blob: 1c6fcd73600caf7cad06fef5f4ba0e7b50123926 [file] [log] [blame]
Nate Begeman1d9d7422005-10-18 00:28:58 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Nate Begeman21e463b2005-10-16 05:39:50 +000010// This file implements the PPCISelLowering class.
Chris Lattner7c5a3d32005-08-16 17:14:42 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner16e71f22005-10-14 23:59:06 +000014#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
Chris Lattner59138102006-04-17 05:28:54 +000016#include "PPCPerfectShuffle.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000017#include "llvm/ADT/VectorExtras.h"
Evan Chengc4c62572006-03-13 23:20:37 +000018#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner8a2d3ca2005-08-26 21:23:58 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000022#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner7b738342005-09-13 19:33:40 +000023#include "llvm/CodeGen/SSARegMap.h"
Chris Lattner0b1e4e52005-08-26 17:36:52 +000024#include "llvm/Constants.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000025#include "llvm/Function.h"
Chris Lattner6d92cad2006-03-26 10:06:40 +000026#include "llvm/Intrinsics.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000027#include "llvm/Support/MathExtras.h"
Evan Chengd2ee2182006-02-18 00:08:58 +000028#include "llvm/Target/TargetOptions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000029using namespace llvm;
30
Nate Begeman21e463b2005-10-16 05:39:50 +000031PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
Chris Lattner7c5a3d32005-08-16 17:14:42 +000032 : TargetLowering(TM) {
33
34 // Fold away setcc operations if possible.
35 setSetCCIsExpensive();
Nate Begeman405e3ec2005-10-21 00:02:42 +000036 setPow2DivIsCheap();
Chris Lattner7c5a3d32005-08-16 17:14:42 +000037
Chris Lattnerd145a612005-09-27 22:18:25 +000038 // Use _setjmp/_longjmp instead of setjmp/longjmp.
39 setUseUnderscoreSetJmpLongJmp(true);
40
Chris Lattner7c5a3d32005-08-16 17:14:42 +000041 // Set up the register classes.
Nate Begeman1d9d7422005-10-18 00:28:58 +000042 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000045
Chris Lattnera54aa942006-01-29 06:26:08 +000046 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
48
Chris Lattner7c5a3d32005-08-16 17:14:42 +000049 // PowerPC has no intrinsics for these particular operations
50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58 // PowerPC has no SREM/UREM instructions
59 setOperationAction(ISD::SREM, MVT::i32, Expand);
60 setOperationAction(ISD::UREM, MVT::i32, Expand);
61
62 // We don't support sin/cos/sqrt/fmod
63 setOperationAction(ISD::FSIN , MVT::f64, Expand);
64 setOperationAction(ISD::FCOS , MVT::f64, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000065 setOperationAction(ISD::FREM , MVT::f64, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000066 setOperationAction(ISD::FSIN , MVT::f32, Expand);
67 setOperationAction(ISD::FCOS , MVT::f32, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000068 setOperationAction(ISD::FREM , MVT::f32, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000069
70 // If we're enabling GP optimizations, use hardware square root
Chris Lattner1e9de3e2005-09-02 18:33:05 +000071 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +000072 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
74 }
75
Chris Lattner9601a862006-03-05 05:08:37 +000076 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
78
Nate Begemand88fc032006-01-14 03:14:10 +000079 // PowerPC does not have BSWAP, CTPOP or CTTZ
80 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000081 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
82 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
83
Nate Begeman35ef9132006-01-11 21:21:00 +000084 // PowerPC does not have ROTR
85 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
86
Chris Lattner7c5a3d32005-08-16 17:14:42 +000087 // PowerPC does not have Select
88 setOperationAction(ISD::SELECT, MVT::i32, Expand);
89 setOperationAction(ISD::SELECT, MVT::f32, Expand);
90 setOperationAction(ISD::SELECT, MVT::f64, Expand);
Chris Lattnere4bc9ea2005-08-26 00:52:45 +000091
Chris Lattner0b1e4e52005-08-26 17:36:52 +000092 // PowerPC wants to turn select_cc of FP into fsel when possible.
93 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
Nate Begeman44775902006-01-31 08:17:29 +000095
Nate Begeman750ac1b2006-02-01 07:19:44 +000096 // PowerPC wants to optimize integer setcc a bit
Nate Begeman44775902006-01-31 08:17:29 +000097 setOperationAction(ISD::SETCC, MVT::i32, Custom);
Chris Lattnereb9b62e2005-08-31 19:09:57 +000098
Nate Begeman81e80972006-03-17 01:40:33 +000099 // PowerPC does not have BRCOND which requires SetCC
100 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000101
Chris Lattnerf7605322005-08-31 21:09:52 +0000102 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000104
Jim Laskeyad23c9d2005-08-17 00:40:22 +0000105 // PowerPC does not have [U|S]INT_TO_FP
106 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
108
Chris Lattner53e88452005-12-23 05:13:35 +0000109 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
111
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000112 // PowerPC does not have truncstore for i1.
113 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
Chris Lattnerf73bae12005-11-29 06:16:21 +0000114
Jim Laskeyabf6d172006-01-05 01:25:28 +0000115 // Support label based line numbers.
Chris Lattnerf73bae12005-11-29 06:16:21 +0000116 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Jim Laskeye0bce712006-01-05 01:47:43 +0000117 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Jim Laskeyabf6d172006-01-05 01:25:28 +0000118 // FIXME - use subtarget debug flags
Jim Laskeye0bce712006-01-05 01:47:43 +0000119 if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
Jim Laskeyabf6d172006-01-05 01:25:28 +0000120 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000121
Nate Begeman28a6b022005-12-10 02:36:00 +0000122 // We want to legalize GlobalAddress and ConstantPool nodes into the
123 // appropriate instructions to materialize the address.
Chris Lattner3eef4e32005-11-17 18:26:56 +0000124 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
Nate Begeman28a6b022005-12-10 02:36:00 +0000125 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
Chris Lattnerb99329e2006-01-13 02:42:53 +0000126
Nate Begemanee625572006-01-27 21:09:22 +0000127 // RET must be custom lowered, to meet ABI requirements
128 setOperationAction(ISD::RET , MVT::Other, Custom);
129
Nate Begemanacc398c2006-01-25 18:21:52 +0000130 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
131 setOperationAction(ISD::VASTART , MVT::Other, Custom);
132
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000133 // Use the default implementation.
Nate Begemanacc398c2006-01-25 18:21:52 +0000134 setOperationAction(ISD::VAARG , MVT::Other, Expand);
135 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
136 setOperationAction(ISD::VAEND , MVT::Other, Expand);
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000137 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
138 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
139 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
Chris Lattner860e8862005-11-17 07:30:41 +0000140
Chris Lattner6d92cad2006-03-26 10:06:40 +0000141 // We want to custom lower some of our intrinsics.
Chris Lattner48b61a72006-03-28 00:40:33 +0000142 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
Chris Lattner6d92cad2006-03-26 10:06:40 +0000143
Nate Begemanc09eeec2005-09-06 22:03:27 +0000144 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Nate Begeman1d9d7422005-10-18 00:28:58 +0000145 // They also have instructions for converting between i64 and fp.
Nate Begemanc09eeec2005-09-06 22:03:27 +0000146 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
147 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
Chris Lattner7fbcef72006-03-24 07:53:47 +0000148
149 // FIXME: disable this lowered code. This generates 64-bit register values,
150 // and we don't model the fact that the top part is clobbered by calls. We
151 // need to flag these together so that the value isn't live across a call.
152 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
153
Nate Begemanae749a92005-10-25 23:48:36 +0000154 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
155 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
156 } else {
Chris Lattner860e8862005-11-17 07:30:41 +0000157 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
Nate Begemanae749a92005-10-25 23:48:36 +0000158 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
Nate Begeman9d2b8172005-10-18 00:56:42 +0000159 }
160
161 if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
162 // 64 bit PowerPC implementations can support i64 types directly
163 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000164 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
165 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000166 } else {
167 // 32 bit PowerPC wants to expand i64 shifts itself.
168 setOperationAction(ISD::SHL, MVT::i64, Custom);
169 setOperationAction(ISD::SRL, MVT::i64, Custom);
170 setOperationAction(ISD::SRA, MVT::i64, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000171 }
Evan Chengd30bf012006-03-01 01:11:20 +0000172
Nate Begeman425a9692005-11-29 08:17:20 +0000173 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000174 // First set operation action for all vector types to expand. Then we
175 // will selectively turn on ones that can be effectively codegen'd.
176 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
177 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000178 // add/sub are legal for all supported vector VT's.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000179 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
180 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000181
Chris Lattner7ff7e672006-04-04 17:25:31 +0000182 // We promote all shuffles to v16i8.
183 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000184 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
185
186 // We promote all non-typed operations to v4i32.
187 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
188 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
189 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
190 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
191 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
192 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
193 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
194 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
195 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
196 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
197 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
198 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000199
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000200 // No other operations are legal.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000201 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
202 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
203 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
204 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
205 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
206 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
207 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
208 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattner01cae072006-04-03 23:55:43 +0000209
210 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000211 }
212
Chris Lattner7ff7e672006-04-04 17:25:31 +0000213 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
214 // with merges, splats, etc.
215 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
216
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000217 setOperationAction(ISD::AND , MVT::v4i32, Legal);
218 setOperationAction(ISD::OR , MVT::v4i32, Legal);
219 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
220 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
221 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
222 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
223
Nate Begeman425a9692005-11-29 08:17:20 +0000224 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
Nate Begeman7fd1edd2005-12-19 23:25:09 +0000225 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
Chris Lattner8d052bc2006-03-25 07:39:07 +0000226 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
227 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
Chris Lattnerec4a0c72006-01-29 06:32:58 +0000228
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000229 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
Chris Lattnere7c768e2006-04-18 03:24:30 +0000230 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
Chris Lattner72dd9bd2006-04-18 03:43:48 +0000231 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
Chris Lattner19a81522006-04-18 03:57:35 +0000232 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000233
Chris Lattnerb2177b92006-03-19 06:55:52 +0000234 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
235 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000236
Chris Lattner541f91b2006-04-02 00:43:36 +0000237 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
238 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000239 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
240 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
Nate Begeman425a9692005-11-29 08:17:20 +0000241 }
242
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000243 setSetCCResultContents(ZeroOrOneSetCCResult);
Chris Lattnercadd7422006-01-13 17:52:03 +0000244 setStackPointerRegisterToSaveRestore(PPC::R1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000245
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000246 // We have target-specific dag combine patterns for the following nodes:
247 setTargetDAGCombine(ISD::SINT_TO_FP);
Chris Lattner51269842006-03-01 05:50:56 +0000248 setTargetDAGCombine(ISD::STORE);
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000249
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000250 computeRegisterProperties();
251}
252
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000253const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
254 switch (Opcode) {
255 default: return 0;
256 case PPCISD::FSEL: return "PPCISD::FSEL";
257 case PPCISD::FCFID: return "PPCISD::FCFID";
258 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
259 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
Chris Lattner51269842006-03-01 05:50:56 +0000260 case PPCISD::STFIWX: return "PPCISD::STFIWX";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000261 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
262 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000263 case PPCISD::VPERM: return "PPCISD::VPERM";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000264 case PPCISD::Hi: return "PPCISD::Hi";
265 case PPCISD::Lo: return "PPCISD::Lo";
266 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
267 case PPCISD::SRL: return "PPCISD::SRL";
268 case PPCISD::SRA: return "PPCISD::SRA";
269 case PPCISD::SHL: return "PPCISD::SHL";
Chris Lattnerecfe55e2006-03-22 05:30:33 +0000270 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
271 case PPCISD::STD_32: return "PPCISD::STD_32";
Chris Lattnere00ebf02006-01-28 07:33:03 +0000272 case PPCISD::CALL: return "PPCISD::CALL";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000273 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000274 case PPCISD::MFCR: return "PPCISD::MFCR";
Chris Lattnera17b1552006-03-31 05:13:27 +0000275 case PPCISD::VCMP: return "PPCISD::VCMP";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000276 case PPCISD::VCMPo: return "PPCISD::VCMPo";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000277 }
278}
279
Chris Lattner1a635d62006-04-14 06:01:58 +0000280//===----------------------------------------------------------------------===//
281// Node matching predicates, for use by the tblgen matching code.
282//===----------------------------------------------------------------------===//
283
Chris Lattner0b1e4e52005-08-26 17:36:52 +0000284/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
285static bool isFloatingPointZero(SDOperand Op) {
286 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
287 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
288 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
289 // Maybe this has already been legalized into the constant pool?
290 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
291 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
292 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
293 }
294 return false;
295}
296
Chris Lattnerddb739e2006-04-06 17:23:16 +0000297/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
298/// true if Op is undef or if it matches the specified value.
299static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
300 return Op.getOpcode() == ISD::UNDEF ||
301 cast<ConstantSDNode>(Op)->getValue() == Val;
302}
303
304/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
305/// VPKUHUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000306bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
307 if (!isUnary) {
308 for (unsigned i = 0; i != 16; ++i)
309 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
310 return false;
311 } else {
312 for (unsigned i = 0; i != 8; ++i)
313 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
314 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
315 return false;
316 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000317 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000318}
319
320/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
321/// VPKUWUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000322bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
323 if (!isUnary) {
324 for (unsigned i = 0; i != 16; i += 2)
325 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
326 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
327 return false;
328 } else {
329 for (unsigned i = 0; i != 8; i += 2)
330 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
331 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
332 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
333 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
334 return false;
335 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000336 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000337}
338
Chris Lattnercaad1632006-04-06 22:02:42 +0000339/// isVMerge - Common function, used to match vmrg* shuffles.
340///
341static bool isVMerge(SDNode *N, unsigned UnitSize,
342 unsigned LHSStart, unsigned RHSStart) {
Chris Lattner116cc482006-04-06 21:11:54 +0000343 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
344 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
345 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
346 "Unsupported merge size!");
347
348 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
349 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
350 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000351 LHSStart+j+i*UnitSize) ||
Chris Lattner116cc482006-04-06 21:11:54 +0000352 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000353 RHSStart+j+i*UnitSize))
Chris Lattner116cc482006-04-06 21:11:54 +0000354 return false;
355 }
Chris Lattnercaad1632006-04-06 22:02:42 +0000356 return true;
357}
358
359/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
360/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
361bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
362 if (!isUnary)
363 return isVMerge(N, UnitSize, 8, 24);
364 return isVMerge(N, UnitSize, 8, 8);
Chris Lattner116cc482006-04-06 21:11:54 +0000365}
366
367/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
368/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
Chris Lattnercaad1632006-04-06 22:02:42 +0000369bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
370 if (!isUnary)
371 return isVMerge(N, UnitSize, 0, 16);
372 return isVMerge(N, UnitSize, 0, 0);
Chris Lattner116cc482006-04-06 21:11:54 +0000373}
374
375
Chris Lattnerd0608e12006-04-06 18:26:28 +0000376/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
377/// amount, otherwise return -1.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000378int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
Chris Lattner116cc482006-04-06 21:11:54 +0000379 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
380 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
Chris Lattnerd0608e12006-04-06 18:26:28 +0000381 // Find the first non-undef value in the shuffle mask.
382 unsigned i;
383 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
384 /*search*/;
385
386 if (i == 16) return -1; // all undef.
387
388 // Otherwise, check to see if the rest of the elements are consequtively
389 // numbered from this value.
390 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
391 if (ShiftAmt < i) return -1;
392 ShiftAmt -= i;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000393
Chris Lattnerf24380e2006-04-06 22:28:36 +0000394 if (!isUnary) {
395 // Check the rest of the elements to see if they are consequtive.
396 for (++i; i != 16; ++i)
397 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
398 return -1;
399 } else {
400 // Check the rest of the elements to see if they are consequtive.
401 for (++i; i != 16; ++i)
402 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
403 return -1;
404 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000405
406 return ShiftAmt;
407}
Chris Lattneref819f82006-03-20 06:33:01 +0000408
409/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
410/// specifies a splat of a single element that is suitable for input to
411/// VSPLTB/VSPLTH/VSPLTW.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000412bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
413 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
414 N->getNumOperands() == 16 &&
415 (EltSize == 1 || EltSize == 2 || EltSize == 4));
Chris Lattnerdd4d2d02006-03-20 06:51:10 +0000416
Chris Lattner88a99ef2006-03-20 06:37:44 +0000417 // This is a splat operation if each element of the permute is the same, and
418 // if the value doesn't reference the second vector.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000419 unsigned ElementBase = 0;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000420 SDOperand Elt = N->getOperand(0);
Chris Lattner7ff7e672006-04-04 17:25:31 +0000421 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
422 ElementBase = EltV->getValue();
423 else
424 return false; // FIXME: Handle UNDEF elements too!
425
426 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
427 return false;
428
429 // Check that they are consequtive.
430 for (unsigned i = 1; i != EltSize; ++i) {
431 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
432 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
433 return false;
434 }
435
Chris Lattner88a99ef2006-03-20 06:37:44 +0000436 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000437 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
Chris Lattnerb097aa92006-04-14 23:19:08 +0000438 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000439 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
440 "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000441 for (unsigned j = 0; j != EltSize; ++j)
442 if (N->getOperand(i+j) != N->getOperand(j))
443 return false;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000444 }
445
Chris Lattner7ff7e672006-04-04 17:25:31 +0000446 return true;
Chris Lattneref819f82006-03-20 06:33:01 +0000447}
448
449/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
450/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000451unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
452 assert(isSplatShuffleMask(N, EltSize));
453 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
Chris Lattneref819f82006-03-20 06:33:01 +0000454}
455
Chris Lattnere87192a2006-04-12 17:37:20 +0000456/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
Chris Lattner140a58f2006-04-08 06:46:53 +0000457/// by using a vspltis[bhw] instruction of the specified element size, return
458/// the constant being splatted. The ByteSize field indicates the number of
459/// bytes of each element [124] -> [bhw].
Chris Lattnere87192a2006-04-12 17:37:20 +0000460SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000461 SDOperand OpVal(0, 0);
Chris Lattner79d9a882006-04-08 07:14:26 +0000462
463 // If ByteSize of the splat is bigger than the element size of the
464 // build_vector, then we have a case where we are checking for a splat where
465 // multiple elements of the buildvector are folded together into a single
466 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
467 unsigned EltSize = 16/N->getNumOperands();
468 if (EltSize < ByteSize) {
469 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
470 SDOperand UniquedVals[4];
471 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
472
473 // See if all of the elements in the buildvector agree across.
474 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
475 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
476 // If the element isn't a constant, bail fully out.
477 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
478
479
480 if (UniquedVals[i&(Multiple-1)].Val == 0)
481 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
482 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
483 return SDOperand(); // no match.
484 }
485
486 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
487 // either constant or undef values that are identical for each chunk. See
488 // if these chunks can form into a larger vspltis*.
489
490 // Check to see if all of the leading entries are either 0 or -1. If
491 // neither, then this won't fit into the immediate field.
492 bool LeadingZero = true;
493 bool LeadingOnes = true;
494 for (unsigned i = 0; i != Multiple-1; ++i) {
495 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
496
497 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
498 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
499 }
500 // Finally, check the least significant entry.
501 if (LeadingZero) {
502 if (UniquedVals[Multiple-1].Val == 0)
503 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
504 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
505 if (Val < 16)
506 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
507 }
508 if (LeadingOnes) {
509 if (UniquedVals[Multiple-1].Val == 0)
510 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
511 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
512 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
513 return DAG.getTargetConstant(Val, MVT::i32);
514 }
515
516 return SDOperand();
517 }
518
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000519 // Check to see if this buildvec has a single non-undef value in its elements.
520 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
521 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
522 if (OpVal.Val == 0)
523 OpVal = N->getOperand(i);
524 else if (OpVal != N->getOperand(i))
Chris Lattner140a58f2006-04-08 06:46:53 +0000525 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000526 }
527
Chris Lattner140a58f2006-04-08 06:46:53 +0000528 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000529
Nate Begeman98e70cc2006-03-28 04:15:58 +0000530 unsigned ValSizeInBytes = 0;
531 uint64_t Value = 0;
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000532 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
533 Value = CN->getValue();
534 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
535 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
536 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
537 Value = FloatToBits(CN->getValue());
538 ValSizeInBytes = 4;
539 }
540
541 // If the splat value is larger than the element value, then we can never do
542 // this splat. The only case that we could fit the replicated bits into our
543 // immediate field for would be zero, and we prefer to use vxor for it.
Chris Lattner140a58f2006-04-08 06:46:53 +0000544 if (ValSizeInBytes < ByteSize) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000545
546 // If the element value is larger than the splat value, cut it in half and
547 // check to see if the two halves are equal. Continue doing this until we
548 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
549 while (ValSizeInBytes > ByteSize) {
550 ValSizeInBytes >>= 1;
551
552 // If the top half equals the bottom half, we're still ok.
Chris Lattner9b42bdd2006-04-05 17:39:25 +0000553 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
554 (Value & ((1 << (8*ValSizeInBytes))-1)))
Chris Lattner140a58f2006-04-08 06:46:53 +0000555 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000556 }
557
558 // Properly sign extend the value.
559 int ShAmt = (4-ByteSize)*8;
560 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
561
Evan Cheng5b6a01b2006-03-26 09:52:32 +0000562 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
Chris Lattner140a58f2006-04-08 06:46:53 +0000563 if (MaskVal == 0) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000564
Chris Lattner140a58f2006-04-08 06:46:53 +0000565 // Finally, if this value fits in a 5 bit sext field, return it
566 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
567 return DAG.getTargetConstant(MaskVal, MVT::i32);
568 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000569}
570
Chris Lattner1a635d62006-04-14 06:01:58 +0000571//===----------------------------------------------------------------------===//
572// LowerOperation implementation
573//===----------------------------------------------------------------------===//
574
575static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
576 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
577 Constant *C = CP->get();
578 SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
579 SDOperand Zero = DAG.getConstant(0, MVT::i32);
580
581 const TargetMachine &TM = DAG.getTarget();
582
583 // If this is a non-darwin platform, we don't support non-static relo models
584 // yet.
585 if (TM.getRelocationModel() == Reloc::Static ||
586 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
587 // Generate non-pic code that has direct accesses to the constant pool.
588 // The address of the global is just (hi(&g)+lo(&g)).
589 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
590 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
591 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
592 }
593
594 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
595 if (TM.getRelocationModel() == Reloc::PIC) {
596 // With PIC, the first instruction is actually "GR+hi(&G)".
597 Hi = DAG.getNode(ISD::ADD, MVT::i32,
598 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
599 }
600
601 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
602 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
603 return Lo;
604}
605
606static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
607 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
608 GlobalValue *GV = GSDN->getGlobal();
609 SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
610 SDOperand Zero = DAG.getConstant(0, MVT::i32);
611
612 const TargetMachine &TM = DAG.getTarget();
613
614 // If this is a non-darwin platform, we don't support non-static relo models
615 // yet.
616 if (TM.getRelocationModel() == Reloc::Static ||
617 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
618 // Generate non-pic code that has direct accesses to globals.
619 // The address of the global is just (hi(&g)+lo(&g)).
620 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
621 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
622 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
623 }
624
625 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
626 if (TM.getRelocationModel() == Reloc::PIC) {
627 // With PIC, the first instruction is actually "GR+hi(&G)".
628 Hi = DAG.getNode(ISD::ADD, MVT::i32,
629 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
630 }
631
632 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
633 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
634
635 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
636 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
637 return Lo;
638
639 // If the global is weak or external, we have to go through the lazy
640 // resolution stub.
641 return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
642}
643
644static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
645 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
646
647 // If we're comparing for equality to zero, expose the fact that this is
648 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
649 // fold the new nodes.
650 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
651 if (C->isNullValue() && CC == ISD::SETEQ) {
652 MVT::ValueType VT = Op.getOperand(0).getValueType();
653 SDOperand Zext = Op.getOperand(0);
654 if (VT < MVT::i32) {
655 VT = MVT::i32;
656 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
657 }
658 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
659 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
660 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
661 DAG.getConstant(Log2b, MVT::i32));
662 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
663 }
664 // Leave comparisons against 0 and -1 alone for now, since they're usually
665 // optimized. FIXME: revisit this when we can custom lower all setcc
666 // optimizations.
667 if (C->isAllOnesValue() || C->isNullValue())
668 return SDOperand();
669 }
670
671 // If we have an integer seteq/setne, turn it into a compare against zero
672 // by subtracting the rhs from the lhs, which is faster than setting a
673 // condition register, reading it back out, and masking the correct bit.
674 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
675 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
676 MVT::ValueType VT = Op.getValueType();
677 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
678 Op.getOperand(1));
679 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
680 }
681 return SDOperand();
682}
683
684static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
685 unsigned VarArgsFrameIndex) {
686 // vastart just stores the address of the VarArgsFrameIndex slot into the
687 // memory location argument.
688 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
689 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
690 Op.getOperand(1), Op.getOperand(2));
691}
692
693static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
694 SDOperand Copy;
695 switch(Op.getNumOperands()) {
696 default:
697 assert(0 && "Do not know how to return this many arguments!");
698 abort();
699 case 1:
700 return SDOperand(); // ret void is legal
701 case 2: {
702 MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
703 unsigned ArgReg;
704 if (MVT::isVector(ArgVT))
705 ArgReg = PPC::V2;
706 else if (MVT::isInteger(ArgVT))
707 ArgReg = PPC::R3;
708 else {
709 assert(MVT::isFloatingPoint(ArgVT));
710 ArgReg = PPC::F1;
711 }
712
713 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
714 SDOperand());
715
716 // If we haven't noted the R3/F1 are live out, do so now.
717 if (DAG.getMachineFunction().liveout_empty())
718 DAG.getMachineFunction().addLiveOut(ArgReg);
719 break;
720 }
721 case 3:
722 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
723 SDOperand());
724 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
725 // If we haven't noted the R3+R4 are live out, do so now.
726 if (DAG.getMachineFunction().liveout_empty()) {
727 DAG.getMachineFunction().addLiveOut(PPC::R3);
728 DAG.getMachineFunction().addLiveOut(PPC::R4);
729 }
730 break;
731 }
732 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
733}
734
735/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
736/// possible.
737static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
738 // Not FP? Not a fsel.
739 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
740 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
741 return SDOperand();
742
743 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
744
745 // Cannot handle SETEQ/SETNE.
746 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
747
748 MVT::ValueType ResVT = Op.getValueType();
749 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
750 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
751 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
752
753 // If the RHS of the comparison is a 0.0, we don't need to do the
754 // subtraction at all.
755 if (isFloatingPointZero(RHS))
756 switch (CC) {
757 default: break; // SETUO etc aren't handled by fsel.
758 case ISD::SETULT:
759 case ISD::SETLT:
760 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
761 case ISD::SETUGE:
762 case ISD::SETGE:
763 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
764 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
765 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
766 case ISD::SETUGT:
767 case ISD::SETGT:
768 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
769 case ISD::SETULE:
770 case ISD::SETLE:
771 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
772 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
773 return DAG.getNode(PPCISD::FSEL, ResVT,
774 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
775 }
776
777 SDOperand Cmp;
778 switch (CC) {
779 default: break; // SETUO etc aren't handled by fsel.
780 case ISD::SETULT:
781 case ISD::SETLT:
782 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
783 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
784 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
785 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
786 case ISD::SETUGE:
787 case ISD::SETGE:
788 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
789 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
790 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
791 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
792 case ISD::SETUGT:
793 case ISD::SETGT:
794 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
795 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
796 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
797 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
798 case ISD::SETULE:
799 case ISD::SETLE:
800 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
801 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
802 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
803 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
804 }
805 return SDOperand();
806}
807
808static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
809 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
810 SDOperand Src = Op.getOperand(0);
811 if (Src.getValueType() == MVT::f32)
812 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
813
814 SDOperand Tmp;
815 switch (Op.getValueType()) {
816 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
817 case MVT::i32:
818 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
819 break;
820 case MVT::i64:
821 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
822 break;
823 }
824
825 // Convert the FP value to an int value through memory.
826 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
827 if (Op.getValueType() == MVT::i32)
828 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
829 return Bits;
830}
831
832static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
833 if (Op.getOperand(0).getValueType() == MVT::i64) {
834 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
835 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
836 if (Op.getValueType() == MVT::f32)
837 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
838 return FP;
839 }
840
841 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
842 "Unhandled SINT_TO_FP type in custom expander!");
843 // Since we only generate this in 64-bit mode, we can take advantage of
844 // 64-bit registers. In particular, sign extend the input value into the
845 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
846 // then lfd it and fcfid it.
847 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
848 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
849 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
850
851 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
852 Op.getOperand(0));
853
854 // STD the extended value into the stack slot.
855 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
856 DAG.getEntryNode(), Ext64, FIdx,
857 DAG.getSrcValue(NULL));
858 // Load the value as a double.
859 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
860
861 // FCFID it and return it.
862 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
863 if (Op.getValueType() == MVT::f32)
864 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
865 return FP;
866}
867
868static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
869 assert(Op.getValueType() == MVT::i64 &&
870 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
871 // The generic code does a fine job expanding shift by a constant.
872 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
873
874 // Otherwise, expand into a bunch of logical ops. Note that these ops
875 // depend on the PPC behavior for oversized shift amounts.
876 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
877 DAG.getConstant(0, MVT::i32));
878 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
879 DAG.getConstant(1, MVT::i32));
880 SDOperand Amt = Op.getOperand(1);
881
882 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
883 DAG.getConstant(32, MVT::i32), Amt);
884 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
885 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
886 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
887 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
888 DAG.getConstant(-32U, MVT::i32));
889 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
890 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
891 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
892 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
893}
894
895static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
896 assert(Op.getValueType() == MVT::i64 &&
897 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
898 // The generic code does a fine job expanding shift by a constant.
899 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
900
901 // Otherwise, expand into a bunch of logical ops. Note that these ops
902 // depend on the PPC behavior for oversized shift amounts.
903 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
904 DAG.getConstant(0, MVT::i32));
905 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
906 DAG.getConstant(1, MVT::i32));
907 SDOperand Amt = Op.getOperand(1);
908
909 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
910 DAG.getConstant(32, MVT::i32), Amt);
911 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
912 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
913 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
914 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
915 DAG.getConstant(-32U, MVT::i32));
916 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
917 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
918 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
919 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
920}
921
922static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
923 assert(Op.getValueType() == MVT::i64 &&
924 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
925 // The generic code does a fine job expanding shift by a constant.
926 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
927
928 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
929 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
930 DAG.getConstant(0, MVT::i32));
931 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
932 DAG.getConstant(1, MVT::i32));
933 SDOperand Amt = Op.getOperand(1);
934
935 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
936 DAG.getConstant(32, MVT::i32), Amt);
937 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
938 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
939 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
940 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
941 DAG.getConstant(-32U, MVT::i32));
942 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
943 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
944 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
945 Tmp4, Tmp6, ISD::SETLE);
946 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
947}
948
949//===----------------------------------------------------------------------===//
950// Vector related lowering.
951//
952
Chris Lattnerac225ca2006-04-12 19:07:14 +0000953// If this is a vector of constants or undefs, get the bits. A bit in
954// UndefBits is set if the corresponding element of the vector is an
955// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
956// zero. Return true if this is not an array of constants, false if it is.
957//
Chris Lattnerac225ca2006-04-12 19:07:14 +0000958static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
959 uint64_t UndefBits[2]) {
960 // Start with zero'd results.
961 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
962
963 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
964 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
965 SDOperand OpVal = BV->getOperand(i);
966
967 unsigned PartNo = i >= e/2; // In the upper 128 bits?
Chris Lattnerb17f1672006-04-16 01:01:29 +0000968 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
Chris Lattnerac225ca2006-04-12 19:07:14 +0000969
970 uint64_t EltBits = 0;
971 if (OpVal.getOpcode() == ISD::UNDEF) {
972 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
973 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
974 continue;
975 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
976 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
977 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
978 assert(CN->getValueType(0) == MVT::f32 &&
979 "Only one legal FP vector type!");
980 EltBits = FloatToBits(CN->getValue());
981 } else {
982 // Nonconstant element.
983 return true;
984 }
985
986 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
987 }
988
989 //printf("%llx %llx %llx %llx\n",
990 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
991 return false;
992}
Chris Lattneref819f82006-03-20 06:33:01 +0000993
Chris Lattnerb17f1672006-04-16 01:01:29 +0000994// If this is a splat (repetition) of a value across the whole vector, return
995// the smallest size that splats it. For example, "0x01010101010101..." is a
996// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
997// SplatSize = 1 byte.
998static bool isConstantSplat(const uint64_t Bits128[2],
999 const uint64_t Undef128[2],
1000 unsigned &SplatBits, unsigned &SplatUndef,
1001 unsigned &SplatSize) {
1002
1003 // Don't let undefs prevent splats from matching. See if the top 64-bits are
1004 // the same as the lower 64-bits, ignoring undefs.
1005 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1006 return false; // Can't be a splat if two pieces don't match.
1007
1008 uint64_t Bits64 = Bits128[0] | Bits128[1];
1009 uint64_t Undef64 = Undef128[0] & Undef128[1];
1010
1011 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1012 // undefs.
1013 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1014 return false; // Can't be a splat if two pieces don't match.
1015
1016 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1017 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1018
1019 // If the top 16-bits are different than the lower 16-bits, ignoring
1020 // undefs, we have an i32 splat.
1021 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1022 SplatBits = Bits32;
1023 SplatUndef = Undef32;
1024 SplatSize = 4;
1025 return true;
1026 }
1027
1028 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
1029 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1030
1031 // If the top 8-bits are different than the lower 8-bits, ignoring
1032 // undefs, we have an i16 splat.
1033 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1034 SplatBits = Bits16;
1035 SplatUndef = Undef16;
1036 SplatSize = 2;
1037 return true;
1038 }
1039
1040 // Otherwise, we have an 8-bit splat.
1041 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
1042 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1043 SplatSize = 1;
1044 return true;
1045}
1046
Chris Lattner4a998b92006-04-17 06:00:21 +00001047/// BuildSplatI - Build a canonical splati of Val with an element size of
1048/// SplatSize. Cast the result to VT.
1049static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1050 SelectionDAG &DAG) {
1051 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
Chris Lattner6876e662006-04-17 06:58:41 +00001052
1053 // Force vspltis[hw] -1 to vspltisb -1.
1054 if (Val == -1) SplatSize = 1;
1055
Chris Lattner4a998b92006-04-17 06:00:21 +00001056 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1057 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1058 };
1059 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1060
1061 // Build a canonical splat for this value.
1062 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1063 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1064 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1065 return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1066}
1067
Chris Lattnere7c768e2006-04-18 03:24:30 +00001068/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
Chris Lattner6876e662006-04-17 06:58:41 +00001069/// specified intrinsic ID.
Chris Lattnere7c768e2006-04-18 03:24:30 +00001070static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1071 SelectionDAG &DAG,
1072 MVT::ValueType DestVT = MVT::Other) {
1073 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1074 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
Chris Lattner6876e662006-04-17 06:58:41 +00001075 DAG.getConstant(IID, MVT::i32), LHS, RHS);
1076}
1077
Chris Lattnere7c768e2006-04-18 03:24:30 +00001078/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1079/// specified intrinsic ID.
1080static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1081 SDOperand Op2, SelectionDAG &DAG,
1082 MVT::ValueType DestVT = MVT::Other) {
1083 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1084 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1085 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1086}
1087
1088
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001089/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1090/// amount. The result has the specified value type.
1091static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1092 MVT::ValueType VT, SelectionDAG &DAG) {
1093 // Force LHS/RHS to be the right type.
1094 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1095 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1096
1097 std::vector<SDOperand> Ops;
1098 for (unsigned i = 0; i != 16; ++i)
1099 Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1100 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1101 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1102 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1103}
1104
Chris Lattnerf1b47082006-04-14 05:19:18 +00001105// If this is a case we can't handle, return null and let the default
1106// expansion code take care of it. If we CAN select this case, and if it
1107// selects to a single instruction, return Op. Otherwise, if we can codegen
1108// this case more efficiently than a constant pool load, lower it to the
1109// sequence of ops that should be used.
1110static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1111 // If this is a vector of constants or undefs, get the bits. A bit in
1112 // UndefBits is set if the corresponding element of the vector is an
1113 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1114 // zero.
1115 uint64_t VectorBits[2];
1116 uint64_t UndefBits[2];
1117 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1118 return SDOperand(); // Not a constant vector.
1119
Chris Lattnerb17f1672006-04-16 01:01:29 +00001120 // If this is a splat (repetition) of a value across the whole vector, return
1121 // the smallest size that splats it. For example, "0x01010101010101..." is a
1122 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1123 // SplatSize = 1 byte.
1124 unsigned SplatBits, SplatUndef, SplatSize;
1125 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1126 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1127
1128 // First, handle single instruction cases.
1129
1130 // All zeros?
1131 if (SplatBits == 0) {
1132 // Canonicalize all zero vectors to be v4i32.
1133 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1134 SDOperand Z = DAG.getConstant(0, MVT::i32);
1135 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1136 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1137 }
1138 return Op;
Chris Lattnerf1b47082006-04-14 05:19:18 +00001139 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001140
1141 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1142 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
Chris Lattner4a998b92006-04-17 06:00:21 +00001143 if (SextVal >= -16 && SextVal <= 15)
1144 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
Chris Lattnerb17f1672006-04-16 01:01:29 +00001145
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001146
1147 // Two instruction sequences.
1148
Chris Lattner4a998b92006-04-17 06:00:21 +00001149 // If this value is in the range [-32,30] and is even, use:
1150 // tmp = VSPLTI[bhw], result = add tmp, tmp
1151 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1152 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1153 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1154 }
Chris Lattner6876e662006-04-17 06:58:41 +00001155
1156 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
1157 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
1158 // for fneg/fabs.
1159 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1160 // Make -1 and vspltisw -1:
1161 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1162
1163 // Make the VSLW intrinsic, computing 0x8000_0000.
Chris Lattnere7c768e2006-04-18 03:24:30 +00001164 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1165 OnesV, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001166
1167 // xor by OnesV to invert it.
1168 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1169 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1170 }
1171
1172 // Check to see if this is a wide variety of vsplti*, binop self cases.
1173 unsigned SplatBitSize = SplatSize*8;
1174 static const char SplatCsts[] = {
1175 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001176 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
Chris Lattner6876e662006-04-17 06:58:41 +00001177 };
1178 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1179 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1180 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
1181 int i = SplatCsts[idx];
1182
1183 // Figure out what shift amount will be used by altivec if shifted by i in
1184 // this splat size.
1185 unsigned TypeShiftAmt = i & (SplatBitSize-1);
1186
1187 // vsplti + shl self.
1188 if (SextVal == (i << (int)TypeShiftAmt)) {
1189 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1190 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1191 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1192 Intrinsic::ppc_altivec_vslw
1193 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001194 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001195 }
1196
1197 // vsplti + srl self.
1198 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1199 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1200 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1201 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1202 Intrinsic::ppc_altivec_vsrw
1203 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001204 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001205 }
1206
1207 // vsplti + sra self.
1208 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1209 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1210 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1211 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1212 Intrinsic::ppc_altivec_vsraw
1213 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001214 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001215 }
1216
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001217 // vsplti + rol self.
1218 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1219 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1220 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1221 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1222 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1223 Intrinsic::ppc_altivec_vrlw
1224 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001225 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001226 }
1227
1228 // t = vsplti c, result = vsldoi t, t, 1
1229 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1230 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1231 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1232 }
1233 // t = vsplti c, result = vsldoi t, t, 2
1234 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1235 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1236 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1237 }
1238 // t = vsplti c, result = vsldoi t, t, 3
1239 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1240 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1241 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1242 }
Chris Lattner6876e662006-04-17 06:58:41 +00001243 }
1244
Chris Lattner6876e662006-04-17 06:58:41 +00001245 // Three instruction sequences.
1246
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001247 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
1248 if (SextVal >= 0 && SextVal <= 31) {
1249 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1250 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1251 return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1252 }
1253 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
1254 if (SextVal >= -31 && SextVal <= 0) {
1255 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1256 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
Chris Lattnerc4083822006-04-17 06:07:44 +00001257 return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
Chris Lattnerf1b47082006-04-14 05:19:18 +00001258 }
1259 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001260
Chris Lattnerf1b47082006-04-14 05:19:18 +00001261 return SDOperand();
1262}
1263
Chris Lattner59138102006-04-17 05:28:54 +00001264/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1265/// the specified operations to build the shuffle.
1266static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1267 SDOperand RHS, SelectionDAG &DAG) {
1268 unsigned OpNum = (PFEntry >> 26) & 0x0F;
1269 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
1270 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
1271
1272 enum {
1273 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1274 OP_VMRGHW,
1275 OP_VMRGLW,
1276 OP_VSPLTISW0,
1277 OP_VSPLTISW1,
1278 OP_VSPLTISW2,
1279 OP_VSPLTISW3,
1280 OP_VSLDOI4,
1281 OP_VSLDOI8,
1282 OP_VSLDOI12,
1283 };
1284
1285 if (OpNum == OP_COPY) {
1286 if (LHSID == (1*9+2)*9+3) return LHS;
1287 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1288 return RHS;
1289 }
1290
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001291 SDOperand OpLHS, OpRHS;
1292 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1293 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1294
Chris Lattner59138102006-04-17 05:28:54 +00001295 unsigned ShufIdxs[16];
1296 switch (OpNum) {
1297 default: assert(0 && "Unknown i32 permute!");
1298 case OP_VMRGHW:
1299 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
1300 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1301 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
1302 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1303 break;
1304 case OP_VMRGLW:
1305 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1306 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1307 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1308 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1309 break;
1310 case OP_VSPLTISW0:
1311 for (unsigned i = 0; i != 16; ++i)
1312 ShufIdxs[i] = (i&3)+0;
1313 break;
1314 case OP_VSPLTISW1:
1315 for (unsigned i = 0; i != 16; ++i)
1316 ShufIdxs[i] = (i&3)+4;
1317 break;
1318 case OP_VSPLTISW2:
1319 for (unsigned i = 0; i != 16; ++i)
1320 ShufIdxs[i] = (i&3)+8;
1321 break;
1322 case OP_VSPLTISW3:
1323 for (unsigned i = 0; i != 16; ++i)
1324 ShufIdxs[i] = (i&3)+12;
1325 break;
1326 case OP_VSLDOI4:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001327 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001328 case OP_VSLDOI8:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001329 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001330 case OP_VSLDOI12:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001331 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001332 }
1333 std::vector<SDOperand> Ops;
1334 for (unsigned i = 0; i != 16; ++i)
1335 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
Chris Lattner59138102006-04-17 05:28:54 +00001336
1337 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1338 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1339}
1340
Chris Lattnerf1b47082006-04-14 05:19:18 +00001341/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
1342/// is a shuffle we can handle in a single instruction, return it. Otherwise,
1343/// return the code it can be lowered into. Worst case, it can always be
1344/// lowered into a vperm.
1345static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1346 SDOperand V1 = Op.getOperand(0);
1347 SDOperand V2 = Op.getOperand(1);
1348 SDOperand PermMask = Op.getOperand(2);
1349
1350 // Cases that are handled by instructions that take permute immediates
1351 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1352 // selected by the instruction selector.
1353 if (V2.getOpcode() == ISD::UNDEF) {
1354 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1355 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1356 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1357 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1358 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1359 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1360 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1361 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1362 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1363 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1364 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1365 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1366 return Op;
1367 }
1368 }
1369
1370 // Altivec has a variety of "shuffle immediates" that take two vector inputs
1371 // and produce a fixed permutation. If any of these match, do not lower to
1372 // VPERM.
1373 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1374 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1375 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1376 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1377 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1378 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1379 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1380 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1381 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1382 return Op;
1383
Chris Lattner59138102006-04-17 05:28:54 +00001384 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
1385 // perfect shuffle table to emit an optimal matching sequence.
1386 unsigned PFIndexes[4];
1387 bool isFourElementShuffle = true;
1388 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1389 unsigned EltNo = 8; // Start out undef.
1390 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
1391 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1392 continue; // Undef, ignore it.
1393
1394 unsigned ByteSource =
1395 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1396 if ((ByteSource & 3) != j) {
1397 isFourElementShuffle = false;
1398 break;
1399 }
1400
1401 if (EltNo == 8) {
1402 EltNo = ByteSource/4;
1403 } else if (EltNo != ByteSource/4) {
1404 isFourElementShuffle = false;
1405 break;
1406 }
1407 }
1408 PFIndexes[i] = EltNo;
1409 }
1410
1411 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1412 // perfect shuffle vector to determine if it is cost effective to do this as
1413 // discrete instructions, or whether we should use a vperm.
1414 if (isFourElementShuffle) {
1415 // Compute the index in the perfect shuffle table.
1416 unsigned PFTableIndex =
1417 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1418
1419 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1420 unsigned Cost = (PFEntry >> 30);
1421
1422 // Determining when to avoid vperm is tricky. Many things affect the cost
1423 // of vperm, particularly how many times the perm mask needs to be computed.
1424 // For example, if the perm mask can be hoisted out of a loop or is already
1425 // used (perhaps because there are multiple permutes with the same shuffle
1426 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
1427 // the loop requires an extra register.
1428 //
1429 // As a compromise, we only emit discrete instructions if the shuffle can be
1430 // generated in 3 or fewer operations. When we have loop information
1431 // available, if this block is within a loop, we should avoid using vperm
1432 // for 3-operation perms and use a constant pool load instead.
1433 if (Cost < 3)
1434 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1435 }
Chris Lattnerf1b47082006-04-14 05:19:18 +00001436
1437 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1438 // vector that will get spilled to the constant pool.
1439 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1440
1441 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1442 // that it is in input element units, not in bytes. Convert now.
1443 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1444 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1445
1446 std::vector<SDOperand> ResultMask;
1447 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
Chris Lattner730b4562006-04-15 23:48:05 +00001448 unsigned SrcElt;
1449 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1450 SrcElt = 0;
1451 else
1452 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
Chris Lattnerf1b47082006-04-14 05:19:18 +00001453
1454 for (unsigned j = 0; j != BytesPerElement; ++j)
1455 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1456 MVT::i8));
1457 }
1458
1459 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1460 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1461}
1462
Chris Lattner1a635d62006-04-14 06:01:58 +00001463/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1464/// lower, do it, otherwise return null.
1465static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1466 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
1467
1468 // If this is a lowered altivec predicate compare, CompareOpc is set to the
1469 // opcode number of the comparison.
1470 int CompareOpc = -1;
1471 bool isDot = false;
1472 switch (IntNo) {
1473 default: return SDOperand(); // Don't custom lower most intrinsics.
1474 // Comparison predicates.
1475 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
1476 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1477 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
1478 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
1479 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1480 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1481 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1482 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1483 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1484 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1485 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1486 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1487 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1488
1489 // Normal Comparisons.
1490 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
1491 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
1492 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
1493 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
1494 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
1495 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
1496 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
1497 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
1498 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
1499 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
1500 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
1501 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
1502 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
1503 }
1504
1505 assert(CompareOpc>0 && "We only lower altivec predicate compares so far!");
1506
1507 // If this is a non-dot comparison, make the VCMP node.
1508 if (!isDot) {
1509 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1510 Op.getOperand(1), Op.getOperand(2),
1511 DAG.getConstant(CompareOpc, MVT::i32));
1512 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1513 }
1514
1515 // Create the PPCISD altivec 'dot' comparison node.
1516 std::vector<SDOperand> Ops;
1517 std::vector<MVT::ValueType> VTs;
1518 Ops.push_back(Op.getOperand(2)); // LHS
1519 Ops.push_back(Op.getOperand(3)); // RHS
1520 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1521 VTs.push_back(Op.getOperand(2).getValueType());
1522 VTs.push_back(MVT::Flag);
1523 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1524
1525 // Now that we have the comparison, emit a copy from the CR to a GPR.
1526 // This is flagged to the above dot comparison.
1527 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1528 DAG.getRegister(PPC::CR6, MVT::i32),
1529 CompNode.getValue(1));
1530
1531 // Unpack the result based on how the target uses it.
1532 unsigned BitNo; // Bit # of CR6.
1533 bool InvertBit; // Invert result?
1534 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1535 default: // Can't happen, don't crash on invalid number though.
1536 case 0: // Return the value of the EQ bit of CR6.
1537 BitNo = 0; InvertBit = false;
1538 break;
1539 case 1: // Return the inverted value of the EQ bit of CR6.
1540 BitNo = 0; InvertBit = true;
1541 break;
1542 case 2: // Return the value of the LT bit of CR6.
1543 BitNo = 2; InvertBit = false;
1544 break;
1545 case 3: // Return the inverted value of the LT bit of CR6.
1546 BitNo = 2; InvertBit = true;
1547 break;
1548 }
1549
1550 // Shift the bit into the low position.
1551 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1552 DAG.getConstant(8-(3-BitNo), MVT::i32));
1553 // Isolate the bit.
1554 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1555 DAG.getConstant(1, MVT::i32));
1556
1557 // If we are supposed to, toggle the bit.
1558 if (InvertBit)
1559 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1560 DAG.getConstant(1, MVT::i32));
1561 return Flags;
1562}
1563
1564static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1565 // Create a stack slot that is 16-byte aligned.
1566 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1567 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1568 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1569
1570 // Store the input value into Value#0 of the stack slot.
1571 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1572 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1573 // Load it out.
1574 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1575}
1576
Chris Lattnere7c768e2006-04-18 03:24:30 +00001577static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001578 if (Op.getValueType() == MVT::v4i32) {
1579 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1580
1581 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
1582 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
1583
1584 SDOperand RHSSwap = // = vrlw RHS, 16
1585 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
1586
1587 // Shrinkify inputs to v8i16.
1588 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
1589 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
1590 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
1591
1592 // Low parts multiplied together, generating 32-bit results (we ignore the
1593 // top parts).
1594 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
1595 LHS, RHS, DAG, MVT::v4i32);
1596
1597 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
1598 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
1599 // Shift the high parts up 16 bits.
1600 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
1601 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
1602 } else if (Op.getValueType() == MVT::v8i16) {
1603 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1604
Chris Lattnercea2aa72006-04-18 04:28:57 +00001605 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001606
Chris Lattnercea2aa72006-04-18 04:28:57 +00001607 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
1608 LHS, RHS, Zero, DAG);
Chris Lattner19a81522006-04-18 03:57:35 +00001609 } else if (Op.getValueType() == MVT::v16i8) {
1610 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1611
1612 // Multiply the even 8-bit parts, producing 16-bit sums.
1613 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
1614 LHS, RHS, DAG, MVT::v8i16);
1615 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
1616
1617 // Multiply the odd 8-bit parts, producing 16-bit sums.
1618 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
1619 LHS, RHS, DAG, MVT::v8i16);
1620 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
1621
1622 // Merge the results together.
1623 std::vector<SDOperand> Ops;
1624 for (unsigned i = 0; i != 8; ++i) {
1625 Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
1626 Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
1627 }
1628
1629 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
1630 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
Chris Lattner72dd9bd2006-04-18 03:43:48 +00001631 } else {
1632 assert(0 && "Unknown mul to lower!");
1633 abort();
1634 }
Chris Lattnere7c768e2006-04-18 03:24:30 +00001635}
1636
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001637/// LowerOperation - Provide custom lowering hooks for some operations.
1638///
Nate Begeman21e463b2005-10-16 05:39:50 +00001639SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001640 switch (Op.getOpcode()) {
1641 default: assert(0 && "Wasn't expecting to be able to lower this!");
Chris Lattner1a635d62006-04-14 06:01:58 +00001642 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1643 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
1644 case ISD::SETCC: return LowerSETCC(Op, DAG);
1645 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
1646 case ISD::RET: return LowerRET(Op, DAG);
Chris Lattner7c0d6642005-10-02 06:37:13 +00001647
Chris Lattner1a635d62006-04-14 06:01:58 +00001648 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
1649 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1650 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001651
Chris Lattner1a635d62006-04-14 06:01:58 +00001652 // Lower 64-bit shifts.
1653 case ISD::SHL: return LowerSHL(Op, DAG);
1654 case ISD::SRL: return LowerSRL(Op, DAG);
1655 case ISD::SRA: return LowerSRA(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001656
Chris Lattner1a635d62006-04-14 06:01:58 +00001657 // Vector-related lowering.
1658 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
1659 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
1660 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1661 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
Chris Lattnere7c768e2006-04-18 03:24:30 +00001662 case ISD::MUL: return LowerMUL(Op, DAG);
Chris Lattnerbc11c342005-08-31 20:23:54 +00001663 }
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001664 return SDOperand();
1665}
1666
Chris Lattner1a635d62006-04-14 06:01:58 +00001667//===----------------------------------------------------------------------===//
1668// Other Lowering Code
1669//===----------------------------------------------------------------------===//
1670
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001671std::vector<SDOperand>
Nate Begeman21e463b2005-10-16 05:39:50 +00001672PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001673 //
1674 // add beautiful description of PPC stack frame format, or at least some docs
1675 //
1676 MachineFunction &MF = DAG.getMachineFunction();
1677 MachineFrameInfo *MFI = MF.getFrameInfo();
1678 MachineBasicBlock& BB = MF.front();
Chris Lattner7b738342005-09-13 19:33:40 +00001679 SSARegMap *RegMap = MF.getSSARegMap();
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001680 std::vector<SDOperand> ArgValues;
1681
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001682 unsigned ArgOffset = 24;
1683 unsigned GPR_remaining = 8;
1684 unsigned FPR_remaining = 13;
1685 unsigned GPR_idx = 0, FPR_idx = 0;
1686 static const unsigned GPR[] = {
1687 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1688 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1689 };
1690 static const unsigned FPR[] = {
1691 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1692 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1693 };
1694
1695 // Add DAG nodes to load the arguments... On entry to a function on PPC,
1696 // the arguments start at offset 24, although they are likely to be passed
1697 // in registers.
1698 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
1699 SDOperand newroot, argt;
1700 unsigned ObjSize;
1701 bool needsLoad = false;
1702 bool ArgLive = !I->use_empty();
1703 MVT::ValueType ObjectVT = getValueType(I->getType());
1704
1705 switch (ObjectVT) {
Chris Lattner915fb302005-08-30 00:19:00 +00001706 default: assert(0 && "Unhandled argument type!");
1707 case MVT::i1:
1708 case MVT::i8:
1709 case MVT::i16:
1710 case MVT::i32:
1711 ObjSize = 4;
1712 if (!ArgLive) break;
1713 if (GPR_remaining > 0) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001714 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001715 MF.addLiveIn(GPR[GPR_idx], VReg);
1716 argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Nate Begeman49296f12005-08-31 01:58:39 +00001717 if (ObjectVT != MVT::i32) {
1718 unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
1719 : ISD::AssertZext;
1720 argt = DAG.getNode(AssertOp, MVT::i32, argt,
1721 DAG.getValueType(ObjectVT));
1722 argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
1723 }
Chris Lattner915fb302005-08-30 00:19:00 +00001724 } else {
1725 needsLoad = true;
1726 }
1727 break;
Chris Lattner80720a92005-11-30 20:40:54 +00001728 case MVT::i64:
1729 ObjSize = 8;
Chris Lattner915fb302005-08-30 00:19:00 +00001730 if (!ArgLive) break;
1731 if (GPR_remaining > 0) {
1732 SDOperand argHi, argLo;
Nate Begeman1d9d7422005-10-18 00:28:58 +00001733 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001734 MF.addLiveIn(GPR[GPR_idx], VReg);
1735 argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Chris Lattner915fb302005-08-30 00:19:00 +00001736 // If we have two or more remaining argument registers, then both halves
1737 // of the i64 can be sourced from there. Otherwise, the lower half will
1738 // have to come off the stack. This can happen when an i64 is preceded
1739 // by 28 bytes of arguments.
1740 if (GPR_remaining > 1) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001741 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001742 MF.addLiveIn(GPR[GPR_idx+1], VReg);
1743 argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
Chris Lattner915fb302005-08-30 00:19:00 +00001744 } else {
1745 int FI = MFI->CreateFixedObject(4, ArgOffset+4);
1746 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1747 argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
1748 DAG.getSrcValue(NULL));
1749 }
1750 // Build the outgoing arg thingy
1751 argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
1752 newroot = argLo;
1753 } else {
1754 needsLoad = true;
1755 }
1756 break;
1757 case MVT::f32:
1758 case MVT::f64:
1759 ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
Chris Lattner413b9792006-01-11 18:21:25 +00001760 if (!ArgLive) {
1761 if (FPR_remaining > 0) {
1762 --FPR_remaining;
1763 ++FPR_idx;
1764 }
1765 break;
1766 }
Chris Lattner915fb302005-08-30 00:19:00 +00001767 if (FPR_remaining > 0) {
Chris Lattner919c0322005-10-01 01:35:02 +00001768 unsigned VReg;
1769 if (ObjectVT == MVT::f32)
Nate Begeman1d9d7422005-10-18 00:28:58 +00001770 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
Chris Lattner919c0322005-10-01 01:35:02 +00001771 else
Nate Begeman1d9d7422005-10-18 00:28:58 +00001772 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001773 MF.addLiveIn(FPR[FPR_idx], VReg);
1774 argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
Chris Lattner915fb302005-08-30 00:19:00 +00001775 --FPR_remaining;
1776 ++FPR_idx;
1777 } else {
1778 needsLoad = true;
1779 }
1780 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001781 }
1782
1783 // We need to load the argument to a virtual register if we determined above
1784 // that we ran out of physical registers of the appropriate type
1785 if (needsLoad) {
1786 unsigned SubregOffset = 0;
1787 if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
1788 if (ObjectVT == MVT::i16) SubregOffset = 2;
1789 int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1790 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1791 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
1792 DAG.getConstant(SubregOffset, MVT::i32));
1793 argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
1794 DAG.getSrcValue(NULL));
1795 }
1796
1797 // Every 4 bytes of argument space consumes one of the GPRs available for
1798 // argument passing.
1799 if (GPR_remaining > 0) {
1800 unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
1801 GPR_remaining -= delta;
1802 GPR_idx += delta;
1803 }
1804 ArgOffset += ObjSize;
1805 if (newroot.Val)
1806 DAG.setRoot(newroot.getValue(1));
1807
1808 ArgValues.push_back(argt);
1809 }
1810
1811 // If the function takes variable number of arguments, make a frame index for
1812 // the start of the first vararg value... for expansion of llvm.va_start.
1813 if (F.isVarArg()) {
1814 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1815 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
1816 // If this function is vararg, store any remaining integer argument regs
1817 // to their spots on the stack so that they may be loaded by deferencing the
1818 // result of va_next.
1819 std::vector<SDOperand> MemOps;
1820 for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001821 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001822 MF.addLiveIn(GPR[GPR_idx], VReg);
1823 SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001824 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
1825 Val, FIN, DAG.getSrcValue(NULL));
1826 MemOps.push_back(Store);
1827 // Increment the address by four for the next argument to store
1828 SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
1829 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
1830 }
Chris Lattner80720a92005-11-30 20:40:54 +00001831 if (!MemOps.empty()) {
1832 MemOps.push_back(DAG.getRoot());
1833 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
1834 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001835 }
1836
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001837 return ArgValues;
1838}
1839
1840std::pair<SDOperand, SDOperand>
Nate Begeman21e463b2005-10-16 05:39:50 +00001841PPCTargetLowering::LowerCallTo(SDOperand Chain,
1842 const Type *RetTy, bool isVarArg,
1843 unsigned CallingConv, bool isTailCall,
1844 SDOperand Callee, ArgListTy &Args,
1845 SelectionDAG &DAG) {
Chris Lattner281b55e2006-01-27 23:34:02 +00001846 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001847 // SelectExpr to use to put the arguments in the appropriate registers.
1848 std::vector<SDOperand> args_to_use;
1849
1850 // Count how many bytes are to be pushed on the stack, including the linkage
1851 // area, and parameter passing area.
1852 unsigned NumBytes = 24;
1853
1854 if (Args.empty()) {
Chris Lattner45b39762006-02-13 08:55:29 +00001855 Chain = DAG.getCALLSEQ_START(Chain,
1856 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001857 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001858 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001859 switch (getValueType(Args[i].second)) {
Chris Lattner915fb302005-08-30 00:19:00 +00001860 default: assert(0 && "Unknown value type!");
1861 case MVT::i1:
1862 case MVT::i8:
1863 case MVT::i16:
1864 case MVT::i32:
1865 case MVT::f32:
1866 NumBytes += 4;
1867 break;
1868 case MVT::i64:
1869 case MVT::f64:
1870 NumBytes += 8;
1871 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001872 }
Chris Lattner915fb302005-08-30 00:19:00 +00001873 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001874
Chris Lattner915fb302005-08-30 00:19:00 +00001875 // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1876 // plus 32 bytes of argument space in case any called code gets funky on us.
1877 // (Required by ABI to support var arg)
1878 if (NumBytes < 56) NumBytes = 56;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001879
1880 // Adjust the stack pointer for the new arguments...
1881 // These operations are automatically eliminated by the prolog/epilog pass
Chris Lattner45b39762006-02-13 08:55:29 +00001882 Chain = DAG.getCALLSEQ_START(Chain,
1883 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001884
1885 // Set up a copy of the stack pointer for use loading and storing any
1886 // arguments that may not fit in the registers available for argument
1887 // passing.
Chris Lattnera243db82006-01-11 19:55:07 +00001888 SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001889
1890 // Figure out which arguments are going to go in registers, and which in
1891 // memory. Also, if this is a vararg function, floating point operations
1892 // must be stored to our stack, and loaded into integer regs as well, if
1893 // any integer regs are available for argument passing.
1894 unsigned ArgOffset = 24;
1895 unsigned GPR_remaining = 8;
1896 unsigned FPR_remaining = 13;
1897
1898 std::vector<SDOperand> MemOps;
1899 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1900 // PtrOff will be used to store the current argument to the stack if a
1901 // register cannot be found for it.
1902 SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1903 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1904 MVT::ValueType ArgVT = getValueType(Args[i].second);
1905
1906 switch (ArgVT) {
Chris Lattner915fb302005-08-30 00:19:00 +00001907 default: assert(0 && "Unexpected ValueType for argument!");
1908 case MVT::i1:
1909 case MVT::i8:
1910 case MVT::i16:
1911 // Promote the integer to 32 bits. If the input type is signed use a
1912 // sign extend, otherwise use a zero extend.
1913 if (Args[i].second->isSigned())
1914 Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1915 else
1916 Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1917 // FALL THROUGH
1918 case MVT::i32:
1919 if (GPR_remaining > 0) {
1920 args_to_use.push_back(Args[i].first);
1921 --GPR_remaining;
1922 } else {
1923 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1924 Args[i].first, PtrOff,
1925 DAG.getSrcValue(NULL)));
1926 }
1927 ArgOffset += 4;
1928 break;
1929 case MVT::i64:
1930 // If we have one free GPR left, we can place the upper half of the i64
1931 // in it, and store the other half to the stack. If we have two or more
1932 // free GPRs, then we can pass both halves of the i64 in registers.
1933 if (GPR_remaining > 0) {
1934 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1935 Args[i].first, DAG.getConstant(1, MVT::i32));
1936 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1937 Args[i].first, DAG.getConstant(0, MVT::i32));
1938 args_to_use.push_back(Hi);
1939 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001940 if (GPR_remaining > 0) {
Chris Lattner915fb302005-08-30 00:19:00 +00001941 args_to_use.push_back(Lo);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001942 --GPR_remaining;
1943 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001944 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1945 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001946 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
Chris Lattner915fb302005-08-30 00:19:00 +00001947 Lo, PtrOff, DAG.getSrcValue(NULL)));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001948 }
Chris Lattner915fb302005-08-30 00:19:00 +00001949 } else {
1950 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1951 Args[i].first, PtrOff,
1952 DAG.getSrcValue(NULL)));
1953 }
1954 ArgOffset += 8;
1955 break;
1956 case MVT::f32:
1957 case MVT::f64:
1958 if (FPR_remaining > 0) {
1959 args_to_use.push_back(Args[i].first);
1960 --FPR_remaining;
1961 if (isVarArg) {
1962 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
1963 Args[i].first, PtrOff,
1964 DAG.getSrcValue(NULL));
1965 MemOps.push_back(Store);
1966 // Float varargs are always shadowed in available integer registers
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001967 if (GPR_remaining > 0) {
Chris Lattner915fb302005-08-30 00:19:00 +00001968 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1969 DAG.getSrcValue(NULL));
Chris Lattner1df74782005-11-17 18:30:17 +00001970 MemOps.push_back(Load.getValue(1));
Chris Lattner915fb302005-08-30 00:19:00 +00001971 args_to_use.push_back(Load);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001972 --GPR_remaining;
Chris Lattner915fb302005-08-30 00:19:00 +00001973 }
1974 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001975 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1976 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
Chris Lattner915fb302005-08-30 00:19:00 +00001977 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1978 DAG.getSrcValue(NULL));
Chris Lattner1df74782005-11-17 18:30:17 +00001979 MemOps.push_back(Load.getValue(1));
Chris Lattner915fb302005-08-30 00:19:00 +00001980 args_to_use.push_back(Load);
1981 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001982 }
1983 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001984 // If we have any FPRs remaining, we may also have GPRs remaining.
1985 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1986 // GPRs.
1987 if (GPR_remaining > 0) {
1988 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
1989 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001990 }
Chris Lattner915fb302005-08-30 00:19:00 +00001991 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
1992 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
1993 --GPR_remaining;
1994 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001995 }
Chris Lattner915fb302005-08-30 00:19:00 +00001996 } else {
1997 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1998 Args[i].first, PtrOff,
1999 DAG.getSrcValue(NULL)));
2000 }
2001 ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
2002 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002003 }
2004 }
2005 if (!MemOps.empty())
2006 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
2007 }
2008
2009 std::vector<MVT::ValueType> RetVals;
2010 MVT::ValueType RetTyVT = getValueType(RetTy);
Chris Lattnerf5059492005-09-02 01:24:55 +00002011 MVT::ValueType ActualRetTyVT = RetTyVT;
2012 if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
2013 ActualRetTyVT = MVT::i32; // Promote result to i32.
2014
Chris Lattnere00ebf02006-01-28 07:33:03 +00002015 if (RetTyVT == MVT::i64) {
2016 RetVals.push_back(MVT::i32);
2017 RetVals.push_back(MVT::i32);
2018 } else if (RetTyVT != MVT::isVoid) {
Chris Lattnerf5059492005-09-02 01:24:55 +00002019 RetVals.push_back(ActualRetTyVT);
Chris Lattnere00ebf02006-01-28 07:33:03 +00002020 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002021 RetVals.push_back(MVT::Other);
2022
Chris Lattner2823b3e2005-11-17 05:56:14 +00002023 // If the callee is a GlobalAddress node (quite common, every direct call is)
2024 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2025 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2026 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
2027
Chris Lattner281b55e2006-01-27 23:34:02 +00002028 std::vector<SDOperand> Ops;
2029 Ops.push_back(Chain);
2030 Ops.push_back(Callee);
2031 Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
2032 SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
Chris Lattnere00ebf02006-01-28 07:33:03 +00002033 Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002034 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
2035 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattnerf5059492005-09-02 01:24:55 +00002036 SDOperand RetVal = TheCall;
2037
2038 // If the result is a small value, add a note so that we keep track of the
2039 // information about whether it is sign or zero extended.
2040 if (RetTyVT != ActualRetTyVT) {
2041 RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
2042 MVT::i32, RetVal, DAG.getValueType(RetTyVT));
2043 RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
Chris Lattnere00ebf02006-01-28 07:33:03 +00002044 } else if (RetTyVT == MVT::i64) {
2045 RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
Chris Lattnerf5059492005-09-02 01:24:55 +00002046 }
2047
2048 return std::make_pair(RetVal, Chain);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002049}
2050
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002051MachineBasicBlock *
Nate Begeman21e463b2005-10-16 05:39:50 +00002052PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2053 MachineBasicBlock *BB) {
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002054 assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
Chris Lattner919c0322005-10-01 01:35:02 +00002055 MI->getOpcode() == PPC::SELECT_CC_F4 ||
Chris Lattner710ff322006-04-08 22:45:08 +00002056 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2057 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002058 "Unexpected instr type to insert");
2059
2060 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2061 // control-flow pattern. The incoming instruction knows the destination vreg
2062 // to set, the condition code register to branch on, the true/false values to
2063 // select between, and a branch opcode to use.
2064 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2065 ilist<MachineBasicBlock>::iterator It = BB;
2066 ++It;
2067
2068 // thisMBB:
2069 // ...
2070 // TrueVal = ...
2071 // cmpTY ccX, r1, r2
2072 // bCC copy1MBB
2073 // fallthrough --> copy0MBB
2074 MachineBasicBlock *thisMBB = BB;
2075 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2076 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2077 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2078 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2079 MachineFunction *F = BB->getParent();
2080 F->getBasicBlockList().insert(It, copy0MBB);
2081 F->getBasicBlockList().insert(It, sinkMBB);
Nate Begemanf15485a2006-03-27 01:32:24 +00002082 // Update machine-CFG edges by first adding all successors of the current
2083 // block to the new block which will contain the Phi node for the select.
2084 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2085 e = BB->succ_end(); i != e; ++i)
2086 sinkMBB->addSuccessor(*i);
2087 // Next, remove all successors of the current block, and add the true
2088 // and fallthrough blocks as its successors.
2089 while(!BB->succ_empty())
2090 BB->removeSuccessor(BB->succ_begin());
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002091 BB->addSuccessor(copy0MBB);
2092 BB->addSuccessor(sinkMBB);
2093
2094 // copy0MBB:
2095 // %FalseValue = ...
2096 // # fallthrough to sinkMBB
2097 BB = copy0MBB;
2098
2099 // Update machine-CFG edges
2100 BB->addSuccessor(sinkMBB);
2101
2102 // sinkMBB:
2103 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2104 // ...
2105 BB = sinkMBB;
2106 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2107 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2108 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2109
2110 delete MI; // The pseudo instruction is gone now.
2111 return BB;
2112}
2113
Chris Lattner1a635d62006-04-14 06:01:58 +00002114//===----------------------------------------------------------------------===//
2115// Target Optimization Hooks
2116//===----------------------------------------------------------------------===//
2117
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002118SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2119 DAGCombinerInfo &DCI) const {
2120 TargetMachine &TM = getTargetMachine();
2121 SelectionDAG &DAG = DCI.DAG;
2122 switch (N->getOpcode()) {
2123 default: break;
2124 case ISD::SINT_TO_FP:
2125 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002126 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2127 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2128 // We allow the src/dst to be either f32/f64, but the intermediate
2129 // type must be i64.
2130 if (N->getOperand(0).getValueType() == MVT::i64) {
2131 SDOperand Val = N->getOperand(0).getOperand(0);
2132 if (Val.getValueType() == MVT::f32) {
2133 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2134 DCI.AddToWorklist(Val.Val);
2135 }
2136
2137 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002138 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002139 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002140 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002141 if (N->getValueType(0) == MVT::f32) {
2142 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2143 DCI.AddToWorklist(Val.Val);
2144 }
2145 return Val;
2146 } else if (N->getOperand(0).getValueType() == MVT::i32) {
2147 // If the intermediate type is i32, we can avoid the load/store here
2148 // too.
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002149 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002150 }
2151 }
2152 break;
Chris Lattner51269842006-03-01 05:50:56 +00002153 case ISD::STORE:
2154 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2155 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2156 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2157 N->getOperand(1).getValueType() == MVT::i32) {
2158 SDOperand Val = N->getOperand(1).getOperand(0);
2159 if (Val.getValueType() == MVT::f32) {
2160 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2161 DCI.AddToWorklist(Val.Val);
2162 }
2163 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2164 DCI.AddToWorklist(Val.Val);
2165
2166 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2167 N->getOperand(2), N->getOperand(3));
2168 DCI.AddToWorklist(Val.Val);
2169 return Val;
2170 }
2171 break;
Chris Lattner4468c222006-03-31 06:02:07 +00002172 case PPCISD::VCMP: {
2173 // If a VCMPo node already exists with exactly the same operands as this
2174 // node, use its result instead of this node (VCMPo computes both a CR6 and
2175 // a normal output).
2176 //
2177 if (!N->getOperand(0).hasOneUse() &&
2178 !N->getOperand(1).hasOneUse() &&
2179 !N->getOperand(2).hasOneUse()) {
2180
2181 // Scan all of the users of the LHS, looking for VCMPo's that match.
2182 SDNode *VCMPoNode = 0;
2183
2184 SDNode *LHSN = N->getOperand(0).Val;
2185 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2186 UI != E; ++UI)
2187 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2188 (*UI)->getOperand(1) == N->getOperand(1) &&
2189 (*UI)->getOperand(2) == N->getOperand(2) &&
2190 (*UI)->getOperand(0) == N->getOperand(0)) {
2191 VCMPoNode = *UI;
2192 break;
2193 }
2194
2195 // If there are non-zero uses of the flag value, use the VCMPo node!
Chris Lattner33497cc2006-03-31 06:04:53 +00002196 if (VCMPoNode && !VCMPoNode->hasNUsesOfValue(0, 1))
Chris Lattner4468c222006-03-31 06:02:07 +00002197 return SDOperand(VCMPoNode, 0);
2198 }
2199 break;
2200 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002201 }
2202
2203 return SDOperand();
2204}
2205
Chris Lattner1a635d62006-04-14 06:01:58 +00002206//===----------------------------------------------------------------------===//
2207// Inline Assembly Support
2208//===----------------------------------------------------------------------===//
2209
Chris Lattnerbbe77de2006-04-02 06:26:07 +00002210void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2211 uint64_t Mask,
2212 uint64_t &KnownZero,
2213 uint64_t &KnownOne,
2214 unsigned Depth) const {
2215 KnownZero = 0;
2216 KnownOne = 0;
2217 switch (Op.getOpcode()) {
2218 default: break;
2219 case ISD::INTRINSIC_WO_CHAIN: {
2220 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2221 default: break;
2222 case Intrinsic::ppc_altivec_vcmpbfp_p:
2223 case Intrinsic::ppc_altivec_vcmpeqfp_p:
2224 case Intrinsic::ppc_altivec_vcmpequb_p:
2225 case Intrinsic::ppc_altivec_vcmpequh_p:
2226 case Intrinsic::ppc_altivec_vcmpequw_p:
2227 case Intrinsic::ppc_altivec_vcmpgefp_p:
2228 case Intrinsic::ppc_altivec_vcmpgtfp_p:
2229 case Intrinsic::ppc_altivec_vcmpgtsb_p:
2230 case Intrinsic::ppc_altivec_vcmpgtsh_p:
2231 case Intrinsic::ppc_altivec_vcmpgtsw_p:
2232 case Intrinsic::ppc_altivec_vcmpgtub_p:
2233 case Intrinsic::ppc_altivec_vcmpgtuh_p:
2234 case Intrinsic::ppc_altivec_vcmpgtuw_p:
2235 KnownZero = ~1U; // All bits but the low one are known to be zero.
2236 break;
2237 }
2238 }
2239 }
2240}
2241
2242
Chris Lattnerad3bc8d2006-02-07 20:16:30 +00002243/// getConstraintType - Given a constraint letter, return the type of
2244/// constraint it is for this target.
2245PPCTargetLowering::ConstraintType
2246PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2247 switch (ConstraintLetter) {
2248 default: break;
2249 case 'b':
2250 case 'r':
2251 case 'f':
2252 case 'v':
2253 case 'y':
2254 return C_RegisterClass;
2255 }
2256 return TargetLowering::getConstraintType(ConstraintLetter);
2257}
2258
2259
Chris Lattnerddc787d2006-01-31 19:20:21 +00002260std::vector<unsigned> PPCTargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00002261getRegClassForInlineAsmConstraint(const std::string &Constraint,
2262 MVT::ValueType VT) const {
Chris Lattnerddc787d2006-01-31 19:20:21 +00002263 if (Constraint.size() == 1) {
2264 switch (Constraint[0]) { // GCC RS6000 Constraint Letters
2265 default: break; // Unknown constriant letter
2266 case 'b':
2267 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2268 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2269 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2270 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2271 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2272 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2273 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2274 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2275 0);
2276 case 'r':
2277 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2278 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2279 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2280 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2281 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2282 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2283 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2284 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2285 0);
2286 case 'f':
2287 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2288 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2289 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2290 PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2291 PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2292 PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2293 PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2294 PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2295 0);
2296 case 'v':
2297 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2298 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2299 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2300 PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2301 PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2302 PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2303 PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2304 PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2305 0);
2306 case 'y':
2307 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2308 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2309 0);
2310 }
2311 }
2312
Chris Lattner1efa40f2006-02-22 00:56:39 +00002313 return std::vector<unsigned>();
Chris Lattnerddc787d2006-01-31 19:20:21 +00002314}
Chris Lattner763317d2006-02-07 00:47:13 +00002315
2316// isOperandValidForConstraint
2317bool PPCTargetLowering::
2318isOperandValidForConstraint(SDOperand Op, char Letter) {
2319 switch (Letter) {
2320 default: break;
2321 case 'I':
2322 case 'J':
2323 case 'K':
2324 case 'L':
2325 case 'M':
2326 case 'N':
2327 case 'O':
2328 case 'P': {
2329 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
2330 unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2331 switch (Letter) {
2332 default: assert(0 && "Unknown constraint letter!");
2333 case 'I': // "I" is a signed 16-bit constant.
2334 return (short)Value == (int)Value;
2335 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
2336 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
2337 return (short)Value == 0;
2338 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
2339 return (Value >> 16) == 0;
2340 case 'M': // "M" is a constant that is greater than 31.
2341 return Value > 31;
2342 case 'N': // "N" is a positive constant that is an exact power of two.
2343 return (int)Value > 0 && isPowerOf2_32(Value);
2344 case 'O': // "O" is the constant zero.
2345 return Value == 0;
2346 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
2347 return (short)-Value == (int)-Value;
2348 }
2349 break;
2350 }
2351 }
2352
2353 // Handle standard constraint letters.
2354 return TargetLowering::isOperandValidForConstraint(Op, Letter);
2355}
Evan Chengc4c62572006-03-13 23:20:37 +00002356
2357/// isLegalAddressImmediate - Return true if the integer value can be used
2358/// as the offset of the target addressing mode.
2359bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2360 // PPC allows a sign-extended 16-bit immediate field.
2361 return (V > -(1 << 16) && V < (1 << 16)-1);
2362}