blob: bb3f25427c8f2567e1bc9a6ddf87c840a3ba1807 [file] [log] [blame]
Chris Lattnerd28b0d72004-06-25 04:24:22 +00001//===- Andersens.cpp - Andersen's Interprocedural Alias Analysis ----------===//
Misha Brukman2b37d7c2005-04-21 21:13:18 +00002//
Chris Lattnere995a2a2004-05-23 21:00:47 +00003// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
Misha Brukman2b37d7c2005-04-21 21:13:18 +00007//
Chris Lattnere995a2a2004-05-23 21:00:47 +00008//===----------------------------------------------------------------------===//
9//
10// This file defines a very simple implementation of Andersen's interprocedural
11// alias analysis. This implementation does not include any of the fancy
12// features that make Andersen's reasonably efficient (like cycle elimination or
13// variable substitution), but it should be useful for getting precision
14// numbers and can be extended in the future.
15//
16// In pointer analysis terms, this is a subset-based, flow-insensitive,
17// field-insensitive, and context-insensitive algorithm pointer algorithm.
18//
19// This algorithm is implemented as three stages:
20// 1. Object identification.
21// 2. Inclusion constraint identification.
22// 3. Inclusion constraint solving.
23//
24// The object identification stage identifies all of the memory objects in the
25// program, which includes globals, heap allocated objects, and stack allocated
26// objects.
27//
28// The inclusion constraint identification stage finds all inclusion constraints
29// in the program by scanning the program, looking for pointer assignments and
30// other statements that effect the points-to graph. For a statement like "A =
31// B", this statement is processed to indicate that A can point to anything that
32// B can point to. Constraints can handle copies, loads, and stores.
33//
34// The inclusion constraint solving phase iteratively propagates the inclusion
35// constraints until a fixed point is reached. This is an O(N^3) algorithm.
36//
37// In the initial pass, all indirect function calls are completely ignored. As
38// the analysis discovers new targets of function pointers, it iteratively
39// resolves a precise (and conservative) call graph. Also related, this
40// analysis initially assumes that all internal functions have known incoming
41// pointers. If we find that an internal function's address escapes outside of
42// the program, we update this assumption.
43//
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000044// Future Improvements:
45// This implementation of Andersen's algorithm is extremely slow. To make it
Misha Brukman2b37d7c2005-04-21 21:13:18 +000046// scale reasonably well, the inclusion constraints could be sorted (easy),
47// offline variable substitution would be a huge win (straight-forward), and
Chris Lattnerc7ca32b2004-06-05 20:12:36 +000048// online cycle elimination (trickier) might help as well.
49//
Chris Lattnere995a2a2004-05-23 21:00:47 +000050//===----------------------------------------------------------------------===//
51
52#define DEBUG_TYPE "anders-aa"
53#include "llvm/Constants.h"
54#include "llvm/DerivedTypes.h"
55#include "llvm/Instructions.h"
56#include "llvm/Module.h"
57#include "llvm/Pass.h"
58#include "llvm/Support/InstIterator.h"
59#include "llvm/Support/InstVisitor.h"
60#include "llvm/Analysis/AliasAnalysis.h"
Jeff Cohen534927d2005-01-08 22:01:16 +000061#include "llvm/Analysis/Passes.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000062#include "llvm/Support/Debug.h"
63#include "llvm/ADT/Statistic.h"
Chris Lattnere995a2a2004-05-23 21:00:47 +000064#include <set>
Chris Lattner72382102006-01-22 23:19:18 +000065#include <iostream>
Chris Lattnere995a2a2004-05-23 21:00:47 +000066using namespace llvm;
67
68namespace {
69 Statistic<>
70 NumIters("anders-aa", "Number of iterations to reach convergence");
71 Statistic<>
72 NumConstraints("anders-aa", "Number of constraints");
73 Statistic<>
74 NumNodes("anders-aa", "Number of nodes");
75 Statistic<>
76 NumEscapingFunctions("anders-aa", "Number of internal functions that escape");
77 Statistic<>
78 NumIndirectCallees("anders-aa", "Number of indirect callees found");
79
Chris Lattnerb12914b2004-09-20 04:48:05 +000080 class Andersens : public ModulePass, public AliasAnalysis,
Chris Lattnere995a2a2004-05-23 21:00:47 +000081 private InstVisitor<Andersens> {
82 /// Node class - This class is used to represent a memory object in the
83 /// program, and is the primitive used to build the points-to graph.
84 class Node {
85 std::vector<Node*> Pointees;
86 Value *Val;
87 public:
88 Node() : Val(0) {}
89 Node *setValue(Value *V) {
90 assert(Val == 0 && "Value already set for this node!");
91 Val = V;
92 return this;
93 }
94
95 /// getValue - Return the LLVM value corresponding to this node.
Chris Lattnerc3c9fd02005-03-28 04:03:52 +000096 ///
Chris Lattnere995a2a2004-05-23 21:00:47 +000097 Value *getValue() const { return Val; }
98
99 typedef std::vector<Node*>::const_iterator iterator;
100 iterator begin() const { return Pointees.begin(); }
101 iterator end() const { return Pointees.end(); }
102
103 /// addPointerTo - Add a pointer to the list of pointees of this node,
104 /// returning true if this caused a new pointer to be added, or false if
105 /// we already knew about the points-to relation.
106 bool addPointerTo(Node *N) {
107 std::vector<Node*>::iterator I = std::lower_bound(Pointees.begin(),
108 Pointees.end(),
109 N);
110 if (I != Pointees.end() && *I == N)
111 return false;
112 Pointees.insert(I, N);
113 return true;
114 }
115
116 /// intersects - Return true if the points-to set of this node intersects
117 /// with the points-to set of the specified node.
118 bool intersects(Node *N) const;
119
120 /// intersectsIgnoring - Return true if the points-to set of this node
121 /// intersects with the points-to set of the specified node on any nodes
122 /// except for the specified node to ignore.
123 bool intersectsIgnoring(Node *N, Node *Ignoring) const;
124
125 // Constraint application methods.
126 bool copyFrom(Node *N);
127 bool loadFrom(Node *N);
128 bool storeThrough(Node *N);
129 };
130
131 /// GraphNodes - This vector is populated as part of the object
132 /// identification stage of the analysis, which populates this vector with a
133 /// node for each memory object and fills in the ValueNodes map.
134 std::vector<Node> GraphNodes;
135
136 /// ValueNodes - This map indicates the Node that a particular Value* is
137 /// represented by. This contains entries for all pointers.
138 std::map<Value*, unsigned> ValueNodes;
139
140 /// ObjectNodes - This map contains entries for each memory object in the
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000141 /// program: globals, alloca's and mallocs.
Chris Lattnere995a2a2004-05-23 21:00:47 +0000142 std::map<Value*, unsigned> ObjectNodes;
143
144 /// ReturnNodes - This map contains an entry for each function in the
145 /// program that returns a value.
146 std::map<Function*, unsigned> ReturnNodes;
147
148 /// VarargNodes - This map contains the entry used to represent all pointers
149 /// passed through the varargs portion of a function call for a particular
150 /// function. An entry is not present in this map for functions that do not
151 /// take variable arguments.
152 std::map<Function*, unsigned> VarargNodes;
153
154 /// Constraint - Objects of this structure are used to represent the various
155 /// constraints identified by the algorithm. The constraints are 'copy',
156 /// for statements like "A = B", 'load' for statements like "A = *B", and
157 /// 'store' for statements like "*A = B".
158 struct Constraint {
159 enum ConstraintType { Copy, Load, Store } Type;
160 Node *Dest, *Src;
161
162 Constraint(ConstraintType Ty, Node *D, Node *S)
163 : Type(Ty), Dest(D), Src(S) {}
164 };
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000165
Chris Lattnere995a2a2004-05-23 21:00:47 +0000166 /// Constraints - This vector contains a list of all of the constraints
167 /// identified by the program.
168 std::vector<Constraint> Constraints;
169
170 /// EscapingInternalFunctions - This set contains all of the internal
171 /// functions that are found to escape from the program. If the address of
172 /// an internal function is passed to an external function or otherwise
173 /// escapes from the analyzed portion of the program, we must assume that
174 /// any pointer arguments can alias the universal node. This set keeps
175 /// track of those functions we are assuming to escape so far.
176 std::set<Function*> EscapingInternalFunctions;
177
178 /// IndirectCalls - This contains a list of all of the indirect call sites
179 /// in the program. Since the call graph is iteratively discovered, we may
180 /// need to add constraints to our graph as we find new targets of function
181 /// pointers.
182 std::vector<CallSite> IndirectCalls;
183
184 /// IndirectCallees - For each call site in the indirect calls list, keep
185 /// track of the callees that we have discovered so far. As the analysis
186 /// proceeds, more callees are discovered, until the call graph finally
187 /// stabilizes.
188 std::map<CallSite, std::vector<Function*> > IndirectCallees;
189
190 /// This enum defines the GraphNodes indices that correspond to important
191 /// fixed sets.
192 enum {
193 UniversalSet = 0,
194 NullPtr = 1,
Chris Lattnerd74ea2b2006-05-24 17:04:05 +0000195 NullObject = 2
Chris Lattnere995a2a2004-05-23 21:00:47 +0000196 };
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000197
Chris Lattnere995a2a2004-05-23 21:00:47 +0000198 public:
Chris Lattnerb12914b2004-09-20 04:48:05 +0000199 bool runOnModule(Module &M) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000200 InitializeAliasAnalysis(this);
201 IdentifyObjects(M);
202 CollectConstraints(M);
203 DEBUG(PrintConstraints());
204 SolveConstraints();
205 DEBUG(PrintPointsToGraph());
206
207 // Free the constraints list, as we don't need it to respond to alias
208 // requests.
209 ObjectNodes.clear();
210 ReturnNodes.clear();
211 VarargNodes.clear();
212 EscapingInternalFunctions.clear();
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000213 std::vector<Constraint>().swap(Constraints);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000214 return false;
215 }
216
217 void releaseMemory() {
218 // FIXME: Until we have transitively required passes working correctly,
219 // this cannot be enabled! Otherwise, using -count-aa with the pass
220 // causes memory to be freed too early. :(
221#if 0
222 // The memory objects and ValueNodes data structures at the only ones that
223 // are still live after construction.
224 std::vector<Node>().swap(GraphNodes);
225 ValueNodes.clear();
226#endif
227 }
228
229 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
230 AliasAnalysis::getAnalysisUsage(AU);
231 AU.setPreservesAll(); // Does not transform code
232 }
233
234 //------------------------------------------------
235 // Implement the AliasAnalysis API
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000236 //
Chris Lattnere995a2a2004-05-23 21:00:47 +0000237 AliasResult alias(const Value *V1, unsigned V1Size,
238 const Value *V2, unsigned V2Size);
Reid Spencer3a9ec242006-08-28 01:02:49 +0000239 virtual ModRefResult getModRefInfo(CallSite CS, Value *P, unsigned Size);
240 virtual ModRefResult getModRefInfo(CallSite CS1, CallSite CS2);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000241 void getMustAliases(Value *P, std::vector<Value*> &RetVals);
242 bool pointsToConstantMemory(const Value *P);
243
244 virtual void deleteValue(Value *V) {
245 ValueNodes.erase(V);
246 getAnalysis<AliasAnalysis>().deleteValue(V);
247 }
248
249 virtual void copyValue(Value *From, Value *To) {
250 ValueNodes[To] = ValueNodes[From];
251 getAnalysis<AliasAnalysis>().copyValue(From, To);
252 }
253
254 private:
255 /// getNode - Return the node corresponding to the specified pointer scalar.
256 ///
257 Node *getNode(Value *V) {
258 if (Constant *C = dyn_cast<Constant>(V))
Chris Lattnerdf9b7bc2004-08-16 05:38:02 +0000259 if (!isa<GlobalValue>(C))
260 return getNodeForConstantPointer(C);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000261
262 std::map<Value*, unsigned>::iterator I = ValueNodes.find(V);
263 if (I == ValueNodes.end()) {
Jim Laskey16d42c62006-07-11 18:25:13 +0000264#ifndef NDEBUG
265 V->dump();
266#endif
Jim Laskeye37fe9b2006-07-11 17:58:07 +0000267 assert(0 && "Value does not have a node in the points-to graph!");
Chris Lattnere995a2a2004-05-23 21:00:47 +0000268 }
269 return &GraphNodes[I->second];
270 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000271
Chris Lattnere995a2a2004-05-23 21:00:47 +0000272 /// getObject - Return the node corresponding to the memory object for the
273 /// specified global or allocation instruction.
274 Node *getObject(Value *V) {
275 std::map<Value*, unsigned>::iterator I = ObjectNodes.find(V);
276 assert(I != ObjectNodes.end() &&
277 "Value does not have an object in the points-to graph!");
278 return &GraphNodes[I->second];
279 }
280
281 /// getReturnNode - Return the node representing the return value for the
282 /// specified function.
283 Node *getReturnNode(Function *F) {
284 std::map<Function*, unsigned>::iterator I = ReturnNodes.find(F);
285 assert(I != ReturnNodes.end() && "Function does not return a value!");
286 return &GraphNodes[I->second];
287 }
288
289 /// getVarargNode - Return the node representing the variable arguments
290 /// formal for the specified function.
291 Node *getVarargNode(Function *F) {
292 std::map<Function*, unsigned>::iterator I = VarargNodes.find(F);
293 assert(I != VarargNodes.end() && "Function does not take var args!");
294 return &GraphNodes[I->second];
295 }
296
297 /// getNodeValue - Get the node for the specified LLVM value and set the
298 /// value for it to be the specified value.
299 Node *getNodeValue(Value &V) {
300 return getNode(&V)->setValue(&V);
301 }
302
303 void IdentifyObjects(Module &M);
304 void CollectConstraints(Module &M);
305 void SolveConstraints();
306
307 Node *getNodeForConstantPointer(Constant *C);
308 Node *getNodeForConstantPointerTarget(Constant *C);
309 void AddGlobalInitializerConstraints(Node *N, Constant *C);
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000310
Chris Lattnere995a2a2004-05-23 21:00:47 +0000311 void AddConstraintsForNonInternalLinkage(Function *F);
312 void AddConstraintsForCall(CallSite CS, Function *F);
Chris Lattner8a446432005-03-29 06:09:07 +0000313 bool AddConstraintsForExternalCall(CallSite CS, Function *F);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000314
315
316 void PrintNode(Node *N);
317 void PrintConstraints();
318 void PrintPointsToGraph();
319
320 //===------------------------------------------------------------------===//
321 // Instruction visitation methods for adding constraints
322 //
323 friend class InstVisitor<Andersens>;
324 void visitReturnInst(ReturnInst &RI);
325 void visitInvokeInst(InvokeInst &II) { visitCallSite(CallSite(&II)); }
326 void visitCallInst(CallInst &CI) { visitCallSite(CallSite(&CI)); }
327 void visitCallSite(CallSite CS);
328 void visitAllocationInst(AllocationInst &AI);
329 void visitLoadInst(LoadInst &LI);
330 void visitStoreInst(StoreInst &SI);
331 void visitGetElementPtrInst(GetElementPtrInst &GEP);
332 void visitPHINode(PHINode &PN);
333 void visitCastInst(CastInst &CI);
Chris Lattner4de57fd2005-03-29 06:52:20 +0000334 void visitSetCondInst(SetCondInst &SCI) {} // NOOP!
Chris Lattnere995a2a2004-05-23 21:00:47 +0000335 void visitSelectInst(SelectInst &SI);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000336 void visitVAArg(VAArgInst &I);
337 void visitInstruction(Instruction &I);
338 };
339
Chris Lattner7f8897f2006-08-27 22:42:52 +0000340 RegisterPass<Andersens> X("anders-aa",
341 "Andersen's Interprocedural Alias Analysis");
Chris Lattnera5370172006-08-28 00:42:29 +0000342 RegisterAnalysisGroup<AliasAnalysis> Y(X);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000343}
344
Jeff Cohen534927d2005-01-08 22:01:16 +0000345ModulePass *llvm::createAndersensPass() { return new Andersens(); }
346
Chris Lattnere995a2a2004-05-23 21:00:47 +0000347//===----------------------------------------------------------------------===//
348// AliasAnalysis Interface Implementation
349//===----------------------------------------------------------------------===//
350
351AliasAnalysis::AliasResult Andersens::alias(const Value *V1, unsigned V1Size,
352 const Value *V2, unsigned V2Size) {
Chris Lattnerf392c642005-03-28 06:21:17 +0000353 Node *N1 = getNode(const_cast<Value*>(V1));
354 Node *N2 = getNode(const_cast<Value*>(V2));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000355
356 // Check to see if the two pointers are known to not alias. They don't alias
357 // if their points-to sets do not intersect.
358 if (!N1->intersectsIgnoring(N2, &GraphNodes[NullObject]))
359 return NoAlias;
360
361 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
362}
363
Chris Lattnerf392c642005-03-28 06:21:17 +0000364AliasAnalysis::ModRefResult
365Andersens::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
366 // The only thing useful that we can contribute for mod/ref information is
367 // when calling external function calls: if we know that memory never escapes
368 // from the program, it cannot be modified by an external call.
369 //
370 // NOTE: This is not really safe, at least not when the entire program is not
371 // available. The deal is that the external function could call back into the
372 // program and modify stuff. We ignore this technical niggle for now. This
373 // is, after all, a "research quality" implementation of Andersen's analysis.
374 if (Function *F = CS.getCalledFunction())
375 if (F->isExternal()) {
376 Node *N1 = getNode(P);
377 bool PointsToUniversalSet = false;
378
Chris Lattner8a9763c2005-04-04 22:23:21 +0000379 if (N1->begin() == N1->end())
380 return NoModRef; // P doesn't point to anything.
Chris Lattnerf392c642005-03-28 06:21:17 +0000381
Chris Lattner8a9763c2005-04-04 22:23:21 +0000382 // Get the first pointee.
383 Node *FirstPointee = *N1->begin();
384 if (FirstPointee != &GraphNodes[UniversalSet])
Chris Lattnerf392c642005-03-28 06:21:17 +0000385 return NoModRef; // P doesn't point to the universal set.
386 }
387
388 return AliasAnalysis::getModRefInfo(CS, P, Size);
389}
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000390
Reid Spencer3a9ec242006-08-28 01:02:49 +0000391AliasAnalysis::ModRefResult
392Andersens::getModRefInfo(CallSite CS1, CallSite CS2) {
393 return AliasAnalysis::getModRefInfo(CS1,CS2);
394}
395
Chris Lattnere995a2a2004-05-23 21:00:47 +0000396/// getMustAlias - We can provide must alias information if we know that a
397/// pointer can only point to a specific function or the null pointer.
398/// Unfortunately we cannot determine must-alias information for global
399/// variables or any other memory memory objects because we do not track whether
400/// a pointer points to the beginning of an object or a field of it.
401void Andersens::getMustAliases(Value *P, std::vector<Value*> &RetVals) {
402 Node *N = getNode(P);
403 Node::iterator I = N->begin();
404 if (I != N->end()) {
405 // If there is exactly one element in the points-to set for the object...
406 ++I;
407 if (I == N->end()) {
408 Node *Pointee = *N->begin();
409
410 // If a function is the only object in the points-to set, then it must be
411 // the destination. Note that we can't handle global variables here,
412 // because we don't know if the pointer is actually pointing to a field of
413 // the global or to the beginning of it.
414 if (Value *V = Pointee->getValue()) {
415 if (Function *F = dyn_cast<Function>(V))
416 RetVals.push_back(F);
417 } else {
418 // If the object in the points-to set is the null object, then the null
419 // pointer is a must alias.
420 if (Pointee == &GraphNodes[NullObject])
421 RetVals.push_back(Constant::getNullValue(P->getType()));
422 }
423 }
424 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000425
Chris Lattnere995a2a2004-05-23 21:00:47 +0000426 AliasAnalysis::getMustAliases(P, RetVals);
427}
428
429/// pointsToConstantMemory - If we can determine that this pointer only points
430/// to constant memory, return true. In practice, this means that if the
431/// pointer can only point to constant globals, functions, or the null pointer,
432/// return true.
433///
434bool Andersens::pointsToConstantMemory(const Value *P) {
435 Node *N = getNode((Value*)P);
436 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
437 if (Value *V = (*I)->getValue()) {
438 if (!isa<GlobalValue>(V) || (isa<GlobalVariable>(V) &&
439 !cast<GlobalVariable>(V)->isConstant()))
440 return AliasAnalysis::pointsToConstantMemory(P);
441 } else {
442 if (*I != &GraphNodes[NullObject])
443 return AliasAnalysis::pointsToConstantMemory(P);
444 }
445 }
446
447 return true;
448}
449
450//===----------------------------------------------------------------------===//
451// Object Identification Phase
452//===----------------------------------------------------------------------===//
453
454/// IdentifyObjects - This stage scans the program, adding an entry to the
455/// GraphNodes list for each memory object in the program (global stack or
456/// heap), and populates the ValueNodes and ObjectNodes maps for these objects.
457///
458void Andersens::IdentifyObjects(Module &M) {
459 unsigned NumObjects = 0;
460
461 // Object #0 is always the universal set: the object that we don't know
462 // anything about.
463 assert(NumObjects == UniversalSet && "Something changed!");
464 ++NumObjects;
465
466 // Object #1 always represents the null pointer.
467 assert(NumObjects == NullPtr && "Something changed!");
468 ++NumObjects;
469
470 // Object #2 always represents the null object (the object pointed to by null)
471 assert(NumObjects == NullObject && "Something changed!");
472 ++NumObjects;
473
474 // Add all the globals first.
Chris Lattner493f6362005-03-27 22:03:46 +0000475 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
476 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000477 ObjectNodes[I] = NumObjects++;
478 ValueNodes[I] = NumObjects++;
479 }
480
481 // Add nodes for all of the functions and the instructions inside of them.
482 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
483 // The function itself is a memory object.
484 ValueNodes[F] = NumObjects++;
485 ObjectNodes[F] = NumObjects++;
486 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
487 ReturnNodes[F] = NumObjects++;
488 if (F->getFunctionType()->isVarArg())
489 VarargNodes[F] = NumObjects++;
490
491 // Add nodes for all of the incoming pointer arguments.
Chris Lattner493f6362005-03-27 22:03:46 +0000492 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
493 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000494 if (isa<PointerType>(I->getType()))
495 ValueNodes[I] = NumObjects++;
496
497 // Scan the function body, creating a memory object for each heap/stack
498 // allocation in the body of the function and a node to represent all
499 // pointer values defined by instructions and used as operands.
500 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
501 // If this is an heap or stack allocation, create a node for the memory
502 // object.
503 if (isa<PointerType>(II->getType())) {
504 ValueNodes[&*II] = NumObjects++;
505 if (AllocationInst *AI = dyn_cast<AllocationInst>(&*II))
506 ObjectNodes[AI] = NumObjects++;
507 }
508 }
509 }
510
511 // Now that we know how many objects to create, make them all now!
512 GraphNodes.resize(NumObjects);
513 NumNodes += NumObjects;
514}
515
516//===----------------------------------------------------------------------===//
517// Constraint Identification Phase
518//===----------------------------------------------------------------------===//
519
520/// getNodeForConstantPointer - Return the node corresponding to the constant
521/// pointer itself.
522Andersens::Node *Andersens::getNodeForConstantPointer(Constant *C) {
523 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
524
Chris Lattner267a1b02005-03-27 18:58:23 +0000525 if (isa<ConstantPointerNull>(C) || isa<UndefValue>(C))
Chris Lattnere995a2a2004-05-23 21:00:47 +0000526 return &GraphNodes[NullPtr];
Reid Spencere8404342004-07-18 00:18:30 +0000527 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
528 return getNode(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000529 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
530 switch (CE->getOpcode()) {
531 case Instruction::GetElementPtr:
532 return getNodeForConstantPointer(CE->getOperand(0));
533 case Instruction::Cast:
534 if (isa<PointerType>(CE->getOperand(0)->getType()))
535 return getNodeForConstantPointer(CE->getOperand(0));
536 else
537 return &GraphNodes[UniversalSet];
538 default:
539 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
540 assert(0);
541 }
542 } else {
543 assert(0 && "Unknown constant pointer!");
544 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000545 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000546}
547
548/// getNodeForConstantPointerTarget - Return the node POINTED TO by the
549/// specified constant pointer.
550Andersens::Node *Andersens::getNodeForConstantPointerTarget(Constant *C) {
551 assert(isa<PointerType>(C->getType()) && "Not a constant pointer!");
552
553 if (isa<ConstantPointerNull>(C))
554 return &GraphNodes[NullObject];
Reid Spencere8404342004-07-18 00:18:30 +0000555 else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
556 return getObject(GV);
Chris Lattnere995a2a2004-05-23 21:00:47 +0000557 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
558 switch (CE->getOpcode()) {
559 case Instruction::GetElementPtr:
560 return getNodeForConstantPointerTarget(CE->getOperand(0));
561 case Instruction::Cast:
562 if (isa<PointerType>(CE->getOperand(0)->getType()))
563 return getNodeForConstantPointerTarget(CE->getOperand(0));
564 else
565 return &GraphNodes[UniversalSet];
566 default:
567 std::cerr << "Constant Expr not yet handled: " << *CE << "\n";
568 assert(0);
569 }
570 } else {
571 assert(0 && "Unknown constant pointer!");
572 }
Chris Lattner1fc37392004-05-27 20:57:01 +0000573 return 0;
Chris Lattnere995a2a2004-05-23 21:00:47 +0000574}
575
576/// AddGlobalInitializerConstraints - Add inclusion constraints for the memory
577/// object N, which contains values indicated by C.
578void Andersens::AddGlobalInitializerConstraints(Node *N, Constant *C) {
579 if (C->getType()->isFirstClassType()) {
580 if (isa<PointerType>(C->getType()))
Chris Lattner76bc5ce2005-03-29 17:21:53 +0000581 N->copyFrom(getNodeForConstantPointer(C));
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000582
Chris Lattnere995a2a2004-05-23 21:00:47 +0000583 } else if (C->isNullValue()) {
584 N->addPointerTo(&GraphNodes[NullObject]);
585 return;
Chris Lattner8a446432005-03-29 06:09:07 +0000586 } else if (!isa<UndefValue>(C)) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000587 // If this is an array or struct, include constraints for each element.
588 assert(isa<ConstantArray>(C) || isa<ConstantStruct>(C));
589 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
590 AddGlobalInitializerConstraints(N, cast<Constant>(C->getOperand(i)));
591 }
592}
593
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000594/// AddConstraintsForNonInternalLinkage - If this function does not have
595/// internal linkage, realize that we can't trust anything passed into or
596/// returned by this function.
Chris Lattnere995a2a2004-05-23 21:00:47 +0000597void Andersens::AddConstraintsForNonInternalLinkage(Function *F) {
Chris Lattnere4d5c442005-03-15 04:54:21 +0000598 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000599 if (isa<PointerType>(I->getType()))
600 // If this is an argument of an externally accessible function, the
601 // incoming pointer might point to anything.
602 Constraints.push_back(Constraint(Constraint::Copy, getNode(I),
603 &GraphNodes[UniversalSet]));
604}
605
Chris Lattner8a446432005-03-29 06:09:07 +0000606/// AddConstraintsForCall - If this is a call to a "known" function, add the
607/// constraints and return true. If this is a call to an unknown function,
608/// return false.
609bool Andersens::AddConstraintsForExternalCall(CallSite CS, Function *F) {
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000610 assert(F->isExternal() && "Not an external function!");
611
612 // These functions don't induce any points-to constraints.
Chris Lattner175b9632005-03-29 20:36:05 +0000613 if (F->getName() == "atoi" || F->getName() == "atof" ||
614 F->getName() == "atol" || F->getName() == "atoll" ||
615 F->getName() == "remove" || F->getName() == "unlink" ||
616 F->getName() == "rename" || F->getName() == "memcmp" ||
Chris Lattner01ac91e2006-03-03 01:21:36 +0000617 F->getName() == "llvm.memset.i32" ||
618 F->getName() == "llvm.memset.i64" ||
Chris Lattner175b9632005-03-29 20:36:05 +0000619 F->getName() == "strcmp" || F->getName() == "strncmp" ||
620 F->getName() == "execl" || F->getName() == "execlp" ||
621 F->getName() == "execle" || F->getName() == "execv" ||
622 F->getName() == "execvp" || F->getName() == "chmod" ||
623 F->getName() == "puts" || F->getName() == "write" ||
624 F->getName() == "open" || F->getName() == "create" ||
625 F->getName() == "truncate" || F->getName() == "chdir" ||
626 F->getName() == "mkdir" || F->getName() == "rmdir" ||
627 F->getName() == "read" || F->getName() == "pipe" ||
628 F->getName() == "wait" || F->getName() == "time" ||
629 F->getName() == "stat" || F->getName() == "fstat" ||
630 F->getName() == "lstat" || F->getName() == "strtod" ||
631 F->getName() == "strtof" || F->getName() == "strtold" ||
632 F->getName() == "fopen" || F->getName() == "fdopen" ||
633 F->getName() == "freopen" ||
634 F->getName() == "fflush" || F->getName() == "feof" ||
635 F->getName() == "fileno" || F->getName() == "clearerr" ||
636 F->getName() == "rewind" || F->getName() == "ftell" ||
637 F->getName() == "ferror" || F->getName() == "fgetc" ||
638 F->getName() == "fgetc" || F->getName() == "_IO_getc" ||
639 F->getName() == "fwrite" || F->getName() == "fread" ||
640 F->getName() == "fgets" || F->getName() == "ungetc" ||
641 F->getName() == "fputc" ||
642 F->getName() == "fputs" || F->getName() == "putc" ||
643 F->getName() == "ftell" || F->getName() == "rewind" ||
644 F->getName() == "_IO_putc" || F->getName() == "fseek" ||
645 F->getName() == "fgetpos" || F->getName() == "fsetpos" ||
646 F->getName() == "printf" || F->getName() == "fprintf" ||
647 F->getName() == "sprintf" || F->getName() == "vprintf" ||
648 F->getName() == "vfprintf" || F->getName() == "vsprintf" ||
649 F->getName() == "scanf" || F->getName() == "fscanf" ||
650 F->getName() == "sscanf" || F->getName() == "__assert_fail" ||
651 F->getName() == "modf")
Chris Lattner8a446432005-03-29 06:09:07 +0000652 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000653
Chris Lattner175b9632005-03-29 20:36:05 +0000654
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000655 // These functions do induce points-to edges.
Chris Lattner01ac91e2006-03-03 01:21:36 +0000656 if (F->getName() == "llvm.memcpy.i32" || F->getName() == "llvm.memcpy.i64" ||
657 F->getName() == "llvm.memmove.i32" ||F->getName() == "llvm.memmove.i64" ||
Chris Lattner4de57fd2005-03-29 06:52:20 +0000658 F->getName() == "memmove") {
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000659 // Note: this is a poor approximation, this says Dest = Src, instead of
660 // *Dest = *Src.
Chris Lattner8a446432005-03-29 06:09:07 +0000661 Constraints.push_back(Constraint(Constraint::Copy,
662 getNode(CS.getArgument(0)),
663 getNode(CS.getArgument(1))));
664 return true;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000665 }
666
Chris Lattner77b50562005-03-29 20:04:24 +0000667 // Result = Arg0
668 if (F->getName() == "realloc" || F->getName() == "strchr" ||
669 F->getName() == "strrchr" || F->getName() == "strstr" ||
670 F->getName() == "strtok") {
Chris Lattner8a446432005-03-29 06:09:07 +0000671 Constraints.push_back(Constraint(Constraint::Copy,
672 getNode(CS.getInstruction()),
673 getNode(CS.getArgument(0))));
674 return true;
675 }
676
677 return false;
Chris Lattnerc3c9fd02005-03-28 04:03:52 +0000678}
679
680
Chris Lattnere995a2a2004-05-23 21:00:47 +0000681
682/// CollectConstraints - This stage scans the program, adding a constraint to
683/// the Constraints list for each instruction in the program that induces a
684/// constraint, and setting up the initial points-to graph.
685///
686void Andersens::CollectConstraints(Module &M) {
687 // First, the universal set points to itself.
688 GraphNodes[UniversalSet].addPointerTo(&GraphNodes[UniversalSet]);
Chris Lattner4de57fd2005-03-29 06:52:20 +0000689 //Constraints.push_back(Constraint(Constraint::Load, &GraphNodes[UniversalSet],
690 // &GraphNodes[UniversalSet]));
Chris Lattnerf392c642005-03-28 06:21:17 +0000691 Constraints.push_back(Constraint(Constraint::Store, &GraphNodes[UniversalSet],
692 &GraphNodes[UniversalSet]));
Chris Lattnere995a2a2004-05-23 21:00:47 +0000693
694 // Next, the null pointer points to the null object.
695 GraphNodes[NullPtr].addPointerTo(&GraphNodes[NullObject]);
696
697 // Next, add any constraints on global variables and their initializers.
Chris Lattner493f6362005-03-27 22:03:46 +0000698 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
699 I != E; ++I) {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000700 // Associate the address of the global object as pointing to the memory for
701 // the global: &G = <G memory>
702 Node *Object = getObject(I);
703 Object->setValue(I);
704 getNodeValue(*I)->addPointerTo(Object);
705
706 if (I->hasInitializer()) {
707 AddGlobalInitializerConstraints(Object, I->getInitializer());
708 } else {
709 // If it doesn't have an initializer (i.e. it's defined in another
710 // translation unit), it points to the universal set.
711 Constraints.push_back(Constraint(Constraint::Copy, Object,
712 &GraphNodes[UniversalSet]));
713 }
714 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000715
Chris Lattnere995a2a2004-05-23 21:00:47 +0000716 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
717 // Make the function address point to the function object.
718 getNodeValue(*F)->addPointerTo(getObject(F)->setValue(F));
719
720 // Set up the return value node.
721 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
722 getReturnNode(F)->setValue(F);
723 if (F->getFunctionType()->isVarArg())
724 getVarargNode(F)->setValue(F);
725
726 // Set up incoming argument nodes.
Chris Lattner493f6362005-03-27 22:03:46 +0000727 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
728 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000729 if (isa<PointerType>(I->getType()))
730 getNodeValue(*I);
731
732 if (!F->hasInternalLinkage())
733 AddConstraintsForNonInternalLinkage(F);
734
735 if (!F->isExternal()) {
736 // Scan the function body, creating a memory object for each heap/stack
737 // allocation in the body of the function and a node to represent all
738 // pointer values defined by instructions and used as operands.
739 visit(F);
Chris Lattner8a446432005-03-29 06:09:07 +0000740 } else {
Chris Lattnere995a2a2004-05-23 21:00:47 +0000741 // External functions that return pointers return the universal set.
742 if (isa<PointerType>(F->getFunctionType()->getReturnType()))
743 Constraints.push_back(Constraint(Constraint::Copy,
744 getReturnNode(F),
745 &GraphNodes[UniversalSet]));
746
747 // Any pointers that are passed into the function have the universal set
748 // stored into them.
Chris Lattner493f6362005-03-27 22:03:46 +0000749 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
750 I != E; ++I)
Chris Lattnere995a2a2004-05-23 21:00:47 +0000751 if (isa<PointerType>(I->getType())) {
752 // Pointers passed into external functions could have anything stored
753 // through them.
754 Constraints.push_back(Constraint(Constraint::Store, getNode(I),
755 &GraphNodes[UniversalSet]));
756 // Memory objects passed into external function calls can have the
757 // universal set point to them.
758 Constraints.push_back(Constraint(Constraint::Copy,
759 &GraphNodes[UniversalSet],
760 getNode(I)));
761 }
762
763 // If this is an external varargs function, it can also store pointers
764 // into any pointers passed through the varargs section.
765 if (F->getFunctionType()->isVarArg())
766 Constraints.push_back(Constraint(Constraint::Store, getVarargNode(F),
767 &GraphNodes[UniversalSet]));
768 }
769 }
770 NumConstraints += Constraints.size();
771}
772
773
774void Andersens::visitInstruction(Instruction &I) {
775#ifdef NDEBUG
776 return; // This function is just a big assert.
777#endif
778 if (isa<BinaryOperator>(I))
779 return;
780 // Most instructions don't have any effect on pointer values.
781 switch (I.getOpcode()) {
782 case Instruction::Br:
783 case Instruction::Switch:
784 case Instruction::Unwind:
Chris Lattnerc17edbd2004-10-16 18:16:19 +0000785 case Instruction::Unreachable:
Chris Lattnere995a2a2004-05-23 21:00:47 +0000786 case Instruction::Free:
787 case Instruction::Shl:
788 case Instruction::Shr:
789 return;
790 default:
791 // Is this something we aren't handling yet?
792 std::cerr << "Unknown instruction: " << I;
793 abort();
794 }
795}
796
797void Andersens::visitAllocationInst(AllocationInst &AI) {
798 getNodeValue(AI)->addPointerTo(getObject(&AI)->setValue(&AI));
799}
800
801void Andersens::visitReturnInst(ReturnInst &RI) {
802 if (RI.getNumOperands() && isa<PointerType>(RI.getOperand(0)->getType()))
803 // return V --> <Copy/retval{F}/v>
804 Constraints.push_back(Constraint(Constraint::Copy,
805 getReturnNode(RI.getParent()->getParent()),
806 getNode(RI.getOperand(0))));
807}
808
809void Andersens::visitLoadInst(LoadInst &LI) {
810 if (isa<PointerType>(LI.getType()))
811 // P1 = load P2 --> <Load/P1/P2>
812 Constraints.push_back(Constraint(Constraint::Load, getNodeValue(LI),
813 getNode(LI.getOperand(0))));
814}
815
816void Andersens::visitStoreInst(StoreInst &SI) {
817 if (isa<PointerType>(SI.getOperand(0)->getType()))
818 // store P1, P2 --> <Store/P2/P1>
819 Constraints.push_back(Constraint(Constraint::Store,
820 getNode(SI.getOperand(1)),
821 getNode(SI.getOperand(0))));
822}
823
824void Andersens::visitGetElementPtrInst(GetElementPtrInst &GEP) {
825 // P1 = getelementptr P2, ... --> <Copy/P1/P2>
826 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(GEP),
827 getNode(GEP.getOperand(0))));
828}
829
830void Andersens::visitPHINode(PHINode &PN) {
831 if (isa<PointerType>(PN.getType())) {
832 Node *PNN = getNodeValue(PN);
833 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
834 // P1 = phi P2, P3 --> <Copy/P1/P2>, <Copy/P1/P3>, ...
835 Constraints.push_back(Constraint(Constraint::Copy, PNN,
836 getNode(PN.getIncomingValue(i))));
837 }
838}
839
840void Andersens::visitCastInst(CastInst &CI) {
841 Value *Op = CI.getOperand(0);
842 if (isa<PointerType>(CI.getType())) {
843 if (isa<PointerType>(Op->getType())) {
844 // P1 = cast P2 --> <Copy/P1/P2>
845 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
846 getNode(CI.getOperand(0))));
847 } else {
848 // P1 = cast int --> <Copy/P1/Univ>
Chris Lattner175b9632005-03-29 20:36:05 +0000849#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +0000850 Constraints.push_back(Constraint(Constraint::Copy, getNodeValue(CI),
851 &GraphNodes[UniversalSet]));
Chris Lattnerbd135c72005-04-05 01:12:03 +0000852#else
853 getNodeValue(CI);
Chris Lattner175b9632005-03-29 20:36:05 +0000854#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +0000855 }
856 } else if (isa<PointerType>(Op->getType())) {
857 // int = cast P1 --> <Copy/Univ/P1>
Chris Lattner175b9632005-03-29 20:36:05 +0000858#if 0
Chris Lattnere995a2a2004-05-23 21:00:47 +0000859 Constraints.push_back(Constraint(Constraint::Copy,
860 &GraphNodes[UniversalSet],
861 getNode(CI.getOperand(0))));
Chris Lattnerbd135c72005-04-05 01:12:03 +0000862#else
863 getNode(CI.getOperand(0));
Chris Lattner175b9632005-03-29 20:36:05 +0000864#endif
Chris Lattnere995a2a2004-05-23 21:00:47 +0000865 }
866}
867
868void Andersens::visitSelectInst(SelectInst &SI) {
869 if (isa<PointerType>(SI.getType())) {
870 Node *SIN = getNodeValue(SI);
871 // P1 = select C, P2, P3 ---> <Copy/P1/P2>, <Copy/P1/P3>
872 Constraints.push_back(Constraint(Constraint::Copy, SIN,
873 getNode(SI.getOperand(1))));
874 Constraints.push_back(Constraint(Constraint::Copy, SIN,
875 getNode(SI.getOperand(2))));
876 }
877}
878
Chris Lattnere995a2a2004-05-23 21:00:47 +0000879void Andersens::visitVAArg(VAArgInst &I) {
880 assert(0 && "vaarg not handled yet!");
881}
882
883/// AddConstraintsForCall - Add constraints for a call with actual arguments
884/// specified by CS to the function specified by F. Note that the types of
885/// arguments might not match up in the case where this is an indirect call and
886/// the function pointer has been casted. If this is the case, do something
887/// reasonable.
888void Andersens::AddConstraintsForCall(CallSite CS, Function *F) {
Chris Lattner8a446432005-03-29 06:09:07 +0000889 // If this is a call to an external function, handle it directly to get some
890 // taste of context sensitivity.
891 if (F->isExternal() && AddConstraintsForExternalCall(CS, F))
892 return;
893
Chris Lattnere995a2a2004-05-23 21:00:47 +0000894 if (isa<PointerType>(CS.getType())) {
895 Node *CSN = getNode(CS.getInstruction());
896 if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
897 Constraints.push_back(Constraint(Constraint::Copy, CSN,
898 getReturnNode(F)));
899 } else {
900 // If the function returns a non-pointer value, handle this just like we
901 // treat a nonpointer cast to pointer.
902 Constraints.push_back(Constraint(Constraint::Copy, CSN,
903 &GraphNodes[UniversalSet]));
904 }
905 } else if (isa<PointerType>(F->getFunctionType()->getReturnType())) {
906 Constraints.push_back(Constraint(Constraint::Copy,
907 &GraphNodes[UniversalSet],
908 getReturnNode(F)));
909 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000910
Chris Lattnere4d5c442005-03-15 04:54:21 +0000911 Function::arg_iterator AI = F->arg_begin(), AE = F->arg_end();
Chris Lattnere995a2a2004-05-23 21:00:47 +0000912 CallSite::arg_iterator ArgI = CS.arg_begin(), ArgE = CS.arg_end();
913 for (; AI != AE && ArgI != ArgE; ++AI, ++ArgI)
914 if (isa<PointerType>(AI->getType())) {
915 if (isa<PointerType>((*ArgI)->getType())) {
916 // Copy the actual argument into the formal argument.
917 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
918 getNode(*ArgI)));
919 } else {
920 Constraints.push_back(Constraint(Constraint::Copy, getNode(AI),
921 &GraphNodes[UniversalSet]));
922 }
923 } else if (isa<PointerType>((*ArgI)->getType())) {
924 Constraints.push_back(Constraint(Constraint::Copy,
925 &GraphNodes[UniversalSet],
926 getNode(*ArgI)));
927 }
Misha Brukman2b37d7c2005-04-21 21:13:18 +0000928
Chris Lattnere995a2a2004-05-23 21:00:47 +0000929 // Copy all pointers passed through the varargs section to the varargs node.
930 if (F->getFunctionType()->isVarArg())
931 for (; ArgI != ArgE; ++ArgI)
932 if (isa<PointerType>((*ArgI)->getType()))
933 Constraints.push_back(Constraint(Constraint::Copy, getVarargNode(F),
934 getNode(*ArgI)));
935 // If more arguments are passed in than we track, just drop them on the floor.
936}
937
938void Andersens::visitCallSite(CallSite CS) {
939 if (isa<PointerType>(CS.getType()))
940 getNodeValue(*CS.getInstruction());
941
942 if (Function *F = CS.getCalledFunction()) {
943 AddConstraintsForCall(CS, F);
944 } else {
945 // We don't handle indirect call sites yet. Keep track of them for when we
946 // discover the call graph incrementally.
947 IndirectCalls.push_back(CS);
948 }
949}
950
951//===----------------------------------------------------------------------===//
952// Constraint Solving Phase
953//===----------------------------------------------------------------------===//
954
955/// intersects - Return true if the points-to set of this node intersects
956/// with the points-to set of the specified node.
957bool Andersens::Node::intersects(Node *N) const {
958 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
959 while (I1 != E1 && I2 != E2) {
960 if (*I1 == *I2) return true;
961 if (*I1 < *I2)
962 ++I1;
963 else
964 ++I2;
965 }
966 return false;
967}
968
969/// intersectsIgnoring - Return true if the points-to set of this node
970/// intersects with the points-to set of the specified node on any nodes
971/// except for the specified node to ignore.
972bool Andersens::Node::intersectsIgnoring(Node *N, Node *Ignoring) const {
973 iterator I1 = begin(), I2 = N->begin(), E1 = end(), E2 = N->end();
974 while (I1 != E1 && I2 != E2) {
975 if (*I1 == *I2) {
976 if (*I1 != Ignoring) return true;
977 ++I1; ++I2;
978 } else if (*I1 < *I2)
979 ++I1;
980 else
981 ++I2;
982 }
983 return false;
984}
985
986// Copy constraint: all edges out of the source node get copied to the
987// destination node. This returns true if a change is made.
988bool Andersens::Node::copyFrom(Node *N) {
989 // Use a mostly linear-time merge since both of the lists are sorted.
990 bool Changed = false;
991 iterator I = N->begin(), E = N->end();
992 unsigned i = 0;
993 while (I != E && i != Pointees.size()) {
994 if (Pointees[i] < *I) {
995 ++i;
996 } else if (Pointees[i] == *I) {
997 ++i; ++I;
998 } else {
999 // We found a new element to copy over.
1000 Changed = true;
1001 Pointees.insert(Pointees.begin()+i, *I);
1002 ++i; ++I;
1003 }
1004 }
1005
1006 if (I != E) {
1007 Pointees.insert(Pointees.end(), I, E);
1008 Changed = true;
1009 }
1010
1011 return Changed;
1012}
1013
1014bool Andersens::Node::loadFrom(Node *N) {
1015 bool Changed = false;
1016 for (iterator I = N->begin(), E = N->end(); I != E; ++I)
1017 Changed |= copyFrom(*I);
1018 return Changed;
1019}
1020
1021bool Andersens::Node::storeThrough(Node *N) {
1022 bool Changed = false;
1023 for (iterator I = begin(), E = end(); I != E; ++I)
1024 Changed |= (*I)->copyFrom(N);
1025 return Changed;
1026}
1027
1028
1029/// SolveConstraints - This stage iteratively processes the constraints list
1030/// propagating constraints (adding edges to the Nodes in the points-to graph)
1031/// until a fixed point is reached.
1032///
1033void Andersens::SolveConstraints() {
1034 bool Changed = true;
1035 unsigned Iteration = 0;
1036 while (Changed) {
1037 Changed = false;
1038 ++NumIters;
1039 DEBUG(std::cerr << "Starting iteration #" << Iteration++ << "!\n");
1040
1041 // Loop over all of the constraints, applying them in turn.
1042 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1043 Constraint &C = Constraints[i];
1044 switch (C.Type) {
1045 case Constraint::Copy:
1046 Changed |= C.Dest->copyFrom(C.Src);
1047 break;
1048 case Constraint::Load:
1049 Changed |= C.Dest->loadFrom(C.Src);
1050 break;
1051 case Constraint::Store:
1052 Changed |= C.Dest->storeThrough(C.Src);
1053 break;
1054 default:
1055 assert(0 && "Unknown constraint!");
1056 }
1057 }
1058
1059 if (Changed) {
1060 // Check to see if any internal function's addresses have been passed to
1061 // external functions. If so, we have to assume that their incoming
1062 // arguments could be anything. If there are any internal functions in
1063 // the universal node that we don't know about, we must iterate.
1064 for (Node::iterator I = GraphNodes[UniversalSet].begin(),
1065 E = GraphNodes[UniversalSet].end(); I != E; ++I)
1066 if (Function *F = dyn_cast_or_null<Function>((*I)->getValue()))
1067 if (F->hasInternalLinkage() &&
1068 EscapingInternalFunctions.insert(F).second) {
1069 // We found a function that is just now escaping. Mark it as if it
1070 // didn't have internal linkage.
1071 AddConstraintsForNonInternalLinkage(F);
1072 DEBUG(std::cerr << "Found escaping internal function: "
1073 << F->getName() << "\n");
1074 ++NumEscapingFunctions;
1075 }
1076
1077 // Check to see if we have discovered any new callees of the indirect call
1078 // sites. If so, add constraints to the analysis.
1079 for (unsigned i = 0, e = IndirectCalls.size(); i != e; ++i) {
1080 CallSite CS = IndirectCalls[i];
1081 std::vector<Function*> &KnownCallees = IndirectCallees[CS];
1082 Node *CN = getNode(CS.getCalledValue());
1083
1084 for (Node::iterator NI = CN->begin(), E = CN->end(); NI != E; ++NI)
1085 if (Function *F = dyn_cast_or_null<Function>((*NI)->getValue())) {
1086 std::vector<Function*>::iterator IP =
1087 std::lower_bound(KnownCallees.begin(), KnownCallees.end(), F);
1088 if (IP == KnownCallees.end() || *IP != F) {
1089 // Add the constraints for the call now.
1090 AddConstraintsForCall(CS, F);
1091 DEBUG(std::cerr << "Found actual callee '"
1092 << F->getName() << "' for call: "
1093 << *CS.getInstruction() << "\n");
1094 ++NumIndirectCallees;
1095 KnownCallees.insert(IP, F);
1096 }
1097 }
1098 }
1099 }
1100 }
1101}
1102
1103
1104
1105//===----------------------------------------------------------------------===//
1106// Debugging Output
1107//===----------------------------------------------------------------------===//
1108
1109void Andersens::PrintNode(Node *N) {
1110 if (N == &GraphNodes[UniversalSet]) {
1111 std::cerr << "<universal>";
1112 return;
1113 } else if (N == &GraphNodes[NullPtr]) {
1114 std::cerr << "<nullptr>";
1115 return;
1116 } else if (N == &GraphNodes[NullObject]) {
1117 std::cerr << "<null>";
1118 return;
1119 }
1120
1121 assert(N->getValue() != 0 && "Never set node label!");
1122 Value *V = N->getValue();
1123 if (Function *F = dyn_cast<Function>(V)) {
1124 if (isa<PointerType>(F->getFunctionType()->getReturnType()) &&
1125 N == getReturnNode(F)) {
1126 std::cerr << F->getName() << ":retval";
1127 return;
1128 } else if (F->getFunctionType()->isVarArg() && N == getVarargNode(F)) {
1129 std::cerr << F->getName() << ":vararg";
1130 return;
1131 }
1132 }
1133
1134 if (Instruction *I = dyn_cast<Instruction>(V))
1135 std::cerr << I->getParent()->getParent()->getName() << ":";
1136 else if (Argument *Arg = dyn_cast<Argument>(V))
1137 std::cerr << Arg->getParent()->getName() << ":";
1138
1139 if (V->hasName())
1140 std::cerr << V->getName();
1141 else
1142 std::cerr << "(unnamed)";
1143
1144 if (isa<GlobalValue>(V) || isa<AllocationInst>(V))
1145 if (N == getObject(V))
1146 std::cerr << "<mem>";
1147}
1148
1149void Andersens::PrintConstraints() {
1150 std::cerr << "Constraints:\n";
1151 for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
1152 std::cerr << " #" << i << ": ";
1153 Constraint &C = Constraints[i];
1154 if (C.Type == Constraint::Store)
1155 std::cerr << "*";
1156 PrintNode(C.Dest);
1157 std::cerr << " = ";
1158 if (C.Type == Constraint::Load)
1159 std::cerr << "*";
1160 PrintNode(C.Src);
1161 std::cerr << "\n";
1162 }
1163}
1164
1165void Andersens::PrintPointsToGraph() {
1166 std::cerr << "Points-to graph:\n";
1167 for (unsigned i = 0, e = GraphNodes.size(); i != e; ++i) {
1168 Node *N = &GraphNodes[i];
1169 std::cerr << "[" << (N->end() - N->begin()) << "] ";
1170 PrintNode(N);
1171 std::cerr << "\t--> ";
1172 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I) {
1173 if (I != N->begin()) std::cerr << ", ";
1174 PrintNode(*I);
1175 }
1176 std::cerr << "\n";
1177 }
1178}