blob: 5e32eba7f72d0ea0c2281f215e5896fec487874a [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
390Visibility Styles
391-----------------
392
393All Global Variables and Functions have one of the following visibility
394styles:
395
396"``default``" - Default style
397 On targets that use the ELF object file format, default visibility
398 means that the declaration is visible to other modules and, in
399 shared libraries, means that the declared entity may be overridden.
400 On Darwin, default visibility means that the declaration is visible
401 to other modules. Default visibility corresponds to "external
402 linkage" in the language.
403"``hidden``" - Hidden style
404 Two declarations of an object with hidden visibility refer to the
405 same object if they are in the same shared object. Usually, hidden
406 visibility indicates that the symbol will not be placed into the
407 dynamic symbol table, so no other module (executable or shared
408 library) can reference it directly.
409"``protected``" - Protected style
410 On ELF, protected visibility indicates that the symbol will be
411 placed in the dynamic symbol table, but that references within the
412 defining module will bind to the local symbol. That is, the symbol
413 cannot be overridden by another module.
414
415Named Types
416-----------
417
418LLVM IR allows you to specify name aliases for certain types. This can
419make it easier to read the IR and make the IR more condensed
420(particularly when recursive types are involved). An example of a name
421specification is:
422
423.. code-block:: llvm
424
425 %mytype = type { %mytype*, i32 }
426
427You may give a name to any :ref:`type <typesystem>` except
428":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
429expected with the syntax "%mytype".
430
431Note that type names are aliases for the structural type that they
432indicate, and that you can therefore specify multiple names for the same
433type. This often leads to confusing behavior when dumping out a .ll
434file. Since LLVM IR uses structural typing, the name is not part of the
435type. When printing out LLVM IR, the printer will pick *one name* to
436render all types of a particular shape. This means that if you have code
437where two different source types end up having the same LLVM type, that
438the dumper will sometimes print the "wrong" or unexpected type. This is
439an important design point and isn't going to change.
440
441.. _globalvars:
442
443Global Variables
444----------------
445
446Global variables define regions of memory allocated at compilation time
447instead of run-time. Global variables may optionally be initialized, may
448have an explicit section to be placed in, and may have an optional
449explicit alignment specified.
450
451A variable may be defined as ``thread_local``, which means that it will
452not be shared by threads (each thread will have a separated copy of the
453variable). Not all targets support thread-local variables. Optionally, a
454TLS model may be specified:
455
456``localdynamic``
457 For variables that are only used within the current shared library.
458``initialexec``
459 For variables in modules that will not be loaded dynamically.
460``localexec``
461 For variables defined in the executable and only used within it.
462
463The models correspond to the ELF TLS models; see `ELF Handling For
464Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
465more information on under which circumstances the different models may
466be used. The target may choose a different TLS model if the specified
467model is not supported, or if a better choice of model can be made.
468
Michael Gottesmanf5735882013-01-31 05:48:48 +0000469A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000470the contents of the variable will **never** be modified (enabling better
471optimization, allowing the global data to be placed in the read-only
472section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000473initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000474variable.
475
476LLVM explicitly allows *declarations* of global variables to be marked
477constant, even if the final definition of the global is not. This
478capability can be used to enable slightly better optimization of the
479program, but requires the language definition to guarantee that
480optimizations based on the 'constantness' are valid for the translation
481units that do not include the definition.
482
483As SSA values, global variables define pointer values that are in scope
484(i.e. they dominate) all basic blocks in the program. Global variables
485always define a pointer to their "content" type because they describe a
486region of memory, and all memory objects in LLVM are accessed through
487pointers.
488
489Global variables can be marked with ``unnamed_addr`` which indicates
490that the address is not significant, only the content. Constants marked
491like this can be merged with other constants if they have the same
492initializer. Note that a constant with significant address *can* be
493merged with a ``unnamed_addr`` constant, the result being a constant
494whose address is significant.
495
496A global variable may be declared to reside in a target-specific
497numbered address space. For targets that support them, address spaces
498may affect how optimizations are performed and/or what target
499instructions are used to access the variable. The default address space
500is zero. The address space qualifier must precede any other attributes.
501
502LLVM allows an explicit section to be specified for globals. If the
503target supports it, it will emit globals to the section specified.
504
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000505By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000506variables defined within the module are not modified from their
507initial values before the start of the global initializer. This is
508true even for variables potentially accessible from outside the
509module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000510``@llvm.used``. This assumption may be suppressed by marking the
511variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000512
Sean Silvaf722b002012-12-07 10:36:55 +0000513An explicit alignment may be specified for a global, which must be a
514power of 2. If not present, or if the alignment is set to zero, the
515alignment of the global is set by the target to whatever it feels
516convenient. If an explicit alignment is specified, the global is forced
517to have exactly that alignment. Targets and optimizers are not allowed
518to over-align the global if the global has an assigned section. In this
519case, the extra alignment could be observable: for example, code could
520assume that the globals are densely packed in their section and try to
521iterate over them as an array, alignment padding would break this
522iteration.
523
524For example, the following defines a global in a numbered address space
525with an initializer, section, and alignment:
526
527.. code-block:: llvm
528
529 @G = addrspace(5) constant float 1.0, section "foo", align 4
530
531The following example defines a thread-local global with the
532``initialexec`` TLS model:
533
534.. code-block:: llvm
535
536 @G = thread_local(initialexec) global i32 0, align 4
537
538.. _functionstructure:
539
540Functions
541---------
542
543LLVM function definitions consist of the "``define``" keyword, an
544optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
545style <visibility>`, an optional :ref:`calling convention <callingconv>`,
546an optional ``unnamed_addr`` attribute, a return type, an optional
547:ref:`parameter attribute <paramattrs>` for the return type, a function
548name, a (possibly empty) argument list (each with optional :ref:`parameter
549attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
550an optional section, an optional alignment, an optional :ref:`garbage
551collector name <gc>`, an opening curly brace, a list of basic blocks,
552and a closing curly brace.
553
554LLVM function declarations consist of the "``declare``" keyword, an
555optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
556style <visibility>`, an optional :ref:`calling convention <callingconv>`,
557an optional ``unnamed_addr`` attribute, a return type, an optional
558:ref:`parameter attribute <paramattrs>` for the return type, a function
559name, a possibly empty list of arguments, an optional alignment, and an
560optional :ref:`garbage collector name <gc>`.
561
562A function definition contains a list of basic blocks, forming the CFG
563(Control Flow Graph) for the function. Each basic block may optionally
564start with a label (giving the basic block a symbol table entry),
565contains a list of instructions, and ends with a
566:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000567return). If explicit label is not provided, a block is assigned an
568implicit numbered label, using a next value from the same counter as used
569for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
570function entry block does not have explicit label, it will be assigned
571label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000572
573The first basic block in a function is special in two ways: it is
574immediately executed on entrance to the function, and it is not allowed
575to have predecessor basic blocks (i.e. there can not be any branches to
576the entry block of a function). Because the block can have no
577predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
578
579LLVM allows an explicit section to be specified for functions. If the
580target supports it, it will emit functions to the section specified.
581
582An explicit alignment may be specified for a function. If not present,
583or if the alignment is set to zero, the alignment of the function is set
584by the target to whatever it feels convenient. If an explicit alignment
585is specified, the function is forced to have at least that much
586alignment. All alignments must be a power of 2.
587
588If the ``unnamed_addr`` attribute is given, the address is know to not
589be significant and two identical functions can be merged.
590
591Syntax::
592
593 define [linkage] [visibility]
594 [cconv] [ret attrs]
595 <ResultType> @<FunctionName> ([argument list])
596 [fn Attrs] [section "name"] [align N]
597 [gc] { ... }
598
599Aliases
600-------
601
602Aliases act as "second name" for the aliasee value (which can be either
603function, global variable, another alias or bitcast of global value).
604Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
605:ref:`visibility style <visibility>`.
606
607Syntax::
608
609 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
610
611.. _namedmetadatastructure:
612
613Named Metadata
614--------------
615
616Named metadata is a collection of metadata. :ref:`Metadata
617nodes <metadata>` (but not metadata strings) are the only valid
618operands for a named metadata.
619
620Syntax::
621
622 ; Some unnamed metadata nodes, which are referenced by the named metadata.
623 !0 = metadata !{metadata !"zero"}
624 !1 = metadata !{metadata !"one"}
625 !2 = metadata !{metadata !"two"}
626 ; A named metadata.
627 !name = !{!0, !1, !2}
628
629.. _paramattrs:
630
631Parameter Attributes
632--------------------
633
634The return type and each parameter of a function type may have a set of
635*parameter attributes* associated with them. Parameter attributes are
636used to communicate additional information about the result or
637parameters of a function. Parameter attributes are considered to be part
638of the function, not of the function type, so functions with different
639parameter attributes can have the same function type.
640
641Parameter attributes are simple keywords that follow the type specified.
642If multiple parameter attributes are needed, they are space separated.
643For example:
644
645.. code-block:: llvm
646
647 declare i32 @printf(i8* noalias nocapture, ...)
648 declare i32 @atoi(i8 zeroext)
649 declare signext i8 @returns_signed_char()
650
651Note that any attributes for the function result (``nounwind``,
652``readonly``) come immediately after the argument list.
653
654Currently, only the following parameter attributes are defined:
655
656``zeroext``
657 This indicates to the code generator that the parameter or return
658 value should be zero-extended to the extent required by the target's
659 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
660 the caller (for a parameter) or the callee (for a return value).
661``signext``
662 This indicates to the code generator that the parameter or return
663 value should be sign-extended to the extent required by the target's
664 ABI (which is usually 32-bits) by the caller (for a parameter) or
665 the callee (for a return value).
666``inreg``
667 This indicates that this parameter or return value should be treated
668 in a special target-dependent fashion during while emitting code for
669 a function call or return (usually, by putting it in a register as
670 opposed to memory, though some targets use it to distinguish between
671 two different kinds of registers). Use of this attribute is
672 target-specific.
673``byval``
674 This indicates that the pointer parameter should really be passed by
675 value to the function. The attribute implies that a hidden copy of
676 the pointee is made between the caller and the callee, so the callee
677 is unable to modify the value in the caller. This attribute is only
678 valid on LLVM pointer arguments. It is generally used to pass
679 structs and arrays by value, but is also valid on pointers to
680 scalars. The copy is considered to belong to the caller not the
681 callee (for example, ``readonly`` functions should not write to
682 ``byval`` parameters). This is not a valid attribute for return
683 values.
684
685 The byval attribute also supports specifying an alignment with the
686 align attribute. It indicates the alignment of the stack slot to
687 form and the known alignment of the pointer specified to the call
688 site. If the alignment is not specified, then the code generator
689 makes a target-specific assumption.
690
691``sret``
692 This indicates that the pointer parameter specifies the address of a
693 structure that is the return value of the function in the source
694 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000695 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000696 not to trap and to be properly aligned. This may only be applied to
697 the first parameter. This is not a valid attribute for return
698 values.
699``noalias``
700 This indicates that pointer values `*based* <pointeraliasing>` on
701 the argument or return value do not alias pointer values which are
702 not *based* on it, ignoring certain "irrelevant" dependencies. For a
703 call to the parent function, dependencies between memory references
704 from before or after the call and from those during the call are
705 "irrelevant" to the ``noalias`` keyword for the arguments and return
706 value used in that call. The caller shares the responsibility with
707 the callee for ensuring that these requirements are met. For further
708 details, please see the discussion of the NoAlias response in `alias
709 analysis <AliasAnalysis.html#MustMayNo>`_.
710
711 Note that this definition of ``noalias`` is intentionally similar
712 to the definition of ``restrict`` in C99 for function arguments,
713 though it is slightly weaker.
714
715 For function return values, C99's ``restrict`` is not meaningful,
716 while LLVM's ``noalias`` is.
717``nocapture``
718 This indicates that the callee does not make any copies of the
719 pointer that outlive the callee itself. This is not a valid
720 attribute for return values.
721
722.. _nest:
723
724``nest``
725 This indicates that the pointer parameter can be excised using the
726 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000727 attribute for return values and can only be applied to one parameter.
728
729``returned``
730 This indicates that the value of the function always returns the value
731 of the parameter as its return value. This is an optimization hint to
732 the code generator when generating the caller, allowing tail call
733 optimization and omission of register saves and restores in some cases;
734 it is not checked or enforced when generating the callee. The parameter
735 and the function return type must be valid operands for the
736 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
737 return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000738
739.. _gc:
740
741Garbage Collector Names
742-----------------------
743
744Each function may specify a garbage collector name, which is simply a
745string:
746
747.. code-block:: llvm
748
749 define void @f() gc "name" { ... }
750
751The compiler declares the supported values of *name*. Specifying a
752collector which will cause the compiler to alter its output in order to
753support the named garbage collection algorithm.
754
Bill Wendling95ce4c22013-02-06 06:52:58 +0000755.. _attrgrp:
756
757Attribute Groups
758----------------
759
760Attribute groups are groups of attributes that are referenced by objects within
761the IR. They are important for keeping ``.ll`` files readable, because a lot of
762functions will use the same set of attributes. In the degenerative case of a
763``.ll`` file that corresponds to a single ``.c`` file, the single attribute
764group will capture the important command line flags used to build that file.
765
766An attribute group is a module-level object. To use an attribute group, an
767object references the attribute group's ID (e.g. ``#37``). An object may refer
768to more than one attribute group. In that situation, the attributes from the
769different groups are merged.
770
771Here is an example of attribute groups for a function that should always be
772inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
773
774.. code-block:: llvm
775
776 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000777 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000778
779 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000780 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000781
782 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
783 define void @f() #0 #1 { ... }
784
Sean Silvaf722b002012-12-07 10:36:55 +0000785.. _fnattrs:
786
787Function Attributes
788-------------------
789
790Function attributes are set to communicate additional information about
791a function. Function attributes are considered to be part of the
792function, not of the function type, so functions with different function
793attributes can have the same function type.
794
795Function attributes are simple keywords that follow the type specified.
796If multiple attributes are needed, they are space separated. For
797example:
798
799.. code-block:: llvm
800
801 define void @f() noinline { ... }
802 define void @f() alwaysinline { ... }
803 define void @f() alwaysinline optsize { ... }
804 define void @f() optsize { ... }
805
Sean Silvaf722b002012-12-07 10:36:55 +0000806``alignstack(<n>)``
807 This attribute indicates that, when emitting the prologue and
808 epilogue, the backend should forcibly align the stack pointer.
809 Specify the desired alignment, which must be a power of two, in
810 parentheses.
811``alwaysinline``
812 This attribute indicates that the inliner should attempt to inline
813 this function into callers whenever possible, ignoring any active
814 inlining size threshold for this caller.
815``nonlazybind``
816 This attribute suppresses lazy symbol binding for the function. This
817 may make calls to the function faster, at the cost of extra program
818 startup time if the function is not called during program startup.
819``inlinehint``
820 This attribute indicates that the source code contained a hint that
821 inlining this function is desirable (such as the "inline" keyword in
822 C/C++). It is just a hint; it imposes no requirements on the
823 inliner.
824``naked``
825 This attribute disables prologue / epilogue emission for the
826 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000827``nobuiltin``
828 This indicates that the callee function at a call site is not
829 recognized as a built-in function. LLVM will retain the original call
830 and not replace it with equivalent code based on the semantics of the
831 built-in function. This is only valid at call sites, not on function
832 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000833``noduplicate``
834 This attribute indicates that calls to the function cannot be
835 duplicated. A call to a ``noduplicate`` function may be moved
836 within its parent function, but may not be duplicated within
837 its parent function.
838
839 A function containing a ``noduplicate`` call may still
840 be an inlining candidate, provided that the call is not
841 duplicated by inlining. That implies that the function has
842 internal linkage and only has one call site, so the original
843 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000844``noimplicitfloat``
845 This attributes disables implicit floating point instructions.
846``noinline``
847 This attribute indicates that the inliner should never inline this
848 function in any situation. This attribute may not be used together
849 with the ``alwaysinline`` attribute.
850``noredzone``
851 This attribute indicates that the code generator should not use a
852 red zone, even if the target-specific ABI normally permits it.
853``noreturn``
854 This function attribute indicates that the function never returns
855 normally. This produces undefined behavior at runtime if the
856 function ever does dynamically return.
857``nounwind``
858 This function attribute indicates that the function never returns
859 with an unwind or exceptional control flow. If the function does
860 unwind, its runtime behavior is undefined.
861``optsize``
862 This attribute suggests that optimization passes and code generator
863 passes make choices that keep the code size of this function low,
864 and otherwise do optimizations specifically to reduce code size.
865``readnone``
866 This attribute indicates that the function computes its result (or
867 decides to unwind an exception) based strictly on its arguments,
868 without dereferencing any pointer arguments or otherwise accessing
869 any mutable state (e.g. memory, control registers, etc) visible to
870 caller functions. It does not write through any pointer arguments
871 (including ``byval`` arguments) and never changes any state visible
872 to callers. This means that it cannot unwind exceptions by calling
873 the ``C++`` exception throwing methods.
874``readonly``
875 This attribute indicates that the function does not write through
876 any pointer arguments (including ``byval`` arguments) or otherwise
877 modify any state (e.g. memory, control registers, etc) visible to
878 caller functions. It may dereference pointer arguments and read
879 state that may be set in the caller. A readonly function always
880 returns the same value (or unwinds an exception identically) when
881 called with the same set of arguments and global state. It cannot
882 unwind an exception by calling the ``C++`` exception throwing
883 methods.
884``returns_twice``
885 This attribute indicates that this function can return twice. The C
886 ``setjmp`` is an example of such a function. The compiler disables
887 some optimizations (like tail calls) in the caller of these
888 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000889``sanitize_address``
890 This attribute indicates that AddressSanitizer checks
891 (dynamic address safety analysis) are enabled for this function.
892``sanitize_memory``
893 This attribute indicates that MemorySanitizer checks (dynamic detection
894 of accesses to uninitialized memory) are enabled for this function.
895``sanitize_thread``
896 This attribute indicates that ThreadSanitizer checks
897 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000898``ssp``
899 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000900 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000901 placed on the stack before the local variables that's checked upon
902 return from the function to see if it has been overwritten. A
903 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000904 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000905
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000906 - Character arrays larger than ``ssp-buffer-size`` (default 8).
907 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
908 - Calls to alloca() with variable sizes or constant sizes greater than
909 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000910
911 If a function that has an ``ssp`` attribute is inlined into a
912 function that doesn't have an ``ssp`` attribute, then the resulting
913 function will have an ``ssp`` attribute.
914``sspreq``
915 This attribute indicates that the function should *always* emit a
916 stack smashing protector. This overrides the ``ssp`` function
917 attribute.
918
919 If a function that has an ``sspreq`` attribute is inlined into a
920 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000921 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
922 an ``sspreq`` attribute.
923``sspstrong``
924 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000925 protector. This attribute causes a strong heuristic to be used when
926 determining if a function needs stack protectors. The strong heuristic
927 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000928
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000929 - Arrays of any size and type
930 - Aggregates containing an array of any size and type.
931 - Calls to alloca().
932 - Local variables that have had their address taken.
933
934 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000935
936 If a function that has an ``sspstrong`` attribute is inlined into a
937 function that doesn't have an ``sspstrong`` attribute, then the
938 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000939``uwtable``
940 This attribute indicates that the ABI being targeted requires that
941 an unwind table entry be produce for this function even if we can
942 show that no exceptions passes by it. This is normally the case for
943 the ELF x86-64 abi, but it can be disabled for some compilation
944 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000945
946.. _moduleasm:
947
948Module-Level Inline Assembly
949----------------------------
950
951Modules may contain "module-level inline asm" blocks, which corresponds
952to the GCC "file scope inline asm" blocks. These blocks are internally
953concatenated by LLVM and treated as a single unit, but may be separated
954in the ``.ll`` file if desired. The syntax is very simple:
955
956.. code-block:: llvm
957
958 module asm "inline asm code goes here"
959 module asm "more can go here"
960
961The strings can contain any character by escaping non-printable
962characters. The escape sequence used is simply "\\xx" where "xx" is the
963two digit hex code for the number.
964
965The inline asm code is simply printed to the machine code .s file when
966assembly code is generated.
967
968Data Layout
969-----------
970
971A module may specify a target specific data layout string that specifies
972how data is to be laid out in memory. The syntax for the data layout is
973simply:
974
975.. code-block:: llvm
976
977 target datalayout = "layout specification"
978
979The *layout specification* consists of a list of specifications
980separated by the minus sign character ('-'). Each specification starts
981with a letter and may include other information after the letter to
982define some aspect of the data layout. The specifications accepted are
983as follows:
984
985``E``
986 Specifies that the target lays out data in big-endian form. That is,
987 the bits with the most significance have the lowest address
988 location.
989``e``
990 Specifies that the target lays out data in little-endian form. That
991 is, the bits with the least significance have the lowest address
992 location.
993``S<size>``
994 Specifies the natural alignment of the stack in bits. Alignment
995 promotion of stack variables is limited to the natural stack
996 alignment to avoid dynamic stack realignment. The stack alignment
997 must be a multiple of 8-bits. If omitted, the natural stack
998 alignment defaults to "unspecified", which does not prevent any
999 alignment promotions.
1000``p[n]:<size>:<abi>:<pref>``
1001 This specifies the *size* of a pointer and its ``<abi>`` and
1002 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1003 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1004 preceding ``:`` should be omitted too. The address space, ``n`` is
1005 optional, and if not specified, denotes the default address space 0.
1006 The value of ``n`` must be in the range [1,2^23).
1007``i<size>:<abi>:<pref>``
1008 This specifies the alignment for an integer type of a given bit
1009 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1010``v<size>:<abi>:<pref>``
1011 This specifies the alignment for a vector type of a given bit
1012 ``<size>``.
1013``f<size>:<abi>:<pref>``
1014 This specifies the alignment for a floating point type of a given bit
1015 ``<size>``. Only values of ``<size>`` that are supported by the target
1016 will work. 32 (float) and 64 (double) are supported on all targets; 80
1017 or 128 (different flavors of long double) are also supported on some
1018 targets.
1019``a<size>:<abi>:<pref>``
1020 This specifies the alignment for an aggregate type of a given bit
1021 ``<size>``.
1022``s<size>:<abi>:<pref>``
1023 This specifies the alignment for a stack object of a given bit
1024 ``<size>``.
1025``n<size1>:<size2>:<size3>...``
1026 This specifies a set of native integer widths for the target CPU in
1027 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1028 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1029 this set are considered to support most general arithmetic operations
1030 efficiently.
1031
1032When constructing the data layout for a given target, LLVM starts with a
1033default set of specifications which are then (possibly) overridden by
1034the specifications in the ``datalayout`` keyword. The default
1035specifications are given in this list:
1036
1037- ``E`` - big endian
1038- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001039- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001040- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1041- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1042- ``i16:16:16`` - i16 is 16-bit aligned
1043- ``i32:32:32`` - i32 is 32-bit aligned
1044- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1045 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001046- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001047- ``f32:32:32`` - float is 32-bit aligned
1048- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001049- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001050- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1051- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001052- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001053
1054When LLVM is determining the alignment for a given type, it uses the
1055following rules:
1056
1057#. If the type sought is an exact match for one of the specifications,
1058 that specification is used.
1059#. If no match is found, and the type sought is an integer type, then
1060 the smallest integer type that is larger than the bitwidth of the
1061 sought type is used. If none of the specifications are larger than
1062 the bitwidth then the largest integer type is used. For example,
1063 given the default specifications above, the i7 type will use the
1064 alignment of i8 (next largest) while both i65 and i256 will use the
1065 alignment of i64 (largest specified).
1066#. If no match is found, and the type sought is a vector type, then the
1067 largest vector type that is smaller than the sought vector type will
1068 be used as a fall back. This happens because <128 x double> can be
1069 implemented in terms of 64 <2 x double>, for example.
1070
1071The function of the data layout string may not be what you expect.
1072Notably, this is not a specification from the frontend of what alignment
1073the code generator should use.
1074
1075Instead, if specified, the target data layout is required to match what
1076the ultimate *code generator* expects. This string is used by the
1077mid-level optimizers to improve code, and this only works if it matches
1078what the ultimate code generator uses. If you would like to generate IR
1079that does not embed this target-specific detail into the IR, then you
1080don't have to specify the string. This will disable some optimizations
1081that require precise layout information, but this also prevents those
1082optimizations from introducing target specificity into the IR.
1083
1084.. _pointeraliasing:
1085
1086Pointer Aliasing Rules
1087----------------------
1088
1089Any memory access must be done through a pointer value associated with
1090an address range of the memory access, otherwise the behavior is
1091undefined. Pointer values are associated with address ranges according
1092to the following rules:
1093
1094- A pointer value is associated with the addresses associated with any
1095 value it is *based* on.
1096- An address of a global variable is associated with the address range
1097 of the variable's storage.
1098- The result value of an allocation instruction is associated with the
1099 address range of the allocated storage.
1100- A null pointer in the default address-space is associated with no
1101 address.
1102- An integer constant other than zero or a pointer value returned from
1103 a function not defined within LLVM may be associated with address
1104 ranges allocated through mechanisms other than those provided by
1105 LLVM. Such ranges shall not overlap with any ranges of addresses
1106 allocated by mechanisms provided by LLVM.
1107
1108A pointer value is *based* on another pointer value according to the
1109following rules:
1110
1111- A pointer value formed from a ``getelementptr`` operation is *based*
1112 on the first operand of the ``getelementptr``.
1113- The result value of a ``bitcast`` is *based* on the operand of the
1114 ``bitcast``.
1115- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1116 values that contribute (directly or indirectly) to the computation of
1117 the pointer's value.
1118- The "*based* on" relationship is transitive.
1119
1120Note that this definition of *"based"* is intentionally similar to the
1121definition of *"based"* in C99, though it is slightly weaker.
1122
1123LLVM IR does not associate types with memory. The result type of a
1124``load`` merely indicates the size and alignment of the memory from
1125which to load, as well as the interpretation of the value. The first
1126operand type of a ``store`` similarly only indicates the size and
1127alignment of the store.
1128
1129Consequently, type-based alias analysis, aka TBAA, aka
1130``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1131:ref:`Metadata <metadata>` may be used to encode additional information
1132which specialized optimization passes may use to implement type-based
1133alias analysis.
1134
1135.. _volatile:
1136
1137Volatile Memory Accesses
1138------------------------
1139
1140Certain memory accesses, such as :ref:`load <i_load>`'s,
1141:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1142marked ``volatile``. The optimizers must not change the number of
1143volatile operations or change their order of execution relative to other
1144volatile operations. The optimizers *may* change the order of volatile
1145operations relative to non-volatile operations. This is not Java's
1146"volatile" and has no cross-thread synchronization behavior.
1147
Andrew Trick9a6dd022013-01-30 21:19:35 +00001148IR-level volatile loads and stores cannot safely be optimized into
1149llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1150flagged volatile. Likewise, the backend should never split or merge
1151target-legal volatile load/store instructions.
1152
Andrew Trick946317d2013-01-31 00:49:39 +00001153.. admonition:: Rationale
1154
1155 Platforms may rely on volatile loads and stores of natively supported
1156 data width to be executed as single instruction. For example, in C
1157 this holds for an l-value of volatile primitive type with native
1158 hardware support, but not necessarily for aggregate types. The
1159 frontend upholds these expectations, which are intentionally
1160 unspecified in the IR. The rules above ensure that IR transformation
1161 do not violate the frontend's contract with the language.
1162
Sean Silvaf722b002012-12-07 10:36:55 +00001163.. _memmodel:
1164
1165Memory Model for Concurrent Operations
1166--------------------------------------
1167
1168The LLVM IR does not define any way to start parallel threads of
1169execution or to register signal handlers. Nonetheless, there are
1170platform-specific ways to create them, and we define LLVM IR's behavior
1171in their presence. This model is inspired by the C++0x memory model.
1172
1173For a more informal introduction to this model, see the :doc:`Atomics`.
1174
1175We define a *happens-before* partial order as the least partial order
1176that
1177
1178- Is a superset of single-thread program order, and
1179- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1180 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1181 techniques, like pthread locks, thread creation, thread joining,
1182 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1183 Constraints <ordering>`).
1184
1185Note that program order does not introduce *happens-before* edges
1186between a thread and signals executing inside that thread.
1187
1188Every (defined) read operation (load instructions, memcpy, atomic
1189loads/read-modify-writes, etc.) R reads a series of bytes written by
1190(defined) write operations (store instructions, atomic
1191stores/read-modify-writes, memcpy, etc.). For the purposes of this
1192section, initialized globals are considered to have a write of the
1193initializer which is atomic and happens before any other read or write
1194of the memory in question. For each byte of a read R, R\ :sub:`byte`
1195may see any write to the same byte, except:
1196
1197- If write\ :sub:`1` happens before write\ :sub:`2`, and
1198 write\ :sub:`2` happens before R\ :sub:`byte`, then
1199 R\ :sub:`byte` does not see write\ :sub:`1`.
1200- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1201 R\ :sub:`byte` does not see write\ :sub:`3`.
1202
1203Given that definition, R\ :sub:`byte` is defined as follows:
1204
1205- If R is volatile, the result is target-dependent. (Volatile is
1206 supposed to give guarantees which can support ``sig_atomic_t`` in
1207 C/C++, and may be used for accesses to addresses which do not behave
1208 like normal memory. It does not generally provide cross-thread
1209 synchronization.)
1210- Otherwise, if there is no write to the same byte that happens before
1211 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1212- Otherwise, if R\ :sub:`byte` may see exactly one write,
1213 R\ :sub:`byte` returns the value written by that write.
1214- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1215 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1216 Memory Ordering Constraints <ordering>` section for additional
1217 constraints on how the choice is made.
1218- Otherwise R\ :sub:`byte` returns ``undef``.
1219
1220R returns the value composed of the series of bytes it read. This
1221implies that some bytes within the value may be ``undef`` **without**
1222the entire value being ``undef``. Note that this only defines the
1223semantics of the operation; it doesn't mean that targets will emit more
1224than one instruction to read the series of bytes.
1225
1226Note that in cases where none of the atomic intrinsics are used, this
1227model places only one restriction on IR transformations on top of what
1228is required for single-threaded execution: introducing a store to a byte
1229which might not otherwise be stored is not allowed in general.
1230(Specifically, in the case where another thread might write to and read
1231from an address, introducing a store can change a load that may see
1232exactly one write into a load that may see multiple writes.)
1233
1234.. _ordering:
1235
1236Atomic Memory Ordering Constraints
1237----------------------------------
1238
1239Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1240:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1241:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1242an ordering parameter that determines which other atomic instructions on
1243the same address they *synchronize with*. These semantics are borrowed
1244from Java and C++0x, but are somewhat more colloquial. If these
1245descriptions aren't precise enough, check those specs (see spec
1246references in the :doc:`atomics guide <Atomics>`).
1247:ref:`fence <i_fence>` instructions treat these orderings somewhat
1248differently since they don't take an address. See that instruction's
1249documentation for details.
1250
1251For a simpler introduction to the ordering constraints, see the
1252:doc:`Atomics`.
1253
1254``unordered``
1255 The set of values that can be read is governed by the happens-before
1256 partial order. A value cannot be read unless some operation wrote
1257 it. This is intended to provide a guarantee strong enough to model
1258 Java's non-volatile shared variables. This ordering cannot be
1259 specified for read-modify-write operations; it is not strong enough
1260 to make them atomic in any interesting way.
1261``monotonic``
1262 In addition to the guarantees of ``unordered``, there is a single
1263 total order for modifications by ``monotonic`` operations on each
1264 address. All modification orders must be compatible with the
1265 happens-before order. There is no guarantee that the modification
1266 orders can be combined to a global total order for the whole program
1267 (and this often will not be possible). The read in an atomic
1268 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1269 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1270 order immediately before the value it writes. If one atomic read
1271 happens before another atomic read of the same address, the later
1272 read must see the same value or a later value in the address's
1273 modification order. This disallows reordering of ``monotonic`` (or
1274 stronger) operations on the same address. If an address is written
1275 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1276 read that address repeatedly, the other threads must eventually see
1277 the write. This corresponds to the C++0x/C1x
1278 ``memory_order_relaxed``.
1279``acquire``
1280 In addition to the guarantees of ``monotonic``, a
1281 *synchronizes-with* edge may be formed with a ``release`` operation.
1282 This is intended to model C++'s ``memory_order_acquire``.
1283``release``
1284 In addition to the guarantees of ``monotonic``, if this operation
1285 writes a value which is subsequently read by an ``acquire``
1286 operation, it *synchronizes-with* that operation. (This isn't a
1287 complete description; see the C++0x definition of a release
1288 sequence.) This corresponds to the C++0x/C1x
1289 ``memory_order_release``.
1290``acq_rel`` (acquire+release)
1291 Acts as both an ``acquire`` and ``release`` operation on its
1292 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1293``seq_cst`` (sequentially consistent)
1294 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1295 operation which only reads, ``release`` for an operation which only
1296 writes), there is a global total order on all
1297 sequentially-consistent operations on all addresses, which is
1298 consistent with the *happens-before* partial order and with the
1299 modification orders of all the affected addresses. Each
1300 sequentially-consistent read sees the last preceding write to the
1301 same address in this global order. This corresponds to the C++0x/C1x
1302 ``memory_order_seq_cst`` and Java volatile.
1303
1304.. _singlethread:
1305
1306If an atomic operation is marked ``singlethread``, it only *synchronizes
1307with* or participates in modification and seq\_cst total orderings with
1308other operations running in the same thread (for example, in signal
1309handlers).
1310
1311.. _fastmath:
1312
1313Fast-Math Flags
1314---------------
1315
1316LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1317:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1318:ref:`frem <i_frem>`) have the following flags that can set to enable
1319otherwise unsafe floating point operations
1320
1321``nnan``
1322 No NaNs - Allow optimizations to assume the arguments and result are not
1323 NaN. Such optimizations are required to retain defined behavior over
1324 NaNs, but the value of the result is undefined.
1325
1326``ninf``
1327 No Infs - Allow optimizations to assume the arguments and result are not
1328 +/-Inf. Such optimizations are required to retain defined behavior over
1329 +/-Inf, but the value of the result is undefined.
1330
1331``nsz``
1332 No Signed Zeros - Allow optimizations to treat the sign of a zero
1333 argument or result as insignificant.
1334
1335``arcp``
1336 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1337 argument rather than perform division.
1338
1339``fast``
1340 Fast - Allow algebraically equivalent transformations that may
1341 dramatically change results in floating point (e.g. reassociate). This
1342 flag implies all the others.
1343
1344.. _typesystem:
1345
1346Type System
1347===========
1348
1349The LLVM type system is one of the most important features of the
1350intermediate representation. Being typed enables a number of
1351optimizations to be performed on the intermediate representation
1352directly, without having to do extra analyses on the side before the
1353transformation. A strong type system makes it easier to read the
1354generated code and enables novel analyses and transformations that are
1355not feasible to perform on normal three address code representations.
1356
1357Type Classifications
1358--------------------
1359
1360The types fall into a few useful classifications:
1361
1362
1363.. list-table::
1364 :header-rows: 1
1365
1366 * - Classification
1367 - Types
1368
1369 * - :ref:`integer <t_integer>`
1370 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1371 ``i64``, ...
1372
1373 * - :ref:`floating point <t_floating>`
1374 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1375 ``ppc_fp128``
1376
1377
1378 * - first class
1379
1380 .. _t_firstclass:
1381
1382 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1383 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1384 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1385 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1386
1387 * - :ref:`primitive <t_primitive>`
1388 - :ref:`label <t_label>`,
1389 :ref:`void <t_void>`,
1390 :ref:`integer <t_integer>`,
1391 :ref:`floating point <t_floating>`,
1392 :ref:`x86mmx <t_x86mmx>`,
1393 :ref:`metadata <t_metadata>`.
1394
1395 * - :ref:`derived <t_derived>`
1396 - :ref:`array <t_array>`,
1397 :ref:`function <t_function>`,
1398 :ref:`pointer <t_pointer>`,
1399 :ref:`structure <t_struct>`,
1400 :ref:`vector <t_vector>`,
1401 :ref:`opaque <t_opaque>`.
1402
1403The :ref:`first class <t_firstclass>` types are perhaps the most important.
1404Values of these types are the only ones which can be produced by
1405instructions.
1406
1407.. _t_primitive:
1408
1409Primitive Types
1410---------------
1411
1412The primitive types are the fundamental building blocks of the LLVM
1413system.
1414
1415.. _t_integer:
1416
1417Integer Type
1418^^^^^^^^^^^^
1419
1420Overview:
1421"""""""""
1422
1423The integer type is a very simple type that simply specifies an
1424arbitrary bit width for the integer type desired. Any bit width from 1
1425bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1426
1427Syntax:
1428"""""""
1429
1430::
1431
1432 iN
1433
1434The number of bits the integer will occupy is specified by the ``N``
1435value.
1436
1437Examples:
1438"""""""""
1439
1440+----------------+------------------------------------------------+
1441| ``i1`` | a single-bit integer. |
1442+----------------+------------------------------------------------+
1443| ``i32`` | a 32-bit integer. |
1444+----------------+------------------------------------------------+
1445| ``i1942652`` | a really big integer of over 1 million bits. |
1446+----------------+------------------------------------------------+
1447
1448.. _t_floating:
1449
1450Floating Point Types
1451^^^^^^^^^^^^^^^^^^^^
1452
1453.. list-table::
1454 :header-rows: 1
1455
1456 * - Type
1457 - Description
1458
1459 * - ``half``
1460 - 16-bit floating point value
1461
1462 * - ``float``
1463 - 32-bit floating point value
1464
1465 * - ``double``
1466 - 64-bit floating point value
1467
1468 * - ``fp128``
1469 - 128-bit floating point value (112-bit mantissa)
1470
1471 * - ``x86_fp80``
1472 - 80-bit floating point value (X87)
1473
1474 * - ``ppc_fp128``
1475 - 128-bit floating point value (two 64-bits)
1476
1477.. _t_x86mmx:
1478
1479X86mmx Type
1480^^^^^^^^^^^
1481
1482Overview:
1483"""""""""
1484
1485The x86mmx type represents a value held in an MMX register on an x86
1486machine. The operations allowed on it are quite limited: parameters and
1487return values, load and store, and bitcast. User-specified MMX
1488instructions are represented as intrinsic or asm calls with arguments
1489and/or results of this type. There are no arrays, vectors or constants
1490of this type.
1491
1492Syntax:
1493"""""""
1494
1495::
1496
1497 x86mmx
1498
1499.. _t_void:
1500
1501Void Type
1502^^^^^^^^^
1503
1504Overview:
1505"""""""""
1506
1507The void type does not represent any value and has no size.
1508
1509Syntax:
1510"""""""
1511
1512::
1513
1514 void
1515
1516.. _t_label:
1517
1518Label Type
1519^^^^^^^^^^
1520
1521Overview:
1522"""""""""
1523
1524The label type represents code labels.
1525
1526Syntax:
1527"""""""
1528
1529::
1530
1531 label
1532
1533.. _t_metadata:
1534
1535Metadata Type
1536^^^^^^^^^^^^^
1537
1538Overview:
1539"""""""""
1540
1541The metadata type represents embedded metadata. No derived types may be
1542created from metadata except for :ref:`function <t_function>` arguments.
1543
1544Syntax:
1545"""""""
1546
1547::
1548
1549 metadata
1550
1551.. _t_derived:
1552
1553Derived Types
1554-------------
1555
1556The real power in LLVM comes from the derived types in the system. This
1557is what allows a programmer to represent arrays, functions, pointers,
1558and other useful types. Each of these types contain one or more element
1559types which may be a primitive type, or another derived type. For
1560example, it is possible to have a two dimensional array, using an array
1561as the element type of another array.
1562
1563.. _t_aggregate:
1564
1565Aggregate Types
1566^^^^^^^^^^^^^^^
1567
1568Aggregate Types are a subset of derived types that can contain multiple
1569member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1570aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1571aggregate types.
1572
1573.. _t_array:
1574
1575Array Type
1576^^^^^^^^^^
1577
1578Overview:
1579"""""""""
1580
1581The array type is a very simple derived type that arranges elements
1582sequentially in memory. The array type requires a size (number of
1583elements) and an underlying data type.
1584
1585Syntax:
1586"""""""
1587
1588::
1589
1590 [<# elements> x <elementtype>]
1591
1592The number of elements is a constant integer value; ``elementtype`` may
1593be any type with a size.
1594
1595Examples:
1596"""""""""
1597
1598+------------------+--------------------------------------+
1599| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1600+------------------+--------------------------------------+
1601| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1602+------------------+--------------------------------------+
1603| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1604+------------------+--------------------------------------+
1605
1606Here are some examples of multidimensional arrays:
1607
1608+-----------------------------+----------------------------------------------------------+
1609| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1610+-----------------------------+----------------------------------------------------------+
1611| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1612+-----------------------------+----------------------------------------------------------+
1613| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1614+-----------------------------+----------------------------------------------------------+
1615
1616There is no restriction on indexing beyond the end of the array implied
1617by a static type (though there are restrictions on indexing beyond the
1618bounds of an allocated object in some cases). This means that
1619single-dimension 'variable sized array' addressing can be implemented in
1620LLVM with a zero length array type. An implementation of 'pascal style
1621arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1622example.
1623
1624.. _t_function:
1625
1626Function Type
1627^^^^^^^^^^^^^
1628
1629Overview:
1630"""""""""
1631
1632The function type can be thought of as a function signature. It consists
1633of a return type and a list of formal parameter types. The return type
1634of a function type is a first class type or a void type.
1635
1636Syntax:
1637"""""""
1638
1639::
1640
1641 <returntype> (<parameter list>)
1642
1643...where '``<parameter list>``' is a comma-separated list of type
1644specifiers. Optionally, the parameter list may include a type ``...``,
1645which indicates that the function takes a variable number of arguments.
1646Variable argument functions can access their arguments with the
1647:ref:`variable argument handling intrinsic <int_varargs>` functions.
1648'``<returntype>``' is any type except :ref:`label <t_label>`.
1649
1650Examples:
1651"""""""""
1652
1653+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1654| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1655+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001656| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001657+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1658| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1659+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1660| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1661+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1662
1663.. _t_struct:
1664
1665Structure Type
1666^^^^^^^^^^^^^^
1667
1668Overview:
1669"""""""""
1670
1671The structure type is used to represent a collection of data members
1672together in memory. The elements of a structure may be any type that has
1673a size.
1674
1675Structures in memory are accessed using '``load``' and '``store``' by
1676getting a pointer to a field with the '``getelementptr``' instruction.
1677Structures in registers are accessed using the '``extractvalue``' and
1678'``insertvalue``' instructions.
1679
1680Structures may optionally be "packed" structures, which indicate that
1681the alignment of the struct is one byte, and that there is no padding
1682between the elements. In non-packed structs, padding between field types
1683is inserted as defined by the DataLayout string in the module, which is
1684required to match what the underlying code generator expects.
1685
1686Structures can either be "literal" or "identified". A literal structure
1687is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1688identified types are always defined at the top level with a name.
1689Literal types are uniqued by their contents and can never be recursive
1690or opaque since there is no way to write one. Identified types can be
1691recursive, can be opaqued, and are never uniqued.
1692
1693Syntax:
1694"""""""
1695
1696::
1697
1698 %T1 = type { <type list> } ; Identified normal struct type
1699 %T2 = type <{ <type list> }> ; Identified packed struct type
1700
1701Examples:
1702"""""""""
1703
1704+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1705| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1706+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001707| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001708+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1709| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1710+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1711
1712.. _t_opaque:
1713
1714Opaque Structure Types
1715^^^^^^^^^^^^^^^^^^^^^^
1716
1717Overview:
1718"""""""""
1719
1720Opaque structure types are used to represent named structure types that
1721do not have a body specified. This corresponds (for example) to the C
1722notion of a forward declared structure.
1723
1724Syntax:
1725"""""""
1726
1727::
1728
1729 %X = type opaque
1730 %52 = type opaque
1731
1732Examples:
1733"""""""""
1734
1735+--------------+-------------------+
1736| ``opaque`` | An opaque type. |
1737+--------------+-------------------+
1738
1739.. _t_pointer:
1740
1741Pointer Type
1742^^^^^^^^^^^^
1743
1744Overview:
1745"""""""""
1746
1747The pointer type is used to specify memory locations. Pointers are
1748commonly used to reference objects in memory.
1749
1750Pointer types may have an optional address space attribute defining the
1751numbered address space where the pointed-to object resides. The default
1752address space is number zero. The semantics of non-zero address spaces
1753are target-specific.
1754
1755Note that LLVM does not permit pointers to void (``void*``) nor does it
1756permit pointers to labels (``label*``). Use ``i8*`` instead.
1757
1758Syntax:
1759"""""""
1760
1761::
1762
1763 <type> *
1764
1765Examples:
1766"""""""""
1767
1768+-------------------------+--------------------------------------------------------------------------------------------------------------+
1769| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1770+-------------------------+--------------------------------------------------------------------------------------------------------------+
1771| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1772+-------------------------+--------------------------------------------------------------------------------------------------------------+
1773| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1774+-------------------------+--------------------------------------------------------------------------------------------------------------+
1775
1776.. _t_vector:
1777
1778Vector Type
1779^^^^^^^^^^^
1780
1781Overview:
1782"""""""""
1783
1784A vector type is a simple derived type that represents a vector of
1785elements. Vector types are used when multiple primitive data are
1786operated in parallel using a single instruction (SIMD). A vector type
1787requires a size (number of elements) and an underlying primitive data
1788type. Vector types are considered :ref:`first class <t_firstclass>`.
1789
1790Syntax:
1791"""""""
1792
1793::
1794
1795 < <# elements> x <elementtype> >
1796
1797The number of elements is a constant integer value larger than 0;
1798elementtype may be any integer or floating point type, or a pointer to
1799these types. Vectors of size zero are not allowed.
1800
1801Examples:
1802"""""""""
1803
1804+-------------------+--------------------------------------------------+
1805| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1806+-------------------+--------------------------------------------------+
1807| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1808+-------------------+--------------------------------------------------+
1809| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1810+-------------------+--------------------------------------------------+
1811| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1812+-------------------+--------------------------------------------------+
1813
1814Constants
1815=========
1816
1817LLVM has several different basic types of constants. This section
1818describes them all and their syntax.
1819
1820Simple Constants
1821----------------
1822
1823**Boolean constants**
1824 The two strings '``true``' and '``false``' are both valid constants
1825 of the ``i1`` type.
1826**Integer constants**
1827 Standard integers (such as '4') are constants of the
1828 :ref:`integer <t_integer>` type. Negative numbers may be used with
1829 integer types.
1830**Floating point constants**
1831 Floating point constants use standard decimal notation (e.g.
1832 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1833 hexadecimal notation (see below). The assembler requires the exact
1834 decimal value of a floating-point constant. For example, the
1835 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1836 decimal in binary. Floating point constants must have a :ref:`floating
1837 point <t_floating>` type.
1838**Null pointer constants**
1839 The identifier '``null``' is recognized as a null pointer constant
1840 and must be of :ref:`pointer type <t_pointer>`.
1841
1842The one non-intuitive notation for constants is the hexadecimal form of
1843floating point constants. For example, the form
1844'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1845than) '``double 4.5e+15``'. The only time hexadecimal floating point
1846constants are required (and the only time that they are generated by the
1847disassembler) is when a floating point constant must be emitted but it
1848cannot be represented as a decimal floating point number in a reasonable
1849number of digits. For example, NaN's, infinities, and other special
1850values are represented in their IEEE hexadecimal format so that assembly
1851and disassembly do not cause any bits to change in the constants.
1852
1853When using the hexadecimal form, constants of types half, float, and
1854double are represented using the 16-digit form shown above (which
1855matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001856must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001857precision, respectively. Hexadecimal format is always used for long
1858double, and there are three forms of long double. The 80-bit format used
1859by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1860128-bit format used by PowerPC (two adjacent doubles) is represented by
1861``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001862represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1863will only work if they match the long double format on your target.
1864The IEEE 16-bit format (half precision) is represented by ``0xH``
1865followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1866(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001867
1868There are no constants of type x86mmx.
1869
1870Complex Constants
1871-----------------
1872
1873Complex constants are a (potentially recursive) combination of simple
1874constants and smaller complex constants.
1875
1876**Structure constants**
1877 Structure constants are represented with notation similar to
1878 structure type definitions (a comma separated list of elements,
1879 surrounded by braces (``{}``)). For example:
1880 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1881 "``@G = external global i32``". Structure constants must have
1882 :ref:`structure type <t_struct>`, and the number and types of elements
1883 must match those specified by the type.
1884**Array constants**
1885 Array constants are represented with notation similar to array type
1886 definitions (a comma separated list of elements, surrounded by
1887 square brackets (``[]``)). For example:
1888 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1889 :ref:`array type <t_array>`, and the number and types of elements must
1890 match those specified by the type.
1891**Vector constants**
1892 Vector constants are represented with notation similar to vector
1893 type definitions (a comma separated list of elements, surrounded by
1894 less-than/greater-than's (``<>``)). For example:
1895 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1896 must have :ref:`vector type <t_vector>`, and the number and types of
1897 elements must match those specified by the type.
1898**Zero initialization**
1899 The string '``zeroinitializer``' can be used to zero initialize a
1900 value to zero of *any* type, including scalar and
1901 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1902 having to print large zero initializers (e.g. for large arrays) and
1903 is always exactly equivalent to using explicit zero initializers.
1904**Metadata node**
1905 A metadata node is a structure-like constant with :ref:`metadata
1906 type <t_metadata>`. For example:
1907 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1908 constants that are meant to be interpreted as part of the
1909 instruction stream, metadata is a place to attach additional
1910 information such as debug info.
1911
1912Global Variable and Function Addresses
1913--------------------------------------
1914
1915The addresses of :ref:`global variables <globalvars>` and
1916:ref:`functions <functionstructure>` are always implicitly valid
1917(link-time) constants. These constants are explicitly referenced when
1918the :ref:`identifier for the global <identifiers>` is used and always have
1919:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1920file:
1921
1922.. code-block:: llvm
1923
1924 @X = global i32 17
1925 @Y = global i32 42
1926 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1927
1928.. _undefvalues:
1929
1930Undefined Values
1931----------------
1932
1933The string '``undef``' can be used anywhere a constant is expected, and
1934indicates that the user of the value may receive an unspecified
1935bit-pattern. Undefined values may be of any type (other than '``label``'
1936or '``void``') and be used anywhere a constant is permitted.
1937
1938Undefined values are useful because they indicate to the compiler that
1939the program is well defined no matter what value is used. This gives the
1940compiler more freedom to optimize. Here are some examples of
1941(potentially surprising) transformations that are valid (in pseudo IR):
1942
1943.. code-block:: llvm
1944
1945 %A = add %X, undef
1946 %B = sub %X, undef
1947 %C = xor %X, undef
1948 Safe:
1949 %A = undef
1950 %B = undef
1951 %C = undef
1952
1953This is safe because all of the output bits are affected by the undef
1954bits. Any output bit can have a zero or one depending on the input bits.
1955
1956.. code-block:: llvm
1957
1958 %A = or %X, undef
1959 %B = and %X, undef
1960 Safe:
1961 %A = -1
1962 %B = 0
1963 Unsafe:
1964 %A = undef
1965 %B = undef
1966
1967These logical operations have bits that are not always affected by the
1968input. For example, if ``%X`` has a zero bit, then the output of the
1969'``and``' operation will always be a zero for that bit, no matter what
1970the corresponding bit from the '``undef``' is. As such, it is unsafe to
1971optimize or assume that the result of the '``and``' is '``undef``'.
1972However, it is safe to assume that all bits of the '``undef``' could be
19730, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1974all the bits of the '``undef``' operand to the '``or``' could be set,
1975allowing the '``or``' to be folded to -1.
1976
1977.. code-block:: llvm
1978
1979 %A = select undef, %X, %Y
1980 %B = select undef, 42, %Y
1981 %C = select %X, %Y, undef
1982 Safe:
1983 %A = %X (or %Y)
1984 %B = 42 (or %Y)
1985 %C = %Y
1986 Unsafe:
1987 %A = undef
1988 %B = undef
1989 %C = undef
1990
1991This set of examples shows that undefined '``select``' (and conditional
1992branch) conditions can go *either way*, but they have to come from one
1993of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1994both known to have a clear low bit, then ``%A`` would have to have a
1995cleared low bit. However, in the ``%C`` example, the optimizer is
1996allowed to assume that the '``undef``' operand could be the same as
1997``%Y``, allowing the whole '``select``' to be eliminated.
1998
1999.. code-block:: llvm
2000
2001 %A = xor undef, undef
2002
2003 %B = undef
2004 %C = xor %B, %B
2005
2006 %D = undef
2007 %E = icmp lt %D, 4
2008 %F = icmp gte %D, 4
2009
2010 Safe:
2011 %A = undef
2012 %B = undef
2013 %C = undef
2014 %D = undef
2015 %E = undef
2016 %F = undef
2017
2018This example points out that two '``undef``' operands are not
2019necessarily the same. This can be surprising to people (and also matches
2020C semantics) where they assume that "``X^X``" is always zero, even if
2021``X`` is undefined. This isn't true for a number of reasons, but the
2022short answer is that an '``undef``' "variable" can arbitrarily change
2023its value over its "live range". This is true because the variable
2024doesn't actually *have a live range*. Instead, the value is logically
2025read from arbitrary registers that happen to be around when needed, so
2026the value is not necessarily consistent over time. In fact, ``%A`` and
2027``%C`` need to have the same semantics or the core LLVM "replace all
2028uses with" concept would not hold.
2029
2030.. code-block:: llvm
2031
2032 %A = fdiv undef, %X
2033 %B = fdiv %X, undef
2034 Safe:
2035 %A = undef
2036 b: unreachable
2037
2038These examples show the crucial difference between an *undefined value*
2039and *undefined behavior*. An undefined value (like '``undef``') is
2040allowed to have an arbitrary bit-pattern. This means that the ``%A``
2041operation can be constant folded to '``undef``', because the '``undef``'
2042could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2043However, in the second example, we can make a more aggressive
2044assumption: because the ``undef`` is allowed to be an arbitrary value,
2045we are allowed to assume that it could be zero. Since a divide by zero
2046has *undefined behavior*, we are allowed to assume that the operation
2047does not execute at all. This allows us to delete the divide and all
2048code after it. Because the undefined operation "can't happen", the
2049optimizer can assume that it occurs in dead code.
2050
2051.. code-block:: llvm
2052
2053 a: store undef -> %X
2054 b: store %X -> undef
2055 Safe:
2056 a: <deleted>
2057 b: unreachable
2058
2059These examples reiterate the ``fdiv`` example: a store *of* an undefined
2060value can be assumed to not have any effect; we can assume that the
2061value is overwritten with bits that happen to match what was already
2062there. However, a store *to* an undefined location could clobber
2063arbitrary memory, therefore, it has undefined behavior.
2064
2065.. _poisonvalues:
2066
2067Poison Values
2068-------------
2069
2070Poison values are similar to :ref:`undef values <undefvalues>`, however
2071they also represent the fact that an instruction or constant expression
2072which cannot evoke side effects has nevertheless detected a condition
2073which results in undefined behavior.
2074
2075There is currently no way of representing a poison value in the IR; they
2076only exist when produced by operations such as :ref:`add <i_add>` with
2077the ``nsw`` flag.
2078
2079Poison value behavior is defined in terms of value *dependence*:
2080
2081- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2082- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2083 their dynamic predecessor basic block.
2084- Function arguments depend on the corresponding actual argument values
2085 in the dynamic callers of their functions.
2086- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2087 instructions that dynamically transfer control back to them.
2088- :ref:`Invoke <i_invoke>` instructions depend on the
2089 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2090 call instructions that dynamically transfer control back to them.
2091- Non-volatile loads and stores depend on the most recent stores to all
2092 of the referenced memory addresses, following the order in the IR
2093 (including loads and stores implied by intrinsics such as
2094 :ref:`@llvm.memcpy <int_memcpy>`.)
2095- An instruction with externally visible side effects depends on the
2096 most recent preceding instruction with externally visible side
2097 effects, following the order in the IR. (This includes :ref:`volatile
2098 operations <volatile>`.)
2099- An instruction *control-depends* on a :ref:`terminator
2100 instruction <terminators>` if the terminator instruction has
2101 multiple successors and the instruction is always executed when
2102 control transfers to one of the successors, and may not be executed
2103 when control is transferred to another.
2104- Additionally, an instruction also *control-depends* on a terminator
2105 instruction if the set of instructions it otherwise depends on would
2106 be different if the terminator had transferred control to a different
2107 successor.
2108- Dependence is transitive.
2109
2110Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2111with the additional affect that any instruction which has a *dependence*
2112on a poison value has undefined behavior.
2113
2114Here are some examples:
2115
2116.. code-block:: llvm
2117
2118 entry:
2119 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2120 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2121 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2122 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2123
2124 store i32 %poison, i32* @g ; Poison value stored to memory.
2125 %poison2 = load i32* @g ; Poison value loaded back from memory.
2126
2127 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2128
2129 %narrowaddr = bitcast i32* @g to i16*
2130 %wideaddr = bitcast i32* @g to i64*
2131 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2132 %poison4 = load i64* %wideaddr ; Returns a poison value.
2133
2134 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2135 br i1 %cmp, label %true, label %end ; Branch to either destination.
2136
2137 true:
2138 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2139 ; it has undefined behavior.
2140 br label %end
2141
2142 end:
2143 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2144 ; Both edges into this PHI are
2145 ; control-dependent on %cmp, so this
2146 ; always results in a poison value.
2147
2148 store volatile i32 0, i32* @g ; This would depend on the store in %true
2149 ; if %cmp is true, or the store in %entry
2150 ; otherwise, so this is undefined behavior.
2151
2152 br i1 %cmp, label %second_true, label %second_end
2153 ; The same branch again, but this time the
2154 ; true block doesn't have side effects.
2155
2156 second_true:
2157 ; No side effects!
2158 ret void
2159
2160 second_end:
2161 store volatile i32 0, i32* @g ; This time, the instruction always depends
2162 ; on the store in %end. Also, it is
2163 ; control-equivalent to %end, so this is
2164 ; well-defined (ignoring earlier undefined
2165 ; behavior in this example).
2166
2167.. _blockaddress:
2168
2169Addresses of Basic Blocks
2170-------------------------
2171
2172``blockaddress(@function, %block)``
2173
2174The '``blockaddress``' constant computes the address of the specified
2175basic block in the specified function, and always has an ``i8*`` type.
2176Taking the address of the entry block is illegal.
2177
2178This value only has defined behavior when used as an operand to the
2179':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2180against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002181undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002182no label is equal to the null pointer. This may be passed around as an
2183opaque pointer sized value as long as the bits are not inspected. This
2184allows ``ptrtoint`` and arithmetic to be performed on these values so
2185long as the original value is reconstituted before the ``indirectbr``
2186instruction.
2187
2188Finally, some targets may provide defined semantics when using the value
2189as the operand to an inline assembly, but that is target specific.
2190
2191Constant Expressions
2192--------------------
2193
2194Constant expressions are used to allow expressions involving other
2195constants to be used as constants. Constant expressions may be of any
2196:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2197that does not have side effects (e.g. load and call are not supported).
2198The following is the syntax for constant expressions:
2199
2200``trunc (CST to TYPE)``
2201 Truncate a constant to another type. The bit size of CST must be
2202 larger than the bit size of TYPE. Both types must be integers.
2203``zext (CST to TYPE)``
2204 Zero extend a constant to another type. The bit size of CST must be
2205 smaller than the bit size of TYPE. Both types must be integers.
2206``sext (CST to TYPE)``
2207 Sign extend a constant to another type. The bit size of CST must be
2208 smaller than the bit size of TYPE. Both types must be integers.
2209``fptrunc (CST to TYPE)``
2210 Truncate a floating point constant to another floating point type.
2211 The size of CST must be larger than the size of TYPE. Both types
2212 must be floating point.
2213``fpext (CST to TYPE)``
2214 Floating point extend a constant to another type. The size of CST
2215 must be smaller or equal to the size of TYPE. Both types must be
2216 floating point.
2217``fptoui (CST to TYPE)``
2218 Convert a floating point constant to the corresponding unsigned
2219 integer constant. TYPE must be a scalar or vector integer type. CST
2220 must be of scalar or vector floating point type. Both CST and TYPE
2221 must be scalars, or vectors of the same number of elements. If the
2222 value won't fit in the integer type, the results are undefined.
2223``fptosi (CST to TYPE)``
2224 Convert a floating point constant to the corresponding signed
2225 integer constant. TYPE must be a scalar or vector integer type. CST
2226 must be of scalar or vector floating point type. Both CST and TYPE
2227 must be scalars, or vectors of the same number of elements. If the
2228 value won't fit in the integer type, the results are undefined.
2229``uitofp (CST to TYPE)``
2230 Convert an unsigned integer constant to the corresponding floating
2231 point constant. TYPE must be a scalar or vector floating point type.
2232 CST must be of scalar or vector integer type. Both CST and TYPE must
2233 be scalars, or vectors of the same number of elements. If the value
2234 won't fit in the floating point type, the results are undefined.
2235``sitofp (CST to TYPE)``
2236 Convert a signed integer constant to the corresponding floating
2237 point constant. TYPE must be a scalar or vector floating point type.
2238 CST must be of scalar or vector integer type. Both CST and TYPE must
2239 be scalars, or vectors of the same number of elements. If the value
2240 won't fit in the floating point type, the results are undefined.
2241``ptrtoint (CST to TYPE)``
2242 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002243 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002244 pointer type. The ``CST`` value is zero extended, truncated, or
2245 unchanged to make it fit in ``TYPE``.
2246``inttoptr (CST to TYPE)``
2247 Convert an integer constant to a pointer constant. TYPE must be a
2248 pointer type. CST must be of integer type. The CST value is zero
2249 extended, truncated, or unchanged to make it fit in a pointer size.
2250 This one is *really* dangerous!
2251``bitcast (CST to TYPE)``
2252 Convert a constant, CST, to another TYPE. The constraints of the
2253 operands are the same as those for the :ref:`bitcast
2254 instruction <i_bitcast>`.
2255``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2256 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2257 constants. As with the :ref:`getelementptr <i_getelementptr>`
2258 instruction, the index list may have zero or more indexes, which are
2259 required to make sense for the type of "CSTPTR".
2260``select (COND, VAL1, VAL2)``
2261 Perform the :ref:`select operation <i_select>` on constants.
2262``icmp COND (VAL1, VAL2)``
2263 Performs the :ref:`icmp operation <i_icmp>` on constants.
2264``fcmp COND (VAL1, VAL2)``
2265 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2266``extractelement (VAL, IDX)``
2267 Perform the :ref:`extractelement operation <i_extractelement>` on
2268 constants.
2269``insertelement (VAL, ELT, IDX)``
2270 Perform the :ref:`insertelement operation <i_insertelement>` on
2271 constants.
2272``shufflevector (VEC1, VEC2, IDXMASK)``
2273 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2274 constants.
2275``extractvalue (VAL, IDX0, IDX1, ...)``
2276 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2277 constants. The index list is interpreted in a similar manner as
2278 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2279 least one index value must be specified.
2280``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2281 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2282 The index list is interpreted in a similar manner as indices in a
2283 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2284 value must be specified.
2285``OPCODE (LHS, RHS)``
2286 Perform the specified operation of the LHS and RHS constants. OPCODE
2287 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2288 binary <bitwiseops>` operations. The constraints on operands are
2289 the same as those for the corresponding instruction (e.g. no bitwise
2290 operations on floating point values are allowed).
2291
2292Other Values
2293============
2294
2295Inline Assembler Expressions
2296----------------------------
2297
2298LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2299Inline Assembly <moduleasm>`) through the use of a special value. This
2300value represents the inline assembler as a string (containing the
2301instructions to emit), a list of operand constraints (stored as a
2302string), a flag that indicates whether or not the inline asm expression
2303has side effects, and a flag indicating whether the function containing
2304the asm needs to align its stack conservatively. An example inline
2305assembler expression is:
2306
2307.. code-block:: llvm
2308
2309 i32 (i32) asm "bswap $0", "=r,r"
2310
2311Inline assembler expressions may **only** be used as the callee operand
2312of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2313Thus, typically we have:
2314
2315.. code-block:: llvm
2316
2317 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2318
2319Inline asms with side effects not visible in the constraint list must be
2320marked as having side effects. This is done through the use of the
2321'``sideeffect``' keyword, like so:
2322
2323.. code-block:: llvm
2324
2325 call void asm sideeffect "eieio", ""()
2326
2327In some cases inline asms will contain code that will not work unless
2328the stack is aligned in some way, such as calls or SSE instructions on
2329x86, yet will not contain code that does that alignment within the asm.
2330The compiler should make conservative assumptions about what the asm
2331might contain and should generate its usual stack alignment code in the
2332prologue if the '``alignstack``' keyword is present:
2333
2334.. code-block:: llvm
2335
2336 call void asm alignstack "eieio", ""()
2337
2338Inline asms also support using non-standard assembly dialects. The
2339assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2340the inline asm is using the Intel dialect. Currently, ATT and Intel are
2341the only supported dialects. An example is:
2342
2343.. code-block:: llvm
2344
2345 call void asm inteldialect "eieio", ""()
2346
2347If multiple keywords appear the '``sideeffect``' keyword must come
2348first, the '``alignstack``' keyword second and the '``inteldialect``'
2349keyword last.
2350
2351Inline Asm Metadata
2352^^^^^^^^^^^^^^^^^^^
2353
2354The call instructions that wrap inline asm nodes may have a
2355"``!srcloc``" MDNode attached to it that contains a list of constant
2356integers. If present, the code generator will use the integer as the
2357location cookie value when report errors through the ``LLVMContext``
2358error reporting mechanisms. This allows a front-end to correlate backend
2359errors that occur with inline asm back to the source code that produced
2360it. For example:
2361
2362.. code-block:: llvm
2363
2364 call void asm sideeffect "something bad", ""(), !srcloc !42
2365 ...
2366 !42 = !{ i32 1234567 }
2367
2368It is up to the front-end to make sense of the magic numbers it places
2369in the IR. If the MDNode contains multiple constants, the code generator
2370will use the one that corresponds to the line of the asm that the error
2371occurs on.
2372
2373.. _metadata:
2374
2375Metadata Nodes and Metadata Strings
2376-----------------------------------
2377
2378LLVM IR allows metadata to be attached to instructions in the program
2379that can convey extra information about the code to the optimizers and
2380code generator. One example application of metadata is source-level
2381debug information. There are two metadata primitives: strings and nodes.
2382All metadata has the ``metadata`` type and is identified in syntax by a
2383preceding exclamation point ('``!``').
2384
2385A metadata string is a string surrounded by double quotes. It can
2386contain any character by escaping non-printable characters with
2387"``\xx``" where "``xx``" is the two digit hex code. For example:
2388"``!"test\00"``".
2389
2390Metadata nodes are represented with notation similar to structure
2391constants (a comma separated list of elements, surrounded by braces and
2392preceded by an exclamation point). Metadata nodes can have any values as
2393their operand. For example:
2394
2395.. code-block:: llvm
2396
2397 !{ metadata !"test\00", i32 10}
2398
2399A :ref:`named metadata <namedmetadatastructure>` is a collection of
2400metadata nodes, which can be looked up in the module symbol table. For
2401example:
2402
2403.. code-block:: llvm
2404
2405 !foo = metadata !{!4, !3}
2406
2407Metadata can be used as function arguments. Here ``llvm.dbg.value``
2408function is using two metadata arguments:
2409
2410.. code-block:: llvm
2411
2412 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2413
2414Metadata can be attached with an instruction. Here metadata ``!21`` is
2415attached to the ``add`` instruction using the ``!dbg`` identifier:
2416
2417.. code-block:: llvm
2418
2419 %indvar.next = add i64 %indvar, 1, !dbg !21
2420
2421More information about specific metadata nodes recognized by the
2422optimizers and code generator is found below.
2423
2424'``tbaa``' Metadata
2425^^^^^^^^^^^^^^^^^^^
2426
2427In LLVM IR, memory does not have types, so LLVM's own type system is not
2428suitable for doing TBAA. Instead, metadata is added to the IR to
2429describe a type system of a higher level language. This can be used to
2430implement typical C/C++ TBAA, but it can also be used to implement
2431custom alias analysis behavior for other languages.
2432
2433The current metadata format is very simple. TBAA metadata nodes have up
2434to three fields, e.g.:
2435
2436.. code-block:: llvm
2437
2438 !0 = metadata !{ metadata !"an example type tree" }
2439 !1 = metadata !{ metadata !"int", metadata !0 }
2440 !2 = metadata !{ metadata !"float", metadata !0 }
2441 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2442
2443The first field is an identity field. It can be any value, usually a
2444metadata string, which uniquely identifies the type. The most important
2445name in the tree is the name of the root node. Two trees with different
2446root node names are entirely disjoint, even if they have leaves with
2447common names.
2448
2449The second field identifies the type's parent node in the tree, or is
2450null or omitted for a root node. A type is considered to alias all of
2451its descendants and all of its ancestors in the tree. Also, a type is
2452considered to alias all types in other trees, so that bitcode produced
2453from multiple front-ends is handled conservatively.
2454
2455If the third field is present, it's an integer which if equal to 1
2456indicates that the type is "constant" (meaning
2457``pointsToConstantMemory`` should return true; see `other useful
2458AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2459
2460'``tbaa.struct``' Metadata
2461^^^^^^^^^^^^^^^^^^^^^^^^^^
2462
2463The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2464aggregate assignment operations in C and similar languages, however it
2465is defined to copy a contiguous region of memory, which is more than
2466strictly necessary for aggregate types which contain holes due to
2467padding. Also, it doesn't contain any TBAA information about the fields
2468of the aggregate.
2469
2470``!tbaa.struct`` metadata can describe which memory subregions in a
2471memcpy are padding and what the TBAA tags of the struct are.
2472
2473The current metadata format is very simple. ``!tbaa.struct`` metadata
2474nodes are a list of operands which are in conceptual groups of three.
2475For each group of three, the first operand gives the byte offset of a
2476field in bytes, the second gives its size in bytes, and the third gives
2477its tbaa tag. e.g.:
2478
2479.. code-block:: llvm
2480
2481 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2482
2483This describes a struct with two fields. The first is at offset 0 bytes
2484with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2485and has size 4 bytes and has tbaa tag !2.
2486
2487Note that the fields need not be contiguous. In this example, there is a
24884 byte gap between the two fields. This gap represents padding which
2489does not carry useful data and need not be preserved.
2490
2491'``fpmath``' Metadata
2492^^^^^^^^^^^^^^^^^^^^^
2493
2494``fpmath`` metadata may be attached to any instruction of floating point
2495type. It can be used to express the maximum acceptable error in the
2496result of that instruction, in ULPs, thus potentially allowing the
2497compiler to use a more efficient but less accurate method of computing
2498it. ULP is defined as follows:
2499
2500 If ``x`` is a real number that lies between two finite consecutive
2501 floating-point numbers ``a`` and ``b``, without being equal to one
2502 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2503 distance between the two non-equal finite floating-point numbers
2504 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2505
2506The metadata node shall consist of a single positive floating point
2507number representing the maximum relative error, for example:
2508
2509.. code-block:: llvm
2510
2511 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2512
2513'``range``' Metadata
2514^^^^^^^^^^^^^^^^^^^^
2515
2516``range`` metadata may be attached only to loads of integer types. It
2517expresses the possible ranges the loaded value is in. The ranges are
2518represented with a flattened list of integers. The loaded value is known
2519to be in the union of the ranges defined by each consecutive pair. Each
2520pair has the following properties:
2521
2522- The type must match the type loaded by the instruction.
2523- The pair ``a,b`` represents the range ``[a,b)``.
2524- Both ``a`` and ``b`` are constants.
2525- The range is allowed to wrap.
2526- The range should not represent the full or empty set. That is,
2527 ``a!=b``.
2528
2529In addition, the pairs must be in signed order of the lower bound and
2530they must be non-contiguous.
2531
2532Examples:
2533
2534.. code-block:: llvm
2535
2536 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2537 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2538 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2539 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2540 ...
2541 !0 = metadata !{ i8 0, i8 2 }
2542 !1 = metadata !{ i8 255, i8 2 }
2543 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2544 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2545
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002546'``llvm.loop``'
2547^^^^^^^^^^^^^^^
2548
2549It is sometimes useful to attach information to loop constructs. Currently,
2550loop metadata is implemented as metadata attached to the branch instruction
2551in the loop latch block. This type of metadata refer to a metadata node that is
2552guaranteed to be separate for each loop. The loop-level metadata is prefixed
2553with ``llvm.loop``.
2554
2555The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002556itself to avoid merging it with any other identifier metadata, e.g.,
2557during module linkage or function inlining. That is, each loop should refer
2558to their own identification metadata even if they reside in separate functions.
2559The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002560constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002561
2562.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002563
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002564 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002565 !1 = metadata !{ metadata !1 }
2566
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002567
2568'``llvm.loop.parallel``' Metadata
2569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2570
2571This loop metadata can be used to communicate that a loop should be considered
2572a parallel loop. The semantics of parallel loops in this case is the one
2573with the strongest cross-iteration instruction ordering freedom: the
2574iterations in the loop can be considered completely independent of each
2575other (also known as embarrassingly parallel loops).
2576
2577This metadata can originate from a programming language with parallel loop
2578constructs. In such a case it is completely the programmer's responsibility
2579to ensure the instructions from the different iterations of the loop can be
2580executed in an arbitrary order, in parallel, or intertwined. No loop-carried
2581dependency checking at all must be expected from the compiler.
2582
2583In order to fulfill the LLVM requirement for metadata to be safely ignored,
2584it is important to ensure that a parallel loop is converted to
2585a sequential loop in case an optimization (agnostic of the parallel loop
2586semantics) converts the loop back to such. This happens when new memory
2587accesses that do not fulfill the requirement of free ordering across iterations
2588are added to the loop. Therefore, this metadata is required, but not
2589sufficient, to consider the loop at hand a parallel loop. For a loop
2590to be parallel, all its memory accessing instructions need to be
2591marked with the ``llvm.mem.parallel_loop_access`` metadata that refer
2592to the same loop identifier metadata that identify the loop at hand.
2593
2594'``llvm.mem``'
2595^^^^^^^^^^^^^^^
2596
2597Metadata types used to annotate memory accesses with information helpful
2598for optimizations are prefixed with ``llvm.mem``.
2599
2600'``llvm.mem.parallel_loop_access``' Metadata
2601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2602
2603For a loop to be parallel, in addition to using
2604the ``llvm.loop.parallel`` metadata to mark the loop latch branch instruction,
2605also all of the memory accessing instructions in the loop body need to be
2606marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2607is at least one memory accessing instruction not marked with the metadata,
2608the loop, despite it possibly using the ``llvm.loop.parallel`` metadata,
2609must be considered a sequential loop. This causes parallel loops to be
2610converted to sequential loops due to optimization passes that are unaware of
2611the parallel semantics and that insert new memory instructions to the loop
2612body.
2613
2614Example of a loop that is considered parallel due to its correct use of
2615both ``llvm.loop.parallel`` and ``llvm.mem.parallel_loop_access``
2616metadata types that refer to the same loop identifier metadata.
2617
2618.. code-block:: llvm
2619
2620 for.body:
2621 ...
2622 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2623 ...
2624 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2625 ...
2626 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop.parallel !0
2627
2628 for.end:
2629 ...
2630 !0 = metadata !{ metadata !0 }
2631
2632It is also possible to have nested parallel loops. In that case the
2633memory accesses refer to a list of loop identifier metadata nodes instead of
2634the loop identifier metadata node directly:
2635
2636.. code-block:: llvm
2637
2638 outer.for.body:
2639 ...
2640
2641 inner.for.body:
2642 ...
2643 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2644 ...
2645 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2646 ...
2647 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop.parallel !1
2648
2649 inner.for.end:
2650 ...
2651 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2652 ...
2653 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2654 ...
2655 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop.parallel !2
2656
2657 outer.for.end: ; preds = %for.body
2658 ...
2659 !0 = metadata !{ metadata !1, metadata !2 } ; a list of parallel loop identifiers
2660 !1 = metadata !{ metadata !1 } ; an identifier for the inner parallel loop
2661 !2 = metadata !{ metadata !2 } ; an identifier for the outer parallel loop
2662
2663
Sean Silvaf722b002012-12-07 10:36:55 +00002664Module Flags Metadata
2665=====================
2666
2667Information about the module as a whole is difficult to convey to LLVM's
2668subsystems. The LLVM IR isn't sufficient to transmit this information.
2669The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002670this. These flags are in the form of key / value pairs --- much like a
2671dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002672look it up.
2673
2674The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2675Each triplet has the following form:
2676
2677- The first element is a *behavior* flag, which specifies the behavior
2678 when two (or more) modules are merged together, and it encounters two
2679 (or more) metadata with the same ID. The supported behaviors are
2680 described below.
2681- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002682 metadata. Each module may only have one flag entry for each unique ID (not
2683 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002684- The third element is the value of the flag.
2685
2686When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002687``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2688each unique metadata ID string, there will be exactly one entry in the merged
2689modules ``llvm.module.flags`` metadata table, and the value for that entry will
2690be determined by the merge behavior flag, as described below. The only exception
2691is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002692
2693The following behaviors are supported:
2694
2695.. list-table::
2696 :header-rows: 1
2697 :widths: 10 90
2698
2699 * - Value
2700 - Behavior
2701
2702 * - 1
2703 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002704 Emits an error if two values disagree, otherwise the resulting value
2705 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002706
2707 * - 2
2708 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002709 Emits a warning if two values disagree. The result value will be the
2710 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002711
2712 * - 3
2713 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002714 Adds a requirement that another module flag be present and have a
2715 specified value after linking is performed. The value must be a
2716 metadata pair, where the first element of the pair is the ID of the
2717 module flag to be restricted, and the second element of the pair is
2718 the value the module flag should be restricted to. This behavior can
2719 be used to restrict the allowable results (via triggering of an
2720 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002721
2722 * - 4
2723 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002724 Uses the specified value, regardless of the behavior or value of the
2725 other module. If both modules specify **Override**, but the values
2726 differ, an error will be emitted.
2727
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002728 * - 5
2729 - **Append**
2730 Appends the two values, which are required to be metadata nodes.
2731
2732 * - 6
2733 - **AppendUnique**
2734 Appends the two values, which are required to be metadata
2735 nodes. However, duplicate entries in the second list are dropped
2736 during the append operation.
2737
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002738It is an error for a particular unique flag ID to have multiple behaviors,
2739except in the case of **Require** (which adds restrictions on another metadata
2740value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002741
2742An example of module flags:
2743
2744.. code-block:: llvm
2745
2746 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2747 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2748 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2749 !3 = metadata !{ i32 3, metadata !"qux",
2750 metadata !{
2751 metadata !"foo", i32 1
2752 }
2753 }
2754 !llvm.module.flags = !{ !0, !1, !2, !3 }
2755
2756- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2757 if two or more ``!"foo"`` flags are seen is to emit an error if their
2758 values are not equal.
2759
2760- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2761 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002762 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002763
2764- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2765 behavior if two or more ``!"qux"`` flags are seen is to emit a
2766 warning if their values are not equal.
2767
2768- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2769
2770 ::
2771
2772 metadata !{ metadata !"foo", i32 1 }
2773
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002774 The behavior is to emit an error if the ``llvm.module.flags`` does not
2775 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2776 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002777
2778Objective-C Garbage Collection Module Flags Metadata
2779----------------------------------------------------
2780
2781On the Mach-O platform, Objective-C stores metadata about garbage
2782collection in a special section called "image info". The metadata
2783consists of a version number and a bitmask specifying what types of
2784garbage collection are supported (if any) by the file. If two or more
2785modules are linked together their garbage collection metadata needs to
2786be merged rather than appended together.
2787
2788The Objective-C garbage collection module flags metadata consists of the
2789following key-value pairs:
2790
2791.. list-table::
2792 :header-rows: 1
2793 :widths: 30 70
2794
2795 * - Key
2796 - Value
2797
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002798 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002799 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002800
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002801 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002802 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002803 always 0.
2804
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002805 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002806 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002807 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2808 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2809 Objective-C ABI version 2.
2810
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002811 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002812 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002813 not. Valid values are 0, for no garbage collection, and 2, for garbage
2814 collection supported.
2815
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002816 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002817 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002818 If present, its value must be 6. This flag requires that the
2819 ``Objective-C Garbage Collection`` flag have the value 2.
2820
2821Some important flag interactions:
2822
2823- If a module with ``Objective-C Garbage Collection`` set to 0 is
2824 merged with a module with ``Objective-C Garbage Collection`` set to
2825 2, then the resulting module has the
2826 ``Objective-C Garbage Collection`` flag set to 0.
2827- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2828 merged with a module with ``Objective-C GC Only`` set to 6.
2829
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002830Automatic Linker Flags Module Flags Metadata
2831--------------------------------------------
2832
2833Some targets support embedding flags to the linker inside individual object
2834files. Typically this is used in conjunction with language extensions which
2835allow source files to explicitly declare the libraries they depend on, and have
2836these automatically be transmitted to the linker via object files.
2837
2838These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002839using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002840to be ``AppendUnique``, and the value for the key is expected to be a metadata
2841node which should be a list of other metadata nodes, each of which should be a
2842list of metadata strings defining linker options.
2843
2844For example, the following metadata section specifies two separate sets of
2845linker options, presumably to link against ``libz`` and the ``Cocoa``
2846framework::
2847
Michael Liao2faa0f32013-03-06 18:24:34 +00002848 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002849 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002850 metadata !{ metadata !"-lz" },
2851 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002852 !llvm.module.flags = !{ !0 }
2853
2854The metadata encoding as lists of lists of options, as opposed to a collapsed
2855list of options, is chosen so that the IR encoding can use multiple option
2856strings to specify e.g., a single library, while still having that specifier be
2857preserved as an atomic element that can be recognized by a target specific
2858assembly writer or object file emitter.
2859
2860Each individual option is required to be either a valid option for the target's
2861linker, or an option that is reserved by the target specific assembly writer or
2862object file emitter. No other aspect of these options is defined by the IR.
2863
Sean Silvaf722b002012-12-07 10:36:55 +00002864Intrinsic Global Variables
2865==========================
2866
2867LLVM has a number of "magic" global variables that contain data that
2868affect code generation or other IR semantics. These are documented here.
2869All globals of this sort should have a section specified as
2870"``llvm.metadata``". This section and all globals that start with
2871"``llvm.``" are reserved for use by LLVM.
2872
2873The '``llvm.used``' Global Variable
2874-----------------------------------
2875
Rafael Espindolacde25b42013-04-22 14:58:02 +00002876The ``@llvm.used`` global is an array which has
2877 :ref:`appending linkage <linkage_appending>`. This array contains a list of
2878pointers to global variables, functions and aliases which may optionally have a
Sean Silvaf722b002012-12-07 10:36:55 +00002879pointer cast formed of bitcast or getelementptr. For example, a legal
2880use of it is:
2881
2882.. code-block:: llvm
2883
2884 @X = global i8 4
2885 @Y = global i32 123
2886
2887 @llvm.used = appending global [2 x i8*] [
2888 i8* @X,
2889 i8* bitcast (i32* @Y to i8*)
2890 ], section "llvm.metadata"
2891
Rafael Espindolacde25b42013-04-22 14:58:02 +00002892If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2893and linker are required to treat the symbol as if there is a reference to the
2894symbol that it cannot see. For example, if a variable has internal linkage and
2895no references other than that from the ``@llvm.used`` list, it cannot be
2896deleted. This is commonly used to represent references from inline asms and
2897other things the compiler cannot "see", and corresponds to
2898"``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002899
2900On some targets, the code generator must emit a directive to the
2901assembler or object file to prevent the assembler and linker from
2902molesting the symbol.
2903
2904The '``llvm.compiler.used``' Global Variable
2905--------------------------------------------
2906
2907The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2908directive, except that it only prevents the compiler from touching the
2909symbol. On targets that support it, this allows an intelligent linker to
2910optimize references to the symbol without being impeded as it would be
2911by ``@llvm.used``.
2912
2913This is a rare construct that should only be used in rare circumstances,
2914and should not be exposed to source languages.
2915
2916The '``llvm.global_ctors``' Global Variable
2917-------------------------------------------
2918
2919.. code-block:: llvm
2920
2921 %0 = type { i32, void ()* }
2922 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2923
2924The ``@llvm.global_ctors`` array contains a list of constructor
2925functions and associated priorities. The functions referenced by this
2926array will be called in ascending order of priority (i.e. lowest first)
2927when the module is loaded. The order of functions with the same priority
2928is not defined.
2929
2930The '``llvm.global_dtors``' Global Variable
2931-------------------------------------------
2932
2933.. code-block:: llvm
2934
2935 %0 = type { i32, void ()* }
2936 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2937
2938The ``@llvm.global_dtors`` array contains a list of destructor functions
2939and associated priorities. The functions referenced by this array will
2940be called in descending order of priority (i.e. highest first) when the
2941module is loaded. The order of functions with the same priority is not
2942defined.
2943
2944Instruction Reference
2945=====================
2946
2947The LLVM instruction set consists of several different classifications
2948of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2949instructions <binaryops>`, :ref:`bitwise binary
2950instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2951:ref:`other instructions <otherops>`.
2952
2953.. _terminators:
2954
2955Terminator Instructions
2956-----------------------
2957
2958As mentioned :ref:`previously <functionstructure>`, every basic block in a
2959program ends with a "Terminator" instruction, which indicates which
2960block should be executed after the current block is finished. These
2961terminator instructions typically yield a '``void``' value: they produce
2962control flow, not values (the one exception being the
2963':ref:`invoke <i_invoke>`' instruction).
2964
2965The terminator instructions are: ':ref:`ret <i_ret>`',
2966':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2967':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2968':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2969
2970.. _i_ret:
2971
2972'``ret``' Instruction
2973^^^^^^^^^^^^^^^^^^^^^
2974
2975Syntax:
2976"""""""
2977
2978::
2979
2980 ret <type> <value> ; Return a value from a non-void function
2981 ret void ; Return from void function
2982
2983Overview:
2984"""""""""
2985
2986The '``ret``' instruction is used to return control flow (and optionally
2987a value) from a function back to the caller.
2988
2989There are two forms of the '``ret``' instruction: one that returns a
2990value and then causes control flow, and one that just causes control
2991flow to occur.
2992
2993Arguments:
2994""""""""""
2995
2996The '``ret``' instruction optionally accepts a single argument, the
2997return value. The type of the return value must be a ':ref:`first
2998class <t_firstclass>`' type.
2999
3000A function is not :ref:`well formed <wellformed>` if it it has a non-void
3001return type and contains a '``ret``' instruction with no return value or
3002a return value with a type that does not match its type, or if it has a
3003void return type and contains a '``ret``' instruction with a return
3004value.
3005
3006Semantics:
3007""""""""""
3008
3009When the '``ret``' instruction is executed, control flow returns back to
3010the calling function's context. If the caller is a
3011":ref:`call <i_call>`" instruction, execution continues at the
3012instruction after the call. If the caller was an
3013":ref:`invoke <i_invoke>`" instruction, execution continues at the
3014beginning of the "normal" destination block. If the instruction returns
3015a value, that value shall set the call or invoke instruction's return
3016value.
3017
3018Example:
3019""""""""
3020
3021.. code-block:: llvm
3022
3023 ret i32 5 ; Return an integer value of 5
3024 ret void ; Return from a void function
3025 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3026
3027.. _i_br:
3028
3029'``br``' Instruction
3030^^^^^^^^^^^^^^^^^^^^
3031
3032Syntax:
3033"""""""
3034
3035::
3036
3037 br i1 <cond>, label <iftrue>, label <iffalse>
3038 br label <dest> ; Unconditional branch
3039
3040Overview:
3041"""""""""
3042
3043The '``br``' instruction is used to cause control flow to transfer to a
3044different basic block in the current function. There are two forms of
3045this instruction, corresponding to a conditional branch and an
3046unconditional branch.
3047
3048Arguments:
3049""""""""""
3050
3051The conditional branch form of the '``br``' instruction takes a single
3052'``i1``' value and two '``label``' values. The unconditional form of the
3053'``br``' instruction takes a single '``label``' value as a target.
3054
3055Semantics:
3056""""""""""
3057
3058Upon execution of a conditional '``br``' instruction, the '``i1``'
3059argument is evaluated. If the value is ``true``, control flows to the
3060'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3061to the '``iffalse``' ``label`` argument.
3062
3063Example:
3064""""""""
3065
3066.. code-block:: llvm
3067
3068 Test:
3069 %cond = icmp eq i32 %a, %b
3070 br i1 %cond, label %IfEqual, label %IfUnequal
3071 IfEqual:
3072 ret i32 1
3073 IfUnequal:
3074 ret i32 0
3075
3076.. _i_switch:
3077
3078'``switch``' Instruction
3079^^^^^^^^^^^^^^^^^^^^^^^^
3080
3081Syntax:
3082"""""""
3083
3084::
3085
3086 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3087
3088Overview:
3089"""""""""
3090
3091The '``switch``' instruction is used to transfer control flow to one of
3092several different places. It is a generalization of the '``br``'
3093instruction, allowing a branch to occur to one of many possible
3094destinations.
3095
3096Arguments:
3097""""""""""
3098
3099The '``switch``' instruction uses three parameters: an integer
3100comparison value '``value``', a default '``label``' destination, and an
3101array of pairs of comparison value constants and '``label``'s. The table
3102is not allowed to contain duplicate constant entries.
3103
3104Semantics:
3105""""""""""
3106
3107The ``switch`` instruction specifies a table of values and destinations.
3108When the '``switch``' instruction is executed, this table is searched
3109for the given value. If the value is found, control flow is transferred
3110to the corresponding destination; otherwise, control flow is transferred
3111to the default destination.
3112
3113Implementation:
3114"""""""""""""""
3115
3116Depending on properties of the target machine and the particular
3117``switch`` instruction, this instruction may be code generated in
3118different ways. For example, it could be generated as a series of
3119chained conditional branches or with a lookup table.
3120
3121Example:
3122""""""""
3123
3124.. code-block:: llvm
3125
3126 ; Emulate a conditional br instruction
3127 %Val = zext i1 %value to i32
3128 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3129
3130 ; Emulate an unconditional br instruction
3131 switch i32 0, label %dest [ ]
3132
3133 ; Implement a jump table:
3134 switch i32 %val, label %otherwise [ i32 0, label %onzero
3135 i32 1, label %onone
3136 i32 2, label %ontwo ]
3137
3138.. _i_indirectbr:
3139
3140'``indirectbr``' Instruction
3141^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3142
3143Syntax:
3144"""""""
3145
3146::
3147
3148 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3149
3150Overview:
3151"""""""""
3152
3153The '``indirectbr``' instruction implements an indirect branch to a
3154label within the current function, whose address is specified by
3155"``address``". Address must be derived from a
3156:ref:`blockaddress <blockaddress>` constant.
3157
3158Arguments:
3159""""""""""
3160
3161The '``address``' argument is the address of the label to jump to. The
3162rest of the arguments indicate the full set of possible destinations
3163that the address may point to. Blocks are allowed to occur multiple
3164times in the destination list, though this isn't particularly useful.
3165
3166This destination list is required so that dataflow analysis has an
3167accurate understanding of the CFG.
3168
3169Semantics:
3170""""""""""
3171
3172Control transfers to the block specified in the address argument. All
3173possible destination blocks must be listed in the label list, otherwise
3174this instruction has undefined behavior. This implies that jumps to
3175labels defined in other functions have undefined behavior as well.
3176
3177Implementation:
3178"""""""""""""""
3179
3180This is typically implemented with a jump through a register.
3181
3182Example:
3183""""""""
3184
3185.. code-block:: llvm
3186
3187 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3188
3189.. _i_invoke:
3190
3191'``invoke``' Instruction
3192^^^^^^^^^^^^^^^^^^^^^^^^
3193
3194Syntax:
3195"""""""
3196
3197::
3198
3199 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3200 to label <normal label> unwind label <exception label>
3201
3202Overview:
3203"""""""""
3204
3205The '``invoke``' instruction causes control to transfer to a specified
3206function, with the possibility of control flow transfer to either the
3207'``normal``' label or the '``exception``' label. If the callee function
3208returns with the "``ret``" instruction, control flow will return to the
3209"normal" label. If the callee (or any indirect callees) returns via the
3210":ref:`resume <i_resume>`" instruction or other exception handling
3211mechanism, control is interrupted and continued at the dynamically
3212nearest "exception" label.
3213
3214The '``exception``' label is a `landing
3215pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3216'``exception``' label is required to have the
3217":ref:`landingpad <i_landingpad>`" instruction, which contains the
3218information about the behavior of the program after unwinding happens,
3219as its first non-PHI instruction. The restrictions on the
3220"``landingpad``" instruction's tightly couples it to the "``invoke``"
3221instruction, so that the important information contained within the
3222"``landingpad``" instruction can't be lost through normal code motion.
3223
3224Arguments:
3225""""""""""
3226
3227This instruction requires several arguments:
3228
3229#. The optional "cconv" marker indicates which :ref:`calling
3230 convention <callingconv>` the call should use. If none is
3231 specified, the call defaults to using C calling conventions.
3232#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3233 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3234 are valid here.
3235#. '``ptr to function ty``': shall be the signature of the pointer to
3236 function value being invoked. In most cases, this is a direct
3237 function invocation, but indirect ``invoke``'s are just as possible,
3238 branching off an arbitrary pointer to function value.
3239#. '``function ptr val``': An LLVM value containing a pointer to a
3240 function to be invoked.
3241#. '``function args``': argument list whose types match the function
3242 signature argument types and parameter attributes. All arguments must
3243 be of :ref:`first class <t_firstclass>` type. If the function signature
3244 indicates the function accepts a variable number of arguments, the
3245 extra arguments can be specified.
3246#. '``normal label``': the label reached when the called function
3247 executes a '``ret``' instruction.
3248#. '``exception label``': the label reached when a callee returns via
3249 the :ref:`resume <i_resume>` instruction or other exception handling
3250 mechanism.
3251#. The optional :ref:`function attributes <fnattrs>` list. Only
3252 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3253 attributes are valid here.
3254
3255Semantics:
3256""""""""""
3257
3258This instruction is designed to operate as a standard '``call``'
3259instruction in most regards. The primary difference is that it
3260establishes an association with a label, which is used by the runtime
3261library to unwind the stack.
3262
3263This instruction is used in languages with destructors to ensure that
3264proper cleanup is performed in the case of either a ``longjmp`` or a
3265thrown exception. Additionally, this is important for implementation of
3266'``catch``' clauses in high-level languages that support them.
3267
3268For the purposes of the SSA form, the definition of the value returned
3269by the '``invoke``' instruction is deemed to occur on the edge from the
3270current block to the "normal" label. If the callee unwinds then no
3271return value is available.
3272
3273Example:
3274""""""""
3275
3276.. code-block:: llvm
3277
3278 %retval = invoke i32 @Test(i32 15) to label %Continue
3279 unwind label %TestCleanup ; {i32}:retval set
3280 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3281 unwind label %TestCleanup ; {i32}:retval set
3282
3283.. _i_resume:
3284
3285'``resume``' Instruction
3286^^^^^^^^^^^^^^^^^^^^^^^^
3287
3288Syntax:
3289"""""""
3290
3291::
3292
3293 resume <type> <value>
3294
3295Overview:
3296"""""""""
3297
3298The '``resume``' instruction is a terminator instruction that has no
3299successors.
3300
3301Arguments:
3302""""""""""
3303
3304The '``resume``' instruction requires one argument, which must have the
3305same type as the result of any '``landingpad``' instruction in the same
3306function.
3307
3308Semantics:
3309""""""""""
3310
3311The '``resume``' instruction resumes propagation of an existing
3312(in-flight) exception whose unwinding was interrupted with a
3313:ref:`landingpad <i_landingpad>` instruction.
3314
3315Example:
3316""""""""
3317
3318.. code-block:: llvm
3319
3320 resume { i8*, i32 } %exn
3321
3322.. _i_unreachable:
3323
3324'``unreachable``' Instruction
3325^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3326
3327Syntax:
3328"""""""
3329
3330::
3331
3332 unreachable
3333
3334Overview:
3335"""""""""
3336
3337The '``unreachable``' instruction has no defined semantics. This
3338instruction is used to inform the optimizer that a particular portion of
3339the code is not reachable. This can be used to indicate that the code
3340after a no-return function cannot be reached, and other facts.
3341
3342Semantics:
3343""""""""""
3344
3345The '``unreachable``' instruction has no defined semantics.
3346
3347.. _binaryops:
3348
3349Binary Operations
3350-----------------
3351
3352Binary operators are used to do most of the computation in a program.
3353They require two operands of the same type, execute an operation on
3354them, and produce a single value. The operands might represent multiple
3355data, as is the case with the :ref:`vector <t_vector>` data type. The
3356result value has the same type as its operands.
3357
3358There are several different binary operators:
3359
3360.. _i_add:
3361
3362'``add``' Instruction
3363^^^^^^^^^^^^^^^^^^^^^
3364
3365Syntax:
3366"""""""
3367
3368::
3369
3370 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3371 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3372 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3373 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3374
3375Overview:
3376"""""""""
3377
3378The '``add``' instruction returns the sum of its two operands.
3379
3380Arguments:
3381""""""""""
3382
3383The two arguments to the '``add``' instruction must be
3384:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3385arguments must have identical types.
3386
3387Semantics:
3388""""""""""
3389
3390The value produced is the integer sum of the two operands.
3391
3392If the sum has unsigned overflow, the result returned is the
3393mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3394the result.
3395
3396Because LLVM integers use a two's complement representation, this
3397instruction is appropriate for both signed and unsigned integers.
3398
3399``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3400respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3401result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3402unsigned and/or signed overflow, respectively, occurs.
3403
3404Example:
3405""""""""
3406
3407.. code-block:: llvm
3408
3409 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3410
3411.. _i_fadd:
3412
3413'``fadd``' Instruction
3414^^^^^^^^^^^^^^^^^^^^^^
3415
3416Syntax:
3417"""""""
3418
3419::
3420
3421 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3422
3423Overview:
3424"""""""""
3425
3426The '``fadd``' instruction returns the sum of its two operands.
3427
3428Arguments:
3429""""""""""
3430
3431The two arguments to the '``fadd``' instruction must be :ref:`floating
3432point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3433Both arguments must have identical types.
3434
3435Semantics:
3436""""""""""
3437
3438The value produced is the floating point sum of the two operands. This
3439instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3440which are optimization hints to enable otherwise unsafe floating point
3441optimizations:
3442
3443Example:
3444""""""""
3445
3446.. code-block:: llvm
3447
3448 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3449
3450'``sub``' Instruction
3451^^^^^^^^^^^^^^^^^^^^^
3452
3453Syntax:
3454"""""""
3455
3456::
3457
3458 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3459 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3460 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3461 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3462
3463Overview:
3464"""""""""
3465
3466The '``sub``' instruction returns the difference of its two operands.
3467
3468Note that the '``sub``' instruction is used to represent the '``neg``'
3469instruction present in most other intermediate representations.
3470
3471Arguments:
3472""""""""""
3473
3474The two arguments to the '``sub``' instruction must be
3475:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3476arguments must have identical types.
3477
3478Semantics:
3479""""""""""
3480
3481The value produced is the integer difference of the two operands.
3482
3483If the difference has unsigned overflow, the result returned is the
3484mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3485the result.
3486
3487Because LLVM integers use a two's complement representation, this
3488instruction is appropriate for both signed and unsigned integers.
3489
3490``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3491respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3492result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3493unsigned and/or signed overflow, respectively, occurs.
3494
3495Example:
3496""""""""
3497
3498.. code-block:: llvm
3499
3500 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3501 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3502
3503.. _i_fsub:
3504
3505'``fsub``' Instruction
3506^^^^^^^^^^^^^^^^^^^^^^
3507
3508Syntax:
3509"""""""
3510
3511::
3512
3513 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3514
3515Overview:
3516"""""""""
3517
3518The '``fsub``' instruction returns the difference of its two operands.
3519
3520Note that the '``fsub``' instruction is used to represent the '``fneg``'
3521instruction present in most other intermediate representations.
3522
3523Arguments:
3524""""""""""
3525
3526The two arguments to the '``fsub``' instruction must be :ref:`floating
3527point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3528Both arguments must have identical types.
3529
3530Semantics:
3531""""""""""
3532
3533The value produced is the floating point difference of the two operands.
3534This instruction can also take any number of :ref:`fast-math
3535flags <fastmath>`, which are optimization hints to enable otherwise
3536unsafe floating point optimizations:
3537
3538Example:
3539""""""""
3540
3541.. code-block:: llvm
3542
3543 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3544 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3545
3546'``mul``' Instruction
3547^^^^^^^^^^^^^^^^^^^^^
3548
3549Syntax:
3550"""""""
3551
3552::
3553
3554 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3555 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3556 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3557 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3558
3559Overview:
3560"""""""""
3561
3562The '``mul``' instruction returns the product of its two operands.
3563
3564Arguments:
3565""""""""""
3566
3567The two arguments to the '``mul``' instruction must be
3568:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3569arguments must have identical types.
3570
3571Semantics:
3572""""""""""
3573
3574The value produced is the integer product of the two operands.
3575
3576If the result of the multiplication has unsigned overflow, the result
3577returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3578bit width of the result.
3579
3580Because LLVM integers use a two's complement representation, and the
3581result is the same width as the operands, this instruction returns the
3582correct result for both signed and unsigned integers. If a full product
3583(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3584sign-extended or zero-extended as appropriate to the width of the full
3585product.
3586
3587``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3588respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3589result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3590unsigned and/or signed overflow, respectively, occurs.
3591
3592Example:
3593""""""""
3594
3595.. code-block:: llvm
3596
3597 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3598
3599.. _i_fmul:
3600
3601'``fmul``' Instruction
3602^^^^^^^^^^^^^^^^^^^^^^
3603
3604Syntax:
3605"""""""
3606
3607::
3608
3609 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3610
3611Overview:
3612"""""""""
3613
3614The '``fmul``' instruction returns the product of its two operands.
3615
3616Arguments:
3617""""""""""
3618
3619The two arguments to the '``fmul``' instruction must be :ref:`floating
3620point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3621Both arguments must have identical types.
3622
3623Semantics:
3624""""""""""
3625
3626The value produced is the floating point product of the two operands.
3627This instruction can also take any number of :ref:`fast-math
3628flags <fastmath>`, which are optimization hints to enable otherwise
3629unsafe floating point optimizations:
3630
3631Example:
3632""""""""
3633
3634.. code-block:: llvm
3635
3636 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3637
3638'``udiv``' Instruction
3639^^^^^^^^^^^^^^^^^^^^^^
3640
3641Syntax:
3642"""""""
3643
3644::
3645
3646 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3647 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3648
3649Overview:
3650"""""""""
3651
3652The '``udiv``' instruction returns the quotient of its two operands.
3653
3654Arguments:
3655""""""""""
3656
3657The two arguments to the '``udiv``' instruction must be
3658:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3659arguments must have identical types.
3660
3661Semantics:
3662""""""""""
3663
3664The value produced is the unsigned integer quotient of the two operands.
3665
3666Note that unsigned integer division and signed integer division are
3667distinct operations; for signed integer division, use '``sdiv``'.
3668
3669Division by zero leads to undefined behavior.
3670
3671If the ``exact`` keyword is present, the result value of the ``udiv`` is
3672a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3673such, "((a udiv exact b) mul b) == a").
3674
3675Example:
3676""""""""
3677
3678.. code-block:: llvm
3679
3680 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3681
3682'``sdiv``' Instruction
3683^^^^^^^^^^^^^^^^^^^^^^
3684
3685Syntax:
3686"""""""
3687
3688::
3689
3690 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3691 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3692
3693Overview:
3694"""""""""
3695
3696The '``sdiv``' instruction returns the quotient of its two operands.
3697
3698Arguments:
3699""""""""""
3700
3701The two arguments to the '``sdiv``' instruction must be
3702:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3703arguments must have identical types.
3704
3705Semantics:
3706""""""""""
3707
3708The value produced is the signed integer quotient of the two operands
3709rounded towards zero.
3710
3711Note that signed integer division and unsigned integer division are
3712distinct operations; for unsigned integer division, use '``udiv``'.
3713
3714Division by zero leads to undefined behavior. Overflow also leads to
3715undefined behavior; this is a rare case, but can occur, for example, by
3716doing a 32-bit division of -2147483648 by -1.
3717
3718If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3719a :ref:`poison value <poisonvalues>` if the result would be rounded.
3720
3721Example:
3722""""""""
3723
3724.. code-block:: llvm
3725
3726 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3727
3728.. _i_fdiv:
3729
3730'``fdiv``' Instruction
3731^^^^^^^^^^^^^^^^^^^^^^
3732
3733Syntax:
3734"""""""
3735
3736::
3737
3738 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3739
3740Overview:
3741"""""""""
3742
3743The '``fdiv``' instruction returns the quotient of its two operands.
3744
3745Arguments:
3746""""""""""
3747
3748The two arguments to the '``fdiv``' instruction must be :ref:`floating
3749point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3750Both arguments must have identical types.
3751
3752Semantics:
3753""""""""""
3754
3755The value produced is the floating point quotient of the two operands.
3756This instruction can also take any number of :ref:`fast-math
3757flags <fastmath>`, which are optimization hints to enable otherwise
3758unsafe floating point optimizations:
3759
3760Example:
3761""""""""
3762
3763.. code-block:: llvm
3764
3765 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3766
3767'``urem``' Instruction
3768^^^^^^^^^^^^^^^^^^^^^^
3769
3770Syntax:
3771"""""""
3772
3773::
3774
3775 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3776
3777Overview:
3778"""""""""
3779
3780The '``urem``' instruction returns the remainder from the unsigned
3781division of its two arguments.
3782
3783Arguments:
3784""""""""""
3785
3786The two arguments to the '``urem``' instruction must be
3787:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3788arguments must have identical types.
3789
3790Semantics:
3791""""""""""
3792
3793This instruction returns the unsigned integer *remainder* of a division.
3794This instruction always performs an unsigned division to get the
3795remainder.
3796
3797Note that unsigned integer remainder and signed integer remainder are
3798distinct operations; for signed integer remainder, use '``srem``'.
3799
3800Taking the remainder of a division by zero leads to undefined behavior.
3801
3802Example:
3803""""""""
3804
3805.. code-block:: llvm
3806
3807 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3808
3809'``srem``' Instruction
3810^^^^^^^^^^^^^^^^^^^^^^
3811
3812Syntax:
3813"""""""
3814
3815::
3816
3817 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3818
3819Overview:
3820"""""""""
3821
3822The '``srem``' instruction returns the remainder from the signed
3823division of its two operands. This instruction can also take
3824:ref:`vector <t_vector>` versions of the values in which case the elements
3825must be integers.
3826
3827Arguments:
3828""""""""""
3829
3830The two arguments to the '``srem``' instruction must be
3831:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3832arguments must have identical types.
3833
3834Semantics:
3835""""""""""
3836
3837This instruction returns the *remainder* of a division (where the result
3838is either zero or has the same sign as the dividend, ``op1``), not the
3839*modulo* operator (where the result is either zero or has the same sign
3840as the divisor, ``op2``) of a value. For more information about the
3841difference, see `The Math
3842Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3843table of how this is implemented in various languages, please see
3844`Wikipedia: modulo
3845operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3846
3847Note that signed integer remainder and unsigned integer remainder are
3848distinct operations; for unsigned integer remainder, use '``urem``'.
3849
3850Taking the remainder of a division by zero leads to undefined behavior.
3851Overflow also leads to undefined behavior; this is a rare case, but can
3852occur, for example, by taking the remainder of a 32-bit division of
3853-2147483648 by -1. (The remainder doesn't actually overflow, but this
3854rule lets srem be implemented using instructions that return both the
3855result of the division and the remainder.)
3856
3857Example:
3858""""""""
3859
3860.. code-block:: llvm
3861
3862 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3863
3864.. _i_frem:
3865
3866'``frem``' Instruction
3867^^^^^^^^^^^^^^^^^^^^^^
3868
3869Syntax:
3870"""""""
3871
3872::
3873
3874 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3875
3876Overview:
3877"""""""""
3878
3879The '``frem``' instruction returns the remainder from the division of
3880its two operands.
3881
3882Arguments:
3883""""""""""
3884
3885The two arguments to the '``frem``' instruction must be :ref:`floating
3886point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3887Both arguments must have identical types.
3888
3889Semantics:
3890""""""""""
3891
3892This instruction returns the *remainder* of a division. The remainder
3893has the same sign as the dividend. This instruction can also take any
3894number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3895to enable otherwise unsafe floating point optimizations:
3896
3897Example:
3898""""""""
3899
3900.. code-block:: llvm
3901
3902 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3903
3904.. _bitwiseops:
3905
3906Bitwise Binary Operations
3907-------------------------
3908
3909Bitwise binary operators are used to do various forms of bit-twiddling
3910in a program. They are generally very efficient instructions and can
3911commonly be strength reduced from other instructions. They require two
3912operands of the same type, execute an operation on them, and produce a
3913single value. The resulting value is the same type as its operands.
3914
3915'``shl``' Instruction
3916^^^^^^^^^^^^^^^^^^^^^
3917
3918Syntax:
3919"""""""
3920
3921::
3922
3923 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3924 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3925 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3926 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3927
3928Overview:
3929"""""""""
3930
3931The '``shl``' instruction returns the first operand shifted to the left
3932a specified number of bits.
3933
3934Arguments:
3935""""""""""
3936
3937Both arguments to the '``shl``' instruction must be the same
3938:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3939'``op2``' is treated as an unsigned value.
3940
3941Semantics:
3942""""""""""
3943
3944The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3945where ``n`` is the width of the result. If ``op2`` is (statically or
3946dynamically) negative or equal to or larger than the number of bits in
3947``op1``, the result is undefined. If the arguments are vectors, each
3948vector element of ``op1`` is shifted by the corresponding shift amount
3949in ``op2``.
3950
3951If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3952value <poisonvalues>` if it shifts out any non-zero bits. If the
3953``nsw`` keyword is present, then the shift produces a :ref:`poison
3954value <poisonvalues>` if it shifts out any bits that disagree with the
3955resultant sign bit. As such, NUW/NSW have the same semantics as they
3956would if the shift were expressed as a mul instruction with the same
3957nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3958
3959Example:
3960""""""""
3961
3962.. code-block:: llvm
3963
3964 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3965 <result> = shl i32 4, 2 ; yields {i32}: 16
3966 <result> = shl i32 1, 10 ; yields {i32}: 1024
3967 <result> = shl i32 1, 32 ; undefined
3968 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3969
3970'``lshr``' Instruction
3971^^^^^^^^^^^^^^^^^^^^^^
3972
3973Syntax:
3974"""""""
3975
3976::
3977
3978 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3979 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3980
3981Overview:
3982"""""""""
3983
3984The '``lshr``' instruction (logical shift right) returns the first
3985operand shifted to the right a specified number of bits with zero fill.
3986
3987Arguments:
3988""""""""""
3989
3990Both arguments to the '``lshr``' instruction must be the same
3991:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3992'``op2``' is treated as an unsigned value.
3993
3994Semantics:
3995""""""""""
3996
3997This instruction always performs a logical shift right operation. The
3998most significant bits of the result will be filled with zero bits after
3999the shift. If ``op2`` is (statically or dynamically) equal to or larger
4000than the number of bits in ``op1``, the result is undefined. If the
4001arguments are vectors, each vector element of ``op1`` is shifted by the
4002corresponding shift amount in ``op2``.
4003
4004If the ``exact`` keyword is present, the result value of the ``lshr`` is
4005a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4006non-zero.
4007
4008Example:
4009""""""""
4010
4011.. code-block:: llvm
4012
4013 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4014 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4015 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004016 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004017 <result> = lshr i32 1, 32 ; undefined
4018 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4019
4020'``ashr``' Instruction
4021^^^^^^^^^^^^^^^^^^^^^^
4022
4023Syntax:
4024"""""""
4025
4026::
4027
4028 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4029 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4030
4031Overview:
4032"""""""""
4033
4034The '``ashr``' instruction (arithmetic shift right) returns the first
4035operand shifted to the right a specified number of bits with sign
4036extension.
4037
4038Arguments:
4039""""""""""
4040
4041Both arguments to the '``ashr``' instruction must be the same
4042:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4043'``op2``' is treated as an unsigned value.
4044
4045Semantics:
4046""""""""""
4047
4048This instruction always performs an arithmetic shift right operation,
4049The most significant bits of the result will be filled with the sign bit
4050of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4051than the number of bits in ``op1``, the result is undefined. If the
4052arguments are vectors, each vector element of ``op1`` is shifted by the
4053corresponding shift amount in ``op2``.
4054
4055If the ``exact`` keyword is present, the result value of the ``ashr`` is
4056a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4057non-zero.
4058
4059Example:
4060""""""""
4061
4062.. code-block:: llvm
4063
4064 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4065 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4066 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4067 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4068 <result> = ashr i32 1, 32 ; undefined
4069 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4070
4071'``and``' Instruction
4072^^^^^^^^^^^^^^^^^^^^^
4073
4074Syntax:
4075"""""""
4076
4077::
4078
4079 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4080
4081Overview:
4082"""""""""
4083
4084The '``and``' instruction returns the bitwise logical and of its two
4085operands.
4086
4087Arguments:
4088""""""""""
4089
4090The two arguments to the '``and``' instruction must be
4091:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4092arguments must have identical types.
4093
4094Semantics:
4095""""""""""
4096
4097The truth table used for the '``and``' instruction is:
4098
4099+-----+-----+-----+
4100| In0 | In1 | Out |
4101+-----+-----+-----+
4102| 0 | 0 | 0 |
4103+-----+-----+-----+
4104| 0 | 1 | 0 |
4105+-----+-----+-----+
4106| 1 | 0 | 0 |
4107+-----+-----+-----+
4108| 1 | 1 | 1 |
4109+-----+-----+-----+
4110
4111Example:
4112""""""""
4113
4114.. code-block:: llvm
4115
4116 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4117 <result> = and i32 15, 40 ; yields {i32}:result = 8
4118 <result> = and i32 4, 8 ; yields {i32}:result = 0
4119
4120'``or``' Instruction
4121^^^^^^^^^^^^^^^^^^^^
4122
4123Syntax:
4124"""""""
4125
4126::
4127
4128 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4129
4130Overview:
4131"""""""""
4132
4133The '``or``' instruction returns the bitwise logical inclusive or of its
4134two operands.
4135
4136Arguments:
4137""""""""""
4138
4139The two arguments to the '``or``' instruction must be
4140:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4141arguments must have identical types.
4142
4143Semantics:
4144""""""""""
4145
4146The truth table used for the '``or``' instruction is:
4147
4148+-----+-----+-----+
4149| In0 | In1 | Out |
4150+-----+-----+-----+
4151| 0 | 0 | 0 |
4152+-----+-----+-----+
4153| 0 | 1 | 1 |
4154+-----+-----+-----+
4155| 1 | 0 | 1 |
4156+-----+-----+-----+
4157| 1 | 1 | 1 |
4158+-----+-----+-----+
4159
4160Example:
4161""""""""
4162
4163::
4164
4165 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4166 <result> = or i32 15, 40 ; yields {i32}:result = 47
4167 <result> = or i32 4, 8 ; yields {i32}:result = 12
4168
4169'``xor``' Instruction
4170^^^^^^^^^^^^^^^^^^^^^
4171
4172Syntax:
4173"""""""
4174
4175::
4176
4177 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4178
4179Overview:
4180"""""""""
4181
4182The '``xor``' instruction returns the bitwise logical exclusive or of
4183its two operands. The ``xor`` is used to implement the "one's
4184complement" operation, which is the "~" operator in C.
4185
4186Arguments:
4187""""""""""
4188
4189The two arguments to the '``xor``' instruction must be
4190:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4191arguments must have identical types.
4192
4193Semantics:
4194""""""""""
4195
4196The truth table used for the '``xor``' instruction is:
4197
4198+-----+-----+-----+
4199| In0 | In1 | Out |
4200+-----+-----+-----+
4201| 0 | 0 | 0 |
4202+-----+-----+-----+
4203| 0 | 1 | 1 |
4204+-----+-----+-----+
4205| 1 | 0 | 1 |
4206+-----+-----+-----+
4207| 1 | 1 | 0 |
4208+-----+-----+-----+
4209
4210Example:
4211""""""""
4212
4213.. code-block:: llvm
4214
4215 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4216 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4217 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4218 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4219
4220Vector Operations
4221-----------------
4222
4223LLVM supports several instructions to represent vector operations in a
4224target-independent manner. These instructions cover the element-access
4225and vector-specific operations needed to process vectors effectively.
4226While LLVM does directly support these vector operations, many
4227sophisticated algorithms will want to use target-specific intrinsics to
4228take full advantage of a specific target.
4229
4230.. _i_extractelement:
4231
4232'``extractelement``' Instruction
4233^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4234
4235Syntax:
4236"""""""
4237
4238::
4239
4240 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4241
4242Overview:
4243"""""""""
4244
4245The '``extractelement``' instruction extracts a single scalar element
4246from a vector at a specified index.
4247
4248Arguments:
4249""""""""""
4250
4251The first operand of an '``extractelement``' instruction is a value of
4252:ref:`vector <t_vector>` type. The second operand is an index indicating
4253the position from which to extract the element. The index may be a
4254variable.
4255
4256Semantics:
4257""""""""""
4258
4259The result is a scalar of the same type as the element type of ``val``.
4260Its value is the value at position ``idx`` of ``val``. If ``idx``
4261exceeds the length of ``val``, the results are undefined.
4262
4263Example:
4264""""""""
4265
4266.. code-block:: llvm
4267
4268 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4269
4270.. _i_insertelement:
4271
4272'``insertelement``' Instruction
4273^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4274
4275Syntax:
4276"""""""
4277
4278::
4279
4280 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4281
4282Overview:
4283"""""""""
4284
4285The '``insertelement``' instruction inserts a scalar element into a
4286vector at a specified index.
4287
4288Arguments:
4289""""""""""
4290
4291The first operand of an '``insertelement``' instruction is a value of
4292:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4293type must equal the element type of the first operand. The third operand
4294is an index indicating the position at which to insert the value. The
4295index may be a variable.
4296
4297Semantics:
4298""""""""""
4299
4300The result is a vector of the same type as ``val``. Its element values
4301are those of ``val`` except at position ``idx``, where it gets the value
4302``elt``. If ``idx`` exceeds the length of ``val``, the results are
4303undefined.
4304
4305Example:
4306""""""""
4307
4308.. code-block:: llvm
4309
4310 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4311
4312.. _i_shufflevector:
4313
4314'``shufflevector``' Instruction
4315^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4316
4317Syntax:
4318"""""""
4319
4320::
4321
4322 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4323
4324Overview:
4325"""""""""
4326
4327The '``shufflevector``' instruction constructs a permutation of elements
4328from two input vectors, returning a vector with the same element type as
4329the input and length that is the same as the shuffle mask.
4330
4331Arguments:
4332""""""""""
4333
4334The first two operands of a '``shufflevector``' instruction are vectors
4335with the same type. The third argument is a shuffle mask whose element
4336type is always 'i32'. The result of the instruction is a vector whose
4337length is the same as the shuffle mask and whose element type is the
4338same as the element type of the first two operands.
4339
4340The shuffle mask operand is required to be a constant vector with either
4341constant integer or undef values.
4342
4343Semantics:
4344""""""""""
4345
4346The elements of the two input vectors are numbered from left to right
4347across both of the vectors. The shuffle mask operand specifies, for each
4348element of the result vector, which element of the two input vectors the
4349result element gets. The element selector may be undef (meaning "don't
4350care") and the second operand may be undef if performing a shuffle from
4351only one vector.
4352
4353Example:
4354""""""""
4355
4356.. code-block:: llvm
4357
4358 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4359 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4360 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4361 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4362 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4363 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4364 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4365 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4366
4367Aggregate Operations
4368--------------------
4369
4370LLVM supports several instructions for working with
4371:ref:`aggregate <t_aggregate>` values.
4372
4373.. _i_extractvalue:
4374
4375'``extractvalue``' Instruction
4376^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4377
4378Syntax:
4379"""""""
4380
4381::
4382
4383 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4384
4385Overview:
4386"""""""""
4387
4388The '``extractvalue``' instruction extracts the value of a member field
4389from an :ref:`aggregate <t_aggregate>` value.
4390
4391Arguments:
4392""""""""""
4393
4394The first operand of an '``extractvalue``' instruction is a value of
4395:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4396constant indices to specify which value to extract in a similar manner
4397as indices in a '``getelementptr``' instruction.
4398
4399The major differences to ``getelementptr`` indexing are:
4400
4401- Since the value being indexed is not a pointer, the first index is
4402 omitted and assumed to be zero.
4403- At least one index must be specified.
4404- Not only struct indices but also array indices must be in bounds.
4405
4406Semantics:
4407""""""""""
4408
4409The result is the value at the position in the aggregate specified by
4410the index operands.
4411
4412Example:
4413""""""""
4414
4415.. code-block:: llvm
4416
4417 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4418
4419.. _i_insertvalue:
4420
4421'``insertvalue``' Instruction
4422^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4423
4424Syntax:
4425"""""""
4426
4427::
4428
4429 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4430
4431Overview:
4432"""""""""
4433
4434The '``insertvalue``' instruction inserts a value into a member field in
4435an :ref:`aggregate <t_aggregate>` value.
4436
4437Arguments:
4438""""""""""
4439
4440The first operand of an '``insertvalue``' instruction is a value of
4441:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4442a first-class value to insert. The following operands are constant
4443indices indicating the position at which to insert the value in a
4444similar manner as indices in a '``extractvalue``' instruction. The value
4445to insert must have the same type as the value identified by the
4446indices.
4447
4448Semantics:
4449""""""""""
4450
4451The result is an aggregate of the same type as ``val``. Its value is
4452that of ``val`` except that the value at the position specified by the
4453indices is that of ``elt``.
4454
4455Example:
4456""""""""
4457
4458.. code-block:: llvm
4459
4460 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4461 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4462 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4463
4464.. _memoryops:
4465
4466Memory Access and Addressing Operations
4467---------------------------------------
4468
4469A key design point of an SSA-based representation is how it represents
4470memory. In LLVM, no memory locations are in SSA form, which makes things
4471very simple. This section describes how to read, write, and allocate
4472memory in LLVM.
4473
4474.. _i_alloca:
4475
4476'``alloca``' Instruction
4477^^^^^^^^^^^^^^^^^^^^^^^^
4478
4479Syntax:
4480"""""""
4481
4482::
4483
4484 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4485
4486Overview:
4487"""""""""
4488
4489The '``alloca``' instruction allocates memory on the stack frame of the
4490currently executing function, to be automatically released when this
4491function returns to its caller. The object is always allocated in the
4492generic address space (address space zero).
4493
4494Arguments:
4495""""""""""
4496
4497The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4498bytes of memory on the runtime stack, returning a pointer of the
4499appropriate type to the program. If "NumElements" is specified, it is
4500the number of elements allocated, otherwise "NumElements" is defaulted
4501to be one. If a constant alignment is specified, the value result of the
4502allocation is guaranteed to be aligned to at least that boundary. If not
4503specified, or if zero, the target can choose to align the allocation on
4504any convenient boundary compatible with the type.
4505
4506'``type``' may be any sized type.
4507
4508Semantics:
4509""""""""""
4510
4511Memory is allocated; a pointer is returned. The operation is undefined
4512if there is insufficient stack space for the allocation. '``alloca``'d
4513memory is automatically released when the function returns. The
4514'``alloca``' instruction is commonly used to represent automatic
4515variables that must have an address available. When the function returns
4516(either with the ``ret`` or ``resume`` instructions), the memory is
4517reclaimed. Allocating zero bytes is legal, but the result is undefined.
4518The order in which memory is allocated (ie., which way the stack grows)
4519is not specified.
4520
4521Example:
4522""""""""
4523
4524.. code-block:: llvm
4525
4526 %ptr = alloca i32 ; yields {i32*}:ptr
4527 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4528 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4529 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4530
4531.. _i_load:
4532
4533'``load``' Instruction
4534^^^^^^^^^^^^^^^^^^^^^^
4535
4536Syntax:
4537"""""""
4538
4539::
4540
4541 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4542 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4543 !<index> = !{ i32 1 }
4544
4545Overview:
4546"""""""""
4547
4548The '``load``' instruction is used to read from memory.
4549
4550Arguments:
4551""""""""""
4552
Eli Bendersky8c493382013-04-17 20:17:08 +00004553The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004554from which to load. The pointer must point to a :ref:`first
4555class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4556then the optimizer is not allowed to modify the number or order of
4557execution of this ``load`` with other :ref:`volatile
4558operations <volatile>`.
4559
4560If the ``load`` is marked as ``atomic``, it takes an extra
4561:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4562``release`` and ``acq_rel`` orderings are not valid on ``load``
4563instructions. Atomic loads produce :ref:`defined <memmodel>` results
4564when they may see multiple atomic stores. The type of the pointee must
4565be an integer type whose bit width is a power of two greater than or
4566equal to eight and less than or equal to a target-specific size limit.
4567``align`` must be explicitly specified on atomic loads, and the load has
4568undefined behavior if the alignment is not set to a value which is at
4569least the size in bytes of the pointee. ``!nontemporal`` does not have
4570any defined semantics for atomic loads.
4571
4572The optional constant ``align`` argument specifies the alignment of the
4573operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004574or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004575alignment for the target. It is the responsibility of the code emitter
4576to ensure that the alignment information is correct. Overestimating the
4577alignment results in undefined behavior. Underestimating the alignment
4578may produce less efficient code. An alignment of 1 is always safe.
4579
4580The optional ``!nontemporal`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004581metatadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004582``i32`` entry of value 1. The existence of the ``!nontemporal``
4583metatadata on the instruction tells the optimizer and code generator
4584that this load is not expected to be reused in the cache. The code
4585generator may select special instructions to save cache bandwidth, such
4586as the ``MOVNT`` instruction on x86.
4587
4588The optional ``!invariant.load`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004589metatadata name ``<index>`` corresponding to a metadata node with no
Sean Silvaf722b002012-12-07 10:36:55 +00004590entries. The existence of the ``!invariant.load`` metatadata on the
4591instruction tells the optimizer and code generator that this load
4592address points to memory which does not change value during program
4593execution. The optimizer may then move this load around, for example, by
4594hoisting it out of loops using loop invariant code motion.
4595
4596Semantics:
4597""""""""""
4598
4599The location of memory pointed to is loaded. If the value being loaded
4600is of scalar type then the number of bytes read does not exceed the
4601minimum number of bytes needed to hold all bits of the type. For
4602example, loading an ``i24`` reads at most three bytes. When loading a
4603value of a type like ``i20`` with a size that is not an integral number
4604of bytes, the result is undefined if the value was not originally
4605written using a store of the same type.
4606
4607Examples:
4608"""""""""
4609
4610.. code-block:: llvm
4611
4612 %ptr = alloca i32 ; yields {i32*}:ptr
4613 store i32 3, i32* %ptr ; yields {void}
4614 %val = load i32* %ptr ; yields {i32}:val = i32 3
4615
4616.. _i_store:
4617
4618'``store``' Instruction
4619^^^^^^^^^^^^^^^^^^^^^^^
4620
4621Syntax:
4622"""""""
4623
4624::
4625
4626 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4627 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4628
4629Overview:
4630"""""""""
4631
4632The '``store``' instruction is used to write to memory.
4633
4634Arguments:
4635""""""""""
4636
Eli Bendersky8952d902013-04-17 17:17:20 +00004637There are two arguments to the ``store`` instruction: a value to store
4638and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004639operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004640the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004641then the optimizer is not allowed to modify the number or order of
4642execution of this ``store`` with other :ref:`volatile
4643operations <volatile>`.
4644
4645If the ``store`` is marked as ``atomic``, it takes an extra
4646:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4647``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4648instructions. Atomic loads produce :ref:`defined <memmodel>` results
4649when they may see multiple atomic stores. The type of the pointee must
4650be an integer type whose bit width is a power of two greater than or
4651equal to eight and less than or equal to a target-specific size limit.
4652``align`` must be explicitly specified on atomic stores, and the store
4653has undefined behavior if the alignment is not set to a value which is
4654at least the size in bytes of the pointee. ``!nontemporal`` does not
4655have any defined semantics for atomic stores.
4656
Eli Bendersky8952d902013-04-17 17:17:20 +00004657The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004658operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004659or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004660alignment for the target. It is the responsibility of the code emitter
4661to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004662alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004663alignment may produce less efficient code. An alignment of 1 is always
4664safe.
4665
Eli Bendersky8952d902013-04-17 17:17:20 +00004666The optional ``!nontemporal`` metadata must reference a single metatadata
4667name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
4668value 1. The existence of the ``!nontemporal`` metatadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004669tells the optimizer and code generator that this load is not expected to
4670be reused in the cache. The code generator may select special
4671instructions to save cache bandwidth, such as the MOVNT instruction on
4672x86.
4673
4674Semantics:
4675""""""""""
4676
Eli Bendersky8952d902013-04-17 17:17:20 +00004677The contents of memory are updated to contain ``<value>`` at the
4678location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004679of scalar type then the number of bytes written does not exceed the
4680minimum number of bytes needed to hold all bits of the type. For
4681example, storing an ``i24`` writes at most three bytes. When writing a
4682value of a type like ``i20`` with a size that is not an integral number
4683of bytes, it is unspecified what happens to the extra bits that do not
4684belong to the type, but they will typically be overwritten.
4685
4686Example:
4687""""""""
4688
4689.. code-block:: llvm
4690
4691 %ptr = alloca i32 ; yields {i32*}:ptr
4692 store i32 3, i32* %ptr ; yields {void}
4693 %val = load i32* %ptr ; yields {i32}:val = i32 3
4694
4695.. _i_fence:
4696
4697'``fence``' Instruction
4698^^^^^^^^^^^^^^^^^^^^^^^
4699
4700Syntax:
4701"""""""
4702
4703::
4704
4705 fence [singlethread] <ordering> ; yields {void}
4706
4707Overview:
4708"""""""""
4709
4710The '``fence``' instruction is used to introduce happens-before edges
4711between operations.
4712
4713Arguments:
4714""""""""""
4715
4716'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4717defines what *synchronizes-with* edges they add. They can only be given
4718``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4719
4720Semantics:
4721""""""""""
4722
4723A fence A which has (at least) ``release`` ordering semantics
4724*synchronizes with* a fence B with (at least) ``acquire`` ordering
4725semantics if and only if there exist atomic operations X and Y, both
4726operating on some atomic object M, such that A is sequenced before X, X
4727modifies M (either directly or through some side effect of a sequence
4728headed by X), Y is sequenced before B, and Y observes M. This provides a
4729*happens-before* dependency between A and B. Rather than an explicit
4730``fence``, one (but not both) of the atomic operations X or Y might
4731provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4732still *synchronize-with* the explicit ``fence`` and establish the
4733*happens-before* edge.
4734
4735A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4736``acquire`` and ``release`` semantics specified above, participates in
4737the global program order of other ``seq_cst`` operations and/or fences.
4738
4739The optional ":ref:`singlethread <singlethread>`" argument specifies
4740that the fence only synchronizes with other fences in the same thread.
4741(This is useful for interacting with signal handlers.)
4742
4743Example:
4744""""""""
4745
4746.. code-block:: llvm
4747
4748 fence acquire ; yields {void}
4749 fence singlethread seq_cst ; yields {void}
4750
4751.. _i_cmpxchg:
4752
4753'``cmpxchg``' Instruction
4754^^^^^^^^^^^^^^^^^^^^^^^^^
4755
4756Syntax:
4757"""""""
4758
4759::
4760
4761 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4762
4763Overview:
4764"""""""""
4765
4766The '``cmpxchg``' instruction is used to atomically modify memory. It
4767loads a value in memory and compares it to a given value. If they are
4768equal, it stores a new value into the memory.
4769
4770Arguments:
4771""""""""""
4772
4773There are three arguments to the '``cmpxchg``' instruction: an address
4774to operate on, a value to compare to the value currently be at that
4775address, and a new value to place at that address if the compared values
4776are equal. The type of '<cmp>' must be an integer type whose bit width
4777is a power of two greater than or equal to eight and less than or equal
4778to a target-specific size limit. '<cmp>' and '<new>' must have the same
4779type, and the type of '<pointer>' must be a pointer to that type. If the
4780``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4781to modify the number or order of execution of this ``cmpxchg`` with
4782other :ref:`volatile operations <volatile>`.
4783
4784The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4785synchronizes with other atomic operations.
4786
4787The optional "``singlethread``" argument declares that the ``cmpxchg``
4788is only atomic with respect to code (usually signal handlers) running in
4789the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4790respect to all other code in the system.
4791
4792The pointer passed into cmpxchg must have alignment greater than or
4793equal to the size in memory of the operand.
4794
4795Semantics:
4796""""""""""
4797
4798The contents of memory at the location specified by the '``<pointer>``'
4799operand is read and compared to '``<cmp>``'; if the read value is the
4800equal, '``<new>``' is written. The original value at the location is
4801returned.
4802
4803A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4804of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4805atomic load with an ordering parameter determined by dropping any
4806``release`` part of the ``cmpxchg``'s ordering.
4807
4808Example:
4809""""""""
4810
4811.. code-block:: llvm
4812
4813 entry:
4814 %orig = atomic load i32* %ptr unordered ; yields {i32}
4815 br label %loop
4816
4817 loop:
4818 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4819 %squared = mul i32 %cmp, %cmp
4820 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4821 %success = icmp eq i32 %cmp, %old
4822 br i1 %success, label %done, label %loop
4823
4824 done:
4825 ...
4826
4827.. _i_atomicrmw:
4828
4829'``atomicrmw``' Instruction
4830^^^^^^^^^^^^^^^^^^^^^^^^^^^
4831
4832Syntax:
4833"""""""
4834
4835::
4836
4837 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4838
4839Overview:
4840"""""""""
4841
4842The '``atomicrmw``' instruction is used to atomically modify memory.
4843
4844Arguments:
4845""""""""""
4846
4847There are three arguments to the '``atomicrmw``' instruction: an
4848operation to apply, an address whose value to modify, an argument to the
4849operation. The operation must be one of the following keywords:
4850
4851- xchg
4852- add
4853- sub
4854- and
4855- nand
4856- or
4857- xor
4858- max
4859- min
4860- umax
4861- umin
4862
4863The type of '<value>' must be an integer type whose bit width is a power
4864of two greater than or equal to eight and less than or equal to a
4865target-specific size limit. The type of the '``<pointer>``' operand must
4866be a pointer to that type. If the ``atomicrmw`` is marked as
4867``volatile``, then the optimizer is not allowed to modify the number or
4868order of execution of this ``atomicrmw`` with other :ref:`volatile
4869operations <volatile>`.
4870
4871Semantics:
4872""""""""""
4873
4874The contents of memory at the location specified by the '``<pointer>``'
4875operand are atomically read, modified, and written back. The original
4876value at the location is returned. The modification is specified by the
4877operation argument:
4878
4879- xchg: ``*ptr = val``
4880- add: ``*ptr = *ptr + val``
4881- sub: ``*ptr = *ptr - val``
4882- and: ``*ptr = *ptr & val``
4883- nand: ``*ptr = ~(*ptr & val)``
4884- or: ``*ptr = *ptr | val``
4885- xor: ``*ptr = *ptr ^ val``
4886- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4887- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4888- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4889 comparison)
4890- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4891 comparison)
4892
4893Example:
4894""""""""
4895
4896.. code-block:: llvm
4897
4898 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4899
4900.. _i_getelementptr:
4901
4902'``getelementptr``' Instruction
4903^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4904
4905Syntax:
4906"""""""
4907
4908::
4909
4910 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4911 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4912 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4913
4914Overview:
4915"""""""""
4916
4917The '``getelementptr``' instruction is used to get the address of a
4918subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4919address calculation only and does not access memory.
4920
4921Arguments:
4922""""""""""
4923
4924The first argument is always a pointer or a vector of pointers, and
4925forms the basis of the calculation. The remaining arguments are indices
4926that indicate which of the elements of the aggregate object are indexed.
4927The interpretation of each index is dependent on the type being indexed
4928into. The first index always indexes the pointer value given as the
4929first argument, the second index indexes a value of the type pointed to
4930(not necessarily the value directly pointed to, since the first index
4931can be non-zero), etc. The first type indexed into must be a pointer
4932value, subsequent types can be arrays, vectors, and structs. Note that
4933subsequent types being indexed into can never be pointers, since that
4934would require loading the pointer before continuing calculation.
4935
4936The type of each index argument depends on the type it is indexing into.
4937When indexing into a (optionally packed) structure, only ``i32`` integer
4938**constants** are allowed (when using a vector of indices they must all
4939be the **same** ``i32`` integer constant). When indexing into an array,
4940pointer or vector, integers of any width are allowed, and they are not
4941required to be constant. These integers are treated as signed values
4942where relevant.
4943
4944For example, let's consider a C code fragment and how it gets compiled
4945to LLVM:
4946
4947.. code-block:: c
4948
4949 struct RT {
4950 char A;
4951 int B[10][20];
4952 char C;
4953 };
4954 struct ST {
4955 int X;
4956 double Y;
4957 struct RT Z;
4958 };
4959
4960 int *foo(struct ST *s) {
4961 return &s[1].Z.B[5][13];
4962 }
4963
4964The LLVM code generated by Clang is:
4965
4966.. code-block:: llvm
4967
4968 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4969 %struct.ST = type { i32, double, %struct.RT }
4970
4971 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4972 entry:
4973 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4974 ret i32* %arrayidx
4975 }
4976
4977Semantics:
4978""""""""""
4979
4980In the example above, the first index is indexing into the
4981'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4982= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4983indexes into the third element of the structure, yielding a
4984'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4985structure. The third index indexes into the second element of the
4986structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4987dimensions of the array are subscripted into, yielding an '``i32``'
4988type. The '``getelementptr``' instruction returns a pointer to this
4989element, thus computing a value of '``i32*``' type.
4990
4991Note that it is perfectly legal to index partially through a structure,
4992returning a pointer to an inner element. Because of this, the LLVM code
4993for the given testcase is equivalent to:
4994
4995.. code-block:: llvm
4996
4997 define i32* @foo(%struct.ST* %s) {
4998 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4999 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5000 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5001 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5002 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5003 ret i32* %t5
5004 }
5005
5006If the ``inbounds`` keyword is present, the result value of the
5007``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5008pointer is not an *in bounds* address of an allocated object, or if any
5009of the addresses that would be formed by successive addition of the
5010offsets implied by the indices to the base address with infinitely
5011precise signed arithmetic are not an *in bounds* address of that
5012allocated object. The *in bounds* addresses for an allocated object are
5013all the addresses that point into the object, plus the address one byte
5014past the end. In cases where the base is a vector of pointers the
5015``inbounds`` keyword applies to each of the computations element-wise.
5016
5017If the ``inbounds`` keyword is not present, the offsets are added to the
5018base address with silently-wrapping two's complement arithmetic. If the
5019offsets have a different width from the pointer, they are sign-extended
5020or truncated to the width of the pointer. The result value of the
5021``getelementptr`` may be outside the object pointed to by the base
5022pointer. The result value may not necessarily be used to access memory
5023though, even if it happens to point into allocated storage. See the
5024:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5025information.
5026
5027The getelementptr instruction is often confusing. For some more insight
5028into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5029
5030Example:
5031""""""""
5032
5033.. code-block:: llvm
5034
5035 ; yields [12 x i8]*:aptr
5036 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5037 ; yields i8*:vptr
5038 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5039 ; yields i8*:eptr
5040 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5041 ; yields i32*:iptr
5042 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5043
5044In cases where the pointer argument is a vector of pointers, each index
5045must be a vector with the same number of elements. For example:
5046
5047.. code-block:: llvm
5048
5049 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5050
5051Conversion Operations
5052---------------------
5053
5054The instructions in this category are the conversion instructions
5055(casting) which all take a single operand and a type. They perform
5056various bit conversions on the operand.
5057
5058'``trunc .. to``' Instruction
5059^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5060
5061Syntax:
5062"""""""
5063
5064::
5065
5066 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5067
5068Overview:
5069"""""""""
5070
5071The '``trunc``' instruction truncates its operand to the type ``ty2``.
5072
5073Arguments:
5074""""""""""
5075
5076The '``trunc``' instruction takes a value to trunc, and a type to trunc
5077it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5078of the same number of integers. The bit size of the ``value`` must be
5079larger than the bit size of the destination type, ``ty2``. Equal sized
5080types are not allowed.
5081
5082Semantics:
5083""""""""""
5084
5085The '``trunc``' instruction truncates the high order bits in ``value``
5086and converts the remaining bits to ``ty2``. Since the source size must
5087be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5088It will always truncate bits.
5089
5090Example:
5091""""""""
5092
5093.. code-block:: llvm
5094
5095 %X = trunc i32 257 to i8 ; yields i8:1
5096 %Y = trunc i32 123 to i1 ; yields i1:true
5097 %Z = trunc i32 122 to i1 ; yields i1:false
5098 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5099
5100'``zext .. to``' Instruction
5101^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5102
5103Syntax:
5104"""""""
5105
5106::
5107
5108 <result> = zext <ty> <value> to <ty2> ; yields ty2
5109
5110Overview:
5111"""""""""
5112
5113The '``zext``' instruction zero extends its operand to type ``ty2``.
5114
5115Arguments:
5116""""""""""
5117
5118The '``zext``' instruction takes a value to cast, and a type to cast it
5119to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5120the same number of integers. The bit size of the ``value`` must be
5121smaller than the bit size of the destination type, ``ty2``.
5122
5123Semantics:
5124""""""""""
5125
5126The ``zext`` fills the high order bits of the ``value`` with zero bits
5127until it reaches the size of the destination type, ``ty2``.
5128
5129When zero extending from i1, the result will always be either 0 or 1.
5130
5131Example:
5132""""""""
5133
5134.. code-block:: llvm
5135
5136 %X = zext i32 257 to i64 ; yields i64:257
5137 %Y = zext i1 true to i32 ; yields i32:1
5138 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5139
5140'``sext .. to``' Instruction
5141^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5142
5143Syntax:
5144"""""""
5145
5146::
5147
5148 <result> = sext <ty> <value> to <ty2> ; yields ty2
5149
5150Overview:
5151"""""""""
5152
5153The '``sext``' sign extends ``value`` to the type ``ty2``.
5154
5155Arguments:
5156""""""""""
5157
5158The '``sext``' instruction takes a value to cast, and a type to cast it
5159to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5160the same number of integers. The bit size of the ``value`` must be
5161smaller than the bit size of the destination type, ``ty2``.
5162
5163Semantics:
5164""""""""""
5165
5166The '``sext``' instruction performs a sign extension by copying the sign
5167bit (highest order bit) of the ``value`` until it reaches the bit size
5168of the type ``ty2``.
5169
5170When sign extending from i1, the extension always results in -1 or 0.
5171
5172Example:
5173""""""""
5174
5175.. code-block:: llvm
5176
5177 %X = sext i8 -1 to i16 ; yields i16 :65535
5178 %Y = sext i1 true to i32 ; yields i32:-1
5179 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5180
5181'``fptrunc .. to``' Instruction
5182^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5183
5184Syntax:
5185"""""""
5186
5187::
5188
5189 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5190
5191Overview:
5192"""""""""
5193
5194The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5195
5196Arguments:
5197""""""""""
5198
5199The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5200value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5201The size of ``value`` must be larger than the size of ``ty2``. This
5202implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5203
5204Semantics:
5205""""""""""
5206
5207The '``fptrunc``' instruction truncates a ``value`` from a larger
5208:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5209point <t_floating>` type. If the value cannot fit within the
5210destination type, ``ty2``, then the results are undefined.
5211
5212Example:
5213""""""""
5214
5215.. code-block:: llvm
5216
5217 %X = fptrunc double 123.0 to float ; yields float:123.0
5218 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5219
5220'``fpext .. to``' Instruction
5221^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5222
5223Syntax:
5224"""""""
5225
5226::
5227
5228 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5229
5230Overview:
5231"""""""""
5232
5233The '``fpext``' extends a floating point ``value`` to a larger floating
5234point value.
5235
5236Arguments:
5237""""""""""
5238
5239The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5240``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5241to. The source type must be smaller than the destination type.
5242
5243Semantics:
5244""""""""""
5245
5246The '``fpext``' instruction extends the ``value`` from a smaller
5247:ref:`floating point <t_floating>` type to a larger :ref:`floating
5248point <t_floating>` type. The ``fpext`` cannot be used to make a
5249*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5250*no-op cast* for a floating point cast.
5251
5252Example:
5253""""""""
5254
5255.. code-block:: llvm
5256
5257 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5258 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5259
5260'``fptoui .. to``' Instruction
5261^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5262
5263Syntax:
5264"""""""
5265
5266::
5267
5268 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5269
5270Overview:
5271"""""""""
5272
5273The '``fptoui``' converts a floating point ``value`` to its unsigned
5274integer equivalent of type ``ty2``.
5275
5276Arguments:
5277""""""""""
5278
5279The '``fptoui``' instruction takes a value to cast, which must be a
5280scalar or vector :ref:`floating point <t_floating>` value, and a type to
5281cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5282``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5283type with the same number of elements as ``ty``
5284
5285Semantics:
5286""""""""""
5287
5288The '``fptoui``' instruction converts its :ref:`floating
5289point <t_floating>` operand into the nearest (rounding towards zero)
5290unsigned integer value. If the value cannot fit in ``ty2``, the results
5291are undefined.
5292
5293Example:
5294""""""""
5295
5296.. code-block:: llvm
5297
5298 %X = fptoui double 123.0 to i32 ; yields i32:123
5299 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5300 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5301
5302'``fptosi .. to``' Instruction
5303^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5304
5305Syntax:
5306"""""""
5307
5308::
5309
5310 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5311
5312Overview:
5313"""""""""
5314
5315The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5316``value`` to type ``ty2``.
5317
5318Arguments:
5319""""""""""
5320
5321The '``fptosi``' instruction takes a value to cast, which must be a
5322scalar or vector :ref:`floating point <t_floating>` value, and a type to
5323cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5324``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5325type with the same number of elements as ``ty``
5326
5327Semantics:
5328""""""""""
5329
5330The '``fptosi``' instruction converts its :ref:`floating
5331point <t_floating>` operand into the nearest (rounding towards zero)
5332signed integer value. If the value cannot fit in ``ty2``, the results
5333are undefined.
5334
5335Example:
5336""""""""
5337
5338.. code-block:: llvm
5339
5340 %X = fptosi double -123.0 to i32 ; yields i32:-123
5341 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5342 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5343
5344'``uitofp .. to``' Instruction
5345^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5346
5347Syntax:
5348"""""""
5349
5350::
5351
5352 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5353
5354Overview:
5355"""""""""
5356
5357The '``uitofp``' instruction regards ``value`` as an unsigned integer
5358and converts that value to the ``ty2`` type.
5359
5360Arguments:
5361""""""""""
5362
5363The '``uitofp``' instruction takes a value to cast, which must be a
5364scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5365``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5366``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5367type with the same number of elements as ``ty``
5368
5369Semantics:
5370""""""""""
5371
5372The '``uitofp``' instruction interprets its operand as an unsigned
5373integer quantity and converts it to the corresponding floating point
5374value. If the value cannot fit in the floating point value, the results
5375are undefined.
5376
5377Example:
5378""""""""
5379
5380.. code-block:: llvm
5381
5382 %X = uitofp i32 257 to float ; yields float:257.0
5383 %Y = uitofp i8 -1 to double ; yields double:255.0
5384
5385'``sitofp .. to``' Instruction
5386^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5387
5388Syntax:
5389"""""""
5390
5391::
5392
5393 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5394
5395Overview:
5396"""""""""
5397
5398The '``sitofp``' instruction regards ``value`` as a signed integer and
5399converts that value to the ``ty2`` type.
5400
5401Arguments:
5402""""""""""
5403
5404The '``sitofp``' instruction takes a value to cast, which must be a
5405scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5406``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5407``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5408type with the same number of elements as ``ty``
5409
5410Semantics:
5411""""""""""
5412
5413The '``sitofp``' instruction interprets its operand as a signed integer
5414quantity and converts it to the corresponding floating point value. If
5415the value cannot fit in the floating point value, the results are
5416undefined.
5417
5418Example:
5419""""""""
5420
5421.. code-block:: llvm
5422
5423 %X = sitofp i32 257 to float ; yields float:257.0
5424 %Y = sitofp i8 -1 to double ; yields double:-1.0
5425
5426.. _i_ptrtoint:
5427
5428'``ptrtoint .. to``' Instruction
5429^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5430
5431Syntax:
5432"""""""
5433
5434::
5435
5436 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5437
5438Overview:
5439"""""""""
5440
5441The '``ptrtoint``' instruction converts the pointer or a vector of
5442pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5443
5444Arguments:
5445""""""""""
5446
5447The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5448a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5449type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5450a vector of integers type.
5451
5452Semantics:
5453""""""""""
5454
5455The '``ptrtoint``' instruction converts ``value`` to integer type
5456``ty2`` by interpreting the pointer value as an integer and either
5457truncating or zero extending that value to the size of the integer type.
5458If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5459``value`` is larger than ``ty2`` then a truncation is done. If they are
5460the same size, then nothing is done (*no-op cast*) other than a type
5461change.
5462
5463Example:
5464""""""""
5465
5466.. code-block:: llvm
5467
5468 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5469 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5470 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5471
5472.. _i_inttoptr:
5473
5474'``inttoptr .. to``' Instruction
5475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5476
5477Syntax:
5478"""""""
5479
5480::
5481
5482 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5483
5484Overview:
5485"""""""""
5486
5487The '``inttoptr``' instruction converts an integer ``value`` to a
5488pointer type, ``ty2``.
5489
5490Arguments:
5491""""""""""
5492
5493The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5494cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5495type.
5496
5497Semantics:
5498""""""""""
5499
5500The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5501applying either a zero extension or a truncation depending on the size
5502of the integer ``value``. If ``value`` is larger than the size of a
5503pointer then a truncation is done. If ``value`` is smaller than the size
5504of a pointer then a zero extension is done. If they are the same size,
5505nothing is done (*no-op cast*).
5506
5507Example:
5508""""""""
5509
5510.. code-block:: llvm
5511
5512 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5513 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5514 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5515 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5516
5517.. _i_bitcast:
5518
5519'``bitcast .. to``' Instruction
5520^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5521
5522Syntax:
5523"""""""
5524
5525::
5526
5527 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5528
5529Overview:
5530"""""""""
5531
5532The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5533changing any bits.
5534
5535Arguments:
5536""""""""""
5537
5538The '``bitcast``' instruction takes a value to cast, which must be a
5539non-aggregate first class value, and a type to cast it to, which must
5540also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5541sizes of ``value`` and the destination type, ``ty2``, must be identical.
5542If the source type is a pointer, the destination type must also be a
5543pointer. This instruction supports bitwise conversion of vectors to
5544integers and to vectors of other types (as long as they have the same
5545size).
5546
5547Semantics:
5548""""""""""
5549
5550The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5551always a *no-op cast* because no bits change with this conversion. The
5552conversion is done as if the ``value`` had been stored to memory and
5553read back as type ``ty2``. Pointer (or vector of pointers) types may
5554only be converted to other pointer (or vector of pointers) types with
5555this instruction. To convert pointers to other types, use the
5556:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5557first.
5558
5559Example:
5560""""""""
5561
5562.. code-block:: llvm
5563
5564 %X = bitcast i8 255 to i8 ; yields i8 :-1
5565 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5566 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5567 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5568
5569.. _otherops:
5570
5571Other Operations
5572----------------
5573
5574The instructions in this category are the "miscellaneous" instructions,
5575which defy better classification.
5576
5577.. _i_icmp:
5578
5579'``icmp``' Instruction
5580^^^^^^^^^^^^^^^^^^^^^^
5581
5582Syntax:
5583"""""""
5584
5585::
5586
5587 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5588
5589Overview:
5590"""""""""
5591
5592The '``icmp``' instruction returns a boolean value or a vector of
5593boolean values based on comparison of its two integer, integer vector,
5594pointer, or pointer vector operands.
5595
5596Arguments:
5597""""""""""
5598
5599The '``icmp``' instruction takes three operands. The first operand is
5600the condition code indicating the kind of comparison to perform. It is
5601not a value, just a keyword. The possible condition code are:
5602
5603#. ``eq``: equal
5604#. ``ne``: not equal
5605#. ``ugt``: unsigned greater than
5606#. ``uge``: unsigned greater or equal
5607#. ``ult``: unsigned less than
5608#. ``ule``: unsigned less or equal
5609#. ``sgt``: signed greater than
5610#. ``sge``: signed greater or equal
5611#. ``slt``: signed less than
5612#. ``sle``: signed less or equal
5613
5614The remaining two arguments must be :ref:`integer <t_integer>` or
5615:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5616must also be identical types.
5617
5618Semantics:
5619""""""""""
5620
5621The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5622code given as ``cond``. The comparison performed always yields either an
5623:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5624
5625#. ``eq``: yields ``true`` if the operands are equal, ``false``
5626 otherwise. No sign interpretation is necessary or performed.
5627#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5628 otherwise. No sign interpretation is necessary or performed.
5629#. ``ugt``: interprets the operands as unsigned values and yields
5630 ``true`` if ``op1`` is greater than ``op2``.
5631#. ``uge``: interprets the operands as unsigned values and yields
5632 ``true`` if ``op1`` is greater than or equal to ``op2``.
5633#. ``ult``: interprets the operands as unsigned values and yields
5634 ``true`` if ``op1`` is less than ``op2``.
5635#. ``ule``: interprets the operands as unsigned values and yields
5636 ``true`` if ``op1`` is less than or equal to ``op2``.
5637#. ``sgt``: interprets the operands as signed values and yields ``true``
5638 if ``op1`` is greater than ``op2``.
5639#. ``sge``: interprets the operands as signed values and yields ``true``
5640 if ``op1`` is greater than or equal to ``op2``.
5641#. ``slt``: interprets the operands as signed values and yields ``true``
5642 if ``op1`` is less than ``op2``.
5643#. ``sle``: interprets the operands as signed values and yields ``true``
5644 if ``op1`` is less than or equal to ``op2``.
5645
5646If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5647are compared as if they were integers.
5648
5649If the operands are integer vectors, then they are compared element by
5650element. The result is an ``i1`` vector with the same number of elements
5651as the values being compared. Otherwise, the result is an ``i1``.
5652
5653Example:
5654""""""""
5655
5656.. code-block:: llvm
5657
5658 <result> = icmp eq i32 4, 5 ; yields: result=false
5659 <result> = icmp ne float* %X, %X ; yields: result=false
5660 <result> = icmp ult i16 4, 5 ; yields: result=true
5661 <result> = icmp sgt i16 4, 5 ; yields: result=false
5662 <result> = icmp ule i16 -4, 5 ; yields: result=false
5663 <result> = icmp sge i16 4, 5 ; yields: result=false
5664
5665Note that the code generator does not yet support vector types with the
5666``icmp`` instruction.
5667
5668.. _i_fcmp:
5669
5670'``fcmp``' Instruction
5671^^^^^^^^^^^^^^^^^^^^^^
5672
5673Syntax:
5674"""""""
5675
5676::
5677
5678 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5679
5680Overview:
5681"""""""""
5682
5683The '``fcmp``' instruction returns a boolean value or vector of boolean
5684values based on comparison of its operands.
5685
5686If the operands are floating point scalars, then the result type is a
5687boolean (:ref:`i1 <t_integer>`).
5688
5689If the operands are floating point vectors, then the result type is a
5690vector of boolean with the same number of elements as the operands being
5691compared.
5692
5693Arguments:
5694""""""""""
5695
5696The '``fcmp``' instruction takes three operands. The first operand is
5697the condition code indicating the kind of comparison to perform. It is
5698not a value, just a keyword. The possible condition code are:
5699
5700#. ``false``: no comparison, always returns false
5701#. ``oeq``: ordered and equal
5702#. ``ogt``: ordered and greater than
5703#. ``oge``: ordered and greater than or equal
5704#. ``olt``: ordered and less than
5705#. ``ole``: ordered and less than or equal
5706#. ``one``: ordered and not equal
5707#. ``ord``: ordered (no nans)
5708#. ``ueq``: unordered or equal
5709#. ``ugt``: unordered or greater than
5710#. ``uge``: unordered or greater than or equal
5711#. ``ult``: unordered or less than
5712#. ``ule``: unordered or less than or equal
5713#. ``une``: unordered or not equal
5714#. ``uno``: unordered (either nans)
5715#. ``true``: no comparison, always returns true
5716
5717*Ordered* means that neither operand is a QNAN while *unordered* means
5718that either operand may be a QNAN.
5719
5720Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5721point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5722type. They must have identical types.
5723
5724Semantics:
5725""""""""""
5726
5727The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5728condition code given as ``cond``. If the operands are vectors, then the
5729vectors are compared element by element. Each comparison performed
5730always yields an :ref:`i1 <t_integer>` result, as follows:
5731
5732#. ``false``: always yields ``false``, regardless of operands.
5733#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5734 is equal to ``op2``.
5735#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5736 is greater than ``op2``.
5737#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5738 is greater than or equal to ``op2``.
5739#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5740 is less than ``op2``.
5741#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5742 is less than or equal to ``op2``.
5743#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5744 is not equal to ``op2``.
5745#. ``ord``: yields ``true`` if both operands are not a QNAN.
5746#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5747 equal to ``op2``.
5748#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5749 greater than ``op2``.
5750#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5751 greater than or equal to ``op2``.
5752#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5753 less than ``op2``.
5754#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5755 less than or equal to ``op2``.
5756#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5757 not equal to ``op2``.
5758#. ``uno``: yields ``true`` if either operand is a QNAN.
5759#. ``true``: always yields ``true``, regardless of operands.
5760
5761Example:
5762""""""""
5763
5764.. code-block:: llvm
5765
5766 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5767 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5768 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5769 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5770
5771Note that the code generator does not yet support vector types with the
5772``fcmp`` instruction.
5773
5774.. _i_phi:
5775
5776'``phi``' Instruction
5777^^^^^^^^^^^^^^^^^^^^^
5778
5779Syntax:
5780"""""""
5781
5782::
5783
5784 <result> = phi <ty> [ <val0>, <label0>], ...
5785
5786Overview:
5787"""""""""
5788
5789The '``phi``' instruction is used to implement the φ node in the SSA
5790graph representing the function.
5791
5792Arguments:
5793""""""""""
5794
5795The type of the incoming values is specified with the first type field.
5796After this, the '``phi``' instruction takes a list of pairs as
5797arguments, with one pair for each predecessor basic block of the current
5798block. Only values of :ref:`first class <t_firstclass>` type may be used as
5799the value arguments to the PHI node. Only labels may be used as the
5800label arguments.
5801
5802There must be no non-phi instructions between the start of a basic block
5803and the PHI instructions: i.e. PHI instructions must be first in a basic
5804block.
5805
5806For the purposes of the SSA form, the use of each incoming value is
5807deemed to occur on the edge from the corresponding predecessor block to
5808the current block (but after any definition of an '``invoke``'
5809instruction's return value on the same edge).
5810
5811Semantics:
5812""""""""""
5813
5814At runtime, the '``phi``' instruction logically takes on the value
5815specified by the pair corresponding to the predecessor basic block that
5816executed just prior to the current block.
5817
5818Example:
5819""""""""
5820
5821.. code-block:: llvm
5822
5823 Loop: ; Infinite loop that counts from 0 on up...
5824 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5825 %nextindvar = add i32 %indvar, 1
5826 br label %Loop
5827
5828.. _i_select:
5829
5830'``select``' Instruction
5831^^^^^^^^^^^^^^^^^^^^^^^^
5832
5833Syntax:
5834"""""""
5835
5836::
5837
5838 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5839
5840 selty is either i1 or {<N x i1>}
5841
5842Overview:
5843"""""""""
5844
5845The '``select``' instruction is used to choose one value based on a
5846condition, without branching.
5847
5848Arguments:
5849""""""""""
5850
5851The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5852values indicating the condition, and two values of the same :ref:`first
5853class <t_firstclass>` type. If the val1/val2 are vectors and the
5854condition is a scalar, then entire vectors are selected, not individual
5855elements.
5856
5857Semantics:
5858""""""""""
5859
5860If the condition is an i1 and it evaluates to 1, the instruction returns
5861the first value argument; otherwise, it returns the second value
5862argument.
5863
5864If the condition is a vector of i1, then the value arguments must be
5865vectors of the same size, and the selection is done element by element.
5866
5867Example:
5868""""""""
5869
5870.. code-block:: llvm
5871
5872 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5873
5874.. _i_call:
5875
5876'``call``' Instruction
5877^^^^^^^^^^^^^^^^^^^^^^
5878
5879Syntax:
5880"""""""
5881
5882::
5883
5884 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5885
5886Overview:
5887"""""""""
5888
5889The '``call``' instruction represents a simple function call.
5890
5891Arguments:
5892""""""""""
5893
5894This instruction requires several arguments:
5895
5896#. The optional "tail" marker indicates that the callee function does
5897 not access any allocas or varargs in the caller. Note that calls may
5898 be marked "tail" even if they do not occur before a
5899 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5900 function call is eligible for tail call optimization, but `might not
5901 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5902 The code generator may optimize calls marked "tail" with either 1)
5903 automatic `sibling call
5904 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5905 callee have matching signatures, or 2) forced tail call optimization
5906 when the following extra requirements are met:
5907
5908 - Caller and callee both have the calling convention ``fastcc``.
5909 - The call is in tail position (ret immediately follows call and ret
5910 uses value of call or is void).
5911 - Option ``-tailcallopt`` is enabled, or
5912 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5913 - `Platform specific constraints are
5914 met. <CodeGenerator.html#tailcallopt>`_
5915
5916#. The optional "cconv" marker indicates which :ref:`calling
5917 convention <callingconv>` the call should use. If none is
5918 specified, the call defaults to using C calling conventions. The
5919 calling convention of the call must match the calling convention of
5920 the target function, or else the behavior is undefined.
5921#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5922 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5923 are valid here.
5924#. '``ty``': the type of the call instruction itself which is also the
5925 type of the return value. Functions that return no value are marked
5926 ``void``.
5927#. '``fnty``': shall be the signature of the pointer to function value
5928 being invoked. The argument types must match the types implied by
5929 this signature. This type can be omitted if the function is not
5930 varargs and if the function type does not return a pointer to a
5931 function.
5932#. '``fnptrval``': An LLVM value containing a pointer to a function to
5933 be invoked. In most cases, this is a direct function invocation, but
5934 indirect ``call``'s are just as possible, calling an arbitrary pointer
5935 to function value.
5936#. '``function args``': argument list whose types match the function
5937 signature argument types and parameter attributes. All arguments must
5938 be of :ref:`first class <t_firstclass>` type. If the function signature
5939 indicates the function accepts a variable number of arguments, the
5940 extra arguments can be specified.
5941#. The optional :ref:`function attributes <fnattrs>` list. Only
5942 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5943 attributes are valid here.
5944
5945Semantics:
5946""""""""""
5947
5948The '``call``' instruction is used to cause control flow to transfer to
5949a specified function, with its incoming arguments bound to the specified
5950values. Upon a '``ret``' instruction in the called function, control
5951flow continues with the instruction after the function call, and the
5952return value of the function is bound to the result argument.
5953
5954Example:
5955""""""""
5956
5957.. code-block:: llvm
5958
5959 %retval = call i32 @test(i32 %argc)
5960 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5961 %X = tail call i32 @foo() ; yields i32
5962 %Y = tail call fastcc i32 @foo() ; yields i32
5963 call void %foo(i8 97 signext)
5964
5965 %struct.A = type { i32, i8 }
5966 %r = call %struct.A @foo() ; yields { 32, i8 }
5967 %gr = extractvalue %struct.A %r, 0 ; yields i32
5968 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5969 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5970 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5971
5972llvm treats calls to some functions with names and arguments that match
5973the standard C99 library as being the C99 library functions, and may
5974perform optimizations or generate code for them under that assumption.
5975This is something we'd like to change in the future to provide better
5976support for freestanding environments and non-C-based languages.
5977
5978.. _i_va_arg:
5979
5980'``va_arg``' Instruction
5981^^^^^^^^^^^^^^^^^^^^^^^^
5982
5983Syntax:
5984"""""""
5985
5986::
5987
5988 <resultval> = va_arg <va_list*> <arglist>, <argty>
5989
5990Overview:
5991"""""""""
5992
5993The '``va_arg``' instruction is used to access arguments passed through
5994the "variable argument" area of a function call. It is used to implement
5995the ``va_arg`` macro in C.
5996
5997Arguments:
5998""""""""""
5999
6000This instruction takes a ``va_list*`` value and the type of the
6001argument. It returns a value of the specified argument type and
6002increments the ``va_list`` to point to the next argument. The actual
6003type of ``va_list`` is target specific.
6004
6005Semantics:
6006""""""""""
6007
6008The '``va_arg``' instruction loads an argument of the specified type
6009from the specified ``va_list`` and causes the ``va_list`` to point to
6010the next argument. For more information, see the variable argument
6011handling :ref:`Intrinsic Functions <int_varargs>`.
6012
6013It is legal for this instruction to be called in a function which does
6014not take a variable number of arguments, for example, the ``vfprintf``
6015function.
6016
6017``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6018function <intrinsics>` because it takes a type as an argument.
6019
6020Example:
6021""""""""
6022
6023See the :ref:`variable argument processing <int_varargs>` section.
6024
6025Note that the code generator does not yet fully support va\_arg on many
6026targets. Also, it does not currently support va\_arg with aggregate
6027types on any target.
6028
6029.. _i_landingpad:
6030
6031'``landingpad``' Instruction
6032^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6033
6034Syntax:
6035"""""""
6036
6037::
6038
6039 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6040 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6041
6042 <clause> := catch <type> <value>
6043 <clause> := filter <array constant type> <array constant>
6044
6045Overview:
6046"""""""""
6047
6048The '``landingpad``' instruction is used by `LLVM's exception handling
6049system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006050is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006051code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6052defines values supplied by the personality function (``pers_fn``) upon
6053re-entry to the function. The ``resultval`` has the type ``resultty``.
6054
6055Arguments:
6056""""""""""
6057
6058This instruction takes a ``pers_fn`` value. This is the personality
6059function associated with the unwinding mechanism. The optional
6060``cleanup`` flag indicates that the landing pad block is a cleanup.
6061
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006062A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006063contains the global variable representing the "type" that may be caught
6064or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6065clause takes an array constant as its argument. Use
6066"``[0 x i8**] undef``" for a filter which cannot throw. The
6067'``landingpad``' instruction must contain *at least* one ``clause`` or
6068the ``cleanup`` flag.
6069
6070Semantics:
6071""""""""""
6072
6073The '``landingpad``' instruction defines the values which are set by the
6074personality function (``pers_fn``) upon re-entry to the function, and
6075therefore the "result type" of the ``landingpad`` instruction. As with
6076calling conventions, how the personality function results are
6077represented in LLVM IR is target specific.
6078
6079The clauses are applied in order from top to bottom. If two
6080``landingpad`` instructions are merged together through inlining, the
6081clauses from the calling function are appended to the list of clauses.
6082When the call stack is being unwound due to an exception being thrown,
6083the exception is compared against each ``clause`` in turn. If it doesn't
6084match any of the clauses, and the ``cleanup`` flag is not set, then
6085unwinding continues further up the call stack.
6086
6087The ``landingpad`` instruction has several restrictions:
6088
6089- A landing pad block is a basic block which is the unwind destination
6090 of an '``invoke``' instruction.
6091- A landing pad block must have a '``landingpad``' instruction as its
6092 first non-PHI instruction.
6093- There can be only one '``landingpad``' instruction within the landing
6094 pad block.
6095- A basic block that is not a landing pad block may not include a
6096 '``landingpad``' instruction.
6097- All '``landingpad``' instructions in a function must have the same
6098 personality function.
6099
6100Example:
6101""""""""
6102
6103.. code-block:: llvm
6104
6105 ;; A landing pad which can catch an integer.
6106 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6107 catch i8** @_ZTIi
6108 ;; A landing pad that is a cleanup.
6109 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6110 cleanup
6111 ;; A landing pad which can catch an integer and can only throw a double.
6112 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6113 catch i8** @_ZTIi
6114 filter [1 x i8**] [@_ZTId]
6115
6116.. _intrinsics:
6117
6118Intrinsic Functions
6119===================
6120
6121LLVM supports the notion of an "intrinsic function". These functions
6122have well known names and semantics and are required to follow certain
6123restrictions. Overall, these intrinsics represent an extension mechanism
6124for the LLVM language that does not require changing all of the
6125transformations in LLVM when adding to the language (or the bitcode
6126reader/writer, the parser, etc...).
6127
6128Intrinsic function names must all start with an "``llvm.``" prefix. This
6129prefix is reserved in LLVM for intrinsic names; thus, function names may
6130not begin with this prefix. Intrinsic functions must always be external
6131functions: you cannot define the body of intrinsic functions. Intrinsic
6132functions may only be used in call or invoke instructions: it is illegal
6133to take the address of an intrinsic function. Additionally, because
6134intrinsic functions are part of the LLVM language, it is required if any
6135are added that they be documented here.
6136
6137Some intrinsic functions can be overloaded, i.e., the intrinsic
6138represents a family of functions that perform the same operation but on
6139different data types. Because LLVM can represent over 8 million
6140different integer types, overloading is used commonly to allow an
6141intrinsic function to operate on any integer type. One or more of the
6142argument types or the result type can be overloaded to accept any
6143integer type. Argument types may also be defined as exactly matching a
6144previous argument's type or the result type. This allows an intrinsic
6145function which accepts multiple arguments, but needs all of them to be
6146of the same type, to only be overloaded with respect to a single
6147argument or the result.
6148
6149Overloaded intrinsics will have the names of its overloaded argument
6150types encoded into its function name, each preceded by a period. Only
6151those types which are overloaded result in a name suffix. Arguments
6152whose type is matched against another type do not. For example, the
6153``llvm.ctpop`` function can take an integer of any width and returns an
6154integer of exactly the same integer width. This leads to a family of
6155functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6156``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6157overloaded, and only one type suffix is required. Because the argument's
6158type is matched against the return type, it does not require its own
6159name suffix.
6160
6161To learn how to add an intrinsic function, please see the `Extending
6162LLVM Guide <ExtendingLLVM.html>`_.
6163
6164.. _int_varargs:
6165
6166Variable Argument Handling Intrinsics
6167-------------------------------------
6168
6169Variable argument support is defined in LLVM with the
6170:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6171functions. These functions are related to the similarly named macros
6172defined in the ``<stdarg.h>`` header file.
6173
6174All of these functions operate on arguments that use a target-specific
6175value type "``va_list``". The LLVM assembly language reference manual
6176does not define what this type is, so all transformations should be
6177prepared to handle these functions regardless of the type used.
6178
6179This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6180variable argument handling intrinsic functions are used.
6181
6182.. code-block:: llvm
6183
6184 define i32 @test(i32 %X, ...) {
6185 ; Initialize variable argument processing
6186 %ap = alloca i8*
6187 %ap2 = bitcast i8** %ap to i8*
6188 call void @llvm.va_start(i8* %ap2)
6189
6190 ; Read a single integer argument
6191 %tmp = va_arg i8** %ap, i32
6192
6193 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6194 %aq = alloca i8*
6195 %aq2 = bitcast i8** %aq to i8*
6196 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6197 call void @llvm.va_end(i8* %aq2)
6198
6199 ; Stop processing of arguments.
6200 call void @llvm.va_end(i8* %ap2)
6201 ret i32 %tmp
6202 }
6203
6204 declare void @llvm.va_start(i8*)
6205 declare void @llvm.va_copy(i8*, i8*)
6206 declare void @llvm.va_end(i8*)
6207
6208.. _int_va_start:
6209
6210'``llvm.va_start``' Intrinsic
6211^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6212
6213Syntax:
6214"""""""
6215
6216::
6217
6218 declare void %llvm.va_start(i8* <arglist>)
6219
6220Overview:
6221"""""""""
6222
6223The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6224subsequent use by ``va_arg``.
6225
6226Arguments:
6227""""""""""
6228
6229The argument is a pointer to a ``va_list`` element to initialize.
6230
6231Semantics:
6232""""""""""
6233
6234The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6235available in C. In a target-dependent way, it initializes the
6236``va_list`` element to which the argument points, so that the next call
6237to ``va_arg`` will produce the first variable argument passed to the
6238function. Unlike the C ``va_start`` macro, this intrinsic does not need
6239to know the last argument of the function as the compiler can figure
6240that out.
6241
6242'``llvm.va_end``' Intrinsic
6243^^^^^^^^^^^^^^^^^^^^^^^^^^^
6244
6245Syntax:
6246"""""""
6247
6248::
6249
6250 declare void @llvm.va_end(i8* <arglist>)
6251
6252Overview:
6253"""""""""
6254
6255The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6256initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6257
6258Arguments:
6259""""""""""
6260
6261The argument is a pointer to a ``va_list`` to destroy.
6262
6263Semantics:
6264""""""""""
6265
6266The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6267available in C. In a target-dependent way, it destroys the ``va_list``
6268element to which the argument points. Calls to
6269:ref:`llvm.va_start <int_va_start>` and
6270:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6271``llvm.va_end``.
6272
6273.. _int_va_copy:
6274
6275'``llvm.va_copy``' Intrinsic
6276^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6277
6278Syntax:
6279"""""""
6280
6281::
6282
6283 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6284
6285Overview:
6286"""""""""
6287
6288The '``llvm.va_copy``' intrinsic copies the current argument position
6289from the source argument list to the destination argument list.
6290
6291Arguments:
6292""""""""""
6293
6294The first argument is a pointer to a ``va_list`` element to initialize.
6295The second argument is a pointer to a ``va_list`` element to copy from.
6296
6297Semantics:
6298""""""""""
6299
6300The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6301available in C. In a target-dependent way, it copies the source
6302``va_list`` element into the destination ``va_list`` element. This
6303intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6304arbitrarily complex and require, for example, memory allocation.
6305
6306Accurate Garbage Collection Intrinsics
6307--------------------------------------
6308
6309LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6310(GC) requires the implementation and generation of these intrinsics.
6311These intrinsics allow identification of :ref:`GC roots on the
6312stack <int_gcroot>`, as well as garbage collector implementations that
6313require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6314Front-ends for type-safe garbage collected languages should generate
6315these intrinsics to make use of the LLVM garbage collectors. For more
6316details, see `Accurate Garbage Collection with
6317LLVM <GarbageCollection.html>`_.
6318
6319The garbage collection intrinsics only operate on objects in the generic
6320address space (address space zero).
6321
6322.. _int_gcroot:
6323
6324'``llvm.gcroot``' Intrinsic
6325^^^^^^^^^^^^^^^^^^^^^^^^^^^
6326
6327Syntax:
6328"""""""
6329
6330::
6331
6332 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6333
6334Overview:
6335"""""""""
6336
6337The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6338the code generator, and allows some metadata to be associated with it.
6339
6340Arguments:
6341""""""""""
6342
6343The first argument specifies the address of a stack object that contains
6344the root pointer. The second pointer (which must be either a constant or
6345a global value address) contains the meta-data to be associated with the
6346root.
6347
6348Semantics:
6349""""""""""
6350
6351At runtime, a call to this intrinsic stores a null pointer into the
6352"ptrloc" location. At compile-time, the code generator generates
6353information to allow the runtime to find the pointer at GC safe points.
6354The '``llvm.gcroot``' intrinsic may only be used in a function which
6355:ref:`specifies a GC algorithm <gc>`.
6356
6357.. _int_gcread:
6358
6359'``llvm.gcread``' Intrinsic
6360^^^^^^^^^^^^^^^^^^^^^^^^^^^
6361
6362Syntax:
6363"""""""
6364
6365::
6366
6367 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6368
6369Overview:
6370"""""""""
6371
6372The '``llvm.gcread``' intrinsic identifies reads of references from heap
6373locations, allowing garbage collector implementations that require read
6374barriers.
6375
6376Arguments:
6377""""""""""
6378
6379The second argument is the address to read from, which should be an
6380address allocated from the garbage collector. The first object is a
6381pointer to the start of the referenced object, if needed by the language
6382runtime (otherwise null).
6383
6384Semantics:
6385""""""""""
6386
6387The '``llvm.gcread``' intrinsic has the same semantics as a load
6388instruction, but may be replaced with substantially more complex code by
6389the garbage collector runtime, as needed. The '``llvm.gcread``'
6390intrinsic may only be used in a function which :ref:`specifies a GC
6391algorithm <gc>`.
6392
6393.. _int_gcwrite:
6394
6395'``llvm.gcwrite``' Intrinsic
6396^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6397
6398Syntax:
6399"""""""
6400
6401::
6402
6403 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6404
6405Overview:
6406"""""""""
6407
6408The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6409locations, allowing garbage collector implementations that require write
6410barriers (such as generational or reference counting collectors).
6411
6412Arguments:
6413""""""""""
6414
6415The first argument is the reference to store, the second is the start of
6416the object to store it to, and the third is the address of the field of
6417Obj to store to. If the runtime does not require a pointer to the
6418object, Obj may be null.
6419
6420Semantics:
6421""""""""""
6422
6423The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6424instruction, but may be replaced with substantially more complex code by
6425the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6426intrinsic may only be used in a function which :ref:`specifies a GC
6427algorithm <gc>`.
6428
6429Code Generator Intrinsics
6430-------------------------
6431
6432These intrinsics are provided by LLVM to expose special features that
6433may only be implemented with code generator support.
6434
6435'``llvm.returnaddress``' Intrinsic
6436^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6437
6438Syntax:
6439"""""""
6440
6441::
6442
6443 declare i8 *@llvm.returnaddress(i32 <level>)
6444
6445Overview:
6446"""""""""
6447
6448The '``llvm.returnaddress``' intrinsic attempts to compute a
6449target-specific value indicating the return address of the current
6450function or one of its callers.
6451
6452Arguments:
6453""""""""""
6454
6455The argument to this intrinsic indicates which function to return the
6456address for. Zero indicates the calling function, one indicates its
6457caller, etc. The argument is **required** to be a constant integer
6458value.
6459
6460Semantics:
6461""""""""""
6462
6463The '``llvm.returnaddress``' intrinsic either returns a pointer
6464indicating the return address of the specified call frame, or zero if it
6465cannot be identified. The value returned by this intrinsic is likely to
6466be incorrect or 0 for arguments other than zero, so it should only be
6467used for debugging purposes.
6468
6469Note that calling this intrinsic does not prevent function inlining or
6470other aggressive transformations, so the value returned may not be that
6471of the obvious source-language caller.
6472
6473'``llvm.frameaddress``' Intrinsic
6474^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6475
6476Syntax:
6477"""""""
6478
6479::
6480
6481 declare i8* @llvm.frameaddress(i32 <level>)
6482
6483Overview:
6484"""""""""
6485
6486The '``llvm.frameaddress``' intrinsic attempts to return the
6487target-specific frame pointer value for the specified stack frame.
6488
6489Arguments:
6490""""""""""
6491
6492The argument to this intrinsic indicates which function to return the
6493frame pointer for. Zero indicates the calling function, one indicates
6494its caller, etc. The argument is **required** to be a constant integer
6495value.
6496
6497Semantics:
6498""""""""""
6499
6500The '``llvm.frameaddress``' intrinsic either returns a pointer
6501indicating the frame address of the specified call frame, or zero if it
6502cannot be identified. The value returned by this intrinsic is likely to
6503be incorrect or 0 for arguments other than zero, so it should only be
6504used for debugging purposes.
6505
6506Note that calling this intrinsic does not prevent function inlining or
6507other aggressive transformations, so the value returned may not be that
6508of the obvious source-language caller.
6509
6510.. _int_stacksave:
6511
6512'``llvm.stacksave``' Intrinsic
6513^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6514
6515Syntax:
6516"""""""
6517
6518::
6519
6520 declare i8* @llvm.stacksave()
6521
6522Overview:
6523"""""""""
6524
6525The '``llvm.stacksave``' intrinsic is used to remember the current state
6526of the function stack, for use with
6527:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6528implementing language features like scoped automatic variable sized
6529arrays in C99.
6530
6531Semantics:
6532""""""""""
6533
6534This intrinsic returns a opaque pointer value that can be passed to
6535:ref:`llvm.stackrestore <int_stackrestore>`. When an
6536``llvm.stackrestore`` intrinsic is executed with a value saved from
6537``llvm.stacksave``, it effectively restores the state of the stack to
6538the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6539practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6540were allocated after the ``llvm.stacksave`` was executed.
6541
6542.. _int_stackrestore:
6543
6544'``llvm.stackrestore``' Intrinsic
6545^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6546
6547Syntax:
6548"""""""
6549
6550::
6551
6552 declare void @llvm.stackrestore(i8* %ptr)
6553
6554Overview:
6555"""""""""
6556
6557The '``llvm.stackrestore``' intrinsic is used to restore the state of
6558the function stack to the state it was in when the corresponding
6559:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6560useful for implementing language features like scoped automatic variable
6561sized arrays in C99.
6562
6563Semantics:
6564""""""""""
6565
6566See the description for :ref:`llvm.stacksave <int_stacksave>`.
6567
6568'``llvm.prefetch``' Intrinsic
6569^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6570
6571Syntax:
6572"""""""
6573
6574::
6575
6576 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6577
6578Overview:
6579"""""""""
6580
6581The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6582insert a prefetch instruction if supported; otherwise, it is a noop.
6583Prefetches have no effect on the behavior of the program but can change
6584its performance characteristics.
6585
6586Arguments:
6587""""""""""
6588
6589``address`` is the address to be prefetched, ``rw`` is the specifier
6590determining if the fetch should be for a read (0) or write (1), and
6591``locality`` is a temporal locality specifier ranging from (0) - no
6592locality, to (3) - extremely local keep in cache. The ``cache type``
6593specifies whether the prefetch is performed on the data (1) or
6594instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6595arguments must be constant integers.
6596
6597Semantics:
6598""""""""""
6599
6600This intrinsic does not modify the behavior of the program. In
6601particular, prefetches cannot trap and do not produce a value. On
6602targets that support this intrinsic, the prefetch can provide hints to
6603the processor cache for better performance.
6604
6605'``llvm.pcmarker``' Intrinsic
6606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6607
6608Syntax:
6609"""""""
6610
6611::
6612
6613 declare void @llvm.pcmarker(i32 <id>)
6614
6615Overview:
6616"""""""""
6617
6618The '``llvm.pcmarker``' intrinsic is a method to export a Program
6619Counter (PC) in a region of code to simulators and other tools. The
6620method is target specific, but it is expected that the marker will use
6621exported symbols to transmit the PC of the marker. The marker makes no
6622guarantees that it will remain with any specific instruction after
6623optimizations. It is possible that the presence of a marker will inhibit
6624optimizations. The intended use is to be inserted after optimizations to
6625allow correlations of simulation runs.
6626
6627Arguments:
6628""""""""""
6629
6630``id`` is a numerical id identifying the marker.
6631
6632Semantics:
6633""""""""""
6634
6635This intrinsic does not modify the behavior of the program. Backends
6636that do not support this intrinsic may ignore it.
6637
6638'``llvm.readcyclecounter``' Intrinsic
6639^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6640
6641Syntax:
6642"""""""
6643
6644::
6645
6646 declare i64 @llvm.readcyclecounter()
6647
6648Overview:
6649"""""""""
6650
6651The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6652counter register (or similar low latency, high accuracy clocks) on those
6653targets that support it. On X86, it should map to RDTSC. On Alpha, it
6654should map to RPCC. As the backing counters overflow quickly (on the
6655order of 9 seconds on alpha), this should only be used for small
6656timings.
6657
6658Semantics:
6659""""""""""
6660
6661When directly supported, reading the cycle counter should not modify any
6662memory. Implementations are allowed to either return a application
6663specific value or a system wide value. On backends without support, this
6664is lowered to a constant 0.
6665
Tim Northover5a02fc42013-05-23 19:11:20 +00006666Note that runtime support may be conditional on the privilege-level code is
6667running at and the host platform.
6668
Sean Silvaf722b002012-12-07 10:36:55 +00006669Standard C Library Intrinsics
6670-----------------------------
6671
6672LLVM provides intrinsics for a few important standard C library
6673functions. These intrinsics allow source-language front-ends to pass
6674information about the alignment of the pointer arguments to the code
6675generator, providing opportunity for more efficient code generation.
6676
6677.. _int_memcpy:
6678
6679'``llvm.memcpy``' Intrinsic
6680^^^^^^^^^^^^^^^^^^^^^^^^^^^
6681
6682Syntax:
6683"""""""
6684
6685This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6686integer bit width and for different address spaces. Not all targets
6687support all bit widths however.
6688
6689::
6690
6691 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6692 i32 <len>, i32 <align>, i1 <isvolatile>)
6693 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6694 i64 <len>, i32 <align>, i1 <isvolatile>)
6695
6696Overview:
6697"""""""""
6698
6699The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6700source location to the destination location.
6701
6702Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6703intrinsics do not return a value, takes extra alignment/isvolatile
6704arguments and the pointers can be in specified address spaces.
6705
6706Arguments:
6707""""""""""
6708
6709The first argument is a pointer to the destination, the second is a
6710pointer to the source. The third argument is an integer argument
6711specifying the number of bytes to copy, the fourth argument is the
6712alignment of the source and destination locations, and the fifth is a
6713boolean indicating a volatile access.
6714
6715If the call to this intrinsic has an alignment value that is not 0 or 1,
6716then the caller guarantees that both the source and destination pointers
6717are aligned to that boundary.
6718
6719If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6720a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6721very cleanly specified and it is unwise to depend on it.
6722
6723Semantics:
6724""""""""""
6725
6726The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6727source location to the destination location, which are not allowed to
6728overlap. It copies "len" bytes of memory over. If the argument is known
6729to be aligned to some boundary, this can be specified as the fourth
6730argument, otherwise it should be set to 0 or 1.
6731
6732'``llvm.memmove``' Intrinsic
6733^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6734
6735Syntax:
6736"""""""
6737
6738This is an overloaded intrinsic. You can use llvm.memmove on any integer
6739bit width and for different address space. Not all targets support all
6740bit widths however.
6741
6742::
6743
6744 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6745 i32 <len>, i32 <align>, i1 <isvolatile>)
6746 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6747 i64 <len>, i32 <align>, i1 <isvolatile>)
6748
6749Overview:
6750"""""""""
6751
6752The '``llvm.memmove.*``' intrinsics move a block of memory from the
6753source location to the destination location. It is similar to the
6754'``llvm.memcpy``' intrinsic but allows the two memory locations to
6755overlap.
6756
6757Note that, unlike the standard libc function, the ``llvm.memmove.*``
6758intrinsics do not return a value, takes extra alignment/isvolatile
6759arguments and the pointers can be in specified address spaces.
6760
6761Arguments:
6762""""""""""
6763
6764The first argument is a pointer to the destination, the second is a
6765pointer to the source. The third argument is an integer argument
6766specifying the number of bytes to copy, the fourth argument is the
6767alignment of the source and destination locations, and the fifth is a
6768boolean indicating a volatile access.
6769
6770If the call to this intrinsic has an alignment value that is not 0 or 1,
6771then the caller guarantees that the source and destination pointers are
6772aligned to that boundary.
6773
6774If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6775is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6776not very cleanly specified and it is unwise to depend on it.
6777
6778Semantics:
6779""""""""""
6780
6781The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6782source location to the destination location, which may overlap. It
6783copies "len" bytes of memory over. If the argument is known to be
6784aligned to some boundary, this can be specified as the fourth argument,
6785otherwise it should be set to 0 or 1.
6786
6787'``llvm.memset.*``' Intrinsics
6788^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6789
6790Syntax:
6791"""""""
6792
6793This is an overloaded intrinsic. You can use llvm.memset on any integer
6794bit width and for different address spaces. However, not all targets
6795support all bit widths.
6796
6797::
6798
6799 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6800 i32 <len>, i32 <align>, i1 <isvolatile>)
6801 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6802 i64 <len>, i32 <align>, i1 <isvolatile>)
6803
6804Overview:
6805"""""""""
6806
6807The '``llvm.memset.*``' intrinsics fill a block of memory with a
6808particular byte value.
6809
6810Note that, unlike the standard libc function, the ``llvm.memset``
6811intrinsic does not return a value and takes extra alignment/volatile
6812arguments. Also, the destination can be in an arbitrary address space.
6813
6814Arguments:
6815""""""""""
6816
6817The first argument is a pointer to the destination to fill, the second
6818is the byte value with which to fill it, the third argument is an
6819integer argument specifying the number of bytes to fill, and the fourth
6820argument is the known alignment of the destination location.
6821
6822If the call to this intrinsic has an alignment value that is not 0 or 1,
6823then the caller guarantees that the destination pointer is aligned to
6824that boundary.
6825
6826If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6827a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6828very cleanly specified and it is unwise to depend on it.
6829
6830Semantics:
6831""""""""""
6832
6833The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6834at the destination location. If the argument is known to be aligned to
6835some boundary, this can be specified as the fourth argument, otherwise
6836it should be set to 0 or 1.
6837
6838'``llvm.sqrt.*``' Intrinsic
6839^^^^^^^^^^^^^^^^^^^^^^^^^^^
6840
6841Syntax:
6842"""""""
6843
6844This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6845floating point or vector of floating point type. Not all targets support
6846all types however.
6847
6848::
6849
6850 declare float @llvm.sqrt.f32(float %Val)
6851 declare double @llvm.sqrt.f64(double %Val)
6852 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6853 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6854 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6855
6856Overview:
6857"""""""""
6858
6859The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6860returning the same value as the libm '``sqrt``' functions would. Unlike
6861``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6862negative numbers other than -0.0 (which allows for better optimization,
6863because there is no need to worry about errno being set).
6864``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6865
6866Arguments:
6867""""""""""
6868
6869The argument and return value are floating point numbers of the same
6870type.
6871
6872Semantics:
6873""""""""""
6874
6875This function returns the sqrt of the specified operand if it is a
6876nonnegative floating point number.
6877
6878'``llvm.powi.*``' Intrinsic
6879^^^^^^^^^^^^^^^^^^^^^^^^^^^
6880
6881Syntax:
6882"""""""
6883
6884This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6885floating point or vector of floating point type. Not all targets support
6886all types however.
6887
6888::
6889
6890 declare float @llvm.powi.f32(float %Val, i32 %power)
6891 declare double @llvm.powi.f64(double %Val, i32 %power)
6892 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6893 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6894 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6895
6896Overview:
6897"""""""""
6898
6899The '``llvm.powi.*``' intrinsics return the first operand raised to the
6900specified (positive or negative) power. The order of evaluation of
6901multiplications is not defined. When a vector of floating point type is
6902used, the second argument remains a scalar integer value.
6903
6904Arguments:
6905""""""""""
6906
6907The second argument is an integer power, and the first is a value to
6908raise to that power.
6909
6910Semantics:
6911""""""""""
6912
6913This function returns the first value raised to the second power with an
6914unspecified sequence of rounding operations.
6915
6916'``llvm.sin.*``' Intrinsic
6917^^^^^^^^^^^^^^^^^^^^^^^^^^
6918
6919Syntax:
6920"""""""
6921
6922This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6923floating point or vector of floating point type. Not all targets support
6924all types however.
6925
6926::
6927
6928 declare float @llvm.sin.f32(float %Val)
6929 declare double @llvm.sin.f64(double %Val)
6930 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6931 declare fp128 @llvm.sin.f128(fp128 %Val)
6932 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6933
6934Overview:
6935"""""""""
6936
6937The '``llvm.sin.*``' intrinsics return the sine of the operand.
6938
6939Arguments:
6940""""""""""
6941
6942The argument and return value are floating point numbers of the same
6943type.
6944
6945Semantics:
6946""""""""""
6947
6948This function returns the sine of the specified operand, returning the
6949same values as the libm ``sin`` functions would, and handles error
6950conditions in the same way.
6951
6952'``llvm.cos.*``' Intrinsic
6953^^^^^^^^^^^^^^^^^^^^^^^^^^
6954
6955Syntax:
6956"""""""
6957
6958This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6959floating point or vector of floating point type. Not all targets support
6960all types however.
6961
6962::
6963
6964 declare float @llvm.cos.f32(float %Val)
6965 declare double @llvm.cos.f64(double %Val)
6966 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6967 declare fp128 @llvm.cos.f128(fp128 %Val)
6968 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6969
6970Overview:
6971"""""""""
6972
6973The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6974
6975Arguments:
6976""""""""""
6977
6978The argument and return value are floating point numbers of the same
6979type.
6980
6981Semantics:
6982""""""""""
6983
6984This function returns the cosine of the specified operand, returning the
6985same values as the libm ``cos`` functions would, and handles error
6986conditions in the same way.
6987
6988'``llvm.pow.*``' Intrinsic
6989^^^^^^^^^^^^^^^^^^^^^^^^^^
6990
6991Syntax:
6992"""""""
6993
6994This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6995floating point or vector of floating point type. Not all targets support
6996all types however.
6997
6998::
6999
7000 declare float @llvm.pow.f32(float %Val, float %Power)
7001 declare double @llvm.pow.f64(double %Val, double %Power)
7002 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7003 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7004 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7005
7006Overview:
7007"""""""""
7008
7009The '``llvm.pow.*``' intrinsics return the first operand raised to the
7010specified (positive or negative) power.
7011
7012Arguments:
7013""""""""""
7014
7015The second argument is a floating point power, and the first is a value
7016to raise to that power.
7017
7018Semantics:
7019""""""""""
7020
7021This function returns the first value raised to the second power,
7022returning the same values as the libm ``pow`` functions would, and
7023handles error conditions in the same way.
7024
7025'``llvm.exp.*``' Intrinsic
7026^^^^^^^^^^^^^^^^^^^^^^^^^^
7027
7028Syntax:
7029"""""""
7030
7031This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7032floating point or vector of floating point type. Not all targets support
7033all types however.
7034
7035::
7036
7037 declare float @llvm.exp.f32(float %Val)
7038 declare double @llvm.exp.f64(double %Val)
7039 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7040 declare fp128 @llvm.exp.f128(fp128 %Val)
7041 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7042
7043Overview:
7044"""""""""
7045
7046The '``llvm.exp.*``' intrinsics perform the exp function.
7047
7048Arguments:
7049""""""""""
7050
7051The argument and return value are floating point numbers of the same
7052type.
7053
7054Semantics:
7055""""""""""
7056
7057This function returns the same values as the libm ``exp`` functions
7058would, and handles error conditions in the same way.
7059
7060'``llvm.exp2.*``' Intrinsic
7061^^^^^^^^^^^^^^^^^^^^^^^^^^^
7062
7063Syntax:
7064"""""""
7065
7066This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7067floating point or vector of floating point type. Not all targets support
7068all types however.
7069
7070::
7071
7072 declare float @llvm.exp2.f32(float %Val)
7073 declare double @llvm.exp2.f64(double %Val)
7074 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7075 declare fp128 @llvm.exp2.f128(fp128 %Val)
7076 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7077
7078Overview:
7079"""""""""
7080
7081The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7082
7083Arguments:
7084""""""""""
7085
7086The argument and return value are floating point numbers of the same
7087type.
7088
7089Semantics:
7090""""""""""
7091
7092This function returns the same values as the libm ``exp2`` functions
7093would, and handles error conditions in the same way.
7094
7095'``llvm.log.*``' Intrinsic
7096^^^^^^^^^^^^^^^^^^^^^^^^^^
7097
7098Syntax:
7099"""""""
7100
7101This is an overloaded intrinsic. You can use ``llvm.log`` on any
7102floating point or vector of floating point type. Not all targets support
7103all types however.
7104
7105::
7106
7107 declare float @llvm.log.f32(float %Val)
7108 declare double @llvm.log.f64(double %Val)
7109 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7110 declare fp128 @llvm.log.f128(fp128 %Val)
7111 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7112
7113Overview:
7114"""""""""
7115
7116The '``llvm.log.*``' intrinsics perform the log function.
7117
7118Arguments:
7119""""""""""
7120
7121The argument and return value are floating point numbers of the same
7122type.
7123
7124Semantics:
7125""""""""""
7126
7127This function returns the same values as the libm ``log`` functions
7128would, and handles error conditions in the same way.
7129
7130'``llvm.log10.*``' Intrinsic
7131^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7132
7133Syntax:
7134"""""""
7135
7136This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7137floating point or vector of floating point type. Not all targets support
7138all types however.
7139
7140::
7141
7142 declare float @llvm.log10.f32(float %Val)
7143 declare double @llvm.log10.f64(double %Val)
7144 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7145 declare fp128 @llvm.log10.f128(fp128 %Val)
7146 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7147
7148Overview:
7149"""""""""
7150
7151The '``llvm.log10.*``' intrinsics perform the log10 function.
7152
7153Arguments:
7154""""""""""
7155
7156The argument and return value are floating point numbers of the same
7157type.
7158
7159Semantics:
7160""""""""""
7161
7162This function returns the same values as the libm ``log10`` functions
7163would, and handles error conditions in the same way.
7164
7165'``llvm.log2.*``' Intrinsic
7166^^^^^^^^^^^^^^^^^^^^^^^^^^^
7167
7168Syntax:
7169"""""""
7170
7171This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7172floating point or vector of floating point type. Not all targets support
7173all types however.
7174
7175::
7176
7177 declare float @llvm.log2.f32(float %Val)
7178 declare double @llvm.log2.f64(double %Val)
7179 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7180 declare fp128 @llvm.log2.f128(fp128 %Val)
7181 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7182
7183Overview:
7184"""""""""
7185
7186The '``llvm.log2.*``' intrinsics perform the log2 function.
7187
7188Arguments:
7189""""""""""
7190
7191The argument and return value are floating point numbers of the same
7192type.
7193
7194Semantics:
7195""""""""""
7196
7197This function returns the same values as the libm ``log2`` functions
7198would, and handles error conditions in the same way.
7199
7200'``llvm.fma.*``' Intrinsic
7201^^^^^^^^^^^^^^^^^^^^^^^^^^
7202
7203Syntax:
7204"""""""
7205
7206This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7207floating point or vector of floating point type. Not all targets support
7208all types however.
7209
7210::
7211
7212 declare float @llvm.fma.f32(float %a, float %b, float %c)
7213 declare double @llvm.fma.f64(double %a, double %b, double %c)
7214 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7215 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7216 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7217
7218Overview:
7219"""""""""
7220
7221The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7222operation.
7223
7224Arguments:
7225""""""""""
7226
7227The argument and return value are floating point numbers of the same
7228type.
7229
7230Semantics:
7231""""""""""
7232
7233This function returns the same values as the libm ``fma`` functions
7234would.
7235
7236'``llvm.fabs.*``' Intrinsic
7237^^^^^^^^^^^^^^^^^^^^^^^^^^^
7238
7239Syntax:
7240"""""""
7241
7242This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7243floating point or vector of floating point type. Not all targets support
7244all types however.
7245
7246::
7247
7248 declare float @llvm.fabs.f32(float %Val)
7249 declare double @llvm.fabs.f64(double %Val)
7250 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7251 declare fp128 @llvm.fabs.f128(fp128 %Val)
7252 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7253
7254Overview:
7255"""""""""
7256
7257The '``llvm.fabs.*``' intrinsics return the absolute value of the
7258operand.
7259
7260Arguments:
7261""""""""""
7262
7263The argument and return value are floating point numbers of the same
7264type.
7265
7266Semantics:
7267""""""""""
7268
7269This function returns the same values as the libm ``fabs`` functions
7270would, and handles error conditions in the same way.
7271
7272'``llvm.floor.*``' Intrinsic
7273^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7274
7275Syntax:
7276"""""""
7277
7278This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7279floating point or vector of floating point type. Not all targets support
7280all types however.
7281
7282::
7283
7284 declare float @llvm.floor.f32(float %Val)
7285 declare double @llvm.floor.f64(double %Val)
7286 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7287 declare fp128 @llvm.floor.f128(fp128 %Val)
7288 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7289
7290Overview:
7291"""""""""
7292
7293The '``llvm.floor.*``' intrinsics return the floor of the operand.
7294
7295Arguments:
7296""""""""""
7297
7298The argument and return value are floating point numbers of the same
7299type.
7300
7301Semantics:
7302""""""""""
7303
7304This function returns the same values as the libm ``floor`` functions
7305would, and handles error conditions in the same way.
7306
7307'``llvm.ceil.*``' Intrinsic
7308^^^^^^^^^^^^^^^^^^^^^^^^^^^
7309
7310Syntax:
7311"""""""
7312
7313This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7314floating point or vector of floating point type. Not all targets support
7315all types however.
7316
7317::
7318
7319 declare float @llvm.ceil.f32(float %Val)
7320 declare double @llvm.ceil.f64(double %Val)
7321 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7322 declare fp128 @llvm.ceil.f128(fp128 %Val)
7323 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7324
7325Overview:
7326"""""""""
7327
7328The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7329
7330Arguments:
7331""""""""""
7332
7333The argument and return value are floating point numbers of the same
7334type.
7335
7336Semantics:
7337""""""""""
7338
7339This function returns the same values as the libm ``ceil`` functions
7340would, and handles error conditions in the same way.
7341
7342'``llvm.trunc.*``' Intrinsic
7343^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7344
7345Syntax:
7346"""""""
7347
7348This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7349floating point or vector of floating point type. Not all targets support
7350all types however.
7351
7352::
7353
7354 declare float @llvm.trunc.f32(float %Val)
7355 declare double @llvm.trunc.f64(double %Val)
7356 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7357 declare fp128 @llvm.trunc.f128(fp128 %Val)
7358 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7359
7360Overview:
7361"""""""""
7362
7363The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7364nearest integer not larger in magnitude than the operand.
7365
7366Arguments:
7367""""""""""
7368
7369The argument and return value are floating point numbers of the same
7370type.
7371
7372Semantics:
7373""""""""""
7374
7375This function returns the same values as the libm ``trunc`` functions
7376would, and handles error conditions in the same way.
7377
7378'``llvm.rint.*``' Intrinsic
7379^^^^^^^^^^^^^^^^^^^^^^^^^^^
7380
7381Syntax:
7382"""""""
7383
7384This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7385floating point or vector of floating point type. Not all targets support
7386all types however.
7387
7388::
7389
7390 declare float @llvm.rint.f32(float %Val)
7391 declare double @llvm.rint.f64(double %Val)
7392 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7393 declare fp128 @llvm.rint.f128(fp128 %Val)
7394 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7395
7396Overview:
7397"""""""""
7398
7399The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7400nearest integer. It may raise an inexact floating-point exception if the
7401operand isn't an integer.
7402
7403Arguments:
7404""""""""""
7405
7406The argument and return value are floating point numbers of the same
7407type.
7408
7409Semantics:
7410""""""""""
7411
7412This function returns the same values as the libm ``rint`` functions
7413would, and handles error conditions in the same way.
7414
7415'``llvm.nearbyint.*``' Intrinsic
7416^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7417
7418Syntax:
7419"""""""
7420
7421This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7422floating point or vector of floating point type. Not all targets support
7423all types however.
7424
7425::
7426
7427 declare float @llvm.nearbyint.f32(float %Val)
7428 declare double @llvm.nearbyint.f64(double %Val)
7429 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7430 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7431 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7432
7433Overview:
7434"""""""""
7435
7436The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7437nearest integer.
7438
7439Arguments:
7440""""""""""
7441
7442The argument and return value are floating point numbers of the same
7443type.
7444
7445Semantics:
7446""""""""""
7447
7448This function returns the same values as the libm ``nearbyint``
7449functions would, and handles error conditions in the same way.
7450
7451Bit Manipulation Intrinsics
7452---------------------------
7453
7454LLVM provides intrinsics for a few important bit manipulation
7455operations. These allow efficient code generation for some algorithms.
7456
7457'``llvm.bswap.*``' Intrinsics
7458^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7459
7460Syntax:
7461"""""""
7462
7463This is an overloaded intrinsic function. You can use bswap on any
7464integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7465
7466::
7467
7468 declare i16 @llvm.bswap.i16(i16 <id>)
7469 declare i32 @llvm.bswap.i32(i32 <id>)
7470 declare i64 @llvm.bswap.i64(i64 <id>)
7471
7472Overview:
7473"""""""""
7474
7475The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7476values with an even number of bytes (positive multiple of 16 bits).
7477These are useful for performing operations on data that is not in the
7478target's native byte order.
7479
7480Semantics:
7481""""""""""
7482
7483The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7484and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7485intrinsic returns an i32 value that has the four bytes of the input i32
7486swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7487returned i32 will have its bytes in 3, 2, 1, 0 order. The
7488``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7489concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7490respectively).
7491
7492'``llvm.ctpop.*``' Intrinsic
7493^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7494
7495Syntax:
7496"""""""
7497
7498This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7499bit width, or on any vector with integer elements. Not all targets
7500support all bit widths or vector types, however.
7501
7502::
7503
7504 declare i8 @llvm.ctpop.i8(i8 <src>)
7505 declare i16 @llvm.ctpop.i16(i16 <src>)
7506 declare i32 @llvm.ctpop.i32(i32 <src>)
7507 declare i64 @llvm.ctpop.i64(i64 <src>)
7508 declare i256 @llvm.ctpop.i256(i256 <src>)
7509 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7510
7511Overview:
7512"""""""""
7513
7514The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7515in a value.
7516
7517Arguments:
7518""""""""""
7519
7520The only argument is the value to be counted. The argument may be of any
7521integer type, or a vector with integer elements. The return type must
7522match the argument type.
7523
7524Semantics:
7525""""""""""
7526
7527The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7528each element of a vector.
7529
7530'``llvm.ctlz.*``' Intrinsic
7531^^^^^^^^^^^^^^^^^^^^^^^^^^^
7532
7533Syntax:
7534"""""""
7535
7536This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7537integer bit width, or any vector whose elements are integers. Not all
7538targets support all bit widths or vector types, however.
7539
7540::
7541
7542 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7543 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7544 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7545 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7546 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7547 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7548
7549Overview:
7550"""""""""
7551
7552The '``llvm.ctlz``' family of intrinsic functions counts the number of
7553leading zeros in a variable.
7554
7555Arguments:
7556""""""""""
7557
7558The first argument is the value to be counted. This argument may be of
7559any integer type, or a vectory with integer element type. The return
7560type must match the first argument type.
7561
7562The second argument must be a constant and is a flag to indicate whether
7563the intrinsic should ensure that a zero as the first argument produces a
7564defined result. Historically some architectures did not provide a
7565defined result for zero values as efficiently, and many algorithms are
7566now predicated on avoiding zero-value inputs.
7567
7568Semantics:
7569""""""""""
7570
7571The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7572zeros in a variable, or within each element of the vector. If
7573``src == 0`` then the result is the size in bits of the type of ``src``
7574if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7575``llvm.ctlz(i32 2) = 30``.
7576
7577'``llvm.cttz.*``' Intrinsic
7578^^^^^^^^^^^^^^^^^^^^^^^^^^^
7579
7580Syntax:
7581"""""""
7582
7583This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7584integer bit width, or any vector of integer elements. Not all targets
7585support all bit widths or vector types, however.
7586
7587::
7588
7589 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7590 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7591 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7592 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7593 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7594 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7595
7596Overview:
7597"""""""""
7598
7599The '``llvm.cttz``' family of intrinsic functions counts the number of
7600trailing zeros.
7601
7602Arguments:
7603""""""""""
7604
7605The first argument is the value to be counted. This argument may be of
7606any integer type, or a vectory with integer element type. The return
7607type must match the first argument type.
7608
7609The second argument must be a constant and is a flag to indicate whether
7610the intrinsic should ensure that a zero as the first argument produces a
7611defined result. Historically some architectures did not provide a
7612defined result for zero values as efficiently, and many algorithms are
7613now predicated on avoiding zero-value inputs.
7614
7615Semantics:
7616""""""""""
7617
7618The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7619zeros in a variable, or within each element of a vector. If ``src == 0``
7620then the result is the size in bits of the type of ``src`` if
7621``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7622``llvm.cttz(2) = 1``.
7623
7624Arithmetic with Overflow Intrinsics
7625-----------------------------------
7626
7627LLVM provides intrinsics for some arithmetic with overflow operations.
7628
7629'``llvm.sadd.with.overflow.*``' Intrinsics
7630^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7631
7632Syntax:
7633"""""""
7634
7635This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7636on any integer bit width.
7637
7638::
7639
7640 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7641 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7642 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7643
7644Overview:
7645"""""""""
7646
7647The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7648a signed addition of the two arguments, and indicate whether an overflow
7649occurred during the signed summation.
7650
7651Arguments:
7652""""""""""
7653
7654The arguments (%a and %b) and the first element of the result structure
7655may be of integer types of any bit width, but they must have the same
7656bit width. The second element of the result structure must be of type
7657``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7658addition.
7659
7660Semantics:
7661""""""""""
7662
7663The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007664a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007665first element of which is the signed summation, and the second element
7666of which is a bit specifying if the signed summation resulted in an
7667overflow.
7668
7669Examples:
7670"""""""""
7671
7672.. code-block:: llvm
7673
7674 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7675 %sum = extractvalue {i32, i1} %res, 0
7676 %obit = extractvalue {i32, i1} %res, 1
7677 br i1 %obit, label %overflow, label %normal
7678
7679'``llvm.uadd.with.overflow.*``' Intrinsics
7680^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7681
7682Syntax:
7683"""""""
7684
7685This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7686on any integer bit width.
7687
7688::
7689
7690 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7691 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7692 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7693
7694Overview:
7695"""""""""
7696
7697The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7698an unsigned addition of the two arguments, and indicate whether a carry
7699occurred during the unsigned summation.
7700
7701Arguments:
7702""""""""""
7703
7704The arguments (%a and %b) and the first element of the result structure
7705may be of integer types of any bit width, but they must have the same
7706bit width. The second element of the result structure must be of type
7707``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7708addition.
7709
7710Semantics:
7711""""""""""
7712
7713The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007714an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007715first element of which is the sum, and the second element of which is a
7716bit specifying if the unsigned summation resulted in a carry.
7717
7718Examples:
7719"""""""""
7720
7721.. code-block:: llvm
7722
7723 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7724 %sum = extractvalue {i32, i1} %res, 0
7725 %obit = extractvalue {i32, i1} %res, 1
7726 br i1 %obit, label %carry, label %normal
7727
7728'``llvm.ssub.with.overflow.*``' Intrinsics
7729^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7730
7731Syntax:
7732"""""""
7733
7734This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7735on any integer bit width.
7736
7737::
7738
7739 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7740 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7741 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7742
7743Overview:
7744"""""""""
7745
7746The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7747a signed subtraction of the two arguments, and indicate whether an
7748overflow occurred during the signed subtraction.
7749
7750Arguments:
7751""""""""""
7752
7753The arguments (%a and %b) and the first element of the result structure
7754may be of integer types of any bit width, but they must have the same
7755bit width. The second element of the result structure must be of type
7756``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7757subtraction.
7758
7759Semantics:
7760""""""""""
7761
7762The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007763a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007764first element of which is the subtraction, and the second element of
7765which is a bit specifying if the signed subtraction resulted in an
7766overflow.
7767
7768Examples:
7769"""""""""
7770
7771.. code-block:: llvm
7772
7773 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7774 %sum = extractvalue {i32, i1} %res, 0
7775 %obit = extractvalue {i32, i1} %res, 1
7776 br i1 %obit, label %overflow, label %normal
7777
7778'``llvm.usub.with.overflow.*``' Intrinsics
7779^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7780
7781Syntax:
7782"""""""
7783
7784This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7785on any integer bit width.
7786
7787::
7788
7789 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7790 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7791 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7792
7793Overview:
7794"""""""""
7795
7796The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7797an unsigned subtraction of the two arguments, and indicate whether an
7798overflow occurred during the unsigned subtraction.
7799
7800Arguments:
7801""""""""""
7802
7803The arguments (%a and %b) and the first element of the result structure
7804may be of integer types of any bit width, but they must have the same
7805bit width. The second element of the result structure must be of type
7806``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7807subtraction.
7808
7809Semantics:
7810""""""""""
7811
7812The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007813an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007814the first element of which is the subtraction, and the second element of
7815which is a bit specifying if the unsigned subtraction resulted in an
7816overflow.
7817
7818Examples:
7819"""""""""
7820
7821.. code-block:: llvm
7822
7823 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7824 %sum = extractvalue {i32, i1} %res, 0
7825 %obit = extractvalue {i32, i1} %res, 1
7826 br i1 %obit, label %overflow, label %normal
7827
7828'``llvm.smul.with.overflow.*``' Intrinsics
7829^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7830
7831Syntax:
7832"""""""
7833
7834This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7835on any integer bit width.
7836
7837::
7838
7839 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7840 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7841 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7842
7843Overview:
7844"""""""""
7845
7846The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7847a signed multiplication of the two arguments, and indicate whether an
7848overflow occurred during the signed multiplication.
7849
7850Arguments:
7851""""""""""
7852
7853The arguments (%a and %b) and the first element of the result structure
7854may be of integer types of any bit width, but they must have the same
7855bit width. The second element of the result structure must be of type
7856``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7857multiplication.
7858
7859Semantics:
7860""""""""""
7861
7862The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007863a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007864the first element of which is the multiplication, and the second element
7865of which is a bit specifying if the signed multiplication resulted in an
7866overflow.
7867
7868Examples:
7869"""""""""
7870
7871.. code-block:: llvm
7872
7873 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7874 %sum = extractvalue {i32, i1} %res, 0
7875 %obit = extractvalue {i32, i1} %res, 1
7876 br i1 %obit, label %overflow, label %normal
7877
7878'``llvm.umul.with.overflow.*``' Intrinsics
7879^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7880
7881Syntax:
7882"""""""
7883
7884This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7885on any integer bit width.
7886
7887::
7888
7889 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7890 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7891 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7892
7893Overview:
7894"""""""""
7895
7896The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7897a unsigned multiplication of the two arguments, and indicate whether an
7898overflow occurred during the unsigned multiplication.
7899
7900Arguments:
7901""""""""""
7902
7903The arguments (%a and %b) and the first element of the result structure
7904may be of integer types of any bit width, but they must have the same
7905bit width. The second element of the result structure must be of type
7906``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7907multiplication.
7908
7909Semantics:
7910""""""""""
7911
7912The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007913an unsigned multiplication of the two arguments. They return a structure ---
7914the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007915element of which is a bit specifying if the unsigned multiplication
7916resulted in an overflow.
7917
7918Examples:
7919"""""""""
7920
7921.. code-block:: llvm
7922
7923 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7924 %sum = extractvalue {i32, i1} %res, 0
7925 %obit = extractvalue {i32, i1} %res, 1
7926 br i1 %obit, label %overflow, label %normal
7927
7928Specialised Arithmetic Intrinsics
7929---------------------------------
7930
7931'``llvm.fmuladd.*``' Intrinsic
7932^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7933
7934Syntax:
7935"""""""
7936
7937::
7938
7939 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7940 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7941
7942Overview:
7943"""""""""
7944
7945The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007946expressions that can be fused if the code generator determines that (a) the
7947target instruction set has support for a fused operation, and (b) that the
7948fused operation is more efficient than the equivalent, separate pair of mul
7949and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007950
7951Arguments:
7952""""""""""
7953
7954The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7955multiplicands, a and b, and an addend c.
7956
7957Semantics:
7958""""""""""
7959
7960The expression:
7961
7962::
7963
7964 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7965
7966is equivalent to the expression a \* b + c, except that rounding will
7967not be performed between the multiplication and addition steps if the
7968code generator fuses the operations. Fusion is not guaranteed, even if
7969the target platform supports it. If a fused multiply-add is required the
7970corresponding llvm.fma.\* intrinsic function should be used instead.
7971
7972Examples:
7973"""""""""
7974
7975.. code-block:: llvm
7976
7977 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7978
7979Half Precision Floating Point Intrinsics
7980----------------------------------------
7981
7982For most target platforms, half precision floating point is a
7983storage-only format. This means that it is a dense encoding (in memory)
7984but does not support computation in the format.
7985
7986This means that code must first load the half-precision floating point
7987value as an i16, then convert it to float with
7988:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7989then be performed on the float value (including extending to double
7990etc). To store the value back to memory, it is first converted to float
7991if needed, then converted to i16 with
7992:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7993i16 value.
7994
7995.. _int_convert_to_fp16:
7996
7997'``llvm.convert.to.fp16``' Intrinsic
7998^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7999
8000Syntax:
8001"""""""
8002
8003::
8004
8005 declare i16 @llvm.convert.to.fp16(f32 %a)
8006
8007Overview:
8008"""""""""
8009
8010The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8011from single precision floating point format to half precision floating
8012point format.
8013
8014Arguments:
8015""""""""""
8016
8017The intrinsic function contains single argument - the value to be
8018converted.
8019
8020Semantics:
8021""""""""""
8022
8023The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8024from single precision floating point format to half precision floating
8025point format. The return value is an ``i16`` which contains the
8026converted number.
8027
8028Examples:
8029"""""""""
8030
8031.. code-block:: llvm
8032
8033 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8034 store i16 %res, i16* @x, align 2
8035
8036.. _int_convert_from_fp16:
8037
8038'``llvm.convert.from.fp16``' Intrinsic
8039^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8040
8041Syntax:
8042"""""""
8043
8044::
8045
8046 declare f32 @llvm.convert.from.fp16(i16 %a)
8047
8048Overview:
8049"""""""""
8050
8051The '``llvm.convert.from.fp16``' intrinsic function performs a
8052conversion from half precision floating point format to single precision
8053floating point format.
8054
8055Arguments:
8056""""""""""
8057
8058The intrinsic function contains single argument - the value to be
8059converted.
8060
8061Semantics:
8062""""""""""
8063
8064The '``llvm.convert.from.fp16``' intrinsic function performs a
8065conversion from half single precision floating point format to single
8066precision floating point format. The input half-float value is
8067represented by an ``i16`` value.
8068
8069Examples:
8070"""""""""
8071
8072.. code-block:: llvm
8073
8074 %a = load i16* @x, align 2
8075 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8076
8077Debugger Intrinsics
8078-------------------
8079
8080The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8081prefix), are described in the `LLVM Source Level
8082Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8083document.
8084
8085Exception Handling Intrinsics
8086-----------------------------
8087
8088The LLVM exception handling intrinsics (which all start with
8089``llvm.eh.`` prefix), are described in the `LLVM Exception
8090Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8091
8092.. _int_trampoline:
8093
8094Trampoline Intrinsics
8095---------------------
8096
8097These intrinsics make it possible to excise one parameter, marked with
8098the :ref:`nest <nest>` attribute, from a function. The result is a
8099callable function pointer lacking the nest parameter - the caller does
8100not need to provide a value for it. Instead, the value to use is stored
8101in advance in a "trampoline", a block of memory usually allocated on the
8102stack, which also contains code to splice the nest value into the
8103argument list. This is used to implement the GCC nested function address
8104extension.
8105
8106For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8107then the resulting function pointer has signature ``i32 (i32, i32)*``.
8108It can be created as follows:
8109
8110.. code-block:: llvm
8111
8112 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8113 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8114 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8115 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8116 %fp = bitcast i8* %p to i32 (i32, i32)*
8117
8118The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8119``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8120
8121.. _int_it:
8122
8123'``llvm.init.trampoline``' Intrinsic
8124^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8125
8126Syntax:
8127"""""""
8128
8129::
8130
8131 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8132
8133Overview:
8134"""""""""
8135
8136This fills the memory pointed to by ``tramp`` with executable code,
8137turning it into a trampoline.
8138
8139Arguments:
8140""""""""""
8141
8142The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8143pointers. The ``tramp`` argument must point to a sufficiently large and
8144sufficiently aligned block of memory; this memory is written to by the
8145intrinsic. Note that the size and the alignment are target-specific -
8146LLVM currently provides no portable way of determining them, so a
8147front-end that generates this intrinsic needs to have some
8148target-specific knowledge. The ``func`` argument must hold a function
8149bitcast to an ``i8*``.
8150
8151Semantics:
8152""""""""""
8153
8154The block of memory pointed to by ``tramp`` is filled with target
8155dependent code, turning it into a function. Then ``tramp`` needs to be
8156passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8157be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8158function's signature is the same as that of ``func`` with any arguments
8159marked with the ``nest`` attribute removed. At most one such ``nest``
8160argument is allowed, and it must be of pointer type. Calling the new
8161function is equivalent to calling ``func`` with the same argument list,
8162but with ``nval`` used for the missing ``nest`` argument. If, after
8163calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8164modified, then the effect of any later call to the returned function
8165pointer is undefined.
8166
8167.. _int_at:
8168
8169'``llvm.adjust.trampoline``' Intrinsic
8170^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8171
8172Syntax:
8173"""""""
8174
8175::
8176
8177 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8178
8179Overview:
8180"""""""""
8181
8182This performs any required machine-specific adjustment to the address of
8183a trampoline (passed as ``tramp``).
8184
8185Arguments:
8186""""""""""
8187
8188``tramp`` must point to a block of memory which already has trampoline
8189code filled in by a previous call to
8190:ref:`llvm.init.trampoline <int_it>`.
8191
8192Semantics:
8193""""""""""
8194
8195On some architectures the address of the code to be executed needs to be
8196different to the address where the trampoline is actually stored. This
8197intrinsic returns the executable address corresponding to ``tramp``
8198after performing the required machine specific adjustments. The pointer
8199returned can then be :ref:`bitcast and executed <int_trampoline>`.
8200
8201Memory Use Markers
8202------------------
8203
8204This class of intrinsics exists to information about the lifetime of
8205memory objects and ranges where variables are immutable.
8206
8207'``llvm.lifetime.start``' Intrinsic
8208^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8209
8210Syntax:
8211"""""""
8212
8213::
8214
8215 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8216
8217Overview:
8218"""""""""
8219
8220The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8221object's lifetime.
8222
8223Arguments:
8224""""""""""
8225
8226The first argument is a constant integer representing the size of the
8227object, or -1 if it is variable sized. The second argument is a pointer
8228to the object.
8229
8230Semantics:
8231""""""""""
8232
8233This intrinsic indicates that before this point in the code, the value
8234of the memory pointed to by ``ptr`` is dead. This means that it is known
8235to never be used and has an undefined value. A load from the pointer
8236that precedes this intrinsic can be replaced with ``'undef'``.
8237
8238'``llvm.lifetime.end``' Intrinsic
8239^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8240
8241Syntax:
8242"""""""
8243
8244::
8245
8246 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8247
8248Overview:
8249"""""""""
8250
8251The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8252object's lifetime.
8253
8254Arguments:
8255""""""""""
8256
8257The first argument is a constant integer representing the size of the
8258object, or -1 if it is variable sized. The second argument is a pointer
8259to the object.
8260
8261Semantics:
8262""""""""""
8263
8264This intrinsic indicates that after this point in the code, the value of
8265the memory pointed to by ``ptr`` is dead. This means that it is known to
8266never be used and has an undefined value. Any stores into the memory
8267object following this intrinsic may be removed as dead.
8268
8269'``llvm.invariant.start``' Intrinsic
8270^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8271
8272Syntax:
8273"""""""
8274
8275::
8276
8277 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8278
8279Overview:
8280"""""""""
8281
8282The '``llvm.invariant.start``' intrinsic specifies that the contents of
8283a memory object will not change.
8284
8285Arguments:
8286""""""""""
8287
8288The first argument is a constant integer representing the size of the
8289object, or -1 if it is variable sized. The second argument is a pointer
8290to the object.
8291
8292Semantics:
8293""""""""""
8294
8295This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8296the return value, the referenced memory location is constant and
8297unchanging.
8298
8299'``llvm.invariant.end``' Intrinsic
8300^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8301
8302Syntax:
8303"""""""
8304
8305::
8306
8307 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8308
8309Overview:
8310"""""""""
8311
8312The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8313memory object are mutable.
8314
8315Arguments:
8316""""""""""
8317
8318The first argument is the matching ``llvm.invariant.start`` intrinsic.
8319The second argument is a constant integer representing the size of the
8320object, or -1 if it is variable sized and the third argument is a
8321pointer to the object.
8322
8323Semantics:
8324""""""""""
8325
8326This intrinsic indicates that the memory is mutable again.
8327
8328General Intrinsics
8329------------------
8330
8331This class of intrinsics is designed to be generic and has no specific
8332purpose.
8333
8334'``llvm.var.annotation``' Intrinsic
8335^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8336
8337Syntax:
8338"""""""
8339
8340::
8341
8342 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8343
8344Overview:
8345"""""""""
8346
8347The '``llvm.var.annotation``' intrinsic.
8348
8349Arguments:
8350""""""""""
8351
8352The first argument is a pointer to a value, the second is a pointer to a
8353global string, the third is a pointer to a global string which is the
8354source file name, and the last argument is the line number.
8355
8356Semantics:
8357""""""""""
8358
8359This intrinsic allows annotation of local variables with arbitrary
8360strings. This can be useful for special purpose optimizations that want
8361to look for these annotations. These have no other defined use; they are
8362ignored by code generation and optimization.
8363
Michael Gottesman872b4e52013-03-26 00:34:27 +00008364'``llvm.ptr.annotation.*``' Intrinsic
8365^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8366
8367Syntax:
8368"""""""
8369
8370This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8371pointer to an integer of any width. *NOTE* you must specify an address space for
8372the pointer. The identifier for the default address space is the integer
8373'``0``'.
8374
8375::
8376
8377 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8378 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8379 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8380 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8381 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8382
8383Overview:
8384"""""""""
8385
8386The '``llvm.ptr.annotation``' intrinsic.
8387
8388Arguments:
8389""""""""""
8390
8391The first argument is a pointer to an integer value of arbitrary bitwidth
8392(result of some expression), the second is a pointer to a global string, the
8393third is a pointer to a global string which is the source file name, and the
8394last argument is the line number. It returns the value of the first argument.
8395
8396Semantics:
8397""""""""""
8398
8399This intrinsic allows annotation of a pointer to an integer with arbitrary
8400strings. This can be useful for special purpose optimizations that want to look
8401for these annotations. These have no other defined use; they are ignored by code
8402generation and optimization.
8403
Sean Silvaf722b002012-12-07 10:36:55 +00008404'``llvm.annotation.*``' Intrinsic
8405^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8406
8407Syntax:
8408"""""""
8409
8410This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8411any integer bit width.
8412
8413::
8414
8415 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8416 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8417 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8418 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8419 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8420
8421Overview:
8422"""""""""
8423
8424The '``llvm.annotation``' intrinsic.
8425
8426Arguments:
8427""""""""""
8428
8429The first argument is an integer value (result of some expression), the
8430second is a pointer to a global string, the third is a pointer to a
8431global string which is the source file name, and the last argument is
8432the line number. It returns the value of the first argument.
8433
8434Semantics:
8435""""""""""
8436
8437This intrinsic allows annotations to be put on arbitrary expressions
8438with arbitrary strings. This can be useful for special purpose
8439optimizations that want to look for these annotations. These have no
8440other defined use; they are ignored by code generation and optimization.
8441
8442'``llvm.trap``' Intrinsic
8443^^^^^^^^^^^^^^^^^^^^^^^^^
8444
8445Syntax:
8446"""""""
8447
8448::
8449
8450 declare void @llvm.trap() noreturn nounwind
8451
8452Overview:
8453"""""""""
8454
8455The '``llvm.trap``' intrinsic.
8456
8457Arguments:
8458""""""""""
8459
8460None.
8461
8462Semantics:
8463""""""""""
8464
8465This intrinsic is lowered to the target dependent trap instruction. If
8466the target does not have a trap instruction, this intrinsic will be
8467lowered to a call of the ``abort()`` function.
8468
8469'``llvm.debugtrap``' Intrinsic
8470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8471
8472Syntax:
8473"""""""
8474
8475::
8476
8477 declare void @llvm.debugtrap() nounwind
8478
8479Overview:
8480"""""""""
8481
8482The '``llvm.debugtrap``' intrinsic.
8483
8484Arguments:
8485""""""""""
8486
8487None.
8488
8489Semantics:
8490""""""""""
8491
8492This intrinsic is lowered to code which is intended to cause an
8493execution trap with the intention of requesting the attention of a
8494debugger.
8495
8496'``llvm.stackprotector``' Intrinsic
8497^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8498
8499Syntax:
8500"""""""
8501
8502::
8503
8504 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8505
8506Overview:
8507"""""""""
8508
8509The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8510onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8511is placed on the stack before local variables.
8512
8513Arguments:
8514""""""""""
8515
8516The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8517The first argument is the value loaded from the stack guard
8518``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8519enough space to hold the value of the guard.
8520
8521Semantics:
8522""""""""""
8523
8524This intrinsic causes the prologue/epilogue inserter to force the
8525position of the ``AllocaInst`` stack slot to be before local variables
8526on the stack. This is to ensure that if a local variable on the stack is
8527overwritten, it will destroy the value of the guard. When the function
8528exits, the guard on the stack is checked against the original guard. If
8529they are different, then the program aborts by calling the
8530``__stack_chk_fail()`` function.
8531
8532'``llvm.objectsize``' Intrinsic
8533^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8534
8535Syntax:
8536"""""""
8537
8538::
8539
8540 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8541 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8542
8543Overview:
8544"""""""""
8545
8546The ``llvm.objectsize`` intrinsic is designed to provide information to
8547the optimizers to determine at compile time whether a) an operation
8548(like memcpy) will overflow a buffer that corresponds to an object, or
8549b) that a runtime check for overflow isn't necessary. An object in this
8550context means an allocation of a specific class, structure, array, or
8551other object.
8552
8553Arguments:
8554""""""""""
8555
8556The ``llvm.objectsize`` intrinsic takes two arguments. The first
8557argument is a pointer to or into the ``object``. The second argument is
8558a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8559or -1 (if false) when the object size is unknown. The second argument
8560only accepts constants.
8561
8562Semantics:
8563""""""""""
8564
8565The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8566the size of the object concerned. If the size cannot be determined at
8567compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8568on the ``min`` argument).
8569
8570'``llvm.expect``' Intrinsic
8571^^^^^^^^^^^^^^^^^^^^^^^^^^^
8572
8573Syntax:
8574"""""""
8575
8576::
8577
8578 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8579 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8580
8581Overview:
8582"""""""""
8583
8584The ``llvm.expect`` intrinsic provides information about expected (the
8585most probable) value of ``val``, which can be used by optimizers.
8586
8587Arguments:
8588""""""""""
8589
8590The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8591a value. The second argument is an expected value, this needs to be a
8592constant value, variables are not allowed.
8593
8594Semantics:
8595""""""""""
8596
8597This intrinsic is lowered to the ``val``.
8598
8599'``llvm.donothing``' Intrinsic
8600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8601
8602Syntax:
8603"""""""
8604
8605::
8606
8607 declare void @llvm.donothing() nounwind readnone
8608
8609Overview:
8610"""""""""
8611
8612The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8613only intrinsic that can be called with an invoke instruction.
8614
8615Arguments:
8616""""""""""
8617
8618None.
8619
8620Semantics:
8621""""""""""
8622
8623This intrinsic does nothing, and it's removed by optimizers and ignored
8624by codegen.