blob: 6f0e98d8258953b397fc7b79bdf36eb0806a29e4 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
Chris Lattner53f5aee2007-10-15 17:47:20 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
Duncan Sandsa9810f32007-10-16 09:56:48 +000031#include "llvm/ADT/SmallSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41 SDVTList Res = {VTs, NumVTs};
42 return Res;
43}
44
45//===----------------------------------------------------------------------===//
46// ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
Dale Johannesenc53301c2007-08-26 01:18:27 +000053bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
Dale Johannesen7f2c1d12007-08-25 22:10:57 +000054 return Value.bitwiseIsEqual(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000055}
56
Dale Johannesenbbe2b702007-08-30 00:23:21 +000057bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58 const APFloat& Val) {
59 // convert modifies in place, so make a copy.
60 APFloat Val2 = APFloat(Val);
61 switch (VT) {
62 default:
63 return false; // These can't be represented as floating point!
64
65 // FIXME rounding mode needs to be more flexible
66 case MVT::f32:
67 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69 APFloat::opOK;
70 case MVT::f64:
71 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72 &Val2.getSemantics() == &APFloat::IEEEdouble ||
73 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74 APFloat::opOK;
75 // TODO: Figure out how to test if we can use a shorter type instead!
76 case MVT::f80:
77 case MVT::f128:
78 case MVT::ppcf128:
79 return true;
80 }
81}
82
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083//===----------------------------------------------------------------------===//
84// ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90 // Look through a bit convert.
91 if (N->getOpcode() == ISD::BIT_CONVERT)
92 N = N->getOperand(0).Val;
93
94 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96 unsigned i = 0, e = N->getNumOperands();
97
98 // Skip over all of the undef values.
99 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100 ++i;
101
102 // Do not accept an all-undef vector.
103 if (i == e) return false;
104
105 // Do not accept build_vectors that aren't all constants or which have non-~0
106 // elements.
107 SDOperand NotZero = N->getOperand(i);
108 if (isa<ConstantSDNode>(NotZero)) {
109 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110 return false;
111 } else if (isa<ConstantFPSDNode>(NotZero)) {
112 MVT::ValueType VT = NotZero.getValueType();
113 if (VT== MVT::f64) {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000114 if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115 convertToAPInt().getZExtValue())) != (uint64_t)-1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 } else {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000118 if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119 getValueAPF().convertToAPInt().getZExtValue() !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120 (uint32_t)-1)
121 return false;
122 }
123 } else
124 return false;
125
126 // Okay, we have at least one ~0 value, check to see if the rest match or are
127 // undefs.
128 for (++i; i != e; ++i)
129 if (N->getOperand(i) != NotZero &&
130 N->getOperand(i).getOpcode() != ISD::UNDEF)
131 return false;
132 return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139 // Look through a bit convert.
140 if (N->getOpcode() == ISD::BIT_CONVERT)
141 N = N->getOperand(0).Val;
142
143 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145 unsigned i = 0, e = N->getNumOperands();
146
147 // Skip over all of the undef values.
148 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149 ++i;
150
151 // Do not accept an all-undef vector.
152 if (i == e) return false;
153
154 // Do not accept build_vectors that aren't all constants or which have non-~0
155 // elements.
156 SDOperand Zero = N->getOperand(i);
157 if (isa<ConstantSDNode>(Zero)) {
158 if (!cast<ConstantSDNode>(Zero)->isNullValue())
159 return false;
160 } else if (isa<ConstantFPSDNode>(Zero)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000161 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 return false;
163 } else
164 return false;
165
166 // Okay, we have at least one ~0 value, check to see if the rest match or are
167 // undefs.
168 for (++i; i != e; ++i)
169 if (N->getOperand(i) != Zero &&
170 N->getOperand(i).getOpcode() != ISD::UNDEF)
171 return false;
172 return true;
173}
174
Evan Cheng13d1c292008-01-31 09:59:15 +0000175/// isDebugLabel - Return true if the specified node represents a debug
176/// label (i.e. ISD::LABEL or TargetInstrInfo::LANEL node and third operand
177/// is 0).
178bool ISD::isDebugLabel(const SDNode *N) {
179 SDOperand Zero;
180 if (N->getOpcode() == ISD::LABEL)
181 Zero = N->getOperand(2);
182 else if (N->isTargetOpcode() &&
183 N->getTargetOpcode() == TargetInstrInfo::LABEL)
184 // Chain moved to last operand.
185 Zero = N->getOperand(1);
186 else
187 return false;
188 return isa<ConstantSDNode>(Zero) && cast<ConstantSDNode>(Zero)->isNullValue();
189}
190
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
192/// when given the operation for (X op Y).
193ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
194 // To perform this operation, we just need to swap the L and G bits of the
195 // operation.
196 unsigned OldL = (Operation >> 2) & 1;
197 unsigned OldG = (Operation >> 1) & 1;
198 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
199 (OldL << 1) | // New G bit
200 (OldG << 2)); // New L bit.
201}
202
203/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
204/// 'op' is a valid SetCC operation.
205ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
206 unsigned Operation = Op;
207 if (isInteger)
208 Operation ^= 7; // Flip L, G, E bits, but not U.
209 else
210 Operation ^= 15; // Flip all of the condition bits.
211 if (Operation > ISD::SETTRUE2)
212 Operation &= ~8; // Don't let N and U bits get set.
213 return ISD::CondCode(Operation);
214}
215
216
217/// isSignedOp - For an integer comparison, return 1 if the comparison is a
218/// signed operation and 2 if the result is an unsigned comparison. Return zero
219/// if the operation does not depend on the sign of the input (setne and seteq).
220static int isSignedOp(ISD::CondCode Opcode) {
221 switch (Opcode) {
222 default: assert(0 && "Illegal integer setcc operation!");
223 case ISD::SETEQ:
224 case ISD::SETNE: return 0;
225 case ISD::SETLT:
226 case ISD::SETLE:
227 case ISD::SETGT:
228 case ISD::SETGE: return 1;
229 case ISD::SETULT:
230 case ISD::SETULE:
231 case ISD::SETUGT:
232 case ISD::SETUGE: return 2;
233 }
234}
235
236/// getSetCCOrOperation - Return the result of a logical OR between different
237/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
238/// returns SETCC_INVALID if it is not possible to represent the resultant
239/// comparison.
240ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
241 bool isInteger) {
242 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
243 // Cannot fold a signed integer setcc with an unsigned integer setcc.
244 return ISD::SETCC_INVALID;
245
246 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
247
248 // If the N and U bits get set then the resultant comparison DOES suddenly
249 // care about orderedness, and is true when ordered.
250 if (Op > ISD::SETTRUE2)
251 Op &= ~16; // Clear the U bit if the N bit is set.
252
253 // Canonicalize illegal integer setcc's.
254 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
255 Op = ISD::SETNE;
256
257 return ISD::CondCode(Op);
258}
259
260/// getSetCCAndOperation - Return the result of a logical AND between different
261/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
262/// function returns zero if it is not possible to represent the resultant
263/// comparison.
264ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
265 bool isInteger) {
266 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
267 // Cannot fold a signed setcc with an unsigned setcc.
268 return ISD::SETCC_INVALID;
269
270 // Combine all of the condition bits.
271 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
272
273 // Canonicalize illegal integer setcc's.
274 if (isInteger) {
275 switch (Result) {
276 default: break;
277 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
278 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
279 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
280 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
281 }
282 }
283
284 return Result;
285}
286
287const TargetMachine &SelectionDAG::getTarget() const {
288 return TLI.getTargetMachine();
289}
290
291//===----------------------------------------------------------------------===//
292// SDNode Profile Support
293//===----------------------------------------------------------------------===//
294
295/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
296///
297static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
298 ID.AddInteger(OpC);
299}
300
301/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
302/// solely with their pointer.
303void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
304 ID.AddPointer(VTList.VTs);
305}
306
307/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
308///
309static void AddNodeIDOperands(FoldingSetNodeID &ID,
310 const SDOperand *Ops, unsigned NumOps) {
311 for (; NumOps; --NumOps, ++Ops) {
312 ID.AddPointer(Ops->Val);
313 ID.AddInteger(Ops->ResNo);
314 }
315}
316
317static void AddNodeIDNode(FoldingSetNodeID &ID,
318 unsigned short OpC, SDVTList VTList,
319 const SDOperand *OpList, unsigned N) {
320 AddNodeIDOpcode(ID, OpC);
321 AddNodeIDValueTypes(ID, VTList);
322 AddNodeIDOperands(ID, OpList, N);
323}
324
325/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
326/// data.
327static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
328 AddNodeIDOpcode(ID, N->getOpcode());
329 // Add the return value info.
330 AddNodeIDValueTypes(ID, N->getVTList());
331 // Add the operand info.
332 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
333
334 // Handle SDNode leafs with special info.
335 switch (N->getOpcode()) {
336 default: break; // Normal nodes don't need extra info.
337 case ISD::TargetConstant:
338 case ISD::Constant:
339 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
340 break;
341 case ISD::TargetConstantFP:
Dale Johannesendf8a8312007-08-31 04:03:46 +0000342 case ISD::ConstantFP: {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000343 ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344 break;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000345 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000346 case ISD::TargetGlobalAddress:
347 case ISD::GlobalAddress:
348 case ISD::TargetGlobalTLSAddress:
349 case ISD::GlobalTLSAddress: {
350 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
351 ID.AddPointer(GA->getGlobal());
352 ID.AddInteger(GA->getOffset());
353 break;
354 }
355 case ISD::BasicBlock:
356 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
357 break;
358 case ISD::Register:
359 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
360 break;
Evan Cheng36ddaf22008-01-31 21:00:00 +0000361 case ISD::SRCVALUE: {
362 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
363 ID.AddPointer(SV->getValue());
364 ID.AddInteger(SV->getOffset());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000365 break;
366 }
367 case ISD::FrameIndex:
368 case ISD::TargetFrameIndex:
369 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
370 break;
371 case ISD::JumpTable:
372 case ISD::TargetJumpTable:
373 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
374 break;
375 case ISD::ConstantPool:
376 case ISD::TargetConstantPool: {
377 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
378 ID.AddInteger(CP->getAlignment());
379 ID.AddInteger(CP->getOffset());
380 if (CP->isMachineConstantPoolEntry())
381 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
382 else
383 ID.AddPointer(CP->getConstVal());
384 break;
385 }
386 case ISD::LOAD: {
387 LoadSDNode *LD = cast<LoadSDNode>(N);
388 ID.AddInteger(LD->getAddressingMode());
389 ID.AddInteger(LD->getExtensionType());
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000390 ID.AddInteger((unsigned int)(LD->getMemoryVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000391 ID.AddInteger(LD->getAlignment());
392 ID.AddInteger(LD->isVolatile());
393 break;
394 }
395 case ISD::STORE: {
396 StoreSDNode *ST = cast<StoreSDNode>(N);
397 ID.AddInteger(ST->getAddressingMode());
398 ID.AddInteger(ST->isTruncatingStore());
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000399 ID.AddInteger((unsigned int)(ST->getMemoryVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 ID.AddInteger(ST->getAlignment());
401 ID.AddInteger(ST->isVolatile());
402 break;
403 }
404 }
405}
406
407//===----------------------------------------------------------------------===//
408// SelectionDAG Class
409//===----------------------------------------------------------------------===//
410
411/// RemoveDeadNodes - This method deletes all unreachable nodes in the
412/// SelectionDAG.
413void SelectionDAG::RemoveDeadNodes() {
414 // Create a dummy node (which is not added to allnodes), that adds a reference
415 // to the root node, preventing it from being deleted.
416 HandleSDNode Dummy(getRoot());
417
418 SmallVector<SDNode*, 128> DeadNodes;
419
420 // Add all obviously-dead nodes to the DeadNodes worklist.
421 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
422 if (I->use_empty())
423 DeadNodes.push_back(I);
424
425 // Process the worklist, deleting the nodes and adding their uses to the
426 // worklist.
427 while (!DeadNodes.empty()) {
428 SDNode *N = DeadNodes.back();
429 DeadNodes.pop_back();
430
431 // Take the node out of the appropriate CSE map.
432 RemoveNodeFromCSEMaps(N);
433
434 // Next, brutally remove the operand list. This is safe to do, as there are
435 // no cycles in the graph.
436 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
437 SDNode *Operand = I->Val;
438 Operand->removeUser(N);
439
440 // Now that we removed this operand, see if there are no uses of it left.
441 if (Operand->use_empty())
442 DeadNodes.push_back(Operand);
443 }
444 if (N->OperandsNeedDelete)
445 delete[] N->OperandList;
446 N->OperandList = 0;
447 N->NumOperands = 0;
448
449 // Finally, remove N itself.
450 AllNodes.erase(N);
451 }
452
453 // If the root changed (e.g. it was a dead load, update the root).
454 setRoot(Dummy.getValue());
455}
456
457void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
458 SmallVector<SDNode*, 16> DeadNodes;
459 DeadNodes.push_back(N);
460
461 // Process the worklist, deleting the nodes and adding their uses to the
462 // worklist.
463 while (!DeadNodes.empty()) {
464 SDNode *N = DeadNodes.back();
465 DeadNodes.pop_back();
466
467 // Take the node out of the appropriate CSE map.
468 RemoveNodeFromCSEMaps(N);
469
470 // Next, brutally remove the operand list. This is safe to do, as there are
471 // no cycles in the graph.
472 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
473 SDNode *Operand = I->Val;
474 Operand->removeUser(N);
475
476 // Now that we removed this operand, see if there are no uses of it left.
477 if (Operand->use_empty())
478 DeadNodes.push_back(Operand);
479 }
480 if (N->OperandsNeedDelete)
481 delete[] N->OperandList;
482 N->OperandList = 0;
483 N->NumOperands = 0;
484
485 // Finally, remove N itself.
486 Deleted.push_back(N);
487 AllNodes.erase(N);
488 }
489}
490
491void SelectionDAG::DeleteNode(SDNode *N) {
492 assert(N->use_empty() && "Cannot delete a node that is not dead!");
493
494 // First take this out of the appropriate CSE map.
495 RemoveNodeFromCSEMaps(N);
496
497 // Finally, remove uses due to operands of this node, remove from the
498 // AllNodes list, and delete the node.
499 DeleteNodeNotInCSEMaps(N);
500}
501
502void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
503
504 // Remove it from the AllNodes list.
505 AllNodes.remove(N);
506
507 // Drop all of the operands and decrement used nodes use counts.
508 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
509 I->Val->removeUser(N);
510 if (N->OperandsNeedDelete)
511 delete[] N->OperandList;
512 N->OperandList = 0;
513 N->NumOperands = 0;
514
515 delete N;
516}
517
518/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
519/// correspond to it. This is useful when we're about to delete or repurpose
520/// the node. We don't want future request for structurally identical nodes
521/// to return N anymore.
522void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
523 bool Erased = false;
524 switch (N->getOpcode()) {
525 case ISD::HANDLENODE: return; // noop.
526 case ISD::STRING:
527 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
528 break;
529 case ISD::CONDCODE:
530 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
531 "Cond code doesn't exist!");
532 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
533 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
534 break;
535 case ISD::ExternalSymbol:
536 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
537 break;
538 case ISD::TargetExternalSymbol:
539 Erased =
540 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
541 break;
Duncan Sandsd7307a92007-10-17 13:49:58 +0000542 case ISD::VALUETYPE: {
543 MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
544 if (MVT::isExtendedVT(VT)) {
545 Erased = ExtendedValueTypeNodes.erase(VT);
546 } else {
547 Erased = ValueTypeNodes[VT] != 0;
548 ValueTypeNodes[VT] = 0;
549 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000550 break;
Duncan Sandsd7307a92007-10-17 13:49:58 +0000551 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000552 default:
553 // Remove it from the CSE Map.
554 Erased = CSEMap.RemoveNode(N);
555 break;
556 }
557#ifndef NDEBUG
558 // Verify that the node was actually in one of the CSE maps, unless it has a
559 // flag result (which cannot be CSE'd) or is one of the special cases that are
560 // not subject to CSE.
561 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
562 !N->isTargetOpcode()) {
563 N->dump(this);
564 cerr << "\n";
565 assert(0 && "Node is not in map!");
566 }
567#endif
568}
569
570/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
571/// has been taken out and modified in some way. If the specified node already
572/// exists in the CSE maps, do not modify the maps, but return the existing node
573/// instead. If it doesn't exist, add it and return null.
574///
575SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
576 assert(N->getNumOperands() && "This is a leaf node!");
577 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
578 return 0; // Never add these nodes.
579
580 // Check that remaining values produced are not flags.
581 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
582 if (N->getValueType(i) == MVT::Flag)
583 return 0; // Never CSE anything that produces a flag.
584
585 SDNode *New = CSEMap.GetOrInsertNode(N);
586 if (New != N) return New; // Node already existed.
587 return 0;
588}
589
590/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
591/// were replaced with those specified. If this node is never memoized,
592/// return null, otherwise return a pointer to the slot it would take. If a
593/// node already exists with these operands, the slot will be non-null.
594SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
595 void *&InsertPos) {
596 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
597 return 0; // Never add these nodes.
598
599 // Check that remaining values produced are not flags.
600 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
601 if (N->getValueType(i) == MVT::Flag)
602 return 0; // Never CSE anything that produces a flag.
603
604 SDOperand Ops[] = { Op };
605 FoldingSetNodeID ID;
606 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
607 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
608}
609
610/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
611/// were replaced with those specified. If this node is never memoized,
612/// return null, otherwise return a pointer to the slot it would take. If a
613/// node already exists with these operands, the slot will be non-null.
614SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
615 SDOperand Op1, SDOperand Op2,
616 void *&InsertPos) {
617 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
618 return 0; // Never add these nodes.
619
620 // Check that remaining values produced are not flags.
621 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
622 if (N->getValueType(i) == MVT::Flag)
623 return 0; // Never CSE anything that produces a flag.
624
625 SDOperand Ops[] = { Op1, Op2 };
626 FoldingSetNodeID ID;
627 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
628 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
629}
630
631
632/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
633/// were replaced with those specified. If this node is never memoized,
634/// return null, otherwise return a pointer to the slot it would take. If a
635/// node already exists with these operands, the slot will be non-null.
636SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
637 const SDOperand *Ops,unsigned NumOps,
638 void *&InsertPos) {
639 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
640 return 0; // Never add these nodes.
641
642 // Check that remaining values produced are not flags.
643 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
644 if (N->getValueType(i) == MVT::Flag)
645 return 0; // Never CSE anything that produces a flag.
646
647 FoldingSetNodeID ID;
648 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
649
650 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
651 ID.AddInteger(LD->getAddressingMode());
652 ID.AddInteger(LD->getExtensionType());
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000653 ID.AddInteger((unsigned int)(LD->getMemoryVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654 ID.AddInteger(LD->getAlignment());
655 ID.AddInteger(LD->isVolatile());
656 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
657 ID.AddInteger(ST->getAddressingMode());
658 ID.AddInteger(ST->isTruncatingStore());
Dan Gohman9a4c92c2008-01-30 00:15:11 +0000659 ID.AddInteger((unsigned int)(ST->getMemoryVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660 ID.AddInteger(ST->getAlignment());
661 ID.AddInteger(ST->isVolatile());
662 }
663
664 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
665}
666
667
668SelectionDAG::~SelectionDAG() {
669 while (!AllNodes.empty()) {
670 SDNode *N = AllNodes.begin();
671 N->SetNextInBucket(0);
672 if (N->OperandsNeedDelete)
673 delete [] N->OperandList;
674 N->OperandList = 0;
675 N->NumOperands = 0;
676 AllNodes.pop_front();
677 }
678}
679
680SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
681 if (Op.getValueType() == VT) return Op;
682 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
683 return getNode(ISD::AND, Op.getValueType(), Op,
684 getConstant(Imm, Op.getValueType()));
685}
686
687SDOperand SelectionDAG::getString(const std::string &Val) {
688 StringSDNode *&N = StringNodes[Val];
689 if (!N) {
690 N = new StringSDNode(Val);
691 AllNodes.push_back(N);
692 }
693 return SDOperand(N, 0);
694}
695
696SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
697 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
Dan Gohman5b9d6412007-12-12 22:21:26 +0000698
699 MVT::ValueType EltVT =
700 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000701
702 // Mask out any bits that are not valid for this constant.
Dan Gohman5b9d6412007-12-12 22:21:26 +0000703 Val &= MVT::getIntVTBitMask(EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704
705 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
706 FoldingSetNodeID ID;
Dan Gohman5b9d6412007-12-12 22:21:26 +0000707 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000708 ID.AddInteger(Val);
709 void *IP = 0;
Dan Gohman5b9d6412007-12-12 22:21:26 +0000710 SDNode *N = NULL;
711 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
712 if (!MVT::isVector(VT))
713 return SDOperand(N, 0);
714 if (!N) {
715 N = new ConstantSDNode(isT, Val, EltVT);
716 CSEMap.InsertNode(N, IP);
717 AllNodes.push_back(N);
718 }
719
720 SDOperand Result(N, 0);
721 if (MVT::isVector(VT)) {
722 SmallVector<SDOperand, 8> Ops;
723 Ops.assign(MVT::getVectorNumElements(VT), Result);
724 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
725 }
726 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727}
728
Chris Lattner5872a362008-01-17 07:00:52 +0000729SDOperand SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
730 return getConstant(Val, TLI.getPointerTy(), isTarget);
731}
732
733
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000734SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735 bool isTarget) {
736 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000737
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000738 MVT::ValueType EltVT =
739 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000740
741 // Do the map lookup using the actual bit pattern for the floating point
742 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
743 // we don't have issues with SNANs.
744 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
745 FoldingSetNodeID ID;
746 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000747 ID.AddAPFloat(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000748 void *IP = 0;
749 SDNode *N = NULL;
750 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
751 if (!MVT::isVector(VT))
752 return SDOperand(N, 0);
753 if (!N) {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000754 N = new ConstantFPSDNode(isTarget, V, EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000755 CSEMap.InsertNode(N, IP);
756 AllNodes.push_back(N);
757 }
758
759 SDOperand Result(N, 0);
760 if (MVT::isVector(VT)) {
761 SmallVector<SDOperand, 8> Ops;
762 Ops.assign(MVT::getVectorNumElements(VT), Result);
763 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
764 }
765 return Result;
766}
767
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000768SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
769 bool isTarget) {
770 MVT::ValueType EltVT =
771 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
772 if (EltVT==MVT::f32)
773 return getConstantFP(APFloat((float)Val), VT, isTarget);
774 else
775 return getConstantFP(APFloat(Val), VT, isTarget);
776}
777
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000778SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
779 MVT::ValueType VT, int Offset,
780 bool isTargetGA) {
781 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
782 unsigned Opc;
783 if (GVar && GVar->isThreadLocal())
784 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
785 else
786 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
787 FoldingSetNodeID ID;
788 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
789 ID.AddPointer(GV);
790 ID.AddInteger(Offset);
791 void *IP = 0;
792 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
793 return SDOperand(E, 0);
794 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
795 CSEMap.InsertNode(N, IP);
796 AllNodes.push_back(N);
797 return SDOperand(N, 0);
798}
799
800SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
801 bool isTarget) {
802 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
803 FoldingSetNodeID ID;
804 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
805 ID.AddInteger(FI);
806 void *IP = 0;
807 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
808 return SDOperand(E, 0);
809 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
810 CSEMap.InsertNode(N, IP);
811 AllNodes.push_back(N);
812 return SDOperand(N, 0);
813}
814
815SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
816 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
817 FoldingSetNodeID ID;
818 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
819 ID.AddInteger(JTI);
820 void *IP = 0;
821 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
822 return SDOperand(E, 0);
823 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
824 CSEMap.InsertNode(N, IP);
825 AllNodes.push_back(N);
826 return SDOperand(N, 0);
827}
828
829SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
830 unsigned Alignment, int Offset,
831 bool isTarget) {
832 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
833 FoldingSetNodeID ID;
834 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
835 ID.AddInteger(Alignment);
836 ID.AddInteger(Offset);
837 ID.AddPointer(C);
838 void *IP = 0;
839 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
840 return SDOperand(E, 0);
841 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
842 CSEMap.InsertNode(N, IP);
843 AllNodes.push_back(N);
844 return SDOperand(N, 0);
845}
846
847
848SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
849 MVT::ValueType VT,
850 unsigned Alignment, int Offset,
851 bool isTarget) {
852 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
853 FoldingSetNodeID ID;
854 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
855 ID.AddInteger(Alignment);
856 ID.AddInteger(Offset);
857 C->AddSelectionDAGCSEId(ID);
858 void *IP = 0;
859 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
860 return SDOperand(E, 0);
861 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
862 CSEMap.InsertNode(N, IP);
863 AllNodes.push_back(N);
864 return SDOperand(N, 0);
865}
866
867
868SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
869 FoldingSetNodeID ID;
870 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
871 ID.AddPointer(MBB);
872 void *IP = 0;
873 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
874 return SDOperand(E, 0);
875 SDNode *N = new BasicBlockSDNode(MBB);
876 CSEMap.InsertNode(N, IP);
877 AllNodes.push_back(N);
878 return SDOperand(N, 0);
879}
880
881SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
Duncan Sandsd7307a92007-10-17 13:49:58 +0000882 if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000883 ValueTypeNodes.resize(VT+1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884
Duncan Sandsd7307a92007-10-17 13:49:58 +0000885 SDNode *&N = MVT::isExtendedVT(VT) ?
886 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
887
888 if (N) return SDOperand(N, 0);
889 N = new VTSDNode(VT);
890 AllNodes.push_back(N);
891 return SDOperand(N, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000892}
893
894SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
895 SDNode *&N = ExternalSymbols[Sym];
896 if (N) return SDOperand(N, 0);
897 N = new ExternalSymbolSDNode(false, Sym, VT);
898 AllNodes.push_back(N);
899 return SDOperand(N, 0);
900}
901
902SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
903 MVT::ValueType VT) {
904 SDNode *&N = TargetExternalSymbols[Sym];
905 if (N) return SDOperand(N, 0);
906 N = new ExternalSymbolSDNode(true, Sym, VT);
907 AllNodes.push_back(N);
908 return SDOperand(N, 0);
909}
910
911SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
912 if ((unsigned)Cond >= CondCodeNodes.size())
913 CondCodeNodes.resize(Cond+1);
914
915 if (CondCodeNodes[Cond] == 0) {
916 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
917 AllNodes.push_back(CondCodeNodes[Cond]);
918 }
919 return SDOperand(CondCodeNodes[Cond], 0);
920}
921
922SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
923 FoldingSetNodeID ID;
924 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
925 ID.AddInteger(RegNo);
926 void *IP = 0;
927 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
928 return SDOperand(E, 0);
929 SDNode *N = new RegisterSDNode(RegNo, VT);
930 CSEMap.InsertNode(N, IP);
931 AllNodes.push_back(N);
932 return SDOperand(N, 0);
933}
934
Evan Cheng36ddaf22008-01-31 21:00:00 +0000935SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000936 assert((!V || isa<PointerType>(V->getType())) &&
937 "SrcValue is not a pointer?");
938
939 FoldingSetNodeID ID;
940 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
941 ID.AddPointer(V);
Evan Cheng36ddaf22008-01-31 21:00:00 +0000942 ID.AddInteger(Offset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 void *IP = 0;
944 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
945 return SDOperand(E, 0);
Evan Cheng36ddaf22008-01-31 21:00:00 +0000946 SDNode *N = new SrcValueSDNode(V, Offset);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000947 CSEMap.InsertNode(N, IP);
948 AllNodes.push_back(N);
949 return SDOperand(N, 0);
950}
951
Chris Lattner53f5aee2007-10-15 17:47:20 +0000952/// CreateStackTemporary - Create a stack temporary, suitable for holding the
953/// specified value type.
954SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
955 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
956 unsigned ByteSize = MVT::getSizeInBits(VT)/8;
957 const Type *Ty = MVT::getTypeForValueType(VT);
958 unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
959 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
960 return getFrameIndex(FrameIdx, TLI.getPointerTy());
961}
962
963
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
965 SDOperand N2, ISD::CondCode Cond) {
966 // These setcc operations always fold.
967 switch (Cond) {
968 default: break;
969 case ISD::SETFALSE:
970 case ISD::SETFALSE2: return getConstant(0, VT);
971 case ISD::SETTRUE:
972 case ISD::SETTRUE2: return getConstant(1, VT);
973
974 case ISD::SETOEQ:
975 case ISD::SETOGT:
976 case ISD::SETOGE:
977 case ISD::SETOLT:
978 case ISD::SETOLE:
979 case ISD::SETONE:
980 case ISD::SETO:
981 case ISD::SETUO:
982 case ISD::SETUEQ:
983 case ISD::SETUNE:
984 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
985 break;
986 }
987
988 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
989 uint64_t C2 = N2C->getValue();
990 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
991 uint64_t C1 = N1C->getValue();
992
993 // Sign extend the operands if required
994 if (ISD::isSignedIntSetCC(Cond)) {
995 C1 = N1C->getSignExtended();
996 C2 = N2C->getSignExtended();
997 }
998
999 switch (Cond) {
1000 default: assert(0 && "Unknown integer setcc!");
1001 case ISD::SETEQ: return getConstant(C1 == C2, VT);
1002 case ISD::SETNE: return getConstant(C1 != C2, VT);
1003 case ISD::SETULT: return getConstant(C1 < C2, VT);
1004 case ISD::SETUGT: return getConstant(C1 > C2, VT);
1005 case ISD::SETULE: return getConstant(C1 <= C2, VT);
1006 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
1007 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
1008 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
1009 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
1010 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
1011 }
1012 }
1013 }
1014 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
1015 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
Dale Johannesen80ca14c2007-10-14 01:56:47 +00001016 // No compile time operations on this type yet.
1017 if (N1C->getValueType(0) == MVT::ppcf128)
1018 return SDOperand();
Dale Johannesendf8a8312007-08-31 04:03:46 +00001019
1020 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001021 switch (Cond) {
Dale Johannesendf8a8312007-08-31 04:03:46 +00001022 default: break;
Dale Johannesen76844472007-08-31 17:03:33 +00001023 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1024 return getNode(ISD::UNDEF, VT);
1025 // fall through
1026 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1027 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1028 return getNode(ISD::UNDEF, VT);
1029 // fall through
1030 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001031 R==APFloat::cmpLessThan, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001032 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1033 return getNode(ISD::UNDEF, VT);
1034 // fall through
1035 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1036 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1037 return getNode(ISD::UNDEF, VT);
1038 // fall through
1039 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1040 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1041 return getNode(ISD::UNDEF, VT);
1042 // fall through
1043 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001044 R==APFloat::cmpEqual, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001045 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1046 return getNode(ISD::UNDEF, VT);
1047 // fall through
1048 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001049 R==APFloat::cmpEqual, VT);
1050 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1051 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1052 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1053 R==APFloat::cmpEqual, VT);
1054 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1055 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1056 R==APFloat::cmpLessThan, VT);
1057 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1058 R==APFloat::cmpUnordered, VT);
1059 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1060 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001061 }
1062 } else {
1063 // Ensure that the constant occurs on the RHS.
1064 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1065 }
1066
1067 // Could not fold it.
1068 return SDOperand();
1069}
1070
1071/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1072/// this predicate to simplify operations downstream. Mask is known to be zero
1073/// for bits that V cannot have.
1074bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1075 unsigned Depth) const {
1076 // The masks are not wide enough to represent this type! Should use APInt.
1077 if (Op.getValueType() == MVT::i128)
1078 return false;
1079
1080 uint64_t KnownZero, KnownOne;
1081 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1082 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1083 return (KnownZero & Mask) == Mask;
1084}
1085
1086/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1087/// known to be either zero or one and return them in the KnownZero/KnownOne
1088/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1089/// processing.
1090void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1091 uint64_t &KnownZero, uint64_t &KnownOne,
1092 unsigned Depth) const {
1093 KnownZero = KnownOne = 0; // Don't know anything.
1094 if (Depth == 6 || Mask == 0)
1095 return; // Limit search depth.
1096
1097 // The masks are not wide enough to represent this type! Should use APInt.
1098 if (Op.getValueType() == MVT::i128)
1099 return;
1100
1101 uint64_t KnownZero2, KnownOne2;
1102
1103 switch (Op.getOpcode()) {
1104 case ISD::Constant:
1105 // We know all of the bits for a constant!
1106 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1107 KnownZero = ~KnownOne & Mask;
1108 return;
1109 case ISD::AND:
1110 // If either the LHS or the RHS are Zero, the result is zero.
1111 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1112 Mask &= ~KnownZero;
1113 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1114 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1115 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1116
1117 // Output known-1 bits are only known if set in both the LHS & RHS.
1118 KnownOne &= KnownOne2;
1119 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1120 KnownZero |= KnownZero2;
1121 return;
1122 case ISD::OR:
1123 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1124 Mask &= ~KnownOne;
1125 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1126 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1127 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1128
1129 // Output known-0 bits are only known if clear in both the LHS & RHS.
1130 KnownZero &= KnownZero2;
1131 // Output known-1 are known to be set if set in either the LHS | RHS.
1132 KnownOne |= KnownOne2;
1133 return;
1134 case ISD::XOR: {
1135 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1136 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1137 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1138 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1139
1140 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1141 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1142 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1143 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1144 KnownZero = KnownZeroOut;
1145 return;
1146 }
1147 case ISD::SELECT:
1148 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1149 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1150 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1151 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1152
1153 // Only known if known in both the LHS and RHS.
1154 KnownOne &= KnownOne2;
1155 KnownZero &= KnownZero2;
1156 return;
1157 case ISD::SELECT_CC:
1158 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1159 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1160 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1161 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1162
1163 // Only known if known in both the LHS and RHS.
1164 KnownOne &= KnownOne2;
1165 KnownZero &= KnownZero2;
1166 return;
1167 case ISD::SETCC:
1168 // If we know the result of a setcc has the top bits zero, use this info.
1169 if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1170 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1171 return;
1172 case ISD::SHL:
1173 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1174 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1175 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1176 KnownZero, KnownOne, Depth+1);
1177 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1178 KnownZero <<= SA->getValue();
1179 KnownOne <<= SA->getValue();
1180 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
1181 }
1182 return;
1183 case ISD::SRL:
1184 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1185 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1186 MVT::ValueType VT = Op.getValueType();
1187 unsigned ShAmt = SA->getValue();
1188
1189 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1190 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1191 KnownZero, KnownOne, Depth+1);
1192 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1193 KnownZero &= TypeMask;
1194 KnownOne &= TypeMask;
1195 KnownZero >>= ShAmt;
1196 KnownOne >>= ShAmt;
1197
1198 uint64_t HighBits = (1ULL << ShAmt)-1;
1199 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1200 KnownZero |= HighBits; // High bits known zero.
1201 }
1202 return;
1203 case ISD::SRA:
1204 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1205 MVT::ValueType VT = Op.getValueType();
1206 unsigned ShAmt = SA->getValue();
1207
1208 // Compute the new bits that are at the top now.
1209 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1210
1211 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1212 // If any of the demanded bits are produced by the sign extension, we also
1213 // demand the input sign bit.
1214 uint64_t HighBits = (1ULL << ShAmt)-1;
1215 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1216 if (HighBits & Mask)
1217 InDemandedMask |= MVT::getIntVTSignBit(VT);
1218
1219 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1220 Depth+1);
1221 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1222 KnownZero &= TypeMask;
1223 KnownOne &= TypeMask;
1224 KnownZero >>= ShAmt;
1225 KnownOne >>= ShAmt;
1226
1227 // Handle the sign bits.
1228 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1229 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
1230
1231 if (KnownZero & SignBit) {
1232 KnownZero |= HighBits; // New bits are known zero.
1233 } else if (KnownOne & SignBit) {
1234 KnownOne |= HighBits; // New bits are known one.
1235 }
1236 }
1237 return;
1238 case ISD::SIGN_EXTEND_INREG: {
1239 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1240
1241 // Sign extension. Compute the demanded bits in the result that are not
1242 // present in the input.
1243 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1244
1245 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1246 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1247
1248 // If the sign extended bits are demanded, we know that the sign
1249 // bit is demanded.
1250 if (NewBits)
1251 InputDemandedBits |= InSignBit;
1252
1253 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1254 KnownZero, KnownOne, Depth+1);
1255 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1256
1257 // If the sign bit of the input is known set or clear, then we know the
1258 // top bits of the result.
1259 if (KnownZero & InSignBit) { // Input sign bit known clear
1260 KnownZero |= NewBits;
1261 KnownOne &= ~NewBits;
1262 } else if (KnownOne & InSignBit) { // Input sign bit known set
1263 KnownOne |= NewBits;
1264 KnownZero &= ~NewBits;
1265 } else { // Input sign bit unknown
1266 KnownZero &= ~NewBits;
1267 KnownOne &= ~NewBits;
1268 }
1269 return;
1270 }
1271 case ISD::CTTZ:
1272 case ISD::CTLZ:
1273 case ISD::CTPOP: {
1274 MVT::ValueType VT = Op.getValueType();
1275 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1276 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1277 KnownOne = 0;
1278 return;
1279 }
1280 case ISD::LOAD: {
1281 if (ISD::isZEXTLoad(Op.Val)) {
1282 LoadSDNode *LD = cast<LoadSDNode>(Op);
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001283 MVT::ValueType VT = LD->getMemoryVT();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001284 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1285 }
1286 return;
1287 }
1288 case ISD::ZERO_EXTEND: {
1289 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1290 uint64_t NewBits = (~InMask) & Mask;
1291 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1292 KnownOne, Depth+1);
1293 KnownZero |= NewBits & Mask;
1294 KnownOne &= ~NewBits;
1295 return;
1296 }
1297 case ISD::SIGN_EXTEND: {
1298 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1299 unsigned InBits = MVT::getSizeInBits(InVT);
1300 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1301 uint64_t InSignBit = 1ULL << (InBits-1);
1302 uint64_t NewBits = (~InMask) & Mask;
1303 uint64_t InDemandedBits = Mask & InMask;
1304
1305 // If any of the sign extended bits are demanded, we know that the sign
1306 // bit is demanded.
1307 if (NewBits & Mask)
1308 InDemandedBits |= InSignBit;
1309
1310 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1311 KnownOne, Depth+1);
1312 // If the sign bit is known zero or one, the top bits match.
1313 if (KnownZero & InSignBit) {
1314 KnownZero |= NewBits;
1315 KnownOne &= ~NewBits;
1316 } else if (KnownOne & InSignBit) {
1317 KnownOne |= NewBits;
1318 KnownZero &= ~NewBits;
1319 } else { // Otherwise, top bits aren't known.
1320 KnownOne &= ~NewBits;
1321 KnownZero &= ~NewBits;
1322 }
1323 return;
1324 }
1325 case ISD::ANY_EXTEND: {
1326 MVT::ValueType VT = Op.getOperand(0).getValueType();
1327 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1328 KnownZero, KnownOne, Depth+1);
1329 return;
1330 }
1331 case ISD::TRUNCATE: {
1332 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1333 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1334 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1335 KnownZero &= OutMask;
1336 KnownOne &= OutMask;
1337 break;
1338 }
1339 case ISD::AssertZext: {
1340 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1341 uint64_t InMask = MVT::getIntVTBitMask(VT);
1342 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1343 KnownOne, Depth+1);
1344 KnownZero |= (~InMask) & Mask;
1345 return;
1346 }
Chris Lattner13f06832007-12-22 21:26:52 +00001347 case ISD::FGETSIGN:
1348 // All bits are zero except the low bit.
1349 KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1350 return;
1351
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001352 case ISD::ADD: {
1353 // If either the LHS or the RHS are Zero, the result is zero.
1354 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1355 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1356 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1357 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1358
1359 // Output known-0 bits are known if clear or set in both the low clear bits
1360 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1361 // low 3 bits clear.
1362 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1363 CountTrailingZeros_64(~KnownZero2));
1364
1365 KnownZero = (1ULL << KnownZeroOut) - 1;
1366 KnownOne = 0;
1367 return;
1368 }
1369 case ISD::SUB: {
1370 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1371 if (!CLHS) return;
1372
1373 // We know that the top bits of C-X are clear if X contains less bits
1374 // than C (i.e. no wrap-around can happen). For example, 20-X is
1375 // positive if we can prove that X is >= 0 and < 16.
1376 MVT::ValueType VT = CLHS->getValueType(0);
1377 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1378 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1379 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1380 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1381 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1382
1383 // If all of the MaskV bits are known to be zero, then we know the output
1384 // top bits are zero, because we now know that the output is from [0-C].
1385 if ((KnownZero & MaskV) == MaskV) {
1386 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1387 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1388 KnownOne = 0; // No one bits known.
1389 } else {
1390 KnownZero = KnownOne = 0; // Otherwise, nothing known.
1391 }
1392 }
1393 return;
1394 }
1395 default:
1396 // Allow the target to implement this method for its nodes.
1397 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1398 case ISD::INTRINSIC_WO_CHAIN:
1399 case ISD::INTRINSIC_W_CHAIN:
1400 case ISD::INTRINSIC_VOID:
1401 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1402 }
1403 return;
1404 }
1405}
1406
1407/// ComputeNumSignBits - Return the number of times the sign bit of the
1408/// register is replicated into the other bits. We know that at least 1 bit
1409/// is always equal to the sign bit (itself), but other cases can give us
1410/// information. For example, immediately after an "SRA X, 2", we know that
1411/// the top 3 bits are all equal to each other, so we return 3.
1412unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1413 MVT::ValueType VT = Op.getValueType();
1414 assert(MVT::isInteger(VT) && "Invalid VT!");
1415 unsigned VTBits = MVT::getSizeInBits(VT);
1416 unsigned Tmp, Tmp2;
1417
1418 if (Depth == 6)
1419 return 1; // Limit search depth.
1420
1421 switch (Op.getOpcode()) {
1422 default: break;
1423 case ISD::AssertSext:
1424 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1425 return VTBits-Tmp+1;
1426 case ISD::AssertZext:
1427 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1428 return VTBits-Tmp;
1429
1430 case ISD::Constant: {
1431 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1432 // If negative, invert the bits, then look at it.
1433 if (Val & MVT::getIntVTSignBit(VT))
1434 Val = ~Val;
1435
1436 // Shift the bits so they are the leading bits in the int64_t.
1437 Val <<= 64-VTBits;
1438
1439 // Return # leading zeros. We use 'min' here in case Val was zero before
1440 // shifting. We don't want to return '64' as for an i32 "0".
1441 return std::min(VTBits, CountLeadingZeros_64(Val));
1442 }
1443
1444 case ISD::SIGN_EXTEND:
1445 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1446 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1447
1448 case ISD::SIGN_EXTEND_INREG:
1449 // Max of the input and what this extends.
1450 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1451 Tmp = VTBits-Tmp+1;
1452
1453 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1454 return std::max(Tmp, Tmp2);
1455
1456 case ISD::SRA:
1457 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1458 // SRA X, C -> adds C sign bits.
1459 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1460 Tmp += C->getValue();
1461 if (Tmp > VTBits) Tmp = VTBits;
1462 }
1463 return Tmp;
1464 case ISD::SHL:
1465 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1466 // shl destroys sign bits.
1467 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1468 if (C->getValue() >= VTBits || // Bad shift.
1469 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1470 return Tmp - C->getValue();
1471 }
1472 break;
1473 case ISD::AND:
1474 case ISD::OR:
1475 case ISD::XOR: // NOT is handled here.
1476 // Logical binary ops preserve the number of sign bits.
1477 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1478 if (Tmp == 1) return 1; // Early out.
1479 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1480 return std::min(Tmp, Tmp2);
1481
1482 case ISD::SELECT:
1483 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1484 if (Tmp == 1) return 1; // Early out.
1485 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1486 return std::min(Tmp, Tmp2);
1487
1488 case ISD::SETCC:
1489 // If setcc returns 0/-1, all bits are sign bits.
1490 if (TLI.getSetCCResultContents() ==
1491 TargetLowering::ZeroOrNegativeOneSetCCResult)
1492 return VTBits;
1493 break;
1494 case ISD::ROTL:
1495 case ISD::ROTR:
1496 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1497 unsigned RotAmt = C->getValue() & (VTBits-1);
1498
1499 // Handle rotate right by N like a rotate left by 32-N.
1500 if (Op.getOpcode() == ISD::ROTR)
1501 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1502
1503 // If we aren't rotating out all of the known-in sign bits, return the
1504 // number that are left. This handles rotl(sext(x), 1) for example.
1505 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1506 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1507 }
1508 break;
1509 case ISD::ADD:
1510 // Add can have at most one carry bit. Thus we know that the output
1511 // is, at worst, one more bit than the inputs.
1512 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1513 if (Tmp == 1) return 1; // Early out.
1514
1515 // Special case decrementing a value (ADD X, -1):
1516 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1517 if (CRHS->isAllOnesValue()) {
1518 uint64_t KnownZero, KnownOne;
1519 uint64_t Mask = MVT::getIntVTBitMask(VT);
1520 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1521
1522 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1523 // sign bits set.
1524 if ((KnownZero|1) == Mask)
1525 return VTBits;
1526
1527 // If we are subtracting one from a positive number, there is no carry
1528 // out of the result.
1529 if (KnownZero & MVT::getIntVTSignBit(VT))
1530 return Tmp;
1531 }
1532
1533 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1534 if (Tmp2 == 1) return 1;
1535 return std::min(Tmp, Tmp2)-1;
1536 break;
1537
1538 case ISD::SUB:
1539 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1540 if (Tmp2 == 1) return 1;
1541
1542 // Handle NEG.
1543 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1544 if (CLHS->getValue() == 0) {
1545 uint64_t KnownZero, KnownOne;
1546 uint64_t Mask = MVT::getIntVTBitMask(VT);
1547 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1548 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1549 // sign bits set.
1550 if ((KnownZero|1) == Mask)
1551 return VTBits;
1552
1553 // If the input is known to be positive (the sign bit is known clear),
1554 // the output of the NEG has the same number of sign bits as the input.
1555 if (KnownZero & MVT::getIntVTSignBit(VT))
1556 return Tmp2;
1557
1558 // Otherwise, we treat this like a SUB.
1559 }
1560
1561 // Sub can have at most one carry bit. Thus we know that the output
1562 // is, at worst, one more bit than the inputs.
1563 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1564 if (Tmp == 1) return 1; // Early out.
1565 return std::min(Tmp, Tmp2)-1;
1566 break;
1567 case ISD::TRUNCATE:
1568 // FIXME: it's tricky to do anything useful for this, but it is an important
1569 // case for targets like X86.
1570 break;
1571 }
1572
1573 // Handle LOADX separately here. EXTLOAD case will fallthrough.
1574 if (Op.getOpcode() == ISD::LOAD) {
1575 LoadSDNode *LD = cast<LoadSDNode>(Op);
1576 unsigned ExtType = LD->getExtensionType();
1577 switch (ExtType) {
1578 default: break;
1579 case ISD::SEXTLOAD: // '17' bits known
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001580 Tmp = MVT::getSizeInBits(LD->getMemoryVT());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001581 return VTBits-Tmp+1;
1582 case ISD::ZEXTLOAD: // '16' bits known
Dan Gohman9a4c92c2008-01-30 00:15:11 +00001583 Tmp = MVT::getSizeInBits(LD->getMemoryVT());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001584 return VTBits-Tmp;
1585 }
1586 }
1587
1588 // Allow the target to implement this method for its nodes.
1589 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1590 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1591 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1592 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1593 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1594 if (NumBits > 1) return NumBits;
1595 }
1596
1597 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1598 // use this information.
1599 uint64_t KnownZero, KnownOne;
1600 uint64_t Mask = MVT::getIntVTBitMask(VT);
1601 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1602
1603 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1604 if (KnownZero & SignBit) { // SignBit is 0
1605 Mask = KnownZero;
1606 } else if (KnownOne & SignBit) { // SignBit is 1;
1607 Mask = KnownOne;
1608 } else {
1609 // Nothing known.
1610 return 1;
1611 }
1612
1613 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1614 // the number of identical bits in the top of the input value.
1615 Mask ^= ~0ULL;
1616 Mask <<= 64-VTBits;
1617 // Return # leading zeros. We use 'min' here in case Val was zero before
1618 // shifting. We don't want to return '64' as for an i32 "0".
1619 return std::min(VTBits, CountLeadingZeros_64(Mask));
1620}
1621
1622
1623/// getNode - Gets or creates the specified node.
1624///
1625SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1626 FoldingSetNodeID ID;
1627 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1628 void *IP = 0;
1629 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1630 return SDOperand(E, 0);
1631 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1632 CSEMap.InsertNode(N, IP);
1633
1634 AllNodes.push_back(N);
1635 return SDOperand(N, 0);
1636}
1637
1638SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1639 SDOperand Operand) {
1640 unsigned Tmp1;
1641 // Constant fold unary operations with an integer constant operand.
1642 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1643 uint64_t Val = C->getValue();
1644 switch (Opcode) {
1645 default: break;
1646 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1647 case ISD::ANY_EXTEND:
1648 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1649 case ISD::TRUNCATE: return getConstant(Val, VT);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001650 case ISD::UINT_TO_FP:
1651 case ISD::SINT_TO_FP: {
1652 const uint64_t zero[] = {0, 0};
Dale Johannesenb89072e2007-10-16 23:38:29 +00001653 // No compile time operations on this type.
1654 if (VT==MVT::ppcf128)
1655 break;
Dale Johannesen958b08b2007-09-19 23:55:34 +00001656 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
Neil Booth4bdd45a2007-10-07 11:45:55 +00001657 (void)apf.convertFromZeroExtendedInteger(&Val,
Dale Johannesena6f79742007-09-21 22:09:37 +00001658 MVT::getSizeInBits(Operand.getValueType()),
1659 Opcode==ISD::SINT_TO_FP,
Dale Johannesen87fa68f2007-09-30 18:19:03 +00001660 APFloat::rmNearestTiesToEven);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001661 return getConstantFP(apf, VT);
1662 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001663 case ISD::BIT_CONVERT:
1664 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1665 return getConstantFP(BitsToFloat(Val), VT);
1666 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1667 return getConstantFP(BitsToDouble(Val), VT);
1668 break;
1669 case ISD::BSWAP:
1670 switch(VT) {
1671 default: assert(0 && "Invalid bswap!"); break;
1672 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1673 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1674 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1675 }
1676 break;
1677 case ISD::CTPOP:
1678 switch(VT) {
1679 default: assert(0 && "Invalid ctpop!"); break;
1680 case MVT::i1: return getConstant(Val != 0, VT);
1681 case MVT::i8:
1682 Tmp1 = (unsigned)Val & 0xFF;
1683 return getConstant(CountPopulation_32(Tmp1), VT);
1684 case MVT::i16:
1685 Tmp1 = (unsigned)Val & 0xFFFF;
1686 return getConstant(CountPopulation_32(Tmp1), VT);
1687 case MVT::i32:
1688 return getConstant(CountPopulation_32((unsigned)Val), VT);
1689 case MVT::i64:
1690 return getConstant(CountPopulation_64(Val), VT);
1691 }
1692 case ISD::CTLZ:
1693 switch(VT) {
1694 default: assert(0 && "Invalid ctlz!"); break;
1695 case MVT::i1: return getConstant(Val == 0, VT);
1696 case MVT::i8:
1697 Tmp1 = (unsigned)Val & 0xFF;
1698 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1699 case MVT::i16:
1700 Tmp1 = (unsigned)Val & 0xFFFF;
1701 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1702 case MVT::i32:
1703 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1704 case MVT::i64:
1705 return getConstant(CountLeadingZeros_64(Val), VT);
1706 }
1707 case ISD::CTTZ:
1708 switch(VT) {
1709 default: assert(0 && "Invalid cttz!"); break;
1710 case MVT::i1: return getConstant(Val == 0, VT);
1711 case MVT::i8:
1712 Tmp1 = (unsigned)Val | 0x100;
1713 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1714 case MVT::i16:
1715 Tmp1 = (unsigned)Val | 0x10000;
1716 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1717 case MVT::i32:
1718 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1719 case MVT::i64:
1720 return getConstant(CountTrailingZeros_64(Val), VT);
1721 }
1722 }
1723 }
1724
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001725 // Constant fold unary operations with a floating point constant operand.
1726 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1727 APFloat V = C->getValueAPF(); // make copy
Chris Lattner5872a362008-01-17 07:00:52 +00001728 if (VT != MVT::ppcf128 && Operand.getValueType() != MVT::ppcf128) {
Dale Johannesenb89072e2007-10-16 23:38:29 +00001729 switch (Opcode) {
1730 case ISD::FNEG:
1731 V.changeSign();
1732 return getConstantFP(V, VT);
1733 case ISD::FABS:
1734 V.clearSign();
1735 return getConstantFP(V, VT);
1736 case ISD::FP_ROUND:
1737 case ISD::FP_EXTEND:
1738 // This can return overflow, underflow, or inexact; we don't care.
1739 // FIXME need to be more flexible about rounding mode.
1740 (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1741 VT==MVT::f64 ? APFloat::IEEEdouble :
1742 VT==MVT::f80 ? APFloat::x87DoubleExtended :
1743 VT==MVT::f128 ? APFloat::IEEEquad :
1744 APFloat::Bogus,
1745 APFloat::rmNearestTiesToEven);
1746 return getConstantFP(V, VT);
1747 case ISD::FP_TO_SINT:
1748 case ISD::FP_TO_UINT: {
1749 integerPart x;
1750 assert(integerPartWidth >= 64);
1751 // FIXME need to be more flexible about rounding mode.
1752 APFloat::opStatus s = V.convertToInteger(&x, 64U,
1753 Opcode==ISD::FP_TO_SINT,
1754 APFloat::rmTowardZero);
1755 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
1756 break;
1757 return getConstant(x, VT);
1758 }
1759 case ISD::BIT_CONVERT:
1760 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1761 return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1762 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1763 return getConstant(V.convertToAPInt().getZExtValue(), VT);
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001764 break;
Dale Johannesenb89072e2007-10-16 23:38:29 +00001765 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001766 }
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001767 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768
1769 unsigned OpOpcode = Operand.Val->getOpcode();
1770 switch (Opcode) {
1771 case ISD::TokenFactor:
1772 return Operand; // Factor of one node? No factor.
Chris Lattner5872a362008-01-17 07:00:52 +00001773 case ISD::FP_ROUND: assert(0 && "Invalid method to make FP_ROUND node");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001774 case ISD::FP_EXTEND:
1775 assert(MVT::isFloatingPoint(VT) &&
1776 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
Chris Lattnerd3f56172008-01-16 17:59:31 +00001777 if (Operand.getValueType() == VT) return Operand; // noop conversion.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001778 break;
Chris Lattner5872a362008-01-17 07:00:52 +00001779 case ISD::SIGN_EXTEND:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001780 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1781 "Invalid SIGN_EXTEND!");
1782 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001783 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1784 && "Invalid sext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001785 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1786 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1787 break;
1788 case ISD::ZERO_EXTEND:
1789 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1790 "Invalid ZERO_EXTEND!");
1791 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001792 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1793 && "Invalid zext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1795 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1796 break;
1797 case ISD::ANY_EXTEND:
1798 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1799 "Invalid ANY_EXTEND!");
1800 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001801 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1802 && "Invalid anyext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001803 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1804 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1805 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1806 break;
1807 case ISD::TRUNCATE:
1808 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1809 "Invalid TRUNCATE!");
1810 if (Operand.getValueType() == VT) return Operand; // noop truncate
Duncan Sandsa9810f32007-10-16 09:56:48 +00001811 assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1812 && "Invalid truncate node, src < dst!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001813 if (OpOpcode == ISD::TRUNCATE)
1814 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1815 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1816 OpOpcode == ISD::ANY_EXTEND) {
1817 // If the source is smaller than the dest, we still need an extend.
Duncan Sandsa9810f32007-10-16 09:56:48 +00001818 if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1819 < MVT::getSizeInBits(VT))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001820 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
Duncan Sandsa9810f32007-10-16 09:56:48 +00001821 else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1822 > MVT::getSizeInBits(VT))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001823 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1824 else
1825 return Operand.Val->getOperand(0);
1826 }
1827 break;
1828 case ISD::BIT_CONVERT:
1829 // Basic sanity checking.
1830 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1831 && "Cannot BIT_CONVERT between types of different sizes!");
1832 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1833 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1834 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1835 if (OpOpcode == ISD::UNDEF)
1836 return getNode(ISD::UNDEF, VT);
1837 break;
1838 case ISD::SCALAR_TO_VECTOR:
1839 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1840 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1841 "Illegal SCALAR_TO_VECTOR node!");
1842 break;
1843 case ISD::FNEG:
1844 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1845 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1846 Operand.Val->getOperand(0));
1847 if (OpOpcode == ISD::FNEG) // --X -> X
1848 return Operand.Val->getOperand(0);
1849 break;
1850 case ISD::FABS:
1851 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1852 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1853 break;
1854 }
1855
1856 SDNode *N;
1857 SDVTList VTs = getVTList(VT);
1858 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1859 FoldingSetNodeID ID;
1860 SDOperand Ops[1] = { Operand };
1861 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1862 void *IP = 0;
1863 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1864 return SDOperand(E, 0);
1865 N = new UnarySDNode(Opcode, VTs, Operand);
1866 CSEMap.InsertNode(N, IP);
1867 } else {
1868 N = new UnarySDNode(Opcode, VTs, Operand);
1869 }
1870 AllNodes.push_back(N);
1871 return SDOperand(N, 0);
1872}
1873
1874
1875
1876SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1877 SDOperand N1, SDOperand N2) {
Chris Lattnercc126e32008-01-22 19:09:33 +00001878 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1879 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001880 switch (Opcode) {
Chris Lattnercc126e32008-01-22 19:09:33 +00001881 default: break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001882 case ISD::TokenFactor:
1883 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1884 N2.getValueType() == MVT::Other && "Invalid token factor!");
Chris Lattnercc126e32008-01-22 19:09:33 +00001885 // Fold trivial token factors.
1886 if (N1.getOpcode() == ISD::EntryToken) return N2;
1887 if (N2.getOpcode() == ISD::EntryToken) return N1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001888 break;
1889 case ISD::AND:
Chris Lattnercc126e32008-01-22 19:09:33 +00001890 assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1891 N1.getValueType() == VT && "Binary operator types must match!");
1892 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
1893 // worth handling here.
1894 if (N2C && N2C->getValue() == 0)
1895 return N2;
Chris Lattner8aa8a5e2008-01-26 01:05:42 +00001896 if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
1897 return N1;
Chris Lattnercc126e32008-01-22 19:09:33 +00001898 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001899 case ISD::OR:
1900 case ISD::XOR:
Chris Lattnercc126e32008-01-22 19:09:33 +00001901 assert(MVT::isInteger(VT) && N1.getValueType() == N2.getValueType() &&
1902 N1.getValueType() == VT && "Binary operator types must match!");
1903 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
1904 // worth handling here.
1905 if (N2C && N2C->getValue() == 0)
1906 return N1;
1907 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001908 case ISD::UDIV:
1909 case ISD::UREM:
1910 case ISD::MULHU:
1911 case ISD::MULHS:
1912 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1913 // fall through
1914 case ISD::ADD:
1915 case ISD::SUB:
1916 case ISD::MUL:
1917 case ISD::SDIV:
1918 case ISD::SREM:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001919 case ISD::FADD:
1920 case ISD::FSUB:
1921 case ISD::FMUL:
1922 case ISD::FDIV:
1923 case ISD::FREM:
1924 assert(N1.getValueType() == N2.getValueType() &&
1925 N1.getValueType() == VT && "Binary operator types must match!");
1926 break;
1927 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1928 assert(N1.getValueType() == VT &&
1929 MVT::isFloatingPoint(N1.getValueType()) &&
1930 MVT::isFloatingPoint(N2.getValueType()) &&
1931 "Invalid FCOPYSIGN!");
1932 break;
1933 case ISD::SHL:
1934 case ISD::SRA:
1935 case ISD::SRL:
1936 case ISD::ROTL:
1937 case ISD::ROTR:
1938 assert(VT == N1.getValueType() &&
1939 "Shift operators return type must be the same as their first arg");
1940 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1941 VT != MVT::i1 && "Shifts only work on integers");
1942 break;
1943 case ISD::FP_ROUND_INREG: {
1944 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1945 assert(VT == N1.getValueType() && "Not an inreg round!");
1946 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1947 "Cannot FP_ROUND_INREG integer types");
Duncan Sandsa9810f32007-10-16 09:56:48 +00001948 assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1949 "Not rounding down!");
Chris Lattnercc126e32008-01-22 19:09:33 +00001950 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001951 break;
1952 }
Chris Lattner5872a362008-01-17 07:00:52 +00001953 case ISD::FP_ROUND:
1954 assert(MVT::isFloatingPoint(VT) &&
1955 MVT::isFloatingPoint(N1.getValueType()) &&
1956 MVT::getSizeInBits(VT) <= MVT::getSizeInBits(N1.getValueType()) &&
1957 isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
Chris Lattnercc126e32008-01-22 19:09:33 +00001958 if (N1.getValueType() == VT) return N1; // noop conversion.
Chris Lattner5872a362008-01-17 07:00:52 +00001959 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001960 case ISD::AssertSext:
Chris Lattnercc126e32008-01-22 19:09:33 +00001961 case ISD::AssertZext: {
1962 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1963 assert(VT == N1.getValueType() && "Not an inreg extend!");
1964 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1965 "Cannot *_EXTEND_INREG FP types");
1966 assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1967 "Not extending!");
1968 break;
1969 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001970 case ISD::SIGN_EXTEND_INREG: {
1971 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1972 assert(VT == N1.getValueType() && "Not an inreg extend!");
1973 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1974 "Cannot *_EXTEND_INREG FP types");
Duncan Sandsa9810f32007-10-16 09:56:48 +00001975 assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1976 "Not extending!");
Chris Lattnercc126e32008-01-22 19:09:33 +00001977 if (EVT == VT) return N1; // Not actually extending
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001978
Chris Lattnercc126e32008-01-22 19:09:33 +00001979 if (N1C) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001980 int64_t Val = N1C->getValue();
1981 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1982 Val <<= 64-FromBits;
1983 Val >>= 64-FromBits;
1984 return getConstant(Val, VT);
1985 }
Chris Lattnercc126e32008-01-22 19:09:33 +00001986 break;
1987 }
1988 case ISD::EXTRACT_VECTOR_ELT:
1989 assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
1990
1991 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
1992 // expanding copies of large vectors from registers.
1993 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
1994 N1.getNumOperands() > 0) {
1995 unsigned Factor =
1996 MVT::getVectorNumElements(N1.getOperand(0).getValueType());
1997 return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
1998 N1.getOperand(N2C->getValue() / Factor),
1999 getConstant(N2C->getValue() % Factor, N2.getValueType()));
2000 }
2001
2002 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2003 // expanding large vector constants.
2004 if (N1.getOpcode() == ISD::BUILD_VECTOR)
2005 return N1.getOperand(N2C->getValue());
2006
2007 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2008 // operations are lowered to scalars.
2009 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2010 if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2011 if (IEC == N2C)
2012 return N1.getOperand(1);
2013 else
2014 return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2015 }
2016 break;
2017 case ISD::EXTRACT_ELEMENT:
2018 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002019
Chris Lattnercc126e32008-01-22 19:09:33 +00002020 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2021 // 64-bit integers into 32-bit parts. Instead of building the extract of
2022 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2023 if (N1.getOpcode() == ISD::BUILD_PAIR)
2024 return N1.getOperand(N2C->getValue());
2025
2026 // EXTRACT_ELEMENT of a constant int is also very common.
2027 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2028 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2029 return getConstant(C->getValue() >> Shift, VT);
2030 }
2031 break;
2032 }
2033
2034 if (N1C) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002035 if (N2C) {
2036 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
2037 switch (Opcode) {
2038 case ISD::ADD: return getConstant(C1 + C2, VT);
2039 case ISD::SUB: return getConstant(C1 - C2, VT);
2040 case ISD::MUL: return getConstant(C1 * C2, VT);
2041 case ISD::UDIV:
2042 if (C2) return getConstant(C1 / C2, VT);
2043 break;
2044 case ISD::UREM :
2045 if (C2) return getConstant(C1 % C2, VT);
2046 break;
2047 case ISD::SDIV :
2048 if (C2) return getConstant(N1C->getSignExtended() /
2049 N2C->getSignExtended(), VT);
2050 break;
2051 case ISD::SREM :
2052 if (C2) return getConstant(N1C->getSignExtended() %
2053 N2C->getSignExtended(), VT);
2054 break;
2055 case ISD::AND : return getConstant(C1 & C2, VT);
2056 case ISD::OR : return getConstant(C1 | C2, VT);
2057 case ISD::XOR : return getConstant(C1 ^ C2, VT);
2058 case ISD::SHL : return getConstant(C1 << C2, VT);
2059 case ISD::SRL : return getConstant(C1 >> C2, VT);
2060 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
2061 case ISD::ROTL :
2062 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
2063 VT);
2064 case ISD::ROTR :
2065 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
2066 VT);
2067 default: break;
2068 }
2069 } else { // Cannonicalize constant to RHS if commutative
2070 if (isCommutativeBinOp(Opcode)) {
2071 std::swap(N1C, N2C);
2072 std::swap(N1, N2);
2073 }
2074 }
2075 }
2076
Chris Lattnercc126e32008-01-22 19:09:33 +00002077 // Constant fold FP operations.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002078 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
2079 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
2080 if (N1CFP) {
Chris Lattnercc126e32008-01-22 19:09:33 +00002081 if (!N2CFP && isCommutativeBinOp(Opcode)) {
2082 // Cannonicalize constant to RHS if commutative
2083 std::swap(N1CFP, N2CFP);
2084 std::swap(N1, N2);
2085 } else if (N2CFP && VT != MVT::ppcf128) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002086 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
2087 APFloat::opStatus s;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002088 switch (Opcode) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002089 case ISD::FADD:
2090 s = V1.add(V2, APFloat::rmNearestTiesToEven);
Chris Lattnercc126e32008-01-22 19:09:33 +00002091 if (s != APFloat::opInvalidOp)
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002092 return getConstantFP(V1, VT);
2093 break;
2094 case ISD::FSUB:
2095 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
2096 if (s!=APFloat::opInvalidOp)
2097 return getConstantFP(V1, VT);
2098 break;
2099 case ISD::FMUL:
2100 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
2101 if (s!=APFloat::opInvalidOp)
2102 return getConstantFP(V1, VT);
2103 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002104 case ISD::FDIV:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002105 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2106 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2107 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108 break;
2109 case ISD::FREM :
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002110 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2111 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2112 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002113 break;
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002114 case ISD::FCOPYSIGN:
2115 V1.copySign(V2);
2116 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002117 default: break;
2118 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002119 }
2120 }
2121
2122 // Canonicalize an UNDEF to the RHS, even over a constant.
2123 if (N1.getOpcode() == ISD::UNDEF) {
2124 if (isCommutativeBinOp(Opcode)) {
2125 std::swap(N1, N2);
2126 } else {
2127 switch (Opcode) {
2128 case ISD::FP_ROUND_INREG:
2129 case ISD::SIGN_EXTEND_INREG:
2130 case ISD::SUB:
2131 case ISD::FSUB:
2132 case ISD::FDIV:
2133 case ISD::FREM:
2134 case ISD::SRA:
2135 return N1; // fold op(undef, arg2) -> undef
2136 case ISD::UDIV:
2137 case ISD::SDIV:
2138 case ISD::UREM:
2139 case ISD::SREM:
2140 case ISD::SRL:
2141 case ISD::SHL:
2142 if (!MVT::isVector(VT))
2143 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2144 // For vectors, we can't easily build an all zero vector, just return
2145 // the LHS.
2146 return N2;
2147 }
2148 }
2149 }
2150
2151 // Fold a bunch of operators when the RHS is undef.
2152 if (N2.getOpcode() == ISD::UNDEF) {
2153 switch (Opcode) {
2154 case ISD::ADD:
2155 case ISD::ADDC:
2156 case ISD::ADDE:
2157 case ISD::SUB:
2158 case ISD::FADD:
2159 case ISD::FSUB:
2160 case ISD::FMUL:
2161 case ISD::FDIV:
2162 case ISD::FREM:
2163 case ISD::UDIV:
2164 case ISD::SDIV:
2165 case ISD::UREM:
2166 case ISD::SREM:
2167 case ISD::XOR:
2168 return N2; // fold op(arg1, undef) -> undef
2169 case ISD::MUL:
2170 case ISD::AND:
2171 case ISD::SRL:
2172 case ISD::SHL:
2173 if (!MVT::isVector(VT))
2174 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2175 // For vectors, we can't easily build an all zero vector, just return
2176 // the LHS.
2177 return N1;
2178 case ISD::OR:
2179 if (!MVT::isVector(VT))
2180 return getConstant(MVT::getIntVTBitMask(VT), VT);
2181 // For vectors, we can't easily build an all one vector, just return
2182 // the LHS.
2183 return N1;
2184 case ISD::SRA:
2185 return N1;
2186 }
2187 }
2188
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002189 // Memoize this node if possible.
2190 SDNode *N;
2191 SDVTList VTs = getVTList(VT);
2192 if (VT != MVT::Flag) {
2193 SDOperand Ops[] = { N1, N2 };
2194 FoldingSetNodeID ID;
2195 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2196 void *IP = 0;
2197 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2198 return SDOperand(E, 0);
2199 N = new BinarySDNode(Opcode, VTs, N1, N2);
2200 CSEMap.InsertNode(N, IP);
2201 } else {
2202 N = new BinarySDNode(Opcode, VTs, N1, N2);
2203 }
2204
2205 AllNodes.push_back(N);
2206 return SDOperand(N, 0);
2207}
2208
2209SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2210 SDOperand N1, SDOperand N2, SDOperand N3) {
2211 // Perform various simplifications.
2212 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2213 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2214 switch (Opcode) {
2215 case ISD::SETCC: {
2216 // Use FoldSetCC to simplify SETCC's.
2217 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2218 if (Simp.Val) return Simp;
2219 break;
2220 }
2221 case ISD::SELECT:
2222 if (N1C)
2223 if (N1C->getValue())
2224 return N2; // select true, X, Y -> X
2225 else
2226 return N3; // select false, X, Y -> Y
2227
2228 if (N2 == N3) return N2; // select C, X, X -> X
2229 break;
2230 case ISD::BRCOND:
2231 if (N2C)
2232 if (N2C->getValue()) // Unconditional branch
2233 return getNode(ISD::BR, MVT::Other, N1, N3);
2234 else
2235 return N1; // Never-taken branch
2236 break;
2237 case ISD::VECTOR_SHUFFLE:
2238 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2239 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2240 N3.getOpcode() == ISD::BUILD_VECTOR &&
2241 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2242 "Illegal VECTOR_SHUFFLE node!");
2243 break;
2244 case ISD::BIT_CONVERT:
2245 // Fold bit_convert nodes from a type to themselves.
2246 if (N1.getValueType() == VT)
2247 return N1;
2248 break;
2249 }
2250
2251 // Memoize node if it doesn't produce a flag.
2252 SDNode *N;
2253 SDVTList VTs = getVTList(VT);
2254 if (VT != MVT::Flag) {
2255 SDOperand Ops[] = { N1, N2, N3 };
2256 FoldingSetNodeID ID;
2257 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2258 void *IP = 0;
2259 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2260 return SDOperand(E, 0);
2261 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2262 CSEMap.InsertNode(N, IP);
2263 } else {
2264 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2265 }
2266 AllNodes.push_back(N);
2267 return SDOperand(N, 0);
2268}
2269
2270SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2271 SDOperand N1, SDOperand N2, SDOperand N3,
2272 SDOperand N4) {
2273 SDOperand Ops[] = { N1, N2, N3, N4 };
2274 return getNode(Opcode, VT, Ops, 4);
2275}
2276
2277SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2278 SDOperand N1, SDOperand N2, SDOperand N3,
2279 SDOperand N4, SDOperand N5) {
2280 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2281 return getNode(Opcode, VT, Ops, 5);
2282}
2283
Rafael Espindola80825902007-10-19 10:41:11 +00002284SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2285 SDOperand Src, SDOperand Size,
2286 SDOperand Align,
2287 SDOperand AlwaysInline) {
2288 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2289 return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2290}
2291
2292SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2293 SDOperand Src, SDOperand Size,
2294 SDOperand Align,
2295 SDOperand AlwaysInline) {
2296 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2297 return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2298}
2299
2300SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2301 SDOperand Src, SDOperand Size,
2302 SDOperand Align,
2303 SDOperand AlwaysInline) {
2304 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2305 return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2306}
2307
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002308SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2309 SDOperand Chain, SDOperand Ptr,
2310 const Value *SV, int SVOffset,
2311 bool isVolatile, unsigned Alignment) {
2312 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2313 const Type *Ty = 0;
2314 if (VT != MVT::iPTR) {
2315 Ty = MVT::getTypeForValueType(VT);
2316 } else if (SV) {
2317 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2318 assert(PT && "Value for load must be a pointer");
2319 Ty = PT->getElementType();
2320 }
2321 assert(Ty && "Could not get type information for load");
2322 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2323 }
2324 SDVTList VTs = getVTList(VT, MVT::Other);
2325 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2326 SDOperand Ops[] = { Chain, Ptr, Undef };
2327 FoldingSetNodeID ID;
2328 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2329 ID.AddInteger(ISD::UNINDEXED);
2330 ID.AddInteger(ISD::NON_EXTLOAD);
Chris Lattner4a22a672007-09-13 06:09:48 +00002331 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002332 ID.AddInteger(Alignment);
2333 ID.AddInteger(isVolatile);
2334 void *IP = 0;
2335 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2336 return SDOperand(E, 0);
2337 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2338 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2339 isVolatile);
2340 CSEMap.InsertNode(N, IP);
2341 AllNodes.push_back(N);
2342 return SDOperand(N, 0);
2343}
2344
2345SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2346 SDOperand Chain, SDOperand Ptr,
2347 const Value *SV,
2348 int SVOffset, MVT::ValueType EVT,
2349 bool isVolatile, unsigned Alignment) {
2350 // If they are asking for an extending load from/to the same thing, return a
2351 // normal load.
2352 if (VT == EVT)
Duncan Sands9b614742007-10-19 13:05:40 +00002353 return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002354
2355 if (MVT::isVector(VT))
2356 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2357 else
Duncan Sandsa9810f32007-10-16 09:56:48 +00002358 assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2359 "Should only be an extending load, not truncating!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002360 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2361 "Cannot sign/zero extend a FP/Vector load!");
2362 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2363 "Cannot convert from FP to Int or Int -> FP!");
2364
2365 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2366 const Type *Ty = 0;
2367 if (VT != MVT::iPTR) {
2368 Ty = MVT::getTypeForValueType(VT);
2369 } else if (SV) {
2370 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2371 assert(PT && "Value for load must be a pointer");
2372 Ty = PT->getElementType();
2373 }
2374 assert(Ty && "Could not get type information for load");
2375 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2376 }
2377 SDVTList VTs = getVTList(VT, MVT::Other);
2378 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2379 SDOperand Ops[] = { Chain, Ptr, Undef };
2380 FoldingSetNodeID ID;
2381 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2382 ID.AddInteger(ISD::UNINDEXED);
2383 ID.AddInteger(ExtType);
Chris Lattner4a22a672007-09-13 06:09:48 +00002384 ID.AddInteger((unsigned int)EVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002385 ID.AddInteger(Alignment);
2386 ID.AddInteger(isVolatile);
2387 void *IP = 0;
2388 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2389 return SDOperand(E, 0);
2390 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2391 SV, SVOffset, Alignment, isVolatile);
2392 CSEMap.InsertNode(N, IP);
2393 AllNodes.push_back(N);
2394 return SDOperand(N, 0);
2395}
2396
2397SDOperand
2398SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2399 SDOperand Offset, ISD::MemIndexedMode AM) {
2400 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2401 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2402 "Load is already a indexed load!");
2403 MVT::ValueType VT = OrigLoad.getValueType();
2404 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2405 SDOperand Ops[] = { LD->getChain(), Base, Offset };
2406 FoldingSetNodeID ID;
2407 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2408 ID.AddInteger(AM);
2409 ID.AddInteger(LD->getExtensionType());
Dan Gohman9a4c92c2008-01-30 00:15:11 +00002410 ID.AddInteger((unsigned int)(LD->getMemoryVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002411 ID.AddInteger(LD->getAlignment());
2412 ID.AddInteger(LD->isVolatile());
2413 void *IP = 0;
2414 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2415 return SDOperand(E, 0);
2416 SDNode *N = new LoadSDNode(Ops, VTs, AM,
Dan Gohman9a4c92c2008-01-30 00:15:11 +00002417 LD->getExtensionType(), LD->getMemoryVT(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002418 LD->getSrcValue(), LD->getSrcValueOffset(),
2419 LD->getAlignment(), LD->isVolatile());
2420 CSEMap.InsertNode(N, IP);
2421 AllNodes.push_back(N);
2422 return SDOperand(N, 0);
2423}
2424
2425SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2426 SDOperand Ptr, const Value *SV, int SVOffset,
2427 bool isVolatile, unsigned Alignment) {
2428 MVT::ValueType VT = Val.getValueType();
2429
2430 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2431 const Type *Ty = 0;
2432 if (VT != MVT::iPTR) {
2433 Ty = MVT::getTypeForValueType(VT);
2434 } else if (SV) {
2435 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2436 assert(PT && "Value for store must be a pointer");
2437 Ty = PT->getElementType();
2438 }
2439 assert(Ty && "Could not get type information for store");
2440 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2441 }
2442 SDVTList VTs = getVTList(MVT::Other);
2443 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2444 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2445 FoldingSetNodeID ID;
2446 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2447 ID.AddInteger(ISD::UNINDEXED);
2448 ID.AddInteger(false);
Chris Lattner4a22a672007-09-13 06:09:48 +00002449 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002450 ID.AddInteger(Alignment);
2451 ID.AddInteger(isVolatile);
2452 void *IP = 0;
2453 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2454 return SDOperand(E, 0);
2455 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2456 VT, SV, SVOffset, Alignment, isVolatile);
2457 CSEMap.InsertNode(N, IP);
2458 AllNodes.push_back(N);
2459 return SDOperand(N, 0);
2460}
2461
2462SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2463 SDOperand Ptr, const Value *SV,
2464 int SVOffset, MVT::ValueType SVT,
2465 bool isVolatile, unsigned Alignment) {
2466 MVT::ValueType VT = Val.getValueType();
Duncan Sands06fcf652007-10-30 12:40:58 +00002467
2468 if (VT == SVT)
2469 return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002470
Duncan Sandsa9810f32007-10-16 09:56:48 +00002471 assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2472 "Not a truncation?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002473 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2474 "Can't do FP-INT conversion!");
2475
2476 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2477 const Type *Ty = 0;
2478 if (VT != MVT::iPTR) {
2479 Ty = MVT::getTypeForValueType(VT);
2480 } else if (SV) {
2481 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2482 assert(PT && "Value for store must be a pointer");
2483 Ty = PT->getElementType();
2484 }
2485 assert(Ty && "Could not get type information for store");
2486 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2487 }
2488 SDVTList VTs = getVTList(MVT::Other);
2489 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2490 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2491 FoldingSetNodeID ID;
2492 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2493 ID.AddInteger(ISD::UNINDEXED);
Duncan Sands06fcf652007-10-30 12:40:58 +00002494 ID.AddInteger(1);
Chris Lattner4a22a672007-09-13 06:09:48 +00002495 ID.AddInteger((unsigned int)SVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002496 ID.AddInteger(Alignment);
2497 ID.AddInteger(isVolatile);
2498 void *IP = 0;
2499 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2500 return SDOperand(E, 0);
Duncan Sands06fcf652007-10-30 12:40:58 +00002501 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002502 SVT, SV, SVOffset, Alignment, isVolatile);
2503 CSEMap.InsertNode(N, IP);
2504 AllNodes.push_back(N);
2505 return SDOperand(N, 0);
2506}
2507
2508SDOperand
2509SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2510 SDOperand Offset, ISD::MemIndexedMode AM) {
2511 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2512 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2513 "Store is already a indexed store!");
2514 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2515 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2516 FoldingSetNodeID ID;
2517 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2518 ID.AddInteger(AM);
2519 ID.AddInteger(ST->isTruncatingStore());
Dan Gohman9a4c92c2008-01-30 00:15:11 +00002520 ID.AddInteger((unsigned int)(ST->getMemoryVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002521 ID.AddInteger(ST->getAlignment());
2522 ID.AddInteger(ST->isVolatile());
2523 void *IP = 0;
2524 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2525 return SDOperand(E, 0);
2526 SDNode *N = new StoreSDNode(Ops, VTs, AM,
Dan Gohman9a4c92c2008-01-30 00:15:11 +00002527 ST->isTruncatingStore(), ST->getMemoryVT(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002528 ST->getSrcValue(), ST->getSrcValueOffset(),
2529 ST->getAlignment(), ST->isVolatile());
2530 CSEMap.InsertNode(N, IP);
2531 AllNodes.push_back(N);
2532 return SDOperand(N, 0);
2533}
2534
2535SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2536 SDOperand Chain, SDOperand Ptr,
2537 SDOperand SV) {
2538 SDOperand Ops[] = { Chain, Ptr, SV };
2539 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2540}
2541
2542SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2543 const SDOperand *Ops, unsigned NumOps) {
2544 switch (NumOps) {
2545 case 0: return getNode(Opcode, VT);
2546 case 1: return getNode(Opcode, VT, Ops[0]);
2547 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2548 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2549 default: break;
2550 }
2551
2552 switch (Opcode) {
2553 default: break;
2554 case ISD::SELECT_CC: {
2555 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2556 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2557 "LHS and RHS of condition must have same type!");
2558 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2559 "True and False arms of SelectCC must have same type!");
2560 assert(Ops[2].getValueType() == VT &&
2561 "select_cc node must be of same type as true and false value!");
2562 break;
2563 }
2564 case ISD::BR_CC: {
2565 assert(NumOps == 5 && "BR_CC takes 5 operands!");
2566 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2567 "LHS/RHS of comparison should match types!");
2568 break;
2569 }
2570 }
2571
2572 // Memoize nodes.
2573 SDNode *N;
2574 SDVTList VTs = getVTList(VT);
2575 if (VT != MVT::Flag) {
2576 FoldingSetNodeID ID;
2577 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2578 void *IP = 0;
2579 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2580 return SDOperand(E, 0);
2581 N = new SDNode(Opcode, VTs, Ops, NumOps);
2582 CSEMap.InsertNode(N, IP);
2583 } else {
2584 N = new SDNode(Opcode, VTs, Ops, NumOps);
2585 }
2586 AllNodes.push_back(N);
2587 return SDOperand(N, 0);
2588}
2589
2590SDOperand SelectionDAG::getNode(unsigned Opcode,
2591 std::vector<MVT::ValueType> &ResultTys,
2592 const SDOperand *Ops, unsigned NumOps) {
2593 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2594 Ops, NumOps);
2595}
2596
2597SDOperand SelectionDAG::getNode(unsigned Opcode,
2598 const MVT::ValueType *VTs, unsigned NumVTs,
2599 const SDOperand *Ops, unsigned NumOps) {
2600 if (NumVTs == 1)
2601 return getNode(Opcode, VTs[0], Ops, NumOps);
2602 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2603}
2604
2605SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2606 const SDOperand *Ops, unsigned NumOps) {
2607 if (VTList.NumVTs == 1)
2608 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2609
2610 switch (Opcode) {
2611 // FIXME: figure out how to safely handle things like
2612 // int foo(int x) { return 1 << (x & 255); }
2613 // int bar() { return foo(256); }
2614#if 0
2615 case ISD::SRA_PARTS:
2616 case ISD::SRL_PARTS:
2617 case ISD::SHL_PARTS:
2618 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2619 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2620 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2621 else if (N3.getOpcode() == ISD::AND)
2622 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2623 // If the and is only masking out bits that cannot effect the shift,
2624 // eliminate the and.
2625 unsigned NumBits = MVT::getSizeInBits(VT)*2;
2626 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2627 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2628 }
2629 break;
2630#endif
2631 }
2632
2633 // Memoize the node unless it returns a flag.
2634 SDNode *N;
2635 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2636 FoldingSetNodeID ID;
2637 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2638 void *IP = 0;
2639 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2640 return SDOperand(E, 0);
2641 if (NumOps == 1)
2642 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2643 else if (NumOps == 2)
2644 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2645 else if (NumOps == 3)
2646 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2647 else
2648 N = new SDNode(Opcode, VTList, Ops, NumOps);
2649 CSEMap.InsertNode(N, IP);
2650 } else {
2651 if (NumOps == 1)
2652 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2653 else if (NumOps == 2)
2654 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2655 else if (NumOps == 3)
2656 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2657 else
2658 N = new SDNode(Opcode, VTList, Ops, NumOps);
2659 }
2660 AllNodes.push_back(N);
2661 return SDOperand(N, 0);
2662}
2663
Dan Gohman798d1272007-10-08 15:49:58 +00002664SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2665 return getNode(Opcode, VTList, 0, 0);
2666}
2667
2668SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2669 SDOperand N1) {
2670 SDOperand Ops[] = { N1 };
2671 return getNode(Opcode, VTList, Ops, 1);
2672}
2673
2674SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2675 SDOperand N1, SDOperand N2) {
2676 SDOperand Ops[] = { N1, N2 };
2677 return getNode(Opcode, VTList, Ops, 2);
2678}
2679
2680SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2681 SDOperand N1, SDOperand N2, SDOperand N3) {
2682 SDOperand Ops[] = { N1, N2, N3 };
2683 return getNode(Opcode, VTList, Ops, 3);
2684}
2685
2686SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2687 SDOperand N1, SDOperand N2, SDOperand N3,
2688 SDOperand N4) {
2689 SDOperand Ops[] = { N1, N2, N3, N4 };
2690 return getNode(Opcode, VTList, Ops, 4);
2691}
2692
2693SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2694 SDOperand N1, SDOperand N2, SDOperand N3,
2695 SDOperand N4, SDOperand N5) {
2696 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2697 return getNode(Opcode, VTList, Ops, 5);
2698}
2699
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002700SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
Duncan Sandsa9810f32007-10-16 09:56:48 +00002701 return makeVTList(SDNode::getValueTypeList(VT), 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002702}
2703
2704SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2705 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2706 E = VTList.end(); I != E; ++I) {
2707 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2708 return makeVTList(&(*I)[0], 2);
2709 }
2710 std::vector<MVT::ValueType> V;
2711 V.push_back(VT1);
2712 V.push_back(VT2);
2713 VTList.push_front(V);
2714 return makeVTList(&(*VTList.begin())[0], 2);
2715}
2716SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2717 MVT::ValueType VT3) {
2718 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2719 E = VTList.end(); I != E; ++I) {
2720 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2721 (*I)[2] == VT3)
2722 return makeVTList(&(*I)[0], 3);
2723 }
2724 std::vector<MVT::ValueType> V;
2725 V.push_back(VT1);
2726 V.push_back(VT2);
2727 V.push_back(VT3);
2728 VTList.push_front(V);
2729 return makeVTList(&(*VTList.begin())[0], 3);
2730}
2731
2732SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2733 switch (NumVTs) {
2734 case 0: assert(0 && "Cannot have nodes without results!");
2735 case 1: return getVTList(VTs[0]);
2736 case 2: return getVTList(VTs[0], VTs[1]);
2737 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2738 default: break;
2739 }
2740
2741 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2742 E = VTList.end(); I != E; ++I) {
2743 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2744
2745 bool NoMatch = false;
2746 for (unsigned i = 2; i != NumVTs; ++i)
2747 if (VTs[i] != (*I)[i]) {
2748 NoMatch = true;
2749 break;
2750 }
2751 if (!NoMatch)
2752 return makeVTList(&*I->begin(), NumVTs);
2753 }
2754
2755 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2756 return makeVTList(&*VTList.begin()->begin(), NumVTs);
2757}
2758
2759
2760/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2761/// specified operands. If the resultant node already exists in the DAG,
2762/// this does not modify the specified node, instead it returns the node that
2763/// already exists. If the resultant node does not exist in the DAG, the
2764/// input node is returned. As a degenerate case, if you specify the same
2765/// input operands as the node already has, the input node is returned.
2766SDOperand SelectionDAG::
2767UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2768 SDNode *N = InN.Val;
2769 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2770
2771 // Check to see if there is no change.
2772 if (Op == N->getOperand(0)) return InN;
2773
2774 // See if the modified node already exists.
2775 void *InsertPos = 0;
2776 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2777 return SDOperand(Existing, InN.ResNo);
2778
2779 // Nope it doesn't. Remove the node from it's current place in the maps.
2780 if (InsertPos)
2781 RemoveNodeFromCSEMaps(N);
2782
2783 // Now we update the operands.
2784 N->OperandList[0].Val->removeUser(N);
2785 Op.Val->addUser(N);
2786 N->OperandList[0] = Op;
2787
2788 // If this gets put into a CSE map, add it.
2789 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2790 return InN;
2791}
2792
2793SDOperand SelectionDAG::
2794UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2795 SDNode *N = InN.Val;
2796 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2797
2798 // Check to see if there is no change.
2799 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2800 return InN; // No operands changed, just return the input node.
2801
2802 // See if the modified node already exists.
2803 void *InsertPos = 0;
2804 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2805 return SDOperand(Existing, InN.ResNo);
2806
2807 // Nope it doesn't. Remove the node from it's current place in the maps.
2808 if (InsertPos)
2809 RemoveNodeFromCSEMaps(N);
2810
2811 // Now we update the operands.
2812 if (N->OperandList[0] != Op1) {
2813 N->OperandList[0].Val->removeUser(N);
2814 Op1.Val->addUser(N);
2815 N->OperandList[0] = Op1;
2816 }
2817 if (N->OperandList[1] != Op2) {
2818 N->OperandList[1].Val->removeUser(N);
2819 Op2.Val->addUser(N);
2820 N->OperandList[1] = Op2;
2821 }
2822
2823 // If this gets put into a CSE map, add it.
2824 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2825 return InN;
2826}
2827
2828SDOperand SelectionDAG::
2829UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2830 SDOperand Ops[] = { Op1, Op2, Op3 };
2831 return UpdateNodeOperands(N, Ops, 3);
2832}
2833
2834SDOperand SelectionDAG::
2835UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2836 SDOperand Op3, SDOperand Op4) {
2837 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2838 return UpdateNodeOperands(N, Ops, 4);
2839}
2840
2841SDOperand SelectionDAG::
2842UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2843 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2844 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2845 return UpdateNodeOperands(N, Ops, 5);
2846}
2847
2848
2849SDOperand SelectionDAG::
2850UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2851 SDNode *N = InN.Val;
2852 assert(N->getNumOperands() == NumOps &&
2853 "Update with wrong number of operands");
2854
2855 // Check to see if there is no change.
2856 bool AnyChange = false;
2857 for (unsigned i = 0; i != NumOps; ++i) {
2858 if (Ops[i] != N->getOperand(i)) {
2859 AnyChange = true;
2860 break;
2861 }
2862 }
2863
2864 // No operands changed, just return the input node.
2865 if (!AnyChange) return InN;
2866
2867 // See if the modified node already exists.
2868 void *InsertPos = 0;
2869 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2870 return SDOperand(Existing, InN.ResNo);
2871
2872 // Nope it doesn't. Remove the node from it's current place in the maps.
2873 if (InsertPos)
2874 RemoveNodeFromCSEMaps(N);
2875
2876 // Now we update the operands.
2877 for (unsigned i = 0; i != NumOps; ++i) {
2878 if (N->OperandList[i] != Ops[i]) {
2879 N->OperandList[i].Val->removeUser(N);
2880 Ops[i].Val->addUser(N);
2881 N->OperandList[i] = Ops[i];
2882 }
2883 }
2884
2885 // If this gets put into a CSE map, add it.
2886 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2887 return InN;
2888}
2889
2890
2891/// MorphNodeTo - This frees the operands of the current node, resets the
2892/// opcode, types, and operands to the specified value. This should only be
2893/// used by the SelectionDAG class.
2894void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2895 const SDOperand *Ops, unsigned NumOps) {
2896 NodeType = Opc;
2897 ValueList = L.VTs;
2898 NumValues = L.NumVTs;
2899
2900 // Clear the operands list, updating used nodes to remove this from their
2901 // use list.
2902 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2903 I->Val->removeUser(this);
2904
2905 // If NumOps is larger than the # of operands we currently have, reallocate
2906 // the operand list.
2907 if (NumOps > NumOperands) {
2908 if (OperandsNeedDelete)
2909 delete [] OperandList;
2910 OperandList = new SDOperand[NumOps];
2911 OperandsNeedDelete = true;
2912 }
2913
2914 // Assign the new operands.
2915 NumOperands = NumOps;
2916
2917 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2918 OperandList[i] = Ops[i];
2919 SDNode *N = OperandList[i].Val;
2920 N->Uses.push_back(this);
2921 }
2922}
2923
2924/// SelectNodeTo - These are used for target selectors to *mutate* the
2925/// specified node to have the specified return type, Target opcode, and
2926/// operands. Note that target opcodes are stored as
2927/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2928///
2929/// Note that SelectNodeTo returns the resultant node. If there is already a
2930/// node of the specified opcode and operands, it returns that node instead of
2931/// the current one.
2932SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2933 MVT::ValueType VT) {
2934 SDVTList VTs = getVTList(VT);
2935 FoldingSetNodeID ID;
2936 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2937 void *IP = 0;
2938 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2939 return ON;
2940
2941 RemoveNodeFromCSEMaps(N);
2942
2943 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2944
2945 CSEMap.InsertNode(N, IP);
2946 return N;
2947}
2948
2949SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2950 MVT::ValueType VT, SDOperand Op1) {
2951 // If an identical node already exists, use it.
2952 SDVTList VTs = getVTList(VT);
2953 SDOperand Ops[] = { Op1 };
2954
2955 FoldingSetNodeID ID;
2956 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2957 void *IP = 0;
2958 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2959 return ON;
2960
2961 RemoveNodeFromCSEMaps(N);
2962 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2963 CSEMap.InsertNode(N, IP);
2964 return N;
2965}
2966
2967SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2968 MVT::ValueType VT, SDOperand Op1,
2969 SDOperand Op2) {
2970 // If an identical node already exists, use it.
2971 SDVTList VTs = getVTList(VT);
2972 SDOperand Ops[] = { Op1, Op2 };
2973
2974 FoldingSetNodeID ID;
2975 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2976 void *IP = 0;
2977 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2978 return ON;
2979
2980 RemoveNodeFromCSEMaps(N);
2981
2982 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2983
2984 CSEMap.InsertNode(N, IP); // Memoize the new node.
2985 return N;
2986}
2987
2988SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2989 MVT::ValueType VT, SDOperand Op1,
2990 SDOperand Op2, SDOperand Op3) {
2991 // If an identical node already exists, use it.
2992 SDVTList VTs = getVTList(VT);
2993 SDOperand Ops[] = { Op1, Op2, Op3 };
2994 FoldingSetNodeID ID;
2995 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2996 void *IP = 0;
2997 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2998 return ON;
2999
3000 RemoveNodeFromCSEMaps(N);
3001
3002 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3003
3004 CSEMap.InsertNode(N, IP); // Memoize the new node.
3005 return N;
3006}
3007
3008SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3009 MVT::ValueType VT, const SDOperand *Ops,
3010 unsigned NumOps) {
3011 // If an identical node already exists, use it.
3012 SDVTList VTs = getVTList(VT);
3013 FoldingSetNodeID ID;
3014 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3015 void *IP = 0;
3016 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3017 return ON;
3018
3019 RemoveNodeFromCSEMaps(N);
3020 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3021
3022 CSEMap.InsertNode(N, IP); // Memoize the new node.
3023 return N;
3024}
3025
3026SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3027 MVT::ValueType VT1, MVT::ValueType VT2,
3028 SDOperand Op1, SDOperand Op2) {
3029 SDVTList VTs = getVTList(VT1, VT2);
3030 FoldingSetNodeID ID;
3031 SDOperand Ops[] = { Op1, Op2 };
3032 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3033 void *IP = 0;
3034 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3035 return ON;
3036
3037 RemoveNodeFromCSEMaps(N);
3038 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3039 CSEMap.InsertNode(N, IP); // Memoize the new node.
3040 return N;
3041}
3042
3043SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3044 MVT::ValueType VT1, MVT::ValueType VT2,
3045 SDOperand Op1, SDOperand Op2,
3046 SDOperand Op3) {
3047 // If an identical node already exists, use it.
3048 SDVTList VTs = getVTList(VT1, VT2);
3049 SDOperand Ops[] = { Op1, Op2, Op3 };
3050 FoldingSetNodeID ID;
3051 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3052 void *IP = 0;
3053 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3054 return ON;
3055
3056 RemoveNodeFromCSEMaps(N);
3057
3058 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3059 CSEMap.InsertNode(N, IP); // Memoize the new node.
3060 return N;
3061}
3062
3063
3064/// getTargetNode - These are used for target selectors to create a new node
3065/// with specified return type(s), target opcode, and operands.
3066///
3067/// Note that getTargetNode returns the resultant node. If there is already a
3068/// node of the specified opcode and operands, it returns that node instead of
3069/// the current one.
3070SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3071 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3072}
3073SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3074 SDOperand Op1) {
3075 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3076}
3077SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3078 SDOperand Op1, SDOperand Op2) {
3079 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3080}
3081SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3082 SDOperand Op1, SDOperand Op2,
3083 SDOperand Op3) {
3084 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3085}
3086SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3087 const SDOperand *Ops, unsigned NumOps) {
3088 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3089}
3090SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003091 MVT::ValueType VT2) {
3092 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3093 SDOperand Op;
3094 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3095}
3096SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003097 MVT::ValueType VT2, SDOperand Op1) {
3098 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3099 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3100}
3101SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3102 MVT::ValueType VT2, SDOperand Op1,
3103 SDOperand Op2) {
3104 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3105 SDOperand Ops[] = { Op1, Op2 };
3106 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3107}
3108SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3109 MVT::ValueType VT2, SDOperand Op1,
3110 SDOperand Op2, SDOperand Op3) {
3111 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3112 SDOperand Ops[] = { Op1, Op2, Op3 };
3113 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3114}
3115SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3116 MVT::ValueType VT2,
3117 const SDOperand *Ops, unsigned NumOps) {
3118 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3119 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3120}
3121SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3122 MVT::ValueType VT2, MVT::ValueType VT3,
3123 SDOperand Op1, SDOperand Op2) {
3124 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3125 SDOperand Ops[] = { Op1, Op2 };
3126 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3127}
3128SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3129 MVT::ValueType VT2, MVT::ValueType VT3,
3130 SDOperand Op1, SDOperand Op2,
3131 SDOperand Op3) {
3132 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3133 SDOperand Ops[] = { Op1, Op2, Op3 };
3134 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3135}
3136SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3137 MVT::ValueType VT2, MVT::ValueType VT3,
3138 const SDOperand *Ops, unsigned NumOps) {
3139 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3140 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3141}
Evan Chenge1d067e2007-09-12 23:39:49 +00003142SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3143 MVT::ValueType VT2, MVT::ValueType VT3,
3144 MVT::ValueType VT4,
3145 const SDOperand *Ops, unsigned NumOps) {
3146 std::vector<MVT::ValueType> VTList;
3147 VTList.push_back(VT1);
3148 VTList.push_back(VT2);
3149 VTList.push_back(VT3);
3150 VTList.push_back(VT4);
3151 const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3152 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3153}
Evan Chenge3940912007-10-05 01:10:49 +00003154SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3155 std::vector<MVT::ValueType> &ResultTys,
3156 const SDOperand *Ops, unsigned NumOps) {
3157 const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3158 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3159 Ops, NumOps).Val;
3160}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003161
3162/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3163/// This can cause recursive merging of nodes in the DAG.
3164///
3165/// This version assumes From/To have a single result value.
3166///
3167void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3168 std::vector<SDNode*> *Deleted) {
3169 SDNode *From = FromN.Val, *To = ToN.Val;
3170 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3171 "Cannot replace with this method!");
3172 assert(From != To && "Cannot replace uses of with self");
3173
3174 while (!From->use_empty()) {
3175 // Process users until they are all gone.
3176 SDNode *U = *From->use_begin();
3177
3178 // This node is about to morph, remove its old self from the CSE maps.
3179 RemoveNodeFromCSEMaps(U);
3180
3181 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3182 I != E; ++I)
3183 if (I->Val == From) {
3184 From->removeUser(U);
3185 I->Val = To;
3186 To->addUser(U);
3187 }
3188
3189 // Now that we have modified U, add it back to the CSE maps. If it already
3190 // exists there, recursively merge the results together.
3191 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3192 ReplaceAllUsesWith(U, Existing, Deleted);
3193 // U is now dead.
3194 if (Deleted) Deleted->push_back(U);
3195 DeleteNodeNotInCSEMaps(U);
3196 }
3197 }
3198}
3199
3200/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3201/// This can cause recursive merging of nodes in the DAG.
3202///
3203/// This version assumes From/To have matching types and numbers of result
3204/// values.
3205///
3206void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3207 std::vector<SDNode*> *Deleted) {
3208 assert(From != To && "Cannot replace uses of with self");
3209 assert(From->getNumValues() == To->getNumValues() &&
3210 "Cannot use this version of ReplaceAllUsesWith!");
3211 if (From->getNumValues() == 1) { // If possible, use the faster version.
3212 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3213 return;
3214 }
3215
3216 while (!From->use_empty()) {
3217 // Process users until they are all gone.
3218 SDNode *U = *From->use_begin();
3219
3220 // This node is about to morph, remove its old self from the CSE maps.
3221 RemoveNodeFromCSEMaps(U);
3222
3223 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3224 I != E; ++I)
3225 if (I->Val == From) {
3226 From->removeUser(U);
3227 I->Val = To;
3228 To->addUser(U);
3229 }
3230
3231 // Now that we have modified U, add it back to the CSE maps. If it already
3232 // exists there, recursively merge the results together.
3233 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3234 ReplaceAllUsesWith(U, Existing, Deleted);
3235 // U is now dead.
3236 if (Deleted) Deleted->push_back(U);
3237 DeleteNodeNotInCSEMaps(U);
3238 }
3239 }
3240}
3241
3242/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3243/// This can cause recursive merging of nodes in the DAG.
3244///
3245/// This version can replace From with any result values. To must match the
3246/// number and types of values returned by From.
3247void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3248 const SDOperand *To,
3249 std::vector<SDNode*> *Deleted) {
3250 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3251 // Degenerate case handled above.
3252 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3253 return;
3254 }
3255
3256 while (!From->use_empty()) {
3257 // Process users until they are all gone.
3258 SDNode *U = *From->use_begin();
3259
3260 // This node is about to morph, remove its old self from the CSE maps.
3261 RemoveNodeFromCSEMaps(U);
3262
3263 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3264 I != E; ++I)
3265 if (I->Val == From) {
3266 const SDOperand &ToOp = To[I->ResNo];
3267 From->removeUser(U);
3268 *I = ToOp;
3269 ToOp.Val->addUser(U);
3270 }
3271
3272 // Now that we have modified U, add it back to the CSE maps. If it already
3273 // exists there, recursively merge the results together.
3274 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3275 ReplaceAllUsesWith(U, Existing, Deleted);
3276 // U is now dead.
3277 if (Deleted) Deleted->push_back(U);
3278 DeleteNodeNotInCSEMaps(U);
3279 }
3280 }
3281}
3282
3283/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3284/// uses of other values produced by From.Val alone. The Deleted vector is
3285/// handled the same was as for ReplaceAllUsesWith.
3286void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
Chris Lattner8a258202007-10-15 06:10:22 +00003287 std::vector<SDNode*> *Deleted) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003288 assert(From != To && "Cannot replace a value with itself");
3289 // Handle the simple, trivial, case efficiently.
3290 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
Chris Lattner8a258202007-10-15 06:10:22 +00003291 ReplaceAllUsesWith(From, To, Deleted);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003292 return;
3293 }
3294
3295 // Get all of the users of From.Val. We want these in a nice,
3296 // deterministically ordered and uniqued set, so we use a SmallSetVector.
3297 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3298
Chris Lattner8a258202007-10-15 06:10:22 +00003299 std::vector<SDNode*> LocalDeletionVector;
3300
3301 // Pick a deletion vector to use. If the user specified one, use theirs,
3302 // otherwise use a local one.
3303 std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003304 while (!Users.empty()) {
3305 // We know that this user uses some value of From. If it is the right
3306 // value, update it.
3307 SDNode *User = Users.back();
3308 Users.pop_back();
3309
Chris Lattner8a258202007-10-15 06:10:22 +00003310 // Scan for an operand that matches From.
3311 SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3312 for (; Op != E; ++Op)
3313 if (*Op == From) break;
3314
3315 // If there are no matches, the user must use some other result of From.
3316 if (Op == E) continue;
3317
3318 // Okay, we know this user needs to be updated. Remove its old self
3319 // from the CSE maps.
3320 RemoveNodeFromCSEMaps(User);
3321
3322 // Update all operands that match "From".
3323 for (; Op != E; ++Op) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003324 if (*Op == From) {
Chris Lattner8a258202007-10-15 06:10:22 +00003325 From.Val->removeUser(User);
3326 *Op = To;
3327 To.Val->addUser(User);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003328 }
3329 }
Chris Lattner8a258202007-10-15 06:10:22 +00003330
3331 // Now that we have modified User, add it back to the CSE maps. If it
3332 // already exists there, recursively merge the results together.
3333 SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3334 if (!Existing) continue; // Continue on to next user.
3335
3336 // If there was already an existing matching node, use ReplaceAllUsesWith
3337 // to replace the dead one with the existing one. However, this can cause
3338 // recursive merging of other unrelated nodes down the line. The merging
3339 // can cause deletion of nodes that used the old value. In this case,
3340 // we have to be certain to remove them from the Users set.
3341 unsigned NumDeleted = DeleteVector->size();
3342 ReplaceAllUsesWith(User, Existing, DeleteVector);
3343
3344 // User is now dead.
3345 DeleteVector->push_back(User);
3346 DeleteNodeNotInCSEMaps(User);
3347
3348 // We have to be careful here, because ReplaceAllUsesWith could have
3349 // deleted a user of From, which means there may be dangling pointers
3350 // in the "Users" setvector. Scan over the deleted node pointers and
3351 // remove them from the setvector.
3352 for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3353 Users.remove((*DeleteVector)[i]);
3354
3355 // If the user doesn't need the set of deleted elements, don't retain them
3356 // to the next loop iteration.
3357 if (Deleted == 0)
3358 LocalDeletionVector.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003359 }
3360}
3361
3362
3363/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3364/// their allnodes order. It returns the maximum id.
3365unsigned SelectionDAG::AssignNodeIds() {
3366 unsigned Id = 0;
3367 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3368 SDNode *N = I;
3369 N->setNodeId(Id++);
3370 }
3371 return Id;
3372}
3373
3374/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3375/// based on their topological order. It returns the maximum id and a vector
3376/// of the SDNodes* in assigned order by reference.
3377unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3378 unsigned DAGSize = AllNodes.size();
3379 std::vector<unsigned> InDegree(DAGSize);
3380 std::vector<SDNode*> Sources;
3381
3382 // Use a two pass approach to avoid using a std::map which is slow.
3383 unsigned Id = 0;
3384 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3385 SDNode *N = I;
3386 N->setNodeId(Id++);
3387 unsigned Degree = N->use_size();
3388 InDegree[N->getNodeId()] = Degree;
3389 if (Degree == 0)
3390 Sources.push_back(N);
3391 }
3392
3393 TopOrder.clear();
3394 while (!Sources.empty()) {
3395 SDNode *N = Sources.back();
3396 Sources.pop_back();
3397 TopOrder.push_back(N);
3398 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3399 SDNode *P = I->Val;
3400 unsigned Degree = --InDegree[P->getNodeId()];
3401 if (Degree == 0)
3402 Sources.push_back(P);
3403 }
3404 }
3405
3406 // Second pass, assign the actual topological order as node ids.
3407 Id = 0;
3408 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3409 TI != TE; ++TI)
3410 (*TI)->setNodeId(Id++);
3411
3412 return Id;
3413}
3414
3415
3416
3417//===----------------------------------------------------------------------===//
3418// SDNode Class
3419//===----------------------------------------------------------------------===//
3420
3421// Out-of-line virtual method to give class a home.
3422void SDNode::ANCHOR() {}
3423void UnarySDNode::ANCHOR() {}
3424void BinarySDNode::ANCHOR() {}
3425void TernarySDNode::ANCHOR() {}
3426void HandleSDNode::ANCHOR() {}
3427void StringSDNode::ANCHOR() {}
3428void ConstantSDNode::ANCHOR() {}
3429void ConstantFPSDNode::ANCHOR() {}
3430void GlobalAddressSDNode::ANCHOR() {}
3431void FrameIndexSDNode::ANCHOR() {}
3432void JumpTableSDNode::ANCHOR() {}
3433void ConstantPoolSDNode::ANCHOR() {}
3434void BasicBlockSDNode::ANCHOR() {}
3435void SrcValueSDNode::ANCHOR() {}
3436void RegisterSDNode::ANCHOR() {}
3437void ExternalSymbolSDNode::ANCHOR() {}
3438void CondCodeSDNode::ANCHOR() {}
3439void VTSDNode::ANCHOR() {}
3440void LoadSDNode::ANCHOR() {}
3441void StoreSDNode::ANCHOR() {}
3442
3443HandleSDNode::~HandleSDNode() {
3444 SDVTList VTs = { 0, 0 };
3445 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
3446}
3447
3448GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3449 MVT::ValueType VT, int o)
3450 : SDNode(isa<GlobalVariable>(GA) &&
Dan Gohman53491e92007-07-23 20:24:29 +00003451 cast<GlobalVariable>(GA)->isThreadLocal() ?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003452 // Thread Local
3453 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3454 // Non Thread Local
3455 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3456 getSDVTList(VT)), Offset(o) {
3457 TheGlobal = const_cast<GlobalValue*>(GA);
3458}
3459
3460/// Profile - Gather unique data for the node.
3461///
3462void SDNode::Profile(FoldingSetNodeID &ID) {
3463 AddNodeIDNode(ID, this);
3464}
3465
3466/// getValueTypeList - Return a pointer to the specified value type.
3467///
3468MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
Duncan Sandsa9810f32007-10-16 09:56:48 +00003469 if (MVT::isExtendedVT(VT)) {
3470 static std::set<MVT::ValueType> EVTs;
3471 return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3472 } else {
3473 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3474 VTs[VT] = VT;
3475 return &VTs[VT];
3476 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003477}
Duncan Sandsa9810f32007-10-16 09:56:48 +00003478
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003479/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3480/// indicated value. This method ignores uses of other values defined by this
3481/// operation.
3482bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3483 assert(Value < getNumValues() && "Bad value!");
3484
3485 // If there is only one value, this is easy.
3486 if (getNumValues() == 1)
3487 return use_size() == NUses;
Evan Cheng0af04f72007-08-02 05:29:38 +00003488 if (use_size() < NUses) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003489
3490 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3491
3492 SmallPtrSet<SDNode*, 32> UsersHandled;
3493
3494 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3495 SDNode *User = *UI;
3496 if (User->getNumOperands() == 1 ||
3497 UsersHandled.insert(User)) // First time we've seen this?
3498 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3499 if (User->getOperand(i) == TheValue) {
3500 if (NUses == 0)
3501 return false; // too many uses
3502 --NUses;
3503 }
3504 }
3505
3506 // Found exactly the right number of uses?
3507 return NUses == 0;
3508}
3509
3510
Evan Cheng0af04f72007-08-02 05:29:38 +00003511/// hasAnyUseOfValue - Return true if there are any use of the indicated
3512/// value. This method ignores uses of other values defined by this operation.
3513bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3514 assert(Value < getNumValues() && "Bad value!");
3515
Dan Gohman301f4052008-01-29 13:02:09 +00003516 if (use_empty()) return false;
Evan Cheng0af04f72007-08-02 05:29:38 +00003517
3518 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3519
3520 SmallPtrSet<SDNode*, 32> UsersHandled;
3521
3522 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3523 SDNode *User = *UI;
3524 if (User->getNumOperands() == 1 ||
3525 UsersHandled.insert(User)) // First time we've seen this?
3526 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3527 if (User->getOperand(i) == TheValue) {
3528 return true;
3529 }
3530 }
3531
3532 return false;
3533}
3534
3535
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003536/// isOnlyUse - Return true if this node is the only use of N.
3537///
3538bool SDNode::isOnlyUse(SDNode *N) const {
3539 bool Seen = false;
3540 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3541 SDNode *User = *I;
3542 if (User == this)
3543 Seen = true;
3544 else
3545 return false;
3546 }
3547
3548 return Seen;
3549}
3550
3551/// isOperand - Return true if this node is an operand of N.
3552///
3553bool SDOperand::isOperand(SDNode *N) const {
3554 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3555 if (*this == N->getOperand(i))
3556 return true;
3557 return false;
3558}
3559
3560bool SDNode::isOperand(SDNode *N) const {
3561 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3562 if (this == N->OperandList[i].Val)
3563 return true;
3564 return false;
3565}
3566
Chris Lattner10d94f92008-01-16 05:49:24 +00003567/// reachesChainWithoutSideEffects - Return true if this operand (which must
3568/// be a chain) reaches the specified operand without crossing any
3569/// side-effecting instructions. In practice, this looks through token
3570/// factors and non-volatile loads. In order to remain efficient, this only
3571/// looks a couple of nodes in, it does not do an exhaustive search.
3572bool SDOperand::reachesChainWithoutSideEffects(SDOperand Dest,
3573 unsigned Depth) const {
3574 if (*this == Dest) return true;
3575
3576 // Don't search too deeply, we just want to be able to see through
3577 // TokenFactor's etc.
3578 if (Depth == 0) return false;
3579
3580 // If this is a token factor, all inputs to the TF happen in parallel. If any
3581 // of the operands of the TF reach dest, then we can do the xform.
3582 if (getOpcode() == ISD::TokenFactor) {
3583 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3584 if (getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
3585 return true;
3586 return false;
3587 }
3588
3589 // Loads don't have side effects, look through them.
3590 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
3591 if (!Ld->isVolatile())
3592 return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
3593 }
3594 return false;
3595}
3596
3597
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003598static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3599 SmallPtrSet<SDNode *, 32> &Visited) {
3600 if (found || !Visited.insert(N))
3601 return;
3602
3603 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3604 SDNode *Op = N->getOperand(i).Val;
3605 if (Op == P) {
3606 found = true;
3607 return;
3608 }
3609 findPredecessor(Op, P, found, Visited);
3610 }
3611}
3612
3613/// isPredecessor - Return true if this node is a predecessor of N. This node
3614/// is either an operand of N or it can be reached by recursively traversing
3615/// up the operands.
3616/// NOTE: this is an expensive method. Use it carefully.
3617bool SDNode::isPredecessor(SDNode *N) const {
3618 SmallPtrSet<SDNode *, 32> Visited;
3619 bool found = false;
3620 findPredecessor(N, this, found, Visited);
3621 return found;
3622}
3623
3624uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3625 assert(Num < NumOperands && "Invalid child # of SDNode!");
3626 return cast<ConstantSDNode>(OperandList[Num])->getValue();
3627}
3628
3629std::string SDNode::getOperationName(const SelectionDAG *G) const {
3630 switch (getOpcode()) {
3631 default:
3632 if (getOpcode() < ISD::BUILTIN_OP_END)
3633 return "<<Unknown DAG Node>>";
3634 else {
3635 if (G) {
3636 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3637 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
Chris Lattner0c2a4f32008-01-07 03:13:06 +00003638 return TII->get(getOpcode()-ISD::BUILTIN_OP_END).getName();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003639
3640 TargetLowering &TLI = G->getTargetLoweringInfo();
3641 const char *Name =
3642 TLI.getTargetNodeName(getOpcode());
3643 if (Name) return Name;
3644 }
3645
3646 return "<<Unknown Target Node>>";
3647 }
3648
3649 case ISD::PCMARKER: return "PCMarker";
3650 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3651 case ISD::SRCVALUE: return "SrcValue";
3652 case ISD::EntryToken: return "EntryToken";
3653 case ISD::TokenFactor: return "TokenFactor";
3654 case ISD::AssertSext: return "AssertSext";
3655 case ISD::AssertZext: return "AssertZext";
3656
3657 case ISD::STRING: return "String";
3658 case ISD::BasicBlock: return "BasicBlock";
3659 case ISD::VALUETYPE: return "ValueType";
3660 case ISD::Register: return "Register";
3661
3662 case ISD::Constant: return "Constant";
3663 case ISD::ConstantFP: return "ConstantFP";
3664 case ISD::GlobalAddress: return "GlobalAddress";
3665 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3666 case ISD::FrameIndex: return "FrameIndex";
3667 case ISD::JumpTable: return "JumpTable";
3668 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3669 case ISD::RETURNADDR: return "RETURNADDR";
3670 case ISD::FRAMEADDR: return "FRAMEADDR";
3671 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3672 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3673 case ISD::EHSELECTION: return "EHSELECTION";
3674 case ISD::EH_RETURN: return "EH_RETURN";
3675 case ISD::ConstantPool: return "ConstantPool";
3676 case ISD::ExternalSymbol: return "ExternalSymbol";
3677 case ISD::INTRINSIC_WO_CHAIN: {
3678 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3679 return Intrinsic::getName((Intrinsic::ID)IID);
3680 }
3681 case ISD::INTRINSIC_VOID:
3682 case ISD::INTRINSIC_W_CHAIN: {
3683 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3684 return Intrinsic::getName((Intrinsic::ID)IID);
3685 }
3686
3687 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
3688 case ISD::TargetConstant: return "TargetConstant";
3689 case ISD::TargetConstantFP:return "TargetConstantFP";
3690 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3691 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3692 case ISD::TargetFrameIndex: return "TargetFrameIndex";
3693 case ISD::TargetJumpTable: return "TargetJumpTable";
3694 case ISD::TargetConstantPool: return "TargetConstantPool";
3695 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3696
3697 case ISD::CopyToReg: return "CopyToReg";
3698 case ISD::CopyFromReg: return "CopyFromReg";
3699 case ISD::UNDEF: return "undef";
3700 case ISD::MERGE_VALUES: return "merge_values";
3701 case ISD::INLINEASM: return "inlineasm";
3702 case ISD::LABEL: return "label";
3703 case ISD::HANDLENODE: return "handlenode";
3704 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3705 case ISD::CALL: return "call";
3706
3707 // Unary operators
3708 case ISD::FABS: return "fabs";
3709 case ISD::FNEG: return "fneg";
3710 case ISD::FSQRT: return "fsqrt";
3711 case ISD::FSIN: return "fsin";
3712 case ISD::FCOS: return "fcos";
3713 case ISD::FPOWI: return "fpowi";
Dan Gohman1d744bb2007-10-11 23:06:37 +00003714 case ISD::FPOW: return "fpow";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003715
3716 // Binary operators
3717 case ISD::ADD: return "add";
3718 case ISD::SUB: return "sub";
3719 case ISD::MUL: return "mul";
3720 case ISD::MULHU: return "mulhu";
3721 case ISD::MULHS: return "mulhs";
3722 case ISD::SDIV: return "sdiv";
3723 case ISD::UDIV: return "udiv";
3724 case ISD::SREM: return "srem";
3725 case ISD::UREM: return "urem";
Dan Gohmanb945cee2007-10-05 14:11:04 +00003726 case ISD::SMUL_LOHI: return "smul_lohi";
3727 case ISD::UMUL_LOHI: return "umul_lohi";
3728 case ISD::SDIVREM: return "sdivrem";
3729 case ISD::UDIVREM: return "divrem";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003730 case ISD::AND: return "and";
3731 case ISD::OR: return "or";
3732 case ISD::XOR: return "xor";
3733 case ISD::SHL: return "shl";
3734 case ISD::SRA: return "sra";
3735 case ISD::SRL: return "srl";
3736 case ISD::ROTL: return "rotl";
3737 case ISD::ROTR: return "rotr";
3738 case ISD::FADD: return "fadd";
3739 case ISD::FSUB: return "fsub";
3740 case ISD::FMUL: return "fmul";
3741 case ISD::FDIV: return "fdiv";
3742 case ISD::FREM: return "frem";
3743 case ISD::FCOPYSIGN: return "fcopysign";
Chris Lattner13f06832007-12-22 21:26:52 +00003744 case ISD::FGETSIGN: return "fgetsign";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003745
3746 case ISD::SETCC: return "setcc";
3747 case ISD::SELECT: return "select";
3748 case ISD::SELECT_CC: return "select_cc";
3749 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
3750 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
3751 case ISD::CONCAT_VECTORS: return "concat_vectors";
3752 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
3753 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
3754 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
3755 case ISD::CARRY_FALSE: return "carry_false";
3756 case ISD::ADDC: return "addc";
3757 case ISD::ADDE: return "adde";
3758 case ISD::SUBC: return "subc";
3759 case ISD::SUBE: return "sube";
3760 case ISD::SHL_PARTS: return "shl_parts";
3761 case ISD::SRA_PARTS: return "sra_parts";
3762 case ISD::SRL_PARTS: return "srl_parts";
Christopher Lambb768c2e2007-07-26 07:34:40 +00003763
3764 case ISD::EXTRACT_SUBREG: return "extract_subreg";
3765 case ISD::INSERT_SUBREG: return "insert_subreg";
3766
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003767 // Conversion operators.
3768 case ISD::SIGN_EXTEND: return "sign_extend";
3769 case ISD::ZERO_EXTEND: return "zero_extend";
3770 case ISD::ANY_EXTEND: return "any_extend";
3771 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3772 case ISD::TRUNCATE: return "truncate";
3773 case ISD::FP_ROUND: return "fp_round";
Dan Gohman819574c2008-01-31 00:41:03 +00003774 case ISD::FLT_ROUNDS_: return "flt_rounds";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003775 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3776 case ISD::FP_EXTEND: return "fp_extend";
3777
3778 case ISD::SINT_TO_FP: return "sint_to_fp";
3779 case ISD::UINT_TO_FP: return "uint_to_fp";
3780 case ISD::FP_TO_SINT: return "fp_to_sint";
3781 case ISD::FP_TO_UINT: return "fp_to_uint";
3782 case ISD::BIT_CONVERT: return "bit_convert";
3783
3784 // Control flow instructions
3785 case ISD::BR: return "br";
3786 case ISD::BRIND: return "brind";
3787 case ISD::BR_JT: return "br_jt";
3788 case ISD::BRCOND: return "brcond";
3789 case ISD::BR_CC: return "br_cc";
3790 case ISD::RET: return "ret";
3791 case ISD::CALLSEQ_START: return "callseq_start";
3792 case ISD::CALLSEQ_END: return "callseq_end";
3793
3794 // Other operators
3795 case ISD::LOAD: return "load";
3796 case ISD::STORE: return "store";
3797 case ISD::VAARG: return "vaarg";
3798 case ISD::VACOPY: return "vacopy";
3799 case ISD::VAEND: return "vaend";
3800 case ISD::VASTART: return "vastart";
3801 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3802 case ISD::EXTRACT_ELEMENT: return "extract_element";
3803 case ISD::BUILD_PAIR: return "build_pair";
3804 case ISD::STACKSAVE: return "stacksave";
3805 case ISD::STACKRESTORE: return "stackrestore";
Anton Korobeynikov39d40ba2008-01-15 07:02:33 +00003806 case ISD::TRAP: return "trap";
3807
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003808 // Block memory operations.
3809 case ISD::MEMSET: return "memset";
3810 case ISD::MEMCPY: return "memcpy";
3811 case ISD::MEMMOVE: return "memmove";
3812
3813 // Bit manipulation
3814 case ISD::BSWAP: return "bswap";
3815 case ISD::CTPOP: return "ctpop";
3816 case ISD::CTTZ: return "cttz";
3817 case ISD::CTLZ: return "ctlz";
3818
3819 // Debug info
3820 case ISD::LOCATION: return "location";
3821 case ISD::DEBUG_LOC: return "debug_loc";
3822
Duncan Sands38947cd2007-07-27 12:58:54 +00003823 // Trampolines
Duncan Sands7407a9f2007-09-11 14:10:23 +00003824 case ISD::TRAMPOLINE: return "trampoline";
Duncan Sands38947cd2007-07-27 12:58:54 +00003825
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003826 case ISD::CONDCODE:
3827 switch (cast<CondCodeSDNode>(this)->get()) {
3828 default: assert(0 && "Unknown setcc condition!");
3829 case ISD::SETOEQ: return "setoeq";
3830 case ISD::SETOGT: return "setogt";
3831 case ISD::SETOGE: return "setoge";
3832 case ISD::SETOLT: return "setolt";
3833 case ISD::SETOLE: return "setole";
3834 case ISD::SETONE: return "setone";
3835
3836 case ISD::SETO: return "seto";
3837 case ISD::SETUO: return "setuo";
3838 case ISD::SETUEQ: return "setue";
3839 case ISD::SETUGT: return "setugt";
3840 case ISD::SETUGE: return "setuge";
3841 case ISD::SETULT: return "setult";
3842 case ISD::SETULE: return "setule";
3843 case ISD::SETUNE: return "setune";
3844
3845 case ISD::SETEQ: return "seteq";
3846 case ISD::SETGT: return "setgt";
3847 case ISD::SETGE: return "setge";
3848 case ISD::SETLT: return "setlt";
3849 case ISD::SETLE: return "setle";
3850 case ISD::SETNE: return "setne";
3851 }
3852 }
3853}
3854
3855const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3856 switch (AM) {
3857 default:
3858 return "";
3859 case ISD::PRE_INC:
3860 return "<pre-inc>";
3861 case ISD::PRE_DEC:
3862 return "<pre-dec>";
3863 case ISD::POST_INC:
3864 return "<post-inc>";
3865 case ISD::POST_DEC:
3866 return "<post-dec>";
3867 }
3868}
3869
3870void SDNode::dump() const { dump(0); }
3871void SDNode::dump(const SelectionDAG *G) const {
3872 cerr << (void*)this << ": ";
3873
3874 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3875 if (i) cerr << ",";
3876 if (getValueType(i) == MVT::Other)
3877 cerr << "ch";
3878 else
3879 cerr << MVT::getValueTypeString(getValueType(i));
3880 }
3881 cerr << " = " << getOperationName(G);
3882
3883 cerr << " ";
3884 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3885 if (i) cerr << ", ";
3886 cerr << (void*)getOperand(i).Val;
3887 if (unsigned RN = getOperand(i).ResNo)
3888 cerr << ":" << RN;
3889 }
3890
Evan Chengaad43a02007-12-11 02:08:35 +00003891 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3892 SDNode *Mask = getOperand(2).Val;
3893 cerr << "<";
3894 for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3895 if (i) cerr << ",";
3896 if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3897 cerr << "u";
3898 else
3899 cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3900 }
3901 cerr << ">";
3902 }
3903
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003904 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3905 cerr << "<" << CSDN->getValue() << ">";
3906 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00003907 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3908 cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3909 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3910 cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3911 else {
3912 cerr << "<APFloat(";
3913 CSDN->getValueAPF().convertToAPInt().dump();
3914 cerr << ")>";
3915 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003916 } else if (const GlobalAddressSDNode *GADN =
3917 dyn_cast<GlobalAddressSDNode>(this)) {
3918 int offset = GADN->getOffset();
3919 cerr << "<";
3920 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3921 if (offset > 0)
3922 cerr << " + " << offset;
3923 else
3924 cerr << " " << offset;
3925 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3926 cerr << "<" << FIDN->getIndex() << ">";
3927 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3928 cerr << "<" << JTDN->getIndex() << ">";
3929 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3930 int offset = CP->getOffset();
3931 if (CP->isMachineConstantPoolEntry())
3932 cerr << "<" << *CP->getMachineCPVal() << ">";
3933 else
3934 cerr << "<" << *CP->getConstVal() << ">";
3935 if (offset > 0)
3936 cerr << " + " << offset;
3937 else
3938 cerr << " " << offset;
3939 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3940 cerr << "<";
3941 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3942 if (LBB)
3943 cerr << LBB->getName() << " ";
3944 cerr << (const void*)BBDN->getBasicBlock() << ">";
3945 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3946 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3947 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3948 } else {
3949 cerr << " #" << R->getReg();
3950 }
3951 } else if (const ExternalSymbolSDNode *ES =
3952 dyn_cast<ExternalSymbolSDNode>(this)) {
3953 cerr << "'" << ES->getSymbol() << "'";
3954 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3955 if (M->getValue())
Evan Cheng36ddaf22008-01-31 21:00:00 +00003956 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003957 else
Evan Cheng36ddaf22008-01-31 21:00:00 +00003958 cerr << "<null:" << M->getOffset() << ">";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3960 cerr << ":" << MVT::getValueTypeString(N->getVT());
3961 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
Evan Cheng034c4f82007-12-18 19:06:30 +00003962 const Value *SrcValue = LD->getSrcValue();
3963 int SrcOffset = LD->getSrcValueOffset();
3964 cerr << " <";
3965 if (SrcValue)
3966 cerr << SrcValue;
3967 else
3968 cerr << "null";
3969 cerr << ":" << SrcOffset << ">";
3970
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003971 bool doExt = true;
3972 switch (LD->getExtensionType()) {
3973 default: doExt = false; break;
3974 case ISD::EXTLOAD:
3975 cerr << " <anyext ";
3976 break;
3977 case ISD::SEXTLOAD:
3978 cerr << " <sext ";
3979 break;
3980 case ISD::ZEXTLOAD:
3981 cerr << " <zext ";
3982 break;
3983 }
3984 if (doExt)
Dan Gohman9a4c92c2008-01-30 00:15:11 +00003985 cerr << MVT::getValueTypeString(LD->getMemoryVT()) << ">";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003986
3987 const char *AM = getIndexedModeName(LD->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003988 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003989 cerr << " " << AM;
Evan Cheng034c4f82007-12-18 19:06:30 +00003990 if (LD->isVolatile())
3991 cerr << " <volatile>";
3992 cerr << " alignment=" << LD->getAlignment();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003993 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
Evan Cheng7196a7b2007-12-18 07:02:08 +00003994 const Value *SrcValue = ST->getSrcValue();
3995 int SrcOffset = ST->getSrcValueOffset();
3996 cerr << " <";
3997 if (SrcValue)
3998 cerr << SrcValue;
3999 else
4000 cerr << "null";
4001 cerr << ":" << SrcOffset << ">";
Evan Cheng034c4f82007-12-18 19:06:30 +00004002
4003 if (ST->isTruncatingStore())
4004 cerr << " <trunc "
Dan Gohman9a4c92c2008-01-30 00:15:11 +00004005 << MVT::getValueTypeString(ST->getMemoryVT()) << ">";
Evan Cheng034c4f82007-12-18 19:06:30 +00004006
4007 const char *AM = getIndexedModeName(ST->getAddressingMode());
4008 if (*AM)
4009 cerr << " " << AM;
4010 if (ST->isVolatile())
4011 cerr << " <volatile>";
4012 cerr << " alignment=" << ST->getAlignment();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004013 }
4014}
4015
4016static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
4017 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
4018 if (N->getOperand(i).Val->hasOneUse())
4019 DumpNodes(N->getOperand(i).Val, indent+2, G);
4020 else
4021 cerr << "\n" << std::string(indent+2, ' ')
4022 << (void*)N->getOperand(i).Val << ": <multiple use>";
4023
4024
4025 cerr << "\n" << std::string(indent, ' ');
4026 N->dump(G);
4027}
4028
4029void SelectionDAG::dump() const {
4030 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
4031 std::vector<const SDNode*> Nodes;
4032 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
4033 I != E; ++I)
4034 Nodes.push_back(I);
4035
4036 std::sort(Nodes.begin(), Nodes.end());
4037
4038 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4039 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4040 DumpNodes(Nodes[i], 2, this);
4041 }
4042
4043 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4044
4045 cerr << "\n\n";
4046}
4047
4048const Type *ConstantPoolSDNode::getType() const {
4049 if (isMachineConstantPoolEntry())
4050 return Val.MachineCPVal->getType();
4051 return Val.ConstVal->getType();
4052}