blob: 6bfd605f6181dd75a7ff99ad81d83965b91872cc [file] [log] [blame]
Chris Lattner87be16a2010-10-05 06:04:14 +00001//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file describes the various pseudo instructions used by the compiler,
11// as well as Pat patterns used during instruction selection.
12//
13//===----------------------------------------------------------------------===//
14
Chris Lattner41efbfa2010-10-05 06:37:31 +000015//===----------------------------------------------------------------------===//
16// Pattern Matching Support
17
18def GetLo32XForm : SDNodeXForm<imm, [{
19 // Transformation function: get the low 32 bits.
20 return getI32Imm((unsigned)N->getZExtValue());
21}]>;
22
23
24//===----------------------------------------------------------------------===//
25// Random Pseudo Instructions.
26
Chris Lattner8af88ef2010-10-05 06:10:16 +000027// PIC base construction. This expands to code that looks like this:
28// call $next_inst
29// popl %destreg"
30let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in
31 def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label),
32 "", []>;
33
34
35// ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into
36// a stack adjustment and the codegen must know that they may modify the stack
37// pointer before prolog-epilog rewriting occurs.
38// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
39// sub / add which can clobber EFLAGS.
40let Defs = [ESP, EFLAGS], Uses = [ESP] in {
41def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt),
42 "#ADJCALLSTACKDOWN",
43 [(X86callseq_start timm:$amt)]>,
44 Requires<[In32BitMode]>;
45def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
46 "#ADJCALLSTACKUP",
47 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
48 Requires<[In32BitMode]>;
49}
50
51// ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into
52// a stack adjustment and the codegen must know that they may modify the stack
53// pointer before prolog-epilog rewriting occurs.
54// Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become
55// sub / add which can clobber EFLAGS.
56let Defs = [RSP, EFLAGS], Uses = [RSP] in {
57def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt),
58 "#ADJCALLSTACKDOWN",
59 [(X86callseq_start timm:$amt)]>,
60 Requires<[In64BitMode]>;
61def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2),
62 "#ADJCALLSTACKUP",
63 [(X86callseq_end timm:$amt1, timm:$amt2)]>,
64 Requires<[In64BitMode]>;
65}
66
67
68
69// x86-64 va_start lowering magic.
70let usesCustomInserter = 1 in {
71def VASTART_SAVE_XMM_REGS : I<0, Pseudo,
72 (outs),
73 (ins GR8:$al,
74 i64imm:$regsavefi, i64imm:$offset,
75 variable_ops),
76 "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset",
77 [(X86vastart_save_xmm_regs GR8:$al,
78 imm:$regsavefi,
79 imm:$offset)]>;
80
Dan Gohman320afb82010-10-12 18:00:49 +000081// The VAARG_64 pseudo-instruction takes the address of the va_list,
82// and places the address of the next argument into a register.
83let Defs = [EFLAGS] in
84def VAARG_64 : I<0, Pseudo,
85 (outs GR64:$dst),
86 (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align),
87 "#VAARG_64 $dst, $ap, $size, $mode, $align",
88 [(set GR64:$dst,
89 (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)),
90 (implicit EFLAGS)]>;
91
Chris Lattner8af88ef2010-10-05 06:10:16 +000092// Dynamic stack allocation yields _alloca call for Cygwin/Mingw targets. Calls
93// to _alloca is needed to probe the stack when allocating more than 4k bytes in
94// one go. Touching the stack at 4K increments is necessary to ensure that the
95// guard pages used by the OS virtual memory manager are allocated in correct
96// sequence.
97// The main point of having separate instruction are extra unmodelled effects
98// (compared to ordinary calls) like stack pointer change.
99
100let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in
101 def MINGW_ALLOCA : I<0, Pseudo, (outs), (ins),
102 "# dynamic stack allocation",
103 [(X86MingwAlloca)]>;
104}
105
106
Chris Lattner87be16a2010-10-05 06:04:14 +0000107
108//===----------------------------------------------------------------------===//
109// EH Pseudo Instructions
110//
111let isTerminator = 1, isReturn = 1, isBarrier = 1,
112 hasCtrlDep = 1, isCodeGenOnly = 1 in {
113def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr),
114 "ret\t#eh_return, addr: $addr",
115 [(X86ehret GR32:$addr)]>;
116
117}
118
119let isTerminator = 1, isReturn = 1, isBarrier = 1,
120 hasCtrlDep = 1, isCodeGenOnly = 1 in {
121def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr),
122 "ret\t#eh_return, addr: $addr",
123 [(X86ehret GR64:$addr)]>;
124
125}
126
Chris Lattner8af88ef2010-10-05 06:10:16 +0000127//===----------------------------------------------------------------------===//
128// Alias Instructions
129//===----------------------------------------------------------------------===//
130
131// Alias instructions that map movr0 to xor.
132// FIXME: remove when we can teach regalloc that xor reg, reg is ok.
133// FIXME: Set encoding to pseudo.
134let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1,
135 isCodeGenOnly = 1 in {
136def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "",
137 [(set GR8:$dst, 0)]>;
138
139// We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller
140// encoding and avoids a partial-register update sometimes, but doing so
141// at isel time interferes with rematerialization in the current register
142// allocator. For now, this is rewritten when the instruction is lowered
143// to an MCInst.
144def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins),
145 "",
146 [(set GR16:$dst, 0)]>, OpSize;
147
148// FIXME: Set encoding to pseudo.
149def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "",
150 [(set GR32:$dst, 0)]>;
151}
152
Chris Lattner010496c2010-10-05 06:22:35 +0000153// We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a
154// smaller encoding, but doing so at isel time interferes with rematerialization
155// in the current register allocator. For now, this is rewritten when the
156// instruction is lowered to an MCInst.
157// FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove
158// when we have a better way to specify isel priority.
159let Defs = [EFLAGS],
160 AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
161def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "",
162 [(set GR64:$dst, 0)]>;
163
164// Materialize i64 constant where top 32-bits are zero. This could theoretically
165// use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however
166// that would make it more difficult to rematerialize.
167let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in
168def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src),
169 "", [(set GR64:$dst, i64immZExt32:$src)]>;
170
Chris Lattner35649fc2010-10-05 06:33:16 +0000171
Chris Lattner2c383d82010-10-05 21:18:04 +0000172// Use sbb to materialize carry bit.
173let Uses = [EFLAGS], Defs = [EFLAGS], isCodeGenOnly = 1 in {
174// FIXME: These are pseudo ops that should be replaced with Pat<> patterns.
Chris Lattner35649fc2010-10-05 06:33:16 +0000175// However, Pat<> can't replicate the destination reg into the inputs of the
176// result.
Chris Lattner2c383d82010-10-05 21:18:04 +0000177// FIXME: Change these to have encoding Pseudo when X86MCCodeEmitter replaces
Chris Lattner35649fc2010-10-05 06:33:16 +0000178// X86CodeEmitter.
Chris Lattner2c383d82010-10-05 21:18:04 +0000179def SETB_C8r : I<0x18, MRMInitReg, (outs GR8:$dst), (ins), "",
180 [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
181def SETB_C16r : I<0x19, MRMInitReg, (outs GR16:$dst), (ins), "",
182 [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>,
183 OpSize;
184def SETB_C32r : I<0x19, MRMInitReg, (outs GR32:$dst), (ins), "",
185 [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
Chris Lattner35649fc2010-10-05 06:33:16 +0000186def SETB_C64r : RI<0x19, MRMInitReg, (outs GR64:$dst), (ins), "",
187 [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>;
Chris Lattner2c383d82010-10-05 21:18:04 +0000188} // isCodeGenOnly
189
Chris Lattner35649fc2010-10-05 06:33:16 +0000190
191def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
192 (SETB_C64r)>;
193
Chris Lattner010496c2010-10-05 06:22:35 +0000194
Chris Lattnerd3f033d2010-10-05 06:27:48 +0000195//===----------------------------------------------------------------------===//
196// String Pseudo Instructions
197//
198let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in {
199def REP_MOVSB : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}",
200 [(X86rep_movs i8)]>, REP;
201def REP_MOVSW : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}",
202 [(X86rep_movs i16)]>, REP, OpSize;
203def REP_MOVSD : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}",
204 [(X86rep_movs i32)]>, REP;
205}
206
207let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in
208def REP_MOVSQ : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}",
209 [(X86rep_movs i64)]>, REP;
210
211
212// FIXME: Should use "(X86rep_stos AL)" as the pattern.
213let Defs = [ECX,EDI], Uses = [AL,ECX,EDI], isCodeGenOnly = 1 in
214def REP_STOSB : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}",
215 [(X86rep_stos i8)]>, REP;
216let Defs = [ECX,EDI], Uses = [AX,ECX,EDI], isCodeGenOnly = 1 in
217def REP_STOSW : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}",
218 [(X86rep_stos i16)]>, REP, OpSize;
219let Defs = [ECX,EDI], Uses = [EAX,ECX,EDI], isCodeGenOnly = 1 in
220def REP_STOSD : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}",
221 [(X86rep_stos i32)]>, REP;
222
223let Defs = [RCX,RDI], Uses = [RAX,RCX,RDI], isCodeGenOnly = 1 in
224def REP_STOSQ : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}",
225 [(X86rep_stos i64)]>, REP;
Chris Lattner010496c2010-10-05 06:22:35 +0000226
227
Chris Lattner8af88ef2010-10-05 06:10:16 +0000228//===----------------------------------------------------------------------===//
229// Thread Local Storage Instructions
230//
231
232// ELF TLS Support
233// All calls clobber the non-callee saved registers. ESP is marked as
234// a use to prevent stack-pointer assignments that appear immediately
235// before calls from potentially appearing dead.
236let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0,
237 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
238 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
239 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
240 Uses = [ESP] in
241def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
242 "leal\t$sym, %eax; "
243 "call\t___tls_get_addr@PLT",
244 [(X86tlsaddr tls32addr:$sym)]>,
245 Requires<[In32BitMode]>;
246
247// All calls clobber the non-callee saved registers. RSP is marked as
248// a use to prevent stack-pointer assignments that appear immediately
249// before calls from potentially appearing dead.
250let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11,
251 FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1,
252 MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7,
253 XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7,
254 XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS],
255 Uses = [RSP] in
256def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
257 ".byte\t0x66; "
258 "leaq\t$sym(%rip), %rdi; "
259 ".word\t0x6666; "
260 "rex64; "
261 "call\t__tls_get_addr@PLT",
262 [(X86tlsaddr tls64addr:$sym)]>,
263 Requires<[In64BitMode]>;
264
265// Darwin TLS Support
266// For i386, the address of the thunk is passed on the stack, on return the
267// address of the variable is in %eax. %ecx is trashed during the function
268// call. All other registers are preserved.
269let Defs = [EAX, ECX],
270 Uses = [ESP],
271 usesCustomInserter = 1 in
272def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym),
273 "# TLSCall_32",
274 [(X86TLSCall addr:$sym)]>,
275 Requires<[In32BitMode]>;
276
277// For x86_64, the address of the thunk is passed in %rdi, on return
278// the address of the variable is in %rax. All other registers are preserved.
279let Defs = [RAX],
280 Uses = [RDI],
281 usesCustomInserter = 1 in
282def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym),
283 "# TLSCall_64",
284 [(X86TLSCall addr:$sym)]>,
285 Requires<[In64BitMode]>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000286
Chris Lattner6dbbff92010-10-05 23:09:10 +0000287
288//===----------------------------------------------------------------------===//
289// Conditional Move Pseudo Instructions
290
291let Constraints = "$src1 = $dst" in {
292
293// Conditional moves
294let Uses = [EFLAGS] in {
295
296// X86 doesn't have 8-bit conditional moves. Use a customInserter to
297// emit control flow. An alternative to this is to mark i8 SELECT as Promote,
298// however that requires promoting the operands, and can induce additional
299// i8 register pressure. Note that CMOV_GR8 is conservatively considered to
300// clobber EFLAGS, because if one of the operands is zero, the expansion
301// could involve an xor.
302let usesCustomInserter = 1, Constraints = "", Defs = [EFLAGS] in {
303def CMOV_GR8 : I<0, Pseudo,
304 (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond),
305 "#CMOV_GR8 PSEUDO!",
306 [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2,
307 imm:$cond, EFLAGS))]>;
308
309let Predicates = [NoCMov] in {
310def CMOV_GR32 : I<0, Pseudo,
311 (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond),
312 "#CMOV_GR32* PSEUDO!",
313 [(set GR32:$dst,
314 (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>;
315def CMOV_GR16 : I<0, Pseudo,
316 (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond),
317 "#CMOV_GR16* PSEUDO!",
318 [(set GR16:$dst,
319 (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>;
320def CMOV_RFP32 : I<0, Pseudo,
321 (outs RFP32:$dst),
322 (ins RFP32:$src1, RFP32:$src2, i8imm:$cond),
323 "#CMOV_RFP32 PSEUDO!",
324 [(set RFP32:$dst,
325 (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond,
326 EFLAGS))]>;
327def CMOV_RFP64 : I<0, Pseudo,
328 (outs RFP64:$dst),
329 (ins RFP64:$src1, RFP64:$src2, i8imm:$cond),
330 "#CMOV_RFP64 PSEUDO!",
331 [(set RFP64:$dst,
332 (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond,
333 EFLAGS))]>;
334def CMOV_RFP80 : I<0, Pseudo,
335 (outs RFP80:$dst),
336 (ins RFP80:$src1, RFP80:$src2, i8imm:$cond),
337 "#CMOV_RFP80 PSEUDO!",
338 [(set RFP80:$dst,
339 (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond,
340 EFLAGS))]>;
341} // Predicates = [NoCMov]
342} // UsesCustomInserter = 1, Constraints = "", Defs = [EFLAGS]
343} // Uses = [EFLAGS]
344
345} // Constraints = "$src1 = $dst" in
346
347
Chris Lattner87be16a2010-10-05 06:04:14 +0000348//===----------------------------------------------------------------------===//
Chris Lattner010496c2010-10-05 06:22:35 +0000349// Atomic Instruction Pseudo Instructions
350//===----------------------------------------------------------------------===//
351
352// Atomic exchange, and, or, xor
353let Constraints = "$val = $dst", Defs = [EFLAGS],
354 usesCustomInserter = 1 in {
355
356def ATOMAND8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
357 "#ATOMAND8 PSEUDO!",
358 [(set GR8:$dst, (atomic_load_and_8 addr:$ptr, GR8:$val))]>;
359def ATOMOR8 : I<0, Pseudo, (outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
360 "#ATOMOR8 PSEUDO!",
361 [(set GR8:$dst, (atomic_load_or_8 addr:$ptr, GR8:$val))]>;
362def ATOMXOR8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
363 "#ATOMXOR8 PSEUDO!",
364 [(set GR8:$dst, (atomic_load_xor_8 addr:$ptr, GR8:$val))]>;
365def ATOMNAND8 : I<0, Pseudo,(outs GR8:$dst),(ins i8mem:$ptr, GR8:$val),
366 "#ATOMNAND8 PSEUDO!",
367 [(set GR8:$dst, (atomic_load_nand_8 addr:$ptr, GR8:$val))]>;
368
369def ATOMAND16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
370 "#ATOMAND16 PSEUDO!",
371 [(set GR16:$dst, (atomic_load_and_16 addr:$ptr, GR16:$val))]>;
372def ATOMOR16 : I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
373 "#ATOMOR16 PSEUDO!",
374 [(set GR16:$dst, (atomic_load_or_16 addr:$ptr, GR16:$val))]>;
375def ATOMXOR16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
376 "#ATOMXOR16 PSEUDO!",
377 [(set GR16:$dst, (atomic_load_xor_16 addr:$ptr, GR16:$val))]>;
378def ATOMNAND16 : I<0, Pseudo,(outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
379 "#ATOMNAND16 PSEUDO!",
380 [(set GR16:$dst, (atomic_load_nand_16 addr:$ptr, GR16:$val))]>;
381def ATOMMIN16: I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$ptr, GR16:$val),
382 "#ATOMMIN16 PSEUDO!",
383 [(set GR16:$dst, (atomic_load_min_16 addr:$ptr, GR16:$val))]>;
384def ATOMMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
385 "#ATOMMAX16 PSEUDO!",
386 [(set GR16:$dst, (atomic_load_max_16 addr:$ptr, GR16:$val))]>;
387def ATOMUMIN16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
388 "#ATOMUMIN16 PSEUDO!",
389 [(set GR16:$dst, (atomic_load_umin_16 addr:$ptr, GR16:$val))]>;
390def ATOMUMAX16: I<0, Pseudo, (outs GR16:$dst),(ins i16mem:$ptr, GR16:$val),
391 "#ATOMUMAX16 PSEUDO!",
392 [(set GR16:$dst, (atomic_load_umax_16 addr:$ptr, GR16:$val))]>;
393
394
395def ATOMAND32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
396 "#ATOMAND32 PSEUDO!",
397 [(set GR32:$dst, (atomic_load_and_32 addr:$ptr, GR32:$val))]>;
398def ATOMOR32 : I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
399 "#ATOMOR32 PSEUDO!",
400 [(set GR32:$dst, (atomic_load_or_32 addr:$ptr, GR32:$val))]>;
401def ATOMXOR32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
402 "#ATOMXOR32 PSEUDO!",
403 [(set GR32:$dst, (atomic_load_xor_32 addr:$ptr, GR32:$val))]>;
404def ATOMNAND32 : I<0, Pseudo,(outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
405 "#ATOMNAND32 PSEUDO!",
406 [(set GR32:$dst, (atomic_load_nand_32 addr:$ptr, GR32:$val))]>;
407def ATOMMIN32: I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val),
408 "#ATOMMIN32 PSEUDO!",
409 [(set GR32:$dst, (atomic_load_min_32 addr:$ptr, GR32:$val))]>;
410def ATOMMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
411 "#ATOMMAX32 PSEUDO!",
412 [(set GR32:$dst, (atomic_load_max_32 addr:$ptr, GR32:$val))]>;
413def ATOMUMIN32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
414 "#ATOMUMIN32 PSEUDO!",
415 [(set GR32:$dst, (atomic_load_umin_32 addr:$ptr, GR32:$val))]>;
416def ATOMUMAX32: I<0, Pseudo, (outs GR32:$dst),(ins i32mem:$ptr, GR32:$val),
417 "#ATOMUMAX32 PSEUDO!",
418 [(set GR32:$dst, (atomic_load_umax_32 addr:$ptr, GR32:$val))]>;
419
420
421
422def ATOMAND64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
423 "#ATOMAND64 PSEUDO!",
424 [(set GR64:$dst, (atomic_load_and_64 addr:$ptr, GR64:$val))]>;
425def ATOMOR64 : I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
426 "#ATOMOR64 PSEUDO!",
427 [(set GR64:$dst, (atomic_load_or_64 addr:$ptr, GR64:$val))]>;
428def ATOMXOR64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
429 "#ATOMXOR64 PSEUDO!",
430 [(set GR64:$dst, (atomic_load_xor_64 addr:$ptr, GR64:$val))]>;
431def ATOMNAND64 : I<0, Pseudo,(outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
432 "#ATOMNAND64 PSEUDO!",
433 [(set GR64:$dst, (atomic_load_nand_64 addr:$ptr, GR64:$val))]>;
434def ATOMMIN64: I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val),
435 "#ATOMMIN64 PSEUDO!",
436 [(set GR64:$dst, (atomic_load_min_64 addr:$ptr, GR64:$val))]>;
437def ATOMMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
438 "#ATOMMAX64 PSEUDO!",
439 [(set GR64:$dst, (atomic_load_max_64 addr:$ptr, GR64:$val))]>;
440def ATOMUMIN64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
441 "#ATOMUMIN64 PSEUDO!",
442 [(set GR64:$dst, (atomic_load_umin_64 addr:$ptr, GR64:$val))]>;
443def ATOMUMAX64: I<0, Pseudo, (outs GR64:$dst),(ins i64mem:$ptr, GR64:$val),
444 "#ATOMUMAX64 PSEUDO!",
445 [(set GR64:$dst, (atomic_load_umax_64 addr:$ptr, GR64:$val))]>;
446}
447
448let Constraints = "$val1 = $dst1, $val2 = $dst2",
449 Defs = [EFLAGS, EAX, EBX, ECX, EDX],
450 Uses = [EAX, EBX, ECX, EDX],
451 mayLoad = 1, mayStore = 1,
452 usesCustomInserter = 1 in {
453def ATOMAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
454 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
455 "#ATOMAND6432 PSEUDO!", []>;
456def ATOMOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
457 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
458 "#ATOMOR6432 PSEUDO!", []>;
459def ATOMXOR6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
460 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
461 "#ATOMXOR6432 PSEUDO!", []>;
462def ATOMNAND6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
463 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
464 "#ATOMNAND6432 PSEUDO!", []>;
465def ATOMADD6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
466 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
467 "#ATOMADD6432 PSEUDO!", []>;
468def ATOMSUB6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
469 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
470 "#ATOMSUB6432 PSEUDO!", []>;
471def ATOMSWAP6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2),
472 (ins i64mem:$ptr, GR32:$val1, GR32:$val2),
473 "#ATOMSWAP6432 PSEUDO!", []>;
474}
475
476//===----------------------------------------------------------------------===//
477// Normal-Instructions-With-Lock-Prefix Pseudo Instructions
478//===----------------------------------------------------------------------===//
479
480// FIXME: Use normal instructions and add lock prefix dynamically.
481
482// Memory barriers
483
484// TODO: Get this to fold the constant into the instruction.
485def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero),
486 "lock\n\t"
487 "or{l}\t{$zero, $dst|$dst, $zero}",
488 []>, Requires<[In32BitMode]>, LOCK;
489
490let hasSideEffects = 1 in
491def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
492 "#MEMBARRIER",
493 [(X86MemBarrier)]>, Requires<[HasSSE2]>;
494
495// TODO: Get this to fold the constant into the instruction.
496let hasSideEffects = 1, Defs = [ESP] in
497def Int_MemBarrierNoSSE64 : RI<0x09, MRM1r, (outs), (ins GR64:$zero),
498 "lock\n\t"
499 "or{q}\t{$zero, (%rsp)|(%rsp), $zero}",
500 [(X86MemBarrierNoSSE GR64:$zero)]>,
501 Requires<[In64BitMode]>, LOCK;
502
503
504// Optimized codegen when the non-memory output is not used.
505let Defs = [EFLAGS], mayLoad = 1, mayStore = 1 in {
506def LOCK_ADD8mr : I<0x00, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2),
507 "lock\n\t"
508 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
509def LOCK_ADD16mr : I<0x01, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
510 "lock\n\t"
511 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
512def LOCK_ADD32mr : I<0x01, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
513 "lock\n\t"
514 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
515def LOCK_ADD64mr : RI<0x01, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
516 "lock\n\t"
517 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
518
519def LOCK_ADD8mi : Ii8<0x80, MRM0m, (outs), (ins i8mem :$dst, i8imm :$src2),
520 "lock\n\t"
521 "add{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
522def LOCK_ADD16mi : Ii16<0x81, MRM0m, (outs), (ins i16mem:$dst, i16imm:$src2),
523 "lock\n\t"
524 "add{w}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
525def LOCK_ADD32mi : Ii32<0x81, MRM0m, (outs), (ins i32mem:$dst, i32imm:$src2),
526 "lock\n\t"
527 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
528def LOCK_ADD64mi32 : RIi32<0x81, MRM0m, (outs),
529 (ins i64mem:$dst, i64i32imm :$src2),
530 "lock\n\t"
531 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
532
533def LOCK_ADD16mi8 : Ii8<0x83, MRM0m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
534 "lock\n\t"
535 "add{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
536def LOCK_ADD32mi8 : Ii8<0x83, MRM0m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
537 "lock\n\t"
538 "add{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
539def LOCK_ADD64mi8 : RIi8<0x83, MRM0m, (outs),
540 (ins i64mem:$dst, i64i8imm :$src2),
541 "lock\n\t"
542 "add{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
543
544def LOCK_SUB8mr : I<0x28, MRMDestMem, (outs), (ins i8mem :$dst, GR8 :$src2),
545 "lock\n\t"
546 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
547def LOCK_SUB16mr : I<0x29, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2),
548 "lock\n\t"
549 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
550def LOCK_SUB32mr : I<0x29, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2),
551 "lock\n\t"
552 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
553def LOCK_SUB64mr : RI<0x29, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2),
554 "lock\n\t"
555 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
556
557
558def LOCK_SUB8mi : Ii8<0x80, MRM5m, (outs), (ins i8mem :$dst, i8imm:$src2),
559 "lock\n\t"
560 "sub{b}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
561def LOCK_SUB16mi : Ii16<0x81, MRM5m, (outs), (ins i16mem:$dst, i16imm:$src2),
562 "lock\n\t"
563 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
564def LOCK_SUB32mi : Ii32<0x81, MRM5m, (outs), (ins i32mem:$dst, i32imm:$src2),
565 "lock\n\t"
566 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
567def LOCK_SUB64mi32 : RIi32<0x81, MRM5m, (outs),
568 (ins i64mem:$dst, i64i32imm:$src2),
569 "lock\n\t"
570 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
571
572
573def LOCK_SUB16mi8 : Ii8<0x83, MRM5m, (outs), (ins i16mem:$dst, i16i8imm :$src2),
574 "lock\n\t"
575 "sub{w}\t{$src2, $dst|$dst, $src2}", []>, OpSize, LOCK;
576def LOCK_SUB32mi8 : Ii8<0x83, MRM5m, (outs), (ins i32mem:$dst, i32i8imm :$src2),
577 "lock\n\t"
578 "sub{l}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
579def LOCK_SUB64mi8 : RIi8<0x83, MRM5m, (outs),
580 (ins i64mem:$dst, i64i8imm :$src2),
581 "lock\n\t"
582 "sub{q}\t{$src2, $dst|$dst, $src2}", []>, LOCK;
583
584def LOCK_INC8m : I<0xFE, MRM0m, (outs), (ins i8mem :$dst),
585 "lock\n\t"
586 "inc{b}\t$dst", []>, LOCK;
587def LOCK_INC16m : I<0xFF, MRM0m, (outs), (ins i16mem:$dst),
588 "lock\n\t"
589 "inc{w}\t$dst", []>, OpSize, LOCK;
590def LOCK_INC32m : I<0xFF, MRM0m, (outs), (ins i32mem:$dst),
591 "lock\n\t"
592 "inc{l}\t$dst", []>, LOCK;
593def LOCK_INC64m : RI<0xFF, MRM0m, (outs), (ins i64mem:$dst),
594 "lock\n\t"
595 "inc{q}\t$dst", []>, LOCK;
596
597def LOCK_DEC8m : I<0xFE, MRM1m, (outs), (ins i8mem :$dst),
598 "lock\n\t"
599 "dec{b}\t$dst", []>, LOCK;
600def LOCK_DEC16m : I<0xFF, MRM1m, (outs), (ins i16mem:$dst),
601 "lock\n\t"
602 "dec{w}\t$dst", []>, OpSize, LOCK;
603def LOCK_DEC32m : I<0xFF, MRM1m, (outs), (ins i32mem:$dst),
604 "lock\n\t"
605 "dec{l}\t$dst", []>, LOCK;
606def LOCK_DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst),
607 "lock\n\t"
608 "dec{q}\t$dst", []>, LOCK;
609}
610
611// Atomic compare and swap.
612let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in {
613def LCMPXCHG8B : I<0xC7, MRM1m, (outs), (ins i64mem:$ptr),
614 "lock\n\t"
615 "cmpxchg8b\t$ptr",
616 [(X86cas8 addr:$ptr)]>, TB, LOCK;
617}
618let Defs = [AL, EFLAGS], Uses = [AL] in {
619def LCMPXCHG8 : I<0xB0, MRMDestMem, (outs), (ins i8mem:$ptr, GR8:$swap),
620 "lock\n\t"
621 "cmpxchg{b}\t{$swap, $ptr|$ptr, $swap}",
622 [(X86cas addr:$ptr, GR8:$swap, 1)]>, TB, LOCK;
623}
624
625let Defs = [AX, EFLAGS], Uses = [AX] in {
626def LCMPXCHG16 : I<0xB1, MRMDestMem, (outs), (ins i16mem:$ptr, GR16:$swap),
627 "lock\n\t"
628 "cmpxchg{w}\t{$swap, $ptr|$ptr, $swap}",
629 [(X86cas addr:$ptr, GR16:$swap, 2)]>, TB, OpSize, LOCK;
630}
631
632let Defs = [EAX, EFLAGS], Uses = [EAX] in {
633def LCMPXCHG32 : I<0xB1, MRMDestMem, (outs), (ins i32mem:$ptr, GR32:$swap),
634 "lock\n\t"
635 "cmpxchg{l}\t{$swap, $ptr|$ptr, $swap}",
636 [(X86cas addr:$ptr, GR32:$swap, 4)]>, TB, LOCK;
637}
638
639let Defs = [RAX, EFLAGS], Uses = [RAX] in {
640def LCMPXCHG64 : RI<0xB1, MRMDestMem, (outs), (ins i64mem:$ptr, GR64:$swap),
641 "lock\n\t"
642 "cmpxchgq\t$swap,$ptr",
643 [(X86cas addr:$ptr, GR64:$swap, 8)]>, TB, LOCK;
644}
645
646// Atomic exchange and add
647let Constraints = "$val = $dst", Defs = [EFLAGS] in {
648def LXADD8 : I<0xC0, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr),
649 "lock\n\t"
650 "xadd{b}\t{$val, $ptr|$ptr, $val}",
651 [(set GR8:$dst, (atomic_load_add_8 addr:$ptr, GR8:$val))]>,
652 TB, LOCK;
653def LXADD16 : I<0xC1, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr),
654 "lock\n\t"
655 "xadd{w}\t{$val, $ptr|$ptr, $val}",
656 [(set GR16:$dst, (atomic_load_add_16 addr:$ptr, GR16:$val))]>,
657 TB, OpSize, LOCK;
658def LXADD32 : I<0xC1, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr),
659 "lock\n\t"
660 "xadd{l}\t{$val, $ptr|$ptr, $val}",
661 [(set GR32:$dst, (atomic_load_add_32 addr:$ptr, GR32:$val))]>,
662 TB, LOCK;
663def LXADD64 : RI<0xC1, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val,i64mem:$ptr),
664 "lock\n\t"
665 "xadd\t$val, $ptr",
666 [(set GR64:$dst, (atomic_load_add_64 addr:$ptr, GR64:$val))]>,
667 TB, LOCK;
668}
669
Chris Lattner5673e1d2010-10-05 06:41:40 +0000670//===----------------------------------------------------------------------===//
671// Conditional Move Pseudo Instructions.
672//===----------------------------------------------------------------------===//
673
674
675// CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after
676// instruction selection into a branch sequence.
677let Uses = [EFLAGS], usesCustomInserter = 1 in {
678 def CMOV_FR32 : I<0, Pseudo,
679 (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond),
680 "#CMOV_FR32 PSEUDO!",
681 [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond,
682 EFLAGS))]>;
683 def CMOV_FR64 : I<0, Pseudo,
684 (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond),
685 "#CMOV_FR64 PSEUDO!",
686 [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond,
687 EFLAGS))]>;
688 def CMOV_V4F32 : I<0, Pseudo,
689 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
690 "#CMOV_V4F32 PSEUDO!",
691 [(set VR128:$dst,
692 (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond,
693 EFLAGS)))]>;
694 def CMOV_V2F64 : I<0, Pseudo,
695 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
696 "#CMOV_V2F64 PSEUDO!",
697 [(set VR128:$dst,
698 (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
699 EFLAGS)))]>;
700 def CMOV_V2I64 : I<0, Pseudo,
701 (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond),
702 "#CMOV_V2I64 PSEUDO!",
703 [(set VR128:$dst,
704 (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond,
705 EFLAGS)))]>;
706}
707
Chris Lattner010496c2010-10-05 06:22:35 +0000708
709//===----------------------------------------------------------------------===//
710// DAG Pattern Matching Rules
Chris Lattner87be16a2010-10-05 06:04:14 +0000711//===----------------------------------------------------------------------===//
712
713// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable
714def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>;
715def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>;
716def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>;
717def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>;
718def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>;
719def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>;
720
721def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)),
722 (ADD32ri GR32:$src1, tconstpool:$src2)>;
723def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)),
724 (ADD32ri GR32:$src1, tjumptable:$src2)>;
725def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)),
726 (ADD32ri GR32:$src1, tglobaladdr:$src2)>;
727def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)),
728 (ADD32ri GR32:$src1, texternalsym:$src2)>;
729def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)),
730 (ADD32ri GR32:$src1, tblockaddress:$src2)>;
731
732def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst),
733 (MOV32mi addr:$dst, tglobaladdr:$src)>;
734def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst),
735 (MOV32mi addr:$dst, texternalsym:$src)>;
736def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst),
737 (MOV32mi addr:$dst, tblockaddress:$src)>;
738
739
740
741// ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small
742// code model mode, should use 'movabs'. FIXME: This is really a hack, the
743// 'movabs' predicate should handle this sort of thing.
744def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
745 (MOV64ri tconstpool :$dst)>, Requires<[FarData]>;
746def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
747 (MOV64ri tjumptable :$dst)>, Requires<[FarData]>;
748def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
749 (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>;
750def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
751 (MOV64ri texternalsym:$dst)>, Requires<[FarData]>;
752def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
753 (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>;
754
755// In static codegen with small code model, we can get the address of a label
756// into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of
757// the MOV64ri64i32 should accept these.
758def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
759 (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>;
760def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
761 (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>;
762def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
763 (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>;
764def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
765 (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>;
766def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
767 (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>;
768
769// In kernel code model, we can get the address of a label
770// into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of
771// the MOV64ri32 should accept these.
772def : Pat<(i64 (X86Wrapper tconstpool :$dst)),
773 (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>;
774def : Pat<(i64 (X86Wrapper tjumptable :$dst)),
775 (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>;
776def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)),
777 (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>;
778def : Pat<(i64 (X86Wrapper texternalsym:$dst)),
779 (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>;
780def : Pat<(i64 (X86Wrapper tblockaddress:$dst)),
781 (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>;
782
783// If we have small model and -static mode, it is safe to store global addresses
784// directly as immediates. FIXME: This is really a hack, the 'imm' predicate
785// for MOV64mi32 should handle this sort of thing.
786def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst),
787 (MOV64mi32 addr:$dst, tconstpool:$src)>,
788 Requires<[NearData, IsStatic]>;
789def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst),
790 (MOV64mi32 addr:$dst, tjumptable:$src)>,
791 Requires<[NearData, IsStatic]>;
792def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst),
793 (MOV64mi32 addr:$dst, tglobaladdr:$src)>,
794 Requires<[NearData, IsStatic]>;
795def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst),
796 (MOV64mi32 addr:$dst, texternalsym:$src)>,
797 Requires<[NearData, IsStatic]>;
798def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst),
799 (MOV64mi32 addr:$dst, tblockaddress:$src)>,
800 Requires<[NearData, IsStatic]>;
801
802
803
804// Calls
805
806// tls has some funny stuff here...
807// This corresponds to movabs $foo@tpoff, %rax
808def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)),
809 (MOV64ri tglobaltlsaddr :$dst)>;
810// This corresponds to add $foo@tpoff, %rax
811def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)),
812 (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>;
813// This corresponds to mov foo@tpoff(%rbx), %eax
814def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))),
815 (MOV64rm tglobaltlsaddr :$dst)>;
816
817
818// Direct PC relative function call for small code model. 32-bit displacement
819// sign extended to 64-bit.
820def : Pat<(X86call (i64 tglobaladdr:$dst)),
821 (CALL64pcrel32 tglobaladdr:$dst)>, Requires<[NotWin64]>;
822def : Pat<(X86call (i64 texternalsym:$dst)),
823 (CALL64pcrel32 texternalsym:$dst)>, Requires<[NotWin64]>;
824
825def : Pat<(X86call (i64 tglobaladdr:$dst)),
826 (WINCALL64pcrel32 tglobaladdr:$dst)>, Requires<[IsWin64]>;
827def : Pat<(X86call (i64 texternalsym:$dst)),
828 (WINCALL64pcrel32 texternalsym:$dst)>, Requires<[IsWin64]>;
829
830// tailcall stuff
831def : Pat<(X86tcret GR32_TC:$dst, imm:$off),
832 (TCRETURNri GR32_TC:$dst, imm:$off)>,
833 Requires<[In32BitMode]>;
834
835// FIXME: This is disabled for 32-bit PIC mode because the global base
836// register which is part of the address mode may be assigned a
837// callee-saved register.
838def : Pat<(X86tcret (load addr:$dst), imm:$off),
839 (TCRETURNmi addr:$dst, imm:$off)>,
840 Requires<[In32BitMode, IsNotPIC]>;
841
842def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off),
843 (TCRETURNdi texternalsym:$dst, imm:$off)>,
844 Requires<[In32BitMode]>;
845
846def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off),
847 (TCRETURNdi texternalsym:$dst, imm:$off)>,
848 Requires<[In32BitMode]>;
849
850def : Pat<(X86tcret GR64_TC:$dst, imm:$off),
851 (TCRETURNri64 GR64_TC:$dst, imm:$off)>,
852 Requires<[In64BitMode]>;
853
854def : Pat<(X86tcret (load addr:$dst), imm:$off),
855 (TCRETURNmi64 addr:$dst, imm:$off)>,
856 Requires<[In64BitMode]>;
857
858def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off),
859 (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>,
860 Requires<[In64BitMode]>;
861
862def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off),
863 (TCRETURNdi64 texternalsym:$dst, imm:$off)>,
864 Requires<[In64BitMode]>;
865
866// Normal calls, with various flavors of addresses.
867def : Pat<(X86call (i32 tglobaladdr:$dst)),
868 (CALLpcrel32 tglobaladdr:$dst)>;
869def : Pat<(X86call (i32 texternalsym:$dst)),
870 (CALLpcrel32 texternalsym:$dst)>;
871def : Pat<(X86call (i32 imm:$dst)),
872 (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>;
873
874// X86 specific add which produces a flag.
875def : Pat<(addc GR32:$src1, GR32:$src2),
876 (ADD32rr GR32:$src1, GR32:$src2)>;
877def : Pat<(addc GR32:$src1, (load addr:$src2)),
878 (ADD32rm GR32:$src1, addr:$src2)>;
879def : Pat<(addc GR32:$src1, imm:$src2),
880 (ADD32ri GR32:$src1, imm:$src2)>;
881def : Pat<(addc GR32:$src1, i32immSExt8:$src2),
882 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
883
884def : Pat<(addc GR64:$src1, GR64:$src2),
885 (ADD64rr GR64:$src1, GR64:$src2)>;
886def : Pat<(addc GR64:$src1, (load addr:$src2)),
887 (ADD64rm GR64:$src1, addr:$src2)>;
888def : Pat<(addc GR64:$src1, i64immSExt8:$src2),
889 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
890def : Pat<(addc GR64:$src1, i64immSExt32:$src2),
891 (ADD64ri32 GR64:$src1, imm:$src2)>;
892
893def : Pat<(subc GR32:$src1, GR32:$src2),
894 (SUB32rr GR32:$src1, GR32:$src2)>;
895def : Pat<(subc GR32:$src1, (load addr:$src2)),
896 (SUB32rm GR32:$src1, addr:$src2)>;
897def : Pat<(subc GR32:$src1, imm:$src2),
898 (SUB32ri GR32:$src1, imm:$src2)>;
899def : Pat<(subc GR32:$src1, i32immSExt8:$src2),
900 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
901
902def : Pat<(subc GR64:$src1, GR64:$src2),
903 (SUB64rr GR64:$src1, GR64:$src2)>;
904def : Pat<(subc GR64:$src1, (load addr:$src2)),
905 (SUB64rm GR64:$src1, addr:$src2)>;
906def : Pat<(subc GR64:$src1, i64immSExt8:$src2),
907 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
908def : Pat<(subc GR64:$src1, imm:$src2),
909 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
910
911// Comparisons.
912
913// TEST R,R is smaller than CMP R,0
914def : Pat<(X86cmp GR8:$src1, 0),
915 (TEST8rr GR8:$src1, GR8:$src1)>;
916def : Pat<(X86cmp GR16:$src1, 0),
917 (TEST16rr GR16:$src1, GR16:$src1)>;
918def : Pat<(X86cmp GR32:$src1, 0),
919 (TEST32rr GR32:$src1, GR32:$src1)>;
920def : Pat<(X86cmp GR64:$src1, 0),
921 (TEST64rr GR64:$src1, GR64:$src1)>;
922
923// Conditional moves with folded loads with operands swapped and conditions
924// inverted.
Chris Lattner286997c2010-10-05 22:42:54 +0000925multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32,
926 Instruction Inst64> {
927 def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS),
928 (Inst16 GR16:$src2, addr:$src1)>;
929 def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS),
930 (Inst32 GR32:$src2, addr:$src1)>;
931 def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS),
932 (Inst64 GR64:$src2, addr:$src1)>;
933}
Chris Lattner87be16a2010-10-05 06:04:14 +0000934
Chris Lattnerdf72eae2010-10-05 22:51:56 +0000935defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>;
936defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>;
937defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>;
938defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>;
939defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>;
Chris Lattner25cbf502010-10-05 23:00:14 +0000940defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>;
Chris Lattnerdf72eae2010-10-05 22:51:56 +0000941defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>;
942defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>;
943defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>;
944defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>;
945defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>;
946defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>;
947defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>;
948defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>;
949defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>;
950defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>;
Chris Lattner87be16a2010-10-05 06:04:14 +0000951
952// zextload bool -> zextload byte
953def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>;
954def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
955def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
956def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
957
958// extload bool -> extload byte
959// When extloading from 16-bit and smaller memory locations into 64-bit
960// registers, use zero-extending loads so that the entire 64-bit register is
961// defined, avoiding partial-register updates.
962
963def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
964def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
965def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
966def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>;
967def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>;
968def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>;
969
970def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>;
971def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>;
972def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>;
973// For other extloads, use subregs, since the high contents of the register are
974// defined after an extload.
975def : Pat<(extloadi64i32 addr:$src),
976 (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src),
977 sub_32bit)>;
978
979// anyext. Define these to do an explicit zero-extend to
980// avoid partial-register updates.
981def : Pat<(i16 (anyext GR8 :$src)), (MOVZX16rr8 GR8 :$src)>;
982def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>;
983
984// Except for i16 -> i32 since isel expect i16 ops to be promoted to i32.
985def : Pat<(i32 (anyext GR16:$src)),
986 (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>;
987
988def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>;
989def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>;
990def : Pat<(i64 (anyext GR32:$src)),
991 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
992
Chris Lattnerd8cc2722010-10-05 06:47:35 +0000993
994// Any instruction that defines a 32-bit result leaves the high half of the
995// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
996// be copying from a truncate. And x86's cmov doesn't do anything if the
997// condition is false. But any other 32-bit operation will zero-extend
998// up to 64 bits.
999def def32 : PatLeaf<(i32 GR32:$src), [{
1000 return N->getOpcode() != ISD::TRUNCATE &&
1001 N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
1002 N->getOpcode() != ISD::CopyFromReg &&
1003 N->getOpcode() != X86ISD::CMOV;
1004}]>;
1005
1006// In the case of a 32-bit def that is known to implicitly zero-extend,
1007// we can use a SUBREG_TO_REG.
1008def : Pat<(i64 (zext def32:$src)),
1009 (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>;
1010
Chris Lattner87be16a2010-10-05 06:04:14 +00001011//===----------------------------------------------------------------------===//
Chris Lattner99ae6652010-10-08 03:54:52 +00001012// Pattern match OR as ADD
1013//===----------------------------------------------------------------------===//
1014
1015// If safe, we prefer to pattern match OR as ADD at isel time. ADD can be
1016// 3-addressified into an LEA instruction to avoid copies. However, we also
1017// want to finally emit these instructions as an or at the end of the code
1018// generator to make the generated code easier to read. To do this, we select
1019// into "disjoint bits" pseudo ops.
1020
1021// Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero.
1022def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{
1023 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1024 return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue());
1025
1026 unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits();
1027 APInt Mask = APInt::getAllOnesValue(BitWidth);
1028 APInt KnownZero0, KnownOne0;
1029 CurDAG->ComputeMaskedBits(N->getOperand(0), Mask, KnownZero0, KnownOne0, 0);
1030 APInt KnownZero1, KnownOne1;
1031 CurDAG->ComputeMaskedBits(N->getOperand(1), Mask, KnownZero1, KnownOne1, 0);
1032 return (~KnownZero0 & ~KnownZero1) == 0;
1033}]>;
1034
1035
1036// (or x1, x2) -> (add x1, x2) if two operands are known not to share bits.
1037let AddedComplexity = 5 in { // Try this before the selecting to OR
1038
1039let isCommutable = 1, isConvertibleToThreeAddress = 1,
1040 Constraints = "$src1 = $dst", Defs = [EFLAGS] in {
1041def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2),
1042 "", // orw/addw REG, REG
1043 [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>;
1044def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2),
1045 "", // orl/addl REG, REG
1046 [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>;
1047def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2),
1048 "", // orq/addq REG, REG
1049 [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>;
Chris Lattner15df55d2010-10-08 03:57:25 +00001050
1051
1052def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2),
1053 "", // orw/addw REG, imm
1054 [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>;
1055def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2),
1056 "", // orl/addl REG, imm
1057 [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>;
1058def ADD64ri32_DB : I<0, Pseudo,
1059 (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2),
1060 "", // orq/addq REG, imm
1061 [(set GR64:$dst, (or_is_add GR64:$src1,
1062 i64immSExt32:$src2))]>;
1063
1064def ADD16ri8_DB : I<0, Pseudo,
1065 (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2),
1066 "", // orw/addw REG, imm8
1067 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>;
1068def ADD32ri8_DB : I<0, Pseudo,
1069 (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2),
1070 "", // orl/addl REG, imm8
1071 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>;
1072def ADD64ri8_DB : I<0, Pseudo,
1073 (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2),
1074 "", // orq/addq REG, imm8
1075 [(set GR64:$dst, (or_is_add GR64:$src1,
1076 i64immSExt8:$src2))]>;
Chris Lattner99ae6652010-10-08 03:54:52 +00001077}
Chris Lattner99ae6652010-10-08 03:54:52 +00001078} // AddedComplexity
1079
1080
1081//===----------------------------------------------------------------------===//
Chris Lattner87be16a2010-10-05 06:04:14 +00001082// Some peepholes
1083//===----------------------------------------------------------------------===//
1084
1085// Odd encoding trick: -128 fits into an 8-bit immediate field while
1086// +128 doesn't, so in this special case use a sub instead of an add.
1087def : Pat<(add GR16:$src1, 128),
1088 (SUB16ri8 GR16:$src1, -128)>;
1089def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst),
1090 (SUB16mi8 addr:$dst, -128)>;
1091
1092def : Pat<(add GR32:$src1, 128),
1093 (SUB32ri8 GR32:$src1, -128)>;
1094def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst),
1095 (SUB32mi8 addr:$dst, -128)>;
1096
1097def : Pat<(add GR64:$src1, 128),
1098 (SUB64ri8 GR64:$src1, -128)>;
1099def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst),
1100 (SUB64mi8 addr:$dst, -128)>;
1101
1102// The same trick applies for 32-bit immediate fields in 64-bit
1103// instructions.
1104def : Pat<(add GR64:$src1, 0x0000000080000000),
1105 (SUB64ri32 GR64:$src1, 0xffffffff80000000)>;
1106def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst),
1107 (SUB64mi32 addr:$dst, 0xffffffff80000000)>;
1108
1109// Use a 32-bit and with implicit zero-extension instead of a 64-bit and if it
1110// has an immediate with at least 32 bits of leading zeros, to avoid needing to
1111// materialize that immediate in a register first.
1112def : Pat<(and GR64:$src, i64immZExt32:$imm),
1113 (SUBREG_TO_REG
1114 (i64 0),
1115 (AND32ri
1116 (EXTRACT_SUBREG GR64:$src, sub_32bit),
1117 (i32 (GetLo32XForm imm:$imm))),
1118 sub_32bit)>;
1119
1120
1121// r & (2^16-1) ==> movz
1122def : Pat<(and GR32:$src1, 0xffff),
1123 (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>;
1124// r & (2^8-1) ==> movz
1125def : Pat<(and GR32:$src1, 0xff),
1126 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1,
1127 GR32_ABCD)),
1128 sub_8bit))>,
1129 Requires<[In32BitMode]>;
1130// r & (2^8-1) ==> movz
1131def : Pat<(and GR16:$src1, 0xff),
1132 (MOVZX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1,
1133 GR16_ABCD)),
1134 sub_8bit))>,
1135 Requires<[In32BitMode]>;
1136
1137// r & (2^32-1) ==> movz
1138def : Pat<(and GR64:$src, 0x00000000FFFFFFFF),
1139 (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1140// r & (2^16-1) ==> movz
1141def : Pat<(and GR64:$src, 0xffff),
1142 (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>;
1143// r & (2^8-1) ==> movz
1144def : Pat<(and GR64:$src, 0xff),
1145 (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>;
1146// r & (2^8-1) ==> movz
1147def : Pat<(and GR32:$src1, 0xff),
1148 (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>,
1149 Requires<[In64BitMode]>;
1150// r & (2^8-1) ==> movz
1151def : Pat<(and GR16:$src1, 0xff),
1152 (MOVZX16rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit)))>,
1153 Requires<[In64BitMode]>;
1154
1155
1156// sext_inreg patterns
1157def : Pat<(sext_inreg GR32:$src, i16),
1158 (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>;
1159def : Pat<(sext_inreg GR32:$src, i8),
1160 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1161 GR32_ABCD)),
1162 sub_8bit))>,
1163 Requires<[In32BitMode]>;
1164def : Pat<(sext_inreg GR16:$src, i8),
1165 (MOVSX16rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1166 GR16_ABCD)),
1167 sub_8bit))>,
1168 Requires<[In32BitMode]>;
1169
1170def : Pat<(sext_inreg GR64:$src, i32),
1171 (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>;
1172def : Pat<(sext_inreg GR64:$src, i16),
1173 (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>;
1174def : Pat<(sext_inreg GR64:$src, i8),
1175 (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>;
1176def : Pat<(sext_inreg GR32:$src, i8),
1177 (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>,
1178 Requires<[In64BitMode]>;
1179def : Pat<(sext_inreg GR16:$src, i8),
1180 (MOVSX16rr8 (i8 (EXTRACT_SUBREG GR16:$src, sub_8bit)))>,
1181 Requires<[In64BitMode]>;
1182
1183
1184// trunc patterns
1185def : Pat<(i16 (trunc GR32:$src)),
1186 (EXTRACT_SUBREG GR32:$src, sub_16bit)>;
1187def : Pat<(i8 (trunc GR32:$src)),
1188 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1189 sub_8bit)>,
1190 Requires<[In32BitMode]>;
1191def : Pat<(i8 (trunc GR16:$src)),
1192 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1193 sub_8bit)>,
1194 Requires<[In32BitMode]>;
1195def : Pat<(i32 (trunc GR64:$src)),
1196 (EXTRACT_SUBREG GR64:$src, sub_32bit)>;
1197def : Pat<(i16 (trunc GR64:$src)),
1198 (EXTRACT_SUBREG GR64:$src, sub_16bit)>;
1199def : Pat<(i8 (trunc GR64:$src)),
1200 (EXTRACT_SUBREG GR64:$src, sub_8bit)>;
1201def : Pat<(i8 (trunc GR32:$src)),
1202 (EXTRACT_SUBREG GR32:$src, sub_8bit)>,
1203 Requires<[In64BitMode]>;
1204def : Pat<(i8 (trunc GR16:$src)),
1205 (EXTRACT_SUBREG GR16:$src, sub_8bit)>,
1206 Requires<[In64BitMode]>;
1207
1208// h-register tricks
1209def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))),
1210 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1211 sub_8bit_hi)>,
1212 Requires<[In32BitMode]>;
1213def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))),
1214 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1215 sub_8bit_hi)>,
1216 Requires<[In32BitMode]>;
1217def : Pat<(srl GR16:$src, (i8 8)),
1218 (EXTRACT_SUBREG
1219 (MOVZX32rr8
1220 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1221 sub_8bit_hi)),
1222 sub_16bit)>,
1223 Requires<[In32BitMode]>;
1224def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1225 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1226 GR16_ABCD)),
1227 sub_8bit_hi))>,
1228 Requires<[In32BitMode]>;
1229def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1230 (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src,
1231 GR16_ABCD)),
1232 sub_8bit_hi))>,
1233 Requires<[In32BitMode]>;
1234def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1235 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1236 GR32_ABCD)),
1237 sub_8bit_hi))>,
1238 Requires<[In32BitMode]>;
1239def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1240 (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1241 GR32_ABCD)),
1242 sub_8bit_hi))>,
1243 Requires<[In32BitMode]>;
1244
1245// h-register tricks.
1246// For now, be conservative on x86-64 and use an h-register extract only if the
1247// value is immediately zero-extended or stored, which are somewhat common
1248// cases. This uses a bunch of code to prevent a register requiring a REX prefix
1249// from being allocated in the same instruction as the h register, as there's
1250// currently no way to describe this requirement to the register allocator.
1251
1252// h-register extract and zero-extend.
1253def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)),
1254 (SUBREG_TO_REG
1255 (i64 0),
1256 (MOVZX32_NOREXrr8
1257 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1258 sub_8bit_hi)),
1259 sub_32bit)>;
1260def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)),
1261 (MOVZX32_NOREXrr8
1262 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1263 sub_8bit_hi))>,
1264 Requires<[In64BitMode]>;
1265def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)),
1266 (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src,
1267 GR32_ABCD)),
1268 sub_8bit_hi))>,
1269 Requires<[In64BitMode]>;
1270def : Pat<(srl GR16:$src, (i8 8)),
1271 (EXTRACT_SUBREG
1272 (MOVZX32_NOREXrr8
1273 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1274 sub_8bit_hi)),
1275 sub_16bit)>,
1276 Requires<[In64BitMode]>;
1277def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))),
1278 (MOVZX32_NOREXrr8
1279 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1280 sub_8bit_hi))>,
1281 Requires<[In64BitMode]>;
1282def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))),
1283 (MOVZX32_NOREXrr8
1284 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1285 sub_8bit_hi))>,
1286 Requires<[In64BitMode]>;
1287def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))),
1288 (SUBREG_TO_REG
1289 (i64 0),
1290 (MOVZX32_NOREXrr8
1291 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1292 sub_8bit_hi)),
1293 sub_32bit)>;
1294def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))),
1295 (SUBREG_TO_REG
1296 (i64 0),
1297 (MOVZX32_NOREXrr8
1298 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1299 sub_8bit_hi)),
1300 sub_32bit)>;
1301
1302// h-register extract and store.
1303def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst),
1304 (MOV8mr_NOREX
1305 addr:$dst,
1306 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)),
1307 sub_8bit_hi))>;
1308def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst),
1309 (MOV8mr_NOREX
1310 addr:$dst,
1311 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)),
1312 sub_8bit_hi))>,
1313 Requires<[In64BitMode]>;
1314def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst),
1315 (MOV8mr_NOREX
1316 addr:$dst,
1317 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)),
1318 sub_8bit_hi))>,
1319 Requires<[In64BitMode]>;
1320
1321
1322// (shl x, 1) ==> (add x, x)
1323def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>;
1324def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>;
1325def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>;
1326def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>;
1327
1328// (shl x (and y, 31)) ==> (shl x, y)
1329def : Pat<(shl GR8:$src1, (and CL, 31)),
1330 (SHL8rCL GR8:$src1)>;
1331def : Pat<(shl GR16:$src1, (and CL, 31)),
1332 (SHL16rCL GR16:$src1)>;
1333def : Pat<(shl GR32:$src1, (and CL, 31)),
1334 (SHL32rCL GR32:$src1)>;
1335def : Pat<(store (shl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1336 (SHL8mCL addr:$dst)>;
1337def : Pat<(store (shl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1338 (SHL16mCL addr:$dst)>;
1339def : Pat<(store (shl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1340 (SHL32mCL addr:$dst)>;
1341
1342def : Pat<(srl GR8:$src1, (and CL, 31)),
1343 (SHR8rCL GR8:$src1)>;
1344def : Pat<(srl GR16:$src1, (and CL, 31)),
1345 (SHR16rCL GR16:$src1)>;
1346def : Pat<(srl GR32:$src1, (and CL, 31)),
1347 (SHR32rCL GR32:$src1)>;
1348def : Pat<(store (srl (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1349 (SHR8mCL addr:$dst)>;
1350def : Pat<(store (srl (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1351 (SHR16mCL addr:$dst)>;
1352def : Pat<(store (srl (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1353 (SHR32mCL addr:$dst)>;
1354
1355def : Pat<(sra GR8:$src1, (and CL, 31)),
1356 (SAR8rCL GR8:$src1)>;
1357def : Pat<(sra GR16:$src1, (and CL, 31)),
1358 (SAR16rCL GR16:$src1)>;
1359def : Pat<(sra GR32:$src1, (and CL, 31)),
1360 (SAR32rCL GR32:$src1)>;
1361def : Pat<(store (sra (loadi8 addr:$dst), (and CL, 31)), addr:$dst),
1362 (SAR8mCL addr:$dst)>;
1363def : Pat<(store (sra (loadi16 addr:$dst), (and CL, 31)), addr:$dst),
1364 (SAR16mCL addr:$dst)>;
1365def : Pat<(store (sra (loadi32 addr:$dst), (and CL, 31)), addr:$dst),
1366 (SAR32mCL addr:$dst)>;
1367
1368// (shl x (and y, 63)) ==> (shl x, y)
1369def : Pat<(shl GR64:$src1, (and CL, 63)),
1370 (SHL64rCL GR64:$src1)>;
1371def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1372 (SHL64mCL addr:$dst)>;
1373
1374def : Pat<(srl GR64:$src1, (and CL, 63)),
1375 (SHR64rCL GR64:$src1)>;
1376def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1377 (SHR64mCL addr:$dst)>;
1378
1379def : Pat<(sra GR64:$src1, (and CL, 63)),
1380 (SAR64rCL GR64:$src1)>;
1381def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst),
1382 (SAR64mCL addr:$dst)>;
1383
1384
1385// (anyext (setcc_carry)) -> (setcc_carry)
1386def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1387 (SETB_C16r)>;
1388def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))),
1389 (SETB_C32r)>;
1390def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))),
1391 (SETB_C32r)>;
1392
Chris Lattner99ae6652010-10-08 03:54:52 +00001393
1394
Chris Lattner87be16a2010-10-05 06:04:14 +00001395
1396//===----------------------------------------------------------------------===//
1397// EFLAGS-defining Patterns
1398//===----------------------------------------------------------------------===//
1399
1400// add reg, reg
1401def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>;
1402def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>;
1403def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>;
1404
1405// add reg, mem
1406def : Pat<(add GR8:$src1, (loadi8 addr:$src2)),
1407 (ADD8rm GR8:$src1, addr:$src2)>;
1408def : Pat<(add GR16:$src1, (loadi16 addr:$src2)),
1409 (ADD16rm GR16:$src1, addr:$src2)>;
1410def : Pat<(add GR32:$src1, (loadi32 addr:$src2)),
1411 (ADD32rm GR32:$src1, addr:$src2)>;
1412
1413// add reg, imm
1414def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>;
1415def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>;
1416def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>;
1417def : Pat<(add GR16:$src1, i16immSExt8:$src2),
1418 (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>;
1419def : Pat<(add GR32:$src1, i32immSExt8:$src2),
1420 (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>;
1421
1422// sub reg, reg
1423def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>;
1424def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>;
1425def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>;
1426
1427// sub reg, mem
1428def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)),
1429 (SUB8rm GR8:$src1, addr:$src2)>;
1430def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)),
1431 (SUB16rm GR16:$src1, addr:$src2)>;
1432def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)),
1433 (SUB32rm GR32:$src1, addr:$src2)>;
1434
1435// sub reg, imm
1436def : Pat<(sub GR8:$src1, imm:$src2),
1437 (SUB8ri GR8:$src1, imm:$src2)>;
1438def : Pat<(sub GR16:$src1, imm:$src2),
1439 (SUB16ri GR16:$src1, imm:$src2)>;
1440def : Pat<(sub GR32:$src1, imm:$src2),
1441 (SUB32ri GR32:$src1, imm:$src2)>;
1442def : Pat<(sub GR16:$src1, i16immSExt8:$src2),
1443 (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>;
1444def : Pat<(sub GR32:$src1, i32immSExt8:$src2),
1445 (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>;
1446
1447// mul reg, reg
1448def : Pat<(mul GR16:$src1, GR16:$src2),
1449 (IMUL16rr GR16:$src1, GR16:$src2)>;
1450def : Pat<(mul GR32:$src1, GR32:$src2),
1451 (IMUL32rr GR32:$src1, GR32:$src2)>;
1452
1453// mul reg, mem
1454def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)),
1455 (IMUL16rm GR16:$src1, addr:$src2)>;
1456def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)),
1457 (IMUL32rm GR32:$src1, addr:$src2)>;
1458
1459// mul reg, imm
1460def : Pat<(mul GR16:$src1, imm:$src2),
1461 (IMUL16rri GR16:$src1, imm:$src2)>;
1462def : Pat<(mul GR32:$src1, imm:$src2),
1463 (IMUL32rri GR32:$src1, imm:$src2)>;
1464def : Pat<(mul GR16:$src1, i16immSExt8:$src2),
1465 (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>;
1466def : Pat<(mul GR32:$src1, i32immSExt8:$src2),
1467 (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>;
1468
1469// reg = mul mem, imm
1470def : Pat<(mul (loadi16 addr:$src1), imm:$src2),
1471 (IMUL16rmi addr:$src1, imm:$src2)>;
1472def : Pat<(mul (loadi32 addr:$src1), imm:$src2),
1473 (IMUL32rmi addr:$src1, imm:$src2)>;
1474def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2),
1475 (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>;
1476def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2),
1477 (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>;
1478
1479// Optimize multiply by 2 with EFLAGS result.
1480let AddedComplexity = 2 in {
1481def : Pat<(X86smul_flag GR16:$src1, 2), (ADD16rr GR16:$src1, GR16:$src1)>;
1482def : Pat<(X86smul_flag GR32:$src1, 2), (ADD32rr GR32:$src1, GR32:$src1)>;
1483}
1484
1485// Patterns for nodes that do not produce flags, for instructions that do.
1486
1487// addition
1488def : Pat<(add GR64:$src1, GR64:$src2),
1489 (ADD64rr GR64:$src1, GR64:$src2)>;
1490def : Pat<(add GR64:$src1, i64immSExt8:$src2),
1491 (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>;
1492def : Pat<(add GR64:$src1, i64immSExt32:$src2),
1493 (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>;
1494def : Pat<(add GR64:$src1, (loadi64 addr:$src2)),
1495 (ADD64rm GR64:$src1, addr:$src2)>;
1496
1497// subtraction
1498def : Pat<(sub GR64:$src1, GR64:$src2),
1499 (SUB64rr GR64:$src1, GR64:$src2)>;
1500def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)),
1501 (SUB64rm GR64:$src1, addr:$src2)>;
1502def : Pat<(sub GR64:$src1, i64immSExt8:$src2),
1503 (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>;
1504def : Pat<(sub GR64:$src1, i64immSExt32:$src2),
1505 (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>;
1506
1507// Multiply
1508def : Pat<(mul GR64:$src1, GR64:$src2),
1509 (IMUL64rr GR64:$src1, GR64:$src2)>;
1510def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)),
1511 (IMUL64rm GR64:$src1, addr:$src2)>;
1512def : Pat<(mul GR64:$src1, i64immSExt8:$src2),
1513 (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>;
1514def : Pat<(mul GR64:$src1, i64immSExt32:$src2),
1515 (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>;
1516def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2),
1517 (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>;
1518def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2),
1519 (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>;
1520
1521// Increment reg.
1522def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>;
1523def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>;
1524def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1525def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>;
1526def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1527def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>;
1528
1529// Decrement reg.
1530def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>;
1531def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>;
1532def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>;
1533def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>;
1534def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>;
1535def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>;
1536
1537// or reg/reg.
1538def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>;
1539def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>;
1540def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>;
1541def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>;
1542
1543// or reg/mem
1544def : Pat<(or GR8:$src1, (loadi8 addr:$src2)),
1545 (OR8rm GR8:$src1, addr:$src2)>;
1546def : Pat<(or GR16:$src1, (loadi16 addr:$src2)),
1547 (OR16rm GR16:$src1, addr:$src2)>;
1548def : Pat<(or GR32:$src1, (loadi32 addr:$src2)),
1549 (OR32rm GR32:$src1, addr:$src2)>;
1550def : Pat<(or GR64:$src1, (loadi64 addr:$src2)),
1551 (OR64rm GR64:$src1, addr:$src2)>;
1552
1553// or reg/imm
1554def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>;
1555def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>;
1556def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>;
1557def : Pat<(or GR16:$src1, i16immSExt8:$src2),
1558 (OR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1559def : Pat<(or GR32:$src1, i32immSExt8:$src2),
1560 (OR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1561def : Pat<(or GR64:$src1, i64immSExt8:$src2),
1562 (OR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1563def : Pat<(or GR64:$src1, i64immSExt32:$src2),
1564 (OR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1565
1566// xor reg/reg
1567def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>;
1568def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>;
1569def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>;
1570def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>;
1571
1572// xor reg/mem
1573def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)),
1574 (XOR8rm GR8:$src1, addr:$src2)>;
1575def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)),
1576 (XOR16rm GR16:$src1, addr:$src2)>;
1577def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)),
1578 (XOR32rm GR32:$src1, addr:$src2)>;
1579def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)),
1580 (XOR64rm GR64:$src1, addr:$src2)>;
1581
1582// xor reg/imm
1583def : Pat<(xor GR8:$src1, imm:$src2),
1584 (XOR8ri GR8:$src1, imm:$src2)>;
1585def : Pat<(xor GR16:$src1, imm:$src2),
1586 (XOR16ri GR16:$src1, imm:$src2)>;
1587def : Pat<(xor GR32:$src1, imm:$src2),
1588 (XOR32ri GR32:$src1, imm:$src2)>;
1589def : Pat<(xor GR16:$src1, i16immSExt8:$src2),
1590 (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>;
1591def : Pat<(xor GR32:$src1, i32immSExt8:$src2),
1592 (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>;
1593def : Pat<(xor GR64:$src1, i64immSExt8:$src2),
1594 (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>;
1595def : Pat<(xor GR64:$src1, i64immSExt32:$src2),
1596 (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>;
1597
1598// and reg/reg
1599def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>;
1600def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>;
1601def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>;
1602def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>;
1603
1604// and reg/mem
1605def : Pat<(and GR8:$src1, (loadi8 addr:$src2)),
1606 (AND8rm GR8:$src1, addr:$src2)>;
1607def : Pat<(and GR16:$src1, (loadi16 addr:$src2)),
1608 (AND16rm GR16:$src1, addr:$src2)>;
1609def : Pat<(and GR32:$src1, (loadi32 addr:$src2)),
1610 (AND32rm GR32:$src1, addr:$src2)>;
1611def : Pat<(and GR64:$src1, (loadi64 addr:$src2)),
1612 (AND64rm GR64:$src1, addr:$src2)>;
1613
1614// and reg/imm
1615def : Pat<(and GR8:$src1, imm:$src2),
1616 (AND8ri GR8:$src1, imm:$src2)>;
1617def : Pat<(and GR16:$src1, imm:$src2),
1618 (AND16ri GR16:$src1, imm:$src2)>;
1619def : Pat<(and GR32:$src1, imm:$src2),
1620 (AND32ri GR32:$src1, imm:$src2)>;
1621def : Pat<(and GR16:$src1, i16immSExt8:$src2),
1622 (AND16ri8 GR16:$src1, i16immSExt8:$src2)>;
1623def : Pat<(and GR32:$src1, i32immSExt8:$src2),
1624 (AND32ri8 GR32:$src1, i32immSExt8:$src2)>;
1625def : Pat<(and GR64:$src1, i64immSExt8:$src2),
1626 (AND64ri8 GR64:$src1, i64immSExt8:$src2)>;
1627def : Pat<(and GR64:$src1, i64immSExt32:$src2),
1628 (AND64ri32 GR64:$src1, i64immSExt32:$src2)>;
Chris Lattner87be16a2010-10-05 06:04:14 +00001629