reg;
372 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
373 unsigned Reg = makeAnotherReg(V->getType());
374 // Move the address of the global into the register
375 BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV);
376 return Reg;
377 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
378 // Do not emit noop casts at all.
379 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
380 return getReg(CI->getOperand(0), MBB, IPt);
381 }
382
Chris Lattner72614082002-10-25 22:55:53 +0000383 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000384 if (Reg == 0) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000385 Reg = makeAnotherReg(V->getType());
Misha Brukmand2cc0172002-11-20 00:58:23 +0000386 RegMap[V] = Reg;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000387 }
Chris Lattner72614082002-10-25 22:55:53 +0000388
Chris Lattner72614082002-10-25 22:55:53 +0000389 return Reg;
390 }
Chris Lattner72614082002-10-25 22:55:53 +0000391 };
392}
393
Chris Lattnerc5291f52002-10-27 21:16:59 +0000394/// copyConstantToRegister - Output the instructions required to put the
395/// specified constant into the specified register.
396///
Chris Lattner8a307e82002-12-16 19:32:50 +0000397void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000398 MachineBasicBlock::iterator IP,
Chris Lattner8a307e82002-12-16 19:32:50 +0000399 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000401 unsigned Class = 0;
402 switch (CE->getOpcode()) {
403 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000404 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000405 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000406 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000407 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000408 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000409 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000410
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000411 case Instruction::Xor: ++Class; // FALL THROUGH
412 case Instruction::Or: ++Class; // FALL THROUGH
413 case Instruction::And: ++Class; // FALL THROUGH
414 case Instruction::Sub: ++Class; // FALL THROUGH
415 case Instruction::Add:
416 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
417 Class, R);
418 return;
419
Chris Lattner462fa822004-04-11 20:56:28 +0000420 case Instruction::Mul:
421 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000422 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000423
Chris Lattnercadff442003-10-23 17:21:43 +0000424 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000425 case Instruction::Rem:
426 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
427 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000428 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000429
Chris Lattner58c41fe2003-08-24 19:19:47 +0000430 case Instruction::SetNE:
431 case Instruction::SetEQ:
432 case Instruction::SetLT:
433 case Instruction::SetGT:
434 case Instruction::SetLE:
435 case Instruction::SetGE:
436 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
437 CE->getOpcode(), R);
438 return;
439
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000440 case Instruction::Shl:
441 case Instruction::Shr:
442 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000443 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
444 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000445
Chris Lattner12d96a02004-03-30 21:22:00 +0000446 case Instruction::Select:
447 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
448 CE->getOperand(2), R);
449 return;
450
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000451 default:
452 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000453 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000454 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000455 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000456
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000457 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000458 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000459
460 if (Class == cLong) {
461 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000462 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000463 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
464 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000465 return;
466 }
467
Chris Lattner94af4142002-12-25 05:13:53 +0000468 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000469
470 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000471 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000472 };
473
Chris Lattner6b993cc2002-12-15 08:02:15 +0000474 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000475 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000476 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000477 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000478 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000479 }
Chris Lattner94af4142002-12-25 05:13:53 +0000480 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000481 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000482 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000483 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000484 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner94af4142002-12-25 05:13:53 +0000485 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000486 // Otherwise we need to spill the constant to memory...
487 MachineConstantPool *CP = F->getConstantPool();
488 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000489 const Type *Ty = CFP->getType();
490
491 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000492 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000493 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000494 }
495
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000496 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000497 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000498 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000499 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000500 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000501 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000502 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000503 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000504 }
505}
506
Chris Lattner065faeb2002-12-28 20:24:02 +0000507/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
508/// the stack into virtual registers.
509///
510void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
511 // Emit instructions to load the arguments... On entry to a function on the
512 // X86, the stack frame looks like this:
513 //
514 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000515 // [ESP + 4] -- first argument (leftmost lexically)
516 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000517 // ...
518 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000519 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000520 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000521
522 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000523 bool ArgLive = !I->use_empty();
524 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000525 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000526
Chris Lattner065faeb2002-12-28 20:24:02 +0000527 switch (getClassB(I->getType())) {
528 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000529 if (ArgLive) {
530 FI = MFI->CreateFixedObject(1, ArgOffset);
531 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
532 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000533 break;
534 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000535 if (ArgLive) {
536 FI = MFI->CreateFixedObject(2, ArgOffset);
537 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
538 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000539 break;
540 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000541 if (ArgLive) {
542 FI = MFI->CreateFixedObject(4, ArgOffset);
543 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
544 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000545 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000546 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000547 if (ArgLive) {
548 FI = MFI->CreateFixedObject(8, ArgOffset);
549 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
550 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
551 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000552 ArgOffset += 4; // longs require 4 additional bytes
553 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000554 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000555 if (ArgLive) {
556 unsigned Opcode;
557 if (I->getType() == Type::FloatTy) {
558 Opcode = X86::FLD32m;
559 FI = MFI->CreateFixedObject(4, ArgOffset);
560 } else {
561 Opcode = X86::FLD64m;
562 FI = MFI->CreateFixedObject(8, ArgOffset);
563 }
564 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000565 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000566 if (I->getType() == Type::DoubleTy)
567 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000568 break;
569 default:
570 assert(0 && "Unhandled argument type!");
571 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000572 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000573 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000574
575 // If the function takes variable number of arguments, add a frame offset for
576 // the start of the first vararg value... this is used to expand
577 // llvm.va_start.
578 if (Fn.getFunctionType()->isVarArg())
579 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000580}
581
582
Chris Lattner333b2fa2002-12-13 10:09:43 +0000583/// SelectPHINodes - Insert machine code to generate phis. This is tricky
584/// because we have to generate our sources into the source basic blocks, not
585/// the current one.
586///
587void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000588 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000589 const Function &LF = *F->getFunction(); // The LLVM function...
590 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
591 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000592 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000593
594 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000595 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000596 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000597 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000598
Chris Lattner333b2fa2002-12-13 10:09:43 +0000599 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000600 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000601 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
602 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000603
604 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000605 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
606 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
607 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000608
Chris Lattnera6e73f12003-05-12 14:22:21 +0000609 // PHIValues - Map of blocks to incoming virtual registers. We use this
610 // so that we only initialize one incoming value for a particular block,
611 // even if the block has multiple entries in the PHI node.
612 //
613 std::map<MachineBasicBlock*, unsigned> PHIValues;
614
Chris Lattner333b2fa2002-12-13 10:09:43 +0000615 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
616 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000617 unsigned ValReg;
618 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
619 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000620
Chris Lattnera6e73f12003-05-12 14:22:21 +0000621 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
622 // We already inserted an initialization of the register for this
623 // predecessor. Recycle it.
624 ValReg = EntryIt->second;
625
626 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000627 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000628 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000629 Value *Val = PN->getIncomingValue(i);
630
631 // If this is a constant or GlobalValue, we may have to insert code
632 // into the basic block to compute it into a virtual register.
633 if (isa<Constant>(Val) || isa<GlobalValue>(Val)) {
Chris Lattner6f2ab042004-03-30 19:10:12 +0000634 if (isa<ConstantExpr>(Val)) {
635 // Because we don't want to clobber any values which might be in
636 // physical registers with the computation of this constant (which
637 // might be arbitrarily complex if it is a constant expression),
638 // just insert the computation at the top of the basic block.
639 MachineBasicBlock::iterator PI = PredMBB->begin();
640
641 // Skip over any PHI nodes though!
642 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
643 ++PI;
644
645 ValReg = getReg(Val, PredMBB, PI);
646 } else {
647 // Simple constants get emitted at the end of the basic block,
648 // before any terminator instructions. We "know" that the code to
649 // move a constant into a register will never clobber any flags.
650 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
651 }
Chris Lattnera81fc682003-10-19 00:26:11 +0000652 } else {
653 ValReg = getReg(Val);
654 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000655
656 // Remember that we inserted a value for this PHI for this predecessor
657 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
658 }
659
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000660 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000661 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000662 if (LongPhiMI) {
663 LongPhiMI->addRegOperand(ValReg+1);
664 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
665 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000666 }
Chris Lattner168aa902004-02-29 07:10:16 +0000667
668 // Now that we emitted all of the incoming values for the PHI node, make
669 // sure to reposition the InsertPoint after the PHI that we just added.
670 // This is needed because we might have inserted a constant into this
671 // block, right after the PHI's which is before the old insert point!
672 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
673 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000674 }
675 }
676}
677
Chris Lattner986618e2004-02-22 19:47:26 +0000678/// RequiresFPRegKill - The floating point stackifier pass cannot insert
679/// compensation code on critical edges. As such, it requires that we kill all
680/// FP registers on the exit from any blocks that either ARE critical edges, or
681/// branch to a block that has incoming critical edges.
682///
683/// Note that this kill instruction will eventually be eliminated when
684/// restrictions in the stackifier are relaxed.
685///
Brian Gaeke1afe7732004-04-28 04:45:55 +0000686static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000687#if 0
Brian Gaeke1afe7732004-04-28 04:45:55 +0000688 const BasicBlock *BB = MBB->getBasicBlock ();
Chris Lattner986618e2004-02-22 19:47:26 +0000689 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
690 const BasicBlock *Succ = *SI;
691 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
692 ++PI; // Block have at least one predecessory
693 if (PI != PE) { // If it has exactly one, this isn't crit edge
694 // If this block has more than one predecessor, check all of the
695 // predecessors to see if they have multiple successors. If so, then the
696 // block we are analyzing needs an FPRegKill.
697 for (PI = pred_begin(Succ); PI != PE; ++PI) {
698 const BasicBlock *Pred = *PI;
699 succ_const_iterator SI2 = succ_begin(Pred);
700 ++SI2; // There must be at least one successor of this block.
701 if (SI2 != succ_end(Pred))
702 return true; // Yes, we must insert the kill on this edge.
703 }
704 }
705 }
706 // If we got this far, there is no need to insert the kill instruction.
707 return false;
708#else
709 return true;
710#endif
711}
712
713// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
714// need them. This only occurs due to the floating point stackifier not being
715// aggressive enough to handle arbitrary global stackification.
716//
717// Currently we insert an FP_REG_KILL instruction into each block that uses or
718// defines a floating point virtual register.
719//
720// When the global register allocators (like linear scan) finally update live
721// variable analysis, we can keep floating point values in registers across
722// portions of the CFG that do not involve critical edges. This will be a big
723// win, but we are waiting on the global allocators before we can do this.
724//
725// With a bit of work, the floating point stackifier pass can be enhanced to
726// break critical edges as needed (to make a place to put compensation code),
727// but this will require some infrastructure improvements as well.
728//
729void ISel::InsertFPRegKills() {
730 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000731
732 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000733 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000734 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
735 MachineOperand& MO = I->getOperand(i);
736 if (MO.isRegister() && MO.getReg()) {
737 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000738 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000739 if (RegMap.getRegClass(Reg)->getSize() == 10)
740 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000741 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000742 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000743 // If we haven't found an FP register use or def in this basic block, check
744 // to see if any of our successors has an FP PHI node, which will cause a
745 // copy to be inserted into this block.
Brian Gaeke235aa5e2004-04-28 04:34:16 +0000746 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
747 SE = BB->succ_end(); SI != SE; ++SI) {
748 MachineBasicBlock *SBB = *SI;
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000749 for (MachineBasicBlock::iterator I = SBB->begin();
750 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
751 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
752 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000753 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000754 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000755 continue;
756 UsesFPReg:
757 // Okay, this block uses an FP register. If the block has successors (ie,
758 // it's not an unwind/return), insert the FP_REG_KILL instruction.
Brian Gaeke1afe7732004-04-28 04:45:55 +0000759 if (BB->succ_size () && RequiresFPRegKill(BB)) {
Chris Lattneree352852004-02-29 07:22:16 +0000760 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000761 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000762 }
763 }
764}
765
766
Chris Lattner307ecba2004-03-30 22:39:09 +0000767// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
768// it into the conditional branch or select instruction which is the only user
769// of the cc instruction. This is the case if the conditional branch is the
770// only user of the setcc, and if the setcc is in the same basic block as the
771// conditional branch. We also don't handle long arguments below, so we reject
772// them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000773//
Chris Lattner307ecba2004-03-30 22:39:09 +0000774static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000775 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000776 if (SCI->hasOneUse()) {
777 Instruction *User = cast<Instruction>(SCI->use_back());
778 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
779 SCI->getParent() == User->getParent() &&
Chris Lattner48c937e2004-04-06 17:34:50 +0000780 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
781 SCI->getOpcode() == Instruction::SetEQ ||
782 SCI->getOpcode() == Instruction::SetNE))
Chris Lattner6d40c192003-01-16 16:43:00 +0000783 return SCI;
784 }
785 return 0;
786}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000787
Chris Lattner6d40c192003-01-16 16:43:00 +0000788// Return a fixed numbering for setcc instructions which does not depend on the
789// order of the opcodes.
790//
791static unsigned getSetCCNumber(unsigned Opcode) {
792 switch(Opcode) {
793 default: assert(0 && "Unknown setcc instruction!");
794 case Instruction::SetEQ: return 0;
795 case Instruction::SetNE: return 1;
796 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000797 case Instruction::SetGE: return 3;
798 case Instruction::SetGT: return 4;
799 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000800 }
801}
Chris Lattner06925362002-11-17 21:56:38 +0000802
Chris Lattner6d40c192003-01-16 16:43:00 +0000803// LLVM -> X86 signed X86 unsigned
804// ----- ---------- ------------
805// seteq -> sete sete
806// setne -> setne setne
807// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000808// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000809// setgt -> setg seta
810// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000811// ----
812// sets // Used by comparison with 0 optimization
813// setns
814static const unsigned SetCCOpcodeTab[2][8] = {
815 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
816 0, 0 },
817 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
818 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000819};
820
Chris Lattnerb2acc512003-10-19 21:09:10 +0000821// EmitComparison - This function emits a comparison of the two operands,
822// returning the extended setcc code to use.
823unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
824 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000825 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000826 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000827 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000828 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000829 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000830
831 // Special case handling of: cmp R, i
Chris Lattner260195d2004-05-07 19:55:55 +0000832 if (isa<ConstantPointerNull>(Op1)) {
833 if (OpNum < 2) // seteq/setne -> test
834 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
835 else
836 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
837 return OpNum;
838
839 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere80e6372004-04-06 16:02:27 +0000840 if (Class == cByte || Class == cShort || Class == cInt) {
841 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000842
Chris Lattner333864d2003-06-05 19:30:30 +0000843 // Mask off any upper bits of the constant, if there are any...
844 Op1v &= (1ULL << (8 << Class)) - 1;
845
Chris Lattnerb2acc512003-10-19 21:09:10 +0000846 // If this is a comparison against zero, emit more efficient code. We
847 // can't handle unsigned comparisons against zero unless they are == or
848 // !=. These should have been strength reduced already anyway.
849 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
850 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000851 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +0000852 };
Chris Lattneree352852004-02-29 07:22:16 +0000853 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000854
855 if (OpNum == 2) return 6; // Map jl -> js
856 if (OpNum == 3) return 7; // Map jg -> jns
857 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000858 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000859
860 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000861 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +0000862 };
863
Chris Lattneree352852004-02-29 07:22:16 +0000864 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000865 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000866 } else {
867 assert(Class == cLong && "Unknown integer class!");
868 unsigned LowCst = CI->getRawValue();
869 unsigned HiCst = CI->getRawValue() >> 32;
870 if (OpNum < 2) { // seteq, setne
871 unsigned LoTmp = Op0r;
872 if (LowCst != 0) {
873 LoTmp = makeAnotherReg(Type::IntTy);
874 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
875 }
876 unsigned HiTmp = Op0r+1;
877 if (HiCst != 0) {
878 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +0000879 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +0000880 }
881 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
882 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
883 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +0000884 } else {
885 // Emit a sequence of code which compares the high and low parts once
886 // each, then uses a conditional move to handle the overflow case. For
887 // example, a setlt for long would generate code like this:
888 //
Chris Lattner9984fd02004-05-09 23:16:33 +0000889 // AL = lo(op1) < lo(op2) // Always unsigned comparison
890 // BL = hi(op1) < hi(op2) // Signedness depends on operands
891 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner48c937e2004-04-06 17:34:50 +0000892 //
893
894 // FIXME: This would be much better if we had hierarchical register
895 // classes! Until then, hardcode registers so that we can deal with
896 // their aliases (because we don't have conditional byte moves).
897 //
898 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
899 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
900 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
901 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
902 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
903 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
904 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
905 .addReg(X86::AX);
906 // NOTE: visitSetCondInst knows that the value is dumped into the BL
907 // register at this point for long values...
908 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000909 }
Chris Lattner333864d2003-06-05 19:30:30 +0000910 }
Chris Lattnere80e6372004-04-06 16:02:27 +0000911 }
Chris Lattner333864d2003-06-05 19:30:30 +0000912
Chris Lattner9f08a922004-02-03 18:54:04 +0000913 // Special case handling of comparison against +/- 0.0
914 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
915 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +0000916 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000917 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +0000918 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +0000919 return OpNum;
920 }
921
Chris Lattner58c41fe2003-08-24 19:19:47 +0000922 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000923 switch (Class) {
924 default: assert(0 && "Unknown type class!");
925 // Emit: cmp <var1>, <var2> (do the comparison). We can
926 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
927 // 32-bit.
928 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000929 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000930 break;
931 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000932 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000933 break;
934 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000935 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000936 break;
937 case cFP:
Chris Lattner8d2822e2004-04-12 01:43:36 +0000938 if (0) { // for processors prior to the P6
939 BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
940 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
941 BuildMI(*MBB, IP, X86::SAHF, 1);
942 } else {
Chris Lattner133dbb12004-04-12 03:02:48 +0000943 BuildMI(*MBB, IP, X86::FpUCOMI, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner8d2822e2004-04-12 01:43:36 +0000944 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000945 break;
946
947 case cLong:
948 if (OpNum < 2) { // seteq, setne
949 unsigned LoTmp = makeAnotherReg(Type::IntTy);
950 unsigned HiTmp = makeAnotherReg(Type::IntTy);
951 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000952 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
953 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
954 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +0000955 break; // Allow the sete or setne to be generated from flags set by OR
956 } else {
957 // Emit a sequence of code which compares the high and low parts once
958 // each, then uses a conditional move to handle the overflow case. For
959 // example, a setlt for long would generate code like this:
960 //
961 // AL = lo(op1) < lo(op2) // Signedness depends on operands
962 // BL = hi(op1) < hi(op2) // Always unsigned comparison
Chris Lattner9984fd02004-05-09 23:16:33 +0000963 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner3e130a22003-01-13 00:32:26 +0000964 //
965
Chris Lattner6d40c192003-01-16 16:43:00 +0000966 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +0000967 // classes! Until then, hardcode registers so that we can deal with their
968 // aliases (because we don't have conditional byte moves).
969 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000970 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +0000971 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000972 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +0000973 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
974 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
975 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000976 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +0000977 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +0000978 // NOTE: visitSetCondInst knows that the value is dumped into the BL
979 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +0000980 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +0000981 }
982 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000983 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +0000984}
Chris Lattner3e130a22003-01-13 00:32:26 +0000985
Chris Lattner6d40c192003-01-16 16:43:00 +0000986/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
987/// register, then move it to wherever the result should be.
988///
989void ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +0000990 if (canFoldSetCCIntoBranchOrSelect(&I))
991 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +0000992
Chris Lattner6d40c192003-01-16 16:43:00 +0000993 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000994 MachineBasicBlock::iterator MII = BB->end();
995 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
996 DestReg);
997}
Chris Lattner6d40c192003-01-16 16:43:00 +0000998
Chris Lattner58c41fe2003-08-24 19:19:47 +0000999/// emitSetCCOperation - Common code shared between visitSetCondInst and
1000/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +00001001///
Chris Lattner58c41fe2003-08-24 19:19:47 +00001002void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001003 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +00001004 Value *Op0, Value *Op1, unsigned Opcode,
1005 unsigned TargetReg) {
1006 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001007 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001008
Chris Lattnerb2acc512003-10-19 21:09:10 +00001009 const Type *CompTy = Op0->getType();
1010 unsigned CompClass = getClassB(CompTy);
1011 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1012
1013 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +00001014 // Handle normal comparisons with a setcc instruction...
Chris Lattneree352852004-02-29 07:22:16 +00001015 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +00001016 } else {
1017 // Handle long comparisons by copying the value which is already in BL into
1018 // the register we want...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001019 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +00001020 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001021}
Chris Lattner51b49a92002-11-02 19:45:49 +00001022
Chris Lattner12d96a02004-03-30 21:22:00 +00001023void ISel::visitSelectInst(SelectInst &SI) {
1024 unsigned DestReg = getReg(SI);
1025 MachineBasicBlock::iterator MII = BB->end();
1026 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1027 SI.getFalseValue(), DestReg);
1028}
1029
1030/// emitSelect - Common code shared between visitSelectInst and the constant
1031/// expression support.
1032void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1033 MachineBasicBlock::iterator IP,
1034 Value *Cond, Value *TrueVal, Value *FalseVal,
1035 unsigned DestReg) {
1036 unsigned SelectClass = getClassB(TrueVal->getType());
1037
1038 // We don't support 8-bit conditional moves. If we have incoming constants,
1039 // transform them into 16-bit constants to avoid having a run-time conversion.
1040 if (SelectClass == cByte) {
1041 if (Constant *T = dyn_cast<Constant>(TrueVal))
1042 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1043 if (Constant *F = dyn_cast<Constant>(FalseVal))
1044 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1045 }
1046
Chris Lattner82c5a992004-04-13 21:56:09 +00001047 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1048 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1049 if (TrueReg == FalseReg) {
1050 static const unsigned Opcode[] = {
1051 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1052 };
1053 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1054 if (SelectClass == cLong)
1055 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1056 return;
1057 }
1058
Chris Lattner307ecba2004-03-30 22:39:09 +00001059 unsigned Opcode;
1060 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1061 // We successfully folded the setcc into the select instruction.
1062
1063 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1064 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1065 IP);
1066
1067 const Type *CompTy = SCI->getOperand(0)->getType();
1068 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1069
1070 // LLVM -> X86 signed X86 unsigned
1071 // ----- ---------- ------------
1072 // seteq -> cmovNE cmovNE
1073 // setne -> cmovE cmovE
1074 // setlt -> cmovGE cmovAE
1075 // setge -> cmovL cmovB
1076 // setgt -> cmovLE cmovBE
1077 // setle -> cmovG cmovA
1078 // ----
1079 // cmovNS // Used by comparison with 0 optimization
1080 // cmovS
1081
1082 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001083 default: assert(0 && "Unknown value class!");
1084 case cFP: {
1085 // Annoyingly, we don't have a full set of floating point conditional
1086 // moves. :(
1087 static const unsigned OpcodeTab[2][8] = {
1088 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1089 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1090 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1091 };
1092 Opcode = OpcodeTab[isSigned][OpNum];
1093
1094 // If opcode == 0, we hit a case that we don't support. Output a setcc
1095 // and compare the result against zero.
1096 if (Opcode == 0) {
1097 unsigned CompClass = getClassB(CompTy);
1098 unsigned CondReg;
1099 if (CompClass != cLong || OpNum < 2) {
1100 CondReg = makeAnotherReg(Type::BoolTy);
1101 // Handle normal comparisons with a setcc instruction...
1102 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1103 } else {
1104 // Long comparisons end up in the BL register.
1105 CondReg = X86::BL;
1106 }
1107
Chris Lattner68626c22004-03-31 22:22:36 +00001108 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001109 Opcode = X86::FCMOVE;
1110 }
1111 break;
1112 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001113 case cByte:
1114 case cShort: {
1115 static const unsigned OpcodeTab[2][8] = {
1116 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1117 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1118 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1119 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1120 };
1121 Opcode = OpcodeTab[isSigned][OpNum];
1122 break;
1123 }
1124 case cInt:
1125 case cLong: {
1126 static const unsigned OpcodeTab[2][8] = {
1127 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1128 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1129 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1130 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1131 };
1132 Opcode = OpcodeTab[isSigned][OpNum];
1133 break;
1134 }
1135 }
1136 } else {
1137 // Get the value being branched on, and use it to set the condition codes.
1138 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001139 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001140 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001141 default: assert(0 && "Unknown value class!");
1142 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001143 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001144 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001145 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001146 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001147 }
1148 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001149
Chris Lattner12d96a02004-03-30 21:22:00 +00001150 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001151
Chris Lattner12d96a02004-03-30 21:22:00 +00001152
1153 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1154 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1155 // cmove, then truncate the result.
1156 if (SelectClass == cByte) {
1157 DestReg = makeAnotherReg(Type::ShortTy);
1158 if (getClassB(TrueVal->getType()) == cByte) {
1159 // Promote the true value, by storing it into AL, and reading from AX.
1160 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1161 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1162 TrueReg = makeAnotherReg(Type::ShortTy);
1163 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1164 }
1165 if (getClassB(FalseVal->getType()) == cByte) {
1166 // Promote the true value, by storing it into CL, and reading from CX.
1167 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1168 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1169 FalseReg = makeAnotherReg(Type::ShortTy);
1170 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1171 }
1172 }
1173
1174 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1175
1176 switch (SelectClass) {
1177 case cByte:
1178 // We did the computation with 16-bit registers. Truncate back to our
1179 // result by copying into AX then copying out AL.
1180 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1181 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1182 break;
1183 case cLong:
1184 // Move the upper half of the value as well.
1185 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1186 break;
1187 }
1188}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001189
1190
1191
Brian Gaekec2505982002-11-30 11:57:28 +00001192/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1193/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001194///
Chris Lattner3e130a22003-01-13 00:32:26 +00001195void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
Chris Lattner9984fd02004-05-09 23:16:33 +00001196 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001197
Chris Lattner29bf0622004-04-06 01:21:00 +00001198 Value *Val = VR.Val;
1199 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001200 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001201 if (Constant *C = dyn_cast<Constant>(Val)) {
1202 Val = ConstantExpr::getCast(C, Type::IntTy);
1203 Ty = Type::IntTy;
1204 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001205
Chris Lattner502e36c2004-04-06 01:25:33 +00001206 // If this is a simple constant, just emit a MOVri directly to avoid the
1207 // copy.
1208 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1209 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
Chris Lattner2b10b082004-05-12 16:35:04 +00001210 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
Chris Lattner502e36c2004-04-06 01:25:33 +00001211 return;
1212 }
1213 }
1214
Chris Lattner29bf0622004-04-06 01:21:00 +00001215 // Make sure we have the register number for this value...
1216 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1217
1218 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001219 case cByte:
1220 // Extend value into target register (8->32)
1221 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001222 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001223 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001224 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001225 break;
1226 case cShort:
1227 // Extend value into target register (16->32)
1228 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001229 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001230 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001231 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001232 break;
1233 case cInt:
1234 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001235 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001236 break;
1237 default:
1238 assert(0 && "Unpromotable operand class in promote32");
1239 }
Brian Gaekec2505982002-11-30 11:57:28 +00001240}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001241
Chris Lattner72614082002-10-25 22:55:53 +00001242/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1243/// we have the following possibilities:
1244///
1245/// ret void: No return value, simply emit a 'ret' instruction
1246/// ret sbyte, ubyte : Extend value into EAX and return
1247/// ret short, ushort: Extend value into EAX and return
1248/// ret int, uint : Move value into EAX and return
1249/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001250/// ret long, ulong : Move value into EAX/EDX and return
1251/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001252///
Chris Lattner3e130a22003-01-13 00:32:26 +00001253void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001254 if (I.getNumOperands() == 0) {
1255 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1256 return;
1257 }
1258
1259 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001260 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001261 case cByte: // integral return values: extend or move into EAX and return
1262 case cShort:
1263 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001264 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001265 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001266 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001267 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001268 case cFP: { // Floats & Doubles: Return in ST(0)
1269 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001270 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001271 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001272 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001273 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001274 }
1275 case cLong: {
1276 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001277 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1278 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001279 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001280 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1281 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001282 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001283 }
Chris Lattner94af4142002-12-25 05:13:53 +00001284 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001285 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001286 }
Chris Lattner43189d12002-11-17 20:07:45 +00001287 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001288 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001289}
1290
Chris Lattner55f6fab2003-01-16 18:07:23 +00001291// getBlockAfter - Return the basic block which occurs lexically after the
1292// specified one.
1293static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1294 Function::iterator I = BB; ++I; // Get iterator to next block
1295 return I != BB->getParent()->end() ? &*I : 0;
1296}
1297
Chris Lattner51b49a92002-11-02 19:45:49 +00001298/// visitBranchInst - Handle conditional and unconditional branches here. Note
1299/// that since code layout is frozen at this point, that if we are trying to
1300/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001301/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001302///
Chris Lattner94af4142002-12-25 05:13:53 +00001303void ISel::visitBranchInst(BranchInst &BI) {
Brian Gaekeea9ca672004-04-28 04:19:37 +00001304 // Update machine-CFG edges
1305 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1306 if (BI.isConditional())
1307 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1308
Chris Lattner55f6fab2003-01-16 18:07:23 +00001309 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1310
1311 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001312 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +00001313 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +00001314 return;
1315 }
1316
1317 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001318 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001319 if (SCI == 0) {
1320 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1321 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001322 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001323 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001324 if (BI.getSuccessor(1) == NextBB) {
1325 if (BI.getSuccessor(0) != NextBB)
1326 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
1327 } else {
1328 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
1329
1330 if (BI.getSuccessor(0) != NextBB)
1331 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
1332 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001333 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001334 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001335
1336 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001337 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001338 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001339
1340 const Type *CompTy = SCI->getOperand(0)->getType();
1341 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001342
Chris Lattnerb2acc512003-10-19 21:09:10 +00001343
Chris Lattner6d40c192003-01-16 16:43:00 +00001344 // LLVM -> X86 signed X86 unsigned
1345 // ----- ---------- ------------
1346 // seteq -> je je
1347 // setne -> jne jne
1348 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001349 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001350 // setgt -> jg ja
1351 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001352 // ----
1353 // js // Used by comparison with 0 optimization
1354 // jns
1355
1356 static const unsigned OpcodeTab[2][8] = {
1357 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1358 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1359 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001360 };
1361
Chris Lattner55f6fab2003-01-16 18:07:23 +00001362 if (BI.getSuccessor(0) != NextBB) {
1363 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1364 if (BI.getSuccessor(1) != NextBB)
1365 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1366 } else {
1367 // Change to the inverse condition...
1368 if (BI.getSuccessor(1) != NextBB) {
1369 OpNum ^= 1;
1370 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1371 }
1372 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001373}
1374
Chris Lattner3e130a22003-01-13 00:32:26 +00001375
1376/// doCall - This emits an abstract call instruction, setting up the arguments
1377/// and the return value as appropriate. For the actual function call itself,
1378/// it inserts the specified CallMI instruction into the stream.
1379///
1380void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001381 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001382
Chris Lattner065faeb2002-12-28 20:24:02 +00001383 // Count how many bytes are to be pushed on the stack...
1384 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001385
Chris Lattner3e130a22003-01-13 00:32:26 +00001386 if (!Args.empty()) {
1387 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1388 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001389 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001390 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001391 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001392 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001393 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001394 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1395 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001396 default: assert(0 && "Unknown class!");
1397 }
1398
1399 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001400 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001401
1402 // Arguments go on the stack in reverse order, as specified by the ABI.
1403 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001404 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001405 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001406 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001407 case cByte:
Chris Lattner2b10b082004-05-12 16:35:04 +00001408 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1409 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1410 .addImm(Args[i].Val == ConstantBool::True);
1411 break;
1412 }
1413 // FALL THROUGH
Chris Lattner21585222004-03-01 02:42:43 +00001414 case cShort:
1415 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1416 // Zero/Sign extend constant, then stuff into memory.
1417 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1418 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1419 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1420 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1421 } else {
1422 // Promote arg to 32 bits wide into a temporary register...
1423 ArgReg = makeAnotherReg(Type::UIntTy);
1424 promote32(ArgReg, Args[i]);
1425 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1426 X86::ESP, ArgOffset).addReg(ArgReg);
1427 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001428 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001429 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001430 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1431 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1432 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1433 X86::ESP, ArgOffset).addImm(Val);
1434 } else {
1435 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1436 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1437 X86::ESP, ArgOffset).addReg(ArgReg);
1438 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001439 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001440 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001441 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1442 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1443 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1444 X86::ESP, ArgOffset).addImm(Val & ~0U);
1445 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1446 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1447 } else {
1448 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1449 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1450 X86::ESP, ArgOffset).addReg(ArgReg);
1451 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1452 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1453 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001454 ArgOffset += 4; // 8 byte entry, not 4.
1455 break;
1456
Chris Lattner065faeb2002-12-28 20:24:02 +00001457 case cFP:
Chris Lattnerce6096f2004-03-01 02:34:08 +00001458 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001459 if (Args[i].Ty == Type::FloatTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001460 addRegOffset(BuildMI(BB, X86::FST32m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001461 X86::ESP, ArgOffset).addReg(ArgReg);
1462 } else {
1463 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001464 addRegOffset(BuildMI(BB, X86::FST64m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001465 X86::ESP, ArgOffset).addReg(ArgReg);
1466 ArgOffset += 4; // 8 byte entry, not 4.
1467 }
1468 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001469
Chris Lattner3e130a22003-01-13 00:32:26 +00001470 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001471 }
1472 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001473 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001474 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001475 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001476 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001477
Chris Lattner3e130a22003-01-13 00:32:26 +00001478 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001479
Chris Lattneree352852004-02-29 07:22:16 +00001480 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001481
1482 // If there is a return value, scavenge the result from the location the call
1483 // leaves it in...
1484 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001485 if (Ret.Ty != Type::VoidTy) {
1486 unsigned DestClass = getClassB(Ret.Ty);
1487 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001488 case cByte:
1489 case cShort:
1490 case cInt: {
1491 // Integral results are in %eax, or the appropriate portion
1492 // thereof.
1493 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001494 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001495 };
1496 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001497 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001498 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001499 }
Chris Lattner94af4142002-12-25 05:13:53 +00001500 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001501 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001502 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001503 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001504 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1505 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001506 break;
1507 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001508 }
Chris Lattnera3243642002-12-04 23:45:28 +00001509 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001510}
Chris Lattner2df035b2002-11-02 19:27:56 +00001511
Chris Lattner3e130a22003-01-13 00:32:26 +00001512
1513/// visitCallInst - Push args on stack and do a procedure call instruction.
1514void ISel::visitCallInst(CallInst &CI) {
1515 MachineInstr *TheCall;
1516 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001517 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001518 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001519 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1520 return;
1521 }
1522
Chris Lattner3e130a22003-01-13 00:32:26 +00001523 // Emit a CALL instruction with PC-relative displacement.
1524 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1525 } else { // Emit an indirect call...
1526 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001527 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001528 }
1529
1530 std::vector<ValueRecord> Args;
1531 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001532 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001533
1534 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1535 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001536}
Chris Lattner3e130a22003-01-13 00:32:26 +00001537
Chris Lattneraeb54b82003-08-28 21:23:43 +00001538
Chris Lattner44827152003-12-28 09:47:19 +00001539/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1540/// function, lowering any calls to unknown intrinsic functions into the
1541/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001542///
Chris Lattner44827152003-12-28 09:47:19 +00001543void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1544 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1545 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1546 if (CallInst *CI = dyn_cast<CallInst>(I++))
1547 if (Function *F = CI->getCalledFunction())
1548 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001549 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001550 case Intrinsic::vastart:
1551 case Intrinsic::vacopy:
1552 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001553 case Intrinsic::returnaddress:
1554 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001555 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001556 case Intrinsic::memset:
John Criswell4ffff9e2004-04-08 20:31:47 +00001557 case Intrinsic::readport:
1558 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001559 // We directly implement these intrinsics
1560 break;
John Criswelle5a4c152004-04-13 22:13:14 +00001561 case Intrinsic::readio: {
1562 // On X86, memory operations are in-order. Lower this intrinsic
1563 // into a volatile load.
1564 Instruction *Before = CI->getPrev();
1565 LoadInst * LI = new LoadInst (CI->getOperand(1), "", true, CI);
1566 CI->replaceAllUsesWith (LI);
1567 BB->getInstList().erase (CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001568 break;
1569 }
1570 case Intrinsic::writeio: {
1571 // On X86, memory operations are in-order. Lower this intrinsic
1572 // into a volatile store.
1573 Instruction *Before = CI->getPrev();
1574 StoreInst * LI = new StoreInst (CI->getOperand(1),
1575 CI->getOperand(2), true, CI);
1576 CI->replaceAllUsesWith (LI);
1577 BB->getInstList().erase (CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001578 break;
1579 }
Chris Lattner44827152003-12-28 09:47:19 +00001580 default:
1581 // All other intrinsic calls we must lower.
1582 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001583 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001584 if (Before) { // Move iterator to instruction after call
1585 I = Before; ++I;
1586 } else {
1587 I = BB->begin();
1588 }
1589 }
1590
1591}
1592
Brian Gaeked0fde302003-11-11 22:41:34 +00001593void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001594 unsigned TmpReg1, TmpReg2;
1595 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001596 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001597 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001598 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001599 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001600 return;
1601
Chris Lattner5634b9f2004-03-13 00:24:52 +00001602 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001603 TmpReg1 = getReg(CI);
1604 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001605 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001606 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001607 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001608
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001609 case Intrinsic::returnaddress:
1610 case Intrinsic::frameaddress:
1611 TmpReg1 = getReg(CI);
1612 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1613 if (ID == Intrinsic::returnaddress) {
1614 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001615 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001616 ReturnAddressIndex);
1617 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001618 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001619 ReturnAddressIndex, -4);
1620 }
1621 } else {
1622 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001623 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001624 }
1625 return;
1626
Chris Lattner915e5e52004-02-12 17:53:22 +00001627 case Intrinsic::memcpy: {
1628 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1629 unsigned Align = 1;
1630 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1631 Align = AlignC->getRawValue();
1632 if (Align == 0) Align = 1;
1633 }
1634
1635 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001636 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001637 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001638 switch (Align & 3) {
1639 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001640 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1641 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1642 } else {
1643 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001644 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001645 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001646 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001647 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001648 break;
1649 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001650 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1651 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1652 } else {
1653 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001654 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001655 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001656 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001657 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001658 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001659 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001660 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001661 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001662 break;
1663 }
1664
1665 // No matter what the alignment is, we put the source in ESI, the
1666 // destination in EDI, and the count in ECX.
1667 TmpReg1 = getReg(CI.getOperand(1));
1668 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001669 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1670 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1671 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001672 BuildMI(BB, Opcode, 0);
1673 return;
1674 }
1675 case Intrinsic::memset: {
1676 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1677 unsigned Align = 1;
1678 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1679 Align = AlignC->getRawValue();
1680 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001681 }
1682
Chris Lattner2a0f2242004-02-14 04:46:05 +00001683 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001684 unsigned CountReg;
1685 unsigned Opcode;
1686 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1687 unsigned Val = ValC->getRawValue() & 255;
1688
1689 // If the value is a constant, then we can potentially use larger copies.
1690 switch (Align & 3) {
1691 case 2: // WORD aligned
1692 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001693 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001694 } else {
1695 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001696 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001697 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001698 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001699 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001700 Opcode = X86::REP_STOSW;
1701 break;
1702 case 0: // DWORD aligned
1703 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001704 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001705 } else {
1706 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001707 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001708 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001709 }
1710 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001711 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001712 Opcode = X86::REP_STOSD;
1713 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001714 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001715 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001716 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001717 Opcode = X86::REP_STOSB;
1718 break;
1719 }
1720 } else {
1721 // If it's not a constant value we are storing, just fall back. We could
1722 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1723 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001724 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001725 CountReg = getReg(CI.getOperand(3));
1726 Opcode = X86::REP_STOSB;
1727 }
1728
1729 // No matter what the alignment is, we put the source in ESI, the
1730 // destination in EDI, and the count in ECX.
1731 TmpReg1 = getReg(CI.getOperand(1));
1732 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001733 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1734 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001735 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001736 return;
1737 }
1738
Chris Lattner87e18de2004-04-13 17:20:37 +00001739 case Intrinsic::readport: {
1740 // First, determine that the size of the operand falls within the acceptable
1741 // range for this architecture.
John Criswell4ffff9e2004-04-08 20:31:47 +00001742 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001743 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001744 std::cerr << "llvm.readport: Address size is not 16 bits\n";
Chris Lattner87e18de2004-04-13 17:20:37 +00001745 exit(1);
John Criswellca6ea0f2004-04-08 22:39:13 +00001746 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001747
John Criswell4ffff9e2004-04-08 20:31:47 +00001748 // Now, move the I/O port address into the DX register and use the IN
1749 // instruction to get the input data.
1750 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001751 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1752 unsigned DestReg = getReg(CI);
John Criswell4ffff9e2004-04-08 20:31:47 +00001753
Chris Lattner87e18de2004-04-13 17:20:37 +00001754 // If the port is a single-byte constant, use the immediate form.
1755 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1756 if ((C->getRawValue() & 255) == C->getRawValue()) {
1757 switch (Class) {
1758 case cByte:
1759 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1760 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1761 return;
1762 case cShort:
1763 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1764 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1765 return;
1766 case cInt:
1767 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1768 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1769 return;
1770 }
1771 }
1772
1773 unsigned Reg = getReg(CI.getOperand(1));
1774 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1775 switch (Class) {
1776 case cByte:
1777 BuildMI(BB, X86::IN8rr, 0);
1778 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1779 break;
1780 case cShort:
1781 BuildMI(BB, X86::IN16rr, 0);
1782 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1783 break;
1784 case cInt:
1785 BuildMI(BB, X86::IN32rr, 0);
1786 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1787 break;
1788 default:
1789 std::cerr << "Cannot do input on this data type";
John Criswellca6ea0f2004-04-08 22:39:13 +00001790 exit (1);
1791 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001792 return;
Chris Lattner87e18de2004-04-13 17:20:37 +00001793 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001794
Chris Lattner87e18de2004-04-13 17:20:37 +00001795 case Intrinsic::writeport: {
1796 // First, determine that the size of the operand falls within the
1797 // acceptable range for this architecture.
1798 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1799 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1800 exit(1);
1801 }
1802
1803 unsigned Class = getClassB(CI.getOperand(1)->getType());
1804 unsigned ValReg = getReg(CI.getOperand(1));
1805 switch (Class) {
1806 case cByte:
1807 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1808 break;
1809 case cShort:
1810 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1811 break;
1812 case cInt:
1813 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1814 break;
1815 default:
1816 std::cerr << "llvm.writeport: invalid data type for X86 target";
1817 exit(1);
1818 }
1819
1820
1821 // If the port is a single-byte constant, use the immediate form.
1822 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1823 if ((C->getRawValue() & 255) == C->getRawValue()) {
1824 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1825 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1826 return;
1827 }
1828
1829 // Otherwise, move the I/O port address into the DX register and the value
1830 // to write into the AL/AX/EAX register.
1831 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1832 unsigned Reg = getReg(CI.getOperand(2));
1833 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1834 BuildMI(BB, Opc[Class], 0);
1835 return;
1836 }
1837
Chris Lattner44827152003-12-28 09:47:19 +00001838 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001839 }
1840}
1841
Chris Lattner7dee5da2004-03-08 01:58:35 +00001842static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1843 if (LI.getParent() != User.getParent())
1844 return false;
1845 BasicBlock::iterator It = &LI;
1846 // Check all of the instructions between the load and the user. We should
1847 // really use alias analysis here, but for now we just do something simple.
1848 for (++It; It != BasicBlock::iterator(&User); ++It) {
1849 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00001850 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00001851 case Instruction::Store:
1852 case Instruction::Call:
1853 case Instruction::Invoke:
1854 return false;
Chris Lattner133dbb12004-04-12 03:02:48 +00001855 case Instruction::Load:
1856 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
1857 return false;
1858 break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00001859 }
1860 }
1861 return true;
1862}
1863
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001864/// visitSimpleBinary - Implement simple binary operators for integral types...
1865/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1866/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00001867///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001868void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1869 unsigned DestReg = getReg(B);
1870 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00001871 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001872 unsigned Class = getClassB(B.getType());
Chris Lattner721d2d42004-03-08 01:18:36 +00001873
Chris Lattner7dee5da2004-03-08 01:58:35 +00001874 // Special case: op Reg, load [mem]
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001875 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
1876 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
Chris Lattner7dee5da2004-03-08 01:58:35 +00001877 if (!B.swapOperands())
1878 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
1879
Chris Lattner95157f72004-04-11 22:05:45 +00001880 if (isa<LoadInst>(Op1) && Class != cLong &&
Chris Lattner7dee5da2004-03-08 01:58:35 +00001881 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
1882
Chris Lattner95157f72004-04-11 22:05:45 +00001883 unsigned Opcode;
1884 if (Class != cFP) {
1885 static const unsigned OpcodeTab[][3] = {
1886 // Arithmetic operators
1887 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
1888 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
1889
1890 // Bitwise operators
1891 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
1892 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
1893 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
1894 };
1895 Opcode = OpcodeTab[OperatorClass][Class];
1896 } else {
1897 static const unsigned OpcodeTab[][2] = {
1898 { X86::FADD32m, X86::FADD64m }, // ADD
1899 { X86::FSUB32m, X86::FSUB64m }, // SUB
1900 };
1901 const Type *Ty = Op0->getType();
1902 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1903 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
1904 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00001905
1906 unsigned BaseReg, Scale, IndexReg, Disp;
1907 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg,
1908 Scale, IndexReg, Disp);
1909
1910 unsigned Op0r = getReg(Op0);
1911 addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op0r),
1912 BaseReg, Scale, IndexReg, Disp);
1913 return;
1914 }
1915
Chris Lattner95157f72004-04-11 22:05:45 +00001916 // If this is a floating point subtract, check to see if we can fold the first
1917 // operand in.
1918 if (Class == cFP && OperatorClass == 1 &&
1919 isa<LoadInst>(Op0) &&
1920 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
1921 const Type *Ty = Op0->getType();
1922 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1923 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
1924
1925 unsigned BaseReg, Scale, IndexReg, Disp;
1926 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), BaseReg,
1927 Scale, IndexReg, Disp);
1928
1929 unsigned Op1r = getReg(Op1);
1930 addFullAddress(BuildMI(BB, Opcode, 2, DestReg).addReg(Op1r),
1931 BaseReg, Scale, IndexReg, Disp);
1932 return;
1933 }
1934
Chris Lattner721d2d42004-03-08 01:18:36 +00001935 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001936}
Chris Lattner3e130a22003-01-13 00:32:26 +00001937
Chris Lattner6621ed92004-04-11 21:23:56 +00001938
1939/// emitBinaryFPOperation - This method handles emission of floating point
1940/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1941void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1942 MachineBasicBlock::iterator IP,
1943 Value *Op0, Value *Op1,
1944 unsigned OperatorClass, unsigned DestReg) {
1945
1946 // Special case: op Reg, <const fp>
1947 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
1948 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
1949 // Create a constant pool entry for this constant.
1950 MachineConstantPool *CP = F->getConstantPool();
1951 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1952 const Type *Ty = Op1->getType();
1953
1954 static const unsigned OpcodeTab[][4] = {
1955 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
1956 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
1957 };
1958
1959 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1960 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1961 unsigned Op0r = getReg(Op0, BB, IP);
1962 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
1963 DestReg).addReg(Op0r), CPI);
1964 return;
1965 }
1966
Chris Lattner13c07fe2004-04-12 00:12:04 +00001967 // Special case: R1 = op <const fp>, R2
Chris Lattner6621ed92004-04-11 21:23:56 +00001968 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1969 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1970 // -0.0 - X === -X
1971 unsigned op1Reg = getReg(Op1, BB, IP);
1972 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
1973 return;
1974 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
Chris Lattner13c07fe2004-04-12 00:12:04 +00001975 // R1 = op CST, R2 --> R1 = opr R2, CST
Chris Lattner6621ed92004-04-11 21:23:56 +00001976
1977 // Create a constant pool entry for this constant.
1978 MachineConstantPool *CP = F->getConstantPool();
1979 unsigned CPI = CP->getConstantPoolIndex(CFP);
1980 const Type *Ty = CFP->getType();
1981
1982 static const unsigned OpcodeTab[][4] = {
1983 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
1984 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
1985 };
1986
1987 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
1988 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1989 unsigned Op1r = getReg(Op1, BB, IP);
1990 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
1991 DestReg).addReg(Op1r), CPI);
1992 return;
1993 }
1994
1995 // General case.
1996 static const unsigned OpcodeTab[4] = {
1997 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
1998 };
1999
2000 unsigned Opcode = OpcodeTab[OperatorClass];
2001 unsigned Op0r = getReg(Op0, BB, IP);
2002 unsigned Op1r = getReg(Op1, BB, IP);
2003 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2004}
2005
Chris Lattnerb2acc512003-10-19 21:09:10 +00002006/// emitSimpleBinaryOperation - Implement simple binary operators for integral
2007/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2008/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00002009///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002010/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2011/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002012///
2013void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002014 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002015 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002016 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002017 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00002018
Chris Lattner6621ed92004-04-11 21:23:56 +00002019 if (Class == cFP) {
2020 assert(OperatorClass < 2 && "No logical ops for FP!");
2021 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2022 return;
2023 }
2024
Chris Lattnerb2acc512003-10-19 21:09:10 +00002025 // sub 0, X -> neg X
Chris Lattner48b0c972004-04-11 20:26:20 +00002026 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
2027 if (OperatorClass == 1 && CI->isNullValue()) {
2028 unsigned op1Reg = getReg(Op1, MBB, IP);
2029 static unsigned const NEGTab[] = {
2030 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2031 };
2032 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
2033
2034 if (Class == cLong) {
2035 // We just emitted: Dl = neg Sl
2036 // Now emit : T = addc Sh, 0
2037 // : Dh = neg T
2038 unsigned T = makeAnotherReg(Type::IntTy);
2039 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2040 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002041 }
Chris Lattner48b0c972004-04-11 20:26:20 +00002042 return;
2043 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002044
Chris Lattner48b0c972004-04-11 20:26:20 +00002045 // Special case: op Reg, <const int>
2046 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002047 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002048
Chris Lattner721d2d42004-03-08 01:18:36 +00002049 // xor X, -1 -> not X
2050 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002051 static unsigned const NOTTab[] = {
2052 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2053 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002054 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002055 if (Class == cLong) // Invert the top part too
2056 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00002057 return;
2058 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002059
Chris Lattner721d2d42004-03-08 01:18:36 +00002060 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00002061 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2062 // Note that we can't use dec for 64-bit decrements, because it does not
2063 // set the carry flag!
2064 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00002065 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2066 return;
2067 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002068
Chris Lattner721d2d42004-03-08 01:18:36 +00002069 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00002070 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2071 // Note that we can't use inc for 64-bit increments, because it does not
2072 // set the carry flag!
2073 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00002074 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00002075 return;
2076 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002077
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002078 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002079 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002080 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2081 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00002082
Chris Lattner721d2d42004-03-08 01:18:36 +00002083 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002084 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2085 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2086 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00002087 };
2088
Chris Lattner721d2d42004-03-08 01:18:36 +00002089 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00002090 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00002091
Chris Lattner33f7fa32004-04-06 03:15:53 +00002092 if (Class != cLong) {
2093 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2094 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00002095 }
2096
2097 // If this is a long value and the high or low bits have a special
2098 // property, emit some special cases.
2099 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2100
2101 // If the constant is zero in the low 32-bits, just copy the low part
2102 // across and apply the normal 32-bit operation to the high parts. There
2103 // will be no carry or borrow into the top.
2104 if (Op1l == 0) {
2105 if (OperatorClass != 2) // All but and...
2106 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2107 else
2108 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2109 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2110 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00002111 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002112 }
Chris Lattner6621ed92004-04-11 21:23:56 +00002113
2114 // If this is a logical operation and the top 32-bits are zero, just
2115 // operate on the lower 32.
2116 if (Op1h == 0 && OperatorClass > 1) {
2117 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2118 .addReg(Op0r).addImm(Op1l);
2119 if (OperatorClass != 2) // All but and
2120 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2121 else
2122 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2123 return;
2124 }
2125
2126 // TODO: We could handle lots of other special cases here, such as AND'ing
2127 // with 0xFFFFFFFF00000000 -> noop, etc.
2128
2129 // Otherwise, code generate the full operation with a constant.
2130 static const unsigned TopTab[] = {
2131 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2132 };
2133
2134 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2135 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2136 .addReg(Op0r+1).addImm(Op1h);
2137 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002138 }
2139
2140 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002141 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002142 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002143 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2144 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002145
Chris Lattnerb2acc512003-10-19 21:09:10 +00002146 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002147 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2148 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2149 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002150 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002151
Chris Lattnerb2acc512003-10-19 21:09:10 +00002152 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002153 unsigned Op0r = getReg(Op0, MBB, IP);
2154 unsigned Op1r = getReg(Op1, MBB, IP);
2155 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2156
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002157 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002158 static const unsigned TopTab[] = {
2159 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2160 };
2161 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2162 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2163 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002164}
2165
Chris Lattner3e130a22003-01-13 00:32:26 +00002166/// doMultiply - Emit appropriate instructions to multiply together the
2167/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2168/// result should be given as DestTy.
2169///
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002170void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00002171 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00002172 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002173 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002174 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002175 case cInt:
2176 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002177 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002178 .addReg(op0Reg).addReg(op1Reg);
2179 return;
2180 case cByte:
2181 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002182 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2183 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2184 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002185 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002186 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002187 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002188 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002189}
2190
Chris Lattnerb2acc512003-10-19 21:09:10 +00002191// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2192// returns zero when the input is not exactly a power of two.
2193static unsigned ExactLog2(unsigned Val) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002194 if (Val == 0 || (Val & (Val-1))) return 0;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002195 unsigned Count = 0;
2196 while (Val != 1) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00002197 Val >>= 1;
2198 ++Count;
2199 }
2200 return Count+1;
2201}
2202
Chris Lattner462fa822004-04-11 20:56:28 +00002203
2204/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2205/// 16, or 32-bit integer multiply by a constant.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002206void ISel::doMultiplyConst(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002207 MachineBasicBlock::iterator IP,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002208 unsigned DestReg, const Type *DestTy,
2209 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002210 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2211 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002212 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
Chris Lattner6ab06d52004-04-06 04:55:43 +00002213
Chris Lattnerb2acc512003-10-19 21:09:10 +00002214 unsigned Class = getClass(DestTy);
2215
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002216 // Handle special cases here.
2217 switch (ConstRHS) {
2218 case 0:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002219 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2220 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002221 case 1:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002222 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2223 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002224 case 2:
2225 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2226 return;
2227 case 3:
2228 case 5:
2229 case 9:
2230 if (Class == cInt) {
2231 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg),
2232 op0Reg, ConstRHS-1, op0Reg, 0);
2233 return;
2234 }
Chris Lattner6ab06d52004-04-06 04:55:43 +00002235 }
2236
Chris Lattnerb2acc512003-10-19 21:09:10 +00002237 // If the element size is exactly a power of 2, use a shift to get it.
2238 if (unsigned Shift = ExactLog2(ConstRHS)) {
2239 switch (Class) {
2240 default: assert(0 && "Unknown class for this function!");
2241 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002242 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002243 return;
2244 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002245 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002246 return;
2247 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002248 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002249 return;
2250 }
2251 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002252
2253 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002254 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002255 return;
2256 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002257 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002258 return;
2259 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002260
2261 // Most general case, emit a normal multiply...
Chris Lattnerb2acc512003-10-19 21:09:10 +00002262 unsigned TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002263 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002264
2265 // Emit a MUL to multiply the register holding the index by
2266 // elementSize, putting the result in OffsetReg.
2267 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2268}
2269
Chris Lattnerca9671d2002-11-02 20:28:58 +00002270/// visitMul - Multiplies are not simple binary operators because they must deal
2271/// with the EAX register explicitly.
2272///
2273void ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002274 unsigned ResultReg = getReg(I);
2275
Chris Lattner95157f72004-04-11 22:05:45 +00002276 Value *Op0 = I.getOperand(0);
2277 Value *Op1 = I.getOperand(1);
2278
2279 // Fold loads into floating point multiplies.
2280 if (getClass(Op0->getType()) == cFP) {
2281 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2282 if (!I.swapOperands())
2283 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2284 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2285 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2286 const Type *Ty = Op0->getType();
2287 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2288 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2289
2290 unsigned BaseReg, Scale, IndexReg, Disp;
2291 getAddressingMode(LI->getOperand(0), BaseReg,
2292 Scale, IndexReg, Disp);
2293
2294 unsigned Op0r = getReg(Op0);
2295 addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op0r),
2296 BaseReg, Scale, IndexReg, Disp);
2297 return;
2298 }
2299 }
2300
Chris Lattner462fa822004-04-11 20:56:28 +00002301 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002302 emitMultiply(BB, IP, Op0, Op1, ResultReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002303}
2304
2305void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2306 Value *Op0, Value *Op1, unsigned DestReg) {
2307 MachineBasicBlock &BB = *MBB;
2308 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002309
2310 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002311 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002312 switch (Class) {
2313 case cByte:
2314 case cShort:
2315 case cInt:
2316 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002317 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2318 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002319 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002320 unsigned Op1Reg = getReg(Op1, &BB, IP);
2321 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002322 }
Chris Lattner462fa822004-04-11 20:56:28 +00002323 return;
2324 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002325 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2326 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002327 case cLong:
2328 break;
2329 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002330
Chris Lattner462fa822004-04-11 20:56:28 +00002331 // Long value. We have to do things the hard way...
2332 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2333 unsigned CLow = CI->getRawValue();
2334 unsigned CHi = CI->getRawValue() >> 32;
2335
2336 if (CLow == 0) {
2337 // If the low part of the constant is all zeros, things are simple.
2338 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2339 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2340 return;
2341 }
2342
2343 // Multiply the two low parts... capturing carry into EDX
2344 unsigned OverflowReg = 0;
2345 if (CLow == 1) {
2346 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002347 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002348 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2349 OverflowReg = makeAnotherReg(Type::UIntTy);
2350 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2351 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2352 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002353
Chris Lattner462fa822004-04-11 20:56:28 +00002354 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2355 BuildMI(BB, IP, X86::MOV32rr, 1,
2356 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2357 }
2358
2359 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2360 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2361
2362 unsigned AHBLplusOverflowReg;
2363 if (OverflowReg) {
2364 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2365 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002366 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002367 } else {
2368 AHBLplusOverflowReg = AHBLReg;
2369 }
2370
2371 if (CHi == 0) {
2372 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2373 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002374 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002375 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002376
Chris Lattner462fa822004-04-11 20:56:28 +00002377 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002378 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2379 }
Chris Lattner462fa822004-04-11 20:56:28 +00002380 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002381 }
Chris Lattner462fa822004-04-11 20:56:28 +00002382
2383 // General 64x64 multiply
2384
2385 unsigned Op1Reg = getReg(Op1, &BB, IP);
2386 // Multiply the two low parts... capturing carry into EDX
2387 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2388 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2389
2390 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2391 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2392 BuildMI(BB, IP, X86::MOV32rr, 1,
2393 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2394
2395 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2396 BuildMI(BB, IP, X86::IMUL32rr, 2,
2397 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2398
2399 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2400 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2401 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2402
2403 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2404 BuildMI(BB, IP, X86::IMUL32rr, 2,
2405 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2406
2407 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2408 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002409}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002410
Chris Lattner06925362002-11-17 21:56:38 +00002411
Chris Lattnerf01729e2002-11-02 20:54:46 +00002412/// visitDivRem - Handle division and remainder instructions... these
2413/// instruction both require the same instructions to be generated, they just
2414/// select the result from a different register. Note that both of these
2415/// instructions work differently for signed and unsigned operands.
2416///
2417void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002418 unsigned ResultReg = getReg(I);
Chris Lattner95157f72004-04-11 22:05:45 +00002419 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2420
2421 // Fold loads into floating point divides.
2422 if (getClass(Op0->getType()) == cFP) {
2423 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2424 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2425 const Type *Ty = Op0->getType();
2426 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2427 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2428
2429 unsigned BaseReg, Scale, IndexReg, Disp;
2430 getAddressingMode(LI->getOperand(0), BaseReg,
2431 Scale, IndexReg, Disp);
2432
2433 unsigned Op0r = getReg(Op0);
2434 addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op0r),
2435 BaseReg, Scale, IndexReg, Disp);
2436 return;
2437 }
2438
2439 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2440 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2441 const Type *Ty = Op0->getType();
2442 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2443 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2444
2445 unsigned BaseReg, Scale, IndexReg, Disp;
2446 getAddressingMode(LI->getOperand(0), BaseReg,
2447 Scale, IndexReg, Disp);
2448
2449 unsigned Op1r = getReg(Op1);
2450 addFullAddress(BuildMI(BB, Opcode, 2, ResultReg).addReg(Op1r),
2451 BaseReg, Scale, IndexReg, Disp);
2452 return;
2453 }
2454 }
2455
Chris Lattner94af4142002-12-25 05:13:53 +00002456
Chris Lattnercadff442003-10-23 17:21:43 +00002457 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002458 emitDivRemOperation(BB, IP, Op0, Op1,
Chris Lattner462fa822004-04-11 20:56:28 +00002459 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002460}
2461
2462void ISel::emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002463 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +00002464 Value *Op0, Value *Op1, bool isDiv,
2465 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002466 const Type *Ty = Op0->getType();
2467 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002468 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002469 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002470 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002471 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2472 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002473 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002474 unsigned Op0Reg = getReg(Op0, BB, IP);
2475 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002476 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002477 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002478 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002479 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2480 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002481 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2482 }
Chris Lattner94af4142002-12-25 05:13:53 +00002483 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002484 case cLong: {
2485 static const char *FnName[] =
2486 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002487 unsigned Op0Reg = getReg(Op0, BB, IP);
2488 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002489 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002490 MachineInstr *TheCall =
2491 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2492
2493 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002494 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2495 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002496 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2497 return;
2498 }
2499 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002500 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002501 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002502 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002503
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002504 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002505 static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r };
2506 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2507 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2508 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2509
2510 // Special case signed division by power of 2.
2511 if (isDiv)
2512 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2513 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2514 int V = CI->getValue();
2515
2516 if (V == 1) { // X /s 1 => X
2517 unsigned Op0Reg = getReg(Op0, BB, IP);
2518 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2519 return;
2520 }
2521
2522 if (V == -1) { // X /s -1 => -X
2523 unsigned Op0Reg = getReg(Op0, BB, IP);
2524 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2525 return;
2526 }
2527
2528 bool isNeg = false;
2529 if (V < 0) { // Not a positive power of 2?
2530 V = -V;
2531 isNeg = true; // Maybe it's a negative power of 2.
2532 }
2533 if (unsigned Log = ExactLog2(V)) {
2534 --Log;
2535 unsigned Op0Reg = getReg(Op0, BB, IP);
2536 unsigned TmpReg = makeAnotherReg(Op0->getType());
2537 if (Log != 1)
2538 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2539 .addReg(Op0Reg).addImm(Log-1);
2540 else
2541 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg);
2542 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2543 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2544 .addReg(TmpReg).addImm(32-Log);
2545 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2546 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2547 .addReg(Op0Reg).addReg(TmpReg2);
2548
2549 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2550 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
2551 .addReg(Op0Reg).addImm(Log);
2552 if (isNeg)
2553 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2554 return;
2555 }
2556 }
2557
2558 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002559 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002560 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2561
2562 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002563 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2564 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002565 };
2566
Chris Lattnerf01729e2002-11-02 20:54:46 +00002567 unsigned Reg = Regs[Class];
2568 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002569
2570 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002571 unsigned Op0Reg = getReg(Op0, BB, IP);
2572 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002573 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002574
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002575 if (Ty->isSigned()) {
Chris Lattnerf01729e2002-11-02 20:54:46 +00002576 // Emit a sign extension instruction...
Chris Lattner462fa822004-04-11 20:56:28 +00002577 unsigned ShiftResult = makeAnotherReg(Op0->getType());
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002578 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
Chris Lattneree352852004-02-29 07:22:16 +00002579 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002580
2581 // Emit the appropriate divide or remainder instruction...
2582 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002583 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002584 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002585 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002586
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002587 // Emit the appropriate divide or remainder instruction...
2588 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2589 }
Chris Lattner06925362002-11-17 21:56:38 +00002590
Chris Lattnerf01729e2002-11-02 20:54:46 +00002591 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002592 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002593
Chris Lattnerf01729e2002-11-02 20:54:46 +00002594 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002595 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002596}
Chris Lattnere2954c82002-11-02 20:04:26 +00002597
Chris Lattner06925362002-11-17 21:56:38 +00002598
Brian Gaekea1719c92002-10-31 23:03:59 +00002599/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2600/// for constant immediate shift values, and for constant immediate
2601/// shift values equal to 1. Even the general case is sort of special,
2602/// because the shift amount has to be in CL, not just any old register.
2603///
Chris Lattner3e130a22003-01-13 00:32:26 +00002604void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002605 MachineBasicBlock::iterator IP = BB->end ();
2606 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2607 I.getOpcode () == Instruction::Shl, I.getType (),
2608 getReg (I));
2609}
2610
2611/// emitShiftOperation - Common code shared between visitShiftInst and
2612/// constant expression support.
2613void ISel::emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002614 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002615 Value *Op, Value *ShiftAmount, bool isLeftShift,
2616 const Type *ResultTy, unsigned DestReg) {
2617 unsigned SrcReg = getReg (Op, MBB, IP);
2618 bool isSigned = ResultTy->isSigned ();
2619 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002620
2621 static const unsigned ConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002622 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
2623 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
2624 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
2625 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002626 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002627
Chris Lattner3e130a22003-01-13 00:32:26 +00002628 static const unsigned NonConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002629 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2630 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2631 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2632 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002633 };
Chris Lattner796df732002-11-02 00:44:25 +00002634
Chris Lattner3e130a22003-01-13 00:32:26 +00002635 // Longs, as usual, are handled specially...
2636 if (Class == cLong) {
2637 // If we have a constant shift, we can generate much more efficient code
2638 // than otherwise...
2639 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002640 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002641 unsigned Amount = CUI->getValue();
2642 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002643 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2644 if (isLeftShift) {
Chris Lattneree352852004-02-29 07:22:16 +00002645 BuildMI(*MBB, IP, Opc[3], 3,
2646 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
2647 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002648 } else {
Chris Lattneree352852004-02-29 07:22:16 +00002649 BuildMI(*MBB, IP, Opc[3], 3,
2650 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2651 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002652 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002653 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002654 Amount -= 32;
2655 if (isLeftShift) {
Chris Lattner722070e2004-04-06 03:42:38 +00002656 if (Amount != 0) {
2657 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2658 DestReg + 1).addReg(SrcReg).addImm(Amount);
2659 } else {
2660 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2661 }
2662 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002663 } else {
Chris Lattner722070e2004-04-06 03:42:38 +00002664 if (Amount != 0) {
2665 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
2666 DestReg).addReg(SrcReg+1).addImm(Amount);
2667 } else {
2668 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2669 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002670 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002671 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002672 }
2673 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00002674 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2675
2676 if (!isLeftShift && isSigned) {
2677 // If this is a SHR of a Long, then we need to do funny sign extension
2678 // stuff. TmpReg gets the value to use as the high-part if we are
2679 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002680 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00002681 } else {
2682 // Other shifts use a fixed zero value if the shift is more than 32
2683 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002684 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00002685 }
2686
2687 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002688 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002689 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002690
2691 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2692 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2693 if (isLeftShift) {
2694 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002695 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00002696 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002697 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002698 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002699
2700 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002701 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002702
2703 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002704 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002705 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
2706 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002707 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002708 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002709 } else {
2710 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002711 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00002712 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00002713 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002714 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00002715 .addReg(SrcReg+1);
2716
2717 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002718 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002719
2720 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002721 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002722 DestReg).addReg(TmpReg2).addReg(TmpReg3);
2723
2724 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002725 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002726 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
2727 }
Brian Gaekea1719c92002-10-31 23:03:59 +00002728 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002729 return;
2730 }
Chris Lattnere9913f22002-11-02 01:41:55 +00002731
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002732 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002733 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2734 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002735
Chris Lattner3e130a22003-01-13 00:32:26 +00002736 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002737 BuildMI(*MBB, IP, Opc[Class], 2,
2738 DestReg).addReg(SrcReg).addImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00002739 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002740 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002741 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002742
Chris Lattner3e130a22003-01-13 00:32:26 +00002743 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002744 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002745 }
2746}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002747
Chris Lattner3e130a22003-01-13 00:32:26 +00002748
Chris Lattner721d2d42004-03-08 01:18:36 +00002749void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
2750 unsigned &IndexReg, unsigned &Disp) {
2751 BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0;
2752 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
2753 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
2754 BaseReg, Scale, IndexReg, Disp))
2755 return;
2756 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
2757 if (CE->getOpcode() == Instruction::GetElementPtr)
2758 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
2759 BaseReg, Scale, IndexReg, Disp))
2760 return;
2761 }
2762
2763 // If it's not foldable, reset addr mode.
2764 BaseReg = getReg(Addr);
2765 Scale = 1; IndexReg = 0; Disp = 0;
2766}
2767
2768
Chris Lattner6fc3c522002-11-17 21:11:55 +00002769/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00002770/// instruction. The load and store instructions are the only place where we
2771/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00002772///
2773void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002774 // Check to see if this load instruction is going to be folded into a binary
2775 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
2776 // pattern matching instruction selector be nice?
Chris Lattner95157f72004-04-11 22:05:45 +00002777 unsigned Class = getClassB(I.getType());
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002778 if (I.hasOneUse()) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002779 Instruction *User = cast<Instruction>(I.use_back());
2780 switch (User->getOpcode()) {
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002781 case Instruction::Cast:
2782 // If this is a cast from a signed-integer type to a floating point type,
2783 // fold the cast here.
2784 if (getClass(User->getType()) == cFP &&
2785 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
2786 I.getType() == Type::LongTy)) {
2787 unsigned DestReg = getReg(User);
2788 static const unsigned Opcode[] = {
2789 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
2790 };
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002791 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
2792 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
2793 addFullAddress(BuildMI(BB, Opcode[Class], 5, DestReg),
2794 BaseReg, Scale, IndexReg, Disp);
2795 return;
2796 } else {
2797 User = 0;
2798 }
2799 break;
Chris Lattner13c07fe2004-04-12 00:12:04 +00002800
Chris Lattner7dee5da2004-03-08 01:58:35 +00002801 case Instruction::Add:
2802 case Instruction::Sub:
2803 case Instruction::And:
2804 case Instruction::Or:
2805 case Instruction::Xor:
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002806 if (Class == cLong) User = 0;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002807 break;
Chris Lattner95157f72004-04-11 22:05:45 +00002808 case Instruction::Mul:
2809 case Instruction::Div:
Chris Lattner13c07fe2004-04-12 00:12:04 +00002810 if (Class != cFP) User = 0;
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002811 break; // Folding only implemented for floating point.
Chris Lattner95157f72004-04-11 22:05:45 +00002812 default: User = 0; break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002813 }
2814
2815 if (User) {
2816 // Okay, we found a user. If the load is the first operand and there is
2817 // no second operand load, reverse the operand ordering. Note that this
2818 // can fail for a subtract (ie, no change will be made).
2819 if (!isa<LoadInst>(User->getOperand(1)))
2820 cast<BinaryOperator>(User)->swapOperands();
2821
2822 // Okay, now that everything is set up, if this load is used by the second
2823 // operand, and if there are no instructions that invalidate the load
2824 // before the binary operator, eliminate the load.
2825 if (User->getOperand(1) == &I &&
2826 isSafeToFoldLoadIntoInstruction(I, *User))
2827 return; // Eliminate the load!
Chris Lattner95157f72004-04-11 22:05:45 +00002828
2829 // If this is a floating point sub or div, we won't be able to swap the
2830 // operands, but we will still be able to eliminate the load.
2831 if (Class == cFP && User->getOperand(0) == &I &&
2832 !isa<LoadInst>(User->getOperand(1)) &&
2833 (User->getOpcode() == Instruction::Sub ||
2834 User->getOpcode() == Instruction::Div) &&
2835 isSafeToFoldLoadIntoInstruction(I, *User))
2836 return; // Eliminate the load!
Chris Lattner7dee5da2004-03-08 01:58:35 +00002837 }
2838 }
2839
Chris Lattner94af4142002-12-25 05:13:53 +00002840 unsigned DestReg = getReg(I);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002841 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
Chris Lattner721d2d42004-03-08 01:18:36 +00002842 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
Chris Lattnere8f0d922002-12-24 00:03:11 +00002843
Chris Lattner6ac1d712003-10-20 04:48:06 +00002844 if (Class == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002845 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002846 BaseReg, Scale, IndexReg, Disp);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002847 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
Chris Lattnerb6bac512004-02-25 06:13:04 +00002848 BaseReg, Scale, IndexReg, Disp+4);
Chris Lattner94af4142002-12-25 05:13:53 +00002849 return;
2850 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00002851
Chris Lattner6ac1d712003-10-20 04:48:06 +00002852 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002853 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m
Chris Lattner3e130a22003-01-13 00:32:26 +00002854 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00002855 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002856 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattnerb6bac512004-02-25 06:13:04 +00002857 addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
2858 BaseReg, Scale, IndexReg, Disp);
Chris Lattner3e130a22003-01-13 00:32:26 +00002859}
2860
Chris Lattner6fc3c522002-11-17 21:11:55 +00002861/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
2862/// instruction.
2863///
2864void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002865 unsigned BaseReg, Scale, IndexReg, Disp;
2866 getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002867
Chris Lattner6c09db22003-10-20 04:11:23 +00002868 const Type *ValTy = I.getOperand(0)->getType();
2869 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00002870
Chris Lattner5a830962004-02-25 02:56:58 +00002871 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
2872 uint64_t Val = CI->getRawValue();
2873 if (Class == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002874 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002875 BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002876 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002877 BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
Chris Lattner5a830962004-02-25 02:56:58 +00002878 } else {
2879 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002880 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00002881 };
2882 unsigned Opcode = Opcodes[Class];
Chris Lattnerb6bac512004-02-25 06:13:04 +00002883 addFullAddress(BuildMI(BB, Opcode, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002884 BaseReg, Scale, IndexReg, Disp).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00002885 }
2886 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002887 addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00002888 BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
Chris Lattnere7a31c92004-05-07 21:18:15 +00002889 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
2890 // Store constant FP values with integer instructions to avoid having to
2891 // load the constants from the constant pool then do a store.
2892 if (CFP->getType() == Type::FloatTy) {
2893 union {
2894 unsigned I;
2895 float F;
2896 } V;
2897 V.F = CFP->getValue();
2898 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2899 BaseReg, Scale, IndexReg, Disp).addImm(V.I);
Chris Lattner5a830962004-02-25 02:56:58 +00002900 } else {
Chris Lattnere7a31c92004-05-07 21:18:15 +00002901 union {
2902 uint64_t I;
2903 double F;
2904 } V;
2905 V.F = CFP->getValue();
2906 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2907 BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I);
2908 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2909 BaseReg, Scale, IndexReg, Disp+4).addImm(
2910 unsigned(V.I >> 32));
Chris Lattner5a830962004-02-25 02:56:58 +00002911 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00002912
2913 } else if (Class == cLong) {
2914 unsigned ValReg = getReg(I.getOperand(0));
2915 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
2916 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
2917 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
2918 BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
2919 } else {
2920 unsigned ValReg = getReg(I.getOperand(0));
2921 static const unsigned Opcodes[] = {
2922 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
2923 };
2924 unsigned Opcode = Opcodes[Class];
2925 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
2926 addFullAddress(BuildMI(BB, Opcode, 1+4),
2927 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
Chris Lattner94af4142002-12-25 05:13:53 +00002928 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00002929}
2930
2931
Misha Brukman538607f2004-03-01 23:53:11 +00002932/// visitCastInst - Here we have various kinds of copying with or without sign
2933/// extension going on.
2934///
Chris Lattner3e130a22003-01-13 00:32:26 +00002935void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00002936 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00002937
Chris Lattner99382862004-04-12 00:23:04 +00002938 unsigned SrcClass = getClassB(Op->getType());
2939 unsigned DestClass = getClassB(CI.getType());
2940 // Noop casts are not emitted: getReg will return the source operand as the
2941 // register to use for any uses of the noop cast.
2942 if (DestClass == SrcClass)
Chris Lattner427aeb42004-04-11 19:21:59 +00002943 return;
2944
Chris Lattnerf5854472003-06-21 16:01:24 +00002945 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2946 // of the case are GEP instructions, then the cast does not need to be
2947 // generated explicitly, it will be folded into the GEP.
Chris Lattner99382862004-04-12 00:23:04 +00002948 if (DestClass == cLong && SrcClass == cInt) {
Chris Lattnerf5854472003-06-21 16:01:24 +00002949 bool AllUsesAreGEPs = true;
2950 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2951 if (!isa<GetElementPtrInst>(*I)) {
2952 AllUsesAreGEPs = false;
2953 break;
2954 }
2955
2956 // No need to codegen this cast if all users are getelementptr instrs...
2957 if (AllUsesAreGEPs) return;
2958 }
2959
Chris Lattner99382862004-04-12 00:23:04 +00002960 // If this cast converts a load from a short,int, or long integer to a FP
2961 // value, we will have folded this cast away.
2962 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
2963 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
2964 Op->getType() == Type::LongTy))
2965 return;
2966
2967
Chris Lattner548f61d2003-04-23 17:22:12 +00002968 unsigned DestReg = getReg(CI);
2969 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00002970 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00002971}
2972
Misha Brukman538607f2004-03-01 23:53:11 +00002973/// emitCastOperation - Common code shared between visitCastInst and constant
2974/// expression cast support.
2975///
Chris Lattner548f61d2003-04-23 17:22:12 +00002976void ISel::emitCastOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002977 MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +00002978 Value *Src, const Type *DestTy,
2979 unsigned DestReg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002980 const Type *SrcTy = Src->getType();
2981 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002982 unsigned DestClass = getClassB(DestTy);
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002983 unsigned SrcReg = getReg(Src, BB, IP);
2984
Chris Lattner3e130a22003-01-13 00:32:26 +00002985 // Implement casts to bool by using compare on the operand followed by set if
2986 // not zero on the result.
2987 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00002988 switch (SrcClass) {
2989 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002990 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00002991 break;
2992 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002993 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00002994 break;
2995 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002996 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00002997 break;
2998 case cLong: {
2999 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003000 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00003001 break;
3002 }
3003 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00003004 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003005 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00003006 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00003007 break;
Chris Lattner20772542003-06-01 03:38:24 +00003008 }
3009
3010 // If the zero flag is not set, then the value is true, set the byte to
3011 // true.
Chris Lattneree352852004-02-29 07:22:16 +00003012 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003013 return;
3014 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003015
3016 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003017 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00003018 };
3019
3020 // Implement casts between values of the same type class (as determined by
3021 // getClass) by using a register-to-register move.
3022 if (SrcClass == DestClass) {
3023 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00003024 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003025 } else if (SrcClass == cFP) {
3026 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003027 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00003028 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003029 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003030 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3031 "Unknown cFP member!");
3032 // Truncate from double to float by storing to memory as short, then
3033 // reading it back.
3034 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00003035 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003036 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3037 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003038 }
3039 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003040 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3041 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003042 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00003043 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003044 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00003045 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003046 return;
3047 }
3048
3049 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3050 // or zero extension, depending on whether the source type was signed.
3051 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3052 SrcClass < DestClass) {
3053 bool isLong = DestClass == cLong;
3054 if (isLong) DestClass = cInt;
3055
3056 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003057 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3058 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00003059 };
3060
Chris Lattner96e3b422004-05-09 22:28:45 +00003061 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Chris Lattneree352852004-02-29 07:22:16 +00003062 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00003063 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003064
3065 if (isLong) { // Handle upper 32 bits as appropriate...
3066 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003067 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00003068 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003069 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00003070 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003071 return;
3072 }
3073
3074 // Special case long -> int ...
3075 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003076 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003077 return;
3078 }
3079
3080 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3081 // move out of AX or AL.
3082 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3083 && SrcClass > DestClass) {
3084 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00003085 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3086 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00003087 return;
3088 }
3089
3090 // Handle casts from integer to floating point now...
3091 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003092 // Promote the integer to a type supported by FLD. We do this because there
3093 // are no unsigned FLD instructions, so we must promote an unsigned value to
3094 // a larger signed value, then use FLD on the larger value.
3095 //
3096 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00003097 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003098 unsigned RealDestReg = DestReg;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003099 switch (SrcTy->getPrimitiveID()) {
3100 case Type::BoolTyID:
3101 case Type::SByteTyID:
3102 // We don't have the facilities for directly loading byte sized data from
3103 // memory (even signed). Promote it to 16 bits.
3104 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003105 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003106 break;
3107 case Type::UByteTyID:
3108 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003109 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003110 break;
3111 case Type::UShortTyID:
3112 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003113 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003114 break;
3115 case Type::UIntTyID: {
3116 // Make a 64 bit temporary... and zero out the top of it...
3117 unsigned TmpReg = makeAnotherReg(Type::LongTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003118 BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
3119 BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003120 SrcTy = Type::LongTy;
3121 SrcClass = cLong;
3122 SrcReg = TmpReg;
3123 break;
3124 }
3125 case Type::ULongTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003126 // Don't fild into the read destination.
3127 DestReg = makeAnotherReg(Type::DoubleTy);
3128 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003129 default: // No promotion needed...
3130 break;
3131 }
3132
3133 if (PromoteType) {
3134 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00003135 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003136 SrcTy = PromoteType;
3137 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00003138 SrcReg = TmpReg;
3139 }
3140
3141 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003142 int FrameIdx =
3143 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00003144
3145 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003146 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003147 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003148 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003149 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003150 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003151 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00003152 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3153 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003154 }
3155
3156 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003157 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00003158 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003159
3160 // We need special handling for unsigned 64-bit integer sources. If the
3161 // input number has the "sign bit" set, then we loaded it incorrectly as a
3162 // negative 64-bit number. In this case, add an offset value.
3163 if (SrcTy == Type::ULongTy) {
3164 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003165 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003166
Chris Lattnerb6bac512004-02-25 06:13:04 +00003167 // If the sign bit is set, get a pointer to an offset, otherwise get a
3168 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003169 MachineConstantPool *CP = F->getConstantPool();
3170 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003171 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003172 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003173 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003174 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003175 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3176
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003177 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003178 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003179 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003180 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003181
3182 // Load the constant for an add. FIXME: this could make an 'fadd' that
3183 // reads directly from memory, but we don't support these yet.
3184 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003185 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003186
Chris Lattneree352852004-02-29 07:22:16 +00003187 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3188 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003189 }
3190
Chris Lattner3e130a22003-01-13 00:32:26 +00003191 return;
3192 }
3193
3194 // Handle casts from floating point to integer now...
3195 if (SrcClass == cFP) {
3196 // Change the floating point control register to use "round towards zero"
3197 // mode when truncating to an integer value.
3198 //
3199 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003200 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003201
3202 // Load the old value of the high byte of the control word...
3203 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003204 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00003205 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003206
3207 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003208 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003209 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00003210
3211 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003212 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003213
3214 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003215 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003216 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00003217
3218 // We don't have the facilities for directly storing byte sized data to
3219 // memory. Promote it to 16 bits. We also must promote unsigned values to
3220 // larger classes because we only have signed FP stores.
3221 unsigned StoreClass = DestClass;
3222 const Type *StoreTy = DestTy;
3223 if (StoreClass == cByte || DestTy->isUnsigned())
3224 switch (StoreClass) {
3225 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3226 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3227 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00003228 // The following treatment of cLong may not be perfectly right,
3229 // but it survives chains of casts of the form
3230 // double->ulong->double.
3231 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00003232 default: assert(0 && "Unknown store class!");
3233 }
3234
3235 // Spill the integer to memory and reload it from there...
3236 int FrameIdx =
3237 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3238
3239 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003240 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00003241 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3242 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003243
3244 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003245 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3246 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00003247 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00003248 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003249 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00003250 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003251 }
3252
3253 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003254 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003255 return;
3256 }
3257
Brian Gaeked474e9c2002-12-06 10:49:33 +00003258 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00003259 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003260 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00003261}
Brian Gaekea1719c92002-10-31 23:03:59 +00003262
Chris Lattner73815062003-10-18 05:56:40 +00003263/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00003264///
Chris Lattner73815062003-10-18 05:56:40 +00003265void ISel::visitVANextInst(VANextInst &I) {
3266 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00003267 unsigned DestReg = getReg(I);
3268
Chris Lattnereca195e2003-05-08 19:44:13 +00003269 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00003270 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00003271 default:
3272 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00003273 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00003274 return;
3275 case Type::PointerTyID:
3276 case Type::UIntTyID:
3277 case Type::IntTyID:
3278 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00003279 break;
3280 case Type::ULongTyID:
3281 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00003282 case Type::DoubleTyID:
3283 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00003284 break;
3285 }
3286
3287 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003288 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00003289}
Chris Lattnereca195e2003-05-08 19:44:13 +00003290
Chris Lattner73815062003-10-18 05:56:40 +00003291void ISel::visitVAArgInst(VAArgInst &I) {
3292 unsigned VAList = getReg(I.getOperand(0));
3293 unsigned DestReg = getReg(I);
3294
3295 switch (I.getType()->getPrimitiveID()) {
3296 default:
3297 std::cerr << I;
3298 assert(0 && "Error: bad type for va_next instruction!");
3299 return;
3300 case Type::PointerTyID:
3301 case Type::UIntTyID:
3302 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003303 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003304 break;
3305 case Type::ULongTyID:
3306 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003307 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3308 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003309 break;
3310 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003311 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003312 break;
3313 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003314}
3315
Misha Brukman538607f2004-03-01 23:53:11 +00003316/// visitGetElementPtrInst - instruction-select GEP instructions
3317///
Chris Lattner3e130a22003-01-13 00:32:26 +00003318void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003319 // If this GEP instruction will be folded into all of its users, we don't need
3320 // to explicitly calculate it!
3321 unsigned A, B, C, D;
3322 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
3323 // Check all of the users of the instruction to see if they are loads and
3324 // stores.
3325 bool AllWillFold = true;
3326 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3327 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3328 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3329 cast<Instruction>(*UI)->getOperand(0) == &I) {
3330 AllWillFold = false;
3331 break;
3332 }
3333
3334 // If the instruction is foldable, and will be folded into all users, don't
3335 // emit it!
3336 if (AllWillFold) return;
3337 }
3338
Chris Lattner3e130a22003-01-13 00:32:26 +00003339 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003340 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003341 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003342}
3343
Chris Lattner985fe3d2004-02-25 03:45:50 +00003344/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3345/// GEPTypes (the derived types being stepped through at each level). On return
3346/// from this function, if some indexes of the instruction are representable as
3347/// an X86 lea instruction, the machine operands are put into the Ops
3348/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3349/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3350/// addressing mode that only partially consumes the input, the BaseReg input of
3351/// the addressing mode must be left free.
3352///
3353/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3354///
Chris Lattnerb6bac512004-02-25 06:13:04 +00003355void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
3356 std::vector<Value*> &GEPOps,
3357 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
3358 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
3359 const TargetData &TD = TM.getTargetData();
3360
Chris Lattner985fe3d2004-02-25 03:45:50 +00003361 // Clear out the state we are working with...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003362 BaseReg = 0; // No base register
3363 Scale = 1; // Unit scale
3364 IndexReg = 0; // No index register
3365 Disp = 0; // No displacement
3366
Chris Lattner985fe3d2004-02-25 03:45:50 +00003367 // While there are GEP indexes that can be folded into the current address,
3368 // keep processing them.
3369 while (!GEPTypes.empty()) {
3370 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3371 // It's a struct access. CUI is the index into the structure,
3372 // which names the field. This index must have unsigned type.
3373 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3374
3375 // Use the TargetData structure to pick out what the layout of the
3376 // structure is in memory. Since the structure index must be constant, we
3377 // can get its value and use it to find the right byte offset from the
3378 // StructLayout class's list of structure member offsets.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003379 Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003380 GEPOps.pop_back(); // Consume a GEP operand
3381 GEPTypes.pop_back();
3382 } else {
3383 // It's an array or pointer access: [ArraySize x ElementType].
3384 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3385 Value *idx = GEPOps.back();
3386
3387 // idx is the index into the array. Unlike with structure
3388 // indices, we may not know its actual value at code-generation
3389 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003390
3391 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003392 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003393 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003394 Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003395 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
3396 Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003397 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003398 // If the index reg is already taken, we can't handle this index.
3399 if (IndexReg) return;
3400
3401 // If this is a size that we can handle, then add the index as
3402 switch (TypeSize) {
3403 case 1: case 2: case 4: case 8:
3404 // These are all acceptable scales on X86.
3405 Scale = TypeSize;
3406 break;
3407 default:
3408 // Otherwise, we can't handle this scale
3409 return;
3410 }
3411
3412 if (CastInst *CI = dyn_cast<CastInst>(idx))
3413 if (CI->getOperand(0)->getType() == Type::IntTy ||
3414 CI->getOperand(0)->getType() == Type::UIntTy)
3415 idx = CI->getOperand(0);
3416
3417 IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003418 }
3419
3420 GEPOps.pop_back(); // Consume a GEP operand
3421 GEPTypes.pop_back();
3422 }
3423 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003424
3425 // GEPTypes is empty, which means we have a single operand left. See if we
3426 // can set it as the base register.
3427 //
3428 // FIXME: When addressing modes are more powerful/correct, we could load
3429 // global addresses directly as 32-bit immediates.
3430 assert(BaseReg == 0);
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003431 BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003432 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003433}
3434
3435
Chris Lattnerb6bac512004-02-25 06:13:04 +00003436/// isGEPFoldable - Return true if the specified GEP can be completely
3437/// folded into the addressing mode of a load/store or lea instruction.
3438bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
3439 Value *Src, User::op_iterator IdxBegin,
3440 User::op_iterator IdxEnd, unsigned &BaseReg,
3441 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003442 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3443 Src = CPR->getValue();
3444
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003445 std::vector<Value*> GEPOps;
3446 GEPOps.resize(IdxEnd-IdxBegin+1);
3447 GEPOps[0] = Src;
3448 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3449
3450 std::vector<const Type*> GEPTypes;
3451 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3452 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3453
Chris Lattnerb6bac512004-02-25 06:13:04 +00003454 MachineBasicBlock::iterator IP;
3455 if (MBB) IP = MBB->end();
3456 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
3457
3458 // We can fold it away iff the getGEPIndex call eliminated all operands.
3459 return GEPOps.empty();
3460}
3461
3462void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3463 MachineBasicBlock::iterator IP,
3464 Value *Src, User::op_iterator IdxBegin,
3465 User::op_iterator IdxEnd, unsigned TargetReg) {
3466 const TargetData &TD = TM.getTargetData();
3467 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3468 Src = CPR->getValue();
3469
3470 std::vector<Value*> GEPOps;
3471 GEPOps.resize(IdxEnd-IdxBegin+1);
3472 GEPOps[0] = Src;
3473 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3474
3475 std::vector<const Type*> GEPTypes;
3476 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3477 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003478
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003479 // Keep emitting instructions until we consume the entire GEP instruction.
3480 while (!GEPOps.empty()) {
3481 unsigned OldSize = GEPOps.size();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003482 unsigned BaseReg, Scale, IndexReg, Disp;
3483 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003484
Chris Lattner985fe3d2004-02-25 03:45:50 +00003485 if (GEPOps.size() != OldSize) {
3486 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003487 unsigned NextTarget = 0;
3488 if (!GEPOps.empty()) {
3489 assert(BaseReg == 0 &&
3490 "getGEPIndex should have left the base register open for chaining!");
3491 NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003492 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003493
3494 if (IndexReg == 0 && Disp == 0)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003495 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003496 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003497 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003498 BaseReg, Scale, IndexReg, Disp);
3499 --IP;
3500 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003501 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003502 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3503 // all operands are consumed but the base pointer. If so, just load it
3504 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003505 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003506 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003507 } else {
3508 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003509 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003510 }
3511 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003512
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003513 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003514 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003515 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3516 Value *idx = GEPOps.back();
3517 GEPOps.pop_back(); // Consume a GEP operand
3518 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003519
Chris Lattner28977af2004-04-05 01:30:19 +00003520 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003521 // operand on X86. Handle this case directly now...
3522 if (CastInst *CI = dyn_cast<CastInst>(idx))
3523 if (CI->getOperand(0)->getType() == Type::IntTy ||
3524 CI->getOperand(0)->getType() == Type::UIntTy)
3525 idx = CI->getOperand(0);
3526
Chris Lattner3e130a22003-01-13 00:32:26 +00003527 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003528 // must find the size of the pointed-to type (Not coincidentally, the next
3529 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003530 const Type *ElTy = SqTy->getElementType();
3531 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003532
3533 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003534 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003535 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003536 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003537 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003538 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003539 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003540 --IP; // Insert the next instruction before this one.
3541 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003542 }
3543 } else if (elementSize == 1) {
3544 // If the element size is 1, we don't have to multiply, just add
3545 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003546 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003547 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003548 --IP; // Insert the next instruction before this one.
3549 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003550 } else {
3551 unsigned idxReg = getReg(idx, MBB, IP);
3552 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003553
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003554 // Make sure we can back the iterator up to point to the first
3555 // instruction emitted.
3556 MachineBasicBlock::iterator BeforeIt = IP;
3557 if (IP == MBB->begin())
3558 BeforeIt = MBB->end();
3559 else
3560 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00003561 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3562
Chris Lattner8a307e82002-12-16 19:32:50 +00003563 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003564 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003565 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003566 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003567
3568 // Step to the first instruction of the multiply.
3569 if (BeforeIt == MBB->end())
3570 IP = MBB->begin();
3571 else
3572 IP = ++BeforeIt;
3573
3574 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003575 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003576 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003577 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003578}
3579
3580
Chris Lattner065faeb2002-12-28 20:24:02 +00003581/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3582/// frame manager, otherwise do it the hard way.
3583///
3584void ISel::visitAllocaInst(AllocaInst &I) {
Brian Gaekee48ec012002-12-13 06:46:31 +00003585 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00003586 const Type *Ty = I.getAllocatedType();
3587 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3588
3589 // If this is a fixed size alloca in the entry block for the function,
3590 // statically stack allocate the space.
3591 //
3592 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(I.getArraySize())) {
3593 if (I.getParent() == I.getParent()->getParent()->begin()) {
3594 TySize *= CUI->getValue(); // Get total allocated size...
3595 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
3596
3597 // Create a new stack object using the frame manager...
3598 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003599 addFrameReference(BuildMI(BB, X86::LEA32r, 5, getReg(I)), FrameIdx);
Chris Lattner065faeb2002-12-28 20:24:02 +00003600 return;
3601 }
3602 }
3603
3604 // Create a register to hold the temporary result of multiplying the type size
3605 // constant by the variable amount.
3606 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3607 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00003608
3609 // TotalSizeReg = mul <numelements>, <TypeSize>
3610 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003611 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003612
3613 // AddedSize = add <TotalSizeReg>, 15
3614 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003615 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003616
3617 // AlignedSize = and <AddedSize>, ~15
3618 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003619 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003620
Brian Gaekee48ec012002-12-13 06:46:31 +00003621 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003622 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003623
Brian Gaekee48ec012002-12-13 06:46:31 +00003624 // Put a pointer to the space into the result register, by copying
3625 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003626 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00003627
Misha Brukman48196b32003-05-03 02:18:17 +00003628 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00003629 // object.
3630 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00003631}
Chris Lattner3e130a22003-01-13 00:32:26 +00003632
3633/// visitMallocInst - Malloc instructions are code generated into direct calls
3634/// to the library malloc.
3635///
3636void ISel::visitMallocInst(MallocInst &I) {
3637 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3638 unsigned Arg;
3639
3640 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3641 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3642 } else {
3643 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003644 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00003645 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003646 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00003647 }
3648
3649 std::vector<ValueRecord> Args;
3650 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3651 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003652 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003653 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
3654}
3655
3656
3657/// visitFreeInst - Free instructions are code gen'd to call the free libc
3658/// function.
3659///
3660void ISel::visitFreeInst(FreeInst &I) {
3661 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00003662 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00003663 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003664 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003665 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
3666}
3667
Chris Lattnerd281de22003-07-26 23:49:58 +00003668/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00003669/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00003670/// generated code sucks but the implementation is nice and simple.
3671///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00003672FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
3673 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00003674}