blob: ba0a08bd8cf82b06779537c6e98a05a7f86a8b39 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements the SelectionDAG class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/CodeGen/SelectionDAG.h"
15#include "llvm/Constants.h"
16#include "llvm/GlobalVariable.h"
17#include "llvm/Intrinsics.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Assembly/Writer.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineConstantPool.h"
Chris Lattner53f5aee2007-10-15 17:47:20 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/Support/MathExtras.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetData.h"
26#include "llvm/Target/TargetLowering.h"
27#include "llvm/Target/TargetInstrInfo.h"
28#include "llvm/Target/TargetMachine.h"
29#include "llvm/ADT/SetVector.h"
30#include "llvm/ADT/SmallPtrSet.h"
Duncan Sandsa9810f32007-10-16 09:56:48 +000031#include "llvm/ADT/SmallSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/ADT/SmallVector.h"
33#include "llvm/ADT/StringExtras.h"
34#include <algorithm>
35#include <cmath>
36using namespace llvm;
37
38/// makeVTList - Return an instance of the SDVTList struct initialized with the
39/// specified members.
40static SDVTList makeVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
41 SDVTList Res = {VTs, NumVTs};
42 return Res;
43}
44
45//===----------------------------------------------------------------------===//
46// ConstantFPSDNode Class
47//===----------------------------------------------------------------------===//
48
49/// isExactlyValue - We don't rely on operator== working on double values, as
50/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
51/// As such, this method can be used to do an exact bit-for-bit comparison of
52/// two floating point values.
Dale Johannesenc53301c2007-08-26 01:18:27 +000053bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
Dale Johannesen7f2c1d12007-08-25 22:10:57 +000054 return Value.bitwiseIsEqual(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000055}
56
Dale Johannesenbbe2b702007-08-30 00:23:21 +000057bool ConstantFPSDNode::isValueValidForType(MVT::ValueType VT,
58 const APFloat& Val) {
59 // convert modifies in place, so make a copy.
60 APFloat Val2 = APFloat(Val);
61 switch (VT) {
62 default:
63 return false; // These can't be represented as floating point!
64
65 // FIXME rounding mode needs to be more flexible
66 case MVT::f32:
67 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
68 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven) ==
69 APFloat::opOK;
70 case MVT::f64:
71 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
72 &Val2.getSemantics() == &APFloat::IEEEdouble ||
73 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven) ==
74 APFloat::opOK;
75 // TODO: Figure out how to test if we can use a shorter type instead!
76 case MVT::f80:
77 case MVT::f128:
78 case MVT::ppcf128:
79 return true;
80 }
81}
82
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083//===----------------------------------------------------------------------===//
84// ISD Namespace
85//===----------------------------------------------------------------------===//
86
87/// isBuildVectorAllOnes - Return true if the specified node is a
88/// BUILD_VECTOR where all of the elements are ~0 or undef.
89bool ISD::isBuildVectorAllOnes(const SDNode *N) {
90 // Look through a bit convert.
91 if (N->getOpcode() == ISD::BIT_CONVERT)
92 N = N->getOperand(0).Val;
93
94 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
95
96 unsigned i = 0, e = N->getNumOperands();
97
98 // Skip over all of the undef values.
99 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
100 ++i;
101
102 // Do not accept an all-undef vector.
103 if (i == e) return false;
104
105 // Do not accept build_vectors that aren't all constants or which have non-~0
106 // elements.
107 SDOperand NotZero = N->getOperand(i);
108 if (isa<ConstantSDNode>(NotZero)) {
109 if (!cast<ConstantSDNode>(NotZero)->isAllOnesValue())
110 return false;
111 } else if (isa<ConstantFPSDNode>(NotZero)) {
112 MVT::ValueType VT = NotZero.getValueType();
113 if (VT== MVT::f64) {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000114 if (((cast<ConstantFPSDNode>(NotZero)->getValueAPF().
115 convertToAPInt().getZExtValue())) != (uint64_t)-1)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000116 return false;
117 } else {
Dale Johannesenfbd9cda2007-09-12 03:30:33 +0000118 if ((uint32_t)cast<ConstantFPSDNode>(NotZero)->
119 getValueAPF().convertToAPInt().getZExtValue() !=
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000120 (uint32_t)-1)
121 return false;
122 }
123 } else
124 return false;
125
126 // Okay, we have at least one ~0 value, check to see if the rest match or are
127 // undefs.
128 for (++i; i != e; ++i)
129 if (N->getOperand(i) != NotZero &&
130 N->getOperand(i).getOpcode() != ISD::UNDEF)
131 return false;
132 return true;
133}
134
135
136/// isBuildVectorAllZeros - Return true if the specified node is a
137/// BUILD_VECTOR where all of the elements are 0 or undef.
138bool ISD::isBuildVectorAllZeros(const SDNode *N) {
139 // Look through a bit convert.
140 if (N->getOpcode() == ISD::BIT_CONVERT)
141 N = N->getOperand(0).Val;
142
143 if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
144
145 unsigned i = 0, e = N->getNumOperands();
146
147 // Skip over all of the undef values.
148 while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
149 ++i;
150
151 // Do not accept an all-undef vector.
152 if (i == e) return false;
153
154 // Do not accept build_vectors that aren't all constants or which have non-~0
155 // elements.
156 SDOperand Zero = N->getOperand(i);
157 if (isa<ConstantSDNode>(Zero)) {
158 if (!cast<ConstantSDNode>(Zero)->isNullValue())
159 return false;
160 } else if (isa<ConstantFPSDNode>(Zero)) {
Dale Johannesendf8a8312007-08-31 04:03:46 +0000161 if (!cast<ConstantFPSDNode>(Zero)->getValueAPF().isPosZero())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000162 return false;
163 } else
164 return false;
165
166 // Okay, we have at least one ~0 value, check to see if the rest match or are
167 // undefs.
168 for (++i; i != e; ++i)
169 if (N->getOperand(i) != Zero &&
170 N->getOperand(i).getOpcode() != ISD::UNDEF)
171 return false;
172 return true;
173}
174
175/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
176/// when given the operation for (X op Y).
177ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
178 // To perform this operation, we just need to swap the L and G bits of the
179 // operation.
180 unsigned OldL = (Operation >> 2) & 1;
181 unsigned OldG = (Operation >> 1) & 1;
182 return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
183 (OldL << 1) | // New G bit
184 (OldG << 2)); // New L bit.
185}
186
187/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
188/// 'op' is a valid SetCC operation.
189ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
190 unsigned Operation = Op;
191 if (isInteger)
192 Operation ^= 7; // Flip L, G, E bits, but not U.
193 else
194 Operation ^= 15; // Flip all of the condition bits.
195 if (Operation > ISD::SETTRUE2)
196 Operation &= ~8; // Don't let N and U bits get set.
197 return ISD::CondCode(Operation);
198}
199
200
201/// isSignedOp - For an integer comparison, return 1 if the comparison is a
202/// signed operation and 2 if the result is an unsigned comparison. Return zero
203/// if the operation does not depend on the sign of the input (setne and seteq).
204static int isSignedOp(ISD::CondCode Opcode) {
205 switch (Opcode) {
206 default: assert(0 && "Illegal integer setcc operation!");
207 case ISD::SETEQ:
208 case ISD::SETNE: return 0;
209 case ISD::SETLT:
210 case ISD::SETLE:
211 case ISD::SETGT:
212 case ISD::SETGE: return 1;
213 case ISD::SETULT:
214 case ISD::SETULE:
215 case ISD::SETUGT:
216 case ISD::SETUGE: return 2;
217 }
218}
219
220/// getSetCCOrOperation - Return the result of a logical OR between different
221/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
222/// returns SETCC_INVALID if it is not possible to represent the resultant
223/// comparison.
224ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
225 bool isInteger) {
226 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
227 // Cannot fold a signed integer setcc with an unsigned integer setcc.
228 return ISD::SETCC_INVALID;
229
230 unsigned Op = Op1 | Op2; // Combine all of the condition bits.
231
232 // If the N and U bits get set then the resultant comparison DOES suddenly
233 // care about orderedness, and is true when ordered.
234 if (Op > ISD::SETTRUE2)
235 Op &= ~16; // Clear the U bit if the N bit is set.
236
237 // Canonicalize illegal integer setcc's.
238 if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
239 Op = ISD::SETNE;
240
241 return ISD::CondCode(Op);
242}
243
244/// getSetCCAndOperation - Return the result of a logical AND between different
245/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
246/// function returns zero if it is not possible to represent the resultant
247/// comparison.
248ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
249 bool isInteger) {
250 if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
251 // Cannot fold a signed setcc with an unsigned setcc.
252 return ISD::SETCC_INVALID;
253
254 // Combine all of the condition bits.
255 ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
256
257 // Canonicalize illegal integer setcc's.
258 if (isInteger) {
259 switch (Result) {
260 default: break;
261 case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
262 case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
263 case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
264 case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
265 }
266 }
267
268 return Result;
269}
270
271const TargetMachine &SelectionDAG::getTarget() const {
272 return TLI.getTargetMachine();
273}
274
275//===----------------------------------------------------------------------===//
276// SDNode Profile Support
277//===----------------------------------------------------------------------===//
278
279/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
280///
281static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
282 ID.AddInteger(OpC);
283}
284
285/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
286/// solely with their pointer.
287void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
288 ID.AddPointer(VTList.VTs);
289}
290
291/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
292///
293static void AddNodeIDOperands(FoldingSetNodeID &ID,
294 const SDOperand *Ops, unsigned NumOps) {
295 for (; NumOps; --NumOps, ++Ops) {
296 ID.AddPointer(Ops->Val);
297 ID.AddInteger(Ops->ResNo);
298 }
299}
300
301static void AddNodeIDNode(FoldingSetNodeID &ID,
302 unsigned short OpC, SDVTList VTList,
303 const SDOperand *OpList, unsigned N) {
304 AddNodeIDOpcode(ID, OpC);
305 AddNodeIDValueTypes(ID, VTList);
306 AddNodeIDOperands(ID, OpList, N);
307}
308
309/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
310/// data.
311static void AddNodeIDNode(FoldingSetNodeID &ID, SDNode *N) {
312 AddNodeIDOpcode(ID, N->getOpcode());
313 // Add the return value info.
314 AddNodeIDValueTypes(ID, N->getVTList());
315 // Add the operand info.
316 AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
317
318 // Handle SDNode leafs with special info.
319 switch (N->getOpcode()) {
320 default: break; // Normal nodes don't need extra info.
321 case ISD::TargetConstant:
322 case ISD::Constant:
323 ID.AddInteger(cast<ConstantSDNode>(N)->getValue());
324 break;
325 case ISD::TargetConstantFP:
Dale Johannesendf8a8312007-08-31 04:03:46 +0000326 case ISD::ConstantFP: {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000327 ID.AddAPFloat(cast<ConstantFPSDNode>(N)->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 break;
Dale Johannesendf8a8312007-08-31 04:03:46 +0000329 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330 case ISD::TargetGlobalAddress:
331 case ISD::GlobalAddress:
332 case ISD::TargetGlobalTLSAddress:
333 case ISD::GlobalTLSAddress: {
334 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
335 ID.AddPointer(GA->getGlobal());
336 ID.AddInteger(GA->getOffset());
337 break;
338 }
339 case ISD::BasicBlock:
340 ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
341 break;
342 case ISD::Register:
343 ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
344 break;
345 case ISD::SRCVALUE: {
346 SrcValueSDNode *SV = cast<SrcValueSDNode>(N);
347 ID.AddPointer(SV->getValue());
348 ID.AddInteger(SV->getOffset());
349 break;
350 }
351 case ISD::FrameIndex:
352 case ISD::TargetFrameIndex:
353 ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
354 break;
355 case ISD::JumpTable:
356 case ISD::TargetJumpTable:
357 ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
358 break;
359 case ISD::ConstantPool:
360 case ISD::TargetConstantPool: {
361 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
362 ID.AddInteger(CP->getAlignment());
363 ID.AddInteger(CP->getOffset());
364 if (CP->isMachineConstantPoolEntry())
365 CP->getMachineCPVal()->AddSelectionDAGCSEId(ID);
366 else
367 ID.AddPointer(CP->getConstVal());
368 break;
369 }
370 case ISD::LOAD: {
371 LoadSDNode *LD = cast<LoadSDNode>(N);
372 ID.AddInteger(LD->getAddressingMode());
373 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +0000374 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000375 ID.AddInteger(LD->getAlignment());
376 ID.AddInteger(LD->isVolatile());
377 break;
378 }
379 case ISD::STORE: {
380 StoreSDNode *ST = cast<StoreSDNode>(N);
381 ID.AddInteger(ST->getAddressingMode());
382 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +0000383 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384 ID.AddInteger(ST->getAlignment());
385 ID.AddInteger(ST->isVolatile());
386 break;
387 }
388 }
389}
390
391//===----------------------------------------------------------------------===//
392// SelectionDAG Class
393//===----------------------------------------------------------------------===//
394
395/// RemoveDeadNodes - This method deletes all unreachable nodes in the
396/// SelectionDAG.
397void SelectionDAG::RemoveDeadNodes() {
398 // Create a dummy node (which is not added to allnodes), that adds a reference
399 // to the root node, preventing it from being deleted.
400 HandleSDNode Dummy(getRoot());
401
402 SmallVector<SDNode*, 128> DeadNodes;
403
404 // Add all obviously-dead nodes to the DeadNodes worklist.
405 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
406 if (I->use_empty())
407 DeadNodes.push_back(I);
408
409 // Process the worklist, deleting the nodes and adding their uses to the
410 // worklist.
411 while (!DeadNodes.empty()) {
412 SDNode *N = DeadNodes.back();
413 DeadNodes.pop_back();
414
415 // Take the node out of the appropriate CSE map.
416 RemoveNodeFromCSEMaps(N);
417
418 // Next, brutally remove the operand list. This is safe to do, as there are
419 // no cycles in the graph.
420 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
421 SDNode *Operand = I->Val;
422 Operand->removeUser(N);
423
424 // Now that we removed this operand, see if there are no uses of it left.
425 if (Operand->use_empty())
426 DeadNodes.push_back(Operand);
427 }
428 if (N->OperandsNeedDelete)
429 delete[] N->OperandList;
430 N->OperandList = 0;
431 N->NumOperands = 0;
432
433 // Finally, remove N itself.
434 AllNodes.erase(N);
435 }
436
437 // If the root changed (e.g. it was a dead load, update the root).
438 setRoot(Dummy.getValue());
439}
440
441void SelectionDAG::RemoveDeadNode(SDNode *N, std::vector<SDNode*> &Deleted) {
442 SmallVector<SDNode*, 16> DeadNodes;
443 DeadNodes.push_back(N);
444
445 // Process the worklist, deleting the nodes and adding their uses to the
446 // worklist.
447 while (!DeadNodes.empty()) {
448 SDNode *N = DeadNodes.back();
449 DeadNodes.pop_back();
450
451 // Take the node out of the appropriate CSE map.
452 RemoveNodeFromCSEMaps(N);
453
454 // Next, brutally remove the operand list. This is safe to do, as there are
455 // no cycles in the graph.
456 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
457 SDNode *Operand = I->Val;
458 Operand->removeUser(N);
459
460 // Now that we removed this operand, see if there are no uses of it left.
461 if (Operand->use_empty())
462 DeadNodes.push_back(Operand);
463 }
464 if (N->OperandsNeedDelete)
465 delete[] N->OperandList;
466 N->OperandList = 0;
467 N->NumOperands = 0;
468
469 // Finally, remove N itself.
470 Deleted.push_back(N);
471 AllNodes.erase(N);
472 }
473}
474
475void SelectionDAG::DeleteNode(SDNode *N) {
476 assert(N->use_empty() && "Cannot delete a node that is not dead!");
477
478 // First take this out of the appropriate CSE map.
479 RemoveNodeFromCSEMaps(N);
480
481 // Finally, remove uses due to operands of this node, remove from the
482 // AllNodes list, and delete the node.
483 DeleteNodeNotInCSEMaps(N);
484}
485
486void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
487
488 // Remove it from the AllNodes list.
489 AllNodes.remove(N);
490
491 // Drop all of the operands and decrement used nodes use counts.
492 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I)
493 I->Val->removeUser(N);
494 if (N->OperandsNeedDelete)
495 delete[] N->OperandList;
496 N->OperandList = 0;
497 N->NumOperands = 0;
498
499 delete N;
500}
501
502/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
503/// correspond to it. This is useful when we're about to delete or repurpose
504/// the node. We don't want future request for structurally identical nodes
505/// to return N anymore.
506void SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
507 bool Erased = false;
508 switch (N->getOpcode()) {
509 case ISD::HANDLENODE: return; // noop.
510 case ISD::STRING:
511 Erased = StringNodes.erase(cast<StringSDNode>(N)->getValue());
512 break;
513 case ISD::CONDCODE:
514 assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
515 "Cond code doesn't exist!");
516 Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
517 CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
518 break;
519 case ISD::ExternalSymbol:
520 Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
521 break;
522 case ISD::TargetExternalSymbol:
523 Erased =
524 TargetExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
525 break;
Duncan Sandsd7307a92007-10-17 13:49:58 +0000526 case ISD::VALUETYPE: {
527 MVT::ValueType VT = cast<VTSDNode>(N)->getVT();
528 if (MVT::isExtendedVT(VT)) {
529 Erased = ExtendedValueTypeNodes.erase(VT);
530 } else {
531 Erased = ValueTypeNodes[VT] != 0;
532 ValueTypeNodes[VT] = 0;
533 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000534 break;
Duncan Sandsd7307a92007-10-17 13:49:58 +0000535 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000536 default:
537 // Remove it from the CSE Map.
538 Erased = CSEMap.RemoveNode(N);
539 break;
540 }
541#ifndef NDEBUG
542 // Verify that the node was actually in one of the CSE maps, unless it has a
543 // flag result (which cannot be CSE'd) or is one of the special cases that are
544 // not subject to CSE.
545 if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Flag &&
546 !N->isTargetOpcode()) {
547 N->dump(this);
548 cerr << "\n";
549 assert(0 && "Node is not in map!");
550 }
551#endif
552}
553
554/// AddNonLeafNodeToCSEMaps - Add the specified node back to the CSE maps. It
555/// has been taken out and modified in some way. If the specified node already
556/// exists in the CSE maps, do not modify the maps, but return the existing node
557/// instead. If it doesn't exist, add it and return null.
558///
559SDNode *SelectionDAG::AddNonLeafNodeToCSEMaps(SDNode *N) {
560 assert(N->getNumOperands() && "This is a leaf node!");
561 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
562 return 0; // Never add these nodes.
563
564 // Check that remaining values produced are not flags.
565 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
566 if (N->getValueType(i) == MVT::Flag)
567 return 0; // Never CSE anything that produces a flag.
568
569 SDNode *New = CSEMap.GetOrInsertNode(N);
570 if (New != N) return New; // Node already existed.
571 return 0;
572}
573
574/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
575/// were replaced with those specified. If this node is never memoized,
576/// return null, otherwise return a pointer to the slot it would take. If a
577/// node already exists with these operands, the slot will be non-null.
578SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDOperand Op,
579 void *&InsertPos) {
580 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
581 return 0; // Never add these nodes.
582
583 // Check that remaining values produced are not flags.
584 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
585 if (N->getValueType(i) == MVT::Flag)
586 return 0; // Never CSE anything that produces a flag.
587
588 SDOperand Ops[] = { Op };
589 FoldingSetNodeID ID;
590 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
591 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
592}
593
594/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
595/// were replaced with those specified. If this node is never memoized,
596/// return null, otherwise return a pointer to the slot it would take. If a
597/// node already exists with these operands, the slot will be non-null.
598SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
599 SDOperand Op1, SDOperand Op2,
600 void *&InsertPos) {
601 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
602 return 0; // Never add these nodes.
603
604 // Check that remaining values produced are not flags.
605 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
606 if (N->getValueType(i) == MVT::Flag)
607 return 0; // Never CSE anything that produces a flag.
608
609 SDOperand Ops[] = { Op1, Op2 };
610 FoldingSetNodeID ID;
611 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
612 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
613}
614
615
616/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
617/// were replaced with those specified. If this node is never memoized,
618/// return null, otherwise return a pointer to the slot it would take. If a
619/// node already exists with these operands, the slot will be non-null.
620SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
621 const SDOperand *Ops,unsigned NumOps,
622 void *&InsertPos) {
623 if (N->getOpcode() == ISD::HANDLENODE || N->getValueType(0) == MVT::Flag)
624 return 0; // Never add these nodes.
625
626 // Check that remaining values produced are not flags.
627 for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
628 if (N->getValueType(i) == MVT::Flag)
629 return 0; // Never CSE anything that produces a flag.
630
631 FoldingSetNodeID ID;
632 AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
633
634 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
635 ID.AddInteger(LD->getAddressingMode());
636 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +0000637 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000638 ID.AddInteger(LD->getAlignment());
639 ID.AddInteger(LD->isVolatile());
640 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
641 ID.AddInteger(ST->getAddressingMode());
642 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +0000643 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000644 ID.AddInteger(ST->getAlignment());
645 ID.AddInteger(ST->isVolatile());
646 }
647
648 return CSEMap.FindNodeOrInsertPos(ID, InsertPos);
649}
650
651
652SelectionDAG::~SelectionDAG() {
653 while (!AllNodes.empty()) {
654 SDNode *N = AllNodes.begin();
655 N->SetNextInBucket(0);
656 if (N->OperandsNeedDelete)
657 delete [] N->OperandList;
658 N->OperandList = 0;
659 N->NumOperands = 0;
660 AllNodes.pop_front();
661 }
662}
663
664SDOperand SelectionDAG::getZeroExtendInReg(SDOperand Op, MVT::ValueType VT) {
665 if (Op.getValueType() == VT) return Op;
666 int64_t Imm = ~0ULL >> (64-MVT::getSizeInBits(VT));
667 return getNode(ISD::AND, Op.getValueType(), Op,
668 getConstant(Imm, Op.getValueType()));
669}
670
671SDOperand SelectionDAG::getString(const std::string &Val) {
672 StringSDNode *&N = StringNodes[Val];
673 if (!N) {
674 N = new StringSDNode(Val);
675 AllNodes.push_back(N);
676 }
677 return SDOperand(N, 0);
678}
679
680SDOperand SelectionDAG::getConstant(uint64_t Val, MVT::ValueType VT, bool isT) {
681 assert(MVT::isInteger(VT) && "Cannot create FP integer constant!");
Dan Gohman5b9d6412007-12-12 22:21:26 +0000682
683 MVT::ValueType EltVT =
684 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000685
686 // Mask out any bits that are not valid for this constant.
Dan Gohman5b9d6412007-12-12 22:21:26 +0000687 Val &= MVT::getIntVTBitMask(EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000688
689 unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
690 FoldingSetNodeID ID;
Dan Gohman5b9d6412007-12-12 22:21:26 +0000691 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000692 ID.AddInteger(Val);
693 void *IP = 0;
Dan Gohman5b9d6412007-12-12 22:21:26 +0000694 SDNode *N = NULL;
695 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
696 if (!MVT::isVector(VT))
697 return SDOperand(N, 0);
698 if (!N) {
699 N = new ConstantSDNode(isT, Val, EltVT);
700 CSEMap.InsertNode(N, IP);
701 AllNodes.push_back(N);
702 }
703
704 SDOperand Result(N, 0);
705 if (MVT::isVector(VT)) {
706 SmallVector<SDOperand, 8> Ops;
707 Ops.assign(MVT::getVectorNumElements(VT), Result);
708 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
709 }
710 return Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711}
712
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000713SDOperand SelectionDAG::getConstantFP(const APFloat& V, MVT::ValueType VT,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000714 bool isTarget) {
715 assert(MVT::isFloatingPoint(VT) && "Cannot create integer FP constant!");
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000716
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000717 MVT::ValueType EltVT =
718 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719
720 // Do the map lookup using the actual bit pattern for the floating point
721 // value, so that we don't have problems with 0.0 comparing equal to -0.0, and
722 // we don't have issues with SNANs.
723 unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
724 FoldingSetNodeID ID;
725 AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
Dale Johannesen2fc20782007-09-14 22:26:36 +0000726 ID.AddAPFloat(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000727 void *IP = 0;
728 SDNode *N = NULL;
729 if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
730 if (!MVT::isVector(VT))
731 return SDOperand(N, 0);
732 if (!N) {
Dale Johannesen2fc20782007-09-14 22:26:36 +0000733 N = new ConstantFPSDNode(isTarget, V, EltVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734 CSEMap.InsertNode(N, IP);
735 AllNodes.push_back(N);
736 }
737
738 SDOperand Result(N, 0);
739 if (MVT::isVector(VT)) {
740 SmallVector<SDOperand, 8> Ops;
741 Ops.assign(MVT::getVectorNumElements(VT), Result);
742 Result = getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
743 }
744 return Result;
745}
746
Dale Johannesenbbe2b702007-08-30 00:23:21 +0000747SDOperand SelectionDAG::getConstantFP(double Val, MVT::ValueType VT,
748 bool isTarget) {
749 MVT::ValueType EltVT =
750 MVT::isVector(VT) ? MVT::getVectorElementType(VT) : VT;
751 if (EltVT==MVT::f32)
752 return getConstantFP(APFloat((float)Val), VT, isTarget);
753 else
754 return getConstantFP(APFloat(Val), VT, isTarget);
755}
756
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000757SDOperand SelectionDAG::getGlobalAddress(const GlobalValue *GV,
758 MVT::ValueType VT, int Offset,
759 bool isTargetGA) {
760 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
761 unsigned Opc;
762 if (GVar && GVar->isThreadLocal())
763 Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
764 else
765 Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
766 FoldingSetNodeID ID;
767 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
768 ID.AddPointer(GV);
769 ID.AddInteger(Offset);
770 void *IP = 0;
771 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
772 return SDOperand(E, 0);
773 SDNode *N = new GlobalAddressSDNode(isTargetGA, GV, VT, Offset);
774 CSEMap.InsertNode(N, IP);
775 AllNodes.push_back(N);
776 return SDOperand(N, 0);
777}
778
779SDOperand SelectionDAG::getFrameIndex(int FI, MVT::ValueType VT,
780 bool isTarget) {
781 unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
782 FoldingSetNodeID ID;
783 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
784 ID.AddInteger(FI);
785 void *IP = 0;
786 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
787 return SDOperand(E, 0);
788 SDNode *N = new FrameIndexSDNode(FI, VT, isTarget);
789 CSEMap.InsertNode(N, IP);
790 AllNodes.push_back(N);
791 return SDOperand(N, 0);
792}
793
794SDOperand SelectionDAG::getJumpTable(int JTI, MVT::ValueType VT, bool isTarget){
795 unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
796 FoldingSetNodeID ID;
797 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
798 ID.AddInteger(JTI);
799 void *IP = 0;
800 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
801 return SDOperand(E, 0);
802 SDNode *N = new JumpTableSDNode(JTI, VT, isTarget);
803 CSEMap.InsertNode(N, IP);
804 AllNodes.push_back(N);
805 return SDOperand(N, 0);
806}
807
808SDOperand SelectionDAG::getConstantPool(Constant *C, MVT::ValueType VT,
809 unsigned Alignment, int Offset,
810 bool isTarget) {
811 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
812 FoldingSetNodeID ID;
813 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
814 ID.AddInteger(Alignment);
815 ID.AddInteger(Offset);
816 ID.AddPointer(C);
817 void *IP = 0;
818 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
819 return SDOperand(E, 0);
820 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
821 CSEMap.InsertNode(N, IP);
822 AllNodes.push_back(N);
823 return SDOperand(N, 0);
824}
825
826
827SDOperand SelectionDAG::getConstantPool(MachineConstantPoolValue *C,
828 MVT::ValueType VT,
829 unsigned Alignment, int Offset,
830 bool isTarget) {
831 unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
832 FoldingSetNodeID ID;
833 AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
834 ID.AddInteger(Alignment);
835 ID.AddInteger(Offset);
836 C->AddSelectionDAGCSEId(ID);
837 void *IP = 0;
838 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
839 return SDOperand(E, 0);
840 SDNode *N = new ConstantPoolSDNode(isTarget, C, VT, Offset, Alignment);
841 CSEMap.InsertNode(N, IP);
842 AllNodes.push_back(N);
843 return SDOperand(N, 0);
844}
845
846
847SDOperand SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
848 FoldingSetNodeID ID;
849 AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
850 ID.AddPointer(MBB);
851 void *IP = 0;
852 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
853 return SDOperand(E, 0);
854 SDNode *N = new BasicBlockSDNode(MBB);
855 CSEMap.InsertNode(N, IP);
856 AllNodes.push_back(N);
857 return SDOperand(N, 0);
858}
859
860SDOperand SelectionDAG::getValueType(MVT::ValueType VT) {
Duncan Sandsd7307a92007-10-17 13:49:58 +0000861 if (!MVT::isExtendedVT(VT) && (unsigned)VT >= ValueTypeNodes.size())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000862 ValueTypeNodes.resize(VT+1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000863
Duncan Sandsd7307a92007-10-17 13:49:58 +0000864 SDNode *&N = MVT::isExtendedVT(VT) ?
865 ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT];
866
867 if (N) return SDOperand(N, 0);
868 N = new VTSDNode(VT);
869 AllNodes.push_back(N);
870 return SDOperand(N, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000871}
872
873SDOperand SelectionDAG::getExternalSymbol(const char *Sym, MVT::ValueType VT) {
874 SDNode *&N = ExternalSymbols[Sym];
875 if (N) return SDOperand(N, 0);
876 N = new ExternalSymbolSDNode(false, Sym, VT);
877 AllNodes.push_back(N);
878 return SDOperand(N, 0);
879}
880
881SDOperand SelectionDAG::getTargetExternalSymbol(const char *Sym,
882 MVT::ValueType VT) {
883 SDNode *&N = TargetExternalSymbols[Sym];
884 if (N) return SDOperand(N, 0);
885 N = new ExternalSymbolSDNode(true, Sym, VT);
886 AllNodes.push_back(N);
887 return SDOperand(N, 0);
888}
889
890SDOperand SelectionDAG::getCondCode(ISD::CondCode Cond) {
891 if ((unsigned)Cond >= CondCodeNodes.size())
892 CondCodeNodes.resize(Cond+1);
893
894 if (CondCodeNodes[Cond] == 0) {
895 CondCodeNodes[Cond] = new CondCodeSDNode(Cond);
896 AllNodes.push_back(CondCodeNodes[Cond]);
897 }
898 return SDOperand(CondCodeNodes[Cond], 0);
899}
900
901SDOperand SelectionDAG::getRegister(unsigned RegNo, MVT::ValueType VT) {
902 FoldingSetNodeID ID;
903 AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
904 ID.AddInteger(RegNo);
905 void *IP = 0;
906 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
907 return SDOperand(E, 0);
908 SDNode *N = new RegisterSDNode(RegNo, VT);
909 CSEMap.InsertNode(N, IP);
910 AllNodes.push_back(N);
911 return SDOperand(N, 0);
912}
913
914SDOperand SelectionDAG::getSrcValue(const Value *V, int Offset) {
915 assert((!V || isa<PointerType>(V->getType())) &&
916 "SrcValue is not a pointer?");
917
918 FoldingSetNodeID ID;
919 AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
920 ID.AddPointer(V);
921 ID.AddInteger(Offset);
922 void *IP = 0;
923 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
924 return SDOperand(E, 0);
925 SDNode *N = new SrcValueSDNode(V, Offset);
926 CSEMap.InsertNode(N, IP);
927 AllNodes.push_back(N);
928 return SDOperand(N, 0);
929}
930
Chris Lattner53f5aee2007-10-15 17:47:20 +0000931/// CreateStackTemporary - Create a stack temporary, suitable for holding the
932/// specified value type.
933SDOperand SelectionDAG::CreateStackTemporary(MVT::ValueType VT) {
934 MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
935 unsigned ByteSize = MVT::getSizeInBits(VT)/8;
936 const Type *Ty = MVT::getTypeForValueType(VT);
937 unsigned StackAlign = (unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty);
938 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign);
939 return getFrameIndex(FrameIdx, TLI.getPointerTy());
940}
941
942
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943SDOperand SelectionDAG::FoldSetCC(MVT::ValueType VT, SDOperand N1,
944 SDOperand N2, ISD::CondCode Cond) {
945 // These setcc operations always fold.
946 switch (Cond) {
947 default: break;
948 case ISD::SETFALSE:
949 case ISD::SETFALSE2: return getConstant(0, VT);
950 case ISD::SETTRUE:
951 case ISD::SETTRUE2: return getConstant(1, VT);
952
953 case ISD::SETOEQ:
954 case ISD::SETOGT:
955 case ISD::SETOGE:
956 case ISD::SETOLT:
957 case ISD::SETOLE:
958 case ISD::SETONE:
959 case ISD::SETO:
960 case ISD::SETUO:
961 case ISD::SETUEQ:
962 case ISD::SETUNE:
963 assert(!MVT::isInteger(N1.getValueType()) && "Illegal setcc for integer!");
964 break;
965 }
966
967 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val)) {
968 uint64_t C2 = N2C->getValue();
969 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
970 uint64_t C1 = N1C->getValue();
971
972 // Sign extend the operands if required
973 if (ISD::isSignedIntSetCC(Cond)) {
974 C1 = N1C->getSignExtended();
975 C2 = N2C->getSignExtended();
976 }
977
978 switch (Cond) {
979 default: assert(0 && "Unknown integer setcc!");
980 case ISD::SETEQ: return getConstant(C1 == C2, VT);
981 case ISD::SETNE: return getConstant(C1 != C2, VT);
982 case ISD::SETULT: return getConstant(C1 < C2, VT);
983 case ISD::SETUGT: return getConstant(C1 > C2, VT);
984 case ISD::SETULE: return getConstant(C1 <= C2, VT);
985 case ISD::SETUGE: return getConstant(C1 >= C2, VT);
986 case ISD::SETLT: return getConstant((int64_t)C1 < (int64_t)C2, VT);
987 case ISD::SETGT: return getConstant((int64_t)C1 > (int64_t)C2, VT);
988 case ISD::SETLE: return getConstant((int64_t)C1 <= (int64_t)C2, VT);
989 case ISD::SETGE: return getConstant((int64_t)C1 >= (int64_t)C2, VT);
990 }
991 }
992 }
993 if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.Val))
994 if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.Val)) {
Dale Johannesen80ca14c2007-10-14 01:56:47 +0000995 // No compile time operations on this type yet.
996 if (N1C->getValueType(0) == MVT::ppcf128)
997 return SDOperand();
Dale Johannesendf8a8312007-08-31 04:03:46 +0000998
999 APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001000 switch (Cond) {
Dale Johannesendf8a8312007-08-31 04:03:46 +00001001 default: break;
Dale Johannesen76844472007-08-31 17:03:33 +00001002 case ISD::SETEQ: if (R==APFloat::cmpUnordered)
1003 return getNode(ISD::UNDEF, VT);
1004 // fall through
1005 case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
1006 case ISD::SETNE: if (R==APFloat::cmpUnordered)
1007 return getNode(ISD::UNDEF, VT);
1008 // fall through
1009 case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001010 R==APFloat::cmpLessThan, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001011 case ISD::SETLT: if (R==APFloat::cmpUnordered)
1012 return getNode(ISD::UNDEF, VT);
1013 // fall through
1014 case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
1015 case ISD::SETGT: if (R==APFloat::cmpUnordered)
1016 return getNode(ISD::UNDEF, VT);
1017 // fall through
1018 case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
1019 case ISD::SETLE: if (R==APFloat::cmpUnordered)
1020 return getNode(ISD::UNDEF, VT);
1021 // fall through
1022 case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001023 R==APFloat::cmpEqual, VT);
Dale Johannesen76844472007-08-31 17:03:33 +00001024 case ISD::SETGE: if (R==APFloat::cmpUnordered)
1025 return getNode(ISD::UNDEF, VT);
1026 // fall through
1027 case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
Dale Johannesendf8a8312007-08-31 04:03:46 +00001028 R==APFloat::cmpEqual, VT);
1029 case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
1030 case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
1031 case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
1032 R==APFloat::cmpEqual, VT);
1033 case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
1034 case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
1035 R==APFloat::cmpLessThan, VT);
1036 case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
1037 R==APFloat::cmpUnordered, VT);
1038 case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
1039 case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040 }
1041 } else {
1042 // Ensure that the constant occurs on the RHS.
1043 return getSetCC(VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
1044 }
1045
1046 // Could not fold it.
1047 return SDOperand();
1048}
1049
1050/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
1051/// this predicate to simplify operations downstream. Mask is known to be zero
1052/// for bits that V cannot have.
1053bool SelectionDAG::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
1054 unsigned Depth) const {
1055 // The masks are not wide enough to represent this type! Should use APInt.
1056 if (Op.getValueType() == MVT::i128)
1057 return false;
1058
1059 uint64_t KnownZero, KnownOne;
1060 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1061 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1062 return (KnownZero & Mask) == Mask;
1063}
1064
1065/// ComputeMaskedBits - Determine which of the bits specified in Mask are
1066/// known to be either zero or one and return them in the KnownZero/KnownOne
1067/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
1068/// processing.
1069void SelectionDAG::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
1070 uint64_t &KnownZero, uint64_t &KnownOne,
1071 unsigned Depth) const {
1072 KnownZero = KnownOne = 0; // Don't know anything.
1073 if (Depth == 6 || Mask == 0)
1074 return; // Limit search depth.
1075
1076 // The masks are not wide enough to represent this type! Should use APInt.
1077 if (Op.getValueType() == MVT::i128)
1078 return;
1079
1080 uint64_t KnownZero2, KnownOne2;
1081
1082 switch (Op.getOpcode()) {
1083 case ISD::Constant:
1084 // We know all of the bits for a constant!
1085 KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
1086 KnownZero = ~KnownOne & Mask;
1087 return;
1088 case ISD::AND:
1089 // If either the LHS or the RHS are Zero, the result is zero.
1090 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1091 Mask &= ~KnownZero;
1092 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1093 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1094 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1095
1096 // Output known-1 bits are only known if set in both the LHS & RHS.
1097 KnownOne &= KnownOne2;
1098 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1099 KnownZero |= KnownZero2;
1100 return;
1101 case ISD::OR:
1102 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1103 Mask &= ~KnownOne;
1104 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1105 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1106 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1107
1108 // Output known-0 bits are only known if clear in both the LHS & RHS.
1109 KnownZero &= KnownZero2;
1110 // Output known-1 are known to be set if set in either the LHS | RHS.
1111 KnownOne |= KnownOne2;
1112 return;
1113 case ISD::XOR: {
1114 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1115 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1116 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1117 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1118
1119 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1120 uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1121 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1122 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1123 KnownZero = KnownZeroOut;
1124 return;
1125 }
1126 case ISD::SELECT:
1127 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
1128 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
1129 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1130 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1131
1132 // Only known if known in both the LHS and RHS.
1133 KnownOne &= KnownOne2;
1134 KnownZero &= KnownZero2;
1135 return;
1136 case ISD::SELECT_CC:
1137 ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
1138 ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
1139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1141
1142 // Only known if known in both the LHS and RHS.
1143 KnownOne &= KnownOne2;
1144 KnownZero &= KnownZero2;
1145 return;
1146 case ISD::SETCC:
1147 // If we know the result of a setcc has the top bits zero, use this info.
1148 if (TLI.getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
1149 KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
1150 return;
1151 case ISD::SHL:
1152 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
1153 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1154 ComputeMaskedBits(Op.getOperand(0), Mask >> SA->getValue(),
1155 KnownZero, KnownOne, Depth+1);
1156 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1157 KnownZero <<= SA->getValue();
1158 KnownOne <<= SA->getValue();
1159 KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
1160 }
1161 return;
1162 case ISD::SRL:
1163 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
1164 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1165 MVT::ValueType VT = Op.getValueType();
1166 unsigned ShAmt = SA->getValue();
1167
1168 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1169 ComputeMaskedBits(Op.getOperand(0), (Mask << ShAmt) & TypeMask,
1170 KnownZero, KnownOne, Depth+1);
1171 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1172 KnownZero &= TypeMask;
1173 KnownOne &= TypeMask;
1174 KnownZero >>= ShAmt;
1175 KnownOne >>= ShAmt;
1176
1177 uint64_t HighBits = (1ULL << ShAmt)-1;
1178 HighBits <<= MVT::getSizeInBits(VT)-ShAmt;
1179 KnownZero |= HighBits; // High bits known zero.
1180 }
1181 return;
1182 case ISD::SRA:
1183 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1184 MVT::ValueType VT = Op.getValueType();
1185 unsigned ShAmt = SA->getValue();
1186
1187 // Compute the new bits that are at the top now.
1188 uint64_t TypeMask = MVT::getIntVTBitMask(VT);
1189
1190 uint64_t InDemandedMask = (Mask << ShAmt) & TypeMask;
1191 // If any of the demanded bits are produced by the sign extension, we also
1192 // demand the input sign bit.
1193 uint64_t HighBits = (1ULL << ShAmt)-1;
1194 HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
1195 if (HighBits & Mask)
1196 InDemandedMask |= MVT::getIntVTSignBit(VT);
1197
1198 ComputeMaskedBits(Op.getOperand(0), InDemandedMask, KnownZero, KnownOne,
1199 Depth+1);
1200 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1201 KnownZero &= TypeMask;
1202 KnownOne &= TypeMask;
1203 KnownZero >>= ShAmt;
1204 KnownOne >>= ShAmt;
1205
1206 // Handle the sign bits.
1207 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1208 SignBit >>= ShAmt; // Adjust to where it is now in the mask.
1209
1210 if (KnownZero & SignBit) {
1211 KnownZero |= HighBits; // New bits are known zero.
1212 } else if (KnownOne & SignBit) {
1213 KnownOne |= HighBits; // New bits are known one.
1214 }
1215 }
1216 return;
1217 case ISD::SIGN_EXTEND_INREG: {
1218 MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1219
1220 // Sign extension. Compute the demanded bits in the result that are not
1221 // present in the input.
1222 uint64_t NewBits = ~MVT::getIntVTBitMask(EVT) & Mask;
1223
1224 uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
1225 int64_t InputDemandedBits = Mask & MVT::getIntVTBitMask(EVT);
1226
1227 // If the sign extended bits are demanded, we know that the sign
1228 // bit is demanded.
1229 if (NewBits)
1230 InputDemandedBits |= InSignBit;
1231
1232 ComputeMaskedBits(Op.getOperand(0), InputDemandedBits,
1233 KnownZero, KnownOne, Depth+1);
1234 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1235
1236 // If the sign bit of the input is known set or clear, then we know the
1237 // top bits of the result.
1238 if (KnownZero & InSignBit) { // Input sign bit known clear
1239 KnownZero |= NewBits;
1240 KnownOne &= ~NewBits;
1241 } else if (KnownOne & InSignBit) { // Input sign bit known set
1242 KnownOne |= NewBits;
1243 KnownZero &= ~NewBits;
1244 } else { // Input sign bit unknown
1245 KnownZero &= ~NewBits;
1246 KnownOne &= ~NewBits;
1247 }
1248 return;
1249 }
1250 case ISD::CTTZ:
1251 case ISD::CTLZ:
1252 case ISD::CTPOP: {
1253 MVT::ValueType VT = Op.getValueType();
1254 unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
1255 KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
1256 KnownOne = 0;
1257 return;
1258 }
1259 case ISD::LOAD: {
1260 if (ISD::isZEXTLoad(Op.Val)) {
1261 LoadSDNode *LD = cast<LoadSDNode>(Op);
1262 MVT::ValueType VT = LD->getLoadedVT();
1263 KnownZero |= ~MVT::getIntVTBitMask(VT) & Mask;
1264 }
1265 return;
1266 }
1267 case ISD::ZERO_EXTEND: {
1268 uint64_t InMask = MVT::getIntVTBitMask(Op.getOperand(0).getValueType());
1269 uint64_t NewBits = (~InMask) & Mask;
1270 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1271 KnownOne, Depth+1);
1272 KnownZero |= NewBits & Mask;
1273 KnownOne &= ~NewBits;
1274 return;
1275 }
1276 case ISD::SIGN_EXTEND: {
1277 MVT::ValueType InVT = Op.getOperand(0).getValueType();
1278 unsigned InBits = MVT::getSizeInBits(InVT);
1279 uint64_t InMask = MVT::getIntVTBitMask(InVT);
1280 uint64_t InSignBit = 1ULL << (InBits-1);
1281 uint64_t NewBits = (~InMask) & Mask;
1282 uint64_t InDemandedBits = Mask & InMask;
1283
1284 // If any of the sign extended bits are demanded, we know that the sign
1285 // bit is demanded.
1286 if (NewBits & Mask)
1287 InDemandedBits |= InSignBit;
1288
1289 ComputeMaskedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1290 KnownOne, Depth+1);
1291 // If the sign bit is known zero or one, the top bits match.
1292 if (KnownZero & InSignBit) {
1293 KnownZero |= NewBits;
1294 KnownOne &= ~NewBits;
1295 } else if (KnownOne & InSignBit) {
1296 KnownOne |= NewBits;
1297 KnownZero &= ~NewBits;
1298 } else { // Otherwise, top bits aren't known.
1299 KnownOne &= ~NewBits;
1300 KnownZero &= ~NewBits;
1301 }
1302 return;
1303 }
1304 case ISD::ANY_EXTEND: {
1305 MVT::ValueType VT = Op.getOperand(0).getValueType();
1306 ComputeMaskedBits(Op.getOperand(0), Mask & MVT::getIntVTBitMask(VT),
1307 KnownZero, KnownOne, Depth+1);
1308 return;
1309 }
1310 case ISD::TRUNCATE: {
1311 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1312 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1313 uint64_t OutMask = MVT::getIntVTBitMask(Op.getValueType());
1314 KnownZero &= OutMask;
1315 KnownOne &= OutMask;
1316 break;
1317 }
1318 case ISD::AssertZext: {
1319 MVT::ValueType VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1320 uint64_t InMask = MVT::getIntVTBitMask(VT);
1321 ComputeMaskedBits(Op.getOperand(0), Mask & InMask, KnownZero,
1322 KnownOne, Depth+1);
1323 KnownZero |= (~InMask) & Mask;
1324 return;
1325 }
Chris Lattner13f06832007-12-22 21:26:52 +00001326 case ISD::FGETSIGN:
1327 // All bits are zero except the low bit.
1328 KnownZero = MVT::getIntVTBitMask(Op.getValueType()) ^ 1;
1329 return;
1330
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001331 case ISD::ADD: {
1332 // If either the LHS or the RHS are Zero, the result is zero.
1333 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1334 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
1335 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1336 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1337
1338 // Output known-0 bits are known if clear or set in both the low clear bits
1339 // common to both LHS & RHS. For example, 8+(X<<3) is known to have the
1340 // low 3 bits clear.
1341 uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
1342 CountTrailingZeros_64(~KnownZero2));
1343
1344 KnownZero = (1ULL << KnownZeroOut) - 1;
1345 KnownOne = 0;
1346 return;
1347 }
1348 case ISD::SUB: {
1349 ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1350 if (!CLHS) return;
1351
1352 // We know that the top bits of C-X are clear if X contains less bits
1353 // than C (i.e. no wrap-around can happen). For example, 20-X is
1354 // positive if we can prove that X is >= 0 and < 16.
1355 MVT::ValueType VT = CLHS->getValueType(0);
1356 if ((CLHS->getValue() & MVT::getIntVTSignBit(VT)) == 0) { // sign bit clear
1357 unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
1358 uint64_t MaskV = (1ULL << (63-NLZ))-1; // NLZ can't be 64 with no sign bit
1359 MaskV = ~MaskV & MVT::getIntVTBitMask(VT);
1360 ComputeMaskedBits(Op.getOperand(1), MaskV, KnownZero, KnownOne, Depth+1);
1361
1362 // If all of the MaskV bits are known to be zero, then we know the output
1363 // top bits are zero, because we now know that the output is from [0-C].
1364 if ((KnownZero & MaskV) == MaskV) {
1365 unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
1366 KnownZero = ~((1ULL << (64-NLZ2))-1) & Mask; // Top bits known zero.
1367 KnownOne = 0; // No one bits known.
1368 } else {
1369 KnownZero = KnownOne = 0; // Otherwise, nothing known.
1370 }
1371 }
1372 return;
1373 }
1374 default:
1375 // Allow the target to implement this method for its nodes.
1376 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1377 case ISD::INTRINSIC_WO_CHAIN:
1378 case ISD::INTRINSIC_W_CHAIN:
1379 case ISD::INTRINSIC_VOID:
1380 TLI.computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne, *this);
1381 }
1382 return;
1383 }
1384}
1385
1386/// ComputeNumSignBits - Return the number of times the sign bit of the
1387/// register is replicated into the other bits. We know that at least 1 bit
1388/// is always equal to the sign bit (itself), but other cases can give us
1389/// information. For example, immediately after an "SRA X, 2", we know that
1390/// the top 3 bits are all equal to each other, so we return 3.
1391unsigned SelectionDAG::ComputeNumSignBits(SDOperand Op, unsigned Depth) const{
1392 MVT::ValueType VT = Op.getValueType();
1393 assert(MVT::isInteger(VT) && "Invalid VT!");
1394 unsigned VTBits = MVT::getSizeInBits(VT);
1395 unsigned Tmp, Tmp2;
1396
1397 if (Depth == 6)
1398 return 1; // Limit search depth.
1399
1400 switch (Op.getOpcode()) {
1401 default: break;
1402 case ISD::AssertSext:
1403 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1404 return VTBits-Tmp+1;
1405 case ISD::AssertZext:
1406 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1407 return VTBits-Tmp;
1408
1409 case ISD::Constant: {
1410 uint64_t Val = cast<ConstantSDNode>(Op)->getValue();
1411 // If negative, invert the bits, then look at it.
1412 if (Val & MVT::getIntVTSignBit(VT))
1413 Val = ~Val;
1414
1415 // Shift the bits so they are the leading bits in the int64_t.
1416 Val <<= 64-VTBits;
1417
1418 // Return # leading zeros. We use 'min' here in case Val was zero before
1419 // shifting. We don't want to return '64' as for an i32 "0".
1420 return std::min(VTBits, CountLeadingZeros_64(Val));
1421 }
1422
1423 case ISD::SIGN_EXTEND:
1424 Tmp = VTBits-MVT::getSizeInBits(Op.getOperand(0).getValueType());
1425 return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
1426
1427 case ISD::SIGN_EXTEND_INREG:
1428 // Max of the input and what this extends.
1429 Tmp = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
1430 Tmp = VTBits-Tmp+1;
1431
1432 Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1433 return std::max(Tmp, Tmp2);
1434
1435 case ISD::SRA:
1436 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1437 // SRA X, C -> adds C sign bits.
1438 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1439 Tmp += C->getValue();
1440 if (Tmp > VTBits) Tmp = VTBits;
1441 }
1442 return Tmp;
1443 case ISD::SHL:
1444 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1445 // shl destroys sign bits.
1446 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1447 if (C->getValue() >= VTBits || // Bad shift.
1448 C->getValue() >= Tmp) break; // Shifted all sign bits out.
1449 return Tmp - C->getValue();
1450 }
1451 break;
1452 case ISD::AND:
1453 case ISD::OR:
1454 case ISD::XOR: // NOT is handled here.
1455 // Logical binary ops preserve the number of sign bits.
1456 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1457 if (Tmp == 1) return 1; // Early out.
1458 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1459 return std::min(Tmp, Tmp2);
1460
1461 case ISD::SELECT:
1462 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1463 if (Tmp == 1) return 1; // Early out.
1464 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1465 return std::min(Tmp, Tmp2);
1466
1467 case ISD::SETCC:
1468 // If setcc returns 0/-1, all bits are sign bits.
1469 if (TLI.getSetCCResultContents() ==
1470 TargetLowering::ZeroOrNegativeOneSetCCResult)
1471 return VTBits;
1472 break;
1473 case ISD::ROTL:
1474 case ISD::ROTR:
1475 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1476 unsigned RotAmt = C->getValue() & (VTBits-1);
1477
1478 // Handle rotate right by N like a rotate left by 32-N.
1479 if (Op.getOpcode() == ISD::ROTR)
1480 RotAmt = (VTBits-RotAmt) & (VTBits-1);
1481
1482 // If we aren't rotating out all of the known-in sign bits, return the
1483 // number that are left. This handles rotl(sext(x), 1) for example.
1484 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1485 if (Tmp > RotAmt+1) return Tmp-RotAmt;
1486 }
1487 break;
1488 case ISD::ADD:
1489 // Add can have at most one carry bit. Thus we know that the output
1490 // is, at worst, one more bit than the inputs.
1491 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1492 if (Tmp == 1) return 1; // Early out.
1493
1494 // Special case decrementing a value (ADD X, -1):
1495 if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1496 if (CRHS->isAllOnesValue()) {
1497 uint64_t KnownZero, KnownOne;
1498 uint64_t Mask = MVT::getIntVTBitMask(VT);
1499 ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
1500
1501 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1502 // sign bits set.
1503 if ((KnownZero|1) == Mask)
1504 return VTBits;
1505
1506 // If we are subtracting one from a positive number, there is no carry
1507 // out of the result.
1508 if (KnownZero & MVT::getIntVTSignBit(VT))
1509 return Tmp;
1510 }
1511
1512 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1513 if (Tmp2 == 1) return 1;
1514 return std::min(Tmp, Tmp2)-1;
1515 break;
1516
1517 case ISD::SUB:
1518 Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
1519 if (Tmp2 == 1) return 1;
1520
1521 // Handle NEG.
1522 if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
1523 if (CLHS->getValue() == 0) {
1524 uint64_t KnownZero, KnownOne;
1525 uint64_t Mask = MVT::getIntVTBitMask(VT);
1526 ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
1527 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1528 // sign bits set.
1529 if ((KnownZero|1) == Mask)
1530 return VTBits;
1531
1532 // If the input is known to be positive (the sign bit is known clear),
1533 // the output of the NEG has the same number of sign bits as the input.
1534 if (KnownZero & MVT::getIntVTSignBit(VT))
1535 return Tmp2;
1536
1537 // Otherwise, we treat this like a SUB.
1538 }
1539
1540 // Sub can have at most one carry bit. Thus we know that the output
1541 // is, at worst, one more bit than the inputs.
1542 Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
1543 if (Tmp == 1) return 1; // Early out.
1544 return std::min(Tmp, Tmp2)-1;
1545 break;
1546 case ISD::TRUNCATE:
1547 // FIXME: it's tricky to do anything useful for this, but it is an important
1548 // case for targets like X86.
1549 break;
1550 }
1551
1552 // Handle LOADX separately here. EXTLOAD case will fallthrough.
1553 if (Op.getOpcode() == ISD::LOAD) {
1554 LoadSDNode *LD = cast<LoadSDNode>(Op);
1555 unsigned ExtType = LD->getExtensionType();
1556 switch (ExtType) {
1557 default: break;
1558 case ISD::SEXTLOAD: // '17' bits known
1559 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1560 return VTBits-Tmp+1;
1561 case ISD::ZEXTLOAD: // '16' bits known
1562 Tmp = MVT::getSizeInBits(LD->getLoadedVT());
1563 return VTBits-Tmp;
1564 }
1565 }
1566
1567 // Allow the target to implement this method for its nodes.
1568 if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1569 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1570 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1571 Op.getOpcode() == ISD::INTRINSIC_VOID) {
1572 unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
1573 if (NumBits > 1) return NumBits;
1574 }
1575
1576 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1577 // use this information.
1578 uint64_t KnownZero, KnownOne;
1579 uint64_t Mask = MVT::getIntVTBitMask(VT);
1580 ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
1581
1582 uint64_t SignBit = MVT::getIntVTSignBit(VT);
1583 if (KnownZero & SignBit) { // SignBit is 0
1584 Mask = KnownZero;
1585 } else if (KnownOne & SignBit) { // SignBit is 1;
1586 Mask = KnownOne;
1587 } else {
1588 // Nothing known.
1589 return 1;
1590 }
1591
1592 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1593 // the number of identical bits in the top of the input value.
1594 Mask ^= ~0ULL;
1595 Mask <<= 64-VTBits;
1596 // Return # leading zeros. We use 'min' here in case Val was zero before
1597 // shifting. We don't want to return '64' as for an i32 "0".
1598 return std::min(VTBits, CountLeadingZeros_64(Mask));
1599}
1600
1601
1602/// getNode - Gets or creates the specified node.
1603///
1604SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT) {
1605 FoldingSetNodeID ID;
1606 AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
1607 void *IP = 0;
1608 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1609 return SDOperand(E, 0);
1610 SDNode *N = new SDNode(Opcode, SDNode::getSDVTList(VT));
1611 CSEMap.InsertNode(N, IP);
1612
1613 AllNodes.push_back(N);
1614 return SDOperand(N, 0);
1615}
1616
1617SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1618 SDOperand Operand) {
1619 unsigned Tmp1;
1620 // Constant fold unary operations with an integer constant operand.
1621 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.Val)) {
1622 uint64_t Val = C->getValue();
1623 switch (Opcode) {
1624 default: break;
1625 case ISD::SIGN_EXTEND: return getConstant(C->getSignExtended(), VT);
1626 case ISD::ANY_EXTEND:
1627 case ISD::ZERO_EXTEND: return getConstant(Val, VT);
1628 case ISD::TRUNCATE: return getConstant(Val, VT);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001629 case ISD::UINT_TO_FP:
1630 case ISD::SINT_TO_FP: {
1631 const uint64_t zero[] = {0, 0};
Dale Johannesenb89072e2007-10-16 23:38:29 +00001632 // No compile time operations on this type.
1633 if (VT==MVT::ppcf128)
1634 break;
Dale Johannesen958b08b2007-09-19 23:55:34 +00001635 APFloat apf = APFloat(APInt(MVT::getSizeInBits(VT), 2, zero));
Neil Booth4bdd45a2007-10-07 11:45:55 +00001636 (void)apf.convertFromZeroExtendedInteger(&Val,
Dale Johannesena6f79742007-09-21 22:09:37 +00001637 MVT::getSizeInBits(Operand.getValueType()),
1638 Opcode==ISD::SINT_TO_FP,
Dale Johannesen87fa68f2007-09-30 18:19:03 +00001639 APFloat::rmNearestTiesToEven);
Dale Johannesen958b08b2007-09-19 23:55:34 +00001640 return getConstantFP(apf, VT);
1641 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001642 case ISD::BIT_CONVERT:
1643 if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
1644 return getConstantFP(BitsToFloat(Val), VT);
1645 else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
1646 return getConstantFP(BitsToDouble(Val), VT);
1647 break;
1648 case ISD::BSWAP:
1649 switch(VT) {
1650 default: assert(0 && "Invalid bswap!"); break;
1651 case MVT::i16: return getConstant(ByteSwap_16((unsigned short)Val), VT);
1652 case MVT::i32: return getConstant(ByteSwap_32((unsigned)Val), VT);
1653 case MVT::i64: return getConstant(ByteSwap_64(Val), VT);
1654 }
1655 break;
1656 case ISD::CTPOP:
1657 switch(VT) {
1658 default: assert(0 && "Invalid ctpop!"); break;
1659 case MVT::i1: return getConstant(Val != 0, VT);
1660 case MVT::i8:
1661 Tmp1 = (unsigned)Val & 0xFF;
1662 return getConstant(CountPopulation_32(Tmp1), VT);
1663 case MVT::i16:
1664 Tmp1 = (unsigned)Val & 0xFFFF;
1665 return getConstant(CountPopulation_32(Tmp1), VT);
1666 case MVT::i32:
1667 return getConstant(CountPopulation_32((unsigned)Val), VT);
1668 case MVT::i64:
1669 return getConstant(CountPopulation_64(Val), VT);
1670 }
1671 case ISD::CTLZ:
1672 switch(VT) {
1673 default: assert(0 && "Invalid ctlz!"); break;
1674 case MVT::i1: return getConstant(Val == 0, VT);
1675 case MVT::i8:
1676 Tmp1 = (unsigned)Val & 0xFF;
1677 return getConstant(CountLeadingZeros_32(Tmp1)-24, VT);
1678 case MVT::i16:
1679 Tmp1 = (unsigned)Val & 0xFFFF;
1680 return getConstant(CountLeadingZeros_32(Tmp1)-16, VT);
1681 case MVT::i32:
1682 return getConstant(CountLeadingZeros_32((unsigned)Val), VT);
1683 case MVT::i64:
1684 return getConstant(CountLeadingZeros_64(Val), VT);
1685 }
1686 case ISD::CTTZ:
1687 switch(VT) {
1688 default: assert(0 && "Invalid cttz!"); break;
1689 case MVT::i1: return getConstant(Val == 0, VT);
1690 case MVT::i8:
1691 Tmp1 = (unsigned)Val | 0x100;
1692 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1693 case MVT::i16:
1694 Tmp1 = (unsigned)Val | 0x10000;
1695 return getConstant(CountTrailingZeros_32(Tmp1), VT);
1696 case MVT::i32:
1697 return getConstant(CountTrailingZeros_32((unsigned)Val), VT);
1698 case MVT::i64:
1699 return getConstant(CountTrailingZeros_64(Val), VT);
1700 }
1701 }
1702 }
1703
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001704 // Constant fold unary operations with a floating point constant operand.
1705 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.Val)) {
1706 APFloat V = C->getValueAPF(); // make copy
Dale Johannesenb89072e2007-10-16 23:38:29 +00001707 if (VT!=MVT::ppcf128 && Operand.getValueType()!=MVT::ppcf128) {
1708 switch (Opcode) {
1709 case ISD::FNEG:
1710 V.changeSign();
1711 return getConstantFP(V, VT);
1712 case ISD::FABS:
1713 V.clearSign();
1714 return getConstantFP(V, VT);
1715 case ISD::FP_ROUND:
1716 case ISD::FP_EXTEND:
1717 // This can return overflow, underflow, or inexact; we don't care.
1718 // FIXME need to be more flexible about rounding mode.
1719 (void) V.convert(VT==MVT::f32 ? APFloat::IEEEsingle :
1720 VT==MVT::f64 ? APFloat::IEEEdouble :
1721 VT==MVT::f80 ? APFloat::x87DoubleExtended :
1722 VT==MVT::f128 ? APFloat::IEEEquad :
1723 APFloat::Bogus,
1724 APFloat::rmNearestTiesToEven);
1725 return getConstantFP(V, VT);
1726 case ISD::FP_TO_SINT:
1727 case ISD::FP_TO_UINT: {
1728 integerPart x;
1729 assert(integerPartWidth >= 64);
1730 // FIXME need to be more flexible about rounding mode.
1731 APFloat::opStatus s = V.convertToInteger(&x, 64U,
1732 Opcode==ISD::FP_TO_SINT,
1733 APFloat::rmTowardZero);
1734 if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
1735 break;
1736 return getConstant(x, VT);
1737 }
1738 case ISD::BIT_CONVERT:
1739 if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
1740 return getConstant((uint32_t)V.convertToAPInt().getZExtValue(), VT);
1741 else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
1742 return getConstant(V.convertToAPInt().getZExtValue(), VT);
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001743 break;
Dale Johannesenb89072e2007-10-16 23:38:29 +00001744 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001745 }
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001746 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001747
1748 unsigned OpOpcode = Operand.Val->getOpcode();
1749 switch (Opcode) {
1750 case ISD::TokenFactor:
1751 return Operand; // Factor of one node? No factor.
1752 case ISD::FP_ROUND:
1753 case ISD::FP_EXTEND:
1754 assert(MVT::isFloatingPoint(VT) &&
1755 MVT::isFloatingPoint(Operand.getValueType()) && "Invalid FP cast!");
1756 break;
1757 case ISD::SIGN_EXTEND:
1758 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1759 "Invalid SIGN_EXTEND!");
1760 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001761 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1762 && "Invalid sext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001763 if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
1764 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1765 break;
1766 case ISD::ZERO_EXTEND:
1767 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1768 "Invalid ZERO_EXTEND!");
1769 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001770 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1771 && "Invalid zext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001772 if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
1773 return getNode(ISD::ZERO_EXTEND, VT, Operand.Val->getOperand(0));
1774 break;
1775 case ISD::ANY_EXTEND:
1776 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1777 "Invalid ANY_EXTEND!");
1778 if (Operand.getValueType() == VT) return Operand; // noop extension
Duncan Sandsa9810f32007-10-16 09:56:48 +00001779 assert(MVT::getSizeInBits(Operand.getValueType()) < MVT::getSizeInBits(VT)
1780 && "Invalid anyext node, dst < src!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001781 if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND)
1782 // (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
1783 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
1784 break;
1785 case ISD::TRUNCATE:
1786 assert(MVT::isInteger(VT) && MVT::isInteger(Operand.getValueType()) &&
1787 "Invalid TRUNCATE!");
1788 if (Operand.getValueType() == VT) return Operand; // noop truncate
Duncan Sandsa9810f32007-10-16 09:56:48 +00001789 assert(MVT::getSizeInBits(Operand.getValueType()) > MVT::getSizeInBits(VT)
1790 && "Invalid truncate node, src < dst!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791 if (OpOpcode == ISD::TRUNCATE)
1792 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1793 else if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
1794 OpOpcode == ISD::ANY_EXTEND) {
1795 // If the source is smaller than the dest, we still need an extend.
Duncan Sandsa9810f32007-10-16 09:56:48 +00001796 if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1797 < MVT::getSizeInBits(VT))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001798 return getNode(OpOpcode, VT, Operand.Val->getOperand(0));
Duncan Sandsa9810f32007-10-16 09:56:48 +00001799 else if (MVT::getSizeInBits(Operand.Val->getOperand(0).getValueType())
1800 > MVT::getSizeInBits(VT))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001801 return getNode(ISD::TRUNCATE, VT, Operand.Val->getOperand(0));
1802 else
1803 return Operand.Val->getOperand(0);
1804 }
1805 break;
1806 case ISD::BIT_CONVERT:
1807 // Basic sanity checking.
1808 assert(MVT::getSizeInBits(VT) == MVT::getSizeInBits(Operand.getValueType())
1809 && "Cannot BIT_CONVERT between types of different sizes!");
1810 if (VT == Operand.getValueType()) return Operand; // noop conversion.
1811 if (OpOpcode == ISD::BIT_CONVERT) // bitconv(bitconv(x)) -> bitconv(x)
1812 return getNode(ISD::BIT_CONVERT, VT, Operand.getOperand(0));
1813 if (OpOpcode == ISD::UNDEF)
1814 return getNode(ISD::UNDEF, VT);
1815 break;
1816 case ISD::SCALAR_TO_VECTOR:
1817 assert(MVT::isVector(VT) && !MVT::isVector(Operand.getValueType()) &&
1818 MVT::getVectorElementType(VT) == Operand.getValueType() &&
1819 "Illegal SCALAR_TO_VECTOR node!");
1820 break;
1821 case ISD::FNEG:
1822 if (OpOpcode == ISD::FSUB) // -(X-Y) -> (Y-X)
1823 return getNode(ISD::FSUB, VT, Operand.Val->getOperand(1),
1824 Operand.Val->getOperand(0));
1825 if (OpOpcode == ISD::FNEG) // --X -> X
1826 return Operand.Val->getOperand(0);
1827 break;
1828 case ISD::FABS:
1829 if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
1830 return getNode(ISD::FABS, VT, Operand.Val->getOperand(0));
1831 break;
1832 }
1833
1834 SDNode *N;
1835 SDVTList VTs = getVTList(VT);
1836 if (VT != MVT::Flag) { // Don't CSE flag producing nodes
1837 FoldingSetNodeID ID;
1838 SDOperand Ops[1] = { Operand };
1839 AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
1840 void *IP = 0;
1841 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
1842 return SDOperand(E, 0);
1843 N = new UnarySDNode(Opcode, VTs, Operand);
1844 CSEMap.InsertNode(N, IP);
1845 } else {
1846 N = new UnarySDNode(Opcode, VTs, Operand);
1847 }
1848 AllNodes.push_back(N);
1849 return SDOperand(N, 0);
1850}
1851
1852
1853
1854SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
1855 SDOperand N1, SDOperand N2) {
1856#ifndef NDEBUG
1857 switch (Opcode) {
1858 case ISD::TokenFactor:
1859 assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
1860 N2.getValueType() == MVT::Other && "Invalid token factor!");
1861 break;
1862 case ISD::AND:
1863 case ISD::OR:
1864 case ISD::XOR:
1865 case ISD::UDIV:
1866 case ISD::UREM:
1867 case ISD::MULHU:
1868 case ISD::MULHS:
1869 assert(MVT::isInteger(VT) && "This operator does not apply to FP types!");
1870 // fall through
1871 case ISD::ADD:
1872 case ISD::SUB:
1873 case ISD::MUL:
1874 case ISD::SDIV:
1875 case ISD::SREM:
1876 assert(MVT::isInteger(N1.getValueType()) && "Should use F* for FP ops");
1877 // fall through.
1878 case ISD::FADD:
1879 case ISD::FSUB:
1880 case ISD::FMUL:
1881 case ISD::FDIV:
1882 case ISD::FREM:
1883 assert(N1.getValueType() == N2.getValueType() &&
1884 N1.getValueType() == VT && "Binary operator types must match!");
1885 break;
1886 case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
1887 assert(N1.getValueType() == VT &&
1888 MVT::isFloatingPoint(N1.getValueType()) &&
1889 MVT::isFloatingPoint(N2.getValueType()) &&
1890 "Invalid FCOPYSIGN!");
1891 break;
1892 case ISD::SHL:
1893 case ISD::SRA:
1894 case ISD::SRL:
1895 case ISD::ROTL:
1896 case ISD::ROTR:
1897 assert(VT == N1.getValueType() &&
1898 "Shift operators return type must be the same as their first arg");
1899 assert(MVT::isInteger(VT) && MVT::isInteger(N2.getValueType()) &&
1900 VT != MVT::i1 && "Shifts only work on integers");
1901 break;
1902 case ISD::FP_ROUND_INREG: {
1903 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1904 assert(VT == N1.getValueType() && "Not an inreg round!");
1905 assert(MVT::isFloatingPoint(VT) && MVT::isFloatingPoint(EVT) &&
1906 "Cannot FP_ROUND_INREG integer types");
Duncan Sandsa9810f32007-10-16 09:56:48 +00001907 assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1908 "Not rounding down!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001909 break;
1910 }
1911 case ISD::AssertSext:
1912 case ISD::AssertZext:
1913 case ISD::SIGN_EXTEND_INREG: {
1914 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
1915 assert(VT == N1.getValueType() && "Not an inreg extend!");
1916 assert(MVT::isInteger(VT) && MVT::isInteger(EVT) &&
1917 "Cannot *_EXTEND_INREG FP types");
Duncan Sandsa9810f32007-10-16 09:56:48 +00001918 assert(MVT::getSizeInBits(EVT) <= MVT::getSizeInBits(VT) &&
1919 "Not extending!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001920 }
1921
1922 default: break;
1923 }
1924#endif
1925
1926 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
1927 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
1928 if (N1C) {
1929 if (Opcode == ISD::SIGN_EXTEND_INREG) {
1930 int64_t Val = N1C->getValue();
1931 unsigned FromBits = MVT::getSizeInBits(cast<VTSDNode>(N2)->getVT());
1932 Val <<= 64-FromBits;
1933 Val >>= 64-FromBits;
1934 return getConstant(Val, VT);
1935 }
1936
1937 if (N2C) {
1938 uint64_t C1 = N1C->getValue(), C2 = N2C->getValue();
1939 switch (Opcode) {
1940 case ISD::ADD: return getConstant(C1 + C2, VT);
1941 case ISD::SUB: return getConstant(C1 - C2, VT);
1942 case ISD::MUL: return getConstant(C1 * C2, VT);
1943 case ISD::UDIV:
1944 if (C2) return getConstant(C1 / C2, VT);
1945 break;
1946 case ISD::UREM :
1947 if (C2) return getConstant(C1 % C2, VT);
1948 break;
1949 case ISD::SDIV :
1950 if (C2) return getConstant(N1C->getSignExtended() /
1951 N2C->getSignExtended(), VT);
1952 break;
1953 case ISD::SREM :
1954 if (C2) return getConstant(N1C->getSignExtended() %
1955 N2C->getSignExtended(), VT);
1956 break;
1957 case ISD::AND : return getConstant(C1 & C2, VT);
1958 case ISD::OR : return getConstant(C1 | C2, VT);
1959 case ISD::XOR : return getConstant(C1 ^ C2, VT);
1960 case ISD::SHL : return getConstant(C1 << C2, VT);
1961 case ISD::SRL : return getConstant(C1 >> C2, VT);
1962 case ISD::SRA : return getConstant(N1C->getSignExtended() >>(int)C2, VT);
1963 case ISD::ROTL :
1964 return getConstant((C1 << C2) | (C1 >> (MVT::getSizeInBits(VT) - C2)),
1965 VT);
1966 case ISD::ROTR :
1967 return getConstant((C1 >> C2) | (C1 << (MVT::getSizeInBits(VT) - C2)),
1968 VT);
1969 default: break;
1970 }
1971 } else { // Cannonicalize constant to RHS if commutative
1972 if (isCommutativeBinOp(Opcode)) {
1973 std::swap(N1C, N2C);
1974 std::swap(N1, N2);
1975 }
1976 }
1977 }
1978
1979 ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.Val);
1980 ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.Val);
1981 if (N1CFP) {
Dale Johannesenb89072e2007-10-16 23:38:29 +00001982 if (N2CFP && VT!=MVT::ppcf128) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001983 APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
1984 APFloat::opStatus s;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001985 switch (Opcode) {
Dale Johannesen7604c1b2007-08-31 23:34:27 +00001986 case ISD::FADD:
1987 s = V1.add(V2, APFloat::rmNearestTiesToEven);
1988 if (s!=APFloat::opInvalidOp)
1989 return getConstantFP(V1, VT);
1990 break;
1991 case ISD::FSUB:
1992 s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
1993 if (s!=APFloat::opInvalidOp)
1994 return getConstantFP(V1, VT);
1995 break;
1996 case ISD::FMUL:
1997 s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
1998 if (s!=APFloat::opInvalidOp)
1999 return getConstantFP(V1, VT);
2000 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002001 case ISD::FDIV:
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002002 s = V1.divide(V2, APFloat::rmNearestTiesToEven);
2003 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2004 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002005 break;
2006 case ISD::FREM :
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002007 s = V1.mod(V2, APFloat::rmNearestTiesToEven);
2008 if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
2009 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002010 break;
Dale Johannesen7604c1b2007-08-31 23:34:27 +00002011 case ISD::FCOPYSIGN:
2012 V1.copySign(V2);
2013 return getConstantFP(V1, VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002014 default: break;
2015 }
2016 } else { // Cannonicalize constant to RHS if commutative
2017 if (isCommutativeBinOp(Opcode)) {
2018 std::swap(N1CFP, N2CFP);
2019 std::swap(N1, N2);
2020 }
2021 }
2022 }
2023
2024 // Canonicalize an UNDEF to the RHS, even over a constant.
2025 if (N1.getOpcode() == ISD::UNDEF) {
2026 if (isCommutativeBinOp(Opcode)) {
2027 std::swap(N1, N2);
2028 } else {
2029 switch (Opcode) {
2030 case ISD::FP_ROUND_INREG:
2031 case ISD::SIGN_EXTEND_INREG:
2032 case ISD::SUB:
2033 case ISD::FSUB:
2034 case ISD::FDIV:
2035 case ISD::FREM:
2036 case ISD::SRA:
2037 return N1; // fold op(undef, arg2) -> undef
2038 case ISD::UDIV:
2039 case ISD::SDIV:
2040 case ISD::UREM:
2041 case ISD::SREM:
2042 case ISD::SRL:
2043 case ISD::SHL:
2044 if (!MVT::isVector(VT))
2045 return getConstant(0, VT); // fold op(undef, arg2) -> 0
2046 // For vectors, we can't easily build an all zero vector, just return
2047 // the LHS.
2048 return N2;
2049 }
2050 }
2051 }
2052
2053 // Fold a bunch of operators when the RHS is undef.
2054 if (N2.getOpcode() == ISD::UNDEF) {
2055 switch (Opcode) {
2056 case ISD::ADD:
2057 case ISD::ADDC:
2058 case ISD::ADDE:
2059 case ISD::SUB:
2060 case ISD::FADD:
2061 case ISD::FSUB:
2062 case ISD::FMUL:
2063 case ISD::FDIV:
2064 case ISD::FREM:
2065 case ISD::UDIV:
2066 case ISD::SDIV:
2067 case ISD::UREM:
2068 case ISD::SREM:
2069 case ISD::XOR:
2070 return N2; // fold op(arg1, undef) -> undef
2071 case ISD::MUL:
2072 case ISD::AND:
2073 case ISD::SRL:
2074 case ISD::SHL:
2075 if (!MVT::isVector(VT))
2076 return getConstant(0, VT); // fold op(arg1, undef) -> 0
2077 // For vectors, we can't easily build an all zero vector, just return
2078 // the LHS.
2079 return N1;
2080 case ISD::OR:
2081 if (!MVT::isVector(VT))
2082 return getConstant(MVT::getIntVTBitMask(VT), VT);
2083 // For vectors, we can't easily build an all one vector, just return
2084 // the LHS.
2085 return N1;
2086 case ISD::SRA:
2087 return N1;
2088 }
2089 }
2090
2091 // Fold operations.
2092 switch (Opcode) {
2093 case ISD::TokenFactor:
2094 // Fold trivial token factors.
2095 if (N1.getOpcode() == ISD::EntryToken) return N2;
2096 if (N2.getOpcode() == ISD::EntryToken) return N1;
2097 break;
2098
2099 case ISD::AND:
2100 // (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
2101 // worth handling here.
2102 if (N2C && N2C->getValue() == 0)
2103 return N2;
2104 break;
2105 case ISD::OR:
2106 case ISD::XOR:
2107 // (X ^| 0) -> X. This commonly occurs when legalizing i64 values, so it's
2108 // worth handling here.
2109 if (N2C && N2C->getValue() == 0)
2110 return N1;
2111 break;
2112 case ISD::FP_ROUND_INREG:
2113 if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
2114 break;
2115 case ISD::SIGN_EXTEND_INREG: {
2116 MVT::ValueType EVT = cast<VTSDNode>(N2)->getVT();
2117 if (EVT == VT) return N1; // Not actually extending
2118 break;
2119 }
2120 case ISD::EXTRACT_VECTOR_ELT:
2121 assert(N2C && "Bad EXTRACT_VECTOR_ELT!");
2122
2123 // EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
2124 // expanding copies of large vectors from registers.
2125 if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
2126 N1.getNumOperands() > 0) {
2127 unsigned Factor =
2128 MVT::getVectorNumElements(N1.getOperand(0).getValueType());
2129 return getNode(ISD::EXTRACT_VECTOR_ELT, VT,
2130 N1.getOperand(N2C->getValue() / Factor),
2131 getConstant(N2C->getValue() % Factor, N2.getValueType()));
2132 }
2133
2134 // EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
2135 // expanding large vector constants.
2136 if (N1.getOpcode() == ISD::BUILD_VECTOR)
2137 return N1.getOperand(N2C->getValue());
2138
2139 // EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
2140 // operations are lowered to scalars.
2141 if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT)
2142 if (ConstantSDNode *IEC = dyn_cast<ConstantSDNode>(N1.getOperand(2))) {
2143 if (IEC == N2C)
2144 return N1.getOperand(1);
2145 else
2146 return getNode(ISD::EXTRACT_VECTOR_ELT, VT, N1.getOperand(0), N2);
2147 }
2148 break;
2149 case ISD::EXTRACT_ELEMENT:
2150 assert(N2C && (unsigned)N2C->getValue() < 2 && "Bad EXTRACT_ELEMENT!");
2151
2152 // EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
2153 // 64-bit integers into 32-bit parts. Instead of building the extract of
2154 // the BUILD_PAIR, only to have legalize rip it apart, just do it now.
2155 if (N1.getOpcode() == ISD::BUILD_PAIR)
2156 return N1.getOperand(N2C->getValue());
2157
2158 // EXTRACT_ELEMENT of a constant int is also very common.
2159 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
2160 unsigned Shift = MVT::getSizeInBits(VT) * N2C->getValue();
2161 return getConstant(C->getValue() >> Shift, VT);
2162 }
2163 break;
2164
2165 // FIXME: figure out how to safely handle things like
2166 // int foo(int x) { return 1 << (x & 255); }
2167 // int bar() { return foo(256); }
2168#if 0
2169 case ISD::SHL:
2170 case ISD::SRL:
2171 case ISD::SRA:
2172 if (N2.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2173 cast<VTSDNode>(N2.getOperand(1))->getVT() != MVT::i1)
2174 return getNode(Opcode, VT, N1, N2.getOperand(0));
2175 else if (N2.getOpcode() == ISD::AND)
2176 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N2.getOperand(1))) {
2177 // If the and is only masking out bits that cannot effect the shift,
2178 // eliminate the and.
2179 unsigned NumBits = MVT::getSizeInBits(VT);
2180 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2181 return getNode(Opcode, VT, N1, N2.getOperand(0));
2182 }
2183 break;
2184#endif
2185 }
2186
2187 // Memoize this node if possible.
2188 SDNode *N;
2189 SDVTList VTs = getVTList(VT);
2190 if (VT != MVT::Flag) {
2191 SDOperand Ops[] = { N1, N2 };
2192 FoldingSetNodeID ID;
2193 AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
2194 void *IP = 0;
2195 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2196 return SDOperand(E, 0);
2197 N = new BinarySDNode(Opcode, VTs, N1, N2);
2198 CSEMap.InsertNode(N, IP);
2199 } else {
2200 N = new BinarySDNode(Opcode, VTs, N1, N2);
2201 }
2202
2203 AllNodes.push_back(N);
2204 return SDOperand(N, 0);
2205}
2206
2207SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2208 SDOperand N1, SDOperand N2, SDOperand N3) {
2209 // Perform various simplifications.
2210 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
2211 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.Val);
2212 switch (Opcode) {
2213 case ISD::SETCC: {
2214 // Use FoldSetCC to simplify SETCC's.
2215 SDOperand Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get());
2216 if (Simp.Val) return Simp;
2217 break;
2218 }
2219 case ISD::SELECT:
2220 if (N1C)
2221 if (N1C->getValue())
2222 return N2; // select true, X, Y -> X
2223 else
2224 return N3; // select false, X, Y -> Y
2225
2226 if (N2 == N3) return N2; // select C, X, X -> X
2227 break;
2228 case ISD::BRCOND:
2229 if (N2C)
2230 if (N2C->getValue()) // Unconditional branch
2231 return getNode(ISD::BR, MVT::Other, N1, N3);
2232 else
2233 return N1; // Never-taken branch
2234 break;
2235 case ISD::VECTOR_SHUFFLE:
2236 assert(VT == N1.getValueType() && VT == N2.getValueType() &&
2237 MVT::isVector(VT) && MVT::isVector(N3.getValueType()) &&
2238 N3.getOpcode() == ISD::BUILD_VECTOR &&
2239 MVT::getVectorNumElements(VT) == N3.getNumOperands() &&
2240 "Illegal VECTOR_SHUFFLE node!");
2241 break;
2242 case ISD::BIT_CONVERT:
2243 // Fold bit_convert nodes from a type to themselves.
2244 if (N1.getValueType() == VT)
2245 return N1;
2246 break;
2247 }
2248
2249 // Memoize node if it doesn't produce a flag.
2250 SDNode *N;
2251 SDVTList VTs = getVTList(VT);
2252 if (VT != MVT::Flag) {
2253 SDOperand Ops[] = { N1, N2, N3 };
2254 FoldingSetNodeID ID;
2255 AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
2256 void *IP = 0;
2257 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2258 return SDOperand(E, 0);
2259 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2260 CSEMap.InsertNode(N, IP);
2261 } else {
2262 N = new TernarySDNode(Opcode, VTs, N1, N2, N3);
2263 }
2264 AllNodes.push_back(N);
2265 return SDOperand(N, 0);
2266}
2267
2268SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2269 SDOperand N1, SDOperand N2, SDOperand N3,
2270 SDOperand N4) {
2271 SDOperand Ops[] = { N1, N2, N3, N4 };
2272 return getNode(Opcode, VT, Ops, 4);
2273}
2274
2275SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2276 SDOperand N1, SDOperand N2, SDOperand N3,
2277 SDOperand N4, SDOperand N5) {
2278 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2279 return getNode(Opcode, VT, Ops, 5);
2280}
2281
Rafael Espindola80825902007-10-19 10:41:11 +00002282SDOperand SelectionDAG::getMemcpy(SDOperand Chain, SDOperand Dest,
2283 SDOperand Src, SDOperand Size,
2284 SDOperand Align,
2285 SDOperand AlwaysInline) {
2286 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2287 return getNode(ISD::MEMCPY, MVT::Other, Ops, 6);
2288}
2289
2290SDOperand SelectionDAG::getMemmove(SDOperand Chain, SDOperand Dest,
2291 SDOperand Src, SDOperand Size,
2292 SDOperand Align,
2293 SDOperand AlwaysInline) {
2294 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2295 return getNode(ISD::MEMMOVE, MVT::Other, Ops, 6);
2296}
2297
2298SDOperand SelectionDAG::getMemset(SDOperand Chain, SDOperand Dest,
2299 SDOperand Src, SDOperand Size,
2300 SDOperand Align,
2301 SDOperand AlwaysInline) {
2302 SDOperand Ops[] = { Chain, Dest, Src, Size, Align, AlwaysInline };
2303 return getNode(ISD::MEMSET, MVT::Other, Ops, 6);
2304}
2305
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002306SDOperand SelectionDAG::getLoad(MVT::ValueType VT,
2307 SDOperand Chain, SDOperand Ptr,
2308 const Value *SV, int SVOffset,
2309 bool isVolatile, unsigned Alignment) {
2310 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2311 const Type *Ty = 0;
2312 if (VT != MVT::iPTR) {
2313 Ty = MVT::getTypeForValueType(VT);
2314 } else if (SV) {
2315 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2316 assert(PT && "Value for load must be a pointer");
2317 Ty = PT->getElementType();
2318 }
2319 assert(Ty && "Could not get type information for load");
2320 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2321 }
2322 SDVTList VTs = getVTList(VT, MVT::Other);
2323 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2324 SDOperand Ops[] = { Chain, Ptr, Undef };
2325 FoldingSetNodeID ID;
2326 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2327 ID.AddInteger(ISD::UNINDEXED);
2328 ID.AddInteger(ISD::NON_EXTLOAD);
Chris Lattner4a22a672007-09-13 06:09:48 +00002329 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002330 ID.AddInteger(Alignment);
2331 ID.AddInteger(isVolatile);
2332 void *IP = 0;
2333 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2334 return SDOperand(E, 0);
2335 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED,
2336 ISD::NON_EXTLOAD, VT, SV, SVOffset, Alignment,
2337 isVolatile);
2338 CSEMap.InsertNode(N, IP);
2339 AllNodes.push_back(N);
2340 return SDOperand(N, 0);
2341}
2342
2343SDOperand SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, MVT::ValueType VT,
2344 SDOperand Chain, SDOperand Ptr,
2345 const Value *SV,
2346 int SVOffset, MVT::ValueType EVT,
2347 bool isVolatile, unsigned Alignment) {
2348 // If they are asking for an extending load from/to the same thing, return a
2349 // normal load.
2350 if (VT == EVT)
Duncan Sands9b614742007-10-19 13:05:40 +00002351 return getLoad(VT, Chain, Ptr, SV, SVOffset, isVolatile, Alignment);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002352
2353 if (MVT::isVector(VT))
2354 assert(EVT == MVT::getVectorElementType(VT) && "Invalid vector extload!");
2355 else
Duncan Sandsa9810f32007-10-16 09:56:48 +00002356 assert(MVT::getSizeInBits(EVT) < MVT::getSizeInBits(VT) &&
2357 "Should only be an extending load, not truncating!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002358 assert((ExtType == ISD::EXTLOAD || MVT::isInteger(VT)) &&
2359 "Cannot sign/zero extend a FP/Vector load!");
2360 assert(MVT::isInteger(VT) == MVT::isInteger(EVT) &&
2361 "Cannot convert from FP to Int or Int -> FP!");
2362
2363 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2364 const Type *Ty = 0;
2365 if (VT != MVT::iPTR) {
2366 Ty = MVT::getTypeForValueType(VT);
2367 } else if (SV) {
2368 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2369 assert(PT && "Value for load must be a pointer");
2370 Ty = PT->getElementType();
2371 }
2372 assert(Ty && "Could not get type information for load");
2373 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2374 }
2375 SDVTList VTs = getVTList(VT, MVT::Other);
2376 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2377 SDOperand Ops[] = { Chain, Ptr, Undef };
2378 FoldingSetNodeID ID;
2379 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2380 ID.AddInteger(ISD::UNINDEXED);
2381 ID.AddInteger(ExtType);
Chris Lattner4a22a672007-09-13 06:09:48 +00002382 ID.AddInteger((unsigned int)EVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002383 ID.AddInteger(Alignment);
2384 ID.AddInteger(isVolatile);
2385 void *IP = 0;
2386 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2387 return SDOperand(E, 0);
2388 SDNode *N = new LoadSDNode(Ops, VTs, ISD::UNINDEXED, ExtType, EVT,
2389 SV, SVOffset, Alignment, isVolatile);
2390 CSEMap.InsertNode(N, IP);
2391 AllNodes.push_back(N);
2392 return SDOperand(N, 0);
2393}
2394
2395SDOperand
2396SelectionDAG::getIndexedLoad(SDOperand OrigLoad, SDOperand Base,
2397 SDOperand Offset, ISD::MemIndexedMode AM) {
2398 LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
2399 assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
2400 "Load is already a indexed load!");
2401 MVT::ValueType VT = OrigLoad.getValueType();
2402 SDVTList VTs = getVTList(VT, Base.getValueType(), MVT::Other);
2403 SDOperand Ops[] = { LD->getChain(), Base, Offset };
2404 FoldingSetNodeID ID;
2405 AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
2406 ID.AddInteger(AM);
2407 ID.AddInteger(LD->getExtensionType());
Chris Lattner4a22a672007-09-13 06:09:48 +00002408 ID.AddInteger((unsigned int)(LD->getLoadedVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002409 ID.AddInteger(LD->getAlignment());
2410 ID.AddInteger(LD->isVolatile());
2411 void *IP = 0;
2412 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2413 return SDOperand(E, 0);
2414 SDNode *N = new LoadSDNode(Ops, VTs, AM,
2415 LD->getExtensionType(), LD->getLoadedVT(),
2416 LD->getSrcValue(), LD->getSrcValueOffset(),
2417 LD->getAlignment(), LD->isVolatile());
2418 CSEMap.InsertNode(N, IP);
2419 AllNodes.push_back(N);
2420 return SDOperand(N, 0);
2421}
2422
2423SDOperand SelectionDAG::getStore(SDOperand Chain, SDOperand Val,
2424 SDOperand Ptr, const Value *SV, int SVOffset,
2425 bool isVolatile, unsigned Alignment) {
2426 MVT::ValueType VT = Val.getValueType();
2427
2428 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2429 const Type *Ty = 0;
2430 if (VT != MVT::iPTR) {
2431 Ty = MVT::getTypeForValueType(VT);
2432 } else if (SV) {
2433 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2434 assert(PT && "Value for store must be a pointer");
2435 Ty = PT->getElementType();
2436 }
2437 assert(Ty && "Could not get type information for store");
2438 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2439 }
2440 SDVTList VTs = getVTList(MVT::Other);
2441 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2442 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2443 FoldingSetNodeID ID;
2444 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2445 ID.AddInteger(ISD::UNINDEXED);
2446 ID.AddInteger(false);
Chris Lattner4a22a672007-09-13 06:09:48 +00002447 ID.AddInteger((unsigned int)VT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002448 ID.AddInteger(Alignment);
2449 ID.AddInteger(isVolatile);
2450 void *IP = 0;
2451 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2452 return SDOperand(E, 0);
2453 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, false,
2454 VT, SV, SVOffset, Alignment, isVolatile);
2455 CSEMap.InsertNode(N, IP);
2456 AllNodes.push_back(N);
2457 return SDOperand(N, 0);
2458}
2459
2460SDOperand SelectionDAG::getTruncStore(SDOperand Chain, SDOperand Val,
2461 SDOperand Ptr, const Value *SV,
2462 int SVOffset, MVT::ValueType SVT,
2463 bool isVolatile, unsigned Alignment) {
2464 MVT::ValueType VT = Val.getValueType();
Duncan Sands06fcf652007-10-30 12:40:58 +00002465
2466 if (VT == SVT)
2467 return getStore(Chain, Val, Ptr, SV, SVOffset, isVolatile, Alignment);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002468
Duncan Sandsa9810f32007-10-16 09:56:48 +00002469 assert(MVT::getSizeInBits(VT) > MVT::getSizeInBits(SVT) &&
2470 "Not a truncation?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002471 assert(MVT::isInteger(VT) == MVT::isInteger(SVT) &&
2472 "Can't do FP-INT conversion!");
2473
2474 if (Alignment == 0) { // Ensure that codegen never sees alignment 0
2475 const Type *Ty = 0;
2476 if (VT != MVT::iPTR) {
2477 Ty = MVT::getTypeForValueType(VT);
2478 } else if (SV) {
2479 const PointerType *PT = dyn_cast<PointerType>(SV->getType());
2480 assert(PT && "Value for store must be a pointer");
2481 Ty = PT->getElementType();
2482 }
2483 assert(Ty && "Could not get type information for store");
2484 Alignment = TLI.getTargetData()->getABITypeAlignment(Ty);
2485 }
2486 SDVTList VTs = getVTList(MVT::Other);
2487 SDOperand Undef = getNode(ISD::UNDEF, Ptr.getValueType());
2488 SDOperand Ops[] = { Chain, Val, Ptr, Undef };
2489 FoldingSetNodeID ID;
2490 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2491 ID.AddInteger(ISD::UNINDEXED);
Duncan Sands06fcf652007-10-30 12:40:58 +00002492 ID.AddInteger(1);
Chris Lattner4a22a672007-09-13 06:09:48 +00002493 ID.AddInteger((unsigned int)SVT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002494 ID.AddInteger(Alignment);
2495 ID.AddInteger(isVolatile);
2496 void *IP = 0;
2497 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2498 return SDOperand(E, 0);
Duncan Sands06fcf652007-10-30 12:40:58 +00002499 SDNode *N = new StoreSDNode(Ops, VTs, ISD::UNINDEXED, true,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002500 SVT, SV, SVOffset, Alignment, isVolatile);
2501 CSEMap.InsertNode(N, IP);
2502 AllNodes.push_back(N);
2503 return SDOperand(N, 0);
2504}
2505
2506SDOperand
2507SelectionDAG::getIndexedStore(SDOperand OrigStore, SDOperand Base,
2508 SDOperand Offset, ISD::MemIndexedMode AM) {
2509 StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
2510 assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
2511 "Store is already a indexed store!");
2512 SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
2513 SDOperand Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
2514 FoldingSetNodeID ID;
2515 AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
2516 ID.AddInteger(AM);
2517 ID.AddInteger(ST->isTruncatingStore());
Chris Lattner4a22a672007-09-13 06:09:48 +00002518 ID.AddInteger((unsigned int)(ST->getStoredVT()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002519 ID.AddInteger(ST->getAlignment());
2520 ID.AddInteger(ST->isVolatile());
2521 void *IP = 0;
2522 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2523 return SDOperand(E, 0);
2524 SDNode *N = new StoreSDNode(Ops, VTs, AM,
2525 ST->isTruncatingStore(), ST->getStoredVT(),
2526 ST->getSrcValue(), ST->getSrcValueOffset(),
2527 ST->getAlignment(), ST->isVolatile());
2528 CSEMap.InsertNode(N, IP);
2529 AllNodes.push_back(N);
2530 return SDOperand(N, 0);
2531}
2532
2533SDOperand SelectionDAG::getVAArg(MVT::ValueType VT,
2534 SDOperand Chain, SDOperand Ptr,
2535 SDOperand SV) {
2536 SDOperand Ops[] = { Chain, Ptr, SV };
2537 return getNode(ISD::VAARG, getVTList(VT, MVT::Other), Ops, 3);
2538}
2539
2540SDOperand SelectionDAG::getNode(unsigned Opcode, MVT::ValueType VT,
2541 const SDOperand *Ops, unsigned NumOps) {
2542 switch (NumOps) {
2543 case 0: return getNode(Opcode, VT);
2544 case 1: return getNode(Opcode, VT, Ops[0]);
2545 case 2: return getNode(Opcode, VT, Ops[0], Ops[1]);
2546 case 3: return getNode(Opcode, VT, Ops[0], Ops[1], Ops[2]);
2547 default: break;
2548 }
2549
2550 switch (Opcode) {
2551 default: break;
2552 case ISD::SELECT_CC: {
2553 assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
2554 assert(Ops[0].getValueType() == Ops[1].getValueType() &&
2555 "LHS and RHS of condition must have same type!");
2556 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2557 "True and False arms of SelectCC must have same type!");
2558 assert(Ops[2].getValueType() == VT &&
2559 "select_cc node must be of same type as true and false value!");
2560 break;
2561 }
2562 case ISD::BR_CC: {
2563 assert(NumOps == 5 && "BR_CC takes 5 operands!");
2564 assert(Ops[2].getValueType() == Ops[3].getValueType() &&
2565 "LHS/RHS of comparison should match types!");
2566 break;
2567 }
2568 }
2569
2570 // Memoize nodes.
2571 SDNode *N;
2572 SDVTList VTs = getVTList(VT);
2573 if (VT != MVT::Flag) {
2574 FoldingSetNodeID ID;
2575 AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
2576 void *IP = 0;
2577 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2578 return SDOperand(E, 0);
2579 N = new SDNode(Opcode, VTs, Ops, NumOps);
2580 CSEMap.InsertNode(N, IP);
2581 } else {
2582 N = new SDNode(Opcode, VTs, Ops, NumOps);
2583 }
2584 AllNodes.push_back(N);
2585 return SDOperand(N, 0);
2586}
2587
2588SDOperand SelectionDAG::getNode(unsigned Opcode,
2589 std::vector<MVT::ValueType> &ResultTys,
2590 const SDOperand *Ops, unsigned NumOps) {
2591 return getNode(Opcode, getNodeValueTypes(ResultTys), ResultTys.size(),
2592 Ops, NumOps);
2593}
2594
2595SDOperand SelectionDAG::getNode(unsigned Opcode,
2596 const MVT::ValueType *VTs, unsigned NumVTs,
2597 const SDOperand *Ops, unsigned NumOps) {
2598 if (NumVTs == 1)
2599 return getNode(Opcode, VTs[0], Ops, NumOps);
2600 return getNode(Opcode, makeVTList(VTs, NumVTs), Ops, NumOps);
2601}
2602
2603SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2604 const SDOperand *Ops, unsigned NumOps) {
2605 if (VTList.NumVTs == 1)
2606 return getNode(Opcode, VTList.VTs[0], Ops, NumOps);
2607
2608 switch (Opcode) {
2609 // FIXME: figure out how to safely handle things like
2610 // int foo(int x) { return 1 << (x & 255); }
2611 // int bar() { return foo(256); }
2612#if 0
2613 case ISD::SRA_PARTS:
2614 case ISD::SRL_PARTS:
2615 case ISD::SHL_PARTS:
2616 if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2617 cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
2618 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2619 else if (N3.getOpcode() == ISD::AND)
2620 if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
2621 // If the and is only masking out bits that cannot effect the shift,
2622 // eliminate the and.
2623 unsigned NumBits = MVT::getSizeInBits(VT)*2;
2624 if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
2625 return getNode(Opcode, VT, N1, N2, N3.getOperand(0));
2626 }
2627 break;
2628#endif
2629 }
2630
2631 // Memoize the node unless it returns a flag.
2632 SDNode *N;
2633 if (VTList.VTs[VTList.NumVTs-1] != MVT::Flag) {
2634 FoldingSetNodeID ID;
2635 AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
2636 void *IP = 0;
2637 if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
2638 return SDOperand(E, 0);
2639 if (NumOps == 1)
2640 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2641 else if (NumOps == 2)
2642 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2643 else if (NumOps == 3)
2644 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2645 else
2646 N = new SDNode(Opcode, VTList, Ops, NumOps);
2647 CSEMap.InsertNode(N, IP);
2648 } else {
2649 if (NumOps == 1)
2650 N = new UnarySDNode(Opcode, VTList, Ops[0]);
2651 else if (NumOps == 2)
2652 N = new BinarySDNode(Opcode, VTList, Ops[0], Ops[1]);
2653 else if (NumOps == 3)
2654 N = new TernarySDNode(Opcode, VTList, Ops[0], Ops[1], Ops[2]);
2655 else
2656 N = new SDNode(Opcode, VTList, Ops, NumOps);
2657 }
2658 AllNodes.push_back(N);
2659 return SDOperand(N, 0);
2660}
2661
Dan Gohman798d1272007-10-08 15:49:58 +00002662SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList) {
2663 return getNode(Opcode, VTList, 0, 0);
2664}
2665
2666SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2667 SDOperand N1) {
2668 SDOperand Ops[] = { N1 };
2669 return getNode(Opcode, VTList, Ops, 1);
2670}
2671
2672SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2673 SDOperand N1, SDOperand N2) {
2674 SDOperand Ops[] = { N1, N2 };
2675 return getNode(Opcode, VTList, Ops, 2);
2676}
2677
2678SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2679 SDOperand N1, SDOperand N2, SDOperand N3) {
2680 SDOperand Ops[] = { N1, N2, N3 };
2681 return getNode(Opcode, VTList, Ops, 3);
2682}
2683
2684SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2685 SDOperand N1, SDOperand N2, SDOperand N3,
2686 SDOperand N4) {
2687 SDOperand Ops[] = { N1, N2, N3, N4 };
2688 return getNode(Opcode, VTList, Ops, 4);
2689}
2690
2691SDOperand SelectionDAG::getNode(unsigned Opcode, SDVTList VTList,
2692 SDOperand N1, SDOperand N2, SDOperand N3,
2693 SDOperand N4, SDOperand N5) {
2694 SDOperand Ops[] = { N1, N2, N3, N4, N5 };
2695 return getNode(Opcode, VTList, Ops, 5);
2696}
2697
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002698SDVTList SelectionDAG::getVTList(MVT::ValueType VT) {
Duncan Sandsa9810f32007-10-16 09:56:48 +00002699 return makeVTList(SDNode::getValueTypeList(VT), 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002700}
2701
2702SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2) {
2703 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2704 E = VTList.end(); I != E; ++I) {
2705 if (I->size() == 2 && (*I)[0] == VT1 && (*I)[1] == VT2)
2706 return makeVTList(&(*I)[0], 2);
2707 }
2708 std::vector<MVT::ValueType> V;
2709 V.push_back(VT1);
2710 V.push_back(VT2);
2711 VTList.push_front(V);
2712 return makeVTList(&(*VTList.begin())[0], 2);
2713}
2714SDVTList SelectionDAG::getVTList(MVT::ValueType VT1, MVT::ValueType VT2,
2715 MVT::ValueType VT3) {
2716 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2717 E = VTList.end(); I != E; ++I) {
2718 if (I->size() == 3 && (*I)[0] == VT1 && (*I)[1] == VT2 &&
2719 (*I)[2] == VT3)
2720 return makeVTList(&(*I)[0], 3);
2721 }
2722 std::vector<MVT::ValueType> V;
2723 V.push_back(VT1);
2724 V.push_back(VT2);
2725 V.push_back(VT3);
2726 VTList.push_front(V);
2727 return makeVTList(&(*VTList.begin())[0], 3);
2728}
2729
2730SDVTList SelectionDAG::getVTList(const MVT::ValueType *VTs, unsigned NumVTs) {
2731 switch (NumVTs) {
2732 case 0: assert(0 && "Cannot have nodes without results!");
2733 case 1: return getVTList(VTs[0]);
2734 case 2: return getVTList(VTs[0], VTs[1]);
2735 case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
2736 default: break;
2737 }
2738
2739 for (std::list<std::vector<MVT::ValueType> >::iterator I = VTList.begin(),
2740 E = VTList.end(); I != E; ++I) {
2741 if (I->size() != NumVTs || VTs[0] != (*I)[0] || VTs[1] != (*I)[1]) continue;
2742
2743 bool NoMatch = false;
2744 for (unsigned i = 2; i != NumVTs; ++i)
2745 if (VTs[i] != (*I)[i]) {
2746 NoMatch = true;
2747 break;
2748 }
2749 if (!NoMatch)
2750 return makeVTList(&*I->begin(), NumVTs);
2751 }
2752
2753 VTList.push_front(std::vector<MVT::ValueType>(VTs, VTs+NumVTs));
2754 return makeVTList(&*VTList.begin()->begin(), NumVTs);
2755}
2756
2757
2758/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
2759/// specified operands. If the resultant node already exists in the DAG,
2760/// this does not modify the specified node, instead it returns the node that
2761/// already exists. If the resultant node does not exist in the DAG, the
2762/// input node is returned. As a degenerate case, if you specify the same
2763/// input operands as the node already has, the input node is returned.
2764SDOperand SelectionDAG::
2765UpdateNodeOperands(SDOperand InN, SDOperand Op) {
2766 SDNode *N = InN.Val;
2767 assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
2768
2769 // Check to see if there is no change.
2770 if (Op == N->getOperand(0)) return InN;
2771
2772 // See if the modified node already exists.
2773 void *InsertPos = 0;
2774 if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
2775 return SDOperand(Existing, InN.ResNo);
2776
2777 // Nope it doesn't. Remove the node from it's current place in the maps.
2778 if (InsertPos)
2779 RemoveNodeFromCSEMaps(N);
2780
2781 // Now we update the operands.
2782 N->OperandList[0].Val->removeUser(N);
2783 Op.Val->addUser(N);
2784 N->OperandList[0] = Op;
2785
2786 // If this gets put into a CSE map, add it.
2787 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2788 return InN;
2789}
2790
2791SDOperand SelectionDAG::
2792UpdateNodeOperands(SDOperand InN, SDOperand Op1, SDOperand Op2) {
2793 SDNode *N = InN.Val;
2794 assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
2795
2796 // Check to see if there is no change.
2797 if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
2798 return InN; // No operands changed, just return the input node.
2799
2800 // See if the modified node already exists.
2801 void *InsertPos = 0;
2802 if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
2803 return SDOperand(Existing, InN.ResNo);
2804
2805 // Nope it doesn't. Remove the node from it's current place in the maps.
2806 if (InsertPos)
2807 RemoveNodeFromCSEMaps(N);
2808
2809 // Now we update the operands.
2810 if (N->OperandList[0] != Op1) {
2811 N->OperandList[0].Val->removeUser(N);
2812 Op1.Val->addUser(N);
2813 N->OperandList[0] = Op1;
2814 }
2815 if (N->OperandList[1] != Op2) {
2816 N->OperandList[1].Val->removeUser(N);
2817 Op2.Val->addUser(N);
2818 N->OperandList[1] = Op2;
2819 }
2820
2821 // If this gets put into a CSE map, add it.
2822 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2823 return InN;
2824}
2825
2826SDOperand SelectionDAG::
2827UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2, SDOperand Op3) {
2828 SDOperand Ops[] = { Op1, Op2, Op3 };
2829 return UpdateNodeOperands(N, Ops, 3);
2830}
2831
2832SDOperand SelectionDAG::
2833UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2834 SDOperand Op3, SDOperand Op4) {
2835 SDOperand Ops[] = { Op1, Op2, Op3, Op4 };
2836 return UpdateNodeOperands(N, Ops, 4);
2837}
2838
2839SDOperand SelectionDAG::
2840UpdateNodeOperands(SDOperand N, SDOperand Op1, SDOperand Op2,
2841 SDOperand Op3, SDOperand Op4, SDOperand Op5) {
2842 SDOperand Ops[] = { Op1, Op2, Op3, Op4, Op5 };
2843 return UpdateNodeOperands(N, Ops, 5);
2844}
2845
2846
2847SDOperand SelectionDAG::
2848UpdateNodeOperands(SDOperand InN, SDOperand *Ops, unsigned NumOps) {
2849 SDNode *N = InN.Val;
2850 assert(N->getNumOperands() == NumOps &&
2851 "Update with wrong number of operands");
2852
2853 // Check to see if there is no change.
2854 bool AnyChange = false;
2855 for (unsigned i = 0; i != NumOps; ++i) {
2856 if (Ops[i] != N->getOperand(i)) {
2857 AnyChange = true;
2858 break;
2859 }
2860 }
2861
2862 // No operands changed, just return the input node.
2863 if (!AnyChange) return InN;
2864
2865 // See if the modified node already exists.
2866 void *InsertPos = 0;
2867 if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
2868 return SDOperand(Existing, InN.ResNo);
2869
2870 // Nope it doesn't. Remove the node from it's current place in the maps.
2871 if (InsertPos)
2872 RemoveNodeFromCSEMaps(N);
2873
2874 // Now we update the operands.
2875 for (unsigned i = 0; i != NumOps; ++i) {
2876 if (N->OperandList[i] != Ops[i]) {
2877 N->OperandList[i].Val->removeUser(N);
2878 Ops[i].Val->addUser(N);
2879 N->OperandList[i] = Ops[i];
2880 }
2881 }
2882
2883 // If this gets put into a CSE map, add it.
2884 if (InsertPos) CSEMap.InsertNode(N, InsertPos);
2885 return InN;
2886}
2887
2888
2889/// MorphNodeTo - This frees the operands of the current node, resets the
2890/// opcode, types, and operands to the specified value. This should only be
2891/// used by the SelectionDAG class.
2892void SDNode::MorphNodeTo(unsigned Opc, SDVTList L,
2893 const SDOperand *Ops, unsigned NumOps) {
2894 NodeType = Opc;
2895 ValueList = L.VTs;
2896 NumValues = L.NumVTs;
2897
2898 // Clear the operands list, updating used nodes to remove this from their
2899 // use list.
2900 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2901 I->Val->removeUser(this);
2902
2903 // If NumOps is larger than the # of operands we currently have, reallocate
2904 // the operand list.
2905 if (NumOps > NumOperands) {
2906 if (OperandsNeedDelete)
2907 delete [] OperandList;
2908 OperandList = new SDOperand[NumOps];
2909 OperandsNeedDelete = true;
2910 }
2911
2912 // Assign the new operands.
2913 NumOperands = NumOps;
2914
2915 for (unsigned i = 0, e = NumOps; i != e; ++i) {
2916 OperandList[i] = Ops[i];
2917 SDNode *N = OperandList[i].Val;
2918 N->Uses.push_back(this);
2919 }
2920}
2921
2922/// SelectNodeTo - These are used for target selectors to *mutate* the
2923/// specified node to have the specified return type, Target opcode, and
2924/// operands. Note that target opcodes are stored as
2925/// ISD::BUILTIN_OP_END+TargetOpcode in the node opcode field.
2926///
2927/// Note that SelectNodeTo returns the resultant node. If there is already a
2928/// node of the specified opcode and operands, it returns that node instead of
2929/// the current one.
2930SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2931 MVT::ValueType VT) {
2932 SDVTList VTs = getVTList(VT);
2933 FoldingSetNodeID ID;
2934 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2935 void *IP = 0;
2936 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2937 return ON;
2938
2939 RemoveNodeFromCSEMaps(N);
2940
2941 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, 0, 0);
2942
2943 CSEMap.InsertNode(N, IP);
2944 return N;
2945}
2946
2947SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2948 MVT::ValueType VT, SDOperand Op1) {
2949 // If an identical node already exists, use it.
2950 SDVTList VTs = getVTList(VT);
2951 SDOperand Ops[] = { Op1 };
2952
2953 FoldingSetNodeID ID;
2954 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2955 void *IP = 0;
2956 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2957 return ON;
2958
2959 RemoveNodeFromCSEMaps(N);
2960 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 1);
2961 CSEMap.InsertNode(N, IP);
2962 return N;
2963}
2964
2965SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2966 MVT::ValueType VT, SDOperand Op1,
2967 SDOperand Op2) {
2968 // If an identical node already exists, use it.
2969 SDVTList VTs = getVTList(VT);
2970 SDOperand Ops[] = { Op1, Op2 };
2971
2972 FoldingSetNodeID ID;
2973 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2974 void *IP = 0;
2975 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2976 return ON;
2977
2978 RemoveNodeFromCSEMaps(N);
2979
2980 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
2981
2982 CSEMap.InsertNode(N, IP); // Memoize the new node.
2983 return N;
2984}
2985
2986SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
2987 MVT::ValueType VT, SDOperand Op1,
2988 SDOperand Op2, SDOperand Op3) {
2989 // If an identical node already exists, use it.
2990 SDVTList VTs = getVTList(VT);
2991 SDOperand Ops[] = { Op1, Op2, Op3 };
2992 FoldingSetNodeID ID;
2993 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
2994 void *IP = 0;
2995 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
2996 return ON;
2997
2998 RemoveNodeFromCSEMaps(N);
2999
3000 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3001
3002 CSEMap.InsertNode(N, IP); // Memoize the new node.
3003 return N;
3004}
3005
3006SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3007 MVT::ValueType VT, const SDOperand *Ops,
3008 unsigned NumOps) {
3009 // If an identical node already exists, use it.
3010 SDVTList VTs = getVTList(VT);
3011 FoldingSetNodeID ID;
3012 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3013 void *IP = 0;
3014 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3015 return ON;
3016
3017 RemoveNodeFromCSEMaps(N);
3018 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, NumOps);
3019
3020 CSEMap.InsertNode(N, IP); // Memoize the new node.
3021 return N;
3022}
3023
3024SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3025 MVT::ValueType VT1, MVT::ValueType VT2,
3026 SDOperand Op1, SDOperand Op2) {
3027 SDVTList VTs = getVTList(VT1, VT2);
3028 FoldingSetNodeID ID;
3029 SDOperand Ops[] = { Op1, Op2 };
3030 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3031 void *IP = 0;
3032 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3033 return ON;
3034
3035 RemoveNodeFromCSEMaps(N);
3036 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 2);
3037 CSEMap.InsertNode(N, IP); // Memoize the new node.
3038 return N;
3039}
3040
3041SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned TargetOpc,
3042 MVT::ValueType VT1, MVT::ValueType VT2,
3043 SDOperand Op1, SDOperand Op2,
3044 SDOperand Op3) {
3045 // If an identical node already exists, use it.
3046 SDVTList VTs = getVTList(VT1, VT2);
3047 SDOperand Ops[] = { Op1, Op2, Op3 };
3048 FoldingSetNodeID ID;
3049 AddNodeIDNode(ID, ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3050 void *IP = 0;
3051 if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
3052 return ON;
3053
3054 RemoveNodeFromCSEMaps(N);
3055
3056 N->MorphNodeTo(ISD::BUILTIN_OP_END+TargetOpc, VTs, Ops, 3);
3057 CSEMap.InsertNode(N, IP); // Memoize the new node.
3058 return N;
3059}
3060
3061
3062/// getTargetNode - These are used for target selectors to create a new node
3063/// with specified return type(s), target opcode, and operands.
3064///
3065/// Note that getTargetNode returns the resultant node. If there is already a
3066/// node of the specified opcode and operands, it returns that node instead of
3067/// the current one.
3068SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT) {
3069 return getNode(ISD::BUILTIN_OP_END+Opcode, VT).Val;
3070}
3071SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3072 SDOperand Op1) {
3073 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1).Val;
3074}
3075SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3076 SDOperand Op1, SDOperand Op2) {
3077 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2).Val;
3078}
3079SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3080 SDOperand Op1, SDOperand Op2,
3081 SDOperand Op3) {
3082 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Op1, Op2, Op3).Val;
3083}
3084SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT,
3085 const SDOperand *Ops, unsigned NumOps) {
3086 return getNode(ISD::BUILTIN_OP_END+Opcode, VT, Ops, NumOps).Val;
3087}
3088SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003089 MVT::ValueType VT2) {
3090 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3091 SDOperand Op;
3092 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op, 0).Val;
3093}
3094SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003095 MVT::ValueType VT2, SDOperand Op1) {
3096 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3097 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, &Op1, 1).Val;
3098}
3099SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3100 MVT::ValueType VT2, SDOperand Op1,
3101 SDOperand Op2) {
3102 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3103 SDOperand Ops[] = { Op1, Op2 };
3104 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 2).Val;
3105}
3106SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3107 MVT::ValueType VT2, SDOperand Op1,
3108 SDOperand Op2, SDOperand Op3) {
3109 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3110 SDOperand Ops[] = { Op1, Op2, Op3 };
3111 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, 3).Val;
3112}
3113SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3114 MVT::ValueType VT2,
3115 const SDOperand *Ops, unsigned NumOps) {
3116 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2);
3117 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 2, Ops, NumOps).Val;
3118}
3119SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3120 MVT::ValueType VT2, MVT::ValueType VT3,
3121 SDOperand Op1, SDOperand Op2) {
3122 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3123 SDOperand Ops[] = { Op1, Op2 };
3124 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 2).Val;
3125}
3126SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3127 MVT::ValueType VT2, MVT::ValueType VT3,
3128 SDOperand Op1, SDOperand Op2,
3129 SDOperand Op3) {
3130 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3131 SDOperand Ops[] = { Op1, Op2, Op3 };
3132 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, 3).Val;
3133}
3134SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3135 MVT::ValueType VT2, MVT::ValueType VT3,
3136 const SDOperand *Ops, unsigned NumOps) {
3137 const MVT::ValueType *VTs = getNodeValueTypes(VT1, VT2, VT3);
3138 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 3, Ops, NumOps).Val;
3139}
Evan Chenge1d067e2007-09-12 23:39:49 +00003140SDNode *SelectionDAG::getTargetNode(unsigned Opcode, MVT::ValueType VT1,
3141 MVT::ValueType VT2, MVT::ValueType VT3,
3142 MVT::ValueType VT4,
3143 const SDOperand *Ops, unsigned NumOps) {
3144 std::vector<MVT::ValueType> VTList;
3145 VTList.push_back(VT1);
3146 VTList.push_back(VT2);
3147 VTList.push_back(VT3);
3148 VTList.push_back(VT4);
3149 const MVT::ValueType *VTs = getNodeValueTypes(VTList);
3150 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, 4, Ops, NumOps).Val;
3151}
Evan Chenge3940912007-10-05 01:10:49 +00003152SDNode *SelectionDAG::getTargetNode(unsigned Opcode,
3153 std::vector<MVT::ValueType> &ResultTys,
3154 const SDOperand *Ops, unsigned NumOps) {
3155 const MVT::ValueType *VTs = getNodeValueTypes(ResultTys);
3156 return getNode(ISD::BUILTIN_OP_END+Opcode, VTs, ResultTys.size(),
3157 Ops, NumOps).Val;
3158}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003159
3160/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3161/// This can cause recursive merging of nodes in the DAG.
3162///
3163/// This version assumes From/To have a single result value.
3164///
3165void SelectionDAG::ReplaceAllUsesWith(SDOperand FromN, SDOperand ToN,
3166 std::vector<SDNode*> *Deleted) {
3167 SDNode *From = FromN.Val, *To = ToN.Val;
3168 assert(From->getNumValues() == 1 && To->getNumValues() == 1 &&
3169 "Cannot replace with this method!");
3170 assert(From != To && "Cannot replace uses of with self");
3171
3172 while (!From->use_empty()) {
3173 // Process users until they are all gone.
3174 SDNode *U = *From->use_begin();
3175
3176 // This node is about to morph, remove its old self from the CSE maps.
3177 RemoveNodeFromCSEMaps(U);
3178
3179 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3180 I != E; ++I)
3181 if (I->Val == From) {
3182 From->removeUser(U);
3183 I->Val = To;
3184 To->addUser(U);
3185 }
3186
3187 // Now that we have modified U, add it back to the CSE maps. If it already
3188 // exists there, recursively merge the results together.
3189 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3190 ReplaceAllUsesWith(U, Existing, Deleted);
3191 // U is now dead.
3192 if (Deleted) Deleted->push_back(U);
3193 DeleteNodeNotInCSEMaps(U);
3194 }
3195 }
3196}
3197
3198/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3199/// This can cause recursive merging of nodes in the DAG.
3200///
3201/// This version assumes From/To have matching types and numbers of result
3202/// values.
3203///
3204void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To,
3205 std::vector<SDNode*> *Deleted) {
3206 assert(From != To && "Cannot replace uses of with self");
3207 assert(From->getNumValues() == To->getNumValues() &&
3208 "Cannot use this version of ReplaceAllUsesWith!");
3209 if (From->getNumValues() == 1) { // If possible, use the faster version.
3210 ReplaceAllUsesWith(SDOperand(From, 0), SDOperand(To, 0), Deleted);
3211 return;
3212 }
3213
3214 while (!From->use_empty()) {
3215 // Process users until they are all gone.
3216 SDNode *U = *From->use_begin();
3217
3218 // This node is about to morph, remove its old self from the CSE maps.
3219 RemoveNodeFromCSEMaps(U);
3220
3221 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3222 I != E; ++I)
3223 if (I->Val == From) {
3224 From->removeUser(U);
3225 I->Val = To;
3226 To->addUser(U);
3227 }
3228
3229 // Now that we have modified U, add it back to the CSE maps. If it already
3230 // exists there, recursively merge the results together.
3231 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3232 ReplaceAllUsesWith(U, Existing, Deleted);
3233 // U is now dead.
3234 if (Deleted) Deleted->push_back(U);
3235 DeleteNodeNotInCSEMaps(U);
3236 }
3237 }
3238}
3239
3240/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
3241/// This can cause recursive merging of nodes in the DAG.
3242///
3243/// This version can replace From with any result values. To must match the
3244/// number and types of values returned by From.
3245void SelectionDAG::ReplaceAllUsesWith(SDNode *From,
3246 const SDOperand *To,
3247 std::vector<SDNode*> *Deleted) {
3248 if (From->getNumValues() == 1 && To[0].Val->getNumValues() == 1) {
3249 // Degenerate case handled above.
3250 ReplaceAllUsesWith(SDOperand(From, 0), To[0], Deleted);
3251 return;
3252 }
3253
3254 while (!From->use_empty()) {
3255 // Process users until they are all gone.
3256 SDNode *U = *From->use_begin();
3257
3258 // This node is about to morph, remove its old self from the CSE maps.
3259 RemoveNodeFromCSEMaps(U);
3260
3261 for (SDOperand *I = U->OperandList, *E = U->OperandList+U->NumOperands;
3262 I != E; ++I)
3263 if (I->Val == From) {
3264 const SDOperand &ToOp = To[I->ResNo];
3265 From->removeUser(U);
3266 *I = ToOp;
3267 ToOp.Val->addUser(U);
3268 }
3269
3270 // Now that we have modified U, add it back to the CSE maps. If it already
3271 // exists there, recursively merge the results together.
3272 if (SDNode *Existing = AddNonLeafNodeToCSEMaps(U)) {
3273 ReplaceAllUsesWith(U, Existing, Deleted);
3274 // U is now dead.
3275 if (Deleted) Deleted->push_back(U);
3276 DeleteNodeNotInCSEMaps(U);
3277 }
3278 }
3279}
3280
3281/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
3282/// uses of other values produced by From.Val alone. The Deleted vector is
3283/// handled the same was as for ReplaceAllUsesWith.
3284void SelectionDAG::ReplaceAllUsesOfValueWith(SDOperand From, SDOperand To,
Chris Lattner8a258202007-10-15 06:10:22 +00003285 std::vector<SDNode*> *Deleted) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003286 assert(From != To && "Cannot replace a value with itself");
3287 // Handle the simple, trivial, case efficiently.
3288 if (From.Val->getNumValues() == 1 && To.Val->getNumValues() == 1) {
Chris Lattner8a258202007-10-15 06:10:22 +00003289 ReplaceAllUsesWith(From, To, Deleted);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003290 return;
3291 }
3292
3293 // Get all of the users of From.Val. We want these in a nice,
3294 // deterministically ordered and uniqued set, so we use a SmallSetVector.
3295 SmallSetVector<SDNode*, 16> Users(From.Val->use_begin(), From.Val->use_end());
3296
Chris Lattner8a258202007-10-15 06:10:22 +00003297 std::vector<SDNode*> LocalDeletionVector;
3298
3299 // Pick a deletion vector to use. If the user specified one, use theirs,
3300 // otherwise use a local one.
3301 std::vector<SDNode*> *DeleteVector = Deleted ? Deleted : &LocalDeletionVector;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003302 while (!Users.empty()) {
3303 // We know that this user uses some value of From. If it is the right
3304 // value, update it.
3305 SDNode *User = Users.back();
3306 Users.pop_back();
3307
Chris Lattner8a258202007-10-15 06:10:22 +00003308 // Scan for an operand that matches From.
3309 SDOperand *Op = User->OperandList, *E = User->OperandList+User->NumOperands;
3310 for (; Op != E; ++Op)
3311 if (*Op == From) break;
3312
3313 // If there are no matches, the user must use some other result of From.
3314 if (Op == E) continue;
3315
3316 // Okay, we know this user needs to be updated. Remove its old self
3317 // from the CSE maps.
3318 RemoveNodeFromCSEMaps(User);
3319
3320 // Update all operands that match "From".
3321 for (; Op != E; ++Op) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003322 if (*Op == From) {
Chris Lattner8a258202007-10-15 06:10:22 +00003323 From.Val->removeUser(User);
3324 *Op = To;
3325 To.Val->addUser(User);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003326 }
3327 }
Chris Lattner8a258202007-10-15 06:10:22 +00003328
3329 // Now that we have modified User, add it back to the CSE maps. If it
3330 // already exists there, recursively merge the results together.
3331 SDNode *Existing = AddNonLeafNodeToCSEMaps(User);
3332 if (!Existing) continue; // Continue on to next user.
3333
3334 // If there was already an existing matching node, use ReplaceAllUsesWith
3335 // to replace the dead one with the existing one. However, this can cause
3336 // recursive merging of other unrelated nodes down the line. The merging
3337 // can cause deletion of nodes that used the old value. In this case,
3338 // we have to be certain to remove them from the Users set.
3339 unsigned NumDeleted = DeleteVector->size();
3340 ReplaceAllUsesWith(User, Existing, DeleteVector);
3341
3342 // User is now dead.
3343 DeleteVector->push_back(User);
3344 DeleteNodeNotInCSEMaps(User);
3345
3346 // We have to be careful here, because ReplaceAllUsesWith could have
3347 // deleted a user of From, which means there may be dangling pointers
3348 // in the "Users" setvector. Scan over the deleted node pointers and
3349 // remove them from the setvector.
3350 for (unsigned i = NumDeleted, e = DeleteVector->size(); i != e; ++i)
3351 Users.remove((*DeleteVector)[i]);
3352
3353 // If the user doesn't need the set of deleted elements, don't retain them
3354 // to the next loop iteration.
3355 if (Deleted == 0)
3356 LocalDeletionVector.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003357 }
3358}
3359
3360
3361/// AssignNodeIds - Assign a unique node id for each node in the DAG based on
3362/// their allnodes order. It returns the maximum id.
3363unsigned SelectionDAG::AssignNodeIds() {
3364 unsigned Id = 0;
3365 for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I){
3366 SDNode *N = I;
3367 N->setNodeId(Id++);
3368 }
3369 return Id;
3370}
3371
3372/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
3373/// based on their topological order. It returns the maximum id and a vector
3374/// of the SDNodes* in assigned order by reference.
3375unsigned SelectionDAG::AssignTopologicalOrder(std::vector<SDNode*> &TopOrder) {
3376 unsigned DAGSize = AllNodes.size();
3377 std::vector<unsigned> InDegree(DAGSize);
3378 std::vector<SDNode*> Sources;
3379
3380 // Use a two pass approach to avoid using a std::map which is slow.
3381 unsigned Id = 0;
3382 for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I){
3383 SDNode *N = I;
3384 N->setNodeId(Id++);
3385 unsigned Degree = N->use_size();
3386 InDegree[N->getNodeId()] = Degree;
3387 if (Degree == 0)
3388 Sources.push_back(N);
3389 }
3390
3391 TopOrder.clear();
3392 while (!Sources.empty()) {
3393 SDNode *N = Sources.back();
3394 Sources.pop_back();
3395 TopOrder.push_back(N);
3396 for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
3397 SDNode *P = I->Val;
3398 unsigned Degree = --InDegree[P->getNodeId()];
3399 if (Degree == 0)
3400 Sources.push_back(P);
3401 }
3402 }
3403
3404 // Second pass, assign the actual topological order as node ids.
3405 Id = 0;
3406 for (std::vector<SDNode*>::iterator TI = TopOrder.begin(),TE = TopOrder.end();
3407 TI != TE; ++TI)
3408 (*TI)->setNodeId(Id++);
3409
3410 return Id;
3411}
3412
3413
3414
3415//===----------------------------------------------------------------------===//
3416// SDNode Class
3417//===----------------------------------------------------------------------===//
3418
3419// Out-of-line virtual method to give class a home.
3420void SDNode::ANCHOR() {}
3421void UnarySDNode::ANCHOR() {}
3422void BinarySDNode::ANCHOR() {}
3423void TernarySDNode::ANCHOR() {}
3424void HandleSDNode::ANCHOR() {}
3425void StringSDNode::ANCHOR() {}
3426void ConstantSDNode::ANCHOR() {}
3427void ConstantFPSDNode::ANCHOR() {}
3428void GlobalAddressSDNode::ANCHOR() {}
3429void FrameIndexSDNode::ANCHOR() {}
3430void JumpTableSDNode::ANCHOR() {}
3431void ConstantPoolSDNode::ANCHOR() {}
3432void BasicBlockSDNode::ANCHOR() {}
3433void SrcValueSDNode::ANCHOR() {}
3434void RegisterSDNode::ANCHOR() {}
3435void ExternalSymbolSDNode::ANCHOR() {}
3436void CondCodeSDNode::ANCHOR() {}
3437void VTSDNode::ANCHOR() {}
3438void LoadSDNode::ANCHOR() {}
3439void StoreSDNode::ANCHOR() {}
3440
3441HandleSDNode::~HandleSDNode() {
3442 SDVTList VTs = { 0, 0 };
3443 MorphNodeTo(ISD::HANDLENODE, VTs, 0, 0); // Drops operand uses.
3444}
3445
3446GlobalAddressSDNode::GlobalAddressSDNode(bool isTarget, const GlobalValue *GA,
3447 MVT::ValueType VT, int o)
3448 : SDNode(isa<GlobalVariable>(GA) &&
Dan Gohman53491e92007-07-23 20:24:29 +00003449 cast<GlobalVariable>(GA)->isThreadLocal() ?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003450 // Thread Local
3451 (isTarget ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress) :
3452 // Non Thread Local
3453 (isTarget ? ISD::TargetGlobalAddress : ISD::GlobalAddress),
3454 getSDVTList(VT)), Offset(o) {
3455 TheGlobal = const_cast<GlobalValue*>(GA);
3456}
3457
3458/// Profile - Gather unique data for the node.
3459///
3460void SDNode::Profile(FoldingSetNodeID &ID) {
3461 AddNodeIDNode(ID, this);
3462}
3463
3464/// getValueTypeList - Return a pointer to the specified value type.
3465///
3466MVT::ValueType *SDNode::getValueTypeList(MVT::ValueType VT) {
Duncan Sandsa9810f32007-10-16 09:56:48 +00003467 if (MVT::isExtendedVT(VT)) {
3468 static std::set<MVT::ValueType> EVTs;
3469 return (MVT::ValueType *)&(*EVTs.insert(VT).first);
3470 } else {
3471 static MVT::ValueType VTs[MVT::LAST_VALUETYPE];
3472 VTs[VT] = VT;
3473 return &VTs[VT];
3474 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003475}
Duncan Sandsa9810f32007-10-16 09:56:48 +00003476
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003477/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
3478/// indicated value. This method ignores uses of other values defined by this
3479/// operation.
3480bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
3481 assert(Value < getNumValues() && "Bad value!");
3482
3483 // If there is only one value, this is easy.
3484 if (getNumValues() == 1)
3485 return use_size() == NUses;
Evan Cheng0af04f72007-08-02 05:29:38 +00003486 if (use_size() < NUses) return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003487
3488 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3489
3490 SmallPtrSet<SDNode*, 32> UsersHandled;
3491
3492 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3493 SDNode *User = *UI;
3494 if (User->getNumOperands() == 1 ||
3495 UsersHandled.insert(User)) // First time we've seen this?
3496 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3497 if (User->getOperand(i) == TheValue) {
3498 if (NUses == 0)
3499 return false; // too many uses
3500 --NUses;
3501 }
3502 }
3503
3504 // Found exactly the right number of uses?
3505 return NUses == 0;
3506}
3507
3508
Evan Cheng0af04f72007-08-02 05:29:38 +00003509/// hasAnyUseOfValue - Return true if there are any use of the indicated
3510/// value. This method ignores uses of other values defined by this operation.
3511bool SDNode::hasAnyUseOfValue(unsigned Value) const {
3512 assert(Value < getNumValues() && "Bad value!");
3513
3514 if (use_size() == 0) return false;
3515
3516 SDOperand TheValue(const_cast<SDNode *>(this), Value);
3517
3518 SmallPtrSet<SDNode*, 32> UsersHandled;
3519
3520 for (SDNode::use_iterator UI = Uses.begin(), E = Uses.end(); UI != E; ++UI) {
3521 SDNode *User = *UI;
3522 if (User->getNumOperands() == 1 ||
3523 UsersHandled.insert(User)) // First time we've seen this?
3524 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i)
3525 if (User->getOperand(i) == TheValue) {
3526 return true;
3527 }
3528 }
3529
3530 return false;
3531}
3532
3533
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003534/// isOnlyUse - Return true if this node is the only use of N.
3535///
3536bool SDNode::isOnlyUse(SDNode *N) const {
3537 bool Seen = false;
3538 for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
3539 SDNode *User = *I;
3540 if (User == this)
3541 Seen = true;
3542 else
3543 return false;
3544 }
3545
3546 return Seen;
3547}
3548
3549/// isOperand - Return true if this node is an operand of N.
3550///
3551bool SDOperand::isOperand(SDNode *N) const {
3552 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3553 if (*this == N->getOperand(i))
3554 return true;
3555 return false;
3556}
3557
3558bool SDNode::isOperand(SDNode *N) const {
3559 for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
3560 if (this == N->OperandList[i].Val)
3561 return true;
3562 return false;
3563}
3564
3565static void findPredecessor(SDNode *N, const SDNode *P, bool &found,
3566 SmallPtrSet<SDNode *, 32> &Visited) {
3567 if (found || !Visited.insert(N))
3568 return;
3569
3570 for (unsigned i = 0, e = N->getNumOperands(); !found && i != e; ++i) {
3571 SDNode *Op = N->getOperand(i).Val;
3572 if (Op == P) {
3573 found = true;
3574 return;
3575 }
3576 findPredecessor(Op, P, found, Visited);
3577 }
3578}
3579
3580/// isPredecessor - Return true if this node is a predecessor of N. This node
3581/// is either an operand of N or it can be reached by recursively traversing
3582/// up the operands.
3583/// NOTE: this is an expensive method. Use it carefully.
3584bool SDNode::isPredecessor(SDNode *N) const {
3585 SmallPtrSet<SDNode *, 32> Visited;
3586 bool found = false;
3587 findPredecessor(N, this, found, Visited);
3588 return found;
3589}
3590
3591uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
3592 assert(Num < NumOperands && "Invalid child # of SDNode!");
3593 return cast<ConstantSDNode>(OperandList[Num])->getValue();
3594}
3595
3596std::string SDNode::getOperationName(const SelectionDAG *G) const {
3597 switch (getOpcode()) {
3598 default:
3599 if (getOpcode() < ISD::BUILTIN_OP_END)
3600 return "<<Unknown DAG Node>>";
3601 else {
3602 if (G) {
3603 if (const TargetInstrInfo *TII = G->getTarget().getInstrInfo())
3604 if (getOpcode()-ISD::BUILTIN_OP_END < TII->getNumOpcodes())
3605 return TII->getName(getOpcode()-ISD::BUILTIN_OP_END);
3606
3607 TargetLowering &TLI = G->getTargetLoweringInfo();
3608 const char *Name =
3609 TLI.getTargetNodeName(getOpcode());
3610 if (Name) return Name;
3611 }
3612
3613 return "<<Unknown Target Node>>";
3614 }
3615
3616 case ISD::PCMARKER: return "PCMarker";
3617 case ISD::READCYCLECOUNTER: return "ReadCycleCounter";
3618 case ISD::SRCVALUE: return "SrcValue";
3619 case ISD::EntryToken: return "EntryToken";
3620 case ISD::TokenFactor: return "TokenFactor";
3621 case ISD::AssertSext: return "AssertSext";
3622 case ISD::AssertZext: return "AssertZext";
3623
3624 case ISD::STRING: return "String";
3625 case ISD::BasicBlock: return "BasicBlock";
3626 case ISD::VALUETYPE: return "ValueType";
3627 case ISD::Register: return "Register";
3628
3629 case ISD::Constant: return "Constant";
3630 case ISD::ConstantFP: return "ConstantFP";
3631 case ISD::GlobalAddress: return "GlobalAddress";
3632 case ISD::GlobalTLSAddress: return "GlobalTLSAddress";
3633 case ISD::FrameIndex: return "FrameIndex";
3634 case ISD::JumpTable: return "JumpTable";
3635 case ISD::GLOBAL_OFFSET_TABLE: return "GLOBAL_OFFSET_TABLE";
3636 case ISD::RETURNADDR: return "RETURNADDR";
3637 case ISD::FRAMEADDR: return "FRAMEADDR";
3638 case ISD::FRAME_TO_ARGS_OFFSET: return "FRAME_TO_ARGS_OFFSET";
3639 case ISD::EXCEPTIONADDR: return "EXCEPTIONADDR";
3640 case ISD::EHSELECTION: return "EHSELECTION";
3641 case ISD::EH_RETURN: return "EH_RETURN";
3642 case ISD::ConstantPool: return "ConstantPool";
3643 case ISD::ExternalSymbol: return "ExternalSymbol";
3644 case ISD::INTRINSIC_WO_CHAIN: {
3645 unsigned IID = cast<ConstantSDNode>(getOperand(0))->getValue();
3646 return Intrinsic::getName((Intrinsic::ID)IID);
3647 }
3648 case ISD::INTRINSIC_VOID:
3649 case ISD::INTRINSIC_W_CHAIN: {
3650 unsigned IID = cast<ConstantSDNode>(getOperand(1))->getValue();
3651 return Intrinsic::getName((Intrinsic::ID)IID);
3652 }
3653
3654 case ISD::BUILD_VECTOR: return "BUILD_VECTOR";
3655 case ISD::TargetConstant: return "TargetConstant";
3656 case ISD::TargetConstantFP:return "TargetConstantFP";
3657 case ISD::TargetGlobalAddress: return "TargetGlobalAddress";
3658 case ISD::TargetGlobalTLSAddress: return "TargetGlobalTLSAddress";
3659 case ISD::TargetFrameIndex: return "TargetFrameIndex";
3660 case ISD::TargetJumpTable: return "TargetJumpTable";
3661 case ISD::TargetConstantPool: return "TargetConstantPool";
3662 case ISD::TargetExternalSymbol: return "TargetExternalSymbol";
3663
3664 case ISD::CopyToReg: return "CopyToReg";
3665 case ISD::CopyFromReg: return "CopyFromReg";
3666 case ISD::UNDEF: return "undef";
3667 case ISD::MERGE_VALUES: return "merge_values";
3668 case ISD::INLINEASM: return "inlineasm";
3669 case ISD::LABEL: return "label";
3670 case ISD::HANDLENODE: return "handlenode";
3671 case ISD::FORMAL_ARGUMENTS: return "formal_arguments";
3672 case ISD::CALL: return "call";
3673
3674 // Unary operators
3675 case ISD::FABS: return "fabs";
3676 case ISD::FNEG: return "fneg";
3677 case ISD::FSQRT: return "fsqrt";
3678 case ISD::FSIN: return "fsin";
3679 case ISD::FCOS: return "fcos";
3680 case ISD::FPOWI: return "fpowi";
Dan Gohman1d744bb2007-10-11 23:06:37 +00003681 case ISD::FPOW: return "fpow";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003682
3683 // Binary operators
3684 case ISD::ADD: return "add";
3685 case ISD::SUB: return "sub";
3686 case ISD::MUL: return "mul";
3687 case ISD::MULHU: return "mulhu";
3688 case ISD::MULHS: return "mulhs";
3689 case ISD::SDIV: return "sdiv";
3690 case ISD::UDIV: return "udiv";
3691 case ISD::SREM: return "srem";
3692 case ISD::UREM: return "urem";
Dan Gohmanb945cee2007-10-05 14:11:04 +00003693 case ISD::SMUL_LOHI: return "smul_lohi";
3694 case ISD::UMUL_LOHI: return "umul_lohi";
3695 case ISD::SDIVREM: return "sdivrem";
3696 case ISD::UDIVREM: return "divrem";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003697 case ISD::AND: return "and";
3698 case ISD::OR: return "or";
3699 case ISD::XOR: return "xor";
3700 case ISD::SHL: return "shl";
3701 case ISD::SRA: return "sra";
3702 case ISD::SRL: return "srl";
3703 case ISD::ROTL: return "rotl";
3704 case ISD::ROTR: return "rotr";
3705 case ISD::FADD: return "fadd";
3706 case ISD::FSUB: return "fsub";
3707 case ISD::FMUL: return "fmul";
3708 case ISD::FDIV: return "fdiv";
3709 case ISD::FREM: return "frem";
3710 case ISD::FCOPYSIGN: return "fcopysign";
Chris Lattner13f06832007-12-22 21:26:52 +00003711 case ISD::FGETSIGN: return "fgetsign";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003712
3713 case ISD::SETCC: return "setcc";
3714 case ISD::SELECT: return "select";
3715 case ISD::SELECT_CC: return "select_cc";
3716 case ISD::INSERT_VECTOR_ELT: return "insert_vector_elt";
3717 case ISD::EXTRACT_VECTOR_ELT: return "extract_vector_elt";
3718 case ISD::CONCAT_VECTORS: return "concat_vectors";
3719 case ISD::EXTRACT_SUBVECTOR: return "extract_subvector";
3720 case ISD::SCALAR_TO_VECTOR: return "scalar_to_vector";
3721 case ISD::VECTOR_SHUFFLE: return "vector_shuffle";
3722 case ISD::CARRY_FALSE: return "carry_false";
3723 case ISD::ADDC: return "addc";
3724 case ISD::ADDE: return "adde";
3725 case ISD::SUBC: return "subc";
3726 case ISD::SUBE: return "sube";
3727 case ISD::SHL_PARTS: return "shl_parts";
3728 case ISD::SRA_PARTS: return "sra_parts";
3729 case ISD::SRL_PARTS: return "srl_parts";
Christopher Lambb768c2e2007-07-26 07:34:40 +00003730
3731 case ISD::EXTRACT_SUBREG: return "extract_subreg";
3732 case ISD::INSERT_SUBREG: return "insert_subreg";
3733
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003734 // Conversion operators.
3735 case ISD::SIGN_EXTEND: return "sign_extend";
3736 case ISD::ZERO_EXTEND: return "zero_extend";
3737 case ISD::ANY_EXTEND: return "any_extend";
3738 case ISD::SIGN_EXTEND_INREG: return "sign_extend_inreg";
3739 case ISD::TRUNCATE: return "truncate";
3740 case ISD::FP_ROUND: return "fp_round";
Anton Korobeynikovc915e272007-11-15 23:25:33 +00003741 case ISD::FLT_ROUNDS: return "flt_rounds";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003742 case ISD::FP_ROUND_INREG: return "fp_round_inreg";
3743 case ISD::FP_EXTEND: return "fp_extend";
3744
3745 case ISD::SINT_TO_FP: return "sint_to_fp";
3746 case ISD::UINT_TO_FP: return "uint_to_fp";
3747 case ISD::FP_TO_SINT: return "fp_to_sint";
3748 case ISD::FP_TO_UINT: return "fp_to_uint";
3749 case ISD::BIT_CONVERT: return "bit_convert";
3750
3751 // Control flow instructions
3752 case ISD::BR: return "br";
3753 case ISD::BRIND: return "brind";
3754 case ISD::BR_JT: return "br_jt";
3755 case ISD::BRCOND: return "brcond";
3756 case ISD::BR_CC: return "br_cc";
3757 case ISD::RET: return "ret";
3758 case ISD::CALLSEQ_START: return "callseq_start";
3759 case ISD::CALLSEQ_END: return "callseq_end";
3760
3761 // Other operators
3762 case ISD::LOAD: return "load";
3763 case ISD::STORE: return "store";
3764 case ISD::VAARG: return "vaarg";
3765 case ISD::VACOPY: return "vacopy";
3766 case ISD::VAEND: return "vaend";
3767 case ISD::VASTART: return "vastart";
3768 case ISD::DYNAMIC_STACKALLOC: return "dynamic_stackalloc";
3769 case ISD::EXTRACT_ELEMENT: return "extract_element";
3770 case ISD::BUILD_PAIR: return "build_pair";
3771 case ISD::STACKSAVE: return "stacksave";
3772 case ISD::STACKRESTORE: return "stackrestore";
3773
3774 // Block memory operations.
3775 case ISD::MEMSET: return "memset";
3776 case ISD::MEMCPY: return "memcpy";
3777 case ISD::MEMMOVE: return "memmove";
3778
3779 // Bit manipulation
3780 case ISD::BSWAP: return "bswap";
3781 case ISD::CTPOP: return "ctpop";
3782 case ISD::CTTZ: return "cttz";
3783 case ISD::CTLZ: return "ctlz";
3784
3785 // Debug info
3786 case ISD::LOCATION: return "location";
3787 case ISD::DEBUG_LOC: return "debug_loc";
3788
Duncan Sands38947cd2007-07-27 12:58:54 +00003789 // Trampolines
Duncan Sands7407a9f2007-09-11 14:10:23 +00003790 case ISD::TRAMPOLINE: return "trampoline";
Duncan Sands38947cd2007-07-27 12:58:54 +00003791
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003792 case ISD::CONDCODE:
3793 switch (cast<CondCodeSDNode>(this)->get()) {
3794 default: assert(0 && "Unknown setcc condition!");
3795 case ISD::SETOEQ: return "setoeq";
3796 case ISD::SETOGT: return "setogt";
3797 case ISD::SETOGE: return "setoge";
3798 case ISD::SETOLT: return "setolt";
3799 case ISD::SETOLE: return "setole";
3800 case ISD::SETONE: return "setone";
3801
3802 case ISD::SETO: return "seto";
3803 case ISD::SETUO: return "setuo";
3804 case ISD::SETUEQ: return "setue";
3805 case ISD::SETUGT: return "setugt";
3806 case ISD::SETUGE: return "setuge";
3807 case ISD::SETULT: return "setult";
3808 case ISD::SETULE: return "setule";
3809 case ISD::SETUNE: return "setune";
3810
3811 case ISD::SETEQ: return "seteq";
3812 case ISD::SETGT: return "setgt";
3813 case ISD::SETGE: return "setge";
3814 case ISD::SETLT: return "setlt";
3815 case ISD::SETLE: return "setle";
3816 case ISD::SETNE: return "setne";
3817 }
3818 }
3819}
3820
3821const char *SDNode::getIndexedModeName(ISD::MemIndexedMode AM) {
3822 switch (AM) {
3823 default:
3824 return "";
3825 case ISD::PRE_INC:
3826 return "<pre-inc>";
3827 case ISD::PRE_DEC:
3828 return "<pre-dec>";
3829 case ISD::POST_INC:
3830 return "<post-inc>";
3831 case ISD::POST_DEC:
3832 return "<post-dec>";
3833 }
3834}
3835
3836void SDNode::dump() const { dump(0); }
3837void SDNode::dump(const SelectionDAG *G) const {
3838 cerr << (void*)this << ": ";
3839
3840 for (unsigned i = 0, e = getNumValues(); i != e; ++i) {
3841 if (i) cerr << ",";
3842 if (getValueType(i) == MVT::Other)
3843 cerr << "ch";
3844 else
3845 cerr << MVT::getValueTypeString(getValueType(i));
3846 }
3847 cerr << " = " << getOperationName(G);
3848
3849 cerr << " ";
3850 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3851 if (i) cerr << ", ";
3852 cerr << (void*)getOperand(i).Val;
3853 if (unsigned RN = getOperand(i).ResNo)
3854 cerr << ":" << RN;
3855 }
3856
Evan Chengaad43a02007-12-11 02:08:35 +00003857 if (!isTargetOpcode() && getOpcode() == ISD::VECTOR_SHUFFLE) {
3858 SDNode *Mask = getOperand(2).Val;
3859 cerr << "<";
3860 for (unsigned i = 0, e = Mask->getNumOperands(); i != e; ++i) {
3861 if (i) cerr << ",";
3862 if (Mask->getOperand(i).getOpcode() == ISD::UNDEF)
3863 cerr << "u";
3864 else
3865 cerr << cast<ConstantSDNode>(Mask->getOperand(i))->getValue();
3866 }
3867 cerr << ">";
3868 }
3869
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003870 if (const ConstantSDNode *CSDN = dyn_cast<ConstantSDNode>(this)) {
3871 cerr << "<" << CSDN->getValue() << ">";
3872 } else if (const ConstantFPSDNode *CSDN = dyn_cast<ConstantFPSDNode>(this)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00003873 if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEsingle)
3874 cerr << "<" << CSDN->getValueAPF().convertToFloat() << ">";
3875 else if (&CSDN->getValueAPF().getSemantics()==&APFloat::IEEEdouble)
3876 cerr << "<" << CSDN->getValueAPF().convertToDouble() << ">";
3877 else {
3878 cerr << "<APFloat(";
3879 CSDN->getValueAPF().convertToAPInt().dump();
3880 cerr << ")>";
3881 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003882 } else if (const GlobalAddressSDNode *GADN =
3883 dyn_cast<GlobalAddressSDNode>(this)) {
3884 int offset = GADN->getOffset();
3885 cerr << "<";
3886 WriteAsOperand(*cerr.stream(), GADN->getGlobal()) << ">";
3887 if (offset > 0)
3888 cerr << " + " << offset;
3889 else
3890 cerr << " " << offset;
3891 } else if (const FrameIndexSDNode *FIDN = dyn_cast<FrameIndexSDNode>(this)) {
3892 cerr << "<" << FIDN->getIndex() << ">";
3893 } else if (const JumpTableSDNode *JTDN = dyn_cast<JumpTableSDNode>(this)) {
3894 cerr << "<" << JTDN->getIndex() << ">";
3895 } else if (const ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(this)){
3896 int offset = CP->getOffset();
3897 if (CP->isMachineConstantPoolEntry())
3898 cerr << "<" << *CP->getMachineCPVal() << ">";
3899 else
3900 cerr << "<" << *CP->getConstVal() << ">";
3901 if (offset > 0)
3902 cerr << " + " << offset;
3903 else
3904 cerr << " " << offset;
3905 } else if (const BasicBlockSDNode *BBDN = dyn_cast<BasicBlockSDNode>(this)) {
3906 cerr << "<";
3907 const Value *LBB = (const Value*)BBDN->getBasicBlock()->getBasicBlock();
3908 if (LBB)
3909 cerr << LBB->getName() << " ";
3910 cerr << (const void*)BBDN->getBasicBlock() << ">";
3911 } else if (const RegisterSDNode *R = dyn_cast<RegisterSDNode>(this)) {
3912 if (G && R->getReg() && MRegisterInfo::isPhysicalRegister(R->getReg())) {
3913 cerr << " " <<G->getTarget().getRegisterInfo()->getName(R->getReg());
3914 } else {
3915 cerr << " #" << R->getReg();
3916 }
3917 } else if (const ExternalSymbolSDNode *ES =
3918 dyn_cast<ExternalSymbolSDNode>(this)) {
3919 cerr << "'" << ES->getSymbol() << "'";
3920 } else if (const SrcValueSDNode *M = dyn_cast<SrcValueSDNode>(this)) {
3921 if (M->getValue())
3922 cerr << "<" << M->getValue() << ":" << M->getOffset() << ">";
3923 else
3924 cerr << "<null:" << M->getOffset() << ">";
3925 } else if (const VTSDNode *N = dyn_cast<VTSDNode>(this)) {
3926 cerr << ":" << MVT::getValueTypeString(N->getVT());
3927 } else if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(this)) {
Evan Cheng034c4f82007-12-18 19:06:30 +00003928 const Value *SrcValue = LD->getSrcValue();
3929 int SrcOffset = LD->getSrcValueOffset();
3930 cerr << " <";
3931 if (SrcValue)
3932 cerr << SrcValue;
3933 else
3934 cerr << "null";
3935 cerr << ":" << SrcOffset << ">";
3936
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003937 bool doExt = true;
3938 switch (LD->getExtensionType()) {
3939 default: doExt = false; break;
3940 case ISD::EXTLOAD:
3941 cerr << " <anyext ";
3942 break;
3943 case ISD::SEXTLOAD:
3944 cerr << " <sext ";
3945 break;
3946 case ISD::ZEXTLOAD:
3947 cerr << " <zext ";
3948 break;
3949 }
3950 if (doExt)
3951 cerr << MVT::getValueTypeString(LD->getLoadedVT()) << ">";
3952
3953 const char *AM = getIndexedModeName(LD->getAddressingMode());
Duncan Sandsf9a44972007-07-19 07:31:58 +00003954 if (*AM)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003955 cerr << " " << AM;
Evan Cheng034c4f82007-12-18 19:06:30 +00003956 if (LD->isVolatile())
3957 cerr << " <volatile>";
3958 cerr << " alignment=" << LD->getAlignment();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003959 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(this)) {
Evan Cheng7196a7b2007-12-18 07:02:08 +00003960 const Value *SrcValue = ST->getSrcValue();
3961 int SrcOffset = ST->getSrcValueOffset();
3962 cerr << " <";
3963 if (SrcValue)
3964 cerr << SrcValue;
3965 else
3966 cerr << "null";
3967 cerr << ":" << SrcOffset << ">";
Evan Cheng034c4f82007-12-18 19:06:30 +00003968
3969 if (ST->isTruncatingStore())
3970 cerr << " <trunc "
3971 << MVT::getValueTypeString(ST->getStoredVT()) << ">";
3972
3973 const char *AM = getIndexedModeName(ST->getAddressingMode());
3974 if (*AM)
3975 cerr << " " << AM;
3976 if (ST->isVolatile())
3977 cerr << " <volatile>";
3978 cerr << " alignment=" << ST->getAlignment();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003979 }
3980}
3981
3982static void DumpNodes(const SDNode *N, unsigned indent, const SelectionDAG *G) {
3983 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
3984 if (N->getOperand(i).Val->hasOneUse())
3985 DumpNodes(N->getOperand(i).Val, indent+2, G);
3986 else
3987 cerr << "\n" << std::string(indent+2, ' ')
3988 << (void*)N->getOperand(i).Val << ": <multiple use>";
3989
3990
3991 cerr << "\n" << std::string(indent, ' ');
3992 N->dump(G);
3993}
3994
3995void SelectionDAG::dump() const {
3996 cerr << "SelectionDAG has " << AllNodes.size() << " nodes:";
3997 std::vector<const SDNode*> Nodes;
3998 for (allnodes_const_iterator I = allnodes_begin(), E = allnodes_end();
3999 I != E; ++I)
4000 Nodes.push_back(I);
4001
4002 std::sort(Nodes.begin(), Nodes.end());
4003
4004 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
4005 if (!Nodes[i]->hasOneUse() && Nodes[i] != getRoot().Val)
4006 DumpNodes(Nodes[i], 2, this);
4007 }
4008
4009 if (getRoot().Val) DumpNodes(getRoot().Val, 2, this);
4010
4011 cerr << "\n\n";
4012}
4013
4014const Type *ConstantPoolSDNode::getType() const {
4015 if (isMachineConstantPoolEntry())
4016 return Val.MachineCPVal->getType();
4017 return Val.ConstVal->getType();
4018}