blob: 257186f4599b6a2b642df574f087f567b0b47fa9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- ScalarEvolution.cpp - Scalar Evolution Analysis ----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. These classes are reference counted, managed by the SCEVHandle
18// class. We only create one SCEV of a particular shape, so pointer-comparisons
19// for equality are legal.
20//
21// One important aspect of the SCEV objects is that they are never cyclic, even
22// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
23// the PHI node is one of the idioms that we can represent (e.g., a polynomial
24// recurrence) then we represent it directly as a recurrence node, otherwise we
25// represent it as a SCEVUnknown node.
26//
27// In addition to being able to represent expressions of various types, we also
28// have folders that are used to build the *canonical* representation for a
29// particular expression. These folders are capable of using a variety of
30// rewrite rules to simplify the expressions.
31//
32// Once the folders are defined, we can implement the more interesting
33// higher-level code, such as the code that recognizes PHI nodes of various
34// types, computes the execution count of a loop, etc.
35//
36// TODO: We should use these routines and value representations to implement
37// dependence analysis!
38//
39//===----------------------------------------------------------------------===//
40//
41// There are several good references for the techniques used in this analysis.
42//
43// Chains of recurrences -- a method to expedite the evaluation
44// of closed-form functions
45// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
46//
47// On computational properties of chains of recurrences
48// Eugene V. Zima
49//
50// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
51// Robert A. van Engelen
52//
53// Efficient Symbolic Analysis for Optimizing Compilers
54// Robert A. van Engelen
55//
56// Using the chains of recurrences algebra for data dependence testing and
57// induction variable substitution
58// MS Thesis, Johnie Birch
59//
60//===----------------------------------------------------------------------===//
61
62#define DEBUG_TYPE "scalar-evolution"
63#include "llvm/Analysis/ScalarEvolutionExpressions.h"
64#include "llvm/Constants.h"
65#include "llvm/DerivedTypes.h"
66#include "llvm/GlobalVariable.h"
67#include "llvm/Instructions.h"
68#include "llvm/Analysis/ConstantFolding.h"
Evan Cheng98c073b2009-02-17 00:13:06 +000069#include "llvm/Analysis/Dominators.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000070#include "llvm/Analysis/LoopInfo.h"
71#include "llvm/Assembly/Writer.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000072#include "llvm/Target/TargetData.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000073#include "llvm/Transforms/Scalar.h"
74#include "llvm/Support/CFG.h"
75#include "llvm/Support/CommandLine.h"
76#include "llvm/Support/Compiler.h"
77#include "llvm/Support/ConstantRange.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000078#include "llvm/Support/GetElementPtrTypeIterator.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000079#include "llvm/Support/InstIterator.h"
80#include "llvm/Support/ManagedStatic.h"
81#include "llvm/Support/MathExtras.h"
Dan Gohman13058cc2009-04-21 00:47:46 +000082#include "llvm/Support/raw_ostream.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083#include "llvm/ADT/Statistic.h"
Dan Gohman01c2ee72009-04-16 03:18:22 +000084#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000085#include <ostream>
86#include <algorithm>
87#include <cmath>
88using namespace llvm;
89
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090STATISTIC(NumArrayLenItCounts,
91 "Number of trip counts computed with array length");
92STATISTIC(NumTripCountsComputed,
93 "Number of loops with predictable loop counts");
94STATISTIC(NumTripCountsNotComputed,
95 "Number of loops without predictable loop counts");
96STATISTIC(NumBruteForceTripCountsComputed,
97 "Number of loops with trip counts computed by force");
98
Dan Gohman089efff2008-05-13 00:00:25 +000099static cl::opt<unsigned>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
101 cl::desc("Maximum number of iterations SCEV will "
102 "symbolically execute a constant derived loop"),
103 cl::init(100));
104
Dan Gohman089efff2008-05-13 00:00:25 +0000105static RegisterPass<ScalarEvolution>
106R("scalar-evolution", "Scalar Evolution Analysis", false, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000107char ScalarEvolution::ID = 0;
108
109//===----------------------------------------------------------------------===//
110// SCEV class definitions
111//===----------------------------------------------------------------------===//
112
113//===----------------------------------------------------------------------===//
114// Implementation of the SCEV class.
115//
116SCEV::~SCEV() {}
117void SCEV::dump() const {
Dan Gohman13058cc2009-04-21 00:47:46 +0000118 print(errs());
119 errs() << '\n';
120}
121
122void SCEV::print(std::ostream &o) const {
123 raw_os_ostream OS(o);
124 print(OS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000125}
126
Dan Gohman7b560c42008-06-18 16:23:07 +0000127bool SCEV::isZero() const {
128 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
129 return SC->getValue()->isZero();
130 return false;
131}
132
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000133
134SCEVCouldNotCompute::SCEVCouldNotCompute() : SCEV(scCouldNotCompute) {}
Dan Gohmanffd36ba2009-04-21 23:15:49 +0000135SCEVCouldNotCompute::~SCEVCouldNotCompute() {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000136
137bool SCEVCouldNotCompute::isLoopInvariant(const Loop *L) const {
138 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
139 return false;
140}
141
142const Type *SCEVCouldNotCompute::getType() const {
143 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
144 return 0;
145}
146
147bool SCEVCouldNotCompute::hasComputableLoopEvolution(const Loop *L) const {
148 assert(0 && "Attempt to use a SCEVCouldNotCompute object!");
149 return false;
150}
151
152SCEVHandle SCEVCouldNotCompute::
153replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000154 const SCEVHandle &Conc,
155 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 return this;
157}
158
Dan Gohman13058cc2009-04-21 00:47:46 +0000159void SCEVCouldNotCompute::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000160 OS << "***COULDNOTCOMPUTE***";
161}
162
163bool SCEVCouldNotCompute::classof(const SCEV *S) {
164 return S->getSCEVType() == scCouldNotCompute;
165}
166
167
168// SCEVConstants - Only allow the creation of one SCEVConstant for any
169// particular value. Don't use a SCEVHandle here, or else the object will
170// never be deleted!
171static ManagedStatic<std::map<ConstantInt*, SCEVConstant*> > SCEVConstants;
172
173
174SCEVConstant::~SCEVConstant() {
175 SCEVConstants->erase(V);
176}
177
Dan Gohman89f85052007-10-22 18:31:58 +0000178SCEVHandle ScalarEvolution::getConstant(ConstantInt *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000179 SCEVConstant *&R = (*SCEVConstants)[V];
180 if (R == 0) R = new SCEVConstant(V);
181 return R;
182}
183
Dan Gohman89f85052007-10-22 18:31:58 +0000184SCEVHandle ScalarEvolution::getConstant(const APInt& Val) {
185 return getConstant(ConstantInt::get(Val));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000186}
187
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000188const Type *SCEVConstant::getType() const { return V->getType(); }
189
Dan Gohman13058cc2009-04-21 00:47:46 +0000190void SCEVConstant::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 WriteAsOperand(OS, V, false);
192}
193
Dan Gohman2a381532009-04-21 01:25:57 +0000194SCEVCastExpr::SCEVCastExpr(unsigned SCEVTy,
195 const SCEVHandle &op, const Type *ty)
196 : SCEV(SCEVTy), Op(op), Ty(ty) {}
197
198SCEVCastExpr::~SCEVCastExpr() {}
199
200bool SCEVCastExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
201 return Op->dominates(BB, DT);
202}
203
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204// SCEVTruncates - Only allow the creation of one SCEVTruncateExpr for any
205// particular input. Don't use a SCEVHandle here, or else the object will
206// never be deleted!
207static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
208 SCEVTruncateExpr*> > SCEVTruncates;
209
210SCEVTruncateExpr::SCEVTruncateExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000211 : SCEVCastExpr(scTruncate, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000212 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
213 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 "Cannot truncate non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000215}
216
217SCEVTruncateExpr::~SCEVTruncateExpr() {
218 SCEVTruncates->erase(std::make_pair(Op, Ty));
219}
220
Dan Gohman13058cc2009-04-21 00:47:46 +0000221void SCEVTruncateExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000222 OS << "(trunc " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000223}
224
225// SCEVZeroExtends - Only allow the creation of one SCEVZeroExtendExpr for any
226// particular input. Don't use a SCEVHandle here, or else the object will never
227// be deleted!
228static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
229 SCEVZeroExtendExpr*> > SCEVZeroExtends;
230
231SCEVZeroExtendExpr::SCEVZeroExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000232 : SCEVCastExpr(scZeroExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000233 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
234 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 "Cannot zero extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236}
237
238SCEVZeroExtendExpr::~SCEVZeroExtendExpr() {
239 SCEVZeroExtends->erase(std::make_pair(Op, Ty));
240}
241
Dan Gohman13058cc2009-04-21 00:47:46 +0000242void SCEVZeroExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000243 OS << "(zext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000244}
245
246// SCEVSignExtends - Only allow the creation of one SCEVSignExtendExpr for any
247// particular input. Don't use a SCEVHandle here, or else the object will never
248// be deleted!
249static ManagedStatic<std::map<std::pair<SCEV*, const Type*>,
250 SCEVSignExtendExpr*> > SCEVSignExtends;
251
252SCEVSignExtendExpr::SCEVSignExtendExpr(const SCEVHandle &op, const Type *ty)
Dan Gohman2a381532009-04-21 01:25:57 +0000253 : SCEVCastExpr(scSignExtend, op, ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000254 assert((Op->getType()->isInteger() || isa<PointerType>(Op->getType())) &&
255 (Ty->isInteger() || isa<PointerType>(Ty)) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000256 "Cannot sign extend non-integer value!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000257}
258
259SCEVSignExtendExpr::~SCEVSignExtendExpr() {
260 SCEVSignExtends->erase(std::make_pair(Op, Ty));
261}
262
Dan Gohman13058cc2009-04-21 00:47:46 +0000263void SCEVSignExtendExpr::print(raw_ostream &OS) const {
Dan Gohmanc9119222009-04-29 20:27:52 +0000264 OS << "(sext " << *Op->getType() << " " << *Op << " to " << *Ty << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000265}
266
267// SCEVCommExprs - Only allow the creation of one SCEVCommutativeExpr for any
268// particular input. Don't use a SCEVHandle here, or else the object will never
269// be deleted!
270static ManagedStatic<std::map<std::pair<unsigned, std::vector<SCEV*> >,
271 SCEVCommutativeExpr*> > SCEVCommExprs;
272
273SCEVCommutativeExpr::~SCEVCommutativeExpr() {
274 SCEVCommExprs->erase(std::make_pair(getSCEVType(),
275 std::vector<SCEV*>(Operands.begin(),
276 Operands.end())));
277}
278
Dan Gohman13058cc2009-04-21 00:47:46 +0000279void SCEVCommutativeExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280 assert(Operands.size() > 1 && "This plus expr shouldn't exist!");
281 const char *OpStr = getOperationStr();
282 OS << "(" << *Operands[0];
283 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
284 OS << OpStr << *Operands[i];
285 OS << ")";
286}
287
288SCEVHandle SCEVCommutativeExpr::
289replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000290 const SCEVHandle &Conc,
291 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000293 SCEVHandle H =
294 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 if (H != getOperand(i)) {
296 std::vector<SCEVHandle> NewOps;
297 NewOps.reserve(getNumOperands());
298 for (unsigned j = 0; j != i; ++j)
299 NewOps.push_back(getOperand(j));
300 NewOps.push_back(H);
301 for (++i; i != e; ++i)
302 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000303 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000304
305 if (isa<SCEVAddExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000306 return SE.getAddExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000307 else if (isa<SCEVMulExpr>(this))
Dan Gohman89f85052007-10-22 18:31:58 +0000308 return SE.getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +0000309 else if (isa<SCEVSMaxExpr>(this))
310 return SE.getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000311 else if (isa<SCEVUMaxExpr>(this))
312 return SE.getUMaxExpr(NewOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000313 else
314 assert(0 && "Unknown commutative expr!");
315 }
316 }
317 return this;
318}
319
Evan Cheng98c073b2009-02-17 00:13:06 +0000320bool SCEVCommutativeExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
321 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
322 if (!getOperand(i)->dominates(BB, DT))
323 return false;
324 }
325 return true;
326}
327
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000329// SCEVUDivs - Only allow the creation of one SCEVUDivExpr for any particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330// input. Don't use a SCEVHandle here, or else the object will never be
331// deleted!
332static ManagedStatic<std::map<std::pair<SCEV*, SCEV*>,
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000333 SCEVUDivExpr*> > SCEVUDivs;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000334
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000335SCEVUDivExpr::~SCEVUDivExpr() {
336 SCEVUDivs->erase(std::make_pair(LHS, RHS));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000337}
338
Evan Cheng98c073b2009-02-17 00:13:06 +0000339bool SCEVUDivExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
340 return LHS->dominates(BB, DT) && RHS->dominates(BB, DT);
341}
342
Dan Gohman13058cc2009-04-21 00:47:46 +0000343void SCEVUDivExpr::print(raw_ostream &OS) const {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000344 OS << "(" << *LHS << " /u " << *RHS << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000345}
346
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000347const Type *SCEVUDivExpr::getType() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000348 return LHS->getType();
349}
350
351// SCEVAddRecExprs - Only allow the creation of one SCEVAddRecExpr for any
352// particular input. Don't use a SCEVHandle here, or else the object will never
353// be deleted!
354static ManagedStatic<std::map<std::pair<const Loop *, std::vector<SCEV*> >,
355 SCEVAddRecExpr*> > SCEVAddRecExprs;
356
357SCEVAddRecExpr::~SCEVAddRecExpr() {
358 SCEVAddRecExprs->erase(std::make_pair(L,
359 std::vector<SCEV*>(Operands.begin(),
360 Operands.end())));
361}
362
Evan Cheng98c073b2009-02-17 00:13:06 +0000363bool SCEVAddRecExpr::dominates(BasicBlock *BB, DominatorTree *DT) const {
364 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
365 if (!getOperand(i)->dominates(BB, DT))
366 return false;
367 }
368 return true;
369}
370
371
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000372SCEVHandle SCEVAddRecExpr::
373replaceSymbolicValuesWithConcrete(const SCEVHandle &Sym,
Dan Gohman89f85052007-10-22 18:31:58 +0000374 const SCEVHandle &Conc,
375 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Dan Gohman89f85052007-10-22 18:31:58 +0000377 SCEVHandle H =
378 getOperand(i)->replaceSymbolicValuesWithConcrete(Sym, Conc, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 if (H != getOperand(i)) {
380 std::vector<SCEVHandle> NewOps;
381 NewOps.reserve(getNumOperands());
382 for (unsigned j = 0; j != i; ++j)
383 NewOps.push_back(getOperand(j));
384 NewOps.push_back(H);
385 for (++i; i != e; ++i)
386 NewOps.push_back(getOperand(i)->
Dan Gohman89f85052007-10-22 18:31:58 +0000387 replaceSymbolicValuesWithConcrete(Sym, Conc, SE));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000388
Dan Gohman89f85052007-10-22 18:31:58 +0000389 return SE.getAddRecExpr(NewOps, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000390 }
391 }
392 return this;
393}
394
395
396bool SCEVAddRecExpr::isLoopInvariant(const Loop *QueryLoop) const {
397 // This recurrence is invariant w.r.t to QueryLoop iff QueryLoop doesn't
398 // contain L and if the start is invariant.
399 return !QueryLoop->contains(L->getHeader()) &&
400 getOperand(0)->isLoopInvariant(QueryLoop);
401}
402
403
Dan Gohman13058cc2009-04-21 00:47:46 +0000404void SCEVAddRecExpr::print(raw_ostream &OS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000405 OS << "{" << *Operands[0];
406 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
407 OS << ",+," << *Operands[i];
408 OS << "}<" << L->getHeader()->getName() + ">";
409}
410
411// SCEVUnknowns - Only allow the creation of one SCEVUnknown for any particular
412// value. Don't use a SCEVHandle here, or else the object will never be
413// deleted!
414static ManagedStatic<std::map<Value*, SCEVUnknown*> > SCEVUnknowns;
415
416SCEVUnknown::~SCEVUnknown() { SCEVUnknowns->erase(V); }
417
418bool SCEVUnknown::isLoopInvariant(const Loop *L) const {
419 // All non-instruction values are loop invariant. All instructions are loop
420 // invariant if they are not contained in the specified loop.
421 if (Instruction *I = dyn_cast<Instruction>(V))
422 return !L->contains(I->getParent());
423 return true;
424}
425
Evan Cheng98c073b2009-02-17 00:13:06 +0000426bool SCEVUnknown::dominates(BasicBlock *BB, DominatorTree *DT) const {
427 if (Instruction *I = dyn_cast<Instruction>(getValue()))
428 return DT->dominates(I->getParent(), BB);
429 return true;
430}
431
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432const Type *SCEVUnknown::getType() const {
433 return V->getType();
434}
435
Dan Gohman13058cc2009-04-21 00:47:46 +0000436void SCEVUnknown::print(raw_ostream &OS) const {
Dan Gohman01c2ee72009-04-16 03:18:22 +0000437 if (isa<PointerType>(V->getType()))
438 OS << "(ptrtoint " << *V->getType() << " ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000439 WriteAsOperand(OS, V, false);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000440 if (isa<PointerType>(V->getType()))
441 OS << " to iPTR)";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000442}
443
444//===----------------------------------------------------------------------===//
445// SCEV Utilities
446//===----------------------------------------------------------------------===//
447
448namespace {
449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
450 /// than the complexity of the RHS. This comparator is used to canonicalize
451 /// expressions.
452 struct VISIBILITY_HIDDEN SCEVComplexityCompare {
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000453 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000454 return LHS->getSCEVType() < RHS->getSCEVType();
455 }
456 };
457}
458
459/// GroupByComplexity - Given a list of SCEV objects, order them by their
460/// complexity, and group objects of the same complexity together by value.
461/// When this routine is finished, we know that any duplicates in the vector are
462/// consecutive and that complexity is monotonically increasing.
463///
464/// Note that we go take special precautions to ensure that we get determinstic
465/// results from this routine. In other words, we don't want the results of
466/// this to depend on where the addresses of various SCEV objects happened to
467/// land in memory.
468///
469static void GroupByComplexity(std::vector<SCEVHandle> &Ops) {
470 if (Ops.size() < 2) return; // Noop
471 if (Ops.size() == 2) {
472 // This is the common case, which also happens to be trivially simple.
473 // Special case it.
Dan Gohmanc0c69cf2008-04-14 18:23:56 +0000474 if (SCEVComplexityCompare()(Ops[1], Ops[0]))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000475 std::swap(Ops[0], Ops[1]);
476 return;
477 }
478
479 // Do the rough sort by complexity.
480 std::sort(Ops.begin(), Ops.end(), SCEVComplexityCompare());
481
482 // Now that we are sorted by complexity, group elements of the same
483 // complexity. Note that this is, at worst, N^2, but the vector is likely to
484 // be extremely short in practice. Note that we take this approach because we
485 // do not want to depend on the addresses of the objects we are grouping.
486 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
487 SCEV *S = Ops[i];
488 unsigned Complexity = S->getSCEVType();
489
490 // If there are any objects of the same complexity and same value as this
491 // one, group them.
492 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
493 if (Ops[j] == S) { // Found a duplicate.
494 // Move it to immediately after i'th element.
495 std::swap(Ops[i+1], Ops[j]);
496 ++i; // no need to rescan it.
497 if (i == e-2) return; // Done!
498 }
499 }
500 }
501}
502
503
504
505//===----------------------------------------------------------------------===//
506// Simple SCEV method implementations
507//===----------------------------------------------------------------------===//
508
Eli Friedman7489ec92008-08-04 23:49:06 +0000509/// BinomialCoefficient - Compute BC(It, K). The result has width W.
510// Assume, K > 0.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000511static SCEVHandle BinomialCoefficient(SCEVHandle It, unsigned K,
Eli Friedman7489ec92008-08-04 23:49:06 +0000512 ScalarEvolution &SE,
Dan Gohman01c2ee72009-04-16 03:18:22 +0000513 const Type* ResultTy) {
Eli Friedman7489ec92008-08-04 23:49:06 +0000514 // Handle the simplest case efficiently.
515 if (K == 1)
516 return SE.getTruncateOrZeroExtend(It, ResultTy);
517
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000518 // We are using the following formula for BC(It, K):
519 //
520 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
521 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000522 // Suppose, W is the bitwidth of the return value. We must be prepared for
523 // overflow. Hence, we must assure that the result of our computation is
524 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
525 // safe in modular arithmetic.
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000526 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000527 // However, this code doesn't use exactly that formula; the formula it uses
528 // is something like the following, where T is the number of factors of 2 in
529 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
530 // exponentiation:
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000531 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000532 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000533 //
Eli Friedman7489ec92008-08-04 23:49:06 +0000534 // This formula is trivially equivalent to the previous formula. However,
535 // this formula can be implemented much more efficiently. The trick is that
536 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
537 // arithmetic. To do exact division in modular arithmetic, all we have
538 // to do is multiply by the inverse. Therefore, this step can be done at
539 // width W.
540 //
541 // The next issue is how to safely do the division by 2^T. The way this
542 // is done is by doing the multiplication step at a width of at least W + T
543 // bits. This way, the bottom W+T bits of the product are accurate. Then,
544 // when we perform the division by 2^T (which is equivalent to a right shift
545 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
546 // truncated out after the division by 2^T.
547 //
548 // In comparison to just directly using the first formula, this technique
549 // is much more efficient; using the first formula requires W * K bits,
550 // but this formula less than W + K bits. Also, the first formula requires
551 // a division step, whereas this formula only requires multiplies and shifts.
552 //
553 // It doesn't matter whether the subtraction step is done in the calculation
554 // width or the input iteration count's width; if the subtraction overflows,
555 // the result must be zero anyway. We prefer here to do it in the width of
556 // the induction variable because it helps a lot for certain cases; CodeGen
557 // isn't smart enough to ignore the overflow, which leads to much less
558 // efficient code if the width of the subtraction is wider than the native
559 // register width.
560 //
561 // (It's possible to not widen at all by pulling out factors of 2 before
562 // the multiplication; for example, K=2 can be calculated as
563 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
564 // extra arithmetic, so it's not an obvious win, and it gets
565 // much more complicated for K > 3.)
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000566
Eli Friedman7489ec92008-08-04 23:49:06 +0000567 // Protection from insane SCEVs; this bound is conservative,
568 // but it probably doesn't matter.
569 if (K > 1000)
Dan Gohman0ad08b02009-04-18 17:58:19 +0000570 return SE.getCouldNotCompute();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000571
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000572 unsigned W = SE.getTypeSizeInBits(ResultTy);
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000573
Eli Friedman7489ec92008-08-04 23:49:06 +0000574 // Calculate K! / 2^T and T; we divide out the factors of two before
575 // multiplying for calculating K! / 2^T to avoid overflow.
576 // Other overflow doesn't matter because we only care about the bottom
577 // W bits of the result.
578 APInt OddFactorial(W, 1);
579 unsigned T = 1;
580 for (unsigned i = 3; i <= K; ++i) {
581 APInt Mult(W, i);
582 unsigned TwoFactors = Mult.countTrailingZeros();
583 T += TwoFactors;
584 Mult = Mult.lshr(TwoFactors);
585 OddFactorial *= Mult;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000586 }
Nick Lewyckydbaa60a2008-06-13 04:38:55 +0000587
Eli Friedman7489ec92008-08-04 23:49:06 +0000588 // We need at least W + T bits for the multiplication step
nicholas9e3e5fd2009-01-25 08:16:27 +0000589 unsigned CalculationBits = W + T;
Eli Friedman7489ec92008-08-04 23:49:06 +0000590
591 // Calcuate 2^T, at width T+W.
592 APInt DivFactor = APInt(CalculationBits, 1).shl(T);
593
594 // Calculate the multiplicative inverse of K! / 2^T;
595 // this multiplication factor will perform the exact division by
596 // K! / 2^T.
597 APInt Mod = APInt::getSignedMinValue(W+1);
598 APInt MultiplyFactor = OddFactorial.zext(W+1);
599 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
600 MultiplyFactor = MultiplyFactor.trunc(W);
601
602 // Calculate the product, at width T+W
603 const IntegerType *CalculationTy = IntegerType::get(CalculationBits);
604 SCEVHandle Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
605 for (unsigned i = 1; i != K; ++i) {
606 SCEVHandle S = SE.getMinusSCEV(It, SE.getIntegerSCEV(i, It->getType()));
607 Dividend = SE.getMulExpr(Dividend,
608 SE.getTruncateOrZeroExtend(S, CalculationTy));
609 }
610
611 // Divide by 2^T
612 SCEVHandle DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
613
614 // Truncate the result, and divide by K! / 2^T.
615
616 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
617 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618}
619
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000620/// evaluateAtIteration - Return the value of this chain of recurrences at
621/// the specified iteration number. We can evaluate this recurrence by
622/// multiplying each element in the chain by the binomial coefficient
623/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
624///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000625/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000626///
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000627/// where BC(It, k) stands for binomial coefficient.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000628///
Dan Gohman89f85052007-10-22 18:31:58 +0000629SCEVHandle SCEVAddRecExpr::evaluateAtIteration(SCEVHandle It,
630 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000631 SCEVHandle Result = getStart();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +0000633 // The computation is correct in the face of overflow provided that the
634 // multiplication is performed _after_ the evaluation of the binomial
635 // coefficient.
Dan Gohman01c2ee72009-04-16 03:18:22 +0000636 SCEVHandle Coeff = BinomialCoefficient(It, i, SE, getType());
Nick Lewyckyb6218e02008-10-13 03:58:02 +0000637 if (isa<SCEVCouldNotCompute>(Coeff))
638 return Coeff;
639
640 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641 }
642 return Result;
643}
644
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000645//===----------------------------------------------------------------------===//
646// SCEV Expression folder implementations
647//===----------------------------------------------------------------------===//
648
Dan Gohman89f85052007-10-22 18:31:58 +0000649SCEVHandle ScalarEvolution::getTruncateExpr(const SCEVHandle &Op, const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000650 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000651 "This is not a truncating conversion!");
652
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000653 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
Dan Gohman89f85052007-10-22 18:31:58 +0000654 return getUnknown(
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000655 ConstantExpr::getTrunc(SC->getValue(), Ty));
656
Dan Gohman1a5c4992009-04-22 16:20:48 +0000657 // trunc(trunc(x)) --> trunc(x)
658 if (SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
659 return getTruncateExpr(ST->getOperand(), Ty);
660
Nick Lewycky37d04642009-04-23 05:15:08 +0000661 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
662 if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
663 return getTruncateOrSignExtend(SS->getOperand(), Ty);
664
665 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
666 if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
667 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
668
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000669 // If the input value is a chrec scev made out of constants, truncate
670 // all of the constants.
671 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
672 std::vector<SCEVHandle> Operands;
673 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
674 // FIXME: This should allow truncation of other expression types!
675 if (isa<SCEVConstant>(AddRec->getOperand(i)))
Dan Gohman89f85052007-10-22 18:31:58 +0000676 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677 else
678 break;
679 if (Operands.size() == AddRec->getNumOperands())
Dan Gohman89f85052007-10-22 18:31:58 +0000680 return getAddRecExpr(Operands, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000681 }
682
683 SCEVTruncateExpr *&Result = (*SCEVTruncates)[std::make_pair(Op, Ty)];
684 if (Result == 0) Result = new SCEVTruncateExpr(Op, Ty);
685 return Result;
686}
687
Dan Gohman36d40922009-04-16 19:25:55 +0000688SCEVHandle ScalarEvolution::getZeroExtendExpr(const SCEVHandle &Op,
689 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000690 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohman36d40922009-04-16 19:25:55 +0000691 "This is not an extending conversion!");
692
Dan Gohman01c2ee72009-04-16 03:18:22 +0000693 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000694 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000695 Constant *C = ConstantExpr::getZExt(SC->getValue(), IntTy);
696 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
697 return getUnknown(C);
698 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000699
Dan Gohman1a5c4992009-04-22 16:20:48 +0000700 // zext(zext(x)) --> zext(x)
701 if (SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
702 return getZeroExtendExpr(SZ->getOperand(), Ty);
703
Dan Gohmana9dba962009-04-27 20:16:15 +0000704 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 // did not overflow the old, smaller, value, we can zero extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000706 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000707 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana9dba962009-04-27 20:16:15 +0000708 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
709 if (AR->isAffine()) {
710 // Check whether the backedge-taken count is SCEVCouldNotCompute.
711 // Note that this serves two purposes: It filters out loops that are
712 // simply not analyzable, and it covers the case where this code is
713 // being called from within backedge-taken count analysis, such that
714 // attempting to ask for the backedge-taken count would likely result
715 // in infinite recursion. In the later case, the analysis code will
716 // cope with a conservative value, and it will take care to purge
717 // that value once it has finished.
718 SCEVHandle BECount = getBackedgeTakenCount(AR->getLoop());
719 if (!isa<SCEVCouldNotCompute>(BECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000720 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000721 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000722 SCEVHandle Start = AR->getStart();
723 SCEVHandle Step = AR->getStepRecurrence(*this);
724
725 // Check whether the backedge-taken count can be losslessly casted to
726 // the addrec's type. The count is always unsigned.
727 SCEVHandle CastedBECount =
728 getTruncateOrZeroExtend(BECount, Start->getType());
729 if (BECount ==
730 getTruncateOrZeroExtend(CastedBECount, BECount->getType())) {
731 const Type *WideTy =
732 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohman3ded5b22009-04-29 22:28:28 +0000733 // Check whether Start+Step*BECount has no unsigned overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000734 SCEVHandle ZMul =
735 getMulExpr(CastedBECount,
736 getTruncateOrZeroExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000737 SCEVHandle Add = getAddExpr(Start, ZMul);
738 if (getZeroExtendExpr(Add, WideTy) ==
739 getAddExpr(getZeroExtendExpr(Start, WideTy),
740 getMulExpr(getZeroExtendExpr(CastedBECount, WideTy),
741 getZeroExtendExpr(Step, WideTy))))
742 // Return the expression with the addrec on the outside.
743 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
744 getZeroExtendExpr(Step, Ty),
745 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000746
747 // Similar to above, only this time treat the step value as signed.
748 // This covers loops that count down.
749 SCEVHandle SMul =
750 getMulExpr(CastedBECount,
751 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000752 Add = getAddExpr(Start, SMul);
753 if (getZeroExtendExpr(Add, WideTy) ==
754 getAddExpr(getZeroExtendExpr(Start, WideTy),
755 getMulExpr(getZeroExtendExpr(CastedBECount, WideTy),
756 getSignExtendExpr(Step, WideTy))))
757 // Return the expression with the addrec on the outside.
758 return getAddRecExpr(getZeroExtendExpr(Start, Ty),
759 getSignExtendExpr(Step, Ty),
760 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000761 }
762 }
763 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764
765 SCEVZeroExtendExpr *&Result = (*SCEVZeroExtends)[std::make_pair(Op, Ty)];
766 if (Result == 0) Result = new SCEVZeroExtendExpr(Op, Ty);
767 return Result;
768}
769
Dan Gohmana9dba962009-04-27 20:16:15 +0000770SCEVHandle ScalarEvolution::getSignExtendExpr(const SCEVHandle &Op,
771 const Type *Ty) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000772 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
Dan Gohmanf62cfe52009-04-21 00:55:22 +0000773 "This is not an extending conversion!");
774
Dan Gohman01c2ee72009-04-16 03:18:22 +0000775 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +0000776 const Type *IntTy = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +0000777 Constant *C = ConstantExpr::getSExt(SC->getValue(), IntTy);
778 if (IntTy != Ty) C = ConstantExpr::getIntToPtr(C, Ty);
779 return getUnknown(C);
780 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000781
Dan Gohman1a5c4992009-04-22 16:20:48 +0000782 // sext(sext(x)) --> sext(x)
783 if (SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
784 return getSignExtendExpr(SS->getOperand(), Ty);
785
Dan Gohmana9dba962009-04-27 20:16:15 +0000786 // If the input value is a chrec scev, and we can prove that the value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 // did not overflow the old, smaller, value, we can sign extend all of the
Dan Gohmana9dba962009-04-27 20:16:15 +0000788 // operands (often constants). This allows analysis of something like
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000789 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
Dan Gohmana9dba962009-04-27 20:16:15 +0000790 if (SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
791 if (AR->isAffine()) {
792 // Check whether the backedge-taken count is SCEVCouldNotCompute.
793 // Note that this serves two purposes: It filters out loops that are
794 // simply not analyzable, and it covers the case where this code is
795 // being called from within backedge-taken count analysis, such that
796 // attempting to ask for the backedge-taken count would likely result
797 // in infinite recursion. In the later case, the analysis code will
798 // cope with a conservative value, and it will take care to purge
799 // that value once it has finished.
800 SCEVHandle BECount = getBackedgeTakenCount(AR->getLoop());
801 if (!isa<SCEVCouldNotCompute>(BECount)) {
Dan Gohman4ada77f2009-04-29 01:54:20 +0000802 // Manually compute the final value for AR, checking for
Dan Gohman3ded5b22009-04-29 22:28:28 +0000803 // overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000804 SCEVHandle Start = AR->getStart();
805 SCEVHandle Step = AR->getStepRecurrence(*this);
806
807 // Check whether the backedge-taken count can be losslessly casted to
Dan Gohman3ded5b22009-04-29 22:28:28 +0000808 // the addrec's type. The count is always unsigned.
Dan Gohmana9dba962009-04-27 20:16:15 +0000809 SCEVHandle CastedBECount =
810 getTruncateOrZeroExtend(BECount, Start->getType());
811 if (BECount ==
Dan Gohman3ded5b22009-04-29 22:28:28 +0000812 getTruncateOrZeroExtend(CastedBECount, BECount->getType())) {
Dan Gohmana9dba962009-04-27 20:16:15 +0000813 const Type *WideTy =
814 IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
Dan Gohman3ded5b22009-04-29 22:28:28 +0000815 // Check whether Start+Step*BECount has no signed overflow.
Dan Gohmana9dba962009-04-27 20:16:15 +0000816 SCEVHandle SMul =
817 getMulExpr(CastedBECount,
818 getTruncateOrSignExtend(Step, Start->getType()));
Dan Gohman3ded5b22009-04-29 22:28:28 +0000819 SCEVHandle Add = getAddExpr(Start, SMul);
820 if (getSignExtendExpr(Add, WideTy) ==
821 getAddExpr(getSignExtendExpr(Start, WideTy),
822 getMulExpr(getZeroExtendExpr(CastedBECount, WideTy),
823 getSignExtendExpr(Step, WideTy))))
824 // Return the expression with the addrec on the outside.
825 return getAddRecExpr(getSignExtendExpr(Start, Ty),
826 getSignExtendExpr(Step, Ty),
827 AR->getLoop());
Dan Gohmana9dba962009-04-27 20:16:15 +0000828 }
829 }
830 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000831
832 SCEVSignExtendExpr *&Result = (*SCEVSignExtends)[std::make_pair(Op, Ty)];
833 if (Result == 0) Result = new SCEVSignExtendExpr(Op, Ty);
834 return Result;
835}
836
837// get - Get a canonical add expression, or something simpler if possible.
Dan Gohman89f85052007-10-22 18:31:58 +0000838SCEVHandle ScalarEvolution::getAddExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000839 assert(!Ops.empty() && "Cannot get empty add!");
840 if (Ops.size() == 1) return Ops[0];
841
842 // Sort by complexity, this groups all similar expression types together.
843 GroupByComplexity(Ops);
844
845 // If there are any constants, fold them together.
846 unsigned Idx = 0;
847 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
848 ++Idx;
849 assert(Idx < Ops.size());
850 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
851 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +0000852 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() +
853 RHSC->getValue()->getValue());
854 Ops[0] = getConstant(Fold);
855 Ops.erase(Ops.begin()+1); // Erase the folded element
856 if (Ops.size() == 1) return Ops[0];
857 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000858 }
859
860 // If we are left with a constant zero being added, strip it off.
861 if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
862 Ops.erase(Ops.begin());
863 --Idx;
864 }
865 }
866
867 if (Ops.size() == 1) return Ops[0];
868
869 // Okay, check to see if the same value occurs in the operand list twice. If
870 // so, merge them together into an multiply expression. Since we sorted the
871 // list, these values are required to be adjacent.
872 const Type *Ty = Ops[0]->getType();
873 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
874 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
875 // Found a match, merge the two values into a multiply, and add any
876 // remaining values to the result.
Dan Gohman89f85052007-10-22 18:31:58 +0000877 SCEVHandle Two = getIntegerSCEV(2, Ty);
878 SCEVHandle Mul = getMulExpr(Ops[i], Two);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879 if (Ops.size() == 2)
880 return Mul;
881 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
882 Ops.push_back(Mul);
Dan Gohman89f85052007-10-22 18:31:58 +0000883 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000884 }
885
886 // Now we know the first non-constant operand. Skip past any cast SCEVs.
887 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
888 ++Idx;
889
890 // If there are add operands they would be next.
891 if (Idx < Ops.size()) {
892 bool DeletedAdd = false;
893 while (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
894 // If we have an add, expand the add operands onto the end of the operands
895 // list.
896 Ops.insert(Ops.end(), Add->op_begin(), Add->op_end());
897 Ops.erase(Ops.begin()+Idx);
898 DeletedAdd = true;
899 }
900
901 // If we deleted at least one add, we added operands to the end of the list,
902 // and they are not necessarily sorted. Recurse to resort and resimplify
903 // any operands we just aquired.
904 if (DeletedAdd)
Dan Gohman89f85052007-10-22 18:31:58 +0000905 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000906 }
907
908 // Skip over the add expression until we get to a multiply.
909 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
910 ++Idx;
911
912 // If we are adding something to a multiply expression, make sure the
913 // something is not already an operand of the multiply. If so, merge it into
914 // the multiply.
915 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
916 SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
917 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
918 SCEV *MulOpSCEV = Mul->getOperand(MulOp);
919 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
920 if (MulOpSCEV == Ops[AddOp] && !isa<SCEVConstant>(MulOpSCEV)) {
921 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
922 SCEVHandle InnerMul = Mul->getOperand(MulOp == 0);
923 if (Mul->getNumOperands() != 2) {
924 // If the multiply has more than two operands, we must get the
925 // Y*Z term.
926 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
927 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000928 InnerMul = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000929 }
Dan Gohman89f85052007-10-22 18:31:58 +0000930 SCEVHandle One = getIntegerSCEV(1, Ty);
931 SCEVHandle AddOne = getAddExpr(InnerMul, One);
932 SCEVHandle OuterMul = getMulExpr(AddOne, Ops[AddOp]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 if (Ops.size() == 2) return OuterMul;
934 if (AddOp < Idx) {
935 Ops.erase(Ops.begin()+AddOp);
936 Ops.erase(Ops.begin()+Idx-1);
937 } else {
938 Ops.erase(Ops.begin()+Idx);
939 Ops.erase(Ops.begin()+AddOp-1);
940 }
941 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000942 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 }
944
945 // Check this multiply against other multiplies being added together.
946 for (unsigned OtherMulIdx = Idx+1;
947 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
948 ++OtherMulIdx) {
949 SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
950 // If MulOp occurs in OtherMul, we can fold the two multiplies
951 // together.
952 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
953 OMulOp != e; ++OMulOp)
954 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
955 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
956 SCEVHandle InnerMul1 = Mul->getOperand(MulOp == 0);
957 if (Mul->getNumOperands() != 2) {
958 std::vector<SCEVHandle> MulOps(Mul->op_begin(), Mul->op_end());
959 MulOps.erase(MulOps.begin()+MulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000960 InnerMul1 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 }
962 SCEVHandle InnerMul2 = OtherMul->getOperand(OMulOp == 0);
963 if (OtherMul->getNumOperands() != 2) {
964 std::vector<SCEVHandle> MulOps(OtherMul->op_begin(),
965 OtherMul->op_end());
966 MulOps.erase(MulOps.begin()+OMulOp);
Dan Gohman89f85052007-10-22 18:31:58 +0000967 InnerMul2 = getMulExpr(MulOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000968 }
Dan Gohman89f85052007-10-22 18:31:58 +0000969 SCEVHandle InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
970 SCEVHandle OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000971 if (Ops.size() == 2) return OuterMul;
972 Ops.erase(Ops.begin()+Idx);
973 Ops.erase(Ops.begin()+OtherMulIdx-1);
974 Ops.push_back(OuterMul);
Dan Gohman89f85052007-10-22 18:31:58 +0000975 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000976 }
977 }
978 }
979 }
980
981 // If there are any add recurrences in the operands list, see if any other
982 // added values are loop invariant. If so, we can fold them into the
983 // recurrence.
984 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
985 ++Idx;
986
987 // Scan over all recurrences, trying to fold loop invariants into them.
988 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
989 // Scan all of the other operands to this add and add them to the vector if
990 // they are loop invariant w.r.t. the recurrence.
991 std::vector<SCEVHandle> LIOps;
992 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
993 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
994 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
995 LIOps.push_back(Ops[i]);
996 Ops.erase(Ops.begin()+i);
997 --i; --e;
998 }
999
1000 // If we found some loop invariants, fold them into the recurrence.
1001 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001002 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 LIOps.push_back(AddRec->getStart());
1004
1005 std::vector<SCEVHandle> AddRecOps(AddRec->op_begin(), AddRec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001006 AddRecOps[0] = getAddExpr(LIOps);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001007
Dan Gohman89f85052007-10-22 18:31:58 +00001008 SCEVHandle NewRec = getAddRecExpr(AddRecOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001009 // If all of the other operands were loop invariant, we are done.
1010 if (Ops.size() == 1) return NewRec;
1011
1012 // Otherwise, add the folded AddRec by the non-liv parts.
1013 for (unsigned i = 0;; ++i)
1014 if (Ops[i] == AddRec) {
1015 Ops[i] = NewRec;
1016 break;
1017 }
Dan Gohman89f85052007-10-22 18:31:58 +00001018 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 }
1020
1021 // Okay, if there weren't any loop invariants to be folded, check to see if
1022 // there are multiple AddRec's with the same loop induction variable being
1023 // added together. If so, we can fold them.
1024 for (unsigned OtherIdx = Idx+1;
1025 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1026 if (OtherIdx != Idx) {
1027 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1028 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1029 // Other + {A,+,B} + {C,+,D} --> Other + {A+C,+,B+D}
1030 std::vector<SCEVHandle> NewOps(AddRec->op_begin(), AddRec->op_end());
1031 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); i != e; ++i) {
1032 if (i >= NewOps.size()) {
1033 NewOps.insert(NewOps.end(), OtherAddRec->op_begin()+i,
1034 OtherAddRec->op_end());
1035 break;
1036 }
Dan Gohman89f85052007-10-22 18:31:58 +00001037 NewOps[i] = getAddExpr(NewOps[i], OtherAddRec->getOperand(i));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 }
Dan Gohman89f85052007-10-22 18:31:58 +00001039 SCEVHandle NewAddRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040
1041 if (Ops.size() == 2) return NewAddRec;
1042
1043 Ops.erase(Ops.begin()+Idx);
1044 Ops.erase(Ops.begin()+OtherIdx-1);
1045 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001046 return getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 }
1048 }
1049
1050 // Otherwise couldn't fold anything into this recurrence. Move onto the
1051 // next one.
1052 }
1053
1054 // Okay, it looks like we really DO need an add expr. Check to see if we
1055 // already have one, otherwise create a new one.
1056 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1057 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scAddExpr,
1058 SCEVOps)];
1059 if (Result == 0) Result = new SCEVAddExpr(Ops);
1060 return Result;
1061}
1062
1063
Dan Gohman89f85052007-10-22 18:31:58 +00001064SCEVHandle ScalarEvolution::getMulExpr(std::vector<SCEVHandle> &Ops) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001065 assert(!Ops.empty() && "Cannot get empty mul!");
1066
1067 // Sort by complexity, this groups all similar expression types together.
1068 GroupByComplexity(Ops);
1069
1070 // If there are any constants, fold them together.
1071 unsigned Idx = 0;
1072 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1073
1074 // C1*(C2+V) -> C1*C2 + C1*V
1075 if (Ops.size() == 2)
1076 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
1077 if (Add->getNumOperands() == 2 &&
1078 isa<SCEVConstant>(Add->getOperand(0)))
Dan Gohman89f85052007-10-22 18:31:58 +00001079 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
1080 getMulExpr(LHSC, Add->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001081
1082
1083 ++Idx;
1084 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1085 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001086 ConstantInt *Fold = ConstantInt::get(LHSC->getValue()->getValue() *
1087 RHSC->getValue()->getValue());
1088 Ops[0] = getConstant(Fold);
1089 Ops.erase(Ops.begin()+1); // Erase the folded element
1090 if (Ops.size() == 1) return Ops[0];
1091 LHSC = cast<SCEVConstant>(Ops[0]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001092 }
1093
1094 // If we are left with a constant one being multiplied, strip it off.
1095 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
1096 Ops.erase(Ops.begin());
1097 --Idx;
1098 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
1099 // If we have a multiply of zero, it will always be zero.
1100 return Ops[0];
1101 }
1102 }
1103
1104 // Skip over the add expression until we get to a multiply.
1105 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
1106 ++Idx;
1107
1108 if (Ops.size() == 1)
1109 return Ops[0];
1110
1111 // If there are mul operands inline them all into this expression.
1112 if (Idx < Ops.size()) {
1113 bool DeletedMul = false;
1114 while (SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
1115 // If we have an mul, expand the mul operands onto the end of the operands
1116 // list.
1117 Ops.insert(Ops.end(), Mul->op_begin(), Mul->op_end());
1118 Ops.erase(Ops.begin()+Idx);
1119 DeletedMul = true;
1120 }
1121
1122 // If we deleted at least one mul, we added operands to the end of the list,
1123 // and they are not necessarily sorted. Recurse to resort and resimplify
1124 // any operands we just aquired.
1125 if (DeletedMul)
Dan Gohman89f85052007-10-22 18:31:58 +00001126 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001127 }
1128
1129 // If there are any add recurrences in the operands list, see if any other
1130 // added values are loop invariant. If so, we can fold them into the
1131 // recurrence.
1132 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
1133 ++Idx;
1134
1135 // Scan over all recurrences, trying to fold loop invariants into them.
1136 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
1137 // Scan all of the other operands to this mul and add them to the vector if
1138 // they are loop invariant w.r.t. the recurrence.
1139 std::vector<SCEVHandle> LIOps;
1140 SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
1141 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
1142 if (Ops[i]->isLoopInvariant(AddRec->getLoop())) {
1143 LIOps.push_back(Ops[i]);
1144 Ops.erase(Ops.begin()+i);
1145 --i; --e;
1146 }
1147
1148 // If we found some loop invariants, fold them into the recurrence.
1149 if (!LIOps.empty()) {
Dan Gohmanabe991f2008-09-14 17:21:12 +00001150 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001151 std::vector<SCEVHandle> NewOps;
1152 NewOps.reserve(AddRec->getNumOperands());
1153 if (LIOps.size() == 1) {
1154 SCEV *Scale = LIOps[0];
1155 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
Dan Gohman89f85052007-10-22 18:31:58 +00001156 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001157 } else {
1158 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
1159 std::vector<SCEVHandle> MulOps(LIOps);
1160 MulOps.push_back(AddRec->getOperand(i));
Dan Gohman89f85052007-10-22 18:31:58 +00001161 NewOps.push_back(getMulExpr(MulOps));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001162 }
1163 }
1164
Dan Gohman89f85052007-10-22 18:31:58 +00001165 SCEVHandle NewRec = getAddRecExpr(NewOps, AddRec->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001166
1167 // If all of the other operands were loop invariant, we are done.
1168 if (Ops.size() == 1) return NewRec;
1169
1170 // Otherwise, multiply the folded AddRec by the non-liv parts.
1171 for (unsigned i = 0;; ++i)
1172 if (Ops[i] == AddRec) {
1173 Ops[i] = NewRec;
1174 break;
1175 }
Dan Gohman89f85052007-10-22 18:31:58 +00001176 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001177 }
1178
1179 // Okay, if there weren't any loop invariants to be folded, check to see if
1180 // there are multiple AddRec's with the same loop induction variable being
1181 // multiplied together. If so, we can fold them.
1182 for (unsigned OtherIdx = Idx+1;
1183 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);++OtherIdx)
1184 if (OtherIdx != Idx) {
1185 SCEVAddRecExpr *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
1186 if (AddRec->getLoop() == OtherAddRec->getLoop()) {
1187 // F * G --> {A,+,B} * {C,+,D} --> {A*C,+,F*D + G*B + B*D}
1188 SCEVAddRecExpr *F = AddRec, *G = OtherAddRec;
Dan Gohman89f85052007-10-22 18:31:58 +00001189 SCEVHandle NewStart = getMulExpr(F->getStart(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001190 G->getStart());
Dan Gohman89f85052007-10-22 18:31:58 +00001191 SCEVHandle B = F->getStepRecurrence(*this);
1192 SCEVHandle D = G->getStepRecurrence(*this);
1193 SCEVHandle NewStep = getAddExpr(getMulExpr(F, D),
1194 getMulExpr(G, B),
1195 getMulExpr(B, D));
1196 SCEVHandle NewAddRec = getAddRecExpr(NewStart, NewStep,
1197 F->getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001198 if (Ops.size() == 2) return NewAddRec;
1199
1200 Ops.erase(Ops.begin()+Idx);
1201 Ops.erase(Ops.begin()+OtherIdx-1);
1202 Ops.push_back(NewAddRec);
Dan Gohman89f85052007-10-22 18:31:58 +00001203 return getMulExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001204 }
1205 }
1206
1207 // Otherwise couldn't fold anything into this recurrence. Move onto the
1208 // next one.
1209 }
1210
1211 // Okay, it looks like we really DO need an mul expr. Check to see if we
1212 // already have one, otherwise create a new one.
1213 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1214 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scMulExpr,
1215 SCEVOps)];
1216 if (Result == 0)
1217 Result = new SCEVMulExpr(Ops);
1218 return Result;
1219}
1220
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001221SCEVHandle ScalarEvolution::getUDivExpr(const SCEVHandle &LHS, const SCEVHandle &RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001222 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
1223 if (RHSC->getValue()->equalsInt(1))
Nick Lewycky35b56022009-01-13 09:18:58 +00001224 return LHS; // X udiv 1 --> x
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001225
1226 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
1227 Constant *LHSCV = LHSC->getValue();
1228 Constant *RHSCV = RHSC->getValue();
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001229 return getUnknown(ConstantExpr::getUDiv(LHSCV, RHSCV));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001230 }
1231 }
1232
Nick Lewycky35b56022009-01-13 09:18:58 +00001233 // FIXME: implement folding of (X*4)/4 when we know X*4 doesn't overflow.
1234
Wojciech Matyjewicz2211fec2008-02-11 11:03:14 +00001235 SCEVUDivExpr *&Result = (*SCEVUDivs)[std::make_pair(LHS, RHS)];
1236 if (Result == 0) Result = new SCEVUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001237 return Result;
1238}
1239
1240
1241/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1242/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001243SCEVHandle ScalarEvolution::getAddRecExpr(const SCEVHandle &Start,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001244 const SCEVHandle &Step, const Loop *L) {
1245 std::vector<SCEVHandle> Operands;
1246 Operands.push_back(Start);
1247 if (SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
1248 if (StepChrec->getLoop() == L) {
1249 Operands.insert(Operands.end(), StepChrec->op_begin(),
1250 StepChrec->op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00001251 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001252 }
1253
1254 Operands.push_back(Step);
Dan Gohman89f85052007-10-22 18:31:58 +00001255 return getAddRecExpr(Operands, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001256}
1257
1258/// SCEVAddRecExpr::get - Get a add recurrence expression for the
1259/// specified loop. Simplify the expression as much as possible.
Dan Gohman89f85052007-10-22 18:31:58 +00001260SCEVHandle ScalarEvolution::getAddRecExpr(std::vector<SCEVHandle> &Operands,
Nick Lewycky37d04642009-04-23 05:15:08 +00001261 const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262 if (Operands.size() == 1) return Operands[0];
1263
Dan Gohman7b560c42008-06-18 16:23:07 +00001264 if (Operands.back()->isZero()) {
1265 Operands.pop_back();
Dan Gohmanabe991f2008-09-14 17:21:12 +00001266 return getAddRecExpr(Operands, L); // {X,+,0} --> X
Dan Gohman7b560c42008-06-18 16:23:07 +00001267 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001268
Dan Gohman42936882008-08-08 18:33:12 +00001269 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
1270 if (SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
1271 const Loop* NestedLoop = NestedAR->getLoop();
1272 if (L->getLoopDepth() < NestedLoop->getLoopDepth()) {
1273 std::vector<SCEVHandle> NestedOperands(NestedAR->op_begin(),
1274 NestedAR->op_end());
1275 SCEVHandle NestedARHandle(NestedAR);
1276 Operands[0] = NestedAR->getStart();
1277 NestedOperands[0] = getAddRecExpr(Operands, L);
1278 return getAddRecExpr(NestedOperands, NestedLoop);
1279 }
1280 }
1281
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001282 SCEVAddRecExpr *&Result =
1283 (*SCEVAddRecExprs)[std::make_pair(L, std::vector<SCEV*>(Operands.begin(),
1284 Operands.end()))];
1285 if (Result == 0) Result = new SCEVAddRecExpr(Operands, L);
1286 return Result;
1287}
1288
Nick Lewycky711640a2007-11-25 22:41:31 +00001289SCEVHandle ScalarEvolution::getSMaxExpr(const SCEVHandle &LHS,
1290 const SCEVHandle &RHS) {
1291 std::vector<SCEVHandle> Ops;
1292 Ops.push_back(LHS);
1293 Ops.push_back(RHS);
1294 return getSMaxExpr(Ops);
1295}
1296
1297SCEVHandle ScalarEvolution::getSMaxExpr(std::vector<SCEVHandle> Ops) {
1298 assert(!Ops.empty() && "Cannot get empty smax!");
1299 if (Ops.size() == 1) return Ops[0];
1300
1301 // Sort by complexity, this groups all similar expression types together.
1302 GroupByComplexity(Ops);
1303
1304 // If there are any constants, fold them together.
1305 unsigned Idx = 0;
1306 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1307 ++Idx;
1308 assert(Idx < Ops.size());
1309 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1310 // We found two constants, fold them together!
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001311 ConstantInt *Fold = ConstantInt::get(
Nick Lewycky711640a2007-11-25 22:41:31 +00001312 APIntOps::smax(LHSC->getValue()->getValue(),
1313 RHSC->getValue()->getValue()));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001314 Ops[0] = getConstant(Fold);
1315 Ops.erase(Ops.begin()+1); // Erase the folded element
1316 if (Ops.size() == 1) return Ops[0];
1317 LHSC = cast<SCEVConstant>(Ops[0]);
Nick Lewycky711640a2007-11-25 22:41:31 +00001318 }
1319
1320 // If we are left with a constant -inf, strip it off.
1321 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
1322 Ops.erase(Ops.begin());
1323 --Idx;
1324 }
1325 }
1326
1327 if (Ops.size() == 1) return Ops[0];
1328
1329 // Find the first SMax
1330 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
1331 ++Idx;
1332
1333 // Check to see if one of the operands is an SMax. If so, expand its operands
1334 // onto our operand list, and recurse to simplify.
1335 if (Idx < Ops.size()) {
1336 bool DeletedSMax = false;
1337 while (SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
1338 Ops.insert(Ops.end(), SMax->op_begin(), SMax->op_end());
1339 Ops.erase(Ops.begin()+Idx);
1340 DeletedSMax = true;
1341 }
1342
1343 if (DeletedSMax)
1344 return getSMaxExpr(Ops);
1345 }
1346
1347 // Okay, check to see if the same value occurs in the operand list twice. If
1348 // so, delete one. Since we sorted the list, these values are required to
1349 // be adjacent.
1350 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1351 if (Ops[i] == Ops[i+1]) { // X smax Y smax Y --> X smax Y
1352 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1353 --i; --e;
1354 }
1355
1356 if (Ops.size() == 1) return Ops[0];
1357
1358 assert(!Ops.empty() && "Reduced smax down to nothing!");
1359
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001360 // Okay, it looks like we really DO need an smax expr. Check to see if we
Nick Lewycky711640a2007-11-25 22:41:31 +00001361 // already have one, otherwise create a new one.
1362 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1363 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scSMaxExpr,
1364 SCEVOps)];
1365 if (Result == 0) Result = new SCEVSMaxExpr(Ops);
1366 return Result;
1367}
1368
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001369SCEVHandle ScalarEvolution::getUMaxExpr(const SCEVHandle &LHS,
1370 const SCEVHandle &RHS) {
1371 std::vector<SCEVHandle> Ops;
1372 Ops.push_back(LHS);
1373 Ops.push_back(RHS);
1374 return getUMaxExpr(Ops);
1375}
1376
1377SCEVHandle ScalarEvolution::getUMaxExpr(std::vector<SCEVHandle> Ops) {
1378 assert(!Ops.empty() && "Cannot get empty umax!");
1379 if (Ops.size() == 1) return Ops[0];
1380
1381 // Sort by complexity, this groups all similar expression types together.
1382 GroupByComplexity(Ops);
1383
1384 // If there are any constants, fold them together.
1385 unsigned Idx = 0;
1386 if (SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
1387 ++Idx;
1388 assert(Idx < Ops.size());
1389 while (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
1390 // We found two constants, fold them together!
1391 ConstantInt *Fold = ConstantInt::get(
1392 APIntOps::umax(LHSC->getValue()->getValue(),
1393 RHSC->getValue()->getValue()));
1394 Ops[0] = getConstant(Fold);
1395 Ops.erase(Ops.begin()+1); // Erase the folded element
1396 if (Ops.size() == 1) return Ops[0];
1397 LHSC = cast<SCEVConstant>(Ops[0]);
1398 }
1399
1400 // If we are left with a constant zero, strip it off.
1401 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
1402 Ops.erase(Ops.begin());
1403 --Idx;
1404 }
1405 }
1406
1407 if (Ops.size() == 1) return Ops[0];
1408
1409 // Find the first UMax
1410 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
1411 ++Idx;
1412
1413 // Check to see if one of the operands is a UMax. If so, expand its operands
1414 // onto our operand list, and recurse to simplify.
1415 if (Idx < Ops.size()) {
1416 bool DeletedUMax = false;
1417 while (SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
1418 Ops.insert(Ops.end(), UMax->op_begin(), UMax->op_end());
1419 Ops.erase(Ops.begin()+Idx);
1420 DeletedUMax = true;
1421 }
1422
1423 if (DeletedUMax)
1424 return getUMaxExpr(Ops);
1425 }
1426
1427 // Okay, check to see if the same value occurs in the operand list twice. If
1428 // so, delete one. Since we sorted the list, these values are required to
1429 // be adjacent.
1430 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
1431 if (Ops[i] == Ops[i+1]) { // X umax Y umax Y --> X umax Y
1432 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
1433 --i; --e;
1434 }
1435
1436 if (Ops.size() == 1) return Ops[0];
1437
1438 assert(!Ops.empty() && "Reduced umax down to nothing!");
1439
1440 // Okay, it looks like we really DO need a umax expr. Check to see if we
1441 // already have one, otherwise create a new one.
1442 std::vector<SCEV*> SCEVOps(Ops.begin(), Ops.end());
1443 SCEVCommutativeExpr *&Result = (*SCEVCommExprs)[std::make_pair(scUMaxExpr,
1444 SCEVOps)];
1445 if (Result == 0) Result = new SCEVUMaxExpr(Ops);
1446 return Result;
1447}
1448
Dan Gohman89f85052007-10-22 18:31:58 +00001449SCEVHandle ScalarEvolution::getUnknown(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001450 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
Dan Gohman89f85052007-10-22 18:31:58 +00001451 return getConstant(CI);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001452 if (isa<ConstantPointerNull>(V))
1453 return getIntegerSCEV(0, V->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001454 SCEVUnknown *&Result = (*SCEVUnknowns)[V];
1455 if (Result == 0) Result = new SCEVUnknown(V);
1456 return Result;
1457}
1458
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001459//===----------------------------------------------------------------------===//
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001460// Basic SCEV Analysis and PHI Idiom Recognition Code
1461//
1462
1463/// deleteValueFromRecords - This method should be called by the
1464/// client before it removes an instruction from the program, to make sure
1465/// that no dangling references are left around.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001466void ScalarEvolution::deleteValueFromRecords(Value *V) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001467 SmallVector<Value *, 16> Worklist;
1468
1469 if (Scalars.erase(V)) {
1470 if (PHINode *PN = dyn_cast<PHINode>(V))
1471 ConstantEvolutionLoopExitValue.erase(PN);
1472 Worklist.push_back(V);
1473 }
1474
1475 while (!Worklist.empty()) {
1476 Value *VV = Worklist.back();
1477 Worklist.pop_back();
1478
1479 for (Instruction::use_iterator UI = VV->use_begin(), UE = VV->use_end();
1480 UI != UE; ++UI) {
1481 Instruction *Inst = cast<Instruction>(*UI);
1482 if (Scalars.erase(Inst)) {
1483 if (PHINode *PN = dyn_cast<PHINode>(VV))
1484 ConstantEvolutionLoopExitValue.erase(PN);
1485 Worklist.push_back(Inst);
1486 }
1487 }
1488 }
1489}
1490
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001491/// isSCEVable - Test if values of the given type are analyzable within
1492/// the SCEV framework. This primarily includes integer types, and it
1493/// can optionally include pointer types if the ScalarEvolution class
1494/// has access to target-specific information.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001495bool ScalarEvolution::isSCEVable(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001496 // Integers are always SCEVable.
1497 if (Ty->isInteger())
1498 return true;
1499
1500 // Pointers are SCEVable if TargetData information is available
1501 // to provide pointer size information.
1502 if (isa<PointerType>(Ty))
1503 return TD != NULL;
1504
1505 // Otherwise it's not SCEVable.
1506 return false;
1507}
1508
1509/// getTypeSizeInBits - Return the size in bits of the specified type,
1510/// for which isSCEVable must return true.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001511uint64_t ScalarEvolution::getTypeSizeInBits(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001512 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1513
1514 // If we have a TargetData, use it!
1515 if (TD)
1516 return TD->getTypeSizeInBits(Ty);
1517
1518 // Otherwise, we support only integer types.
1519 assert(Ty->isInteger() && "isSCEVable permitted a non-SCEVable type!");
1520 return Ty->getPrimitiveSizeInBits();
1521}
1522
1523/// getEffectiveSCEVType - Return a type with the same bitwidth as
1524/// the given type and which represents how SCEV will treat the given
1525/// type, for which isSCEVable must return true. For pointer types,
1526/// this is the pointer-sized integer type.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001527const Type *ScalarEvolution::getEffectiveSCEVType(const Type *Ty) const {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001528 assert(isSCEVable(Ty) && "Type is not SCEVable!");
1529
1530 if (Ty->isInteger())
1531 return Ty;
1532
1533 assert(isa<PointerType>(Ty) && "Unexpected non-pointer non-integer type!");
1534 return TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001535}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001536
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001537SCEVHandle ScalarEvolution::getCouldNotCompute() {
Dan Gohman0ad08b02009-04-18 17:58:19 +00001538 return UnknownValue;
1539}
1540
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001541/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
1542/// expression and create a new one.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001543SCEVHandle ScalarEvolution::getSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001544 assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001545
1546 std::map<Value*, SCEVHandle>::iterator I = Scalars.find(V);
1547 if (I != Scalars.end()) return I->second;
1548 SCEVHandle S = createSCEV(V);
1549 Scalars.insert(std::make_pair(V, S));
1550 return S;
1551}
1552
Dan Gohman01c2ee72009-04-16 03:18:22 +00001553/// getIntegerSCEV - Given an integer or FP type, create a constant for the
1554/// specified signed integer value and return a SCEV for the constant.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001555SCEVHandle ScalarEvolution::getIntegerSCEV(int Val, const Type *Ty) {
1556 Ty = getEffectiveSCEVType(Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001557 Constant *C;
1558 if (Val == 0)
1559 C = Constant::getNullValue(Ty);
1560 else if (Ty->isFloatingPoint())
1561 C = ConstantFP::get(APFloat(Ty==Type::FloatTy ? APFloat::IEEEsingle :
1562 APFloat::IEEEdouble, Val));
1563 else
1564 C = ConstantInt::get(Ty, Val);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001565 return getUnknown(C);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001566}
1567
1568/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
1569///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001570SCEVHandle ScalarEvolution::getNegativeSCEV(const SCEVHandle &V) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001571 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001572 return getUnknown(ConstantExpr::getNeg(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001573
1574 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001575 Ty = getEffectiveSCEVType(Ty);
1576 return getMulExpr(V, getConstant(ConstantInt::getAllOnesValue(Ty)));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001577}
1578
1579/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001580SCEVHandle ScalarEvolution::getNotSCEV(const SCEVHandle &V) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001581 if (SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001582 return getUnknown(ConstantExpr::getNot(VC->getValue()));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001583
1584 const Type *Ty = V->getType();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001585 Ty = getEffectiveSCEVType(Ty);
1586 SCEVHandle AllOnes = getConstant(ConstantInt::getAllOnesValue(Ty));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001587 return getMinusSCEV(AllOnes, V);
1588}
1589
1590/// getMinusSCEV - Return a SCEV corresponding to LHS - RHS.
1591///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001592SCEVHandle ScalarEvolution::getMinusSCEV(const SCEVHandle &LHS,
Nick Lewycky37d04642009-04-23 05:15:08 +00001593 const SCEVHandle &RHS) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001594 // X - Y --> X + -Y
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001595 return getAddExpr(LHS, getNegativeSCEV(RHS));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001596}
1597
1598/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
1599/// input value to the specified type. If the type must be extended, it is zero
1600/// extended.
1601SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001602ScalarEvolution::getTruncateOrZeroExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001603 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001604 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001605 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1606 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001607 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001608 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001609 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001610 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001611 return getTruncateExpr(V, Ty);
1612 return getZeroExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001613}
1614
1615/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
1616/// input value to the specified type. If the type must be extended, it is sign
1617/// extended.
1618SCEVHandle
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001619ScalarEvolution::getTruncateOrSignExtend(const SCEVHandle &V,
Nick Lewycky37d04642009-04-23 05:15:08 +00001620 const Type *Ty) {
Dan Gohman01c2ee72009-04-16 03:18:22 +00001621 const Type *SrcTy = V->getType();
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001622 assert((SrcTy->isInteger() || (TD && isa<PointerType>(SrcTy))) &&
1623 (Ty->isInteger() || (TD && isa<PointerType>(Ty))) &&
Dan Gohman01c2ee72009-04-16 03:18:22 +00001624 "Cannot truncate or zero extend with non-integer arguments!");
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001625 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
Dan Gohman01c2ee72009-04-16 03:18:22 +00001626 return V; // No conversion
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001627 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001628 return getTruncateExpr(V, Ty);
1629 return getSignExtendExpr(V, Ty);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001630}
1631
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001632/// ReplaceSymbolicValueWithConcrete - This looks up the computed SCEV value for
1633/// the specified instruction and replaces any references to the symbolic value
1634/// SymName with the specified value. This is used during PHI resolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001635void ScalarEvolution::
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001636ReplaceSymbolicValueWithConcrete(Instruction *I, const SCEVHandle &SymName,
1637 const SCEVHandle &NewVal) {
1638 std::map<Value*, SCEVHandle>::iterator SI = Scalars.find(I);
1639 if (SI == Scalars.end()) return;
1640
1641 SCEVHandle NV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001642 SI->second->replaceSymbolicValuesWithConcrete(SymName, NewVal, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001643 if (NV == SI->second) return; // No change.
1644
1645 SI->second = NV; // Update the scalars map!
1646
1647 // Any instruction values that use this instruction might also need to be
1648 // updated!
1649 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1650 UI != E; ++UI)
1651 ReplaceSymbolicValueWithConcrete(cast<Instruction>(*UI), SymName, NewVal);
1652}
1653
1654/// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in
1655/// a loop header, making it a potential recurrence, or it doesn't.
1656///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001657SCEVHandle ScalarEvolution::createNodeForPHI(PHINode *PN) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001658 if (PN->getNumIncomingValues() == 2) // The loops have been canonicalized.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001659 if (const Loop *L = LI->getLoopFor(PN->getParent()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001660 if (L->getHeader() == PN->getParent()) {
1661 // If it lives in the loop header, it has two incoming values, one
1662 // from outside the loop, and one from inside.
1663 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
1664 unsigned BackEdge = IncomingEdge^1;
1665
1666 // While we are analyzing this PHI node, handle its value symbolically.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001667 SCEVHandle SymbolicName = getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001668 assert(Scalars.find(PN) == Scalars.end() &&
1669 "PHI node already processed?");
1670 Scalars.insert(std::make_pair(PN, SymbolicName));
1671
1672 // Using this symbolic name for the PHI, analyze the value coming around
1673 // the back-edge.
1674 SCEVHandle BEValue = getSCEV(PN->getIncomingValue(BackEdge));
1675
1676 // NOTE: If BEValue is loop invariant, we know that the PHI node just
1677 // has a special value for the first iteration of the loop.
1678
1679 // If the value coming around the backedge is an add with the symbolic
1680 // value we just inserted, then we found a simple induction variable!
1681 if (SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
1682 // If there is a single occurrence of the symbolic value, replace it
1683 // with a recurrence.
1684 unsigned FoundIndex = Add->getNumOperands();
1685 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1686 if (Add->getOperand(i) == SymbolicName)
1687 if (FoundIndex == e) {
1688 FoundIndex = i;
1689 break;
1690 }
1691
1692 if (FoundIndex != Add->getNumOperands()) {
1693 // Create an add with everything but the specified operand.
1694 std::vector<SCEVHandle> Ops;
1695 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
1696 if (i != FoundIndex)
1697 Ops.push_back(Add->getOperand(i));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001698 SCEVHandle Accum = getAddExpr(Ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001699
1700 // This is not a valid addrec if the step amount is varying each
1701 // loop iteration, but is not itself an addrec in this loop.
1702 if (Accum->isLoopInvariant(L) ||
1703 (isa<SCEVAddRecExpr>(Accum) &&
1704 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
1705 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001706 SCEVHandle PHISCEV = getAddRecExpr(StartVal, Accum, L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001707
1708 // Okay, for the entire analysis of this edge we assumed the PHI
1709 // to be symbolic. We now need to go back and update all of the
1710 // entries for the scalars that use the PHI (except for the PHI
1711 // itself) to use the new analyzed value instead of the "symbolic"
1712 // value.
1713 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1714 return PHISCEV;
1715 }
1716 }
1717 } else if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(BEValue)) {
1718 // Otherwise, this could be a loop like this:
1719 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
1720 // In this case, j = {1,+,1} and BEValue is j.
1721 // Because the other in-value of i (0) fits the evolution of BEValue
1722 // i really is an addrec evolution.
1723 if (AddRec->getLoop() == L && AddRec->isAffine()) {
1724 SCEVHandle StartVal = getSCEV(PN->getIncomingValue(IncomingEdge));
1725
1726 // If StartVal = j.start - j.stride, we can use StartVal as the
1727 // initial step of the addrec evolution.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001728 if (StartVal == getMinusSCEV(AddRec->getOperand(0),
Dan Gohman89f85052007-10-22 18:31:58 +00001729 AddRec->getOperand(1))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001730 SCEVHandle PHISCEV =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001731 getAddRecExpr(StartVal, AddRec->getOperand(1), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001732
1733 // Okay, for the entire analysis of this edge we assumed the PHI
1734 // to be symbolic. We now need to go back and update all of the
1735 // entries for the scalars that use the PHI (except for the PHI
1736 // itself) to use the new analyzed value instead of the "symbolic"
1737 // value.
1738 ReplaceSymbolicValueWithConcrete(PN, SymbolicName, PHISCEV);
1739 return PHISCEV;
1740 }
1741 }
1742 }
1743
1744 return SymbolicName;
1745 }
1746
1747 // If it's not a loop phi, we can't handle it yet.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001748 return getUnknown(PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749}
1750
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001751/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
1752/// guaranteed to end in (at every loop iteration). It is, at the same time,
1753/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
1754/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001755static uint32_t GetMinTrailingZeros(SCEVHandle S, const ScalarEvolution &SE) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001756 if (SCEVConstant *C = dyn_cast<SCEVConstant>(S))
Chris Lattner6ecce2a2007-11-23 22:36:49 +00001757 return C->getValue()->getValue().countTrailingZeros();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001758
Nick Lewycky3a8a41f2007-11-20 08:44:50 +00001759 if (SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001760 return std::min(GetMinTrailingZeros(T->getOperand(), SE),
1761 (uint32_t)SE.getTypeSizeInBits(T->getType()));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001762
1763 if (SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001764 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1765 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1766 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001767 }
1768
1769 if (SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001770 uint32_t OpRes = GetMinTrailingZeros(E->getOperand(), SE);
1771 return OpRes == SE.getTypeSizeInBits(E->getOperand()->getType()) ?
1772 SE.getTypeSizeInBits(E->getOperand()->getType()) : OpRes;
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001773 }
1774
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001775 if (SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001776 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001777 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001778 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001779 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001780 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001781 }
1782
1783 if (SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001784 // The result is the sum of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001785 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
1786 uint32_t BitWidth = SE.getTypeSizeInBits(M->getType());
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001787 for (unsigned i = 1, e = M->getNumOperands();
1788 SumOpRes != BitWidth && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001789 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i), SE),
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001790 BitWidth);
1791 return SumOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001792 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001793
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001794 if (SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001795 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001796 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0), SE);
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001797 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001798 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i), SE));
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001799 return MinOpRes;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001800 }
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001801
Nick Lewycky711640a2007-11-25 22:41:31 +00001802 if (SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
1803 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001804 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewycky711640a2007-11-25 22:41:31 +00001805 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001806 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewycky711640a2007-11-25 22:41:31 +00001807 return MinOpRes;
1808 }
1809
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001810 if (SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
1811 // The result is the min of all operands results.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001812 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0), SE);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001813 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001814 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i), SE));
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00001815 return MinOpRes;
1816 }
1817
Nick Lewycky35b56022009-01-13 09:18:58 +00001818 // SCEVUDivExpr, SCEVUnknown
Nick Lewycky4cb604b2007-11-22 07:59:40 +00001819 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001820}
1821
1822/// createSCEV - We know that there is no SCEV for the specified value.
1823/// Analyze the expression.
1824///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001825SCEVHandle ScalarEvolution::createSCEV(Value *V) {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001826 if (!isSCEVable(V->getType()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001827 return getUnknown(V);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001828
Dan Gohman3996f472008-06-22 19:56:46 +00001829 unsigned Opcode = Instruction::UserOp1;
1830 if (Instruction *I = dyn_cast<Instruction>(V))
1831 Opcode = I->getOpcode();
1832 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
1833 Opcode = CE->getOpcode();
1834 else
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001835 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001836
Dan Gohman3996f472008-06-22 19:56:46 +00001837 User *U = cast<User>(V);
1838 switch (Opcode) {
1839 case Instruction::Add:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001840 return getAddExpr(getSCEV(U->getOperand(0)),
1841 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00001842 case Instruction::Mul:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001843 return getMulExpr(getSCEV(U->getOperand(0)),
1844 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00001845 case Instruction::UDiv:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001846 return getUDivExpr(getSCEV(U->getOperand(0)),
1847 getSCEV(U->getOperand(1)));
Dan Gohman3996f472008-06-22 19:56:46 +00001848 case Instruction::Sub:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001849 return getMinusSCEV(getSCEV(U->getOperand(0)),
1850 getSCEV(U->getOperand(1)));
Dan Gohman53bf64a2009-04-21 02:26:00 +00001851 case Instruction::And:
1852 // For an expression like x&255 that merely masks off the high bits,
1853 // use zext(trunc(x)) as the SCEV expression.
1854 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00001855 if (CI->isNullValue())
1856 return getSCEV(U->getOperand(1));
Dan Gohmanc7ebba12009-04-27 01:41:10 +00001857 if (CI->isAllOnesValue())
1858 return getSCEV(U->getOperand(0));
Dan Gohman53bf64a2009-04-21 02:26:00 +00001859 const APInt &A = CI->getValue();
1860 unsigned Ones = A.countTrailingOnes();
1861 if (APIntOps::isMask(Ones, A))
1862 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001863 getZeroExtendExpr(getTruncateExpr(getSCEV(U->getOperand(0)),
1864 IntegerType::get(Ones)),
1865 U->getType());
Dan Gohman53bf64a2009-04-21 02:26:00 +00001866 }
1867 break;
Dan Gohman3996f472008-06-22 19:56:46 +00001868 case Instruction::Or:
1869 // If the RHS of the Or is a constant, we may have something like:
1870 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
1871 // optimizations will transparently handle this case.
1872 //
1873 // In order for this transformation to be safe, the LHS must be of the
1874 // form X*(2^n) and the Or constant must be less than 2^n.
1875 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
1876 SCEVHandle LHS = getSCEV(U->getOperand(0));
1877 const APInt &CIVal = CI->getValue();
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001878 if (GetMinTrailingZeros(LHS, *this) >=
Dan Gohman3996f472008-06-22 19:56:46 +00001879 (CIVal.getBitWidth() - CIVal.countLeadingZeros()))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001880 return getAddExpr(LHS, getSCEV(U->getOperand(1)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001881 }
Dan Gohman3996f472008-06-22 19:56:46 +00001882 break;
1883 case Instruction::Xor:
Dan Gohman3996f472008-06-22 19:56:46 +00001884 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
Nick Lewycky7fd27892008-07-07 06:15:49 +00001885 // If the RHS of the xor is a signbit, then this is just an add.
1886 // Instcombine turns add of signbit into xor as a strength reduction step.
Dan Gohman3996f472008-06-22 19:56:46 +00001887 if (CI->getValue().isSignBit())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001888 return getAddExpr(getSCEV(U->getOperand(0)),
1889 getSCEV(U->getOperand(1)));
Nick Lewycky7fd27892008-07-07 06:15:49 +00001890
1891 // If the RHS of xor is -1, then this is a not operation.
Dan Gohman3996f472008-06-22 19:56:46 +00001892 else if (CI->isAllOnesValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001893 return getNotSCEV(getSCEV(U->getOperand(0)));
Dan Gohman3996f472008-06-22 19:56:46 +00001894 }
1895 break;
1896
1897 case Instruction::Shl:
1898 // Turn shift left of a constant amount into a multiply.
1899 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1900 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1901 Constant *X = ConstantInt::get(
1902 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001903 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Dan Gohman3996f472008-06-22 19:56:46 +00001904 }
1905 break;
1906
Nick Lewycky7fd27892008-07-07 06:15:49 +00001907 case Instruction::LShr:
Nick Lewycky35b56022009-01-13 09:18:58 +00001908 // Turn logical shift right of a constant into a unsigned divide.
Nick Lewycky7fd27892008-07-07 06:15:49 +00001909 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) {
1910 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1911 Constant *X = ConstantInt::get(
1912 APInt(BitWidth, 1).shl(SA->getLimitedValue(BitWidth)));
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001913 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X));
Nick Lewycky7fd27892008-07-07 06:15:49 +00001914 }
1915 break;
1916
Dan Gohman53bf64a2009-04-21 02:26:00 +00001917 case Instruction::AShr:
1918 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
1919 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1)))
1920 if (Instruction *L = dyn_cast<Instruction>(U->getOperand(0)))
1921 if (L->getOpcode() == Instruction::Shl &&
1922 L->getOperand(1) == U->getOperand(1)) {
Dan Gohman91ae1e72009-04-25 17:05:40 +00001923 unsigned BitWidth = getTypeSizeInBits(U->getType());
1924 uint64_t Amt = BitWidth - CI->getZExtValue();
1925 if (Amt == BitWidth)
1926 return getSCEV(L->getOperand(0)); // shift by zero --> noop
1927 if (Amt > BitWidth)
1928 return getIntegerSCEV(0, U->getType()); // value is undefined
Dan Gohman53bf64a2009-04-21 02:26:00 +00001929 return
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001930 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)),
Dan Gohman91ae1e72009-04-25 17:05:40 +00001931 IntegerType::get(Amt)),
Dan Gohman53bf64a2009-04-21 02:26:00 +00001932 U->getType());
1933 }
1934 break;
1935
Dan Gohman3996f472008-06-22 19:56:46 +00001936 case Instruction::Trunc:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001937 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00001938
1939 case Instruction::ZExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001940 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00001941
1942 case Instruction::SExt:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001943 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
Dan Gohman3996f472008-06-22 19:56:46 +00001944
1945 case Instruction::BitCast:
1946 // BitCasts are no-op casts so we just eliminate the cast.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001947 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
Dan Gohman3996f472008-06-22 19:56:46 +00001948 return getSCEV(U->getOperand(0));
1949 break;
1950
Dan Gohman01c2ee72009-04-16 03:18:22 +00001951 case Instruction::IntToPtr:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001952 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001953 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001954 TD->getIntPtrType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00001955
1956 case Instruction::PtrToInt:
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001957 if (!TD) break; // Without TD we can't analyze pointers.
Dan Gohman01c2ee72009-04-16 03:18:22 +00001958 return getTruncateOrZeroExtend(getSCEV(U->getOperand(0)),
1959 U->getType());
1960
1961 case Instruction::GetElementPtr: {
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001962 if (!TD) break; // Without TD we can't analyze pointers.
1963 const Type *IntPtrTy = TD->getIntPtrType();
Dan Gohman01c2ee72009-04-16 03:18:22 +00001964 Value *Base = U->getOperand(0);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001965 SCEVHandle TotalOffset = getIntegerSCEV(0, IntPtrTy);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001966 gep_type_iterator GTI = gep_type_begin(U);
1967 for (GetElementPtrInst::op_iterator I = next(U->op_begin()),
1968 E = U->op_end();
1969 I != E; ++I) {
1970 Value *Index = *I;
1971 // Compute the (potentially symbolic) offset in bytes for this index.
1972 if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
1973 // For a struct, add the member offset.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00001974 const StructLayout &SL = *TD->getStructLayout(STy);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001975 unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
1976 uint64_t Offset = SL.getElementOffset(FieldNo);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001977 TotalOffset = getAddExpr(TotalOffset,
1978 getIntegerSCEV(Offset, IntPtrTy));
Dan Gohman01c2ee72009-04-16 03:18:22 +00001979 } else {
1980 // For an array, add the element offset, explicitly scaled.
1981 SCEVHandle LocalOffset = getSCEV(Index);
1982 if (!isa<PointerType>(LocalOffset->getType()))
1983 // Getelementptr indicies are signed.
1984 LocalOffset = getTruncateOrSignExtend(LocalOffset,
1985 IntPtrTy);
1986 LocalOffset =
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001987 getMulExpr(LocalOffset,
1988 getIntegerSCEV(TD->getTypePaddedSize(*GTI),
1989 IntPtrTy));
1990 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001991 }
1992 }
Dan Gohmanffd36ba2009-04-21 23:15:49 +00001993 return getAddExpr(getSCEV(Base), TotalOffset);
Dan Gohman01c2ee72009-04-16 03:18:22 +00001994 }
1995
Dan Gohman3996f472008-06-22 19:56:46 +00001996 case Instruction::PHI:
1997 return createNodeForPHI(cast<PHINode>(U));
1998
1999 case Instruction::Select:
2000 // This could be a smax or umax that was lowered earlier.
2001 // Try to recover it.
2002 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) {
2003 Value *LHS = ICI->getOperand(0);
2004 Value *RHS = ICI->getOperand(1);
2005 switch (ICI->getPredicate()) {
2006 case ICmpInst::ICMP_SLT:
2007 case ICmpInst::ICMP_SLE:
2008 std::swap(LHS, RHS);
2009 // fall through
2010 case ICmpInst::ICMP_SGT:
2011 case ICmpInst::ICMP_SGE:
2012 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002013 return getSMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002014 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
Eli Friedman8e2fd032008-07-30 04:36:32 +00002015 // ~smax(~x, ~y) == smin(x, y).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002016 return getNotSCEV(getSMaxExpr(
2017 getNotSCEV(getSCEV(LHS)),
2018 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002019 break;
2020 case ICmpInst::ICMP_ULT:
2021 case ICmpInst::ICMP_ULE:
2022 std::swap(LHS, RHS);
2023 // fall through
2024 case ICmpInst::ICMP_UGT:
2025 case ICmpInst::ICMP_UGE:
2026 if (LHS == U->getOperand(1) && RHS == U->getOperand(2))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002027 return getUMaxExpr(getSCEV(LHS), getSCEV(RHS));
Dan Gohman3996f472008-06-22 19:56:46 +00002028 else if (LHS == U->getOperand(2) && RHS == U->getOperand(1))
2029 // ~umax(~x, ~y) == umin(x, y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002030 return getNotSCEV(getUMaxExpr(getNotSCEV(getSCEV(LHS)),
2031 getNotSCEV(getSCEV(RHS))));
Dan Gohman3996f472008-06-22 19:56:46 +00002032 break;
2033 default:
2034 break;
2035 }
2036 }
2037
2038 default: // We cannot analyze this expression.
2039 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002040 }
2041
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002042 return getUnknown(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002043}
2044
2045
2046
2047//===----------------------------------------------------------------------===//
2048// Iteration Count Computation Code
2049//
2050
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002051/// getBackedgeTakenCount - If the specified loop has a predictable
2052/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
2053/// object. The backedge-taken count is the number of times the loop header
2054/// will be branched to from within the loop. This is one less than the
2055/// trip count of the loop, since it doesn't count the first iteration,
2056/// when the header is branched to from outside the loop.
2057///
2058/// Note that it is not valid to call this method on a loop without a
2059/// loop-invariant backedge-taken count (see
2060/// hasLoopInvariantBackedgeTakenCount).
2061///
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002062SCEVHandle ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
Dan Gohmana9dba962009-04-27 20:16:15 +00002063 // Initially insert a CouldNotCompute for this loop. If the insertion
2064 // succeeds, procede to actually compute a backedge-taken count and
2065 // update the value. The temporary CouldNotCompute value tells SCEV
2066 // code elsewhere that it shouldn't attempt to request a new
2067 // backedge-taken count, which could result in infinite recursion.
2068 std::pair<std::map<const Loop*, SCEVHandle>::iterator, bool> Pair =
2069 BackedgeTakenCounts.insert(std::make_pair(L, getCouldNotCompute()));
2070 if (Pair.second) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002071 SCEVHandle ItCount = ComputeBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002072 if (ItCount != UnknownValue) {
2073 assert(ItCount->isLoopInvariant(L) &&
2074 "Computed trip count isn't loop invariant for loop!");
2075 ++NumTripCountsComputed;
Dan Gohmana9dba962009-04-27 20:16:15 +00002076
2077 // Now that we know the trip count for this loop, forget any
2078 // existing SCEV values for PHI nodes in this loop since they
2079 // are only conservative estimates made without the benefit
2080 // of trip count information.
2081 for (BasicBlock::iterator I = L->getHeader()->begin();
2082 PHINode *PN = dyn_cast<PHINode>(I); ++I)
2083 deleteValueFromRecords(PN);
2084
2085 // Update the value in the map.
2086 Pair.first->second = ItCount;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002087 } else if (isa<PHINode>(L->getHeader()->begin())) {
2088 // Only count loops that have phi nodes as not being computable.
2089 ++NumTripCountsNotComputed;
2090 }
2091 }
Dan Gohmana9dba962009-04-27 20:16:15 +00002092 return Pair.first->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002093}
2094
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002095/// forgetLoopBackedgeTakenCount - This method should be called by the
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002096/// client when it has changed a loop in a way that may effect
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002097/// ScalarEvolution's ability to compute a trip count, or if the loop
2098/// is deleted.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002099void ScalarEvolution::forgetLoopBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002100 BackedgeTakenCounts.erase(L);
Dan Gohmanf3a060a2009-02-17 20:49:49 +00002101}
2102
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002103/// ComputeBackedgeTakenCount - Compute the number of times the backedge
2104/// of the specified loop will execute.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002105SCEVHandle ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002106 // If the loop has a non-one exit block count, we can't analyze it.
Devang Patel02451fa2007-08-21 00:31:24 +00002107 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108 L->getExitBlocks(ExitBlocks);
2109 if (ExitBlocks.size() != 1) return UnknownValue;
2110
2111 // Okay, there is one exit block. Try to find the condition that causes the
2112 // loop to be exited.
2113 BasicBlock *ExitBlock = ExitBlocks[0];
2114
2115 BasicBlock *ExitingBlock = 0;
2116 for (pred_iterator PI = pred_begin(ExitBlock), E = pred_end(ExitBlock);
2117 PI != E; ++PI)
2118 if (L->contains(*PI)) {
2119 if (ExitingBlock == 0)
2120 ExitingBlock = *PI;
2121 else
2122 return UnknownValue; // More than one block exiting!
2123 }
2124 assert(ExitingBlock && "No exits from loop, something is broken!");
2125
2126 // Okay, we've computed the exiting block. See what condition causes us to
2127 // exit.
2128 //
2129 // FIXME: we should be able to handle switch instructions (with a single exit)
2130 BranchInst *ExitBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
2131 if (ExitBr == 0) return UnknownValue;
2132 assert(ExitBr->isConditional() && "If unconditional, it can't be in loop!");
2133
2134 // At this point, we know we have a conditional branch that determines whether
2135 // the loop is exited. However, we don't know if the branch is executed each
2136 // time through the loop. If not, then the execution count of the branch will
2137 // not be equal to the trip count of the loop.
2138 //
2139 // Currently we check for this by checking to see if the Exit branch goes to
2140 // the loop header. If so, we know it will always execute the same number of
2141 // times as the loop. We also handle the case where the exit block *is* the
2142 // loop header. This is common for un-rotated loops. More extensive analysis
2143 // could be done to handle more cases here.
2144 if (ExitBr->getSuccessor(0) != L->getHeader() &&
2145 ExitBr->getSuccessor(1) != L->getHeader() &&
2146 ExitBr->getParent() != L->getHeader())
2147 return UnknownValue;
2148
2149 ICmpInst *ExitCond = dyn_cast<ICmpInst>(ExitBr->getCondition());
2150
Nick Lewyckyb3d24332008-02-21 08:34:02 +00002151 // If it's not an integer comparison then compute it the hard way.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002152 // Note that ICmpInst deals with pointer comparisons too so we must check
2153 // the type of the operand.
2154 if (ExitCond == 0 || isa<PointerType>(ExitCond->getOperand(0)->getType()))
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002155 return ComputeBackedgeTakenCountExhaustively(L, ExitBr->getCondition(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002156 ExitBr->getSuccessor(0) == ExitBlock);
2157
2158 // If the condition was exit on true, convert the condition to exit on false
2159 ICmpInst::Predicate Cond;
2160 if (ExitBr->getSuccessor(1) == ExitBlock)
2161 Cond = ExitCond->getPredicate();
2162 else
2163 Cond = ExitCond->getInversePredicate();
2164
2165 // Handle common loops like: for (X = "string"; *X; ++X)
2166 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
2167 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
2168 SCEVHandle ItCnt =
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002169 ComputeLoadConstantCompareBackedgeTakenCount(LI, RHS, L, Cond);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002170 if (!isa<SCEVCouldNotCompute>(ItCnt)) return ItCnt;
2171 }
2172
2173 SCEVHandle LHS = getSCEV(ExitCond->getOperand(0));
2174 SCEVHandle RHS = getSCEV(ExitCond->getOperand(1));
2175
2176 // Try to evaluate any dependencies out of the loop.
2177 SCEVHandle Tmp = getSCEVAtScope(LHS, L);
2178 if (!isa<SCEVCouldNotCompute>(Tmp)) LHS = Tmp;
2179 Tmp = getSCEVAtScope(RHS, L);
2180 if (!isa<SCEVCouldNotCompute>(Tmp)) RHS = Tmp;
2181
2182 // At this point, we would like to compute how many iterations of the
2183 // loop the predicate will return true for these inputs.
Dan Gohman2d96e352008-09-16 18:52:57 +00002184 if (LHS->isLoopInvariant(L) && !RHS->isLoopInvariant(L)) {
2185 // If there is a loop-invariant, force it into the RHS.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002186 std::swap(LHS, RHS);
2187 Cond = ICmpInst::getSwappedPredicate(Cond);
2188 }
2189
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002190 // If we have a comparison of a chrec against a constant, try to use value
2191 // ranges to answer this query.
2192 if (SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
2193 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
2194 if (AddRec->getLoop() == L) {
2195 // Form the comparison range using the constant of the correct type so
2196 // that the ConstantRange class knows to do a signed or unsigned
2197 // comparison.
2198 ConstantInt *CompVal = RHSC->getValue();
2199 const Type *RealTy = ExitCond->getOperand(0)->getType();
2200 CompVal = dyn_cast<ConstantInt>(
2201 ConstantExpr::getBitCast(CompVal, RealTy));
2202 if (CompVal) {
2203 // Form the constant range.
2204 ConstantRange CompRange(
2205 ICmpInst::makeConstantRange(Cond, CompVal->getValue()));
2206
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002207 SCEVHandle Ret = AddRec->getNumIterationsInRange(CompRange, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002208 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
2209 }
2210 }
2211
2212 switch (Cond) {
2213 case ICmpInst::ICMP_NE: { // while (X != Y)
2214 // Convert to: while (X-Y != 0)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002215 SCEVHandle TC = HowFarToZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002216 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2217 break;
2218 }
2219 case ICmpInst::ICMP_EQ: {
2220 // Convert to: while (X-Y == 0) // while (X == Y)
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002221 SCEVHandle TC = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002222 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2223 break;
2224 }
2225 case ICmpInst::ICMP_SLT: {
Nick Lewycky35b56022009-01-13 09:18:58 +00002226 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002227 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2228 break;
2229 }
2230 case ICmpInst::ICMP_SGT: {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002231 SCEVHandle TC = HowManyLessThans(getNotSCEV(LHS),
2232 getNotSCEV(RHS), L, true);
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002233 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2234 break;
2235 }
2236 case ICmpInst::ICMP_ULT: {
Nick Lewycky35b56022009-01-13 09:18:58 +00002237 SCEVHandle TC = HowManyLessThans(LHS, RHS, L, false);
Nick Lewyckyb7c28942007-08-06 19:21:00 +00002238 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2239 break;
2240 }
2241 case ICmpInst::ICMP_UGT: {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002242 SCEVHandle TC = HowManyLessThans(getNotSCEV(LHS),
2243 getNotSCEV(RHS), L, false);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002244 if (!isa<SCEVCouldNotCompute>(TC)) return TC;
2245 break;
2246 }
2247 default:
2248#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002249 errs() << "ComputeBackedgeTakenCount ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002250 if (ExitCond->getOperand(0)->getType()->isUnsigned())
Dan Gohman13058cc2009-04-21 00:47:46 +00002251 errs() << "[unsigned] ";
2252 errs() << *LHS << " "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253 << Instruction::getOpcodeName(Instruction::ICmp)
2254 << " " << *RHS << "\n";
2255#endif
2256 break;
2257 }
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002258 return
2259 ComputeBackedgeTakenCountExhaustively(L, ExitCond,
2260 ExitBr->getSuccessor(0) == ExitBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002261}
2262
2263static ConstantInt *
Dan Gohman89f85052007-10-22 18:31:58 +00002264EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
2265 ScalarEvolution &SE) {
2266 SCEVHandle InVal = SE.getConstant(C);
2267 SCEVHandle Val = AddRec->evaluateAtIteration(InVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002268 assert(isa<SCEVConstant>(Val) &&
2269 "Evaluation of SCEV at constant didn't fold correctly?");
2270 return cast<SCEVConstant>(Val)->getValue();
2271}
2272
2273/// GetAddressedElementFromGlobal - Given a global variable with an initializer
2274/// and a GEP expression (missing the pointer index) indexing into it, return
2275/// the addressed element of the initializer or null if the index expression is
2276/// invalid.
2277static Constant *
2278GetAddressedElementFromGlobal(GlobalVariable *GV,
2279 const std::vector<ConstantInt*> &Indices) {
2280 Constant *Init = GV->getInitializer();
2281 for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
2282 uint64_t Idx = Indices[i]->getZExtValue();
2283 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(Init)) {
2284 assert(Idx < CS->getNumOperands() && "Bad struct index!");
2285 Init = cast<Constant>(CS->getOperand(Idx));
2286 } else if (ConstantArray *CA = dyn_cast<ConstantArray>(Init)) {
2287 if (Idx >= CA->getNumOperands()) return 0; // Bogus program
2288 Init = cast<Constant>(CA->getOperand(Idx));
2289 } else if (isa<ConstantAggregateZero>(Init)) {
2290 if (const StructType *STy = dyn_cast<StructType>(Init->getType())) {
2291 assert(Idx < STy->getNumElements() && "Bad struct index!");
2292 Init = Constant::getNullValue(STy->getElementType(Idx));
2293 } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Init->getType())) {
2294 if (Idx >= ATy->getNumElements()) return 0; // Bogus program
2295 Init = Constant::getNullValue(ATy->getElementType());
2296 } else {
2297 assert(0 && "Unknown constant aggregate type!");
2298 }
2299 return 0;
2300 } else {
2301 return 0; // Unknown initializer type
2302 }
2303 }
2304 return Init;
2305}
2306
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002307/// ComputeLoadConstantCompareBackedgeTakenCount - Given an exit condition of
2308/// 'icmp op load X, cst', try to see if we can compute the backedge
2309/// execution count.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002310SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002311ComputeLoadConstantCompareBackedgeTakenCount(LoadInst *LI, Constant *RHS,
2312 const Loop *L,
2313 ICmpInst::Predicate predicate) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002314 if (LI->isVolatile()) return UnknownValue;
2315
2316 // Check to see if the loaded pointer is a getelementptr of a global.
2317 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
2318 if (!GEP) return UnknownValue;
2319
2320 // Make sure that it is really a constant global we are gepping, with an
2321 // initializer, and make sure the first IDX is really 0.
2322 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
2323 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
2324 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
2325 !cast<Constant>(GEP->getOperand(1))->isNullValue())
2326 return UnknownValue;
2327
2328 // Okay, we allow one non-constant index into the GEP instruction.
2329 Value *VarIdx = 0;
2330 std::vector<ConstantInt*> Indexes;
2331 unsigned VarIdxNum = 0;
2332 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
2333 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
2334 Indexes.push_back(CI);
2335 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
2336 if (VarIdx) return UnknownValue; // Multiple non-constant idx's.
2337 VarIdx = GEP->getOperand(i);
2338 VarIdxNum = i-2;
2339 Indexes.push_back(0);
2340 }
2341
2342 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
2343 // Check to see if X is a loop variant variable value now.
2344 SCEVHandle Idx = getSCEV(VarIdx);
2345 SCEVHandle Tmp = getSCEVAtScope(Idx, L);
2346 if (!isa<SCEVCouldNotCompute>(Tmp)) Idx = Tmp;
2347
2348 // We can only recognize very limited forms of loop index expressions, in
2349 // particular, only affine AddRec's like {C1,+,C2}.
2350 SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
2351 if (!IdxExpr || !IdxExpr->isAffine() || IdxExpr->isLoopInvariant(L) ||
2352 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
2353 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
2354 return UnknownValue;
2355
2356 unsigned MaxSteps = MaxBruteForceIterations;
2357 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
2358 ConstantInt *ItCst =
2359 ConstantInt::get(IdxExpr->getType(), IterationNum);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002360 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002361
2362 // Form the GEP offset.
2363 Indexes[VarIdxNum] = Val;
2364
2365 Constant *Result = GetAddressedElementFromGlobal(GV, Indexes);
2366 if (Result == 0) break; // Cannot compute!
2367
2368 // Evaluate the condition for this iteration.
2369 Result = ConstantExpr::getICmp(predicate, Result, RHS);
2370 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
2371 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
2372#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002373 errs() << "\n***\n*** Computed loop count " << *ItCst
2374 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader()
2375 << "***\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002376#endif
2377 ++NumArrayLenItCounts;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002378 return getConstant(ItCst); // Found terminating iteration!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002379 }
2380 }
2381 return UnknownValue;
2382}
2383
2384
2385/// CanConstantFold - Return true if we can constant fold an instruction of the
2386/// specified type, assuming that all operands were constants.
2387static bool CanConstantFold(const Instruction *I) {
2388 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
2389 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I))
2390 return true;
2391
2392 if (const CallInst *CI = dyn_cast<CallInst>(I))
2393 if (const Function *F = CI->getCalledFunction())
Dan Gohmane6e001f2008-01-31 01:05:10 +00002394 return canConstantFoldCallTo(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002395 return false;
2396}
2397
2398/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
2399/// in the loop that V is derived from. We allow arbitrary operations along the
2400/// way, but the operands of an operation must either be constants or a value
2401/// derived from a constant PHI. If this expression does not fit with these
2402/// constraints, return null.
2403static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
2404 // If this is not an instruction, or if this is an instruction outside of the
2405 // loop, it can't be derived from a loop PHI.
2406 Instruction *I = dyn_cast<Instruction>(V);
2407 if (I == 0 || !L->contains(I->getParent())) return 0;
2408
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002409 if (PHINode *PN = dyn_cast<PHINode>(I)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002410 if (L->getHeader() == I->getParent())
2411 return PN;
2412 else
2413 // We don't currently keep track of the control flow needed to evaluate
2414 // PHIs, so we cannot handle PHIs inside of loops.
2415 return 0;
Anton Korobeynikov357a27d2008-02-20 11:08:44 +00002416 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002417
2418 // If we won't be able to constant fold this expression even if the operands
2419 // are constants, return early.
2420 if (!CanConstantFold(I)) return 0;
2421
2422 // Otherwise, we can evaluate this instruction if all of its operands are
2423 // constant or derived from a PHI node themselves.
2424 PHINode *PHI = 0;
2425 for (unsigned Op = 0, e = I->getNumOperands(); Op != e; ++Op)
2426 if (!(isa<Constant>(I->getOperand(Op)) ||
2427 isa<GlobalValue>(I->getOperand(Op)))) {
2428 PHINode *P = getConstantEvolvingPHI(I->getOperand(Op), L);
2429 if (P == 0) return 0; // Not evolving from PHI
2430 if (PHI == 0)
2431 PHI = P;
2432 else if (PHI != P)
2433 return 0; // Evolving from multiple different PHIs.
2434 }
2435
2436 // This is a expression evolving from a constant PHI!
2437 return PHI;
2438}
2439
2440/// EvaluateExpression - Given an expression that passes the
2441/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
2442/// in the loop has the value PHIVal. If we can't fold this expression for some
2443/// reason, return null.
2444static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
2445 if (isa<PHINode>(V)) return PHIVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002446 if (Constant *C = dyn_cast<Constant>(V)) return C;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002447 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) return GV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002448 Instruction *I = cast<Instruction>(V);
2449
2450 std::vector<Constant*> Operands;
2451 Operands.resize(I->getNumOperands());
2452
2453 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2454 Operands[i] = EvaluateExpression(I->getOperand(i), PHIVal);
2455 if (Operands[i] == 0) return 0;
2456 }
2457
Chris Lattnerd6e56912007-12-10 22:53:04 +00002458 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2459 return ConstantFoldCompareInstOperands(CI->getPredicate(),
2460 &Operands[0], Operands.size());
2461 else
2462 return ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2463 &Operands[0], Operands.size());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002464}
2465
2466/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
2467/// in the header of its containing loop, we know the loop executes a
2468/// constant number of times, and the PHI node is just a recurrence
2469/// involving constants, fold it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002470Constant *ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002471getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs, const Loop *L){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002472 std::map<PHINode*, Constant*>::iterator I =
2473 ConstantEvolutionLoopExitValue.find(PN);
2474 if (I != ConstantEvolutionLoopExitValue.end())
2475 return I->second;
2476
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002477 if (BEs.ugt(APInt(BEs.getBitWidth(),MaxBruteForceIterations)))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002478 return ConstantEvolutionLoopExitValue[PN] = 0; // Not going to evaluate it.
2479
2480 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
2481
2482 // Since the loop is canonicalized, the PHI node must have two entries. One
2483 // entry must be a constant (coming in from outside of the loop), and the
2484 // second must be derived from the same PHI.
2485 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2486 Constant *StartCST =
2487 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2488 if (StartCST == 0)
2489 return RetVal = 0; // Must be a constant.
2490
2491 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2492 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2493 if (PN2 != PN)
2494 return RetVal = 0; // Not derived from same PHI.
2495
2496 // Execute the loop symbolically to determine the exit value.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002497 if (BEs.getActiveBits() >= 32)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002498 return RetVal = 0; // More than 2^32-1 iterations?? Not doing it!
2499
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002500 unsigned NumIterations = BEs.getZExtValue(); // must be in range
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002501 unsigned IterationNum = 0;
2502 for (Constant *PHIVal = StartCST; ; ++IterationNum) {
2503 if (IterationNum == NumIterations)
2504 return RetVal = PHIVal; // Got exit value!
2505
2506 // Compute the value of the PHI node for the next iteration.
2507 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2508 if (NextPHI == PHIVal)
2509 return RetVal = NextPHI; // Stopped evolving!
2510 if (NextPHI == 0)
2511 return 0; // Couldn't evaluate!
2512 PHIVal = NextPHI;
2513 }
2514}
2515
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002516/// ComputeBackedgeTakenCountExhaustively - If the trip is known to execute a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002517/// constant number of times (the condition evolves only from constants),
2518/// try to evaluate a few iterations of the loop until we get the exit
2519/// condition gets a value of ExitWhen (true or false). If we cannot
2520/// evaluate the trip count of the loop, return UnknownValue.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002521SCEVHandle ScalarEvolution::
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002522ComputeBackedgeTakenCountExhaustively(const Loop *L, Value *Cond, bool ExitWhen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002523 PHINode *PN = getConstantEvolvingPHI(Cond, L);
2524 if (PN == 0) return UnknownValue;
2525
2526 // Since the loop is canonicalized, the PHI node must have two entries. One
2527 // entry must be a constant (coming in from outside of the loop), and the
2528 // second must be derived from the same PHI.
2529 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1));
2530 Constant *StartCST =
2531 dyn_cast<Constant>(PN->getIncomingValue(!SecondIsBackedge));
2532 if (StartCST == 0) return UnknownValue; // Must be a constant.
2533
2534 Value *BEValue = PN->getIncomingValue(SecondIsBackedge);
2535 PHINode *PN2 = getConstantEvolvingPHI(BEValue, L);
2536 if (PN2 != PN) return UnknownValue; // Not derived from same PHI.
2537
2538 // Okay, we find a PHI node that defines the trip count of this loop. Execute
2539 // the loop symbolically to determine when the condition gets a value of
2540 // "ExitWhen".
2541 unsigned IterationNum = 0;
2542 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
2543 for (Constant *PHIVal = StartCST;
2544 IterationNum != MaxIterations; ++IterationNum) {
2545 ConstantInt *CondVal =
2546 dyn_cast_or_null<ConstantInt>(EvaluateExpression(Cond, PHIVal));
2547
2548 // Couldn't symbolically evaluate.
2549 if (!CondVal) return UnknownValue;
2550
2551 if (CondVal->getValue() == uint64_t(ExitWhen)) {
2552 ConstantEvolutionLoopExitValue[PN] = PHIVal;
2553 ++NumBruteForceTripCountsComputed;
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002554 return getConstant(ConstantInt::get(Type::Int32Ty, IterationNum));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002555 }
2556
2557 // Compute the value of the PHI node for the next iteration.
2558 Constant *NextPHI = EvaluateExpression(BEValue, PHIVal);
2559 if (NextPHI == 0 || NextPHI == PHIVal)
2560 return UnknownValue; // Couldn't evaluate or not making progress...
2561 PHIVal = NextPHI;
2562 }
2563
2564 // Too many iterations were needed to evaluate.
2565 return UnknownValue;
2566}
2567
2568/// getSCEVAtScope - Compute the value of the specified expression within the
2569/// indicated loop (which may be null to indicate in no loop). If the
2570/// expression cannot be evaluated, return UnknownValue.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002571SCEVHandle ScalarEvolution::getSCEVAtScope(SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002572 // FIXME: this should be turned into a virtual method on SCEV!
2573
2574 if (isa<SCEVConstant>(V)) return V;
2575
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002576 // If this instruction is evolved from a constant-evolving PHI, compute the
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002577 // exit value from the loop without using SCEVs.
2578 if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
2579 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002580 const Loop *LI = (*this->LI)[I->getParent()];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002581 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
2582 if (PHINode *PN = dyn_cast<PHINode>(I))
2583 if (PN->getParent() == LI->getHeader()) {
2584 // Okay, there is no closed form solution for the PHI node. Check
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002585 // to see if the loop that contains it has a known backedge-taken
2586 // count. If so, we may be able to force computation of the exit
2587 // value.
2588 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(LI);
2589 if (SCEVConstant *BTCC =
2590 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002591 // Okay, we know how many times the containing loop executes. If
2592 // this is a constant evolving PHI node, get the final value at
2593 // the specified iteration number.
2594 Constant *RV = getConstantEvolutionLoopExitValue(PN,
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002595 BTCC->getValue()->getValue(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596 LI);
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002597 if (RV) return getUnknown(RV);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002598 }
2599 }
2600
2601 // Okay, this is an expression that we cannot symbolically evaluate
2602 // into a SCEV. Check to see if it's possible to symbolically evaluate
2603 // the arguments into constants, and if so, try to constant propagate the
2604 // result. This is particularly useful for computing loop exit values.
2605 if (CanConstantFold(I)) {
2606 std::vector<Constant*> Operands;
2607 Operands.reserve(I->getNumOperands());
2608 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2609 Value *Op = I->getOperand(i);
2610 if (Constant *C = dyn_cast<Constant>(Op)) {
2611 Operands.push_back(C);
2612 } else {
Chris Lattner3fff4642007-11-23 08:46:22 +00002613 // If any of the operands is non-constant and if they are
Dan Gohman01c2ee72009-04-16 03:18:22 +00002614 // non-integer and non-pointer, don't even try to analyze them
2615 // with scev techniques.
2616 if (!isa<IntegerType>(Op->getType()) &&
2617 !isa<PointerType>(Op->getType()))
Chris Lattner3fff4642007-11-23 08:46:22 +00002618 return V;
Dan Gohman01c2ee72009-04-16 03:18:22 +00002619
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002620 SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
2621 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
2622 Operands.push_back(ConstantExpr::getIntegerCast(SC->getValue(),
2623 Op->getType(),
2624 false));
2625 else if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(OpV)) {
2626 if (Constant *C = dyn_cast<Constant>(SU->getValue()))
2627 Operands.push_back(ConstantExpr::getIntegerCast(C,
2628 Op->getType(),
2629 false));
2630 else
2631 return V;
2632 } else {
2633 return V;
2634 }
2635 }
2636 }
Chris Lattnerd6e56912007-12-10 22:53:04 +00002637
2638 Constant *C;
2639 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
2640 C = ConstantFoldCompareInstOperands(CI->getPredicate(),
2641 &Operands[0], Operands.size());
2642 else
2643 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(),
2644 &Operands[0], Operands.size());
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002645 return getUnknown(C);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002646 }
2647 }
2648
2649 // This is some other type of SCEVUnknown, just return it.
2650 return V;
2651 }
2652
2653 if (SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
2654 // Avoid performing the look-up in the common case where the specified
2655 // expression has no loop-variant portions.
2656 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
2657 SCEVHandle OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2658 if (OpAtScope != Comm->getOperand(i)) {
2659 if (OpAtScope == UnknownValue) return UnknownValue;
2660 // Okay, at least one of these operands is loop variant but might be
2661 // foldable. Build a new instance of the folded commutative expression.
2662 std::vector<SCEVHandle> NewOps(Comm->op_begin(), Comm->op_begin()+i);
2663 NewOps.push_back(OpAtScope);
2664
2665 for (++i; i != e; ++i) {
2666 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
2667 if (OpAtScope == UnknownValue) return UnknownValue;
2668 NewOps.push_back(OpAtScope);
2669 }
2670 if (isa<SCEVAddExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002671 return getAddExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002672 if (isa<SCEVMulExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002673 return getMulExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002674 if (isa<SCEVSMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002675 return getSMaxExpr(NewOps);
Nick Lewyckye7a24ff2008-02-20 06:48:22 +00002676 if (isa<SCEVUMaxExpr>(Comm))
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002677 return getUMaxExpr(NewOps);
Nick Lewycky711640a2007-11-25 22:41:31 +00002678 assert(0 && "Unknown commutative SCEV type!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002679 }
2680 }
2681 // If we got here, all operands are loop invariant.
2682 return Comm;
2683 }
2684
Nick Lewycky35b56022009-01-13 09:18:58 +00002685 if (SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
2686 SCEVHandle LHS = getSCEVAtScope(Div->getLHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002687 if (LHS == UnknownValue) return LHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00002688 SCEVHandle RHS = getSCEVAtScope(Div->getRHS(), L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002689 if (RHS == UnknownValue) return RHS;
Nick Lewycky35b56022009-01-13 09:18:58 +00002690 if (LHS == Div->getLHS() && RHS == Div->getRHS())
2691 return Div; // must be loop invariant
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002692 return getUDivExpr(LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002693 }
2694
2695 // If this is a loop recurrence for a loop that does not contain L, then we
2696 // are dealing with the final value computed by the loop.
2697 if (SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
2698 if (!L || !AddRec->getLoop()->contains(L->getHeader())) {
2699 // To evaluate this recurrence, we need to know how many times the AddRec
2700 // loop iterates. Compute this now.
Dan Gohman76d5a0d2009-02-24 18:55:53 +00002701 SCEVHandle BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
2702 if (BackedgeTakenCount == UnknownValue) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002703
Eli Friedman7489ec92008-08-04 23:49:06 +00002704 // Then, evaluate the AddRec.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002705 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002706 }
2707 return UnknownValue;
2708 }
2709
2710 //assert(0 && "Unknown SCEV type!");
2711 return UnknownValue;
2712}
2713
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002714/// getSCEVAtScope - Return a SCEV expression handle for the specified value
2715/// at the specified scope in the program. The L value specifies a loop
2716/// nest to evaluate the expression at, where null is the top-level or a
2717/// specified loop is immediately inside of the loop.
2718///
2719/// This method can be used to compute the exit value for a variable defined
2720/// in a loop by querying what the value will hold in the parent loop.
2721///
2722/// If this value is not computable at this scope, a SCEVCouldNotCompute
2723/// object is returned.
2724SCEVHandle ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
2725 return getSCEVAtScope(getSCEV(V), L);
2726}
2727
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002728/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
2729/// following equation:
2730///
2731/// A * X = B (mod N)
2732///
2733/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
2734/// A and B isn't important.
2735///
2736/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
2737static SCEVHandle SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
2738 ScalarEvolution &SE) {
2739 uint32_t BW = A.getBitWidth();
2740 assert(BW == B.getBitWidth() && "Bit widths must be the same.");
2741 assert(A != 0 && "A must be non-zero.");
2742
2743 // 1. D = gcd(A, N)
2744 //
2745 // The gcd of A and N may have only one prime factor: 2. The number of
2746 // trailing zeros in A is its multiplicity
2747 uint32_t Mult2 = A.countTrailingZeros();
2748 // D = 2^Mult2
2749
2750 // 2. Check if B is divisible by D.
2751 //
2752 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
2753 // is not less than multiplicity of this prime factor for D.
2754 if (B.countTrailingZeros() < Mult2)
Dan Gohman0ad08b02009-04-18 17:58:19 +00002755 return SE.getCouldNotCompute();
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002756
2757 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
2758 // modulo (N / D).
2759 //
2760 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
2761 // bit width during computations.
2762 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
2763 APInt Mod(BW + 1, 0);
2764 Mod.set(BW - Mult2); // Mod = N / D
2765 APInt I = AD.multiplicativeInverse(Mod);
2766
2767 // 4. Compute the minimum unsigned root of the equation:
2768 // I * (B / D) mod (N / D)
2769 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
2770
2771 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
2772 // bits.
2773 return SE.getConstant(Result.trunc(BW));
2774}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002775
2776/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
2777/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
2778/// might be the same) or two SCEVCouldNotCompute objects.
2779///
2780static std::pair<SCEVHandle,SCEVHandle>
Dan Gohman89f85052007-10-22 18:31:58 +00002781SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002782 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
2783 SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
2784 SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
2785 SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
2786
2787 // We currently can only solve this if the coefficients are constants.
2788 if (!LC || !MC || !NC) {
Dan Gohman0ad08b02009-04-18 17:58:19 +00002789 SCEV *CNC = SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002790 return std::make_pair(CNC, CNC);
2791 }
2792
2793 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth();
2794 const APInt &L = LC->getValue()->getValue();
2795 const APInt &M = MC->getValue()->getValue();
2796 const APInt &N = NC->getValue()->getValue();
2797 APInt Two(BitWidth, 2);
2798 APInt Four(BitWidth, 4);
2799
2800 {
2801 using namespace APIntOps;
2802 const APInt& C = L;
2803 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
2804 // The B coefficient is M-N/2
2805 APInt B(M);
2806 B -= sdiv(N,Two);
2807
2808 // The A coefficient is N/2
2809 APInt A(N.sdiv(Two));
2810
2811 // Compute the B^2-4ac term.
2812 APInt SqrtTerm(B);
2813 SqrtTerm *= B;
2814 SqrtTerm -= Four * (A * C);
2815
2816 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
2817 // integer value or else APInt::sqrt() will assert.
2818 APInt SqrtVal(SqrtTerm.sqrt());
2819
2820 // Compute the two solutions for the quadratic formula.
2821 // The divisions must be performed as signed divisions.
2822 APInt NegB(-B);
2823 APInt TwoA( A << 1 );
Nick Lewycky35776692008-11-03 02:43:49 +00002824 if (TwoA.isMinValue()) {
Dan Gohman0ad08b02009-04-18 17:58:19 +00002825 SCEV *CNC = SE.getCouldNotCompute();
Nick Lewycky35776692008-11-03 02:43:49 +00002826 return std::make_pair(CNC, CNC);
2827 }
2828
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002829 ConstantInt *Solution1 = ConstantInt::get((NegB + SqrtVal).sdiv(TwoA));
2830 ConstantInt *Solution2 = ConstantInt::get((NegB - SqrtVal).sdiv(TwoA));
2831
Dan Gohman89f85052007-10-22 18:31:58 +00002832 return std::make_pair(SE.getConstant(Solution1),
2833 SE.getConstant(Solution2));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002834 } // end APIntOps namespace
2835}
2836
2837/// HowFarToZero - Return the number of times a backedge comparing the specified
2838/// value to zero will execute. If not computable, return UnknownValue
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002839SCEVHandle ScalarEvolution::HowFarToZero(SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002840 // If the value is a constant
2841 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
2842 // If the value is already zero, the branch will execute zero times.
2843 if (C->getValue()->isZero()) return C;
2844 return UnknownValue; // Otherwise it will loop infinitely.
2845 }
2846
2847 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
2848 if (!AddRec || AddRec->getLoop() != L)
2849 return UnknownValue;
2850
2851 if (AddRec->isAffine()) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002852 // If this is an affine expression, the execution count of this branch is
2853 // the minimum unsigned root of the following equation:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002854 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002855 // Start + Step*N = 0 (mod 2^BW)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002856 //
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002857 // equivalent to:
2858 //
2859 // Step*N = -Start (mod 2^BW)
2860 //
2861 // where BW is the common bit width of Start and Step.
2862
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002863 // Get the initial value for the loop.
2864 SCEVHandle Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
2865 if (isa<SCEVCouldNotCompute>(Start)) return UnknownValue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002866
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002867 SCEVHandle Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002868
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002869 if (SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step)) {
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002870 // For now we handle only constant steps.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002871
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002872 // First, handle unitary steps.
2873 if (StepC->getValue()->equalsInt(1)) // 1*N = -Start (mod 2^BW), so:
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002874 return getNegativeSCEV(Start); // N = -Start (as unsigned)
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00002875 if (StepC->getValue()->isAllOnesValue()) // -1*N = -Start (mod 2^BW), so:
2876 return Start; // N = Start (as unsigned)
2877
2878 // Then, try to solve the above equation provided that Start is constant.
2879 if (SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
2880 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(),
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002881 -StartC->getValue()->getValue(),
2882 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002883 }
2884 } else if (AddRec->isQuadratic() && AddRec->getType()->isInteger()) {
2885 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
2886 // the quadratic equation to solve it.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002887 std::pair<SCEVHandle,SCEVHandle> Roots = SolveQuadraticEquation(AddRec,
2888 *this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002889 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
2890 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
2891 if (R1) {
2892#if 0
Dan Gohman13058cc2009-04-21 00:47:46 +00002893 errs() << "HFTZ: " << *V << " - sol#1: " << *R1
2894 << " sol#2: " << *R2 << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002895#endif
2896 // Pick the smallest positive root value.
2897 if (ConstantInt *CB =
2898 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
2899 R1->getValue(), R2->getValue()))) {
2900 if (CB->getZExtValue() == false)
2901 std::swap(R1, R2); // R1 is the minimum root now.
2902
2903 // We can only use this value if the chrec ends up with an exact zero
2904 // value at this index. When solving for "X*X != 5", for example, we
2905 // should not accept a root of 2.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002906 SCEVHandle Val = AddRec->evaluateAtIteration(R1, *this);
Dan Gohman7b560c42008-06-18 16:23:07 +00002907 if (Val->isZero())
2908 return R1; // We found a quadratic root!
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002909 }
2910 }
2911 }
2912
2913 return UnknownValue;
2914}
2915
2916/// HowFarToNonZero - Return the number of times a backedge checking the
2917/// specified value for nonzero will execute. If not computable, return
2918/// UnknownValue
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002919SCEVHandle ScalarEvolution::HowFarToNonZero(SCEV *V, const Loop *L) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002920 // Loops that look like: while (X == 0) are very strange indeed. We don't
2921 // handle them yet except for the trivial case. This could be expanded in the
2922 // future as needed.
2923
2924 // If the value is a constant, check to see if it is known to be non-zero
2925 // already. If so, the backedge will execute zero times.
2926 if (SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
Nick Lewyckyf6805182008-02-21 09:14:53 +00002927 if (!C->getValue()->isNullValue())
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002928 return getIntegerSCEV(0, C->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002929 return UnknownValue; // Otherwise it will loop infinitely.
2930 }
2931
2932 // We could implement others, but I really doubt anyone writes loops like
2933 // this, and if they did, they would already be constant folded.
2934 return UnknownValue;
2935}
2936
Dan Gohman1cddf972008-09-15 22:18:04 +00002937/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
2938/// (which may not be an immediate predecessor) which has exactly one
2939/// successor from which BB is reachable, or null if no such block is
2940/// found.
2941///
2942BasicBlock *
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002943ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
Dan Gohman1cddf972008-09-15 22:18:04 +00002944 // If the block has a unique predecessor, the predecessor must have
2945 // no other successors from which BB is reachable.
2946 if (BasicBlock *Pred = BB->getSinglePredecessor())
2947 return Pred;
2948
2949 // A loop's header is defined to be a block that dominates the loop.
2950 // If the loop has a preheader, it must be a block that has exactly
2951 // one successor that can reach BB. This is slightly more strict
2952 // than necessary, but works if critical edges are split.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002953 if (Loop *L = LI->getLoopFor(BB))
Dan Gohman1cddf972008-09-15 22:18:04 +00002954 return L->getLoopPreheader();
2955
2956 return 0;
2957}
2958
Dan Gohmancacd2012009-02-12 22:19:27 +00002959/// isLoopGuardedByCond - Test whether entry to the loop is protected by
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002960/// a conditional between LHS and RHS.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00002961bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
Dan Gohmancacd2012009-02-12 22:19:27 +00002962 ICmpInst::Predicate Pred,
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002963 SCEV *LHS, SCEV *RHS) {
2964 BasicBlock *Preheader = L->getLoopPreheader();
2965 BasicBlock *PreheaderDest = L->getHeader();
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002966
Dan Gohmanab678fb2008-08-12 20:17:31 +00002967 // Starting at the preheader, climb up the predecessor chain, as long as
Dan Gohman1cddf972008-09-15 22:18:04 +00002968 // there are predecessors that can be found that have unique successors
2969 // leading to the original header.
2970 for (; Preheader;
2971 PreheaderDest = Preheader,
2972 Preheader = getPredecessorWithUniqueSuccessorForBB(Preheader)) {
Dan Gohmanab678fb2008-08-12 20:17:31 +00002973
2974 BranchInst *LoopEntryPredicate =
Nick Lewycky1b020bf2008-07-12 07:41:32 +00002975 dyn_cast<BranchInst>(Preheader->getTerminator());
Dan Gohmanab678fb2008-08-12 20:17:31 +00002976 if (!LoopEntryPredicate ||
2977 LoopEntryPredicate->isUnconditional())
2978 continue;
2979
2980 ICmpInst *ICI = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
2981 if (!ICI) continue;
2982
2983 // Now that we found a conditional branch that dominates the loop, check to
2984 // see if it is the comparison we are looking for.
2985 Value *PreCondLHS = ICI->getOperand(0);
2986 Value *PreCondRHS = ICI->getOperand(1);
2987 ICmpInst::Predicate Cond;
2988 if (LoopEntryPredicate->getSuccessor(0) == PreheaderDest)
2989 Cond = ICI->getPredicate();
2990 else
2991 Cond = ICI->getInversePredicate();
2992
Dan Gohmancacd2012009-02-12 22:19:27 +00002993 if (Cond == Pred)
2994 ; // An exact match.
2995 else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
2996 ; // The actual condition is beyond sufficient.
2997 else
2998 // Check a few special cases.
2999 switch (Cond) {
3000 case ICmpInst::ICMP_UGT:
3001 if (Pred == ICmpInst::ICMP_ULT) {
3002 std::swap(PreCondLHS, PreCondRHS);
3003 Cond = ICmpInst::ICMP_ULT;
3004 break;
3005 }
3006 continue;
3007 case ICmpInst::ICMP_SGT:
3008 if (Pred == ICmpInst::ICMP_SLT) {
3009 std::swap(PreCondLHS, PreCondRHS);
3010 Cond = ICmpInst::ICMP_SLT;
3011 break;
3012 }
3013 continue;
3014 case ICmpInst::ICMP_NE:
3015 // Expressions like (x >u 0) are often canonicalized to (x != 0),
3016 // so check for this case by checking if the NE is comparing against
3017 // a minimum or maximum constant.
3018 if (!ICmpInst::isTrueWhenEqual(Pred))
3019 if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
3020 const APInt &A = CI->getValue();
3021 switch (Pred) {
3022 case ICmpInst::ICMP_SLT:
3023 if (A.isMaxSignedValue()) break;
3024 continue;
3025 case ICmpInst::ICMP_SGT:
3026 if (A.isMinSignedValue()) break;
3027 continue;
3028 case ICmpInst::ICMP_ULT:
3029 if (A.isMaxValue()) break;
3030 continue;
3031 case ICmpInst::ICMP_UGT:
3032 if (A.isMinValue()) break;
3033 continue;
3034 default:
3035 continue;
3036 }
3037 Cond = ICmpInst::ICMP_NE;
3038 // NE is symmetric but the original comparison may not be. Swap
3039 // the operands if necessary so that they match below.
3040 if (isa<SCEVConstant>(LHS))
3041 std::swap(PreCondLHS, PreCondRHS);
3042 break;
3043 }
3044 continue;
3045 default:
3046 // We weren't able to reconcile the condition.
3047 continue;
3048 }
Dan Gohmanab678fb2008-08-12 20:17:31 +00003049
3050 if (!PreCondLHS->getType()->isInteger()) continue;
3051
3052 SCEVHandle PreCondLHSSCEV = getSCEV(PreCondLHS);
3053 SCEVHandle PreCondRHSSCEV = getSCEV(PreCondRHS);
3054 if ((LHS == PreCondLHSSCEV && RHS == PreCondRHSSCEV) ||
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003055 (LHS == getNotSCEV(PreCondRHSSCEV) &&
3056 RHS == getNotSCEV(PreCondLHSSCEV)))
Dan Gohmanab678fb2008-08-12 20:17:31 +00003057 return true;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003058 }
3059
Dan Gohmanab678fb2008-08-12 20:17:31 +00003060 return false;
Nick Lewycky1b020bf2008-07-12 07:41:32 +00003061}
3062
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003063/// HowManyLessThans - Return the number of times a backedge containing the
3064/// specified less-than comparison will execute. If not computable, return
3065/// UnknownValue.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003066SCEVHandle ScalarEvolution::
Nick Lewycky35b56022009-01-13 09:18:58 +00003067HowManyLessThans(SCEV *LHS, SCEV *RHS, const Loop *L, bool isSigned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003068 // Only handle: "ADDREC < LoopInvariant".
3069 if (!RHS->isLoopInvariant(L)) return UnknownValue;
3070
3071 SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS);
3072 if (!AddRec || AddRec->getLoop() != L)
3073 return UnknownValue;
3074
3075 if (AddRec->isAffine()) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003076 // FORNOW: We only support unit strides.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003077 SCEVHandle One = getIntegerSCEV(1, RHS->getType());
Nick Lewycky35b56022009-01-13 09:18:58 +00003078 if (AddRec->getOperand(1) != One)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003079 return UnknownValue;
3080
Nick Lewycky35b56022009-01-13 09:18:58 +00003081 // We know the LHS is of the form {n,+,1} and the RHS is some loop-invariant
3082 // m. So, we count the number of iterations in which {n,+,1} < m is true.
3083 // Note that we cannot simply return max(m-n,0) because it's not safe to
Wojciech Matyjewicz1377a542008-02-13 12:21:32 +00003084 // treat m-n as signed nor unsigned due to overflow possibility.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003085
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003086 // First, we get the value of the LHS in the first iteration: n
3087 SCEVHandle Start = AddRec->getOperand(0);
3088
Dan Gohmancacd2012009-02-12 22:19:27 +00003089 if (isLoopGuardedByCond(L,
3090 isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003091 getMinusSCEV(AddRec->getOperand(0), One), RHS)) {
Nick Lewycky35b56022009-01-13 09:18:58 +00003092 // Since we know that the condition is true in order to enter the loop,
3093 // we know that it will run exactly m-n times.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003094 return getMinusSCEV(RHS, Start);
Nick Lewycky35b56022009-01-13 09:18:58 +00003095 } else {
3096 // Then, we get the value of the LHS in the first iteration in which the
3097 // above condition doesn't hold. This equals to max(m,n).
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003098 SCEVHandle End = isSigned ? getSMaxExpr(RHS, Start)
3099 : getUMaxExpr(RHS, Start);
Wojciech Matyjewiczebc77b12008-02-13 11:51:34 +00003100
Nick Lewycky35b56022009-01-13 09:18:58 +00003101 // Finally, we subtract these two values to get the number of times the
3102 // backedge is executed: max(m,n)-n.
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003103 return getMinusSCEV(End, Start);
Nick Lewycky64d1fff2008-12-16 08:30:01 +00003104 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003105 }
3106
3107 return UnknownValue;
3108}
3109
3110/// getNumIterationsInRange - Return the number of iterations of this loop that
3111/// produce values in the specified constant range. Another way of looking at
3112/// this is that it returns the first iteration number where the value is not in
3113/// the condition, thus computing the exit count. If the iteration count can't
3114/// be computed, an instance of SCEVCouldNotCompute is returned.
Dan Gohman89f85052007-10-22 18:31:58 +00003115SCEVHandle SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
3116 ScalarEvolution &SE) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003117 if (Range.isFullSet()) // Infinite loop.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003118 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003119
3120 // If the start is a non-zero constant, shift the range to simplify things.
3121 if (SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
3122 if (!SC->getValue()->isZero()) {
3123 std::vector<SCEVHandle> Operands(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003124 Operands[0] = SE.getIntegerSCEV(0, SC->getType());
3125 SCEVHandle Shifted = SE.getAddRecExpr(Operands, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003126 if (SCEVAddRecExpr *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
3127 return ShiftedAddRec->getNumIterationsInRange(
Dan Gohman89f85052007-10-22 18:31:58 +00003128 Range.subtract(SC->getValue()->getValue()), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003129 // This is strange and shouldn't happen.
Dan Gohman0ad08b02009-04-18 17:58:19 +00003130 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003131 }
3132
3133 // The only time we can solve this is when we have all constant indices.
3134 // Otherwise, we cannot determine the overflow conditions.
3135 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
3136 if (!isa<SCEVConstant>(getOperand(i)))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003137 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003138
3139
3140 // Okay at this point we know that all elements of the chrec are constants and
3141 // that the start element is zero.
3142
3143 // First check to see if the range contains zero. If not, the first
3144 // iteration exits.
Dan Gohmanb98c1a32009-04-21 01:07:12 +00003145 unsigned BitWidth = SE.getTypeSizeInBits(getType());
Dan Gohman01c2ee72009-04-16 03:18:22 +00003146 if (!Range.contains(APInt(BitWidth, 0)))
Dan Gohman89f85052007-10-22 18:31:58 +00003147 return SE.getConstant(ConstantInt::get(getType(),0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003148
3149 if (isAffine()) {
3150 // If this is an affine expression then we have this situation:
3151 // Solve {0,+,A} in Range === Ax in Range
3152
3153 // We know that zero is in the range. If A is positive then we know that
3154 // the upper value of the range must be the first possible exit value.
3155 // If A is negative then the lower of the range is the last possible loop
3156 // value. Also note that we already checked for a full range.
Dan Gohman01c2ee72009-04-16 03:18:22 +00003157 APInt One(BitWidth,1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003158 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue();
3159 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
3160
3161 // The exit value should be (End+A)/A.
Nick Lewyckya0facae2007-09-27 14:12:54 +00003162 APInt ExitVal = (End + A).udiv(A);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003163 ConstantInt *ExitValue = ConstantInt::get(ExitVal);
3164
3165 // Evaluate at the exit value. If we really did fall out of the valid
3166 // range, then we computed our trip count, otherwise wrap around or other
3167 // things must have happened.
Dan Gohman89f85052007-10-22 18:31:58 +00003168 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003169 if (Range.contains(Val->getValue()))
Dan Gohman0ad08b02009-04-18 17:58:19 +00003170 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003171
3172 // Ensure that the previous value is in the range. This is a sanity check.
3173 assert(Range.contains(
3174 EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003175 ConstantInt::get(ExitVal - One), SE)->getValue()) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003176 "Linear scev computation is off in a bad way!");
Dan Gohman89f85052007-10-22 18:31:58 +00003177 return SE.getConstant(ExitValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003178 } else if (isQuadratic()) {
3179 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
3180 // quadratic equation to solve it. To do this, we must frame our problem in
3181 // terms of figuring out when zero is crossed, instead of when
3182 // Range.getUpper() is crossed.
3183 std::vector<SCEVHandle> NewOps(op_begin(), op_end());
Dan Gohman89f85052007-10-22 18:31:58 +00003184 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
3185 SCEVHandle NewAddRec = SE.getAddRecExpr(NewOps, getLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003186
3187 // Next, solve the constructed addrec
3188 std::pair<SCEVHandle,SCEVHandle> Roots =
Dan Gohman89f85052007-10-22 18:31:58 +00003189 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003190 SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
3191 SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
3192 if (R1) {
3193 // Pick the smallest positive root value.
3194 if (ConstantInt *CB =
3195 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT,
3196 R1->getValue(), R2->getValue()))) {
3197 if (CB->getZExtValue() == false)
3198 std::swap(R1, R2); // R1 is the minimum root now.
3199
3200 // Make sure the root is not off by one. The returned iteration should
3201 // not be in the range, but the previous one should be. When solving
3202 // for "X*X < 5", for example, we should not return a root of 2.
3203 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
Dan Gohman89f85052007-10-22 18:31:58 +00003204 R1->getValue(),
3205 SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003206 if (Range.contains(R1Val->getValue())) {
3207 // The next iteration must be out of the range...
3208 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()+1);
3209
Dan Gohman89f85052007-10-22 18:31:58 +00003210 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003211 if (!Range.contains(R1Val->getValue()))
Dan Gohman89f85052007-10-22 18:31:58 +00003212 return SE.getConstant(NextVal);
Dan Gohman0ad08b02009-04-18 17:58:19 +00003213 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003214 }
3215
3216 // If R1 was not in the range, then it is a good return value. Make
3217 // sure that R1-1 WAS in the range though, just in case.
3218 ConstantInt *NextVal = ConstantInt::get(R1->getValue()->getValue()-1);
Dan Gohman89f85052007-10-22 18:31:58 +00003219 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003220 if (Range.contains(R1Val->getValue()))
3221 return R1;
Dan Gohman0ad08b02009-04-18 17:58:19 +00003222 return SE.getCouldNotCompute(); // Something strange happened
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003223 }
3224 }
3225 }
3226
Dan Gohman0ad08b02009-04-18 17:58:19 +00003227 return SE.getCouldNotCompute();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003228}
3229
3230
3231
3232//===----------------------------------------------------------------------===//
3233// ScalarEvolution Class Implementation
3234//===----------------------------------------------------------------------===//
3235
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003236ScalarEvolution::ScalarEvolution()
3237 : FunctionPass(&ID), UnknownValue(new SCEVCouldNotCompute()) {
3238}
3239
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003240bool ScalarEvolution::runOnFunction(Function &F) {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003241 this->F = &F;
3242 LI = &getAnalysis<LoopInfo>();
3243 TD = getAnalysisIfAvailable<TargetData>();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003244 return false;
3245}
3246
3247void ScalarEvolution::releaseMemory() {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003248 Scalars.clear();
3249 BackedgeTakenCounts.clear();
3250 ConstantEvolutionLoopExitValue.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003251}
3252
3253void ScalarEvolution::getAnalysisUsage(AnalysisUsage &AU) const {
3254 AU.setPreservesAll();
3255 AU.addRequiredTransitive<LoopInfo>();
Dan Gohman01c2ee72009-04-16 03:18:22 +00003256}
3257
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003258bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003259 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003260}
3261
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003262static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003263 const Loop *L) {
3264 // Print all inner loops first
3265 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
3266 PrintLoopInfo(OS, SE, *I);
3267
Nick Lewyckye5da1912008-01-02 02:49:20 +00003268 OS << "Loop " << L->getHeader()->getName() << ": ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003269
Devang Patel02451fa2007-08-21 00:31:24 +00003270 SmallVector<BasicBlock*, 8> ExitBlocks;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003271 L->getExitBlocks(ExitBlocks);
3272 if (ExitBlocks.size() != 1)
Nick Lewyckye5da1912008-01-02 02:49:20 +00003273 OS << "<multiple exits> ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003274
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003275 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
3276 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003277 } else {
Dan Gohman76d5a0d2009-02-24 18:55:53 +00003278 OS << "Unpredictable backedge-taken count. ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003279 }
3280
Nick Lewyckye5da1912008-01-02 02:49:20 +00003281 OS << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003282}
3283
Dan Gohman13058cc2009-04-21 00:47:46 +00003284void ScalarEvolution::print(raw_ostream &OS, const Module* ) const {
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003285 // ScalarEvolution's implementaiton of the print method is to print
3286 // out SCEV values of all instructions that are interesting. Doing
3287 // this potentially causes it to create new SCEV objects though,
3288 // which technically conflicts with the const qualifier. This isn't
3289 // observable from outside the class though (the hasSCEV function
3290 // notwithstanding), so casting away the const isn't dangerous.
3291 ScalarEvolution &SE = *const_cast<ScalarEvolution*>(this);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003292
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003293 OS << "Classifying expressions for: " << F->getName() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003294 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
3295 if (I->getType()->isInteger()) {
3296 OS << *I;
Dan Gohmanabe991f2008-09-14 17:21:12 +00003297 OS << " --> ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003298 SCEVHandle SV = SE.getSCEV(&*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003299 SV->print(OS);
3300 OS << "\t\t";
3301
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003302 if (const Loop *L = LI->getLoopFor((*I).getParent())) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003303 OS << "Exits: ";
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003304 SCEVHandle ExitValue = SE.getSCEVAtScope(&*I, L->getParentLoop());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003305 if (isa<SCEVCouldNotCompute>(ExitValue)) {
3306 OS << "<<Unknown>>";
3307 } else {
3308 OS << *ExitValue;
3309 }
3310 }
3311
3312
3313 OS << "\n";
3314 }
3315
Dan Gohmanffd36ba2009-04-21 23:15:49 +00003316 OS << "Determining loop execution counts for: " << F->getName() << "\n";
3317 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
3318 PrintLoopInfo(OS, &SE, *I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003319}
Dan Gohman13058cc2009-04-21 00:47:46 +00003320
3321void ScalarEvolution::print(std::ostream &o, const Module *M) const {
3322 raw_os_ostream OS(o);
3323 print(OS, M);
3324}