blob: 3bc1c90e3101d345ec31abcd79ab4171ed09c76b [file] [log] [blame]
Nate Begeman1d9d7422005-10-18 00:28:58 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Nate Begeman21e463b2005-10-16 05:39:50 +000010// This file implements the PPCISelLowering class.
Chris Lattner7c5a3d32005-08-16 17:14:42 +000011//
12//===----------------------------------------------------------------------===//
13
Chris Lattner16e71f22005-10-14 23:59:06 +000014#include "PPCISelLowering.h"
15#include "PPCTargetMachine.h"
Chris Lattner59138102006-04-17 05:28:54 +000016#include "PPCPerfectShuffle.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000017#include "llvm/ADT/VectorExtras.h"
Evan Chengc4c62572006-03-13 23:20:37 +000018#include "llvm/Analysis/ScalarEvolutionExpressions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000019#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner8a2d3ca2005-08-26 21:23:58 +000021#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000022#include "llvm/CodeGen/SelectionDAG.h"
Chris Lattner7b738342005-09-13 19:33:40 +000023#include "llvm/CodeGen/SSARegMap.h"
Chris Lattner0b1e4e52005-08-26 17:36:52 +000024#include "llvm/Constants.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000025#include "llvm/Function.h"
Chris Lattner6d92cad2006-03-26 10:06:40 +000026#include "llvm/Intrinsics.h"
Nate Begeman750ac1b2006-02-01 07:19:44 +000027#include "llvm/Support/MathExtras.h"
Evan Chengd2ee2182006-02-18 00:08:58 +000028#include "llvm/Target/TargetOptions.h"
Chris Lattner7c5a3d32005-08-16 17:14:42 +000029using namespace llvm;
30
Nate Begeman21e463b2005-10-16 05:39:50 +000031PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
Chris Lattner7c5a3d32005-08-16 17:14:42 +000032 : TargetLowering(TM) {
33
34 // Fold away setcc operations if possible.
35 setSetCCIsExpensive();
Nate Begeman405e3ec2005-10-21 00:02:42 +000036 setPow2DivIsCheap();
Chris Lattner7c5a3d32005-08-16 17:14:42 +000037
Chris Lattnerd145a612005-09-27 22:18:25 +000038 // Use _setjmp/_longjmp instead of setjmp/longjmp.
39 setUseUnderscoreSetJmpLongJmp(true);
40
Chris Lattner7c5a3d32005-08-16 17:14:42 +000041 // Set up the register classes.
Nate Begeman1d9d7422005-10-18 00:28:58 +000042 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000045
Chris Lattnera54aa942006-01-29 06:26:08 +000046 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
48
Chris Lattner7c5a3d32005-08-16 17:14:42 +000049 // PowerPC has no intrinsics for these particular operations
50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58 // PowerPC has no SREM/UREM instructions
59 setOperationAction(ISD::SREM, MVT::i32, Expand);
60 setOperationAction(ISD::UREM, MVT::i32, Expand);
61
62 // We don't support sin/cos/sqrt/fmod
63 setOperationAction(ISD::FSIN , MVT::f64, Expand);
64 setOperationAction(ISD::FCOS , MVT::f64, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000065 setOperationAction(ISD::FREM , MVT::f64, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000066 setOperationAction(ISD::FSIN , MVT::f32, Expand);
67 setOperationAction(ISD::FCOS , MVT::f32, Expand);
Chris Lattner615c2d02005-09-28 22:29:58 +000068 setOperationAction(ISD::FREM , MVT::f32, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000069
70 // If we're enabling GP optimizations, use hardware square root
Chris Lattner1e9de3e2005-09-02 18:33:05 +000071 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +000072 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
74 }
75
Chris Lattner9601a862006-03-05 05:08:37 +000076 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
78
Nate Begemand88fc032006-01-14 03:14:10 +000079 // PowerPC does not have BSWAP, CTPOP or CTTZ
80 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +000081 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
82 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
83
Nate Begeman35ef9132006-01-11 21:21:00 +000084 // PowerPC does not have ROTR
85 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
86
Chris Lattner7c5a3d32005-08-16 17:14:42 +000087 // PowerPC does not have Select
88 setOperationAction(ISD::SELECT, MVT::i32, Expand);
89 setOperationAction(ISD::SELECT, MVT::f32, Expand);
90 setOperationAction(ISD::SELECT, MVT::f64, Expand);
Chris Lattnere4bc9ea2005-08-26 00:52:45 +000091
Chris Lattner0b1e4e52005-08-26 17:36:52 +000092 // PowerPC wants to turn select_cc of FP into fsel when possible.
93 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
Nate Begeman44775902006-01-31 08:17:29 +000095
Nate Begeman750ac1b2006-02-01 07:19:44 +000096 // PowerPC wants to optimize integer setcc a bit
Nate Begeman44775902006-01-31 08:17:29 +000097 setOperationAction(ISD::SETCC, MVT::i32, Custom);
Chris Lattnereb9b62e2005-08-31 19:09:57 +000098
Nate Begeman81e80972006-03-17 01:40:33 +000099 // PowerPC does not have BRCOND which requires SetCC
100 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000101
Chris Lattnerf7605322005-08-31 21:09:52 +0000102 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000104
Jim Laskeyad23c9d2005-08-17 00:40:22 +0000105 // PowerPC does not have [U|S]INT_TO_FP
106 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
108
Chris Lattner53e88452005-12-23 05:13:35 +0000109 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
111
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000112 // PowerPC does not have truncstore for i1.
113 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
Chris Lattnerf73bae12005-11-29 06:16:21 +0000114
Jim Laskeyabf6d172006-01-05 01:25:28 +0000115 // Support label based line numbers.
Chris Lattnerf73bae12005-11-29 06:16:21 +0000116 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
Jim Laskeye0bce712006-01-05 01:47:43 +0000117 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
Jim Laskeyabf6d172006-01-05 01:25:28 +0000118 // FIXME - use subtarget debug flags
Jim Laskeye0bce712006-01-05 01:47:43 +0000119 if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
Jim Laskeyabf6d172006-01-05 01:25:28 +0000120 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
Chris Lattnere6ec9f22005-09-10 00:21:06 +0000121
Nate Begeman28a6b022005-12-10 02:36:00 +0000122 // We want to legalize GlobalAddress and ConstantPool nodes into the
123 // appropriate instructions to materialize the address.
Chris Lattner3eef4e32005-11-17 18:26:56 +0000124 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
Nate Begeman28a6b022005-12-10 02:36:00 +0000125 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
Chris Lattnerb99329e2006-01-13 02:42:53 +0000126
Nate Begemanee625572006-01-27 21:09:22 +0000127 // RET must be custom lowered, to meet ABI requirements
128 setOperationAction(ISD::RET , MVT::Other, Custom);
129
Nate Begemanacc398c2006-01-25 18:21:52 +0000130 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
131 setOperationAction(ISD::VASTART , MVT::Other, Custom);
132
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000133 // Use the default implementation.
Nate Begemanacc398c2006-01-25 18:21:52 +0000134 setOperationAction(ISD::VAARG , MVT::Other, Expand);
135 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
136 setOperationAction(ISD::VAEND , MVT::Other, Expand);
Chris Lattnerb22c08b2006-01-15 09:02:48 +0000137 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
138 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
139 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
Chris Lattner860e8862005-11-17 07:30:41 +0000140
Chris Lattner6d92cad2006-03-26 10:06:40 +0000141 // We want to custom lower some of our intrinsics.
Chris Lattner48b61a72006-03-28 00:40:33 +0000142 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
Chris Lattner6d92cad2006-03-26 10:06:40 +0000143
Nate Begemanc09eeec2005-09-06 22:03:27 +0000144 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Nate Begeman1d9d7422005-10-18 00:28:58 +0000145 // They also have instructions for converting between i64 and fp.
Nate Begemanc09eeec2005-09-06 22:03:27 +0000146 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
147 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
Chris Lattner7fbcef72006-03-24 07:53:47 +0000148
149 // FIXME: disable this lowered code. This generates 64-bit register values,
150 // and we don't model the fact that the top part is clobbered by calls. We
151 // need to flag these together so that the value isn't live across a call.
152 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
153
Nate Begemanae749a92005-10-25 23:48:36 +0000154 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
155 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
156 } else {
Chris Lattner860e8862005-11-17 07:30:41 +0000157 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
Nate Begemanae749a92005-10-25 23:48:36 +0000158 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
Nate Begeman9d2b8172005-10-18 00:56:42 +0000159 }
160
161 if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
162 // 64 bit PowerPC implementations can support i64 types directly
163 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000164 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
165 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
Nate Begeman1d9d7422005-10-18 00:28:58 +0000166 } else {
167 // 32 bit PowerPC wants to expand i64 shifts itself.
168 setOperationAction(ISD::SHL, MVT::i64, Custom);
169 setOperationAction(ISD::SRL, MVT::i64, Custom);
170 setOperationAction(ISD::SRA, MVT::i64, Custom);
Nate Begemanc09eeec2005-09-06 22:03:27 +0000171 }
Evan Chengd30bf012006-03-01 01:11:20 +0000172
Nate Begeman425a9692005-11-29 08:17:20 +0000173 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000174 // First set operation action for all vector types to expand. Then we
175 // will selectively turn on ones that can be effectively codegen'd.
176 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
177 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000178 // add/sub are legal for all supported vector VT's.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000179 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
180 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000181
Chris Lattner7ff7e672006-04-04 17:25:31 +0000182 // We promote all shuffles to v16i8.
183 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000184 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
185
186 // We promote all non-typed operations to v4i32.
187 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
188 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
189 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
190 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
191 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
192 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
193 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
194 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
195 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
196 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
197 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
198 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000199
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000200 // No other operations are legal.
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000201 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
202 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
203 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
204 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
205 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
206 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
207 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
208 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattner01cae072006-04-03 23:55:43 +0000209
210 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000211 }
212
Chris Lattner7ff7e672006-04-04 17:25:31 +0000213 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
214 // with merges, splats, etc.
215 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
216
Chris Lattnerf3f69de2006-04-16 01:37:57 +0000217 setOperationAction(ISD::AND , MVT::v4i32, Legal);
218 setOperationAction(ISD::OR , MVT::v4i32, Legal);
219 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
220 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
221 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
222 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
223
Nate Begeman425a9692005-11-29 08:17:20 +0000224 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
Nate Begeman7fd1edd2005-12-19 23:25:09 +0000225 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
Chris Lattner8d052bc2006-03-25 07:39:07 +0000226 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
227 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
Chris Lattnerec4a0c72006-01-29 06:32:58 +0000228
Chris Lattnere3fea5a2006-03-31 19:52:36 +0000229 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
Chris Lattnere7c768e2006-04-18 03:24:30 +0000230 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000231
Chris Lattnerb2177b92006-03-19 06:55:52 +0000232 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
233 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000234
Chris Lattner541f91b2006-04-02 00:43:36 +0000235 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
236 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
Chris Lattner64b3a082006-03-24 07:48:08 +0000237 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
238 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
Nate Begeman425a9692005-11-29 08:17:20 +0000239 }
240
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000241 setSetCCResultContents(ZeroOrOneSetCCResult);
Chris Lattnercadd7422006-01-13 17:52:03 +0000242 setStackPointerRegisterToSaveRestore(PPC::R1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000243
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000244 // We have target-specific dag combine patterns for the following nodes:
245 setTargetDAGCombine(ISD::SINT_TO_FP);
Chris Lattner51269842006-03-01 05:50:56 +0000246 setTargetDAGCombine(ISD::STORE);
Chris Lattner8c13d0a2006-03-01 04:57:39 +0000247
Chris Lattner7c5a3d32005-08-16 17:14:42 +0000248 computeRegisterProperties();
249}
250
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000251const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
252 switch (Opcode) {
253 default: return 0;
254 case PPCISD::FSEL: return "PPCISD::FSEL";
255 case PPCISD::FCFID: return "PPCISD::FCFID";
256 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
257 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
Chris Lattner51269842006-03-01 05:50:56 +0000258 case PPCISD::STFIWX: return "PPCISD::STFIWX";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000259 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
260 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
Chris Lattnerf1d0b2b2006-03-20 01:53:53 +0000261 case PPCISD::VPERM: return "PPCISD::VPERM";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000262 case PPCISD::Hi: return "PPCISD::Hi";
263 case PPCISD::Lo: return "PPCISD::Lo";
264 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
265 case PPCISD::SRL: return "PPCISD::SRL";
266 case PPCISD::SRA: return "PPCISD::SRA";
267 case PPCISD::SHL: return "PPCISD::SHL";
Chris Lattnerecfe55e2006-03-22 05:30:33 +0000268 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
269 case PPCISD::STD_32: return "PPCISD::STD_32";
Chris Lattnere00ebf02006-01-28 07:33:03 +0000270 case PPCISD::CALL: return "PPCISD::CALL";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000271 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000272 case PPCISD::MFCR: return "PPCISD::MFCR";
Chris Lattnera17b1552006-03-31 05:13:27 +0000273 case PPCISD::VCMP: return "PPCISD::VCMP";
Chris Lattner6d92cad2006-03-26 10:06:40 +0000274 case PPCISD::VCMPo: return "PPCISD::VCMPo";
Chris Lattnerda6d20f2006-01-09 23:52:17 +0000275 }
276}
277
Chris Lattner1a635d62006-04-14 06:01:58 +0000278//===----------------------------------------------------------------------===//
279// Node matching predicates, for use by the tblgen matching code.
280//===----------------------------------------------------------------------===//
281
Chris Lattner0b1e4e52005-08-26 17:36:52 +0000282/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
283static bool isFloatingPointZero(SDOperand Op) {
284 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
285 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
286 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
287 // Maybe this has already been legalized into the constant pool?
288 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
289 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
290 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
291 }
292 return false;
293}
294
Chris Lattnerddb739e2006-04-06 17:23:16 +0000295/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
296/// true if Op is undef or if it matches the specified value.
297static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
298 return Op.getOpcode() == ISD::UNDEF ||
299 cast<ConstantSDNode>(Op)->getValue() == Val;
300}
301
302/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
303/// VPKUHUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000304bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
305 if (!isUnary) {
306 for (unsigned i = 0; i != 16; ++i)
307 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
308 return false;
309 } else {
310 for (unsigned i = 0; i != 8; ++i)
311 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
312 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
313 return false;
314 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000315 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000316}
317
318/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
319/// VPKUWUM instruction.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000320bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
321 if (!isUnary) {
322 for (unsigned i = 0; i != 16; i += 2)
323 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
324 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
325 return false;
326 } else {
327 for (unsigned i = 0; i != 8; i += 2)
328 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
329 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
330 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
331 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
332 return false;
333 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000334 return true;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000335}
336
Chris Lattnercaad1632006-04-06 22:02:42 +0000337/// isVMerge - Common function, used to match vmrg* shuffles.
338///
339static bool isVMerge(SDNode *N, unsigned UnitSize,
340 unsigned LHSStart, unsigned RHSStart) {
Chris Lattner116cc482006-04-06 21:11:54 +0000341 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
342 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
343 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
344 "Unsupported merge size!");
345
346 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
347 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
348 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000349 LHSStart+j+i*UnitSize) ||
Chris Lattner116cc482006-04-06 21:11:54 +0000350 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
Chris Lattnercaad1632006-04-06 22:02:42 +0000351 RHSStart+j+i*UnitSize))
Chris Lattner116cc482006-04-06 21:11:54 +0000352 return false;
353 }
Chris Lattnercaad1632006-04-06 22:02:42 +0000354 return true;
355}
356
357/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
358/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
359bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
360 if (!isUnary)
361 return isVMerge(N, UnitSize, 8, 24);
362 return isVMerge(N, UnitSize, 8, 8);
Chris Lattner116cc482006-04-06 21:11:54 +0000363}
364
365/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
366/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
Chris Lattnercaad1632006-04-06 22:02:42 +0000367bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
368 if (!isUnary)
369 return isVMerge(N, UnitSize, 0, 16);
370 return isVMerge(N, UnitSize, 0, 0);
Chris Lattner116cc482006-04-06 21:11:54 +0000371}
372
373
Chris Lattnerd0608e12006-04-06 18:26:28 +0000374/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
375/// amount, otherwise return -1.
Chris Lattnerf24380e2006-04-06 22:28:36 +0000376int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
Chris Lattner116cc482006-04-06 21:11:54 +0000377 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
378 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
Chris Lattnerd0608e12006-04-06 18:26:28 +0000379 // Find the first non-undef value in the shuffle mask.
380 unsigned i;
381 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
382 /*search*/;
383
384 if (i == 16) return -1; // all undef.
385
386 // Otherwise, check to see if the rest of the elements are consequtively
387 // numbered from this value.
388 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
389 if (ShiftAmt < i) return -1;
390 ShiftAmt -= i;
Chris Lattnerddb739e2006-04-06 17:23:16 +0000391
Chris Lattnerf24380e2006-04-06 22:28:36 +0000392 if (!isUnary) {
393 // Check the rest of the elements to see if they are consequtive.
394 for (++i; i != 16; ++i)
395 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
396 return -1;
397 } else {
398 // Check the rest of the elements to see if they are consequtive.
399 for (++i; i != 16; ++i)
400 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
401 return -1;
402 }
Chris Lattnerd0608e12006-04-06 18:26:28 +0000403
404 return ShiftAmt;
405}
Chris Lattneref819f82006-03-20 06:33:01 +0000406
407/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
408/// specifies a splat of a single element that is suitable for input to
409/// VSPLTB/VSPLTH/VSPLTW.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000410bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
411 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
412 N->getNumOperands() == 16 &&
413 (EltSize == 1 || EltSize == 2 || EltSize == 4));
Chris Lattnerdd4d2d02006-03-20 06:51:10 +0000414
Chris Lattner88a99ef2006-03-20 06:37:44 +0000415 // This is a splat operation if each element of the permute is the same, and
416 // if the value doesn't reference the second vector.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000417 unsigned ElementBase = 0;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000418 SDOperand Elt = N->getOperand(0);
Chris Lattner7ff7e672006-04-04 17:25:31 +0000419 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
420 ElementBase = EltV->getValue();
421 else
422 return false; // FIXME: Handle UNDEF elements too!
423
424 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
425 return false;
426
427 // Check that they are consequtive.
428 for (unsigned i = 1; i != EltSize; ++i) {
429 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
430 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
431 return false;
432 }
433
Chris Lattner88a99ef2006-03-20 06:37:44 +0000434 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000435 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
Chris Lattnerb097aa92006-04-14 23:19:08 +0000436 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000437 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
438 "Invalid VECTOR_SHUFFLE mask!");
Chris Lattner7ff7e672006-04-04 17:25:31 +0000439 for (unsigned j = 0; j != EltSize; ++j)
440 if (N->getOperand(i+j) != N->getOperand(j))
441 return false;
Chris Lattner88a99ef2006-03-20 06:37:44 +0000442 }
443
Chris Lattner7ff7e672006-04-04 17:25:31 +0000444 return true;
Chris Lattneref819f82006-03-20 06:33:01 +0000445}
446
447/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
448/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
Chris Lattner7ff7e672006-04-04 17:25:31 +0000449unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
450 assert(isSplatShuffleMask(N, EltSize));
451 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
Chris Lattneref819f82006-03-20 06:33:01 +0000452}
453
Chris Lattnere87192a2006-04-12 17:37:20 +0000454/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
Chris Lattner140a58f2006-04-08 06:46:53 +0000455/// by using a vspltis[bhw] instruction of the specified element size, return
456/// the constant being splatted. The ByteSize field indicates the number of
457/// bytes of each element [124] -> [bhw].
Chris Lattnere87192a2006-04-12 17:37:20 +0000458SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000459 SDOperand OpVal(0, 0);
Chris Lattner79d9a882006-04-08 07:14:26 +0000460
461 // If ByteSize of the splat is bigger than the element size of the
462 // build_vector, then we have a case where we are checking for a splat where
463 // multiple elements of the buildvector are folded together into a single
464 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
465 unsigned EltSize = 16/N->getNumOperands();
466 if (EltSize < ByteSize) {
467 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
468 SDOperand UniquedVals[4];
469 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
470
471 // See if all of the elements in the buildvector agree across.
472 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
473 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
474 // If the element isn't a constant, bail fully out.
475 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
476
477
478 if (UniquedVals[i&(Multiple-1)].Val == 0)
479 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
480 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
481 return SDOperand(); // no match.
482 }
483
484 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
485 // either constant or undef values that are identical for each chunk. See
486 // if these chunks can form into a larger vspltis*.
487
488 // Check to see if all of the leading entries are either 0 or -1. If
489 // neither, then this won't fit into the immediate field.
490 bool LeadingZero = true;
491 bool LeadingOnes = true;
492 for (unsigned i = 0; i != Multiple-1; ++i) {
493 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
494
495 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
496 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
497 }
498 // Finally, check the least significant entry.
499 if (LeadingZero) {
500 if (UniquedVals[Multiple-1].Val == 0)
501 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
502 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
503 if (Val < 16)
504 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
505 }
506 if (LeadingOnes) {
507 if (UniquedVals[Multiple-1].Val == 0)
508 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
509 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
510 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
511 return DAG.getTargetConstant(Val, MVT::i32);
512 }
513
514 return SDOperand();
515 }
516
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000517 // Check to see if this buildvec has a single non-undef value in its elements.
518 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
519 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
520 if (OpVal.Val == 0)
521 OpVal = N->getOperand(i);
522 else if (OpVal != N->getOperand(i))
Chris Lattner140a58f2006-04-08 06:46:53 +0000523 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000524 }
525
Chris Lattner140a58f2006-04-08 06:46:53 +0000526 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000527
Nate Begeman98e70cc2006-03-28 04:15:58 +0000528 unsigned ValSizeInBytes = 0;
529 uint64_t Value = 0;
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000530 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
531 Value = CN->getValue();
532 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
533 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
534 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
535 Value = FloatToBits(CN->getValue());
536 ValSizeInBytes = 4;
537 }
538
539 // If the splat value is larger than the element value, then we can never do
540 // this splat. The only case that we could fit the replicated bits into our
541 // immediate field for would be zero, and we prefer to use vxor for it.
Chris Lattner140a58f2006-04-08 06:46:53 +0000542 if (ValSizeInBytes < ByteSize) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000543
544 // If the element value is larger than the splat value, cut it in half and
545 // check to see if the two halves are equal. Continue doing this until we
546 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
547 while (ValSizeInBytes > ByteSize) {
548 ValSizeInBytes >>= 1;
549
550 // If the top half equals the bottom half, we're still ok.
Chris Lattner9b42bdd2006-04-05 17:39:25 +0000551 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
552 (Value & ((1 << (8*ValSizeInBytes))-1)))
Chris Lattner140a58f2006-04-08 06:46:53 +0000553 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000554 }
555
556 // Properly sign extend the value.
557 int ShAmt = (4-ByteSize)*8;
558 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
559
Evan Cheng5b6a01b2006-03-26 09:52:32 +0000560 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
Chris Lattner140a58f2006-04-08 06:46:53 +0000561 if (MaskVal == 0) return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000562
Chris Lattner140a58f2006-04-08 06:46:53 +0000563 // Finally, if this value fits in a 5 bit sext field, return it
564 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
565 return DAG.getTargetConstant(MaskVal, MVT::i32);
566 return SDOperand();
Chris Lattner9c61dcf2006-03-25 06:12:06 +0000567}
568
Chris Lattner1a635d62006-04-14 06:01:58 +0000569//===----------------------------------------------------------------------===//
570// LowerOperation implementation
571//===----------------------------------------------------------------------===//
572
573static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
574 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
575 Constant *C = CP->get();
576 SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
577 SDOperand Zero = DAG.getConstant(0, MVT::i32);
578
579 const TargetMachine &TM = DAG.getTarget();
580
581 // If this is a non-darwin platform, we don't support non-static relo models
582 // yet.
583 if (TM.getRelocationModel() == Reloc::Static ||
584 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
585 // Generate non-pic code that has direct accesses to the constant pool.
586 // The address of the global is just (hi(&g)+lo(&g)).
587 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
588 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
589 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
590 }
591
592 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
593 if (TM.getRelocationModel() == Reloc::PIC) {
594 // With PIC, the first instruction is actually "GR+hi(&G)".
595 Hi = DAG.getNode(ISD::ADD, MVT::i32,
596 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
597 }
598
599 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
600 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
601 return Lo;
602}
603
604static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
605 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
606 GlobalValue *GV = GSDN->getGlobal();
607 SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
608 SDOperand Zero = DAG.getConstant(0, MVT::i32);
609
610 const TargetMachine &TM = DAG.getTarget();
611
612 // If this is a non-darwin platform, we don't support non-static relo models
613 // yet.
614 if (TM.getRelocationModel() == Reloc::Static ||
615 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
616 // Generate non-pic code that has direct accesses to globals.
617 // The address of the global is just (hi(&g)+lo(&g)).
618 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
619 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
620 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
621 }
622
623 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
624 if (TM.getRelocationModel() == Reloc::PIC) {
625 // With PIC, the first instruction is actually "GR+hi(&G)".
626 Hi = DAG.getNode(ISD::ADD, MVT::i32,
627 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
628 }
629
630 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
631 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
632
633 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
634 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
635 return Lo;
636
637 // If the global is weak or external, we have to go through the lazy
638 // resolution stub.
639 return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
640}
641
642static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
643 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
644
645 // If we're comparing for equality to zero, expose the fact that this is
646 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
647 // fold the new nodes.
648 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
649 if (C->isNullValue() && CC == ISD::SETEQ) {
650 MVT::ValueType VT = Op.getOperand(0).getValueType();
651 SDOperand Zext = Op.getOperand(0);
652 if (VT < MVT::i32) {
653 VT = MVT::i32;
654 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
655 }
656 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
657 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
658 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
659 DAG.getConstant(Log2b, MVT::i32));
660 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
661 }
662 // Leave comparisons against 0 and -1 alone for now, since they're usually
663 // optimized. FIXME: revisit this when we can custom lower all setcc
664 // optimizations.
665 if (C->isAllOnesValue() || C->isNullValue())
666 return SDOperand();
667 }
668
669 // If we have an integer seteq/setne, turn it into a compare against zero
670 // by subtracting the rhs from the lhs, which is faster than setting a
671 // condition register, reading it back out, and masking the correct bit.
672 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
673 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
674 MVT::ValueType VT = Op.getValueType();
675 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
676 Op.getOperand(1));
677 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
678 }
679 return SDOperand();
680}
681
682static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
683 unsigned VarArgsFrameIndex) {
684 // vastart just stores the address of the VarArgsFrameIndex slot into the
685 // memory location argument.
686 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
687 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
688 Op.getOperand(1), Op.getOperand(2));
689}
690
691static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
692 SDOperand Copy;
693 switch(Op.getNumOperands()) {
694 default:
695 assert(0 && "Do not know how to return this many arguments!");
696 abort();
697 case 1:
698 return SDOperand(); // ret void is legal
699 case 2: {
700 MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
701 unsigned ArgReg;
702 if (MVT::isVector(ArgVT))
703 ArgReg = PPC::V2;
704 else if (MVT::isInteger(ArgVT))
705 ArgReg = PPC::R3;
706 else {
707 assert(MVT::isFloatingPoint(ArgVT));
708 ArgReg = PPC::F1;
709 }
710
711 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
712 SDOperand());
713
714 // If we haven't noted the R3/F1 are live out, do so now.
715 if (DAG.getMachineFunction().liveout_empty())
716 DAG.getMachineFunction().addLiveOut(ArgReg);
717 break;
718 }
719 case 3:
720 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
721 SDOperand());
722 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
723 // If we haven't noted the R3+R4 are live out, do so now.
724 if (DAG.getMachineFunction().liveout_empty()) {
725 DAG.getMachineFunction().addLiveOut(PPC::R3);
726 DAG.getMachineFunction().addLiveOut(PPC::R4);
727 }
728 break;
729 }
730 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
731}
732
733/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
734/// possible.
735static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
736 // Not FP? Not a fsel.
737 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
738 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
739 return SDOperand();
740
741 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
742
743 // Cannot handle SETEQ/SETNE.
744 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
745
746 MVT::ValueType ResVT = Op.getValueType();
747 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
748 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
749 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
750
751 // If the RHS of the comparison is a 0.0, we don't need to do the
752 // subtraction at all.
753 if (isFloatingPointZero(RHS))
754 switch (CC) {
755 default: break; // SETUO etc aren't handled by fsel.
756 case ISD::SETULT:
757 case ISD::SETLT:
758 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
759 case ISD::SETUGE:
760 case ISD::SETGE:
761 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
762 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
763 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
764 case ISD::SETUGT:
765 case ISD::SETGT:
766 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
767 case ISD::SETULE:
768 case ISD::SETLE:
769 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
770 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
771 return DAG.getNode(PPCISD::FSEL, ResVT,
772 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
773 }
774
775 SDOperand Cmp;
776 switch (CC) {
777 default: break; // SETUO etc aren't handled by fsel.
778 case ISD::SETULT:
779 case ISD::SETLT:
780 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
781 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
782 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
783 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
784 case ISD::SETUGE:
785 case ISD::SETGE:
786 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
787 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
788 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
789 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
790 case ISD::SETUGT:
791 case ISD::SETGT:
792 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
793 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
794 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
795 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
796 case ISD::SETULE:
797 case ISD::SETLE:
798 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
799 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
800 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
801 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
802 }
803 return SDOperand();
804}
805
806static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
807 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
808 SDOperand Src = Op.getOperand(0);
809 if (Src.getValueType() == MVT::f32)
810 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
811
812 SDOperand Tmp;
813 switch (Op.getValueType()) {
814 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
815 case MVT::i32:
816 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
817 break;
818 case MVT::i64:
819 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
820 break;
821 }
822
823 // Convert the FP value to an int value through memory.
824 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
825 if (Op.getValueType() == MVT::i32)
826 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
827 return Bits;
828}
829
830static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
831 if (Op.getOperand(0).getValueType() == MVT::i64) {
832 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
833 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
834 if (Op.getValueType() == MVT::f32)
835 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
836 return FP;
837 }
838
839 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
840 "Unhandled SINT_TO_FP type in custom expander!");
841 // Since we only generate this in 64-bit mode, we can take advantage of
842 // 64-bit registers. In particular, sign extend the input value into the
843 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
844 // then lfd it and fcfid it.
845 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
846 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
847 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
848
849 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
850 Op.getOperand(0));
851
852 // STD the extended value into the stack slot.
853 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
854 DAG.getEntryNode(), Ext64, FIdx,
855 DAG.getSrcValue(NULL));
856 // Load the value as a double.
857 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
858
859 // FCFID it and return it.
860 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
861 if (Op.getValueType() == MVT::f32)
862 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
863 return FP;
864}
865
866static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
867 assert(Op.getValueType() == MVT::i64 &&
868 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
869 // The generic code does a fine job expanding shift by a constant.
870 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
871
872 // Otherwise, expand into a bunch of logical ops. Note that these ops
873 // depend on the PPC behavior for oversized shift amounts.
874 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
875 DAG.getConstant(0, MVT::i32));
876 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
877 DAG.getConstant(1, MVT::i32));
878 SDOperand Amt = Op.getOperand(1);
879
880 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
881 DAG.getConstant(32, MVT::i32), Amt);
882 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
883 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
884 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
885 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
886 DAG.getConstant(-32U, MVT::i32));
887 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
888 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
889 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
890 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
891}
892
893static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
894 assert(Op.getValueType() == MVT::i64 &&
895 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
896 // The generic code does a fine job expanding shift by a constant.
897 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
898
899 // Otherwise, expand into a bunch of logical ops. Note that these ops
900 // depend on the PPC behavior for oversized shift amounts.
901 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
902 DAG.getConstant(0, MVT::i32));
903 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
904 DAG.getConstant(1, MVT::i32));
905 SDOperand Amt = Op.getOperand(1);
906
907 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
908 DAG.getConstant(32, MVT::i32), Amt);
909 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
910 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
911 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
912 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
913 DAG.getConstant(-32U, MVT::i32));
914 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
915 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
916 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
917 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
918}
919
920static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
921 assert(Op.getValueType() == MVT::i64 &&
922 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
923 // The generic code does a fine job expanding shift by a constant.
924 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
925
926 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
927 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
928 DAG.getConstant(0, MVT::i32));
929 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
930 DAG.getConstant(1, MVT::i32));
931 SDOperand Amt = Op.getOperand(1);
932
933 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
934 DAG.getConstant(32, MVT::i32), Amt);
935 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
936 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
937 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
938 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
939 DAG.getConstant(-32U, MVT::i32));
940 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
941 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
942 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
943 Tmp4, Tmp6, ISD::SETLE);
944 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
945}
946
947//===----------------------------------------------------------------------===//
948// Vector related lowering.
949//
950
Chris Lattnerac225ca2006-04-12 19:07:14 +0000951// If this is a vector of constants or undefs, get the bits. A bit in
952// UndefBits is set if the corresponding element of the vector is an
953// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
954// zero. Return true if this is not an array of constants, false if it is.
955//
Chris Lattnerac225ca2006-04-12 19:07:14 +0000956static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
957 uint64_t UndefBits[2]) {
958 // Start with zero'd results.
959 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
960
961 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
962 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
963 SDOperand OpVal = BV->getOperand(i);
964
965 unsigned PartNo = i >= e/2; // In the upper 128 bits?
Chris Lattnerb17f1672006-04-16 01:01:29 +0000966 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
Chris Lattnerac225ca2006-04-12 19:07:14 +0000967
968 uint64_t EltBits = 0;
969 if (OpVal.getOpcode() == ISD::UNDEF) {
970 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
971 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
972 continue;
973 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
974 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
975 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
976 assert(CN->getValueType(0) == MVT::f32 &&
977 "Only one legal FP vector type!");
978 EltBits = FloatToBits(CN->getValue());
979 } else {
980 // Nonconstant element.
981 return true;
982 }
983
984 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
985 }
986
987 //printf("%llx %llx %llx %llx\n",
988 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
989 return false;
990}
Chris Lattneref819f82006-03-20 06:33:01 +0000991
Chris Lattnerb17f1672006-04-16 01:01:29 +0000992// If this is a splat (repetition) of a value across the whole vector, return
993// the smallest size that splats it. For example, "0x01010101010101..." is a
994// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
995// SplatSize = 1 byte.
996static bool isConstantSplat(const uint64_t Bits128[2],
997 const uint64_t Undef128[2],
998 unsigned &SplatBits, unsigned &SplatUndef,
999 unsigned &SplatSize) {
1000
1001 // Don't let undefs prevent splats from matching. See if the top 64-bits are
1002 // the same as the lower 64-bits, ignoring undefs.
1003 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1004 return false; // Can't be a splat if two pieces don't match.
1005
1006 uint64_t Bits64 = Bits128[0] | Bits128[1];
1007 uint64_t Undef64 = Undef128[0] & Undef128[1];
1008
1009 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1010 // undefs.
1011 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1012 return false; // Can't be a splat if two pieces don't match.
1013
1014 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1015 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1016
1017 // If the top 16-bits are different than the lower 16-bits, ignoring
1018 // undefs, we have an i32 splat.
1019 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1020 SplatBits = Bits32;
1021 SplatUndef = Undef32;
1022 SplatSize = 4;
1023 return true;
1024 }
1025
1026 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
1027 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1028
1029 // If the top 8-bits are different than the lower 8-bits, ignoring
1030 // undefs, we have an i16 splat.
1031 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1032 SplatBits = Bits16;
1033 SplatUndef = Undef16;
1034 SplatSize = 2;
1035 return true;
1036 }
1037
1038 // Otherwise, we have an 8-bit splat.
1039 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
1040 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1041 SplatSize = 1;
1042 return true;
1043}
1044
Chris Lattner4a998b92006-04-17 06:00:21 +00001045/// BuildSplatI - Build a canonical splati of Val with an element size of
1046/// SplatSize. Cast the result to VT.
1047static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1048 SelectionDAG &DAG) {
1049 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
Chris Lattner6876e662006-04-17 06:58:41 +00001050
1051 // Force vspltis[hw] -1 to vspltisb -1.
1052 if (Val == -1) SplatSize = 1;
1053
Chris Lattner4a998b92006-04-17 06:00:21 +00001054 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1055 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1056 };
1057 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1058
1059 // Build a canonical splat for this value.
1060 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1061 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1062 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1063 return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1064}
1065
Chris Lattnere7c768e2006-04-18 03:24:30 +00001066/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
Chris Lattner6876e662006-04-17 06:58:41 +00001067/// specified intrinsic ID.
Chris Lattnere7c768e2006-04-18 03:24:30 +00001068static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1069 SelectionDAG &DAG,
1070 MVT::ValueType DestVT = MVT::Other) {
1071 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1072 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
Chris Lattner6876e662006-04-17 06:58:41 +00001073 DAG.getConstant(IID, MVT::i32), LHS, RHS);
1074}
1075
Chris Lattnere7c768e2006-04-18 03:24:30 +00001076/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1077/// specified intrinsic ID.
1078static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1079 SDOperand Op2, SelectionDAG &DAG,
1080 MVT::ValueType DestVT = MVT::Other) {
1081 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1082 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1083 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1084}
1085
1086
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001087/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1088/// amount. The result has the specified value type.
1089static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1090 MVT::ValueType VT, SelectionDAG &DAG) {
1091 // Force LHS/RHS to be the right type.
1092 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1093 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1094
1095 std::vector<SDOperand> Ops;
1096 for (unsigned i = 0; i != 16; ++i)
1097 Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1098 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1099 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1100 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1101}
1102
Chris Lattnerf1b47082006-04-14 05:19:18 +00001103// If this is a case we can't handle, return null and let the default
1104// expansion code take care of it. If we CAN select this case, and if it
1105// selects to a single instruction, return Op. Otherwise, if we can codegen
1106// this case more efficiently than a constant pool load, lower it to the
1107// sequence of ops that should be used.
1108static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1109 // If this is a vector of constants or undefs, get the bits. A bit in
1110 // UndefBits is set if the corresponding element of the vector is an
1111 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1112 // zero.
1113 uint64_t VectorBits[2];
1114 uint64_t UndefBits[2];
1115 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1116 return SDOperand(); // Not a constant vector.
1117
Chris Lattnerb17f1672006-04-16 01:01:29 +00001118 // If this is a splat (repetition) of a value across the whole vector, return
1119 // the smallest size that splats it. For example, "0x01010101010101..." is a
1120 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1121 // SplatSize = 1 byte.
1122 unsigned SplatBits, SplatUndef, SplatSize;
1123 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1124 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1125
1126 // First, handle single instruction cases.
1127
1128 // All zeros?
1129 if (SplatBits == 0) {
1130 // Canonicalize all zero vectors to be v4i32.
1131 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1132 SDOperand Z = DAG.getConstant(0, MVT::i32);
1133 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1134 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1135 }
1136 return Op;
Chris Lattnerf1b47082006-04-14 05:19:18 +00001137 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001138
1139 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1140 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
Chris Lattner4a998b92006-04-17 06:00:21 +00001141 if (SextVal >= -16 && SextVal <= 15)
1142 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
Chris Lattnerb17f1672006-04-16 01:01:29 +00001143
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001144
1145 // Two instruction sequences.
1146
Chris Lattner4a998b92006-04-17 06:00:21 +00001147 // If this value is in the range [-32,30] and is even, use:
1148 // tmp = VSPLTI[bhw], result = add tmp, tmp
1149 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1150 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1151 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1152 }
Chris Lattner6876e662006-04-17 06:58:41 +00001153
1154 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
1155 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
1156 // for fneg/fabs.
1157 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1158 // Make -1 and vspltisw -1:
1159 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1160
1161 // Make the VSLW intrinsic, computing 0x8000_0000.
Chris Lattnere7c768e2006-04-18 03:24:30 +00001162 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1163 OnesV, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001164
1165 // xor by OnesV to invert it.
1166 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1167 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1168 }
1169
1170 // Check to see if this is a wide variety of vsplti*, binop self cases.
1171 unsigned SplatBitSize = SplatSize*8;
1172 static const char SplatCsts[] = {
1173 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001174 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
Chris Lattner6876e662006-04-17 06:58:41 +00001175 };
1176 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1177 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1178 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
1179 int i = SplatCsts[idx];
1180
1181 // Figure out what shift amount will be used by altivec if shifted by i in
1182 // this splat size.
1183 unsigned TypeShiftAmt = i & (SplatBitSize-1);
1184
1185 // vsplti + shl self.
1186 if (SextVal == (i << (int)TypeShiftAmt)) {
1187 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1188 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1189 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1190 Intrinsic::ppc_altivec_vslw
1191 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001192 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001193 }
1194
1195 // vsplti + srl self.
1196 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1197 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1198 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1199 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1200 Intrinsic::ppc_altivec_vsrw
1201 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001202 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001203 }
1204
1205 // vsplti + sra self.
1206 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1207 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1208 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1209 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1210 Intrinsic::ppc_altivec_vsraw
1211 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001212 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattner6876e662006-04-17 06:58:41 +00001213 }
1214
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001215 // vsplti + rol self.
1216 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1217 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1218 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1219 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1220 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1221 Intrinsic::ppc_altivec_vrlw
1222 };
Chris Lattnere7c768e2006-04-18 03:24:30 +00001223 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001224 }
1225
1226 // t = vsplti c, result = vsldoi t, t, 1
1227 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1228 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1229 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1230 }
1231 // t = vsplti c, result = vsldoi t, t, 2
1232 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1233 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1234 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1235 }
1236 // t = vsplti c, result = vsldoi t, t, 3
1237 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1238 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1239 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1240 }
Chris Lattner6876e662006-04-17 06:58:41 +00001241 }
1242
Chris Lattner6876e662006-04-17 06:58:41 +00001243 // Three instruction sequences.
1244
Chris Lattnerdbce85d2006-04-17 18:09:22 +00001245 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
1246 if (SextVal >= 0 && SextVal <= 31) {
1247 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1248 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1249 return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1250 }
1251 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
1252 if (SextVal >= -31 && SextVal <= 0) {
1253 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1254 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
Chris Lattnerc4083822006-04-17 06:07:44 +00001255 return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
Chris Lattnerf1b47082006-04-14 05:19:18 +00001256 }
1257 }
Chris Lattnerb17f1672006-04-16 01:01:29 +00001258
Chris Lattnerf1b47082006-04-14 05:19:18 +00001259 return SDOperand();
1260}
1261
Chris Lattner59138102006-04-17 05:28:54 +00001262/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1263/// the specified operations to build the shuffle.
1264static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1265 SDOperand RHS, SelectionDAG &DAG) {
1266 unsigned OpNum = (PFEntry >> 26) & 0x0F;
1267 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
1268 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
1269
1270 enum {
1271 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1272 OP_VMRGHW,
1273 OP_VMRGLW,
1274 OP_VSPLTISW0,
1275 OP_VSPLTISW1,
1276 OP_VSPLTISW2,
1277 OP_VSPLTISW3,
1278 OP_VSLDOI4,
1279 OP_VSLDOI8,
1280 OP_VSLDOI12,
1281 };
1282
1283 if (OpNum == OP_COPY) {
1284 if (LHSID == (1*9+2)*9+3) return LHS;
1285 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1286 return RHS;
1287 }
1288
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001289 SDOperand OpLHS, OpRHS;
1290 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1291 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1292
Chris Lattner59138102006-04-17 05:28:54 +00001293 unsigned ShufIdxs[16];
1294 switch (OpNum) {
1295 default: assert(0 && "Unknown i32 permute!");
1296 case OP_VMRGHW:
1297 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
1298 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1299 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
1300 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1301 break;
1302 case OP_VMRGLW:
1303 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1304 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1305 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1306 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1307 break;
1308 case OP_VSPLTISW0:
1309 for (unsigned i = 0; i != 16; ++i)
1310 ShufIdxs[i] = (i&3)+0;
1311 break;
1312 case OP_VSPLTISW1:
1313 for (unsigned i = 0; i != 16; ++i)
1314 ShufIdxs[i] = (i&3)+4;
1315 break;
1316 case OP_VSPLTISW2:
1317 for (unsigned i = 0; i != 16; ++i)
1318 ShufIdxs[i] = (i&3)+8;
1319 break;
1320 case OP_VSPLTISW3:
1321 for (unsigned i = 0; i != 16; ++i)
1322 ShufIdxs[i] = (i&3)+12;
1323 break;
1324 case OP_VSLDOI4:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001325 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001326 case OP_VSLDOI8:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001327 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001328 case OP_VSLDOI12:
Chris Lattnerbdd558c2006-04-17 17:55:10 +00001329 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
Chris Lattner59138102006-04-17 05:28:54 +00001330 }
1331 std::vector<SDOperand> Ops;
1332 for (unsigned i = 0; i != 16; ++i)
1333 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
Chris Lattner59138102006-04-17 05:28:54 +00001334
1335 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1336 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1337}
1338
Chris Lattnerf1b47082006-04-14 05:19:18 +00001339/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
1340/// is a shuffle we can handle in a single instruction, return it. Otherwise,
1341/// return the code it can be lowered into. Worst case, it can always be
1342/// lowered into a vperm.
1343static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1344 SDOperand V1 = Op.getOperand(0);
1345 SDOperand V2 = Op.getOperand(1);
1346 SDOperand PermMask = Op.getOperand(2);
1347
1348 // Cases that are handled by instructions that take permute immediates
1349 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1350 // selected by the instruction selector.
1351 if (V2.getOpcode() == ISD::UNDEF) {
1352 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1353 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1354 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1355 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1356 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1357 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1358 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1359 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1360 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1361 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1362 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1363 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1364 return Op;
1365 }
1366 }
1367
1368 // Altivec has a variety of "shuffle immediates" that take two vector inputs
1369 // and produce a fixed permutation. If any of these match, do not lower to
1370 // VPERM.
1371 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1372 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1373 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1374 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1375 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1376 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1377 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1378 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1379 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1380 return Op;
1381
Chris Lattner59138102006-04-17 05:28:54 +00001382 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
1383 // perfect shuffle table to emit an optimal matching sequence.
1384 unsigned PFIndexes[4];
1385 bool isFourElementShuffle = true;
1386 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1387 unsigned EltNo = 8; // Start out undef.
1388 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
1389 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1390 continue; // Undef, ignore it.
1391
1392 unsigned ByteSource =
1393 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1394 if ((ByteSource & 3) != j) {
1395 isFourElementShuffle = false;
1396 break;
1397 }
1398
1399 if (EltNo == 8) {
1400 EltNo = ByteSource/4;
1401 } else if (EltNo != ByteSource/4) {
1402 isFourElementShuffle = false;
1403 break;
1404 }
1405 }
1406 PFIndexes[i] = EltNo;
1407 }
1408
1409 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1410 // perfect shuffle vector to determine if it is cost effective to do this as
1411 // discrete instructions, or whether we should use a vperm.
1412 if (isFourElementShuffle) {
1413 // Compute the index in the perfect shuffle table.
1414 unsigned PFTableIndex =
1415 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1416
1417 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1418 unsigned Cost = (PFEntry >> 30);
1419
1420 // Determining when to avoid vperm is tricky. Many things affect the cost
1421 // of vperm, particularly how many times the perm mask needs to be computed.
1422 // For example, if the perm mask can be hoisted out of a loop or is already
1423 // used (perhaps because there are multiple permutes with the same shuffle
1424 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
1425 // the loop requires an extra register.
1426 //
1427 // As a compromise, we only emit discrete instructions if the shuffle can be
1428 // generated in 3 or fewer operations. When we have loop information
1429 // available, if this block is within a loop, we should avoid using vperm
1430 // for 3-operation perms and use a constant pool load instead.
1431 if (Cost < 3)
1432 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1433 }
Chris Lattnerf1b47082006-04-14 05:19:18 +00001434
1435 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1436 // vector that will get spilled to the constant pool.
1437 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1438
1439 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1440 // that it is in input element units, not in bytes. Convert now.
1441 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1442 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1443
1444 std::vector<SDOperand> ResultMask;
1445 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
Chris Lattner730b4562006-04-15 23:48:05 +00001446 unsigned SrcElt;
1447 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1448 SrcElt = 0;
1449 else
1450 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
Chris Lattnerf1b47082006-04-14 05:19:18 +00001451
1452 for (unsigned j = 0; j != BytesPerElement; ++j)
1453 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1454 MVT::i8));
1455 }
1456
1457 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1458 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1459}
1460
Chris Lattner1a635d62006-04-14 06:01:58 +00001461/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1462/// lower, do it, otherwise return null.
1463static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1464 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getValue();
1465
1466 // If this is a lowered altivec predicate compare, CompareOpc is set to the
1467 // opcode number of the comparison.
1468 int CompareOpc = -1;
1469 bool isDot = false;
1470 switch (IntNo) {
1471 default: return SDOperand(); // Don't custom lower most intrinsics.
1472 // Comparison predicates.
1473 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
1474 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1475 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
1476 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
1477 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1478 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1479 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1480 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1481 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1482 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1483 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1484 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1485 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1486
1487 // Normal Comparisons.
1488 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
1489 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
1490 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
1491 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
1492 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
1493 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
1494 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
1495 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
1496 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
1497 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
1498 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
1499 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
1500 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
1501 }
1502
1503 assert(CompareOpc>0 && "We only lower altivec predicate compares so far!");
1504
1505 // If this is a non-dot comparison, make the VCMP node.
1506 if (!isDot) {
1507 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1508 Op.getOperand(1), Op.getOperand(2),
1509 DAG.getConstant(CompareOpc, MVT::i32));
1510 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1511 }
1512
1513 // Create the PPCISD altivec 'dot' comparison node.
1514 std::vector<SDOperand> Ops;
1515 std::vector<MVT::ValueType> VTs;
1516 Ops.push_back(Op.getOperand(2)); // LHS
1517 Ops.push_back(Op.getOperand(3)); // RHS
1518 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1519 VTs.push_back(Op.getOperand(2).getValueType());
1520 VTs.push_back(MVT::Flag);
1521 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1522
1523 // Now that we have the comparison, emit a copy from the CR to a GPR.
1524 // This is flagged to the above dot comparison.
1525 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1526 DAG.getRegister(PPC::CR6, MVT::i32),
1527 CompNode.getValue(1));
1528
1529 // Unpack the result based on how the target uses it.
1530 unsigned BitNo; // Bit # of CR6.
1531 bool InvertBit; // Invert result?
1532 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1533 default: // Can't happen, don't crash on invalid number though.
1534 case 0: // Return the value of the EQ bit of CR6.
1535 BitNo = 0; InvertBit = false;
1536 break;
1537 case 1: // Return the inverted value of the EQ bit of CR6.
1538 BitNo = 0; InvertBit = true;
1539 break;
1540 case 2: // Return the value of the LT bit of CR6.
1541 BitNo = 2; InvertBit = false;
1542 break;
1543 case 3: // Return the inverted value of the LT bit of CR6.
1544 BitNo = 2; InvertBit = true;
1545 break;
1546 }
1547
1548 // Shift the bit into the low position.
1549 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1550 DAG.getConstant(8-(3-BitNo), MVT::i32));
1551 // Isolate the bit.
1552 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1553 DAG.getConstant(1, MVT::i32));
1554
1555 // If we are supposed to, toggle the bit.
1556 if (InvertBit)
1557 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1558 DAG.getConstant(1, MVT::i32));
1559 return Flags;
1560}
1561
1562static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1563 // Create a stack slot that is 16-byte aligned.
1564 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1565 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1566 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1567
1568 // Store the input value into Value#0 of the stack slot.
1569 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1570 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1571 // Load it out.
1572 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1573}
1574
Chris Lattnere7c768e2006-04-18 03:24:30 +00001575static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
1576 assert(Op.getValueType() == MVT::v4i32 && "Unknown mul to lower!");
1577 SDOperand LHS = Op.getOperand(0);
1578 SDOperand RHS = Op.getOperand(1);
1579
1580 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
1581 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
1582
1583 SDOperand RHSSwap = // = vrlw RHS, 16
1584 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
1585
1586 // Shrinkify inputs to v8i16.
1587 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
1588 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
1589 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
1590
1591 // Low parts multiplied together, generating 32-bit results (we ignore the top
1592 // parts).
1593 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
1594 LHS, RHS, DAG, MVT::v4i32);
1595
1596 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
1597 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
1598 // Shift the high parts up 16 bits.
1599 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
1600 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
1601}
1602
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001603/// LowerOperation - Provide custom lowering hooks for some operations.
1604///
Nate Begeman21e463b2005-10-16 05:39:50 +00001605SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001606 switch (Op.getOpcode()) {
1607 default: assert(0 && "Wasn't expecting to be able to lower this!");
Chris Lattner1a635d62006-04-14 06:01:58 +00001608 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1609 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
1610 case ISD::SETCC: return LowerSETCC(Op, DAG);
1611 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
1612 case ISD::RET: return LowerRET(Op, DAG);
Chris Lattner7c0d6642005-10-02 06:37:13 +00001613
Chris Lattner1a635d62006-04-14 06:01:58 +00001614 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
1615 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1616 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001617
Chris Lattner1a635d62006-04-14 06:01:58 +00001618 // Lower 64-bit shifts.
1619 case ISD::SHL: return LowerSHL(Op, DAG);
1620 case ISD::SRL: return LowerSRL(Op, DAG);
1621 case ISD::SRA: return LowerSRA(Op, DAG);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00001622
Chris Lattner1a635d62006-04-14 06:01:58 +00001623 // Vector-related lowering.
1624 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
1625 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
1626 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1627 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
Chris Lattnere7c768e2006-04-18 03:24:30 +00001628 case ISD::MUL: return LowerMUL(Op, DAG);
Chris Lattnerbc11c342005-08-31 20:23:54 +00001629 }
Chris Lattnere4bc9ea2005-08-26 00:52:45 +00001630 return SDOperand();
1631}
1632
Chris Lattner1a635d62006-04-14 06:01:58 +00001633//===----------------------------------------------------------------------===//
1634// Other Lowering Code
1635//===----------------------------------------------------------------------===//
1636
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001637std::vector<SDOperand>
Nate Begeman21e463b2005-10-16 05:39:50 +00001638PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001639 //
1640 // add beautiful description of PPC stack frame format, or at least some docs
1641 //
1642 MachineFunction &MF = DAG.getMachineFunction();
1643 MachineFrameInfo *MFI = MF.getFrameInfo();
1644 MachineBasicBlock& BB = MF.front();
Chris Lattner7b738342005-09-13 19:33:40 +00001645 SSARegMap *RegMap = MF.getSSARegMap();
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001646 std::vector<SDOperand> ArgValues;
1647
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001648 unsigned ArgOffset = 24;
1649 unsigned GPR_remaining = 8;
1650 unsigned FPR_remaining = 13;
1651 unsigned GPR_idx = 0, FPR_idx = 0;
1652 static const unsigned GPR[] = {
1653 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1654 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1655 };
1656 static const unsigned FPR[] = {
1657 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1658 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1659 };
1660
1661 // Add DAG nodes to load the arguments... On entry to a function on PPC,
1662 // the arguments start at offset 24, although they are likely to be passed
1663 // in registers.
1664 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
1665 SDOperand newroot, argt;
1666 unsigned ObjSize;
1667 bool needsLoad = false;
1668 bool ArgLive = !I->use_empty();
1669 MVT::ValueType ObjectVT = getValueType(I->getType());
1670
1671 switch (ObjectVT) {
Chris Lattner915fb302005-08-30 00:19:00 +00001672 default: assert(0 && "Unhandled argument type!");
1673 case MVT::i1:
1674 case MVT::i8:
1675 case MVT::i16:
1676 case MVT::i32:
1677 ObjSize = 4;
1678 if (!ArgLive) break;
1679 if (GPR_remaining > 0) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001680 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001681 MF.addLiveIn(GPR[GPR_idx], VReg);
1682 argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Nate Begeman49296f12005-08-31 01:58:39 +00001683 if (ObjectVT != MVT::i32) {
1684 unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
1685 : ISD::AssertZext;
1686 argt = DAG.getNode(AssertOp, MVT::i32, argt,
1687 DAG.getValueType(ObjectVT));
1688 argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
1689 }
Chris Lattner915fb302005-08-30 00:19:00 +00001690 } else {
1691 needsLoad = true;
1692 }
1693 break;
Chris Lattner80720a92005-11-30 20:40:54 +00001694 case MVT::i64:
1695 ObjSize = 8;
Chris Lattner915fb302005-08-30 00:19:00 +00001696 if (!ArgLive) break;
1697 if (GPR_remaining > 0) {
1698 SDOperand argHi, argLo;
Nate Begeman1d9d7422005-10-18 00:28:58 +00001699 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001700 MF.addLiveIn(GPR[GPR_idx], VReg);
1701 argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Chris Lattner915fb302005-08-30 00:19:00 +00001702 // If we have two or more remaining argument registers, then both halves
1703 // of the i64 can be sourced from there. Otherwise, the lower half will
1704 // have to come off the stack. This can happen when an i64 is preceded
1705 // by 28 bytes of arguments.
1706 if (GPR_remaining > 1) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001707 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001708 MF.addLiveIn(GPR[GPR_idx+1], VReg);
1709 argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
Chris Lattner915fb302005-08-30 00:19:00 +00001710 } else {
1711 int FI = MFI->CreateFixedObject(4, ArgOffset+4);
1712 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1713 argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
1714 DAG.getSrcValue(NULL));
1715 }
1716 // Build the outgoing arg thingy
1717 argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
1718 newroot = argLo;
1719 } else {
1720 needsLoad = true;
1721 }
1722 break;
1723 case MVT::f32:
1724 case MVT::f64:
1725 ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
Chris Lattner413b9792006-01-11 18:21:25 +00001726 if (!ArgLive) {
1727 if (FPR_remaining > 0) {
1728 --FPR_remaining;
1729 ++FPR_idx;
1730 }
1731 break;
1732 }
Chris Lattner915fb302005-08-30 00:19:00 +00001733 if (FPR_remaining > 0) {
Chris Lattner919c0322005-10-01 01:35:02 +00001734 unsigned VReg;
1735 if (ObjectVT == MVT::f32)
Nate Begeman1d9d7422005-10-18 00:28:58 +00001736 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
Chris Lattner919c0322005-10-01 01:35:02 +00001737 else
Nate Begeman1d9d7422005-10-18 00:28:58 +00001738 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001739 MF.addLiveIn(FPR[FPR_idx], VReg);
1740 argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
Chris Lattner915fb302005-08-30 00:19:00 +00001741 --FPR_remaining;
1742 ++FPR_idx;
1743 } else {
1744 needsLoad = true;
1745 }
1746 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001747 }
1748
1749 // We need to load the argument to a virtual register if we determined above
1750 // that we ran out of physical registers of the appropriate type
1751 if (needsLoad) {
1752 unsigned SubregOffset = 0;
1753 if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
1754 if (ObjectVT == MVT::i16) SubregOffset = 2;
1755 int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1756 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1757 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
1758 DAG.getConstant(SubregOffset, MVT::i32));
1759 argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
1760 DAG.getSrcValue(NULL));
1761 }
1762
1763 // Every 4 bytes of argument space consumes one of the GPRs available for
1764 // argument passing.
1765 if (GPR_remaining > 0) {
1766 unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
1767 GPR_remaining -= delta;
1768 GPR_idx += delta;
1769 }
1770 ArgOffset += ObjSize;
1771 if (newroot.Val)
1772 DAG.setRoot(newroot.getValue(1));
1773
1774 ArgValues.push_back(argt);
1775 }
1776
1777 // If the function takes variable number of arguments, make a frame index for
1778 // the start of the first vararg value... for expansion of llvm.va_start.
1779 if (F.isVarArg()) {
1780 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1781 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
1782 // If this function is vararg, store any remaining integer argument regs
1783 // to their spots on the stack so that they may be loaded by deferencing the
1784 // result of va_next.
1785 std::vector<SDOperand> MemOps;
1786 for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
Nate Begeman1d9d7422005-10-18 00:28:58 +00001787 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
Chris Lattner7b738342005-09-13 19:33:40 +00001788 MF.addLiveIn(GPR[GPR_idx], VReg);
1789 SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001790 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
1791 Val, FIN, DAG.getSrcValue(NULL));
1792 MemOps.push_back(Store);
1793 // Increment the address by four for the next argument to store
1794 SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
1795 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
1796 }
Chris Lattner80720a92005-11-30 20:40:54 +00001797 if (!MemOps.empty()) {
1798 MemOps.push_back(DAG.getRoot());
1799 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
1800 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001801 }
1802
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001803 return ArgValues;
1804}
1805
1806std::pair<SDOperand, SDOperand>
Nate Begeman21e463b2005-10-16 05:39:50 +00001807PPCTargetLowering::LowerCallTo(SDOperand Chain,
1808 const Type *RetTy, bool isVarArg,
1809 unsigned CallingConv, bool isTailCall,
1810 SDOperand Callee, ArgListTy &Args,
1811 SelectionDAG &DAG) {
Chris Lattner281b55e2006-01-27 23:34:02 +00001812 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001813 // SelectExpr to use to put the arguments in the appropriate registers.
1814 std::vector<SDOperand> args_to_use;
1815
1816 // Count how many bytes are to be pushed on the stack, including the linkage
1817 // area, and parameter passing area.
1818 unsigned NumBytes = 24;
1819
1820 if (Args.empty()) {
Chris Lattner45b39762006-02-13 08:55:29 +00001821 Chain = DAG.getCALLSEQ_START(Chain,
1822 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001823 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001824 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001825 switch (getValueType(Args[i].second)) {
Chris Lattner915fb302005-08-30 00:19:00 +00001826 default: assert(0 && "Unknown value type!");
1827 case MVT::i1:
1828 case MVT::i8:
1829 case MVT::i16:
1830 case MVT::i32:
1831 case MVT::f32:
1832 NumBytes += 4;
1833 break;
1834 case MVT::i64:
1835 case MVT::f64:
1836 NumBytes += 8;
1837 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001838 }
Chris Lattner915fb302005-08-30 00:19:00 +00001839 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001840
Chris Lattner915fb302005-08-30 00:19:00 +00001841 // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1842 // plus 32 bytes of argument space in case any called code gets funky on us.
1843 // (Required by ABI to support var arg)
1844 if (NumBytes < 56) NumBytes = 56;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001845
1846 // Adjust the stack pointer for the new arguments...
1847 // These operations are automatically eliminated by the prolog/epilog pass
Chris Lattner45b39762006-02-13 08:55:29 +00001848 Chain = DAG.getCALLSEQ_START(Chain,
1849 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001850
1851 // Set up a copy of the stack pointer for use loading and storing any
1852 // arguments that may not fit in the registers available for argument
1853 // passing.
Chris Lattnera243db82006-01-11 19:55:07 +00001854 SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001855
1856 // Figure out which arguments are going to go in registers, and which in
1857 // memory. Also, if this is a vararg function, floating point operations
1858 // must be stored to our stack, and loaded into integer regs as well, if
1859 // any integer regs are available for argument passing.
1860 unsigned ArgOffset = 24;
1861 unsigned GPR_remaining = 8;
1862 unsigned FPR_remaining = 13;
1863
1864 std::vector<SDOperand> MemOps;
1865 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1866 // PtrOff will be used to store the current argument to the stack if a
1867 // register cannot be found for it.
1868 SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1869 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1870 MVT::ValueType ArgVT = getValueType(Args[i].second);
1871
1872 switch (ArgVT) {
Chris Lattner915fb302005-08-30 00:19:00 +00001873 default: assert(0 && "Unexpected ValueType for argument!");
1874 case MVT::i1:
1875 case MVT::i8:
1876 case MVT::i16:
1877 // Promote the integer to 32 bits. If the input type is signed use a
1878 // sign extend, otherwise use a zero extend.
1879 if (Args[i].second->isSigned())
1880 Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1881 else
1882 Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1883 // FALL THROUGH
1884 case MVT::i32:
1885 if (GPR_remaining > 0) {
1886 args_to_use.push_back(Args[i].first);
1887 --GPR_remaining;
1888 } else {
1889 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1890 Args[i].first, PtrOff,
1891 DAG.getSrcValue(NULL)));
1892 }
1893 ArgOffset += 4;
1894 break;
1895 case MVT::i64:
1896 // If we have one free GPR left, we can place the upper half of the i64
1897 // in it, and store the other half to the stack. If we have two or more
1898 // free GPRs, then we can pass both halves of the i64 in registers.
1899 if (GPR_remaining > 0) {
1900 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1901 Args[i].first, DAG.getConstant(1, MVT::i32));
1902 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1903 Args[i].first, DAG.getConstant(0, MVT::i32));
1904 args_to_use.push_back(Hi);
1905 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001906 if (GPR_remaining > 0) {
Chris Lattner915fb302005-08-30 00:19:00 +00001907 args_to_use.push_back(Lo);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001908 --GPR_remaining;
1909 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001910 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1911 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001912 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
Chris Lattner915fb302005-08-30 00:19:00 +00001913 Lo, PtrOff, DAG.getSrcValue(NULL)));
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001914 }
Chris Lattner915fb302005-08-30 00:19:00 +00001915 } else {
1916 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1917 Args[i].first, PtrOff,
1918 DAG.getSrcValue(NULL)));
1919 }
1920 ArgOffset += 8;
1921 break;
1922 case MVT::f32:
1923 case MVT::f64:
1924 if (FPR_remaining > 0) {
1925 args_to_use.push_back(Args[i].first);
1926 --FPR_remaining;
1927 if (isVarArg) {
1928 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
1929 Args[i].first, PtrOff,
1930 DAG.getSrcValue(NULL));
1931 MemOps.push_back(Store);
1932 // Float varargs are always shadowed in available integer registers
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001933 if (GPR_remaining > 0) {
Chris Lattner915fb302005-08-30 00:19:00 +00001934 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1935 DAG.getSrcValue(NULL));
Chris Lattner1df74782005-11-17 18:30:17 +00001936 MemOps.push_back(Load.getValue(1));
Chris Lattner915fb302005-08-30 00:19:00 +00001937 args_to_use.push_back(Load);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001938 --GPR_remaining;
Chris Lattner915fb302005-08-30 00:19:00 +00001939 }
1940 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001941 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1942 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
Chris Lattner915fb302005-08-30 00:19:00 +00001943 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
1944 DAG.getSrcValue(NULL));
Chris Lattner1df74782005-11-17 18:30:17 +00001945 MemOps.push_back(Load.getValue(1));
Chris Lattner915fb302005-08-30 00:19:00 +00001946 args_to_use.push_back(Load);
1947 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001948 }
1949 } else {
Chris Lattner915fb302005-08-30 00:19:00 +00001950 // If we have any FPRs remaining, we may also have GPRs remaining.
1951 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1952 // GPRs.
1953 if (GPR_remaining > 0) {
1954 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
1955 --GPR_remaining;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001956 }
Chris Lattner915fb302005-08-30 00:19:00 +00001957 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
1958 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
1959 --GPR_remaining;
1960 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001961 }
Chris Lattner915fb302005-08-30 00:19:00 +00001962 } else {
1963 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1964 Args[i].first, PtrOff,
1965 DAG.getSrcValue(NULL)));
1966 }
1967 ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
1968 break;
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001969 }
1970 }
1971 if (!MemOps.empty())
1972 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
1973 }
1974
1975 std::vector<MVT::ValueType> RetVals;
1976 MVT::ValueType RetTyVT = getValueType(RetTy);
Chris Lattnerf5059492005-09-02 01:24:55 +00001977 MVT::ValueType ActualRetTyVT = RetTyVT;
1978 if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
1979 ActualRetTyVT = MVT::i32; // Promote result to i32.
1980
Chris Lattnere00ebf02006-01-28 07:33:03 +00001981 if (RetTyVT == MVT::i64) {
1982 RetVals.push_back(MVT::i32);
1983 RetVals.push_back(MVT::i32);
1984 } else if (RetTyVT != MVT::isVoid) {
Chris Lattnerf5059492005-09-02 01:24:55 +00001985 RetVals.push_back(ActualRetTyVT);
Chris Lattnere00ebf02006-01-28 07:33:03 +00001986 }
Chris Lattner7c5a3d32005-08-16 17:14:42 +00001987 RetVals.push_back(MVT::Other);
1988
Chris Lattner2823b3e2005-11-17 05:56:14 +00001989 // If the callee is a GlobalAddress node (quite common, every direct call is)
1990 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
1991 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1992 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
1993
Chris Lattner281b55e2006-01-27 23:34:02 +00001994 std::vector<SDOperand> Ops;
1995 Ops.push_back(Chain);
1996 Ops.push_back(Callee);
1997 Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
1998 SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
Chris Lattnere00ebf02006-01-28 07:33:03 +00001999 Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002000 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
2001 DAG.getConstant(NumBytes, getPointerTy()));
Chris Lattnerf5059492005-09-02 01:24:55 +00002002 SDOperand RetVal = TheCall;
2003
2004 // If the result is a small value, add a note so that we keep track of the
2005 // information about whether it is sign or zero extended.
2006 if (RetTyVT != ActualRetTyVT) {
2007 RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
2008 MVT::i32, RetVal, DAG.getValueType(RetTyVT));
2009 RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
Chris Lattnere00ebf02006-01-28 07:33:03 +00002010 } else if (RetTyVT == MVT::i64) {
2011 RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
Chris Lattnerf5059492005-09-02 01:24:55 +00002012 }
2013
2014 return std::make_pair(RetVal, Chain);
Chris Lattner7c5a3d32005-08-16 17:14:42 +00002015}
2016
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002017MachineBasicBlock *
Nate Begeman21e463b2005-10-16 05:39:50 +00002018PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2019 MachineBasicBlock *BB) {
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002020 assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
Chris Lattner919c0322005-10-01 01:35:02 +00002021 MI->getOpcode() == PPC::SELECT_CC_F4 ||
Chris Lattner710ff322006-04-08 22:45:08 +00002022 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2023 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002024 "Unexpected instr type to insert");
2025
2026 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2027 // control-flow pattern. The incoming instruction knows the destination vreg
2028 // to set, the condition code register to branch on, the true/false values to
2029 // select between, and a branch opcode to use.
2030 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2031 ilist<MachineBasicBlock>::iterator It = BB;
2032 ++It;
2033
2034 // thisMBB:
2035 // ...
2036 // TrueVal = ...
2037 // cmpTY ccX, r1, r2
2038 // bCC copy1MBB
2039 // fallthrough --> copy0MBB
2040 MachineBasicBlock *thisMBB = BB;
2041 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2042 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2043 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2044 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2045 MachineFunction *F = BB->getParent();
2046 F->getBasicBlockList().insert(It, copy0MBB);
2047 F->getBasicBlockList().insert(It, sinkMBB);
Nate Begemanf15485a2006-03-27 01:32:24 +00002048 // Update machine-CFG edges by first adding all successors of the current
2049 // block to the new block which will contain the Phi node for the select.
2050 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2051 e = BB->succ_end(); i != e; ++i)
2052 sinkMBB->addSuccessor(*i);
2053 // Next, remove all successors of the current block, and add the true
2054 // and fallthrough blocks as its successors.
2055 while(!BB->succ_empty())
2056 BB->removeSuccessor(BB->succ_begin());
Chris Lattner8a2d3ca2005-08-26 21:23:58 +00002057 BB->addSuccessor(copy0MBB);
2058 BB->addSuccessor(sinkMBB);
2059
2060 // copy0MBB:
2061 // %FalseValue = ...
2062 // # fallthrough to sinkMBB
2063 BB = copy0MBB;
2064
2065 // Update machine-CFG edges
2066 BB->addSuccessor(sinkMBB);
2067
2068 // sinkMBB:
2069 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2070 // ...
2071 BB = sinkMBB;
2072 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2073 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2074 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2075
2076 delete MI; // The pseudo instruction is gone now.
2077 return BB;
2078}
2079
Chris Lattner1a635d62006-04-14 06:01:58 +00002080//===----------------------------------------------------------------------===//
2081// Target Optimization Hooks
2082//===----------------------------------------------------------------------===//
2083
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002084SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2085 DAGCombinerInfo &DCI) const {
2086 TargetMachine &TM = getTargetMachine();
2087 SelectionDAG &DAG = DCI.DAG;
2088 switch (N->getOpcode()) {
2089 default: break;
2090 case ISD::SINT_TO_FP:
2091 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002092 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2093 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2094 // We allow the src/dst to be either f32/f64, but the intermediate
2095 // type must be i64.
2096 if (N->getOperand(0).getValueType() == MVT::i64) {
2097 SDOperand Val = N->getOperand(0).getOperand(0);
2098 if (Val.getValueType() == MVT::f32) {
2099 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2100 DCI.AddToWorklist(Val.Val);
2101 }
2102
2103 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002104 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002105 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002106 DCI.AddToWorklist(Val.Val);
Chris Lattnerecfe55e2006-03-22 05:30:33 +00002107 if (N->getValueType(0) == MVT::f32) {
2108 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2109 DCI.AddToWorklist(Val.Val);
2110 }
2111 return Val;
2112 } else if (N->getOperand(0).getValueType() == MVT::i32) {
2113 // If the intermediate type is i32, we can avoid the load/store here
2114 // too.
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002115 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002116 }
2117 }
2118 break;
Chris Lattner51269842006-03-01 05:50:56 +00002119 case ISD::STORE:
2120 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2121 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2122 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2123 N->getOperand(1).getValueType() == MVT::i32) {
2124 SDOperand Val = N->getOperand(1).getOperand(0);
2125 if (Val.getValueType() == MVT::f32) {
2126 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2127 DCI.AddToWorklist(Val.Val);
2128 }
2129 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2130 DCI.AddToWorklist(Val.Val);
2131
2132 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2133 N->getOperand(2), N->getOperand(3));
2134 DCI.AddToWorklist(Val.Val);
2135 return Val;
2136 }
2137 break;
Chris Lattner4468c222006-03-31 06:02:07 +00002138 case PPCISD::VCMP: {
2139 // If a VCMPo node already exists with exactly the same operands as this
2140 // node, use its result instead of this node (VCMPo computes both a CR6 and
2141 // a normal output).
2142 //
2143 if (!N->getOperand(0).hasOneUse() &&
2144 !N->getOperand(1).hasOneUse() &&
2145 !N->getOperand(2).hasOneUse()) {
2146
2147 // Scan all of the users of the LHS, looking for VCMPo's that match.
2148 SDNode *VCMPoNode = 0;
2149
2150 SDNode *LHSN = N->getOperand(0).Val;
2151 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2152 UI != E; ++UI)
2153 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2154 (*UI)->getOperand(1) == N->getOperand(1) &&
2155 (*UI)->getOperand(2) == N->getOperand(2) &&
2156 (*UI)->getOperand(0) == N->getOperand(0)) {
2157 VCMPoNode = *UI;
2158 break;
2159 }
2160
2161 // If there are non-zero uses of the flag value, use the VCMPo node!
Chris Lattner33497cc2006-03-31 06:04:53 +00002162 if (VCMPoNode && !VCMPoNode->hasNUsesOfValue(0, 1))
Chris Lattner4468c222006-03-31 06:02:07 +00002163 return SDOperand(VCMPoNode, 0);
2164 }
2165 break;
2166 }
Chris Lattner8c13d0a2006-03-01 04:57:39 +00002167 }
2168
2169 return SDOperand();
2170}
2171
Chris Lattner1a635d62006-04-14 06:01:58 +00002172//===----------------------------------------------------------------------===//
2173// Inline Assembly Support
2174//===----------------------------------------------------------------------===//
2175
Chris Lattnerbbe77de2006-04-02 06:26:07 +00002176void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2177 uint64_t Mask,
2178 uint64_t &KnownZero,
2179 uint64_t &KnownOne,
2180 unsigned Depth) const {
2181 KnownZero = 0;
2182 KnownOne = 0;
2183 switch (Op.getOpcode()) {
2184 default: break;
2185 case ISD::INTRINSIC_WO_CHAIN: {
2186 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2187 default: break;
2188 case Intrinsic::ppc_altivec_vcmpbfp_p:
2189 case Intrinsic::ppc_altivec_vcmpeqfp_p:
2190 case Intrinsic::ppc_altivec_vcmpequb_p:
2191 case Intrinsic::ppc_altivec_vcmpequh_p:
2192 case Intrinsic::ppc_altivec_vcmpequw_p:
2193 case Intrinsic::ppc_altivec_vcmpgefp_p:
2194 case Intrinsic::ppc_altivec_vcmpgtfp_p:
2195 case Intrinsic::ppc_altivec_vcmpgtsb_p:
2196 case Intrinsic::ppc_altivec_vcmpgtsh_p:
2197 case Intrinsic::ppc_altivec_vcmpgtsw_p:
2198 case Intrinsic::ppc_altivec_vcmpgtub_p:
2199 case Intrinsic::ppc_altivec_vcmpgtuh_p:
2200 case Intrinsic::ppc_altivec_vcmpgtuw_p:
2201 KnownZero = ~1U; // All bits but the low one are known to be zero.
2202 break;
2203 }
2204 }
2205 }
2206}
2207
2208
Chris Lattnerad3bc8d2006-02-07 20:16:30 +00002209/// getConstraintType - Given a constraint letter, return the type of
2210/// constraint it is for this target.
2211PPCTargetLowering::ConstraintType
2212PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2213 switch (ConstraintLetter) {
2214 default: break;
2215 case 'b':
2216 case 'r':
2217 case 'f':
2218 case 'v':
2219 case 'y':
2220 return C_RegisterClass;
2221 }
2222 return TargetLowering::getConstraintType(ConstraintLetter);
2223}
2224
2225
Chris Lattnerddc787d2006-01-31 19:20:21 +00002226std::vector<unsigned> PPCTargetLowering::
Chris Lattner1efa40f2006-02-22 00:56:39 +00002227getRegClassForInlineAsmConstraint(const std::string &Constraint,
2228 MVT::ValueType VT) const {
Chris Lattnerddc787d2006-01-31 19:20:21 +00002229 if (Constraint.size() == 1) {
2230 switch (Constraint[0]) { // GCC RS6000 Constraint Letters
2231 default: break; // Unknown constriant letter
2232 case 'b':
2233 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2234 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2235 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2236 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2237 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2238 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2239 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2240 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2241 0);
2242 case 'r':
2243 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2244 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2245 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2246 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2247 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2248 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2249 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2250 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2251 0);
2252 case 'f':
2253 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2254 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2255 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2256 PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2257 PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2258 PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2259 PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2260 PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2261 0);
2262 case 'v':
2263 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2264 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2265 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2266 PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2267 PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2268 PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2269 PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2270 PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2271 0);
2272 case 'y':
2273 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2274 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2275 0);
2276 }
2277 }
2278
Chris Lattner1efa40f2006-02-22 00:56:39 +00002279 return std::vector<unsigned>();
Chris Lattnerddc787d2006-01-31 19:20:21 +00002280}
Chris Lattner763317d2006-02-07 00:47:13 +00002281
2282// isOperandValidForConstraint
2283bool PPCTargetLowering::
2284isOperandValidForConstraint(SDOperand Op, char Letter) {
2285 switch (Letter) {
2286 default: break;
2287 case 'I':
2288 case 'J':
2289 case 'K':
2290 case 'L':
2291 case 'M':
2292 case 'N':
2293 case 'O':
2294 case 'P': {
2295 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
2296 unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2297 switch (Letter) {
2298 default: assert(0 && "Unknown constraint letter!");
2299 case 'I': // "I" is a signed 16-bit constant.
2300 return (short)Value == (int)Value;
2301 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
2302 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
2303 return (short)Value == 0;
2304 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
2305 return (Value >> 16) == 0;
2306 case 'M': // "M" is a constant that is greater than 31.
2307 return Value > 31;
2308 case 'N': // "N" is a positive constant that is an exact power of two.
2309 return (int)Value > 0 && isPowerOf2_32(Value);
2310 case 'O': // "O" is the constant zero.
2311 return Value == 0;
2312 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
2313 return (short)-Value == (int)-Value;
2314 }
2315 break;
2316 }
2317 }
2318
2319 // Handle standard constraint letters.
2320 return TargetLowering::isOperandValidForConstraint(Op, Letter);
2321}
Evan Chengc4c62572006-03-13 23:20:37 +00002322
2323/// isLegalAddressImmediate - Return true if the integer value can be used
2324/// as the offset of the target addressing mode.
2325bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2326 // PPC allows a sign-extended 16-bit immediate field.
2327 return (V > -(1 << 16) && V < (1 << 16)-1);
2328}