blob: 305c8de3740bdfa21b0d03a88594d489fb537e20 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
Evan Cheng17254e62008-01-11 09:12:49 +000090 std::set<const Value*> ByValParams;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000091
92 public:
93 static char ID;
94 CWriter(std::ostream &o)
95 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
96 TheModule(0), TAsm(0), TD(0) {}
97
98 virtual const char *getPassName() const { return "C backend"; }
99
100 void getAnalysisUsage(AnalysisUsage &AU) const {
101 AU.addRequired<LoopInfo>();
102 AU.setPreservesAll();
103 }
104
105 virtual bool doInitialization(Module &M);
106
107 bool runOnFunction(Function &F) {
108 LI = &getAnalysis<LoopInfo>();
109
110 // Get rid of intrinsics we can't handle.
111 lowerIntrinsics(F);
112
113 // Output all floating point constants that cannot be printed accurately.
114 printFloatingPointConstants(F);
115
116 printFunction(F);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
Evan Cheng17254e62008-01-11 09:12:49 +0000123 FPConstantMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000124 TypeNames.clear();
Evan Cheng17254e62008-01-11 09:12:49 +0000125 intrinsicPrototypesAlreadyGenerated.clear();
126 ByValParams.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000127 return false;
128 }
129
130 std::ostream &printType(std::ostream &Out, const Type *Ty,
131 bool isSigned = false,
132 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000133 bool IgnoreName = false,
134 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
136 bool isSigned,
137 const std::string &NameSoFar = "");
138
139 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000140 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141 const PointerType *Ty);
142
143 void writeOperand(Value *Operand);
144 void writeOperandRaw(Value *Operand);
145 void writeOperandInternal(Value *Operand);
146 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000147 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000148 bool writeInstructionCast(const Instruction &I);
149
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +0000150 void writeMemoryAccess(Value *Operand, const Type *OperandType,
151 bool IsVolatile, unsigned Alignment);
152
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000153 private :
154 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
155
156 void lowerIntrinsics(Function &F);
157
158 void printModule(Module *M);
159 void printModuleTypes(const TypeSymbolTable &ST);
160 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
161 void printFloatingPointConstants(Function &F);
162 void printFunctionSignature(const Function *F, bool Prototype);
163
164 void printFunction(Function &);
165 void printBasicBlock(BasicBlock *BB);
166 void printLoop(Loop *L);
167
168 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
169 void printConstant(Constant *CPV);
170 void printConstantWithCast(Constant *CPV, unsigned Opcode);
171 bool printConstExprCast(const ConstantExpr *CE);
172 void printConstantArray(ConstantArray *CPA);
173 void printConstantVector(ConstantVector *CP);
174
175 // isInlinableInst - Attempt to inline instructions into their uses to build
176 // trees as much as possible. To do this, we have to consistently decide
177 // what is acceptable to inline, so that variable declarations don't get
178 // printed and an extra copy of the expr is not emitted.
179 //
180 static bool isInlinableInst(const Instruction &I) {
181 // Always inline cmp instructions, even if they are shared by multiple
182 // expressions. GCC generates horrible code if we don't.
183 if (isa<CmpInst>(I))
184 return true;
185
186 // Must be an expression, must be used exactly once. If it is dead, we
187 // emit it inline where it would go.
188 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
189 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
190 isa<LoadInst>(I) || isa<VAArgInst>(I))
191 // Don't inline a load across a store or other bad things!
192 return false;
193
194 // Must not be used in inline asm
195 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
196
197 // Only inline instruction it if it's use is in the same BB as the inst.
198 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
199 }
200
201 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
202 // variables which are accessed with the & operator. This causes GCC to
203 // generate significantly better code than to emit alloca calls directly.
204 //
205 static const AllocaInst *isDirectAlloca(const Value *V) {
206 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
207 if (!AI) return false;
208 if (AI->isArrayAllocation())
209 return 0; // FIXME: we can also inline fixed size array allocas!
210 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
211 return 0;
212 return AI;
213 }
214
215 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
216 static bool isInlineAsm(const Instruction& I) {
217 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
218 return true;
219 return false;
220 }
221
222 // Instruction visitation functions
223 friend class InstVisitor<CWriter>;
224
225 void visitReturnInst(ReturnInst &I);
226 void visitBranchInst(BranchInst &I);
227 void visitSwitchInst(SwitchInst &I);
228 void visitInvokeInst(InvokeInst &I) {
229 assert(0 && "Lowerinvoke pass didn't work!");
230 }
231
232 void visitUnwindInst(UnwindInst &I) {
233 assert(0 && "Lowerinvoke pass didn't work!");
234 }
235 void visitUnreachableInst(UnreachableInst &I);
236
237 void visitPHINode(PHINode &I);
238 void visitBinaryOperator(Instruction &I);
239 void visitICmpInst(ICmpInst &I);
240 void visitFCmpInst(FCmpInst &I);
241
242 void visitCastInst (CastInst &I);
243 void visitSelectInst(SelectInst &I);
244 void visitCallInst (CallInst &I);
245 void visitInlineAsm(CallInst &I);
246
247 void visitMallocInst(MallocInst &I);
248 void visitAllocaInst(AllocaInst &I);
249 void visitFreeInst (FreeInst &I);
250 void visitLoadInst (LoadInst &I);
251 void visitStoreInst (StoreInst &I);
252 void visitGetElementPtrInst(GetElementPtrInst &I);
253 void visitVAArgInst (VAArgInst &I);
254
255 void visitInstruction(Instruction &I) {
256 cerr << "C Writer does not know about " << I;
257 abort();
258 }
259
260 void outputLValue(Instruction *I) {
261 Out << " " << GetValueName(I) << " = ";
262 }
263
264 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
265 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
266 BasicBlock *Successor, unsigned Indent);
267 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
268 unsigned Indent);
269 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
270 gep_type_iterator E);
271
272 std::string GetValueName(const Value *Operand);
273 };
274}
275
276char CWriter::ID = 0;
277
278/// This method inserts names for any unnamed structure types that are used by
279/// the program, and removes names from structure types that are not used by the
280/// program.
281///
282bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
283 // Get a set of types that are used by the program...
284 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
285
286 // Loop over the module symbol table, removing types from UT that are
287 // already named, and removing names for types that are not used.
288 //
289 TypeSymbolTable &TST = M.getTypeSymbolTable();
290 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
291 TI != TE; ) {
292 TypeSymbolTable::iterator I = TI++;
293
294 // If this isn't a struct type, remove it from our set of types to name.
295 // This simplifies emission later.
296 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
297 TST.remove(I);
298 } else {
299 // If this is not used, remove it from the symbol table.
300 std::set<const Type *>::iterator UTI = UT.find(I->second);
301 if (UTI == UT.end())
302 TST.remove(I);
303 else
304 UT.erase(UTI); // Only keep one name for this type.
305 }
306 }
307
308 // UT now contains types that are not named. Loop over it, naming
309 // structure types.
310 //
311 bool Changed = false;
312 unsigned RenameCounter = 0;
313 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
314 I != E; ++I)
315 if (const StructType *ST = dyn_cast<StructType>(*I)) {
316 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
317 ++RenameCounter;
318 Changed = true;
319 }
320
321
322 // Loop over all external functions and globals. If we have two with
323 // identical names, merge them.
324 // FIXME: This code should disappear when we don't allow values with the same
325 // names when they have different types!
326 std::map<std::string, GlobalValue*> ExtSymbols;
327 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
328 Function *GV = I++;
329 if (GV->isDeclaration() && GV->hasName()) {
330 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
331 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
332 if (!X.second) {
333 // Found a conflict, replace this global with the previous one.
334 GlobalValue *OldGV = X.first->second;
335 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
336 GV->eraseFromParent();
337 Changed = true;
338 }
339 }
340 }
341 // Do the same for globals.
342 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
343 I != E;) {
344 GlobalVariable *GV = I++;
345 if (GV->isDeclaration() && GV->hasName()) {
346 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
347 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
348 if (!X.second) {
349 // Found a conflict, replace this global with the previous one.
350 GlobalValue *OldGV = X.first->second;
351 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
352 GV->eraseFromParent();
353 Changed = true;
354 }
355 }
356 }
357
358 return Changed;
359}
360
361/// printStructReturnPointerFunctionType - This is like printType for a struct
362/// return type, except, instead of printing the type as void (*)(Struct*, ...)
363/// print it as "Struct (*)(...)", for struct return functions.
364void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000365 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000366 const PointerType *TheTy) {
367 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
368 std::stringstream FunctionInnards;
369 FunctionInnards << " (*) (";
370 bool PrintedType = false;
371
372 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
373 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
374 unsigned Idx = 1;
Evan Cheng2054cb02008-01-11 03:07:46 +0000375 for (++I, ++Idx; I != E; ++I, ++Idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000376 if (PrintedType)
377 FunctionInnards << ", ";
Evan Cheng2054cb02008-01-11 03:07:46 +0000378 const Type *ArgTy = *I;
Evan Cheng17254e62008-01-11 09:12:49 +0000379 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
380 assert(isa<PointerType>(ArgTy));
381 ArgTy = cast<PointerType>(ArgTy)->getElementType();
382 }
Evan Cheng2054cb02008-01-11 03:07:46 +0000383 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000384 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000385 PrintedType = true;
386 }
387 if (FTy->isVarArg()) {
388 if (PrintedType)
389 FunctionInnards << ", ...";
390 } else if (!PrintedType) {
391 FunctionInnards << "void";
392 }
393 FunctionInnards << ')';
394 std::string tstr = FunctionInnards.str();
395 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000396 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397}
398
399std::ostream &
400CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
401 const std::string &NameSoFar) {
402 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
403 "Invalid type for printSimpleType");
404 switch (Ty->getTypeID()) {
405 case Type::VoidTyID: return Out << "void " << NameSoFar;
406 case Type::IntegerTyID: {
407 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
408 if (NumBits == 1)
409 return Out << "bool " << NameSoFar;
410 else if (NumBits <= 8)
411 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
412 else if (NumBits <= 16)
413 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
414 else if (NumBits <= 32)
415 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
416 else {
417 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
418 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
419 }
420 }
421 case Type::FloatTyID: return Out << "float " << NameSoFar;
422 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000423 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
424 // present matches host 'long double'.
425 case Type::X86_FP80TyID:
426 case Type::PPC_FP128TyID:
427 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000428 default :
429 cerr << "Unknown primitive type: " << *Ty << "\n";
430 abort();
431 }
432}
433
434// Pass the Type* and the variable name and this prints out the variable
435// declaration.
436//
437std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
438 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000439 bool IgnoreName, const ParamAttrsList* PAL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000440 if (Ty->isPrimitiveType() || Ty->isInteger()) {
441 printSimpleType(Out, Ty, isSigned, NameSoFar);
442 return Out;
443 }
444
445 // Check to see if the type is named.
446 if (!IgnoreName || isa<OpaqueType>(Ty)) {
447 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
448 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
449 }
450
451 switch (Ty->getTypeID()) {
452 case Type::FunctionTyID: {
453 const FunctionType *FTy = cast<FunctionType>(Ty);
454 std::stringstream FunctionInnards;
455 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 unsigned Idx = 1;
457 for (FunctionType::param_iterator I = FTy->param_begin(),
458 E = FTy->param_end(); I != E; ++I) {
Evan Chengb8a072c2008-01-12 18:53:07 +0000459 const Type *ArgTy = *I;
460 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
461 assert(isa<PointerType>(ArgTy));
462 ArgTy = cast<PointerType>(ArgTy)->getElementType();
463 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 if (I != FTy->param_begin())
465 FunctionInnards << ", ";
Evan Chengb8a072c2008-01-12 18:53:07 +0000466 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000467 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468 ++Idx;
469 }
470 if (FTy->isVarArg()) {
471 if (FTy->getNumParams())
472 FunctionInnards << ", ...";
473 } else if (!FTy->getNumParams()) {
474 FunctionInnards << "void";
475 }
476 FunctionInnards << ')';
477 std::string tstr = FunctionInnards.str();
478 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000479 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000480 return Out;
481 }
482 case Type::StructTyID: {
483 const StructType *STy = cast<StructType>(Ty);
484 Out << NameSoFar + " {\n";
485 unsigned Idx = 0;
486 for (StructType::element_iterator I = STy->element_begin(),
487 E = STy->element_end(); I != E; ++I) {
488 Out << " ";
489 printType(Out, *I, false, "field" + utostr(Idx++));
490 Out << ";\n";
491 }
492 Out << '}';
493 if (STy->isPacked())
494 Out << " __attribute__ ((packed))";
495 return Out;
496 }
497
498 case Type::PointerTyID: {
499 const PointerType *PTy = cast<PointerType>(Ty);
500 std::string ptrName = "*" + NameSoFar;
501
502 if (isa<ArrayType>(PTy->getElementType()) ||
503 isa<VectorType>(PTy->getElementType()))
504 ptrName = "(" + ptrName + ")";
505
Evan Chengb8a072c2008-01-12 18:53:07 +0000506 if (PAL)
507 // Must be a function ptr cast!
508 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000509 return printType(Out, PTy->getElementType(), false, ptrName);
510 }
511
512 case Type::ArrayTyID: {
513 const ArrayType *ATy = cast<ArrayType>(Ty);
514 unsigned NumElements = ATy->getNumElements();
515 if (NumElements == 0) NumElements = 1;
516 return printType(Out, ATy->getElementType(), false,
517 NameSoFar + "[" + utostr(NumElements) + "]");
518 }
519
520 case Type::VectorTyID: {
521 const VectorType *PTy = cast<VectorType>(Ty);
522 unsigned NumElements = PTy->getNumElements();
523 if (NumElements == 0) NumElements = 1;
524 return printType(Out, PTy->getElementType(), false,
525 NameSoFar + "[" + utostr(NumElements) + "]");
526 }
527
528 case Type::OpaqueTyID: {
529 static int Count = 0;
530 std::string TyName = "struct opaque_" + itostr(Count++);
531 assert(TypeNames.find(Ty) == TypeNames.end());
532 TypeNames[Ty] = TyName;
533 return Out << TyName << ' ' << NameSoFar;
534 }
535 default:
536 assert(0 && "Unhandled case in getTypeProps!");
537 abort();
538 }
539
540 return Out;
541}
542
543void CWriter::printConstantArray(ConstantArray *CPA) {
544
545 // As a special case, print the array as a string if it is an array of
546 // ubytes or an array of sbytes with positive values.
547 //
548 const Type *ETy = CPA->getType()->getElementType();
549 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
550
551 // Make sure the last character is a null char, as automatically added by C
552 if (isString && (CPA->getNumOperands() == 0 ||
553 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
554 isString = false;
555
556 if (isString) {
557 Out << '\"';
558 // Keep track of whether the last number was a hexadecimal escape
559 bool LastWasHex = false;
560
561 // Do not include the last character, which we know is null
562 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
563 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
564
565 // Print it out literally if it is a printable character. The only thing
566 // to be careful about is when the last letter output was a hex escape
567 // code, in which case we have to be careful not to print out hex digits
568 // explicitly (the C compiler thinks it is a continuation of the previous
569 // character, sheesh...)
570 //
571 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
572 LastWasHex = false;
573 if (C == '"' || C == '\\')
574 Out << "\\" << C;
575 else
576 Out << C;
577 } else {
578 LastWasHex = false;
579 switch (C) {
580 case '\n': Out << "\\n"; break;
581 case '\t': Out << "\\t"; break;
582 case '\r': Out << "\\r"; break;
583 case '\v': Out << "\\v"; break;
584 case '\a': Out << "\\a"; break;
585 case '\"': Out << "\\\""; break;
586 case '\'': Out << "\\\'"; break;
587 default:
588 Out << "\\x";
589 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
590 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
591 LastWasHex = true;
592 break;
593 }
594 }
595 }
596 Out << '\"';
597 } else {
598 Out << '{';
599 if (CPA->getNumOperands()) {
600 Out << ' ';
601 printConstant(cast<Constant>(CPA->getOperand(0)));
602 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
603 Out << ", ";
604 printConstant(cast<Constant>(CPA->getOperand(i)));
605 }
606 }
607 Out << " }";
608 }
609}
610
611void CWriter::printConstantVector(ConstantVector *CP) {
612 Out << '{';
613 if (CP->getNumOperands()) {
614 Out << ' ';
615 printConstant(cast<Constant>(CP->getOperand(0)));
616 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
617 Out << ", ";
618 printConstant(cast<Constant>(CP->getOperand(i)));
619 }
620 }
621 Out << " }";
622}
623
624// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
625// textually as a double (rather than as a reference to a stack-allocated
626// variable). We decide this by converting CFP to a string and back into a
627// double, and then checking whether the conversion results in a bit-equal
628// double to the original value of CFP. This depends on us and the target C
629// compiler agreeing on the conversion process (which is pretty likely since we
630// only deal in IEEE FP).
631//
632static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000633 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000634 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
635 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000636 APFloat APF = APFloat(CFP->getValueAPF()); // copy
637 if (CFP->getType()==Type::FloatTy)
638 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
640 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000641 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000642 if (!strncmp(Buffer, "0x", 2) ||
643 !strncmp(Buffer, "-0x", 3) ||
644 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000645 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000646 return false;
647#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000648 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000649
650 while (StrVal[0] == ' ')
651 StrVal.erase(StrVal.begin());
652
653 // Check to make sure that the stringized number is not some string like "Inf"
654 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
655 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
656 ((StrVal[0] == '-' || StrVal[0] == '+') &&
657 (StrVal[1] >= '0' && StrVal[1] <= '9')))
658 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000659 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000660 return false;
661#endif
662}
663
664/// Print out the casting for a cast operation. This does the double casting
665/// necessary for conversion to the destination type, if necessary.
666/// @brief Print a cast
667void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
668 // Print the destination type cast
669 switch (opc) {
670 case Instruction::UIToFP:
671 case Instruction::SIToFP:
672 case Instruction::IntToPtr:
673 case Instruction::Trunc:
674 case Instruction::BitCast:
675 case Instruction::FPExt:
676 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
677 Out << '(';
678 printType(Out, DstTy);
679 Out << ')';
680 break;
681 case Instruction::ZExt:
682 case Instruction::PtrToInt:
683 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
684 Out << '(';
685 printSimpleType(Out, DstTy, false);
686 Out << ')';
687 break;
688 case Instruction::SExt:
689 case Instruction::FPToSI: // For these, make sure we get a signed dest
690 Out << '(';
691 printSimpleType(Out, DstTy, true);
692 Out << ')';
693 break;
694 default:
695 assert(0 && "Invalid cast opcode");
696 }
697
698 // Print the source type cast
699 switch (opc) {
700 case Instruction::UIToFP:
701 case Instruction::ZExt:
702 Out << '(';
703 printSimpleType(Out, SrcTy, false);
704 Out << ')';
705 break;
706 case Instruction::SIToFP:
707 case Instruction::SExt:
708 Out << '(';
709 printSimpleType(Out, SrcTy, true);
710 Out << ')';
711 break;
712 case Instruction::IntToPtr:
713 case Instruction::PtrToInt:
714 // Avoid "cast to pointer from integer of different size" warnings
715 Out << "(unsigned long)";
716 break;
717 case Instruction::Trunc:
718 case Instruction::BitCast:
719 case Instruction::FPExt:
720 case Instruction::FPTrunc:
721 case Instruction::FPToSI:
722 case Instruction::FPToUI:
723 break; // These don't need a source cast.
724 default:
725 assert(0 && "Invalid cast opcode");
726 break;
727 }
728}
729
730// printConstant - The LLVM Constant to C Constant converter.
731void CWriter::printConstant(Constant *CPV) {
732 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
733 switch (CE->getOpcode()) {
734 case Instruction::Trunc:
735 case Instruction::ZExt:
736 case Instruction::SExt:
737 case Instruction::FPTrunc:
738 case Instruction::FPExt:
739 case Instruction::UIToFP:
740 case Instruction::SIToFP:
741 case Instruction::FPToUI:
742 case Instruction::FPToSI:
743 case Instruction::PtrToInt:
744 case Instruction::IntToPtr:
745 case Instruction::BitCast:
746 Out << "(";
747 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
748 if (CE->getOpcode() == Instruction::SExt &&
749 CE->getOperand(0)->getType() == Type::Int1Ty) {
750 // Make sure we really sext from bool here by subtracting from 0
751 Out << "0-";
752 }
753 printConstant(CE->getOperand(0));
754 if (CE->getType() == Type::Int1Ty &&
755 (CE->getOpcode() == Instruction::Trunc ||
756 CE->getOpcode() == Instruction::FPToUI ||
757 CE->getOpcode() == Instruction::FPToSI ||
758 CE->getOpcode() == Instruction::PtrToInt)) {
759 // Make sure we really truncate to bool here by anding with 1
760 Out << "&1u";
761 }
762 Out << ')';
763 return;
764
765 case Instruction::GetElementPtr:
766 Out << "(&(";
767 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
768 gep_type_end(CPV));
769 Out << "))";
770 return;
771 case Instruction::Select:
772 Out << '(';
773 printConstant(CE->getOperand(0));
774 Out << '?';
775 printConstant(CE->getOperand(1));
776 Out << ':';
777 printConstant(CE->getOperand(2));
778 Out << ')';
779 return;
780 case Instruction::Add:
781 case Instruction::Sub:
782 case Instruction::Mul:
783 case Instruction::SDiv:
784 case Instruction::UDiv:
785 case Instruction::FDiv:
786 case Instruction::URem:
787 case Instruction::SRem:
788 case Instruction::FRem:
789 case Instruction::And:
790 case Instruction::Or:
791 case Instruction::Xor:
792 case Instruction::ICmp:
793 case Instruction::Shl:
794 case Instruction::LShr:
795 case Instruction::AShr:
796 {
797 Out << '(';
798 bool NeedsClosingParens = printConstExprCast(CE);
799 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
800 switch (CE->getOpcode()) {
801 case Instruction::Add: Out << " + "; break;
802 case Instruction::Sub: Out << " - "; break;
803 case Instruction::Mul: Out << " * "; break;
804 case Instruction::URem:
805 case Instruction::SRem:
806 case Instruction::FRem: Out << " % "; break;
807 case Instruction::UDiv:
808 case Instruction::SDiv:
809 case Instruction::FDiv: Out << " / "; break;
810 case Instruction::And: Out << " & "; break;
811 case Instruction::Or: Out << " | "; break;
812 case Instruction::Xor: Out << " ^ "; break;
813 case Instruction::Shl: Out << " << "; break;
814 case Instruction::LShr:
815 case Instruction::AShr: Out << " >> "; break;
816 case Instruction::ICmp:
817 switch (CE->getPredicate()) {
818 case ICmpInst::ICMP_EQ: Out << " == "; break;
819 case ICmpInst::ICMP_NE: Out << " != "; break;
820 case ICmpInst::ICMP_SLT:
821 case ICmpInst::ICMP_ULT: Out << " < "; break;
822 case ICmpInst::ICMP_SLE:
823 case ICmpInst::ICMP_ULE: Out << " <= "; break;
824 case ICmpInst::ICMP_SGT:
825 case ICmpInst::ICMP_UGT: Out << " > "; break;
826 case ICmpInst::ICMP_SGE:
827 case ICmpInst::ICMP_UGE: Out << " >= "; break;
828 default: assert(0 && "Illegal ICmp predicate");
829 }
830 break;
831 default: assert(0 && "Illegal opcode here!");
832 }
833 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
834 if (NeedsClosingParens)
835 Out << "))";
836 Out << ')';
837 return;
838 }
839 case Instruction::FCmp: {
840 Out << '(';
841 bool NeedsClosingParens = printConstExprCast(CE);
842 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
843 Out << "0";
844 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
845 Out << "1";
846 else {
847 const char* op = 0;
848 switch (CE->getPredicate()) {
849 default: assert(0 && "Illegal FCmp predicate");
850 case FCmpInst::FCMP_ORD: op = "ord"; break;
851 case FCmpInst::FCMP_UNO: op = "uno"; break;
852 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
853 case FCmpInst::FCMP_UNE: op = "une"; break;
854 case FCmpInst::FCMP_ULT: op = "ult"; break;
855 case FCmpInst::FCMP_ULE: op = "ule"; break;
856 case FCmpInst::FCMP_UGT: op = "ugt"; break;
857 case FCmpInst::FCMP_UGE: op = "uge"; break;
858 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
859 case FCmpInst::FCMP_ONE: op = "one"; break;
860 case FCmpInst::FCMP_OLT: op = "olt"; break;
861 case FCmpInst::FCMP_OLE: op = "ole"; break;
862 case FCmpInst::FCMP_OGT: op = "ogt"; break;
863 case FCmpInst::FCMP_OGE: op = "oge"; break;
864 }
865 Out << "llvm_fcmp_" << op << "(";
866 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
867 Out << ", ";
868 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
869 Out << ")";
870 }
871 if (NeedsClosingParens)
872 Out << "))";
873 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000874 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000875 }
876 default:
877 cerr << "CWriter Error: Unhandled constant expression: "
878 << *CE << "\n";
879 abort();
880 }
881 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
882 Out << "((";
883 printType(Out, CPV->getType()); // sign doesn't matter
884 Out << ")/*UNDEF*/0)";
885 return;
886 }
887
888 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
889 const Type* Ty = CI->getType();
890 if (Ty == Type::Int1Ty)
891 Out << (CI->getZExtValue() ? '1' : '0') ;
892 else {
893 Out << "((";
894 printSimpleType(Out, Ty, false) << ')';
895 if (CI->isMinValue(true))
896 Out << CI->getZExtValue() << 'u';
897 else
898 Out << CI->getSExtValue();
899 if (Ty->getPrimitiveSizeInBits() > 32)
900 Out << "ll";
901 Out << ')';
902 }
903 return;
904 }
905
906 switch (CPV->getType()->getTypeID()) {
907 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000908 case Type::DoubleTyID:
909 case Type::X86_FP80TyID:
910 case Type::PPC_FP128TyID:
911 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000912 ConstantFP *FPC = cast<ConstantFP>(CPV);
913 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
914 if (I != FPConstantMap.end()) {
915 // Because of FP precision problems we must load from a stack allocated
916 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000917 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
918 FPC->getType() == Type::DoubleTy ? "double" :
919 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000920 << "*)&FPConstant" << I->second << ')';
921 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000922 assert(FPC->getType() == Type::FloatTy ||
923 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000924 double V = FPC->getType() == Type::FloatTy ?
925 FPC->getValueAPF().convertToFloat() :
926 FPC->getValueAPF().convertToDouble();
927 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000928 // The value is NaN
929
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000930 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000931 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
932 // it's 0x7ff4.
933 const unsigned long QuietNaN = 0x7ff8UL;
934 //const unsigned long SignalNaN = 0x7ff4UL;
935
936 // We need to grab the first part of the FP #
937 char Buffer[100];
938
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000939 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000940 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
941
942 std::string Num(&Buffer[0], &Buffer[6]);
943 unsigned long Val = strtoul(Num.c_str(), 0, 16);
944
945 if (FPC->getType() == Type::FloatTy)
946 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
947 << Buffer << "\") /*nan*/ ";
948 else
949 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
950 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000951 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000952 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000953 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000954 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
955 << " /*inf*/ ";
956 } else {
957 std::string Num;
958#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
959 // Print out the constant as a floating point number.
960 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000961 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000962 Num = Buffer;
963#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000964 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000965#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000966 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000967 }
968 }
969 break;
970 }
971
972 case Type::ArrayTyID:
973 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
974 const ArrayType *AT = cast<ArrayType>(CPV->getType());
975 Out << '{';
976 if (AT->getNumElements()) {
977 Out << ' ';
978 Constant *CZ = Constant::getNullValue(AT->getElementType());
979 printConstant(CZ);
980 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
981 Out << ", ";
982 printConstant(CZ);
983 }
984 }
985 Out << " }";
986 } else {
987 printConstantArray(cast<ConstantArray>(CPV));
988 }
989 break;
990
991 case Type::VectorTyID:
992 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
993 const VectorType *AT = cast<VectorType>(CPV->getType());
994 Out << '{';
995 if (AT->getNumElements()) {
996 Out << ' ';
997 Constant *CZ = Constant::getNullValue(AT->getElementType());
998 printConstant(CZ);
999 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1000 Out << ", ";
1001 printConstant(CZ);
1002 }
1003 }
1004 Out << " }";
1005 } else {
1006 printConstantVector(cast<ConstantVector>(CPV));
1007 }
1008 break;
1009
1010 case Type::StructTyID:
1011 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1012 const StructType *ST = cast<StructType>(CPV->getType());
1013 Out << '{';
1014 if (ST->getNumElements()) {
1015 Out << ' ';
1016 printConstant(Constant::getNullValue(ST->getElementType(0)));
1017 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1018 Out << ", ";
1019 printConstant(Constant::getNullValue(ST->getElementType(i)));
1020 }
1021 }
1022 Out << " }";
1023 } else {
1024 Out << '{';
1025 if (CPV->getNumOperands()) {
1026 Out << ' ';
1027 printConstant(cast<Constant>(CPV->getOperand(0)));
1028 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1029 Out << ", ";
1030 printConstant(cast<Constant>(CPV->getOperand(i)));
1031 }
1032 }
1033 Out << " }";
1034 }
1035 break;
1036
1037 case Type::PointerTyID:
1038 if (isa<ConstantPointerNull>(CPV)) {
1039 Out << "((";
1040 printType(Out, CPV->getType()); // sign doesn't matter
1041 Out << ")/*NULL*/0)";
1042 break;
1043 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1044 writeOperand(GV);
1045 break;
1046 }
1047 // FALL THROUGH
1048 default:
1049 cerr << "Unknown constant type: " << *CPV << "\n";
1050 abort();
1051 }
1052}
1053
1054// Some constant expressions need to be casted back to the original types
1055// because their operands were casted to the expected type. This function takes
1056// care of detecting that case and printing the cast for the ConstantExpr.
1057bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1058 bool NeedsExplicitCast = false;
1059 const Type *Ty = CE->getOperand(0)->getType();
1060 bool TypeIsSigned = false;
1061 switch (CE->getOpcode()) {
1062 case Instruction::LShr:
1063 case Instruction::URem:
1064 case Instruction::UDiv: NeedsExplicitCast = true; break;
1065 case Instruction::AShr:
1066 case Instruction::SRem:
1067 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1068 case Instruction::SExt:
1069 Ty = CE->getType();
1070 NeedsExplicitCast = true;
1071 TypeIsSigned = true;
1072 break;
1073 case Instruction::ZExt:
1074 case Instruction::Trunc:
1075 case Instruction::FPTrunc:
1076 case Instruction::FPExt:
1077 case Instruction::UIToFP:
1078 case Instruction::SIToFP:
1079 case Instruction::FPToUI:
1080 case Instruction::FPToSI:
1081 case Instruction::PtrToInt:
1082 case Instruction::IntToPtr:
1083 case Instruction::BitCast:
1084 Ty = CE->getType();
1085 NeedsExplicitCast = true;
1086 break;
1087 default: break;
1088 }
1089 if (NeedsExplicitCast) {
1090 Out << "((";
1091 if (Ty->isInteger() && Ty != Type::Int1Ty)
1092 printSimpleType(Out, Ty, TypeIsSigned);
1093 else
1094 printType(Out, Ty); // not integer, sign doesn't matter
1095 Out << ")(";
1096 }
1097 return NeedsExplicitCast;
1098}
1099
1100// Print a constant assuming that it is the operand for a given Opcode. The
1101// opcodes that care about sign need to cast their operands to the expected
1102// type before the operation proceeds. This function does the casting.
1103void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1104
1105 // Extract the operand's type, we'll need it.
1106 const Type* OpTy = CPV->getType();
1107
1108 // Indicate whether to do the cast or not.
1109 bool shouldCast = false;
1110 bool typeIsSigned = false;
1111
1112 // Based on the Opcode for which this Constant is being written, determine
1113 // the new type to which the operand should be casted by setting the value
1114 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1115 // casted below.
1116 switch (Opcode) {
1117 default:
1118 // for most instructions, it doesn't matter
1119 break;
1120 case Instruction::LShr:
1121 case Instruction::UDiv:
1122 case Instruction::URem:
1123 shouldCast = true;
1124 break;
1125 case Instruction::AShr:
1126 case Instruction::SDiv:
1127 case Instruction::SRem:
1128 shouldCast = true;
1129 typeIsSigned = true;
1130 break;
1131 }
1132
1133 // Write out the casted constant if we should, otherwise just write the
1134 // operand.
1135 if (shouldCast) {
1136 Out << "((";
1137 printSimpleType(Out, OpTy, typeIsSigned);
1138 Out << ")";
1139 printConstant(CPV);
1140 Out << ")";
1141 } else
1142 printConstant(CPV);
1143}
1144
1145std::string CWriter::GetValueName(const Value *Operand) {
1146 std::string Name;
1147
1148 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1149 std::string VarName;
1150
1151 Name = Operand->getName();
1152 VarName.reserve(Name.capacity());
1153
1154 for (std::string::iterator I = Name.begin(), E = Name.end();
1155 I != E; ++I) {
1156 char ch = *I;
1157
1158 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1159 (ch >= '0' && ch <= '9') || ch == '_'))
1160 VarName += '_';
1161 else
1162 VarName += ch;
1163 }
1164
1165 Name = "llvm_cbe_" + VarName;
1166 } else {
1167 Name = Mang->getValueName(Operand);
1168 }
1169
1170 return Name;
1171}
1172
1173void CWriter::writeOperandInternal(Value *Operand) {
1174 if (Instruction *I = dyn_cast<Instruction>(Operand))
1175 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1176 // Should we inline this instruction to build a tree?
1177 Out << '(';
1178 visit(*I);
1179 Out << ')';
1180 return;
1181 }
1182
1183 Constant* CPV = dyn_cast<Constant>(Operand);
1184
1185 if (CPV && !isa<GlobalValue>(CPV))
1186 printConstant(CPV);
1187 else
1188 Out << GetValueName(Operand);
1189}
1190
1191void CWriter::writeOperandRaw(Value *Operand) {
1192 Constant* CPV = dyn_cast<Constant>(Operand);
1193 if (CPV && !isa<GlobalValue>(CPV)) {
1194 printConstant(CPV);
1195 } else {
1196 Out << GetValueName(Operand);
1197 }
1198}
1199
1200void CWriter::writeOperand(Value *Operand) {
Andrew Lenharth2179fec2008-02-19 19:47:54 +00001201 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand) || ByValParams.count(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001202 Out << "(&"; // Global variables are referenced as their addresses by llvm
1203
1204 writeOperandInternal(Operand);
1205
Andrew Lenharth2179fec2008-02-19 19:47:54 +00001206 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand) || ByValParams.count(Operand))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001207 Out << ')';
1208}
1209
1210// Some instructions need to have their result value casted back to the
1211// original types because their operands were casted to the expected type.
1212// This function takes care of detecting that case and printing the cast
1213// for the Instruction.
1214bool CWriter::writeInstructionCast(const Instruction &I) {
1215 const Type *Ty = I.getOperand(0)->getType();
1216 switch (I.getOpcode()) {
1217 case Instruction::LShr:
1218 case Instruction::URem:
1219 case Instruction::UDiv:
1220 Out << "((";
1221 printSimpleType(Out, Ty, false);
1222 Out << ")(";
1223 return true;
1224 case Instruction::AShr:
1225 case Instruction::SRem:
1226 case Instruction::SDiv:
1227 Out << "((";
1228 printSimpleType(Out, Ty, true);
1229 Out << ")(";
1230 return true;
1231 default: break;
1232 }
1233 return false;
1234}
1235
1236// Write the operand with a cast to another type based on the Opcode being used.
1237// This will be used in cases where an instruction has specific type
1238// requirements (usually signedness) for its operands.
1239void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1240
1241 // Extract the operand's type, we'll need it.
1242 const Type* OpTy = Operand->getType();
1243
1244 // Indicate whether to do the cast or not.
1245 bool shouldCast = false;
1246
1247 // Indicate whether the cast should be to a signed type or not.
1248 bool castIsSigned = false;
1249
1250 // Based on the Opcode for which this Operand is being written, determine
1251 // the new type to which the operand should be casted by setting the value
1252 // of OpTy. If we change OpTy, also set shouldCast to true.
1253 switch (Opcode) {
1254 default:
1255 // for most instructions, it doesn't matter
1256 break;
1257 case Instruction::LShr:
1258 case Instruction::UDiv:
1259 case Instruction::URem: // Cast to unsigned first
1260 shouldCast = true;
1261 castIsSigned = false;
1262 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001263 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001264 case Instruction::AShr:
1265 case Instruction::SDiv:
1266 case Instruction::SRem: // Cast to signed first
1267 shouldCast = true;
1268 castIsSigned = true;
1269 break;
1270 }
1271
1272 // Write out the casted operand if we should, otherwise just write the
1273 // operand.
1274 if (shouldCast) {
1275 Out << "((";
1276 printSimpleType(Out, OpTy, castIsSigned);
1277 Out << ")";
1278 writeOperand(Operand);
1279 Out << ")";
1280 } else
1281 writeOperand(Operand);
1282}
1283
1284// Write the operand with a cast to another type based on the icmp predicate
1285// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001286void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1287 // This has to do a cast to ensure the operand has the right signedness.
1288 // Also, if the operand is a pointer, we make sure to cast to an integer when
1289 // doing the comparison both for signedness and so that the C compiler doesn't
1290 // optimize things like "p < NULL" to false (p may contain an integer value
1291 // f.e.).
1292 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001293
1294 // Write out the casted operand if we should, otherwise just write the
1295 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001296 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001297 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001298 return;
1299 }
1300
1301 // Should this be a signed comparison? If so, convert to signed.
1302 bool castIsSigned = Cmp.isSignedPredicate();
1303
1304 // If the operand was a pointer, convert to a large integer type.
1305 const Type* OpTy = Operand->getType();
1306 if (isa<PointerType>(OpTy))
1307 OpTy = TD->getIntPtrType();
1308
1309 Out << "((";
1310 printSimpleType(Out, OpTy, castIsSigned);
1311 Out << ")";
1312 writeOperand(Operand);
1313 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001314}
1315
1316// generateCompilerSpecificCode - This is where we add conditional compilation
1317// directives to cater to specific compilers as need be.
1318//
1319static void generateCompilerSpecificCode(std::ostream& Out) {
1320 // Alloca is hard to get, and we don't want to include stdlib.h here.
1321 Out << "/* get a declaration for alloca */\n"
1322 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1323 << "#define alloca(x) __builtin_alloca((x))\n"
1324 << "#define _alloca(x) __builtin_alloca((x))\n"
1325 << "#elif defined(__APPLE__)\n"
1326 << "extern void *__builtin_alloca(unsigned long);\n"
1327 << "#define alloca(x) __builtin_alloca(x)\n"
1328 << "#define longjmp _longjmp\n"
1329 << "#define setjmp _setjmp\n"
1330 << "#elif defined(__sun__)\n"
1331 << "#if defined(__sparcv9)\n"
1332 << "extern void *__builtin_alloca(unsigned long);\n"
1333 << "#else\n"
1334 << "extern void *__builtin_alloca(unsigned int);\n"
1335 << "#endif\n"
1336 << "#define alloca(x) __builtin_alloca(x)\n"
Chris Lattner9bae27b2008-01-12 06:46:09 +00001337 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001338 << "#define alloca(x) __builtin_alloca(x)\n"
1339 << "#elif defined(_MSC_VER)\n"
1340 << "#define inline _inline\n"
1341 << "#define alloca(x) _alloca(x)\n"
1342 << "#else\n"
1343 << "#include <alloca.h>\n"
1344 << "#endif\n\n";
1345
1346 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1347 // If we aren't being compiled with GCC, just drop these attributes.
1348 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1349 << "#define __attribute__(X)\n"
1350 << "#endif\n\n";
1351
1352 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1353 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1354 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1355 << "#elif defined(__GNUC__)\n"
1356 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1357 << "#else\n"
1358 << "#define __EXTERNAL_WEAK__\n"
1359 << "#endif\n\n";
1360
1361 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1362 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1363 << "#define __ATTRIBUTE_WEAK__\n"
1364 << "#elif defined(__GNUC__)\n"
1365 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1366 << "#else\n"
1367 << "#define __ATTRIBUTE_WEAK__\n"
1368 << "#endif\n\n";
1369
1370 // Add hidden visibility support. FIXME: APPLE_CC?
1371 Out << "#if defined(__GNUC__)\n"
1372 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1373 << "#endif\n\n";
1374
1375 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1376 // From the GCC documentation:
1377 //
1378 // double __builtin_nan (const char *str)
1379 //
1380 // This is an implementation of the ISO C99 function nan.
1381 //
1382 // Since ISO C99 defines this function in terms of strtod, which we do
1383 // not implement, a description of the parsing is in order. The string is
1384 // parsed as by strtol; that is, the base is recognized by leading 0 or
1385 // 0x prefixes. The number parsed is placed in the significand such that
1386 // the least significant bit of the number is at the least significant
1387 // bit of the significand. The number is truncated to fit the significand
1388 // field provided. The significand is forced to be a quiet NaN.
1389 //
1390 // This function, if given a string literal, is evaluated early enough
1391 // that it is considered a compile-time constant.
1392 //
1393 // float __builtin_nanf (const char *str)
1394 //
1395 // Similar to __builtin_nan, except the return type is float.
1396 //
1397 // double __builtin_inf (void)
1398 //
1399 // Similar to __builtin_huge_val, except a warning is generated if the
1400 // target floating-point format does not support infinities. This
1401 // function is suitable for implementing the ISO C99 macro INFINITY.
1402 //
1403 // float __builtin_inff (void)
1404 //
1405 // Similar to __builtin_inf, except the return type is float.
1406 Out << "#ifdef __GNUC__\n"
1407 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1408 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1409 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1410 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1411 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1412 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1413 << "#define LLVM_PREFETCH(addr,rw,locality) "
1414 "__builtin_prefetch(addr,rw,locality)\n"
1415 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1416 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1417 << "#define LLVM_ASM __asm__\n"
1418 << "#else\n"
1419 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1420 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1421 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1422 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1423 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1424 << "#define LLVM_INFF 0.0F /* Float */\n"
1425 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1426 << "#define __ATTRIBUTE_CTOR__\n"
1427 << "#define __ATTRIBUTE_DTOR__\n"
1428 << "#define LLVM_ASM(X)\n"
1429 << "#endif\n\n";
1430
1431 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1432 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1433 << "#define __builtin_stack_restore(X) /* noop */\n"
1434 << "#endif\n\n";
1435
1436 // Output target-specific code that should be inserted into main.
1437 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001438}
1439
1440/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1441/// the StaticTors set.
1442static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1443 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1444 if (!InitList) return;
1445
1446 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1447 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1448 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1449
1450 if (CS->getOperand(1)->isNullValue())
1451 return; // Found a null terminator, exit printing.
1452 Constant *FP = CS->getOperand(1);
1453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1454 if (CE->isCast())
1455 FP = CE->getOperand(0);
1456 if (Function *F = dyn_cast<Function>(FP))
1457 StaticTors.insert(F);
1458 }
1459}
1460
1461enum SpecialGlobalClass {
1462 NotSpecial = 0,
1463 GlobalCtors, GlobalDtors,
1464 NotPrinted
1465};
1466
1467/// getGlobalVariableClass - If this is a global that is specially recognized
1468/// by LLVM, return a code that indicates how we should handle it.
1469static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1470 // If this is a global ctors/dtors list, handle it now.
1471 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1472 if (GV->getName() == "llvm.global_ctors")
1473 return GlobalCtors;
1474 else if (GV->getName() == "llvm.global_dtors")
1475 return GlobalDtors;
1476 }
1477
1478 // Otherwise, it it is other metadata, don't print it. This catches things
1479 // like debug information.
1480 if (GV->getSection() == "llvm.metadata")
1481 return NotPrinted;
1482
1483 return NotSpecial;
1484}
1485
1486
1487bool CWriter::doInitialization(Module &M) {
1488 // Initialize
1489 TheModule = &M;
1490
1491 TD = new TargetData(&M);
1492 IL = new IntrinsicLowering(*TD);
1493 IL->AddPrototypes(M);
1494
1495 // Ensure that all structure types have names...
1496 Mang = new Mangler(M);
1497 Mang->markCharUnacceptable('.');
1498
1499 // Keep track of which functions are static ctors/dtors so they can have
1500 // an attribute added to their prototypes.
1501 std::set<Function*> StaticCtors, StaticDtors;
1502 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1503 I != E; ++I) {
1504 switch (getGlobalVariableClass(I)) {
1505 default: break;
1506 case GlobalCtors:
1507 FindStaticTors(I, StaticCtors);
1508 break;
1509 case GlobalDtors:
1510 FindStaticTors(I, StaticDtors);
1511 break;
1512 }
1513 }
1514
1515 // get declaration for alloca
1516 Out << "/* Provide Declarations */\n";
1517 Out << "#include <stdarg.h>\n"; // Varargs support
1518 Out << "#include <setjmp.h>\n"; // Unwind support
1519 generateCompilerSpecificCode(Out);
1520
1521 // Provide a definition for `bool' if not compiling with a C++ compiler.
1522 Out << "\n"
1523 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1524
1525 << "\n\n/* Support for floating point constants */\n"
1526 << "typedef unsigned long long ConstantDoubleTy;\n"
1527 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001528 << "typedef struct { unsigned long long f1; unsigned short f2; "
1529 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001530 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001531 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1532 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001533 << "\n\n/* Global Declarations */\n";
1534
1535 // First output all the declarations for the program, because C requires
1536 // Functions & globals to be declared before they are used.
1537 //
1538
1539 // Loop over the symbol table, emitting all named constants...
1540 printModuleTypes(M.getTypeSymbolTable());
1541
1542 // Global variable declarations...
1543 if (!M.global_empty()) {
1544 Out << "\n/* External Global Variable Declarations */\n";
1545 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1546 I != E; ++I) {
1547
1548 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1549 Out << "extern ";
1550 else if (I->hasDLLImportLinkage())
1551 Out << "__declspec(dllimport) ";
1552 else
1553 continue; // Internal Global
1554
1555 // Thread Local Storage
1556 if (I->isThreadLocal())
1557 Out << "__thread ";
1558
1559 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1560
1561 if (I->hasExternalWeakLinkage())
1562 Out << " __EXTERNAL_WEAK__";
1563 Out << ";\n";
1564 }
1565 }
1566
1567 // Function declarations
1568 Out << "\n/* Function Declarations */\n";
1569 Out << "double fmod(double, double);\n"; // Support for FP rem
1570 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001571 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001572
1573 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1574 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001575 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001576 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1577 if (I->hasExternalWeakLinkage())
1578 Out << "extern ";
1579 printFunctionSignature(I, true);
1580 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1581 Out << " __ATTRIBUTE_WEAK__";
1582 if (I->hasExternalWeakLinkage())
1583 Out << " __EXTERNAL_WEAK__";
1584 if (StaticCtors.count(I))
1585 Out << " __ATTRIBUTE_CTOR__";
1586 if (StaticDtors.count(I))
1587 Out << " __ATTRIBUTE_DTOR__";
1588 if (I->hasHiddenVisibility())
1589 Out << " __HIDDEN__";
1590
1591 if (I->hasName() && I->getName()[0] == 1)
1592 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1593
1594 Out << ";\n";
1595 }
1596 }
1597
1598 // Output the global variable declarations
1599 if (!M.global_empty()) {
1600 Out << "\n\n/* Global Variable Declarations */\n";
1601 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1602 I != E; ++I)
1603 if (!I->isDeclaration()) {
1604 // Ignore special globals, such as debug info.
1605 if (getGlobalVariableClass(I))
1606 continue;
1607
1608 if (I->hasInternalLinkage())
1609 Out << "static ";
1610 else
1611 Out << "extern ";
1612
1613 // Thread Local Storage
1614 if (I->isThreadLocal())
1615 Out << "__thread ";
1616
1617 printType(Out, I->getType()->getElementType(), false,
1618 GetValueName(I));
1619
1620 if (I->hasLinkOnceLinkage())
1621 Out << " __attribute__((common))";
1622 else if (I->hasWeakLinkage())
1623 Out << " __ATTRIBUTE_WEAK__";
1624 else if (I->hasExternalWeakLinkage())
1625 Out << " __EXTERNAL_WEAK__";
1626 if (I->hasHiddenVisibility())
1627 Out << " __HIDDEN__";
1628 Out << ";\n";
1629 }
1630 }
1631
1632 // Output the global variable definitions and contents...
1633 if (!M.global_empty()) {
1634 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1635 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1636 I != E; ++I)
1637 if (!I->isDeclaration()) {
1638 // Ignore special globals, such as debug info.
1639 if (getGlobalVariableClass(I))
1640 continue;
1641
1642 if (I->hasInternalLinkage())
1643 Out << "static ";
1644 else if (I->hasDLLImportLinkage())
1645 Out << "__declspec(dllimport) ";
1646 else if (I->hasDLLExportLinkage())
1647 Out << "__declspec(dllexport) ";
1648
1649 // Thread Local Storage
1650 if (I->isThreadLocal())
1651 Out << "__thread ";
1652
1653 printType(Out, I->getType()->getElementType(), false,
1654 GetValueName(I));
1655 if (I->hasLinkOnceLinkage())
1656 Out << " __attribute__((common))";
1657 else if (I->hasWeakLinkage())
1658 Out << " __ATTRIBUTE_WEAK__";
1659
1660 if (I->hasHiddenVisibility())
1661 Out << " __HIDDEN__";
1662
1663 // If the initializer is not null, emit the initializer. If it is null,
1664 // we try to avoid emitting large amounts of zeros. The problem with
1665 // this, however, occurs when the variable has weak linkage. In this
1666 // case, the assembler will complain about the variable being both weak
1667 // and common, so we disable this optimization.
1668 if (!I->getInitializer()->isNullValue()) {
1669 Out << " = " ;
1670 writeOperand(I->getInitializer());
1671 } else if (I->hasWeakLinkage()) {
1672 // We have to specify an initializer, but it doesn't have to be
1673 // complete. If the value is an aggregate, print out { 0 }, and let
1674 // the compiler figure out the rest of the zeros.
1675 Out << " = " ;
1676 if (isa<StructType>(I->getInitializer()->getType()) ||
1677 isa<ArrayType>(I->getInitializer()->getType()) ||
1678 isa<VectorType>(I->getInitializer()->getType())) {
1679 Out << "{ 0 }";
1680 } else {
1681 // Just print it out normally.
1682 writeOperand(I->getInitializer());
1683 }
1684 }
1685 Out << ";\n";
1686 }
1687 }
1688
1689 if (!M.empty())
1690 Out << "\n\n/* Function Bodies */\n";
1691
1692 // Emit some helper functions for dealing with FCMP instruction's
1693 // predicates
1694 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1695 Out << "return X == X && Y == Y; }\n";
1696 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1697 Out << "return X != X || Y != Y; }\n";
1698 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1699 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1700 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1701 Out << "return X != Y; }\n";
1702 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1703 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1704 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1705 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1706 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1707 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1708 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1709 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1710 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1711 Out << "return X == Y ; }\n";
1712 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1713 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1714 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1715 Out << "return X < Y ; }\n";
1716 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1717 Out << "return X > Y ; }\n";
1718 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1719 Out << "return X <= Y ; }\n";
1720 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1721 Out << "return X >= Y ; }\n";
1722 return false;
1723}
1724
1725
1726/// Output all floating point constants that cannot be printed accurately...
1727void CWriter::printFloatingPointConstants(Function &F) {
1728 // Scan the module for floating point constants. If any FP constant is used
1729 // in the function, we want to redirect it here so that we do not depend on
1730 // the precision of the printed form, unless the printed form preserves
1731 // precision.
1732 //
1733 static unsigned FPCounter = 0;
1734 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1735 I != E; ++I)
1736 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1737 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1738 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001739 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1740
1741 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001742 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001743 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001744 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001745 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001746 << "ULL; /* " << Val << " */\n";
1747 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001748 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001749 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1750 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001751 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001752 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001753 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001754 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001755 // api needed to prevent premature destruction
1756 APInt api = FPC->getValueAPF().convertToAPInt();
1757 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001758 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1759 << " = { 0x" << std::hex
1760 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1761 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1762 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001763 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1764 APInt api = FPC->getValueAPF().convertToAPInt();
1765 const uint64_t *p = api.getRawData();
1766 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1767 << " = { 0x" << std::hex
1768 << p[0] << ", 0x" << p[1]
1769 << "}; /* Long double constant */\n" << std::dec;
1770
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001771 } else
1772 assert(0 && "Unknown float type!");
1773 }
1774
1775 Out << '\n';
1776}
1777
1778
1779/// printSymbolTable - Run through symbol table looking for type names. If a
1780/// type name is found, emit its declaration...
1781///
1782void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1783 Out << "/* Helper union for bitcasts */\n";
1784 Out << "typedef union {\n";
1785 Out << " unsigned int Int32;\n";
1786 Out << " unsigned long long Int64;\n";
1787 Out << " float Float;\n";
1788 Out << " double Double;\n";
1789 Out << "} llvmBitCastUnion;\n";
1790
1791 // We are only interested in the type plane of the symbol table.
1792 TypeSymbolTable::const_iterator I = TST.begin();
1793 TypeSymbolTable::const_iterator End = TST.end();
1794
1795 // If there are no type names, exit early.
1796 if (I == End) return;
1797
1798 // Print out forward declarations for structure types before anything else!
1799 Out << "/* Structure forward decls */\n";
1800 for (; I != End; ++I) {
1801 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1802 Out << Name << ";\n";
1803 TypeNames.insert(std::make_pair(I->second, Name));
1804 }
1805
1806 Out << '\n';
1807
1808 // Now we can print out typedefs. Above, we guaranteed that this can only be
1809 // for struct or opaque types.
1810 Out << "/* Typedefs */\n";
1811 for (I = TST.begin(); I != End; ++I) {
1812 std::string Name = "l_" + Mang->makeNameProper(I->first);
1813 Out << "typedef ";
1814 printType(Out, I->second, false, Name);
1815 Out << ";\n";
1816 }
1817
1818 Out << '\n';
1819
1820 // Keep track of which structures have been printed so far...
1821 std::set<const StructType *> StructPrinted;
1822
1823 // Loop over all structures then push them into the stack so they are
1824 // printed in the correct order.
1825 //
1826 Out << "/* Structure contents */\n";
1827 for (I = TST.begin(); I != End; ++I)
1828 if (const StructType *STy = dyn_cast<StructType>(I->second))
1829 // Only print out used types!
1830 printContainedStructs(STy, StructPrinted);
1831}
1832
1833// Push the struct onto the stack and recursively push all structs
1834// this one depends on.
1835//
1836// TODO: Make this work properly with vector types
1837//
1838void CWriter::printContainedStructs(const Type *Ty,
1839 std::set<const StructType*> &StructPrinted){
1840 // Don't walk through pointers.
1841 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1842
1843 // Print all contained types first.
1844 for (Type::subtype_iterator I = Ty->subtype_begin(),
1845 E = Ty->subtype_end(); I != E; ++I)
1846 printContainedStructs(*I, StructPrinted);
1847
1848 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1849 // Check to see if we have already printed this struct.
1850 if (StructPrinted.insert(STy).second) {
1851 // Print structure type out.
1852 std::string Name = TypeNames[STy];
1853 printType(Out, STy, false, Name, true);
1854 Out << ";\n\n";
1855 }
1856 }
1857}
1858
1859void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1860 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001861 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001862
1863 if (F->hasInternalLinkage()) Out << "static ";
1864 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1865 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1866 switch (F->getCallingConv()) {
1867 case CallingConv::X86_StdCall:
1868 Out << "__stdcall ";
1869 break;
1870 case CallingConv::X86_FastCall:
1871 Out << "__fastcall ";
1872 break;
1873 }
1874
1875 // Loop over the arguments, printing them...
1876 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001877 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001878
1879 std::stringstream FunctionInnards;
1880
1881 // Print out the name...
1882 FunctionInnards << GetValueName(F) << '(';
1883
1884 bool PrintedArg = false;
1885 if (!F->isDeclaration()) {
1886 if (!F->arg_empty()) {
1887 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
Evan Cheng2054cb02008-01-11 03:07:46 +00001888 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889
1890 // If this is a struct-return function, don't print the hidden
1891 // struct-return argument.
1892 if (isStructReturn) {
1893 assert(I != E && "Invalid struct return function!");
1894 ++I;
Evan Cheng2054cb02008-01-11 03:07:46 +00001895 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896 }
1897
1898 std::string ArgName;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001899 for (; I != E; ++I) {
1900 if (PrintedArg) FunctionInnards << ", ";
1901 if (I->hasName() || !Prototype)
1902 ArgName = GetValueName(I);
1903 else
1904 ArgName = "";
Evan Cheng2054cb02008-01-11 03:07:46 +00001905 const Type *ArgTy = I->getType();
Evan Cheng17254e62008-01-11 09:12:49 +00001906 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1907 assert(isa<PointerType>(ArgTy));
1908 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1909 const Value *Arg = &(*I);
1910 ByValParams.insert(Arg);
1911 }
Evan Cheng2054cb02008-01-11 03:07:46 +00001912 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001913 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001914 ArgName);
1915 PrintedArg = true;
1916 ++Idx;
1917 }
1918 }
1919 } else {
1920 // Loop over the arguments, printing them.
1921 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
Evan Chengf8956382008-01-11 23:10:11 +00001922 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001923
1924 // If this is a struct-return function, don't print the hidden
1925 // struct-return argument.
1926 if (isStructReturn) {
1927 assert(I != E && "Invalid struct return function!");
1928 ++I;
Evan Chengf8956382008-01-11 23:10:11 +00001929 ++Idx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001930 }
1931
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001932 for (; I != E; ++I) {
1933 if (PrintedArg) FunctionInnards << ", ";
Evan Chengf8956382008-01-11 23:10:11 +00001934 const Type *ArgTy = *I;
1935 if (PAL && PAL->paramHasAttr(Idx, ParamAttr::ByVal)) {
1936 assert(isa<PointerType>(ArgTy));
1937 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1938 }
1939 printType(FunctionInnards, ArgTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001940 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001941 PrintedArg = true;
1942 ++Idx;
1943 }
1944 }
1945
1946 // Finish printing arguments... if this is a vararg function, print the ...,
1947 // unless there are no known types, in which case, we just emit ().
1948 //
1949 if (FT->isVarArg() && PrintedArg) {
1950 if (PrintedArg) FunctionInnards << ", ";
1951 FunctionInnards << "..."; // Output varargs portion of signature!
1952 } else if (!FT->isVarArg() && !PrintedArg) {
1953 FunctionInnards << "void"; // ret() -> ret(void) in C.
1954 }
1955 FunctionInnards << ')';
1956
1957 // Get the return tpe for the function.
1958 const Type *RetTy;
1959 if (!isStructReturn)
1960 RetTy = F->getReturnType();
1961 else {
1962 // If this is a struct-return function, print the struct-return type.
1963 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1964 }
1965
1966 // Print out the return type and the signature built above.
1967 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001968 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001969 FunctionInnards.str());
1970}
1971
1972static inline bool isFPIntBitCast(const Instruction &I) {
1973 if (!isa<BitCastInst>(I))
1974 return false;
1975 const Type *SrcTy = I.getOperand(0)->getType();
1976 const Type *DstTy = I.getType();
1977 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1978 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1979}
1980
1981void CWriter::printFunction(Function &F) {
1982 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001983 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001984
1985 printFunctionSignature(&F, false);
1986 Out << " {\n";
1987
1988 // If this is a struct return function, handle the result with magic.
1989 if (isStructReturn) {
1990 const Type *StructTy =
1991 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1992 Out << " ";
1993 printType(Out, StructTy, false, "StructReturn");
1994 Out << "; /* Struct return temporary */\n";
1995
1996 Out << " ";
1997 printType(Out, F.arg_begin()->getType(), false,
1998 GetValueName(F.arg_begin()));
1999 Out << " = &StructReturn;\n";
2000 }
2001
2002 bool PrintedVar = false;
2003
2004 // print local variable information for the function
2005 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2006 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2007 Out << " ";
2008 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2009 Out << "; /* Address-exposed local */\n";
2010 PrintedVar = true;
2011 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2012 Out << " ";
2013 printType(Out, I->getType(), false, GetValueName(&*I));
2014 Out << ";\n";
2015
2016 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2017 Out << " ";
2018 printType(Out, I->getType(), false,
2019 GetValueName(&*I)+"__PHI_TEMPORARY");
2020 Out << ";\n";
2021 }
2022 PrintedVar = true;
2023 }
2024 // We need a temporary for the BitCast to use so it can pluck a value out
2025 // of a union to do the BitCast. This is separate from the need for a
2026 // variable to hold the result of the BitCast.
2027 if (isFPIntBitCast(*I)) {
2028 Out << " llvmBitCastUnion " << GetValueName(&*I)
2029 << "__BITCAST_TEMPORARY;\n";
2030 PrintedVar = true;
2031 }
2032 }
2033
2034 if (PrintedVar)
2035 Out << '\n';
2036
2037 if (F.hasExternalLinkage() && F.getName() == "main")
2038 Out << " CODE_FOR_MAIN();\n";
2039
2040 // print the basic blocks
2041 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2042 if (Loop *L = LI->getLoopFor(BB)) {
2043 if (L->getHeader() == BB && L->getParentLoop() == 0)
2044 printLoop(L);
2045 } else {
2046 printBasicBlock(BB);
2047 }
2048 }
2049
2050 Out << "}\n\n";
2051}
2052
2053void CWriter::printLoop(Loop *L) {
2054 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2055 << "' to make GCC happy */\n";
2056 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2057 BasicBlock *BB = L->getBlocks()[i];
2058 Loop *BBLoop = LI->getLoopFor(BB);
2059 if (BBLoop == L)
2060 printBasicBlock(BB);
2061 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2062 printLoop(BBLoop);
2063 }
2064 Out << " } while (1); /* end of syntactic loop '"
2065 << L->getHeader()->getName() << "' */\n";
2066}
2067
2068void CWriter::printBasicBlock(BasicBlock *BB) {
2069
2070 // Don't print the label for the basic block if there are no uses, or if
2071 // the only terminator use is the predecessor basic block's terminator.
2072 // We have to scan the use list because PHI nodes use basic blocks too but
2073 // do not require a label to be generated.
2074 //
2075 bool NeedsLabel = false;
2076 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2077 if (isGotoCodeNecessary(*PI, BB)) {
2078 NeedsLabel = true;
2079 break;
2080 }
2081
2082 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2083
2084 // Output all of the instructions in the basic block...
2085 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2086 ++II) {
2087 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2088 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2089 outputLValue(II);
2090 else
2091 Out << " ";
2092 visit(*II);
2093 Out << ";\n";
2094 }
2095 }
2096
2097 // Don't emit prefix or suffix for the terminator...
2098 visit(*BB->getTerminator());
2099}
2100
2101
2102// Specific Instruction type classes... note that all of the casts are
2103// necessary because we use the instruction classes as opaque types...
2104//
2105void CWriter::visitReturnInst(ReturnInst &I) {
2106 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002107 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108
2109 if (isStructReturn) {
2110 Out << " return StructReturn;\n";
2111 return;
2112 }
2113
2114 // Don't output a void return if this is the last basic block in the function
2115 if (I.getNumOperands() == 0 &&
2116 &*--I.getParent()->getParent()->end() == I.getParent() &&
2117 !I.getParent()->size() == 1) {
2118 return;
2119 }
2120
2121 Out << " return";
2122 if (I.getNumOperands()) {
2123 Out << ' ';
2124 writeOperand(I.getOperand(0));
2125 }
2126 Out << ";\n";
2127}
2128
2129void CWriter::visitSwitchInst(SwitchInst &SI) {
2130
2131 Out << " switch (";
2132 writeOperand(SI.getOperand(0));
2133 Out << ") {\n default:\n";
2134 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2135 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2136 Out << ";\n";
2137 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2138 Out << " case ";
2139 writeOperand(SI.getOperand(i));
2140 Out << ":\n";
2141 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2142 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2143 printBranchToBlock(SI.getParent(), Succ, 2);
2144 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2145 Out << " break;\n";
2146 }
2147 Out << " }\n";
2148}
2149
2150void CWriter::visitUnreachableInst(UnreachableInst &I) {
2151 Out << " /*UNREACHABLE*/;\n";
2152}
2153
2154bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2155 /// FIXME: This should be reenabled, but loop reordering safe!!
2156 return true;
2157
2158 if (next(Function::iterator(From)) != Function::iterator(To))
2159 return true; // Not the direct successor, we need a goto.
2160
2161 //isa<SwitchInst>(From->getTerminator())
2162
2163 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2164 return true;
2165 return false;
2166}
2167
2168void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2169 BasicBlock *Successor,
2170 unsigned Indent) {
2171 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2172 PHINode *PN = cast<PHINode>(I);
2173 // Now we have to do the printing.
2174 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2175 if (!isa<UndefValue>(IV)) {
2176 Out << std::string(Indent, ' ');
2177 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2178 writeOperand(IV);
2179 Out << "; /* for PHI node */\n";
2180 }
2181 }
2182}
2183
2184void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2185 unsigned Indent) {
2186 if (isGotoCodeNecessary(CurBB, Succ)) {
2187 Out << std::string(Indent, ' ') << " goto ";
2188 writeOperand(Succ);
2189 Out << ";\n";
2190 }
2191}
2192
2193// Branch instruction printing - Avoid printing out a branch to a basic block
2194// that immediately succeeds the current one.
2195//
2196void CWriter::visitBranchInst(BranchInst &I) {
2197
2198 if (I.isConditional()) {
2199 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2200 Out << " if (";
2201 writeOperand(I.getCondition());
2202 Out << ") {\n";
2203
2204 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2205 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2206
2207 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2208 Out << " } else {\n";
2209 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2210 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2211 }
2212 } else {
2213 // First goto not necessary, assume second one is...
2214 Out << " if (!";
2215 writeOperand(I.getCondition());
2216 Out << ") {\n";
2217
2218 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2219 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2220 }
2221
2222 Out << " }\n";
2223 } else {
2224 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2225 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2226 }
2227 Out << "\n";
2228}
2229
2230// PHI nodes get copied into temporary values at the end of predecessor basic
2231// blocks. We now need to copy these temporary values into the REAL value for
2232// the PHI.
2233void CWriter::visitPHINode(PHINode &I) {
2234 writeOperand(&I);
2235 Out << "__PHI_TEMPORARY";
2236}
2237
2238
2239void CWriter::visitBinaryOperator(Instruction &I) {
2240 // binary instructions, shift instructions, setCond instructions.
2241 assert(!isa<PointerType>(I.getType()));
2242
2243 // We must cast the results of binary operations which might be promoted.
2244 bool needsCast = false;
2245 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2246 || (I.getType() == Type::FloatTy)) {
2247 needsCast = true;
2248 Out << "((";
2249 printType(Out, I.getType(), false);
2250 Out << ")(";
2251 }
2252
2253 // If this is a negation operation, print it out as such. For FP, we don't
2254 // want to print "-0.0 - X".
2255 if (BinaryOperator::isNeg(&I)) {
2256 Out << "-(";
2257 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2258 Out << ")";
2259 } else if (I.getOpcode() == Instruction::FRem) {
2260 // Output a call to fmod/fmodf instead of emitting a%b
2261 if (I.getType() == Type::FloatTy)
2262 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002263 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002264 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002265 else // all 3 flavors of long double
2266 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002267 writeOperand(I.getOperand(0));
2268 Out << ", ";
2269 writeOperand(I.getOperand(1));
2270 Out << ")";
2271 } else {
2272
2273 // Write out the cast of the instruction's value back to the proper type
2274 // if necessary.
2275 bool NeedsClosingParens = writeInstructionCast(I);
2276
2277 // Certain instructions require the operand to be forced to a specific type
2278 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2279 // below for operand 1
2280 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2281
2282 switch (I.getOpcode()) {
2283 case Instruction::Add: Out << " + "; break;
2284 case Instruction::Sub: Out << " - "; break;
2285 case Instruction::Mul: Out << " * "; break;
2286 case Instruction::URem:
2287 case Instruction::SRem:
2288 case Instruction::FRem: Out << " % "; break;
2289 case Instruction::UDiv:
2290 case Instruction::SDiv:
2291 case Instruction::FDiv: Out << " / "; break;
2292 case Instruction::And: Out << " & "; break;
2293 case Instruction::Or: Out << " | "; break;
2294 case Instruction::Xor: Out << " ^ "; break;
2295 case Instruction::Shl : Out << " << "; break;
2296 case Instruction::LShr:
2297 case Instruction::AShr: Out << " >> "; break;
2298 default: cerr << "Invalid operator type!" << I; abort();
2299 }
2300
2301 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2302 if (NeedsClosingParens)
2303 Out << "))";
2304 }
2305
2306 if (needsCast) {
2307 Out << "))";
2308 }
2309}
2310
2311void CWriter::visitICmpInst(ICmpInst &I) {
2312 // We must cast the results of icmp which might be promoted.
2313 bool needsCast = false;
2314
2315 // Write out the cast of the instruction's value back to the proper type
2316 // if necessary.
2317 bool NeedsClosingParens = writeInstructionCast(I);
2318
2319 // Certain icmp predicate require the operand to be forced to a specific type
2320 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2321 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002322 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002323
2324 switch (I.getPredicate()) {
2325 case ICmpInst::ICMP_EQ: Out << " == "; break;
2326 case ICmpInst::ICMP_NE: Out << " != "; break;
2327 case ICmpInst::ICMP_ULE:
2328 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2329 case ICmpInst::ICMP_UGE:
2330 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2331 case ICmpInst::ICMP_ULT:
2332 case ICmpInst::ICMP_SLT: Out << " < "; break;
2333 case ICmpInst::ICMP_UGT:
2334 case ICmpInst::ICMP_SGT: Out << " > "; break;
2335 default: cerr << "Invalid icmp predicate!" << I; abort();
2336 }
2337
Chris Lattner389c9142007-09-15 06:51:03 +00002338 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002339 if (NeedsClosingParens)
2340 Out << "))";
2341
2342 if (needsCast) {
2343 Out << "))";
2344 }
2345}
2346
2347void CWriter::visitFCmpInst(FCmpInst &I) {
2348 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2349 Out << "0";
2350 return;
2351 }
2352 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2353 Out << "1";
2354 return;
2355 }
2356
2357 const char* op = 0;
2358 switch (I.getPredicate()) {
2359 default: assert(0 && "Illegal FCmp predicate");
2360 case FCmpInst::FCMP_ORD: op = "ord"; break;
2361 case FCmpInst::FCMP_UNO: op = "uno"; break;
2362 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2363 case FCmpInst::FCMP_UNE: op = "une"; break;
2364 case FCmpInst::FCMP_ULT: op = "ult"; break;
2365 case FCmpInst::FCMP_ULE: op = "ule"; break;
2366 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2367 case FCmpInst::FCMP_UGE: op = "uge"; break;
2368 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2369 case FCmpInst::FCMP_ONE: op = "one"; break;
2370 case FCmpInst::FCMP_OLT: op = "olt"; break;
2371 case FCmpInst::FCMP_OLE: op = "ole"; break;
2372 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2373 case FCmpInst::FCMP_OGE: op = "oge"; break;
2374 }
2375
2376 Out << "llvm_fcmp_" << op << "(";
2377 // Write the first operand
2378 writeOperand(I.getOperand(0));
2379 Out << ", ";
2380 // Write the second operand
2381 writeOperand(I.getOperand(1));
2382 Out << ")";
2383}
2384
2385static const char * getFloatBitCastField(const Type *Ty) {
2386 switch (Ty->getTypeID()) {
2387 default: assert(0 && "Invalid Type");
2388 case Type::FloatTyID: return "Float";
2389 case Type::DoubleTyID: return "Double";
2390 case Type::IntegerTyID: {
2391 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2392 if (NumBits <= 32)
2393 return "Int32";
2394 else
2395 return "Int64";
2396 }
2397 }
2398}
2399
2400void CWriter::visitCastInst(CastInst &I) {
2401 const Type *DstTy = I.getType();
2402 const Type *SrcTy = I.getOperand(0)->getType();
2403 Out << '(';
2404 if (isFPIntBitCast(I)) {
2405 // These int<->float and long<->double casts need to be handled specially
2406 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2407 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2408 writeOperand(I.getOperand(0));
2409 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2410 << getFloatBitCastField(I.getType());
2411 } else {
2412 printCast(I.getOpcode(), SrcTy, DstTy);
2413 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2414 // Make sure we really get a sext from bool by subtracing the bool from 0
2415 Out << "0-";
2416 }
Evan Cheng17254e62008-01-11 09:12:49 +00002417 // If it's a byval parameter being casted, then takes its address.
2418 bool isByVal = ByValParams.count(I.getOperand(0));
2419 if (isByVal) {
2420 assert(I.getOpcode() == Instruction::BitCast &&
2421 "ByVal aggregate parameter must ptr type");
2422 Out << '&';
2423 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002424 writeOperand(I.getOperand(0));
2425 if (DstTy == Type::Int1Ty &&
2426 (I.getOpcode() == Instruction::Trunc ||
2427 I.getOpcode() == Instruction::FPToUI ||
2428 I.getOpcode() == Instruction::FPToSI ||
2429 I.getOpcode() == Instruction::PtrToInt)) {
2430 // Make sure we really get a trunc to bool by anding the operand with 1
2431 Out << "&1u";
2432 }
2433 }
2434 Out << ')';
2435}
2436
2437void CWriter::visitSelectInst(SelectInst &I) {
2438 Out << "((";
2439 writeOperand(I.getCondition());
2440 Out << ") ? (";
2441 writeOperand(I.getTrueValue());
2442 Out << ") : (";
2443 writeOperand(I.getFalseValue());
2444 Out << "))";
2445}
2446
2447
2448void CWriter::lowerIntrinsics(Function &F) {
2449 // This is used to keep track of intrinsics that get generated to a lowered
2450 // function. We must generate the prototypes before the function body which
2451 // will only be expanded on first use (by the loop below).
2452 std::vector<Function*> prototypesToGen;
2453
2454 // Examine all the instructions in this function to find the intrinsics that
2455 // need to be lowered.
2456 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2457 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2458 if (CallInst *CI = dyn_cast<CallInst>(I++))
2459 if (Function *F = CI->getCalledFunction())
2460 switch (F->getIntrinsicID()) {
2461 case Intrinsic::not_intrinsic:
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002462 case Intrinsic::memory_barrier:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002463 case Intrinsic::vastart:
2464 case Intrinsic::vacopy:
2465 case Intrinsic::vaend:
2466 case Intrinsic::returnaddress:
2467 case Intrinsic::frameaddress:
2468 case Intrinsic::setjmp:
2469 case Intrinsic::longjmp:
2470 case Intrinsic::prefetch:
2471 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002472 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002473 // We directly implement these intrinsics
2474 break;
2475 default:
2476 // If this is an intrinsic that directly corresponds to a GCC
2477 // builtin, we handle it.
2478 const char *BuiltinName = "";
2479#define GET_GCC_BUILTIN_NAME
2480#include "llvm/Intrinsics.gen"
2481#undef GET_GCC_BUILTIN_NAME
2482 // If we handle it, don't lower it.
2483 if (BuiltinName[0]) break;
2484
2485 // All other intrinsic calls we must lower.
2486 Instruction *Before = 0;
2487 if (CI != &BB->front())
2488 Before = prior(BasicBlock::iterator(CI));
2489
2490 IL->LowerIntrinsicCall(CI);
2491 if (Before) { // Move iterator to instruction after call
2492 I = Before; ++I;
2493 } else {
2494 I = BB->begin();
2495 }
2496 // If the intrinsic got lowered to another call, and that call has
2497 // a definition then we need to make sure its prototype is emitted
2498 // before any calls to it.
2499 if (CallInst *Call = dyn_cast<CallInst>(I))
2500 if (Function *NewF = Call->getCalledFunction())
2501 if (!NewF->isDeclaration())
2502 prototypesToGen.push_back(NewF);
2503
2504 break;
2505 }
2506
2507 // We may have collected some prototypes to emit in the loop above.
2508 // Emit them now, before the function that uses them is emitted. But,
2509 // be careful not to emit them twice.
2510 std::vector<Function*>::iterator I = prototypesToGen.begin();
2511 std::vector<Function*>::iterator E = prototypesToGen.end();
2512 for ( ; I != E; ++I) {
2513 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2514 Out << '\n';
2515 printFunctionSignature(*I, true);
2516 Out << ";\n";
2517 }
2518 }
2519}
2520
2521
2522void CWriter::visitCallInst(CallInst &I) {
2523 //check if we have inline asm
2524 if (isInlineAsm(I)) {
2525 visitInlineAsm(I);
2526 return;
2527 }
2528
2529 bool WroteCallee = false;
2530
2531 // Handle intrinsic function calls first...
2532 if (Function *F = I.getCalledFunction())
2533 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2534 switch (ID) {
2535 default: {
2536 // If this is an intrinsic that directly corresponds to a GCC
2537 // builtin, we emit it here.
2538 const char *BuiltinName = "";
2539#define GET_GCC_BUILTIN_NAME
2540#include "llvm/Intrinsics.gen"
2541#undef GET_GCC_BUILTIN_NAME
2542 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2543
2544 Out << BuiltinName;
2545 WroteCallee = true;
2546 break;
2547 }
Andrew Lenharth0531ec52008-02-16 14:46:26 +00002548 case Intrinsic::memory_barrier:
2549 Out << "0; __sync_syncronize()";
2550 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002551 case Intrinsic::vastart:
2552 Out << "0; ";
2553
2554 Out << "va_start(*(va_list*)";
2555 writeOperand(I.getOperand(1));
2556 Out << ", ";
2557 // Output the last argument to the enclosing function...
2558 if (I.getParent()->getParent()->arg_empty()) {
2559 cerr << "The C backend does not currently support zero "
2560 << "argument varargs functions, such as '"
2561 << I.getParent()->getParent()->getName() << "'!\n";
2562 abort();
2563 }
2564 writeOperand(--I.getParent()->getParent()->arg_end());
2565 Out << ')';
2566 return;
2567 case Intrinsic::vaend:
2568 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2569 Out << "0; va_end(*(va_list*)";
2570 writeOperand(I.getOperand(1));
2571 Out << ')';
2572 } else {
2573 Out << "va_end(*(va_list*)0)";
2574 }
2575 return;
2576 case Intrinsic::vacopy:
2577 Out << "0; ";
2578 Out << "va_copy(*(va_list*)";
2579 writeOperand(I.getOperand(1));
2580 Out << ", *(va_list*)";
2581 writeOperand(I.getOperand(2));
2582 Out << ')';
2583 return;
2584 case Intrinsic::returnaddress:
2585 Out << "__builtin_return_address(";
2586 writeOperand(I.getOperand(1));
2587 Out << ')';
2588 return;
2589 case Intrinsic::frameaddress:
2590 Out << "__builtin_frame_address(";
2591 writeOperand(I.getOperand(1));
2592 Out << ')';
2593 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002594 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002595 Out << "__builtin_powi(";
2596 writeOperand(I.getOperand(1));
2597 Out << ", ";
2598 writeOperand(I.getOperand(2));
2599 Out << ')';
2600 return;
2601 case Intrinsic::setjmp:
2602 Out << "setjmp(*(jmp_buf*)";
2603 writeOperand(I.getOperand(1));
2604 Out << ')';
2605 return;
2606 case Intrinsic::longjmp:
2607 Out << "longjmp(*(jmp_buf*)";
2608 writeOperand(I.getOperand(1));
2609 Out << ", ";
2610 writeOperand(I.getOperand(2));
2611 Out << ')';
2612 return;
2613 case Intrinsic::prefetch:
2614 Out << "LLVM_PREFETCH((const void *)";
2615 writeOperand(I.getOperand(1));
2616 Out << ", ";
2617 writeOperand(I.getOperand(2));
2618 Out << ", ";
2619 writeOperand(I.getOperand(3));
2620 Out << ")";
2621 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002622 case Intrinsic::stacksave:
2623 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2624 // to work around GCC bugs (see PR1809).
2625 Out << "0; *((void**)&" << GetValueName(&I)
2626 << ") = __builtin_stack_save()";
2627 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002628 case Intrinsic::dbg_stoppoint: {
2629 // If we use writeOperand directly we get a "u" suffix which is rejected
2630 // by gcc.
2631 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2632
2633 Out << "\n#line "
2634 << SPI.getLine()
2635 << " \"" << SPI.getDirectory()
2636 << SPI.getFileName() << "\"\n";
2637 return;
2638 }
2639 }
2640 }
2641
2642 Value *Callee = I.getCalledValue();
2643
2644 const PointerType *PTy = cast<PointerType>(Callee->getType());
2645 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2646
2647 // If this is a call to a struct-return function, assign to the first
2648 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002649 const ParamAttrsList *PAL = I.getParamAttrs();
Evan Chengb8a072c2008-01-12 18:53:07 +00002650 bool hasByVal = I.hasByValArgument();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002651 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002652 if (isStructRet) {
Evan Chengf8956382008-01-11 23:10:11 +00002653 bool isByVal = ByValParams.count(I.getOperand(1));
2654 if (!isByVal) Out << "*(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002655 writeOperand(I.getOperand(1));
Evan Chengf8956382008-01-11 23:10:11 +00002656 if (!isByVal) Out << ")";
2657 Out << " = ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002658 }
2659
2660 if (I.isTailCall()) Out << " /*tail*/ ";
2661
2662 if (!WroteCallee) {
2663 // If this is an indirect call to a struct return function, we need to cast
Evan Chengb8a072c2008-01-12 18:53:07 +00002664 // the pointer. Ditto for indirect calls with byval arguments.
2665 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002666
2667 // GCC is a real PITA. It does not permit codegening casts of functions to
2668 // function pointers if they are in a call (it generates a trap instruction
2669 // instead!). We work around this by inserting a cast to void* in between
2670 // the function and the function pointer cast. Unfortunately, we can't just
2671 // form the constant expression here, because the folder will immediately
2672 // nuke it.
2673 //
2674 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2675 // that void* and function pointers have the same size. :( To deal with this
2676 // in the common case, we handle casts where the number of arguments passed
2677 // match exactly.
2678 //
2679 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2680 if (CE->isCast())
2681 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2682 NeedsCast = true;
2683 Callee = RF;
2684 }
2685
2686 if (NeedsCast) {
2687 // Ok, just cast the pointer type.
2688 Out << "((";
Evan Chengb8a072c2008-01-12 18:53:07 +00002689 if (isStructRet)
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002690 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002691 cast<PointerType>(I.getCalledValue()->getType()));
Evan Chengb8a072c2008-01-12 18:53:07 +00002692 else if (hasByVal)
2693 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2694 else
2695 printType(Out, I.getCalledValue()->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002696 Out << ")(void*)";
2697 }
2698 writeOperand(Callee);
2699 if (NeedsCast) Out << ')';
2700 }
2701
2702 Out << '(';
2703
2704 unsigned NumDeclaredParams = FTy->getNumParams();
2705
2706 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2707 unsigned ArgNo = 0;
2708 if (isStructRet) { // Skip struct return argument.
2709 ++AI;
2710 ++ArgNo;
2711 }
2712
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002713 bool PrintedArg = false;
Evan Chengf8956382008-01-11 23:10:11 +00002714 for (; AI != AE; ++AI, ++ArgNo) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002715 if (PrintedArg) Out << ", ";
2716 if (ArgNo < NumDeclaredParams &&
2717 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2718 Out << '(';
2719 printType(Out, FTy->getParamType(ArgNo),
Evan Chengf8956382008-01-11 23:10:11 +00002720 /*isSigned=*/PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002721 Out << ')';
2722 }
Evan Chengf8956382008-01-11 23:10:11 +00002723 // Check if the argument is expected to be passed by value.
2724 bool isOutByVal = PAL && PAL->paramHasAttr(ArgNo+1, ParamAttr::ByVal);
2725 // Check if this argument itself is passed in by reference.
Andrew Lenharth2179fec2008-02-19 19:47:54 +00002726 //bool isInByVal = ByValParams.count(*AI);
2727 if (isOutByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002728 Out << "*(";
Evan Chengf8956382008-01-11 23:10:11 +00002729 writeOperand(*AI);
Andrew Lenharth2179fec2008-02-19 19:47:54 +00002730 if (isOutByVal)
Evan Chengf8956382008-01-11 23:10:11 +00002731 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002732 PrintedArg = true;
2733 }
2734 Out << ')';
2735}
2736
2737
2738//This converts the llvm constraint string to something gcc is expecting.
2739//TODO: work out platform independent constraints and factor those out
2740// of the per target tables
2741// handle multiple constraint codes
2742std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2743
2744 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2745
2746 const char** table = 0;
2747
2748 //Grab the translation table from TargetAsmInfo if it exists
2749 if (!TAsm) {
2750 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002751 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002752 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2753 if (Match) {
2754 //Per platform Target Machines don't exist, so create it
2755 // this must be done only once
2756 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2757 TAsm = TM->getTargetAsmInfo();
2758 }
2759 }
2760 if (TAsm)
2761 table = TAsm->getAsmCBE();
2762
2763 //Search the translation table if it exists
2764 for (int i = 0; table && table[i]; i += 2)
2765 if (c.Codes[0] == table[i])
2766 return table[i+1];
2767
2768 //default is identity
2769 return c.Codes[0];
2770}
2771
2772//TODO: import logic from AsmPrinter.cpp
2773static std::string gccifyAsm(std::string asmstr) {
2774 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2775 if (asmstr[i] == '\n')
2776 asmstr.replace(i, 1, "\\n");
2777 else if (asmstr[i] == '\t')
2778 asmstr.replace(i, 1, "\\t");
2779 else if (asmstr[i] == '$') {
2780 if (asmstr[i + 1] == '{') {
2781 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2782 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2783 std::string n = "%" +
2784 asmstr.substr(a + 1, b - a - 1) +
2785 asmstr.substr(i + 2, a - i - 2);
2786 asmstr.replace(i, b - i + 1, n);
2787 i += n.size() - 1;
2788 } else
2789 asmstr.replace(i, 1, "%");
2790 }
2791 else if (asmstr[i] == '%')//grr
2792 { asmstr.replace(i, 1, "%%"); ++i;}
2793
2794 return asmstr;
2795}
2796
2797//TODO: assumptions about what consume arguments from the call are likely wrong
2798// handle communitivity
2799void CWriter::visitInlineAsm(CallInst &CI) {
2800 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2801 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2802 std::vector<std::pair<std::string, Value*> > Input;
2803 std::vector<std::pair<std::string, Value*> > Output;
2804 std::string Clobber;
2805 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2806 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2807 E = Constraints.end(); I != E; ++I) {
2808 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2809 std::string c =
2810 InterpretASMConstraint(*I);
2811 switch(I->Type) {
2812 default:
2813 assert(0 && "Unknown asm constraint");
2814 break;
2815 case InlineAsm::isInput: {
2816 if (c.size()) {
2817 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2818 ++count; //consume arg
2819 }
2820 break;
2821 }
2822 case InlineAsm::isOutput: {
2823 if (c.size()) {
2824 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2825 count ? CI.getOperand(count) : &CI));
2826 ++count; //consume arg
2827 }
2828 break;
2829 }
2830 case InlineAsm::isClobber: {
2831 if (c.size())
2832 Clobber += ",\"" + c + "\"";
2833 break;
2834 }
2835 }
2836 }
2837
2838 //fix up the asm string for gcc
2839 std::string asmstr = gccifyAsm(as->getAsmString());
2840
2841 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2842 Out << " :";
2843 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2844 E = Output.end(); I != E; ++I) {
2845 Out << "\"" << I->first << "\"(";
2846 writeOperandRaw(I->second);
2847 Out << ")";
2848 if (I + 1 != E)
2849 Out << ",";
2850 }
2851 Out << "\n :";
2852 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2853 E = Input.end(); I != E; ++I) {
2854 Out << "\"" << I->first << "\"(";
2855 writeOperandRaw(I->second);
2856 Out << ")";
2857 if (I + 1 != E)
2858 Out << ",";
2859 }
2860 if (Clobber.size())
2861 Out << "\n :" << Clobber.substr(1);
2862 Out << ")";
2863}
2864
2865void CWriter::visitMallocInst(MallocInst &I) {
2866 assert(0 && "lowerallocations pass didn't work!");
2867}
2868
2869void CWriter::visitAllocaInst(AllocaInst &I) {
2870 Out << '(';
2871 printType(Out, I.getType());
2872 Out << ") alloca(sizeof(";
2873 printType(Out, I.getType()->getElementType());
2874 Out << ')';
2875 if (I.isArrayAllocation()) {
2876 Out << " * " ;
2877 writeOperand(I.getOperand(0));
2878 }
2879 Out << ')';
2880}
2881
2882void CWriter::visitFreeInst(FreeInst &I) {
2883 assert(0 && "lowerallocations pass didn't work!");
2884}
2885
2886void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2887 gep_type_iterator E) {
2888 bool HasImplicitAddress = false;
2889 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2890 if (isa<GlobalValue>(Ptr)) {
2891 HasImplicitAddress = true;
2892 } else if (isDirectAlloca(Ptr)) {
2893 HasImplicitAddress = true;
2894 }
2895
2896 if (I == E) {
2897 if (!HasImplicitAddress)
2898 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2899
2900 writeOperandInternal(Ptr);
2901 return;
2902 }
2903
2904 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2905 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2906 Out << "(&";
2907
2908 writeOperandInternal(Ptr);
2909
2910 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2911 Out << ')';
2912 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2913 }
2914
Anton Korobeynikov8c90d2a2008-02-20 11:22:39 +00002915 assert((!HasImplicitAddress || (CI && CI->isNullValue())) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002916 "Can only have implicit address with direct accessing");
2917
2918 if (HasImplicitAddress) {
2919 ++I;
2920 } else if (CI && CI->isNullValue()) {
2921 gep_type_iterator TmpI = I; ++TmpI;
2922
2923 // Print out the -> operator if possible...
2924 if (TmpI != E && isa<StructType>(*TmpI)) {
Evan Cheng17254e62008-01-11 09:12:49 +00002925 // Check if it's actually an aggregate parameter passed by value.
2926 bool isByVal = ByValParams.count(Ptr);
2927 Out << ((HasImplicitAddress || isByVal) ? "." : "->");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002928 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2929 I = ++TmpI;
2930 }
2931 }
2932
2933 for (; I != E; ++I)
2934 if (isa<StructType>(*I)) {
2935 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2936 } else {
2937 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002938 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002939 Out << ']';
2940 }
2941}
2942
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002943void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
2944 bool IsVolatile, unsigned Alignment) {
2945
2946 bool IsUnaligned = Alignment &&
2947 Alignment < TD->getABITypeAlignment(OperandType);
2948
2949 if (!IsUnaligned)
2950 Out << '*';
2951 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002952 Out << "((";
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002953 if (IsUnaligned)
2954 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
2955 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
2956 if (IsUnaligned) {
2957 Out << "; } ";
2958 if (IsVolatile) Out << "volatile ";
2959 Out << "*";
2960 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002961 Out << ")";
2962 }
2963
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002964 writeOperand(Operand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002965
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002966 if (IsVolatile || IsUnaligned) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002967 Out << ')';
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002968 if (IsUnaligned)
2969 Out << "->data";
2970 }
2971}
2972
2973void CWriter::visitLoadInst(LoadInst &I) {
2974
2975 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
2976 I.getAlignment());
2977
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002978}
2979
2980void CWriter::visitStoreInst(StoreInst &I) {
Lauro Ramos Venancio11048c12008-02-01 21:25:59 +00002981
2982 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
2983 I.isVolatile(), I.getAlignment());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002984 Out << " = ";
2985 Value *Operand = I.getOperand(0);
2986 Constant *BitMask = 0;
2987 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2988 if (!ITy->isPowerOf2ByteWidth())
2989 // We have a bit width that doesn't match an even power-of-2 byte
2990 // size. Consequently we must & the value with the type's bit mask
2991 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
2992 if (BitMask)
2993 Out << "((";
2994 writeOperand(Operand);
2995 if (BitMask) {
2996 Out << ") & ";
2997 printConstant(BitMask);
2998 Out << ")";
2999 }
3000}
3001
3002void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3003 Out << '&';
3004 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
3005 gep_type_end(I));
3006}
3007
3008void CWriter::visitVAArgInst(VAArgInst &I) {
3009 Out << "va_arg(*(va_list*)";
3010 writeOperand(I.getOperand(0));
3011 Out << ", ";
3012 printType(Out, I.getType());
3013 Out << ");\n ";
3014}
3015
3016//===----------------------------------------------------------------------===//
3017// External Interface declaration
3018//===----------------------------------------------------------------------===//
3019
3020bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3021 std::ostream &o,
3022 CodeGenFileType FileType,
3023 bool Fast) {
3024 if (FileType != TargetMachine::AssemblyFile) return true;
3025
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003026 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003027 PM.add(createLowerAllocationsPass(true));
3028 PM.add(createLowerInvokePass());
3029 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3030 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3031 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00003032 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003033 return false;
3034}