blob: c580dd3ba3e40352a557b13eb243e0156a847639 [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengfd43dcf2007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer5d0d05c2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengfd43dcf2007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencer9d6c9192007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Daniel Dunbar689ad6e2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremeneke420deb2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Reid Spencer9d6c9192007-02-24 03:58:46 +000020#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner944fac72008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000024#include <cmath>
Jeff Cohen09dfd8e2007-03-20 20:42:36 +000025#include <limits>
Zhou Shenga3832fd2007-02-07 06:14:53 +000026#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000027#include <cstdlib>
28using namespace llvm;
29
Reid Spencer5d0d05c2007-02-25 19:32:03 +000030/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000037}
38
Eric Christopherd37eda82009-08-21 04:06:45 +000039/// A utility function for allocating memory and checking for allocation
Reid Spencer5d0d05c2007-02-25 19:32:03 +000040/// failure. The content is not zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000047/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000049 unsigned r;
50
Douglas Gregordcd99962011-09-14 15:54:46 +000051 if (radix == 16 || radix == 36) {
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000052 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
Douglas Gregorf34fa6f2011-09-20 18:33:29 +000057 if (r <= radix - 11U)
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000058 return r + 10;
59
60 r = cdigit - 'a';
Douglas Gregorf34fa6f2011-09-20 18:33:29 +000061 if (r <= radix - 11U)
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000062 return r + 10;
Douglas Gregorf83f0f82011-09-20 18:11:52 +000063
64 radix = 10;
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000065 }
66
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000067 r = cdigit - '0';
68 if (r < radix)
69 return r;
70
71 return -1U;
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000072}
73
74
Chris Lattner455e9ab2009-01-21 18:09:24 +000075void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000076 pVal = getClearedMemory(getNumWords());
77 pVal[0] = val;
Eric Christopherd37eda82009-08-21 04:06:45 +000078 if (isSigned && int64_t(val) < 0)
Chris Lattner98f8ccf2008-08-20 17:02:31 +000079 for (unsigned i = 1; i < getNumWords(); ++i)
80 pVal[i] = -1ULL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000081}
82
Chris Lattner119c30b2008-10-11 22:07:19 +000083void APInt::initSlowCase(const APInt& that) {
84 pVal = getMemory(getNumWords());
85 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
86}
87
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +000088void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaarbb975312009-08-21 03:15:14 +000089 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +000090 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000091 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +000092 VAL = bigVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +000093 else {
Reid Spencer610fad82007-02-24 10:01:42 +000094 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +000097 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencer610fad82007-02-24 10:01:42 +000098 // Copy the words from bigVal to pVal
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +000099 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000100 }
Reid Spencer610fad82007-02-24 10:01:42 +0000101 // Make sure unused high bits are cleared
102 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000103}
104
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +0000105APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
106 : BitWidth(numBits), VAL(0) {
107 initFromArray(bigVal);
108}
109
110APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
111 : BitWidth(numBits), VAL(0) {
112 initFromArray(makeArrayRef(bigVal, numWords));
113}
114
Benjamin Kramer38e59892010-07-14 22:38:02 +0000115APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +0000116 : BitWidth(numbits), VAL(0) {
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000117 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000118 fromString(numbits, Str, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000119}
120
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000121APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer9ac44112007-02-26 23:38:21 +0000122 // Don't do anything for X = X
123 if (this == &RHS)
124 return *this;
125
Reid Spencer9ac44112007-02-26 23:38:21 +0000126 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000127 // assume same bit-width single-word case is already handled
128 assert(!isSingleWord());
129 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer9ac44112007-02-26 23:38:21 +0000130 return *this;
131 }
132
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000133 if (isSingleWord()) {
134 // assume case where both are single words is already handled
135 assert(!RHS.isSingleWord());
136 VAL = 0;
137 pVal = getMemory(RHS.getNumWords());
138 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopherd37eda82009-08-21 04:06:45 +0000139 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer9ac44112007-02-26 23:38:21 +0000140 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
141 else if (RHS.isSingleWord()) {
142 delete [] pVal;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000143 VAL = RHS.VAL;
Reid Spencer9ac44112007-02-26 23:38:21 +0000144 } else {
145 delete [] pVal;
146 pVal = getMemory(RHS.getNumWords());
147 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
148 }
149 BitWidth = RHS.BitWidth;
150 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000151}
152
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000153APInt& APInt::operator=(uint64_t RHS) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000154 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +0000155 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000156 else {
157 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000158 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000159 }
Reid Spencer9ac44112007-02-26 23:38:21 +0000160 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000161}
162
Ted Kremeneke420deb2008-01-19 04:23:33 +0000163/// Profile - This method 'profiles' an APInt for use with FoldingSet.
164void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremeneka795aca2008-02-19 20:50:41 +0000165 ID.AddInteger(BitWidth);
Eric Christopherd37eda82009-08-21 04:06:45 +0000166
Ted Kremeneke420deb2008-01-19 04:23:33 +0000167 if (isSingleWord()) {
168 ID.AddInteger(VAL);
169 return;
170 }
171
Chris Lattner455e9ab2009-01-21 18:09:24 +0000172 unsigned NumWords = getNumWords();
Ted Kremeneke420deb2008-01-19 04:23:33 +0000173 for (unsigned i = 0; i < NumWords; ++i)
174 ID.AddInteger(pVal[i]);
175}
176
Eric Christopherd37eda82009-08-21 04:06:45 +0000177/// add_1 - This function adds a single "digit" integer, y, to the multiple
Reid Spenceraf0e9562007-02-18 18:38:44 +0000178/// "digit" integer array, x[]. x[] is modified to reflect the addition and
179/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000180/// @returns the carry of the addition.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000181static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
182 for (unsigned i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000183 dest[i] = y + x[i];
184 if (dest[i] < y)
Reid Spencer610fad82007-02-24 10:01:42 +0000185 y = 1; // Carry one to next digit.
Reid Spencerf2c521c2007-02-18 06:39:42 +0000186 else {
Reid Spencer610fad82007-02-24 10:01:42 +0000187 y = 0; // No need to carry so exit early
Reid Spencerf2c521c2007-02-18 06:39:42 +0000188 break;
189 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000190 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000191 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000192}
193
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000194/// @brief Prefix increment operator. Increments the APInt by one.
195APInt& APInt::operator++() {
Eric Christopherd37eda82009-08-21 04:06:45 +0000196 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +0000197 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000198 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000199 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000200 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000201}
202
Eric Christopherd37eda82009-08-21 04:06:45 +0000203/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
204/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Reid Spenceraf0e9562007-02-18 18:38:44 +0000205/// no further borrowing is neeeded or it runs out of "digits" in x. The result
206/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
207/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000208/// @returns the borrow out of the subtraction
Chris Lattner455e9ab2009-01-21 18:09:24 +0000209static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
210 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000211 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000212 x[i] -= y;
Eric Christopherd37eda82009-08-21 04:06:45 +0000213 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000214 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000215 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000216 y = 0; // No need to borrow
217 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000218 }
219 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000220 return bool(y);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000221}
222
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000223/// @brief Prefix decrement operator. Decrements the APInt by one.
224APInt& APInt::operator--() {
Eric Christopherd37eda82009-08-21 04:06:45 +0000225 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000226 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000227 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000228 sub_1(pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000229 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000230}
231
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000232/// add - This function adds the integer array x to the integer array Y and
Eric Christopherd37eda82009-08-21 04:06:45 +0000233/// places the result in dest.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000234/// @returns the carry out from the addition
235/// @brief General addition of 64-bit integer arrays
Eric Christopherd37eda82009-08-21 04:06:45 +0000236static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000237 unsigned len) {
Reid Spencer9d6c9192007-02-24 03:58:46 +0000238 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000239 for (unsigned i = 0; i< len; ++i) {
Reid Spencer92904632007-02-23 01:57:13 +0000240 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer54362ca2007-02-20 23:40:25 +0000241 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000242 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000243 }
244 return carry;
245}
246
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000247/// Adds the RHS APint to this APInt.
248/// @returns this, after addition of RHS.
Eric Christopherd37eda82009-08-21 04:06:45 +0000249/// @brief Addition assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000250APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000251 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopherd37eda82009-08-21 04:06:45 +0000252 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000253 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000254 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000255 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000256 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000257 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000258}
259
Eric Christopherd37eda82009-08-21 04:06:45 +0000260/// Subtracts the integer array y from the integer array x
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000261/// @returns returns the borrow out.
262/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopherd37eda82009-08-21 04:06:45 +0000263static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000264 unsigned len) {
Reid Spencer385f7542007-02-21 03:55:44 +0000265 bool borrow = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000266 for (unsigned i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000267 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
268 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
269 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000270 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000271 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000272}
273
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000274/// Subtracts the RHS APInt from this APInt
275/// @returns this, after subtraction
Eric Christopherd37eda82009-08-21 04:06:45 +0000276/// @brief Subtraction assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000277APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000278 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopherd37eda82009-08-21 04:06:45 +0000279 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000280 VAL -= RHS.VAL;
281 else
282 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000283 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000284}
285
Dan Gohmanf451cb82010-02-10 16:03:48 +0000286/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopherd37eda82009-08-21 04:06:45 +0000287/// into dest.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000288/// @returns the carry out of the multiplication.
289/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000290static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencer610fad82007-02-24 10:01:42 +0000291 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer5e0a8512007-02-17 03:16:00 +0000292 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000293 uint64_t carry = 0;
294
295 // For each digit of x.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000296 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000297 // Split x into high and low words
298 uint64_t lx = x[i] & 0xffffffffULL;
299 uint64_t hx = x[i] >> 32;
300 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000301 // hasCarry == 0, no carry
302 // hasCarry == 1, has carry
303 // hasCarry == 2, no carry and the calculation result == 0.
304 uint8_t hasCarry = 0;
305 dest[i] = carry + lx * ly;
306 // Determine if the add above introduces carry.
307 hasCarry = (dest[i] < carry) ? 1 : 0;
308 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopherd37eda82009-08-21 04:06:45 +0000309 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000310 // (2^32 - 1) + 2^32 = 2^64.
311 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
312
313 carry += (lx * hy) & 0xffffffffULL;
314 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopherd37eda82009-08-21 04:06:45 +0000315 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000316 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
317 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000318 return carry;
319}
320
Eric Christopherd37eda82009-08-21 04:06:45 +0000321/// Multiplies integer array x by integer array y and stores the result into
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000322/// the integer array dest. Note that dest's size must be >= xlen + ylen.
323/// @brief Generalized multiplicate of integer arrays.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000324static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
325 unsigned ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000326 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000327 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000328 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000329 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000330 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000331 lx = x[j] & 0xffffffffULL;
332 hx = x[j] >> 32;
333 // hasCarry - A flag to indicate if has carry.
334 // hasCarry == 0, no carry
335 // hasCarry == 1, has carry
336 // hasCarry == 2, no carry and the calculation result == 0.
337 uint8_t hasCarry = 0;
338 uint64_t resul = carry + lx * ly;
339 hasCarry = (resul < carry) ? 1 : 0;
340 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
341 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
342
343 carry += (lx * hy) & 0xffffffffULL;
344 resul = (carry << 32) | (resul & 0xffffffffULL);
345 dest[i+j] += resul;
346 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopherd37eda82009-08-21 04:06:45 +0000347 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000348 ((lx * hy) >> 32) + hx * hy;
349 }
350 dest[i+xlen] = carry;
351 }
352}
353
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000354APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000355 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000356 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000357 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000358 clearUnusedBits();
359 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000360 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000361
362 // Get some bit facts about LHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000363 unsigned lhsBits = getActiveBits();
364 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopherd37eda82009-08-21 04:06:45 +0000365 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +0000366 // 0 * X ===> 0
367 return *this;
368
369 // Get some bit facts about RHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000370 unsigned rhsBits = RHS.getActiveBits();
371 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000372 if (!rhsWords) {
373 // X * 0 ===> 0
Jay Foad7a874dd2010-12-01 08:53:58 +0000374 clearAllBits();
Reid Spencere0cdd332007-02-21 08:21:52 +0000375 return *this;
376 }
377
378 // Allocate space for the result
Chris Lattner455e9ab2009-01-21 18:09:24 +0000379 unsigned destWords = rhsWords + lhsWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000380 uint64_t *dest = getMemory(destWords);
381
382 // Perform the long multiply
383 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
384
385 // Copy result back into *this
Jay Foad7a874dd2010-12-01 08:53:58 +0000386 clearAllBits();
Chris Lattner455e9ab2009-01-21 18:09:24 +0000387 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000388 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
Eli Friedman9eb6b4d2011-10-07 23:40:49 +0000389 clearUnusedBits();
Reid Spencere0cdd332007-02-21 08:21:52 +0000390
391 // delete dest array and return
392 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000393 return *this;
394}
395
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000396APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000397 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000398 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000399 VAL &= RHS.VAL;
400 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000401 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000402 unsigned numWords = getNumWords();
403 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000404 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000405 return *this;
406}
407
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000408APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000409 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000410 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000411 VAL |= RHS.VAL;
412 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000413 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000414 unsigned numWords = getNumWords();
415 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000416 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000417 return *this;
418}
419
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000420APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000421 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000422 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000423 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000424 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000425 return *this;
Eric Christopherd37eda82009-08-21 04:06:45 +0000426 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000427 unsigned numWords = getNumWords();
428 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000429 pVal[i] ^= RHS.pVal[i];
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000430 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000431}
432
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000433APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000434 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000435 uint64_t* val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000436 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000437 val[i] = pVal[i] & RHS.pVal[i];
438 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000439}
440
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000441APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000442 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000443 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000444 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000445 val[i] = pVal[i] | RHS.pVal[i];
446 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000447}
448
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000449APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000450 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000451 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000452 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000453 val[i] = pVal[i] ^ RHS.pVal[i];
454
455 // 0^0==1 so clear the high bits in case they got set.
456 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000457}
458
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000459bool APInt::operator !() const {
460 if (isSingleWord())
461 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000462
Chris Lattner455e9ab2009-01-21 18:09:24 +0000463 for (unsigned i = 0; i < getNumWords(); ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +0000464 if (pVal[i])
Reid Spenceraf0e9562007-02-18 18:38:44 +0000465 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000466 return true;
467}
468
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000469APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000470 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000471 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000472 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer61eb1802007-02-20 20:42:10 +0000473 APInt Result(*this);
474 Result *= RHS;
Eli Friedman9eb6b4d2011-10-07 23:40:49 +0000475 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000476}
477
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000478APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000479 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000480 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000481 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000482 APInt Result(BitWidth, 0);
483 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000484 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000485}
486
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000487APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000488 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000489 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000490 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000491 APInt Result(BitWidth, 0);
492 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000493 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000494}
495
Chris Lattner455e9ab2009-01-21 18:09:24 +0000496bool APInt::operator[](unsigned bitPosition) const {
Dan Gohman078d9672010-11-18 17:14:56 +0000497 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
Eric Christopherd37eda82009-08-21 04:06:45 +0000498 return (maskBit(bitPosition) &
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000499 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000500}
501
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000502bool APInt::EqualSlowCase(const APInt& RHS) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000503 // Get some facts about the number of bits used in the two operands.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000504 unsigned n1 = getActiveBits();
505 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000506
507 // If the number of bits isn't the same, they aren't equal
Eric Christopherd37eda82009-08-21 04:06:45 +0000508 if (n1 != n2)
Reid Spencer54362ca2007-02-20 23:40:25 +0000509 return false;
510
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000511 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer54362ca2007-02-20 23:40:25 +0000512 if (n1 <= APINT_BITS_PER_WORD)
513 return pVal[0] == RHS.pVal[0];
514
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000515 // Otherwise, compare everything
Reid Spencer54362ca2007-02-20 23:40:25 +0000516 for (int i = whichWord(n1 - 1); i >= 0; --i)
Eric Christopherd37eda82009-08-21 04:06:45 +0000517 if (pVal[i] != RHS.pVal[i])
Reid Spencer54362ca2007-02-20 23:40:25 +0000518 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000519 return true;
520}
521
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000522bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000523 unsigned n = getActiveBits();
Reid Spencer54362ca2007-02-20 23:40:25 +0000524 if (n <= APINT_BITS_PER_WORD)
525 return pVal[0] == Val;
526 else
527 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000528}
529
Reid Spencere81d2da2007-02-16 22:36:51 +0000530bool APInt::ult(const APInt& RHS) const {
531 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
532 if (isSingleWord())
533 return VAL < RHS.VAL;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000534
535 // Get active bit length of both operands
Chris Lattner455e9ab2009-01-21 18:09:24 +0000536 unsigned n1 = getActiveBits();
537 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000538
539 // If magnitude of LHS is less than RHS, return true.
540 if (n1 < n2)
541 return true;
542
543 // If magnitude of RHS is greather than LHS, return false.
544 if (n2 < n1)
545 return false;
546
547 // If they bot fit in a word, just compare the low order word
548 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
549 return pVal[0] < RHS.pVal[0];
550
551 // Otherwise, compare all words
Chris Lattner455e9ab2009-01-21 18:09:24 +0000552 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000553 for (int i = topWord; i >= 0; --i) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000554 if (pVal[i] > RHS.pVal[i])
Reid Spencere81d2da2007-02-16 22:36:51 +0000555 return false;
Eric Christopherd37eda82009-08-21 04:06:45 +0000556 if (pVal[i] < RHS.pVal[i])
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000557 return true;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000558 }
559 return false;
560}
561
Reid Spencere81d2da2007-02-16 22:36:51 +0000562bool APInt::slt(const APInt& RHS) const {
563 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000564 if (isSingleWord()) {
565 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
566 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
567 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000568 }
Reid Spencera58f0582007-02-18 20:09:41 +0000569
570 APInt lhs(*this);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000571 APInt rhs(RHS);
572 bool lhsNeg = isNegative();
573 bool rhsNeg = rhs.isNegative();
574 if (lhsNeg) {
575 // Sign bit is set so perform two's complement to make it positive
Jay Foad7a874dd2010-12-01 08:53:58 +0000576 lhs.flipAllBits();
Reid Spencera58f0582007-02-18 20:09:41 +0000577 lhs++;
578 }
Reid Spencer1fa111e2007-02-27 18:23:40 +0000579 if (rhsNeg) {
580 // Sign bit is set so perform two's complement to make it positive
Jay Foad7a874dd2010-12-01 08:53:58 +0000581 rhs.flipAllBits();
Reid Spencera58f0582007-02-18 20:09:41 +0000582 rhs++;
583 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000584
585 // Now we have unsigned values to compare so do the comparison if necessary
586 // based on the negativeness of the values.
Reid Spencer1fa111e2007-02-27 18:23:40 +0000587 if (lhsNeg)
588 if (rhsNeg)
589 return lhs.ugt(rhs);
Reid Spencera58f0582007-02-18 20:09:41 +0000590 else
591 return true;
Reid Spencer1fa111e2007-02-27 18:23:40 +0000592 else if (rhsNeg)
Reid Spencera58f0582007-02-18 20:09:41 +0000593 return false;
Eric Christopherd37eda82009-08-21 04:06:45 +0000594 else
Reid Spencera58f0582007-02-18 20:09:41 +0000595 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000596}
597
Jay Foad7a874dd2010-12-01 08:53:58 +0000598void APInt::setBit(unsigned bitPosition) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000599 if (isSingleWord())
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000600 VAL |= maskBit(bitPosition);
Eric Christopherd37eda82009-08-21 04:06:45 +0000601 else
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000602 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000603}
604
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000605/// Set the given bit to 0 whose position is given as "bitPosition".
606/// @brief Set a given bit to 0.
Jay Foad7a874dd2010-12-01 08:53:58 +0000607void APInt::clearBit(unsigned bitPosition) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000608 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000609 VAL &= ~maskBit(bitPosition);
Eric Christopherd37eda82009-08-21 04:06:45 +0000610 else
Reid Spenceraf0e9562007-02-18 18:38:44 +0000611 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000612}
613
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000614/// @brief Toggle every bit to its opposite value.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000615
Eric Christopherd37eda82009-08-21 04:06:45 +0000616/// Toggle a given bit to its opposite value whose position is given
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000617/// as "bitPosition".
618/// @brief Toggles a given bit to its opposite value.
Jay Foad7a874dd2010-12-01 08:53:58 +0000619void APInt::flipBit(unsigned bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000620 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad7a874dd2010-12-01 08:53:58 +0000621 if ((*this)[bitPosition]) clearBit(bitPosition);
622 else setBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000623}
624
Benjamin Kramer38e59892010-07-14 22:38:02 +0000625unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000626 assert(!str.empty() && "Invalid string length");
Douglas Gregordcd99962011-09-14 15:54:46 +0000627 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
628 radix == 36) &&
629 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000630
631 size_t slen = str.size();
Reid Spencer57ae4f52007-04-13 19:19:07 +0000632
Eric Christophere250f2a2009-08-21 04:10:31 +0000633 // Each computation below needs to know if it's negative.
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000634 StringRef::iterator p = str.begin();
Eric Christophere250f2a2009-08-21 04:10:31 +0000635 unsigned isNegative = *p == '-';
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000636 if (*p == '-' || *p == '+') {
637 p++;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000638 slen--;
Eric Christophere250f2a2009-08-21 04:10:31 +0000639 assert(slen && "String is only a sign, needs a value.");
Reid Spencer57ae4f52007-04-13 19:19:07 +0000640 }
Eric Christophere250f2a2009-08-21 04:10:31 +0000641
Reid Spencer57ae4f52007-04-13 19:19:07 +0000642 // For radixes of power-of-two values, the bits required is accurately and
643 // easily computed
644 if (radix == 2)
645 return slen + isNegative;
646 if (radix == 8)
647 return slen * 3 + isNegative;
648 if (radix == 16)
649 return slen * 4 + isNegative;
650
Douglas Gregordcd99962011-09-14 15:54:46 +0000651 // FIXME: base 36
652
Reid Spencer57ae4f52007-04-13 19:19:07 +0000653 // This is grossly inefficient but accurate. We could probably do something
654 // with a computation of roughly slen*64/20 and then adjust by the value of
655 // the first few digits. But, I'm not sure how accurate that could be.
656
657 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +0000658 // be too large. This avoids the assertion in the constructor. This
659 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
660 // bits in that case.
Douglas Gregordcd99962011-09-14 15:54:46 +0000661 unsigned sufficient
662 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
663 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer57ae4f52007-04-13 19:19:07 +0000664
665 // Convert to the actual binary value.
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000666 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer57ae4f52007-04-13 19:19:07 +0000667
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +0000668 // Compute how many bits are required. If the log is infinite, assume we need
669 // just bit.
670 unsigned log = tmp.logBase2();
671 if (log == (unsigned)-1) {
672 return isNegative + 1;
673 } else {
674 return isNegative + log + 1;
675 }
Reid Spencer57ae4f52007-04-13 19:19:07 +0000676}
677
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000678// From http://www.burtleburtle.net, byBob Jenkins.
679// When targeting x86, both GCC and LLVM seem to recognize this as a
680// rotate instruction.
681#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Reid Spencer794f4722007-02-26 21:02:27 +0000682
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000683// From http://www.burtleburtle.net, by Bob Jenkins.
684#define mix(a,b,c) \
685 { \
686 a -= c; a ^= rot(c, 4); c += b; \
687 b -= a; b ^= rot(a, 6); a += c; \
688 c -= b; c ^= rot(b, 8); b += a; \
689 a -= c; a ^= rot(c,16); c += b; \
690 b -= a; b ^= rot(a,19); a += c; \
691 c -= b; c ^= rot(b, 4); b += a; \
692 }
693
694// From http://www.burtleburtle.net, by Bob Jenkins.
695#define final(a,b,c) \
696 { \
697 c ^= b; c -= rot(b,14); \
698 a ^= c; a -= rot(c,11); \
699 b ^= a; b -= rot(a,25); \
700 c ^= b; c -= rot(b,16); \
701 a ^= c; a -= rot(c,4); \
702 b ^= a; b -= rot(a,14); \
703 c ^= b; c -= rot(b,24); \
704 }
705
706// hashword() was adapted from http://www.burtleburtle.net, by Bob
707// Jenkins. k is a pointer to an array of uint32_t values; length is
708// the length of the key, in 32-bit chunks. This version only handles
709// keys that are a multiple of 32 bits in size.
710static inline uint32_t hashword(const uint64_t *k64, size_t length)
711{
712 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
713 uint32_t a,b,c;
714
715 /* Set up the internal state */
716 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
717
718 /*------------------------------------------------- handle most of the key */
Dan Gohman16e02092010-03-24 19:38:02 +0000719 while (length > 3) {
720 a += k[0];
721 b += k[1];
722 c += k[2];
723 mix(a,b,c);
724 length -= 3;
725 k += 3;
726 }
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000727
728 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stumpf3dc0c02009-05-13 23:23:20 +0000729 switch (length) { /* all the case statements fall through */
730 case 3 : c+=k[2];
731 case 2 : b+=k[1];
732 case 1 : a+=k[0];
733 final(a,b,c);
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000734 case 0: /* case 0: nothing left to add */
735 break;
736 }
737 /*------------------------------------------------------ report the result */
738 return c;
739}
740
741// hashword8() was adapted from http://www.burtleburtle.net, by Bob
742// Jenkins. This computes a 32-bit hash from one 64-bit word. When
743// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
744// function into about 35 instructions when inlined.
745static inline uint32_t hashword8(const uint64_t k64)
746{
747 uint32_t a,b,c;
748 a = b = c = 0xdeadbeef + 4;
749 b += k64 >> 32;
750 a += k64 & 0xffffffff;
751 final(a,b,c);
752 return c;
753}
754#undef final
755#undef mix
756#undef rot
757
758uint64_t APInt::getHashValue() const {
759 uint64_t hash;
Reid Spencer794f4722007-02-26 21:02:27 +0000760 if (isSingleWord())
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000761 hash = hashword8(VAL);
Reid Spencer794f4722007-02-26 21:02:27 +0000762 else
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000763 hash = hashword(pVal, getNumWords()*2);
Reid Spencer794f4722007-02-26 21:02:27 +0000764 return hash;
765}
766
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000767/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000768APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000769 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000770}
771
772/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000773APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopherd37eda82009-08-21 04:06:45 +0000774 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Reid Spencere81d2da2007-02-16 22:36:51 +0000775 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000776}
777
Chris Lattner455e9ab2009-01-21 18:09:24 +0000778unsigned APInt::countLeadingZerosSlowCase() const {
John McCall281d0512010-02-03 03:42:44 +0000779 // Treat the most significand word differently because it might have
780 // meaningless bits set beyond the precision.
781 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
782 integerPart MSWMask;
783 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
784 else {
785 MSWMask = ~integerPart(0);
786 BitsInMSW = APINT_BITS_PER_WORD;
787 }
788
789 unsigned i = getNumWords();
790 integerPart MSW = pVal[i-1] & MSWMask;
791 if (MSW)
792 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
793
794 unsigned Count = BitsInMSW;
795 for (--i; i > 0u; --i) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000796 if (pVal[i-1] == 0)
797 Count += APINT_BITS_PER_WORD;
798 else {
799 Count += CountLeadingZeros_64(pVal[i-1]);
800 break;
Reid Spencere549c492007-02-21 00:29:48 +0000801 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000802 }
John McCall281d0512010-02-03 03:42:44 +0000803 return Count;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000804}
805
Chris Lattner455e9ab2009-01-21 18:09:24 +0000806static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
807 unsigned Count = 0;
Reid Spencer681dcd12007-02-27 21:59:26 +0000808 if (skip)
809 V <<= skip;
810 while (V && (V & (1ULL << 63))) {
811 Count++;
812 V <<= 1;
813 }
814 return Count;
815}
816
Chris Lattner455e9ab2009-01-21 18:09:24 +0000817unsigned APInt::countLeadingOnes() const {
Reid Spencer681dcd12007-02-27 21:59:26 +0000818 if (isSingleWord())
819 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
820
Chris Lattner455e9ab2009-01-21 18:09:24 +0000821 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwin2d0f1c52009-01-27 18:06:03 +0000822 unsigned shift;
823 if (!highWordBits) {
824 highWordBits = APINT_BITS_PER_WORD;
825 shift = 0;
826 } else {
827 shift = APINT_BITS_PER_WORD - highWordBits;
828 }
Reid Spencer681dcd12007-02-27 21:59:26 +0000829 int i = getNumWords() - 1;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000830 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Reid Spencer681dcd12007-02-27 21:59:26 +0000831 if (Count == highWordBits) {
832 for (i--; i >= 0; --i) {
833 if (pVal[i] == -1ULL)
834 Count += APINT_BITS_PER_WORD;
835 else {
836 Count += countLeadingOnes_64(pVal[i], 0);
837 break;
838 }
839 }
840 }
841 return Count;
842}
843
Chris Lattner455e9ab2009-01-21 18:09:24 +0000844unsigned APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000845 if (isSingleWord())
Chris Lattner455e9ab2009-01-21 18:09:24 +0000846 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
847 unsigned Count = 0;
848 unsigned i = 0;
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000849 for (; i < getNumWords() && pVal[i] == 0; ++i)
850 Count += APINT_BITS_PER_WORD;
851 if (i < getNumWords())
852 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner5e557122007-11-23 22:36:25 +0000853 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000854}
855
Chris Lattner455e9ab2009-01-21 18:09:24 +0000856unsigned APInt::countTrailingOnesSlowCase() const {
857 unsigned Count = 0;
858 unsigned i = 0;
Dan Gohman5a0e7b42008-02-14 22:38:45 +0000859 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman42dd77f2008-02-13 21:11:05 +0000860 Count += APINT_BITS_PER_WORD;
861 if (i < getNumWords())
862 Count += CountTrailingOnes_64(pVal[i]);
863 return std::min(Count, BitWidth);
864}
865
Chris Lattner455e9ab2009-01-21 18:09:24 +0000866unsigned APInt::countPopulationSlowCase() const {
867 unsigned Count = 0;
868 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000869 Count += CountPopulation_64(pVal[i]);
870 return Count;
871}
872
Richard Smithe73db4e2011-11-23 21:33:37 +0000873/// Perform a logical right-shift from Src to Dst, which must be equal or
874/// non-overlapping, of Words words, by Shift, which must be less than 64.
875static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
876 unsigned Shift) {
877 uint64_t Carry = 0;
878 for (int I = Words - 1; I >= 0; --I) {
879 uint64_t Tmp = Src[I];
880 Dst[I] = (Tmp >> Shift) | Carry;
881 Carry = Tmp << (64 - Shift);
882 }
883}
884
Reid Spencere81d2da2007-02-16 22:36:51 +0000885APInt APInt::byteSwap() const {
886 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
887 if (BitWidth == 16)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000888 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Richard Smithe73db4e2011-11-23 21:33:37 +0000889 if (BitWidth == 32)
Chris Lattner455e9ab2009-01-21 18:09:24 +0000890 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Richard Smithe73db4e2011-11-23 21:33:37 +0000891 if (BitWidth == 48) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000892 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengb04973e2007-02-15 06:36:31 +0000893 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000894 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengb04973e2007-02-15 06:36:31 +0000895 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000896 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengb04973e2007-02-15 06:36:31 +0000897 }
Richard Smithe73db4e2011-11-23 21:33:37 +0000898 if (BitWidth == 64)
899 return APInt(BitWidth, ByteSwap_64(VAL));
900
901 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
902 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
903 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
904 if (Result.BitWidth != BitWidth) {
905 lshrNear(Result.pVal, Result.pVal, getNumWords(),
906 Result.BitWidth - BitWidth);
907 Result.BitWidth = BitWidth;
908 }
909 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000910}
911
Eric Christopherd37eda82009-08-21 04:06:45 +0000912APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Zhou Sheng0b706b12007-02-08 14:35:19 +0000913 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000914 APInt A = API1, B = API2;
915 while (!!B) {
916 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000917 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000918 A = T;
919 }
920 return A;
921}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000922
Chris Lattner455e9ab2009-01-21 18:09:24 +0000923APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000924 union {
925 double D;
926 uint64_t I;
927 } T;
928 T.D = Double;
Reid Spencer30f44f32007-02-27 01:28:10 +0000929
930 // Get the sign bit from the highest order bit
Zhou Shengd93f00c2007-02-12 20:02:55 +0000931 bool isNeg = T.I >> 63;
Reid Spencer30f44f32007-02-27 01:28:10 +0000932
933 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd93f00c2007-02-12 20:02:55 +0000934 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer30f44f32007-02-27 01:28:10 +0000935
936 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000937 if (exp < 0)
Reid Spencerff605762007-02-28 01:30:08 +0000938 return APInt(width, 0u);
Reid Spencer30f44f32007-02-27 01:28:10 +0000939
940 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
941 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
942
943 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd93f00c2007-02-12 20:02:55 +0000944 if (exp < 52)
Eric Christopherd37eda82009-08-21 04:06:45 +0000945 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer1fa111e2007-02-27 18:23:40 +0000946 APInt(width, mantissa >> (52 - exp));
947
948 // If the client didn't provide enough bits for us to shift the mantissa into
949 // then the result is undefined, just return 0
950 if (width <= exp - 52)
951 return APInt(width, 0);
Reid Spencer30f44f32007-02-27 01:28:10 +0000952
953 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer1fa111e2007-02-27 18:23:40 +0000954 APInt Tmp(width, mantissa);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000955 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000956 return isNeg ? -Tmp : Tmp;
957}
958
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000959/// RoundToDouble - This function converts this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000960/// The layout for double is as following (IEEE Standard 754):
961/// --------------------------------------
962/// | Sign Exponent Fraction Bias |
963/// |-------------------------------------- |
964/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopherd37eda82009-08-21 04:06:45 +0000965/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000966double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000967
968 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000969 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencera58f0582007-02-18 20:09:41 +0000970 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
971 if (isSigned) {
Dale Johannesen39c177d2009-08-12 17:42:34 +0000972 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Reid Spencera58f0582007-02-18 20:09:41 +0000973 return double(sext);
974 } else
Dale Johannesen39c177d2009-08-12 17:42:34 +0000975 return double(getWord(0));
Reid Spencera58f0582007-02-18 20:09:41 +0000976 }
977
Reid Spencer9c0696f2007-02-20 08:51:03 +0000978 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000979 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000980
981 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000982 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000983
984 // Figure out how many bits we're using.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000985 unsigned n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000986
Reid Spencer9c0696f2007-02-20 08:51:03 +0000987 // The exponent (without bias normalization) is just the number of bits
988 // we are using. Note that the sign bit is gone since we constructed the
989 // absolute value.
990 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000991
Reid Spencer9c0696f2007-02-20 08:51:03 +0000992 // Return infinity for exponent overflow
993 if (exp > 1023) {
994 if (!isSigned || !isNeg)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000995 return std::numeric_limits<double>::infinity();
Eric Christopherd37eda82009-08-21 04:06:45 +0000996 else
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000997 return -std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000998 }
999 exp += 1023; // Increment for 1023 bias
1000
1001 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
1002 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +00001003 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001004 unsigned hiWord = whichWord(n-1);
1005 if (hiWord == 0) {
1006 mantissa = Tmp.pVal[0];
1007 if (n > 52)
1008 mantissa >>= n - 52; // shift down, we want the top 52 bits.
1009 } else {
1010 assert(hiWord > 0 && "huh?");
1011 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
1012 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
1013 mantissa = hibits | lobits;
1014 }
1015
Zhou Shengd93f00c2007-02-12 20:02:55 +00001016 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +00001017 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +00001018 union {
1019 double D;
1020 uint64_t I;
1021 } T;
1022 T.I = sign | (exp << 52) | mantissa;
1023 return T.D;
1024}
1025
Reid Spencere81d2da2007-02-16 22:36:51 +00001026// Truncate to new width.
Jay Foad40f8f622010-12-07 08:25:19 +00001027APInt APInt::trunc(unsigned width) const {
Reid Spencere81d2da2007-02-16 22:36:51 +00001028 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner98f8ccf2008-08-20 17:02:31 +00001029 assert(width && "Can't truncate to 0 bits");
Jay Foad40f8f622010-12-07 08:25:19 +00001030
1031 if (width <= APINT_BITS_PER_WORD)
1032 return APInt(width, getRawData()[0]);
1033
1034 APInt Result(getMemory(getNumWords(width)), width);
1035
1036 // Copy full words.
1037 unsigned i;
1038 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
1039 Result.pVal[i] = pVal[i];
1040
1041 // Truncate and copy any partial word.
1042 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
1043 if (bits != 0)
1044 Result.pVal[i] = pVal[i] << bits >> bits;
1045
1046 return Result;
Reid Spencere81d2da2007-02-16 22:36:51 +00001047}
1048
1049// Sign extend to a new width.
Jay Foad40f8f622010-12-07 08:25:19 +00001050APInt APInt::sext(unsigned width) const {
Reid Spencere81d2da2007-02-16 22:36:51 +00001051 assert(width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad40f8f622010-12-07 08:25:19 +00001052
1053 if (width <= APINT_BITS_PER_WORD) {
1054 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
1055 val = (int64_t)val >> (width - BitWidth);
1056 return APInt(width, val >> (APINT_BITS_PER_WORD - width));
Reid Spencer9eec2412007-02-25 23:44:53 +00001057 }
1058
Jay Foad40f8f622010-12-07 08:25:19 +00001059 APInt Result(getMemory(getNumWords(width)), width);
Reid Spencer9eec2412007-02-25 23:44:53 +00001060
Jay Foad40f8f622010-12-07 08:25:19 +00001061 // Copy full words.
1062 unsigned i;
1063 uint64_t word = 0;
1064 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
1065 word = getRawData()[i];
1066 Result.pVal[i] = word;
Reid Spencer9eec2412007-02-25 23:44:53 +00001067 }
1068
Jay Foad40f8f622010-12-07 08:25:19 +00001069 // Read and sign-extend any partial word.
1070 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
1071 if (bits != 0)
1072 word = (int64_t)getRawData()[i] << bits >> bits;
1073 else
1074 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
1075
1076 // Write remaining full words.
1077 for (; i != width / APINT_BITS_PER_WORD; i++) {
1078 Result.pVal[i] = word;
1079 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
Reid Spencer9eec2412007-02-25 23:44:53 +00001080 }
Jay Foad40f8f622010-12-07 08:25:19 +00001081
1082 // Write any partial word.
1083 bits = (0 - width) % APINT_BITS_PER_WORD;
1084 if (bits != 0)
1085 Result.pVal[i] = word << bits >> bits;
1086
1087 return Result;
Reid Spencere81d2da2007-02-16 22:36:51 +00001088}
1089
1090// Zero extend to a new width.
Jay Foad40f8f622010-12-07 08:25:19 +00001091APInt APInt::zext(unsigned width) const {
Reid Spencere81d2da2007-02-16 22:36:51 +00001092 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad40f8f622010-12-07 08:25:19 +00001093
1094 if (width <= APINT_BITS_PER_WORD)
1095 return APInt(width, VAL);
1096
1097 APInt Result(getMemory(getNumWords(width)), width);
1098
1099 // Copy words.
1100 unsigned i;
1101 for (i = 0; i != getNumWords(); i++)
1102 Result.pVal[i] = getRawData()[i];
1103
1104 // Zero remaining words.
1105 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
1106
1107 return Result;
Reid Spencere81d2da2007-02-16 22:36:51 +00001108}
1109
Jay Foad40f8f622010-12-07 08:25:19 +00001110APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer68e23002007-03-01 17:15:32 +00001111 if (BitWidth < width)
1112 return zext(width);
1113 if (BitWidth > width)
1114 return trunc(width);
1115 return *this;
1116}
1117
Jay Foad40f8f622010-12-07 08:25:19 +00001118APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer68e23002007-03-01 17:15:32 +00001119 if (BitWidth < width)
1120 return sext(width);
1121 if (BitWidth > width)
1122 return trunc(width);
1123 return *this;
1124}
1125
Rafael Espindola04594ae2012-01-27 23:33:07 +00001126APInt APInt::zextOrSelf(unsigned width) const {
1127 if (BitWidth < width)
1128 return zext(width);
1129 return *this;
1130}
1131
1132APInt APInt::sextOrSelf(unsigned width) const {
1133 if (BitWidth < width)
1134 return sext(width);
1135 return *this;
1136}
1137
Zhou Shengff4304f2007-02-09 07:48:24 +00001138/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001139/// @brief Arithmetic right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001140APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001141 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001142}
1143
1144/// Arithmetic right-shift this APInt by shiftAmt.
1145/// @brief Arithmetic right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001146APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001147 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer46f9c942007-03-02 22:39:11 +00001148 // Handle a degenerate case
1149 if (shiftAmt == 0)
1150 return *this;
1151
1152 // Handle single word shifts with built-in ashr
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001153 if (isSingleWord()) {
1154 if (shiftAmt == BitWidth)
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001155 return APInt(BitWidth, 0); // undefined
1156 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001157 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopherd37eda82009-08-21 04:06:45 +00001158 return APInt(BitWidth,
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001159 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1160 }
Zhou Sheng0b706b12007-02-08 14:35:19 +00001161 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001162
Reid Spencer46f9c942007-03-02 22:39:11 +00001163 // If all the bits were shifted out, the result is, technically, undefined.
1164 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1165 // issues in the algorithm below.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001166 if (shiftAmt == BitWidth) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001167 if (isNegative())
Zhou Shengbfde7d62008-06-05 13:27:38 +00001168 return APInt(BitWidth, -1ULL, true);
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001169 else
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001170 return APInt(BitWidth, 0);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001171 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001172
1173 // Create some space for the result.
1174 uint64_t * val = new uint64_t[getNumWords()];
1175
Reid Spencer46f9c942007-03-02 22:39:11 +00001176 // Compute some values needed by the following shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001177 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1178 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1179 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1180 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer46f9c942007-03-02 22:39:11 +00001181 if (bitsInWord == 0)
1182 bitsInWord = APINT_BITS_PER_WORD;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001183
1184 // If we are shifting whole words, just move whole words
1185 if (wordShift == 0) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001186 // Move the words containing significant bits
Chris Lattner455e9ab2009-01-21 18:09:24 +00001187 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001188 val[i] = pVal[i+offset]; // move whole word
1189
1190 // Adjust the top significant word for sign bit fill, if negative
1191 if (isNegative())
1192 if (bitsInWord < APINT_BITS_PER_WORD)
1193 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1194 } else {
Eric Christopherd37eda82009-08-21 04:06:45 +00001195 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001196 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001197 // This combines the shifted corresponding word with the low bits from
1198 // the next word (shifted into this word's high bits).
Eric Christopherd37eda82009-08-21 04:06:45 +00001199 val[i] = (pVal[i+offset] >> wordShift) |
Reid Spencer46f9c942007-03-02 22:39:11 +00001200 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1201 }
1202
1203 // Shift the break word. In this case there are no bits from the next word
1204 // to include in this word.
1205 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1206
1207 // Deal with sign extenstion in the break word, and possibly the word before
1208 // it.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001209 if (isNegative()) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001210 if (wordShift > bitsInWord) {
1211 if (breakWord > 0)
Eric Christopherd37eda82009-08-21 04:06:45 +00001212 val[breakWord-1] |=
Reid Spencer46f9c942007-03-02 22:39:11 +00001213 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1214 val[breakWord] |= ~0ULL;
Eric Christopherd37eda82009-08-21 04:06:45 +00001215 } else
Reid Spencer46f9c942007-03-02 22:39:11 +00001216 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001217 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001218 }
1219
Reid Spencer46f9c942007-03-02 22:39:11 +00001220 // Remaining words are 0 or -1, just assign them.
1221 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001222 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001223 val[i] = fillValue;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001224 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001225}
1226
Zhou Shengff4304f2007-02-09 07:48:24 +00001227/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001228/// @brief Logical right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001229APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001230 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001231}
1232
1233/// Logical right-shift this APInt by shiftAmt.
1234/// @brief Logical right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001235APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001236 if (isSingleWord()) {
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001237 if (shiftAmt == BitWidth)
1238 return APInt(BitWidth, 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00001239 else
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001240 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001241 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001242
Reid Spencerba81c2b2007-02-26 01:19:48 +00001243 // If all the bits were shifted out, the result is 0. This avoids issues
1244 // with shifting by the size of the integer type, which produces undefined
1245 // results. We define these "undefined results" to always be 0.
1246 if (shiftAmt == BitWidth)
1247 return APInt(BitWidth, 0);
1248
Reid Spencer02ae8b72007-05-17 06:26:29 +00001249 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopherd37eda82009-08-21 04:06:45 +00001250 // issues with shifting by the size of the integer type, which produces
Reid Spencer02ae8b72007-05-17 06:26:29 +00001251 // undefined results in the code below. This is also an optimization.
1252 if (shiftAmt == 0)
1253 return *this;
1254
Reid Spencerba81c2b2007-02-26 01:19:48 +00001255 // Create some space for the result.
1256 uint64_t * val = new uint64_t[getNumWords()];
1257
1258 // If we are shifting less than a word, compute the shift with a simple carry
1259 if (shiftAmt < APINT_BITS_PER_WORD) {
Richard Smithe73db4e2011-11-23 21:33:37 +00001260 lshrNear(val, pVal, getNumWords(), shiftAmt);
Reid Spencerba81c2b2007-02-26 01:19:48 +00001261 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001262 }
1263
Reid Spencerba81c2b2007-02-26 01:19:48 +00001264 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001265 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1266 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001267
1268 // If we are shifting whole words, just move whole words
1269 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001270 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001271 val[i] = pVal[i+offset];
Chris Lattner455e9ab2009-01-21 18:09:24 +00001272 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001273 val[i] = 0;
1274 return APInt(val,BitWidth).clearUnusedBits();
1275 }
1276
Eric Christopherd37eda82009-08-21 04:06:45 +00001277 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001278 unsigned breakWord = getNumWords() - offset -1;
1279 for (unsigned i = 0; i < breakWord; ++i)
Reid Spenceraf8fb192007-03-01 05:39:56 +00001280 val[i] = (pVal[i+offset] >> wordShift) |
1281 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencerba81c2b2007-02-26 01:19:48 +00001282 // Shift the break word.
1283 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1284
1285 // Remaining words are 0
Chris Lattner455e9ab2009-01-21 18:09:24 +00001286 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001287 val[i] = 0;
1288 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001289}
1290
Zhou Shengff4304f2007-02-09 07:48:24 +00001291/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001292/// @brief Left-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001293APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky4bd47872009-01-19 17:42:33 +00001294 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001295 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001296}
1297
Chris Lattner455e9ab2009-01-21 18:09:24 +00001298APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencer87553802007-02-25 00:56:44 +00001299 // If all the bits were shifted out, the result is 0. This avoids issues
1300 // with shifting by the size of the integer type, which produces undefined
1301 // results. We define these "undefined results" to always be 0.
1302 if (shiftAmt == BitWidth)
1303 return APInt(BitWidth, 0);
1304
Reid Spencer92c72832007-05-12 18:01:57 +00001305 // If none of the bits are shifted out, the result is *this. This avoids a
1306 // lshr by the words size in the loop below which can produce incorrect
1307 // results. It also avoids the expensive computation below for a common case.
1308 if (shiftAmt == 0)
1309 return *this;
1310
Reid Spencer87553802007-02-25 00:56:44 +00001311 // Create some space for the result.
1312 uint64_t * val = new uint64_t[getNumWords()];
1313
1314 // If we are shifting less than a word, do it the easy way
1315 if (shiftAmt < APINT_BITS_PER_WORD) {
1316 uint64_t carry = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001317 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencer87553802007-02-25 00:56:44 +00001318 val[i] = pVal[i] << shiftAmt | carry;
1319 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1320 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001321 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001322 }
1323
Reid Spencer87553802007-02-25 00:56:44 +00001324 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001325 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1326 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer87553802007-02-25 00:56:44 +00001327
1328 // If we are shifting whole words, just move whole words
1329 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001330 for (unsigned i = 0; i < offset; i++)
Reid Spencer87553802007-02-25 00:56:44 +00001331 val[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001332 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencer87553802007-02-25 00:56:44 +00001333 val[i] = pVal[i-offset];
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001334 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001335 }
Reid Spencer87553802007-02-25 00:56:44 +00001336
1337 // Copy whole words from this to Result.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001338 unsigned i = getNumWords() - 1;
Reid Spencer87553802007-02-25 00:56:44 +00001339 for (; i > offset; --i)
1340 val[i] = pVal[i-offset] << wordShift |
1341 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencer438d71e2007-02-25 01:08:58 +00001342 val[offset] = pVal[0] << wordShift;
Reid Spencer87553802007-02-25 00:56:44 +00001343 for (i = 0; i < offset; ++i)
1344 val[i] = 0;
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001345 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001346}
1347
Dan Gohmancf609572008-02-29 01:40:47 +00001348APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001349 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001350}
1351
Chris Lattner455e9ab2009-01-21 18:09:24 +00001352APInt APInt::rotl(unsigned rotateAmt) const {
Eli Friedman2acbd7d2011-12-22 03:15:35 +00001353 rotateAmt %= BitWidth;
Reid Spencer69944e82007-05-14 00:15:28 +00001354 if (rotateAmt == 0)
1355 return *this;
Eli Friedman2acbd7d2011-12-22 03:15:35 +00001356 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
Reid Spencer19dc32a2007-05-13 23:44:59 +00001357}
1358
Dan Gohmancf609572008-02-29 01:40:47 +00001359APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001360 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001361}
1362
Chris Lattner455e9ab2009-01-21 18:09:24 +00001363APInt APInt::rotr(unsigned rotateAmt) const {
Eli Friedman2acbd7d2011-12-22 03:15:35 +00001364 rotateAmt %= BitWidth;
Reid Spencer69944e82007-05-14 00:15:28 +00001365 if (rotateAmt == 0)
1366 return *this;
Eli Friedman2acbd7d2011-12-22 03:15:35 +00001367 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
Reid Spencer19dc32a2007-05-13 23:44:59 +00001368}
Reid Spenceraf8fb192007-03-01 05:39:56 +00001369
1370// Square Root - this method computes and returns the square root of "this".
1371// Three mechanisms are used for computation. For small values (<= 5 bits),
1372// a table lookup is done. This gets some performance for common cases. For
1373// values using less than 52 bits, the value is converted to double and then
1374// the libc sqrt function is called. The result is rounded and then converted
1375// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopherd37eda82009-08-21 04:06:45 +00001376// the Babylonian method for computing square roots is used.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001377APInt APInt::sqrt() const {
1378
1379 // Determine the magnitude of the value.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001380 unsigned magnitude = getActiveBits();
Reid Spenceraf8fb192007-03-01 05:39:56 +00001381
1382 // Use a fast table for some small values. This also gets rid of some
1383 // rounding errors in libc sqrt for small values.
1384 if (magnitude <= 5) {
Reid Spencer4e1e87f2007-03-01 17:47:31 +00001385 static const uint8_t results[32] = {
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001386 /* 0 */ 0,
1387 /* 1- 2 */ 1, 1,
Eric Christopherd37eda82009-08-21 04:06:45 +00001388 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001389 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1390 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1391 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1392 /* 31 */ 6
1393 };
1394 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spenceraf8fb192007-03-01 05:39:56 +00001395 }
1396
1397 // If the magnitude of the value fits in less than 52 bits (the precision of
1398 // an IEEE double precision floating point value), then we can use the
1399 // libc sqrt function which will probably use a hardware sqrt computation.
1400 // This should be faster than the algorithm below.
Jeff Cohenca5183d2007-03-05 00:00:42 +00001401 if (magnitude < 52) {
Chris Lattner4c297c92010-05-15 17:11:55 +00001402#if HAVE_ROUND
Eric Christopherd37eda82009-08-21 04:06:45 +00001403 return APInt(BitWidth,
Reid Spenceraf8fb192007-03-01 05:39:56 +00001404 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Chris Lattner4c297c92010-05-15 17:11:55 +00001405#else
1406 return APInt(BitWidth,
Chris Lattnerc4cb2372011-05-22 06:03:53 +00001407 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5));
Jeff Cohenca5183d2007-03-05 00:00:42 +00001408#endif
1409 }
Reid Spenceraf8fb192007-03-01 05:39:56 +00001410
1411 // Okay, all the short cuts are exhausted. We must compute it. The following
1412 // is a classical Babylonian method for computing the square root. This code
1413 // was adapted to APINt from a wikipedia article on such computations.
1414 // See http://www.wikipedia.org/ and go to the page named
Eric Christopherd37eda82009-08-21 04:06:45 +00001415 // Calculate_an_integer_square_root.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001416 unsigned nbits = BitWidth, i = 4;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001417 APInt testy(BitWidth, 16);
1418 APInt x_old(BitWidth, 1);
1419 APInt x_new(BitWidth, 0);
1420 APInt two(BitWidth, 2);
1421
1422 // Select a good starting value using binary logarithms.
Eric Christopherd37eda82009-08-21 04:06:45 +00001423 for (;; i += 2, testy = testy.shl(2))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001424 if (i >= nbits || this->ule(testy)) {
1425 x_old = x_old.shl(i / 2);
1426 break;
1427 }
1428
Eric Christopherd37eda82009-08-21 04:06:45 +00001429 // Use the Babylonian method to arrive at the integer square root:
Reid Spenceraf8fb192007-03-01 05:39:56 +00001430 for (;;) {
1431 x_new = (this->udiv(x_old) + x_old).udiv(two);
1432 if (x_old.ule(x_new))
1433 break;
1434 x_old = x_new;
1435 }
1436
1437 // Make sure we return the closest approximation
Eric Christopherd37eda82009-08-21 04:06:45 +00001438 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencerf09aef72007-03-02 04:21:55 +00001439 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopherd37eda82009-08-21 04:06:45 +00001440 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencerf09aef72007-03-02 04:21:55 +00001441 // floating point representation after 192 bits. There are no discrepancies
1442 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001443 APInt square(x_old * x_old);
1444 APInt nextSquare((x_old + 1) * (x_old +1));
1445 if (this->ult(square))
1446 return x_old;
David Blaikie18c7ec12011-12-01 20:58:30 +00001447 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1448 APInt midpoint((nextSquare - square).udiv(two));
1449 APInt offset(*this - square);
1450 if (offset.ult(midpoint))
1451 return x_old;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001452 return x_old + 1;
1453}
1454
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001455/// Computes the multiplicative inverse of this APInt for a given modulo. The
1456/// iterative extended Euclidean algorithm is used to solve for this value,
1457/// however we simplify it to speed up calculating only the inverse, and take
1458/// advantage of div+rem calculations. We also use some tricks to avoid copying
1459/// (potentially large) APInts around.
1460APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1461 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1462
1463 // Using the properties listed at the following web page (accessed 06/21/08):
1464 // http://www.numbertheory.org/php/euclid.html
1465 // (especially the properties numbered 3, 4 and 9) it can be proved that
1466 // BitWidth bits suffice for all the computations in the algorithm implemented
1467 // below. More precisely, this number of bits suffice if the multiplicative
1468 // inverse exists, but may not suffice for the general extended Euclidean
1469 // algorithm.
1470
1471 APInt r[2] = { modulo, *this };
1472 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1473 APInt q(BitWidth, 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00001474
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001475 unsigned i;
1476 for (i = 0; r[i^1] != 0; i ^= 1) {
1477 // An overview of the math without the confusing bit-flipping:
1478 // q = r[i-2] / r[i-1]
1479 // r[i] = r[i-2] % r[i-1]
1480 // t[i] = t[i-2] - t[i-1] * q
1481 udivrem(r[i], r[i^1], q, r[i]);
1482 t[i] -= t[i^1] * q;
1483 }
1484
1485 // If this APInt and the modulo are not coprime, there is no multiplicative
1486 // inverse, so return 0. We check this by looking at the next-to-last
1487 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1488 // algorithm.
1489 if (r[i] != 1)
1490 return APInt(BitWidth, 0);
1491
1492 // The next-to-last t is the multiplicative inverse. However, we are
1493 // interested in a positive inverse. Calcuate a positive one from a negative
1494 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00001495 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001496 return t[i].isNegative() ? t[i] + modulo : t[i];
1497}
1498
Jay Foad4e5ea552009-04-30 10:15:35 +00001499/// Calculate the magic numbers required to implement a signed integer division
1500/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1501/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1502/// Warren, Jr., chapter 10.
1503APInt::ms APInt::magic() const {
1504 const APInt& d = *this;
1505 unsigned p;
1506 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foad4e5ea552009-04-30 10:15:35 +00001507 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foad4e5ea552009-04-30 10:15:35 +00001508 struct ms mag;
Eric Christopherd37eda82009-08-21 04:06:45 +00001509
Jay Foad4e5ea552009-04-30 10:15:35 +00001510 ad = d.abs();
1511 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1512 anc = t - 1 - t.urem(ad); // absolute value of nc
1513 p = d.getBitWidth() - 1; // initialize p
1514 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1515 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1516 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1517 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1518 do {
1519 p = p + 1;
1520 q1 = q1<<1; // update q1 = 2p/abs(nc)
1521 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1522 if (r1.uge(anc)) { // must be unsigned comparison
1523 q1 = q1 + 1;
1524 r1 = r1 - anc;
1525 }
1526 q2 = q2<<1; // update q2 = 2p/abs(d)
1527 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1528 if (r2.uge(ad)) { // must be unsigned comparison
1529 q2 = q2 + 1;
1530 r2 = r2 - ad;
1531 }
1532 delta = ad - r2;
Cameron Zwarich8d7285d2011-02-21 00:22:02 +00001533 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopherd37eda82009-08-21 04:06:45 +00001534
Jay Foad4e5ea552009-04-30 10:15:35 +00001535 mag.m = q2 + 1;
1536 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1537 mag.s = p - d.getBitWidth(); // resulting shift
1538 return mag;
1539}
1540
1541/// Calculate the magic numbers required to implement an unsigned integer
1542/// division by a constant as a sequence of multiplies, adds and shifts.
1543/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1544/// S. Warren, Jr., chapter 10.
Benjamin Kramerd9103df2011-03-17 20:39:06 +00001545/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001546/// of the divided value are known zero.
Benjamin Kramerd9103df2011-03-17 20:39:06 +00001547APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foad4e5ea552009-04-30 10:15:35 +00001548 const APInt& d = *this;
1549 unsigned p;
1550 APInt nc, delta, q1, r1, q2, r2;
1551 struct mu magu;
1552 magu.a = 0; // initialize "add" indicator
Benjamin Kramerd9103df2011-03-17 20:39:06 +00001553 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foad4e5ea552009-04-30 10:15:35 +00001554 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1555 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1556
1557 nc = allOnes - (-d).urem(d);
1558 p = d.getBitWidth() - 1; // initialize p
1559 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1560 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1561 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1562 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1563 do {
1564 p = p + 1;
1565 if (r1.uge(nc - r1)) {
1566 q1 = q1 + q1 + 1; // update q1
1567 r1 = r1 + r1 - nc; // update r1
1568 }
1569 else {
1570 q1 = q1+q1; // update q1
1571 r1 = r1+r1; // update r1
1572 }
1573 if ((r2 + 1).uge(d - r2)) {
1574 if (q2.uge(signedMax)) magu.a = 1;
1575 q2 = q2+q2 + 1; // update q2
1576 r2 = r2+r2 + 1 - d; // update r2
1577 }
1578 else {
1579 if (q2.uge(signedMin)) magu.a = 1;
1580 q2 = q2+q2; // update q2
1581 r2 = r2+r2 + 1; // update r2
1582 }
1583 delta = d - 1 - r2;
1584 } while (p < d.getBitWidth()*2 &&
1585 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1586 magu.m = q2 + 1; // resulting magic number
1587 magu.s = p - d.getBitWidth(); // resulting shift
1588 return magu;
1589}
1590
Reid Spencer9c0696f2007-02-20 08:51:03 +00001591/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1592/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1593/// variables here have the same names as in the algorithm. Comments explain
1594/// the algorithm and any deviation from it.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001595static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1596 unsigned m, unsigned n) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001597 assert(u && "Must provide dividend");
1598 assert(v && "Must provide divisor");
1599 assert(q && "Must provide quotient");
Reid Spencer9d6c9192007-02-24 03:58:46 +00001600 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001601 assert(n>1 && "n must be > 1");
1602
1603 // Knuth uses the value b as the base of the number system. In our case b
1604 // is 2^31 so we just set it to -1u.
1605 uint64_t b = uint64_t(1) << 32;
1606
Chris Lattnerfad86b02008-08-17 07:19:36 +00001607#if 0
David Greene465abed2010-01-05 01:28:52 +00001608 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1609 DEBUG(dbgs() << "KnuthDiv: original:");
1610 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1611 DEBUG(dbgs() << " by");
1612 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1613 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001614#endif
Eric Christopherd37eda82009-08-21 04:06:45 +00001615 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1616 // u and v by d. Note that we have taken Knuth's advice here to use a power
1617 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1618 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencer9c0696f2007-02-20 08:51:03 +00001619 // shift amount from the leading zeros. We are basically normalizing the u
1620 // and v so that its high bits are shifted to the top of v's range without
1621 // overflow. Note that this can require an extra word in u so that u must
1622 // be of length m+n+1.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001623 unsigned shift = CountLeadingZeros_32(v[n-1]);
1624 unsigned v_carry = 0;
1625 unsigned u_carry = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001626 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001627 for (unsigned i = 0; i < m+n; ++i) {
1628 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001629 u[i] = (u[i] << shift) | u_carry;
1630 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001631 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001632 for (unsigned i = 0; i < n; ++i) {
1633 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001634 v[i] = (v[i] << shift) | v_carry;
1635 v_carry = v_tmp;
1636 }
1637 }
1638 u[m+n] = u_carry;
Chris Lattnerfad86b02008-08-17 07:19:36 +00001639#if 0
David Greene465abed2010-01-05 01:28:52 +00001640 DEBUG(dbgs() << "KnuthDiv: normal:");
1641 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1642 DEBUG(dbgs() << " by");
1643 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1644 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001645#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001646
1647 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1648 int j = m;
1649 do {
David Greene465abed2010-01-05 01:28:52 +00001650 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopherd37eda82009-08-21 04:06:45 +00001651 // D3. [Calculate q'.].
Reid Spencer9c0696f2007-02-20 08:51:03 +00001652 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1653 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1654 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1655 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1656 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopherd37eda82009-08-21 04:06:45 +00001657 // value qp is one too large, and it eliminates all cases where qp is two
1658 // too large.
Reid Spencer92904632007-02-23 01:57:13 +00001659 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greene465abed2010-01-05 01:28:52 +00001660 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencer92904632007-02-23 01:57:13 +00001661 uint64_t qp = dividend / v[n-1];
1662 uint64_t rp = dividend % v[n-1];
Reid Spencer9c0696f2007-02-20 08:51:03 +00001663 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1664 qp--;
1665 rp += v[n-1];
Reid Spencer610fad82007-02-24 10:01:42 +00001666 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencer9d6c9192007-02-24 03:58:46 +00001667 qp--;
Reid Spencer92904632007-02-23 01:57:13 +00001668 }
David Greene465abed2010-01-05 01:28:52 +00001669 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001670
Reid Spencer92904632007-02-23 01:57:13 +00001671 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1672 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1673 // consists of a simple multiplication by a one-place number, combined with
Eric Christopherd37eda82009-08-21 04:06:45 +00001674 // a subtraction.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001675 bool isNeg = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001676 for (unsigned i = 0; i < n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001677 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001678 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencer610fad82007-02-24 10:01:42 +00001679 bool borrow = subtrahend > u_tmp;
David Greene465abed2010-01-05 01:28:52 +00001680 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
Daniel Dunbara53902b2009-07-13 05:27:30 +00001681 << ", subtrahend == " << subtrahend
1682 << ", borrow = " << borrow << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001683
Reid Spencer610fad82007-02-24 10:01:42 +00001684 uint64_t result = u_tmp - subtrahend;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001685 unsigned k = j + i;
1686 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1687 u[k++] = (unsigned)(result >> 32); // subtract high word
Reid Spencer610fad82007-02-24 10:01:42 +00001688 while (borrow && k <= m+n) { // deal with borrow to the left
1689 borrow = u[k] == 0;
1690 u[k]--;
1691 k++;
1692 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001693 isNeg |= borrow;
David Greene465abed2010-01-05 01:28:52 +00001694 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Eric Christopherd37eda82009-08-21 04:06:45 +00001695 u[j+i+1] << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001696 }
David Greene465abed2010-01-05 01:28:52 +00001697 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1698 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1699 DEBUG(dbgs() << '\n');
Eric Christopherd37eda82009-08-21 04:06:45 +00001700 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1701 // this step is actually negative, (u[j+n]...u[j]) should be left as the
Reid Spencer610fad82007-02-24 10:01:42 +00001702 // true value plus b**(n+1), namely as the b's complement of
Reid Spencer92904632007-02-23 01:57:13 +00001703 // the true value, and a "borrow" to the left should be remembered.
1704 //
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001705 if (isNeg) {
Reid Spencer610fad82007-02-24 10:01:42 +00001706 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattner455e9ab2009-01-21 18:09:24 +00001707 for (unsigned i = 0; i <= m+n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001708 u[i] = ~u[i] + carry; // b's complement
1709 carry = carry && u[i] == 0;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001710 }
Reid Spencer92904632007-02-23 01:57:13 +00001711 }
David Greene465abed2010-01-05 01:28:52 +00001712 DEBUG(dbgs() << "KnuthDiv: after complement:");
1713 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1714 DEBUG(dbgs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001715
Eric Christopherd37eda82009-08-21 04:06:45 +00001716 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencer9c0696f2007-02-20 08:51:03 +00001717 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001718 q[j] = (unsigned)qp;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001719 if (isNeg) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001720 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencer9c0696f2007-02-20 08:51:03 +00001721 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopherd37eda82009-08-21 04:06:45 +00001722 // this possibility. Decrease q[j] by 1
Reid Spencer92904632007-02-23 01:57:13 +00001723 q[j]--;
Eric Christopherd37eda82009-08-21 04:06:45 +00001724 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1725 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencer92904632007-02-23 01:57:13 +00001726 // since it cancels with the borrow that occurred in D4.
1727 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001728 for (unsigned i = 0; i < n; i++) {
1729 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001730 u[j+i] += v[i] + carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001731 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001732 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001733 u[j+n] += carry;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001734 }
David Greene465abed2010-01-05 01:28:52 +00001735 DEBUG(dbgs() << "KnuthDiv: after correction:");
1736 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1737 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001738
Reid Spencer92904632007-02-23 01:57:13 +00001739 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1740 } while (--j >= 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001741
David Greene465abed2010-01-05 01:28:52 +00001742 DEBUG(dbgs() << "KnuthDiv: quotient:");
1743 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1744 DEBUG(dbgs() << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001745
Reid Spencer9c0696f2007-02-20 08:51:03 +00001746 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1747 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1748 // compute the remainder (urem uses this).
1749 if (r) {
1750 // The value d is expressed by the "shift" value above since we avoided
1751 // multiplication by d by using a shift left. So, all we have to do is
1752 // shift right here. In order to mak
Reid Spencer1050ec52007-02-24 20:38:01 +00001753 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001754 unsigned carry = 0;
David Greene465abed2010-01-05 01:28:52 +00001755 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer1050ec52007-02-24 20:38:01 +00001756 for (int i = n-1; i >= 0; i--) {
1757 r[i] = (u[i] >> shift) | carry;
1758 carry = u[i] << (32 - shift);
David Greene465abed2010-01-05 01:28:52 +00001759 DEBUG(dbgs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001760 }
1761 } else {
1762 for (int i = n-1; i >= 0; i--) {
1763 r[i] = u[i];
David Greene465abed2010-01-05 01:28:52 +00001764 DEBUG(dbgs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001765 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001766 }
David Greene465abed2010-01-05 01:28:52 +00001767 DEBUG(dbgs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001768 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00001769#if 0
David Greene465abed2010-01-05 01:28:52 +00001770 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001771#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001772}
1773
Chris Lattner455e9ab2009-01-21 18:09:24 +00001774void APInt::divide(const APInt LHS, unsigned lhsWords,
1775 const APInt &RHS, unsigned rhsWords,
Reid Spencer9c0696f2007-02-20 08:51:03 +00001776 APInt *Quotient, APInt *Remainder)
1777{
1778 assert(lhsWords >= rhsWords && "Fractional result");
1779
Eric Christopherd37eda82009-08-21 04:06:45 +00001780 // First, compose the values into an array of 32-bit words instead of
Reid Spencer9c0696f2007-02-20 08:51:03 +00001781 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohmanf451cb82010-02-10 16:03:48 +00001782 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopherd37eda82009-08-21 04:06:45 +00001783 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1784 // can't use 64-bit operands here because we don't have native results of
1785 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencer9c0696f2007-02-20 08:51:03 +00001786 // work on large-endian machines.
Dan Gohmande551f92009-04-01 18:45:54 +00001787 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001788 unsigned n = rhsWords * 2;
1789 unsigned m = (lhsWords * 2) - n;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001790
1791 // Allocate space for the temporary values we need either on the stack, if
1792 // it will fit, or on the heap if it won't.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001793 unsigned SPACE[128];
1794 unsigned *U = 0;
1795 unsigned *V = 0;
1796 unsigned *Q = 0;
1797 unsigned *R = 0;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001798 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1799 U = &SPACE[0];
1800 V = &SPACE[m+n+1];
1801 Q = &SPACE[(m+n+1) + n];
1802 if (Remainder)
1803 R = &SPACE[(m+n+1) + n + (m+n)];
1804 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001805 U = new unsigned[m + n + 1];
1806 V = new unsigned[n];
1807 Q = new unsigned[m+n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001808 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001809 R = new unsigned[n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001810 }
1811
1812 // Initialize the dividend
Chris Lattner455e9ab2009-01-21 18:09:24 +00001813 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001814 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001815 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001816 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001817 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001818 }
1819 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1820
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001821 // Initialize the divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001822 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001823 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001824 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001825 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001826 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001827 }
1828
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001829 // initialize the quotient and remainder
Chris Lattner455e9ab2009-01-21 18:09:24 +00001830 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001831 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001832 memset(R, 0, n * sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001833
Eric Christopherd37eda82009-08-21 04:06:45 +00001834 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencer9c0696f2007-02-20 08:51:03 +00001835 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopherd37eda82009-08-21 04:06:45 +00001836 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencer9c0696f2007-02-20 08:51:03 +00001837 // contain any zero words or the Knuth algorithm fails.
1838 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1839 n--;
1840 m++;
1841 }
1842 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1843 m--;
1844
1845 // If we're left with only a single word for the divisor, Knuth doesn't work
1846 // so we implement the short division algorithm here. This is much simpler
1847 // and faster because we are certain that we can divide a 64-bit quantity
1848 // by a 32-bit quantity at hardware speed and short division is simply a
1849 // series of such operations. This is just like doing short division but we
1850 // are using base 2^32 instead of base 10.
1851 assert(n != 0 && "Divide by zero?");
1852 if (n == 1) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001853 unsigned divisor = V[0];
1854 unsigned remainder = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001855 for (int i = m+n-1; i >= 0; i--) {
1856 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1857 if (partial_dividend == 0) {
1858 Q[i] = 0;
1859 remainder = 0;
1860 } else if (partial_dividend < divisor) {
1861 Q[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001862 remainder = (unsigned)partial_dividend;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001863 } else if (partial_dividend == divisor) {
1864 Q[i] = 1;
1865 remainder = 0;
1866 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001867 Q[i] = (unsigned)(partial_dividend / divisor);
1868 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001869 }
1870 }
1871 if (R)
1872 R[0] = remainder;
1873 } else {
1874 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1875 // case n > 1.
1876 KnuthDiv(U, V, Q, R, m, n);
1877 }
1878
1879 // If the caller wants the quotient
1880 if (Quotient) {
1881 // Set up the Quotient value's memory.
1882 if (Quotient->BitWidth != LHS.BitWidth) {
1883 if (Quotient->isSingleWord())
1884 Quotient->VAL = 0;
1885 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001886 delete [] Quotient->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001887 Quotient->BitWidth = LHS.BitWidth;
1888 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001889 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001890 } else
Jay Foad7a874dd2010-12-01 08:53:58 +00001891 Quotient->clearAllBits();
Reid Spencer9c0696f2007-02-20 08:51:03 +00001892
Eric Christopherd37eda82009-08-21 04:06:45 +00001893 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencer9c0696f2007-02-20 08:51:03 +00001894 // order words.
1895 if (lhsWords == 1) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001896 uint64_t tmp =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001897 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1898 if (Quotient->isSingleWord())
1899 Quotient->VAL = tmp;
1900 else
1901 Quotient->pVal[0] = tmp;
1902 } else {
1903 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1904 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +00001905 Quotient->pVal[i] =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001906 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1907 }
1908 }
1909
1910 // If the caller wants the remainder
1911 if (Remainder) {
1912 // Set up the Remainder value's memory.
1913 if (Remainder->BitWidth != RHS.BitWidth) {
1914 if (Remainder->isSingleWord())
1915 Remainder->VAL = 0;
1916 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001917 delete [] Remainder->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001918 Remainder->BitWidth = RHS.BitWidth;
1919 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001920 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001921 } else
Jay Foad7a874dd2010-12-01 08:53:58 +00001922 Remainder->clearAllBits();
Reid Spencer9c0696f2007-02-20 08:51:03 +00001923
1924 // The remainder is in R. Reconstitute the remainder into Remainder's low
1925 // order words.
1926 if (rhsWords == 1) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001927 uint64_t tmp =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001928 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1929 if (Remainder->isSingleWord())
1930 Remainder->VAL = tmp;
1931 else
1932 Remainder->pVal[0] = tmp;
1933 } else {
1934 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1935 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +00001936 Remainder->pVal[i] =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001937 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1938 }
1939 }
1940
1941 // Clean up the memory we allocated.
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001942 if (U != &SPACE[0]) {
1943 delete [] U;
1944 delete [] V;
1945 delete [] Q;
1946 delete [] R;
1947 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001948}
1949
Reid Spencere81d2da2007-02-16 22:36:51 +00001950APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001951 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001952
1953 // First, deal with the easy case
1954 if (isSingleWord()) {
1955 assert(RHS.VAL != 0 && "Divide by zero?");
1956 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001957 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001958
Reid Spencer71bd08f2007-02-17 02:07:07 +00001959 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001960 unsigned rhsBits = RHS.getActiveBits();
1961 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001962 assert(rhsWords && "Divided by zero???");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001963 unsigned lhsBits = this->getActiveBits();
1964 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001965
1966 // Deal with some degenerate cases
Eric Christopherd37eda82009-08-21 04:06:45 +00001967 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001968 // 0 / X ===> 0
Eric Christopherd37eda82009-08-21 04:06:45 +00001969 return APInt(BitWidth, 0);
Reid Spencere0cdd332007-02-21 08:21:52 +00001970 else if (lhsWords < rhsWords || this->ult(RHS)) {
1971 // X / Y ===> 0, iff X < Y
1972 return APInt(BitWidth, 0);
1973 } else if (*this == RHS) {
1974 // X / X ===> 1
1975 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001976 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001977 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001978 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001979 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001980
1981 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1982 APInt Quotient(1,0); // to hold result.
1983 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1984 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001985}
1986
Reid Spencere81d2da2007-02-16 22:36:51 +00001987APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001988 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001989 if (isSingleWord()) {
1990 assert(RHS.VAL != 0 && "Remainder by zero?");
1991 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001992 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001993
Reid Spencere0cdd332007-02-21 08:21:52 +00001994 // Get some facts about the LHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001995 unsigned lhsBits = getActiveBits();
1996 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001997
1998 // Get some facts about the RHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001999 unsigned rhsBits = RHS.getActiveBits();
2000 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00002001 assert(rhsWords && "Performing remainder operation by zero ???");
2002
Reid Spencer71bd08f2007-02-17 02:07:07 +00002003 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00002004 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00002005 // 0 % Y ===> 0
2006 return APInt(BitWidth, 0);
2007 } else if (lhsWords < rhsWords || this->ult(RHS)) {
2008 // X % Y ===> X, iff X < Y
2009 return *this;
2010 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00002011 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00002012 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00002013 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00002014 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00002015 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00002016 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002017
Reid Spencer19dc32a2007-05-13 23:44:59 +00002018 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencer9c0696f2007-02-20 08:51:03 +00002019 APInt Remainder(1,0);
2020 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2021 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00002022}
Reid Spencer5e0a8512007-02-17 03:16:00 +00002023
Eric Christopherd37eda82009-08-21 04:06:45 +00002024void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer19dc32a2007-05-13 23:44:59 +00002025 APInt &Quotient, APInt &Remainder) {
2026 // Get some size facts about the dividend and divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00002027 unsigned lhsBits = LHS.getActiveBits();
2028 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2029 unsigned rhsBits = RHS.getActiveBits();
2030 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer19dc32a2007-05-13 23:44:59 +00002031
2032 // Check the degenerate cases
Eric Christopherd37eda82009-08-21 04:06:45 +00002033 if (lhsWords == 0) {
Reid Spencer19dc32a2007-05-13 23:44:59 +00002034 Quotient = 0; // 0 / Y ===> 0
2035 Remainder = 0; // 0 % Y ===> 0
2036 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002037 }
2038
2039 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Reid Spencer19dc32a2007-05-13 23:44:59 +00002040 Remainder = LHS; // X % Y ===> X, iff X < Y
John McCalld73bf592009-12-24 08:52:06 +00002041 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer19dc32a2007-05-13 23:44:59 +00002042 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002043 }
2044
Reid Spencer19dc32a2007-05-13 23:44:59 +00002045 if (LHS == RHS) {
2046 Quotient = 1; // X / X ===> 1
2047 Remainder = 0; // X % X ===> 0;
2048 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002049 }
2050
Reid Spencer19dc32a2007-05-13 23:44:59 +00002051 if (lhsWords == 1 && rhsWords == 1) {
2052 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00002053 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2054 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2055 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2056 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer19dc32a2007-05-13 23:44:59 +00002057 return;
2058 }
2059
2060 // Okay, lets do it the long way
2061 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2062}
2063
Chris Lattner0a0a5852010-10-13 23:54:10 +00002064APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002065 APInt Res = *this+RHS;
2066 Overflow = isNonNegative() == RHS.isNonNegative() &&
2067 Res.isNonNegative() != isNonNegative();
2068 return Res;
2069}
2070
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002071APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
2072 APInt Res = *this+RHS;
2073 Overflow = Res.ult(RHS);
2074 return Res;
2075}
2076
Chris Lattner0a0a5852010-10-13 23:54:10 +00002077APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002078 APInt Res = *this - RHS;
2079 Overflow = isNonNegative() != RHS.isNonNegative() &&
2080 Res.isNonNegative() != isNonNegative();
2081 return Res;
2082}
2083
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002084APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnera5bbde82010-10-14 00:30:00 +00002085 APInt Res = *this-RHS;
2086 Overflow = Res.ugt(*this);
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002087 return Res;
2088}
2089
Chris Lattner0a0a5852010-10-13 23:54:10 +00002090APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002091 // MININT/-1 --> overflow.
2092 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2093 return sdiv(RHS);
2094}
2095
Chris Lattner0a0a5852010-10-13 23:54:10 +00002096APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002097 APInt Res = *this * RHS;
2098
2099 if (*this != 0 && RHS != 0)
2100 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2101 else
2102 Overflow = false;
2103 return Res;
2104}
2105
Frits van Bommel62086102011-03-27 14:26:13 +00002106APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2107 APInt Res = *this * RHS;
2108
2109 if (*this != 0 && RHS != 0)
2110 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
2111 else
2112 Overflow = false;
2113 return Res;
2114}
2115
Chris Lattner0a0a5852010-10-13 23:54:10 +00002116APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002117 Overflow = ShAmt >= getBitWidth();
2118 if (Overflow)
2119 ShAmt = getBitWidth()-1;
2120
2121 if (isNonNegative()) // Don't allow sign change.
2122 Overflow = ShAmt >= countLeadingZeros();
2123 else
2124 Overflow = ShAmt >= countLeadingOnes();
2125
2126 return *this << ShAmt;
2127}
2128
2129
2130
2131
Benjamin Kramer38e59892010-07-14 22:38:02 +00002132void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00002133 // Check our assumptions here
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002134 assert(!str.empty() && "Invalid string length");
Douglas Gregordcd99962011-09-14 15:54:46 +00002135 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2136 radix == 36) &&
2137 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002138
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002139 StringRef::iterator p = str.begin();
2140 size_t slen = str.size();
2141 bool isNeg = *p == '-';
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002142 if (*p == '-' || *p == '+') {
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002143 p++;
2144 slen--;
Eric Christophere250f2a2009-08-21 04:10:31 +00002145 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002146 }
Chris Lattnera5ae15e2007-05-03 18:15:36 +00002147 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner38300e92009-04-25 18:34:04 +00002148 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2149 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohman16e02092010-03-24 19:38:02 +00002150 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2151 "Insufficient bit width");
Reid Spencer385f7542007-02-21 03:55:44 +00002152
2153 // Allocate memory
2154 if (!isSingleWord())
2155 pVal = getClearedMemory(getNumWords());
2156
2157 // Figure out if we can shift instead of multiply
Chris Lattner455e9ab2009-01-21 18:09:24 +00002158 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer385f7542007-02-21 03:55:44 +00002159
2160 // Set up an APInt for the digit to add outside the loop so we don't
2161 // constantly construct/destruct it.
2162 APInt apdigit(getBitWidth(), 0);
2163 APInt apradix(getBitWidth(), radix);
2164
2165 // Enter digit traversal loop
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002166 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +00002167 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +00002168 assert(digit < radix && "Invalid character in digit string");
Reid Spencer385f7542007-02-21 03:55:44 +00002169
Reid Spencer6551dcd2007-05-16 19:18:22 +00002170 // Shift or multiply the value by the radix
Chris Lattner38300e92009-04-25 18:34:04 +00002171 if (slen > 1) {
2172 if (shift)
2173 *this <<= shift;
2174 else
2175 *this *= apradix;
2176 }
Reid Spencer385f7542007-02-21 03:55:44 +00002177
2178 // Add in the digit we just interpreted
Reid Spencer5bce8542007-02-24 20:19:37 +00002179 if (apdigit.isSingleWord())
2180 apdigit.VAL = digit;
2181 else
2182 apdigit.pVal[0] = digit;
Reid Spencer385f7542007-02-21 03:55:44 +00002183 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00002184 }
Reid Spencer9eec2412007-02-25 23:44:53 +00002185 // If its negative, put it in two's complement form
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002186 if (isNeg) {
2187 (*this)--;
Jay Foad7a874dd2010-12-01 08:53:58 +00002188 this->flipAllBits();
Reid Spencer9eec2412007-02-25 23:44:53 +00002189 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00002190}
Reid Spencer9c0696f2007-02-20 08:51:03 +00002191
Chris Lattnerfad86b02008-08-17 07:19:36 +00002192void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekcf886182011-06-15 00:51:55 +00002193 bool Signed, bool formatAsCLiteral) const {
Douglas Gregordcd99962011-09-14 15:54:46 +00002194 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2195 Radix == 36) &&
Dylan Noblesmithefb0d1e2011-12-16 20:36:31 +00002196 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopherd37eda82009-08-21 04:06:45 +00002197
Ted Kremenekcf886182011-06-15 00:51:55 +00002198 const char *Prefix = "";
2199 if (formatAsCLiteral) {
2200 switch (Radix) {
2201 case 2:
2202 // Binary literals are a non-standard extension added in gcc 4.3:
2203 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2204 Prefix = "0b";
2205 break;
2206 case 8:
2207 Prefix = "0";
2208 break;
Dylan Noblesmithefb0d1e2011-12-16 20:36:31 +00002209 case 10:
2210 break; // No prefix
Ted Kremenekcf886182011-06-15 00:51:55 +00002211 case 16:
2212 Prefix = "0x";
2213 break;
Dylan Noblesmithefb0d1e2011-12-16 20:36:31 +00002214 default:
2215 llvm_unreachable("Invalid radix!");
Ted Kremenekcf886182011-06-15 00:51:55 +00002216 }
2217 }
2218
Chris Lattnerfad86b02008-08-17 07:19:36 +00002219 // First, check for a zero value and just short circuit the logic below.
2220 if (*this == 0) {
Ted Kremenekcf886182011-06-15 00:51:55 +00002221 while (*Prefix) {
2222 Str.push_back(*Prefix);
2223 ++Prefix;
2224 };
Chris Lattnerfad86b02008-08-17 07:19:36 +00002225 Str.push_back('0');
2226 return;
2227 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002228
Douglas Gregordcd99962011-09-14 15:54:46 +00002229 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopherd37eda82009-08-21 04:06:45 +00002230
Reid Spencer9c0696f2007-02-20 08:51:03 +00002231 if (isSingleWord()) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002232 char Buffer[65];
2233 char *BufPtr = Buffer+65;
Eric Christopherd37eda82009-08-21 04:06:45 +00002234
Chris Lattnerfad86b02008-08-17 07:19:36 +00002235 uint64_t N;
Chris Lattner50839122010-08-18 00:33:47 +00002236 if (!Signed) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002237 N = getZExtValue();
Chris Lattner50839122010-08-18 00:33:47 +00002238 } else {
2239 int64_t I = getSExtValue();
2240 if (I >= 0) {
2241 N = I;
2242 } else {
2243 Str.push_back('-');
2244 N = -(uint64_t)I;
2245 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002246 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002247
Ted Kremenekcf886182011-06-15 00:51:55 +00002248 while (*Prefix) {
2249 Str.push_back(*Prefix);
2250 ++Prefix;
2251 };
2252
Chris Lattnerfad86b02008-08-17 07:19:36 +00002253 while (N) {
2254 *--BufPtr = Digits[N % Radix];
2255 N /= Radix;
2256 }
2257 Str.append(BufPtr, Buffer+65);
2258 return;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002259 }
2260
Chris Lattnerfad86b02008-08-17 07:19:36 +00002261 APInt Tmp(*this);
Eric Christopherd37eda82009-08-21 04:06:45 +00002262
Chris Lattnerfad86b02008-08-17 07:19:36 +00002263 if (Signed && isNegative()) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00002264 // They want to print the signed version and it is a negative value
2265 // Flip the bits and add one to turn it into the equivalent positive
2266 // value and put a '-' in the result.
Jay Foad7a874dd2010-12-01 08:53:58 +00002267 Tmp.flipAllBits();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002268 Tmp++;
2269 Str.push_back('-');
Reid Spencer9c0696f2007-02-20 08:51:03 +00002270 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002271
Ted Kremenekcf886182011-06-15 00:51:55 +00002272 while (*Prefix) {
2273 Str.push_back(*Prefix);
2274 ++Prefix;
2275 };
2276
Chris Lattnerfad86b02008-08-17 07:19:36 +00002277 // We insert the digits backward, then reverse them to get the right order.
2278 unsigned StartDig = Str.size();
Eric Christopherd37eda82009-08-21 04:06:45 +00002279
2280 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2281 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattnerfad86b02008-08-17 07:19:36 +00002282 // equaly. We just shift until the value is zero.
Douglas Gregordcd99962011-09-14 15:54:46 +00002283 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002284 // Just shift tmp right for each digit width until it becomes zero
2285 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2286 unsigned MaskAmt = Radix - 1;
Eric Christopherd37eda82009-08-21 04:06:45 +00002287
Chris Lattnerfad86b02008-08-17 07:19:36 +00002288 while (Tmp != 0) {
2289 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2290 Str.push_back(Digits[Digit]);
2291 Tmp = Tmp.lshr(ShiftAmt);
2292 }
2293 } else {
Douglas Gregordcd99962011-09-14 15:54:46 +00002294 APInt divisor(Radix == 10? 4 : 8, Radix);
Chris Lattnerfad86b02008-08-17 07:19:36 +00002295 while (Tmp != 0) {
2296 APInt APdigit(1, 0);
2297 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00002298 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattnerfad86b02008-08-17 07:19:36 +00002299 &APdigit);
Chris Lattner455e9ab2009-01-21 18:09:24 +00002300 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002301 assert(Digit < Radix && "divide failed");
2302 Str.push_back(Digits[Digit]);
2303 Tmp = tmp2;
2304 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002305 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002306
Chris Lattnerfad86b02008-08-17 07:19:36 +00002307 // Reverse the digits before returning.
2308 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencer9c0696f2007-02-20 08:51:03 +00002309}
2310
Chris Lattnerfad86b02008-08-17 07:19:36 +00002311/// toString - This returns the APInt as a std::string. Note that this is an
2312/// inefficient method. It is better to pass in a SmallVector/SmallString
2313/// to the methods above.
2314std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2315 SmallString<40> S;
Ted Kremenekcf886182011-06-15 00:51:55 +00002316 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002317 return S.str();
Reid Spencer385f7542007-02-21 03:55:44 +00002318}
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002319
Chris Lattnerfad86b02008-08-17 07:19:36 +00002320
2321void APInt::dump() const {
2322 SmallString<40> S, U;
2323 this->toStringUnsigned(U);
2324 this->toStringSigned(S);
David Greene465abed2010-01-05 01:28:52 +00002325 dbgs() << "APInt(" << BitWidth << "b, "
Daniel Dunbardddfd342009-08-19 20:07:03 +00002326 << U.str() << "u " << S.str() << "s)";
Chris Lattnerfad86b02008-08-17 07:19:36 +00002327}
2328
Chris Lattner944fac72008-08-23 22:23:09 +00002329void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002330 SmallString<40> S;
Ted Kremenekcf886182011-06-15 00:51:55 +00002331 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002332 OS << S.str();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002333}
2334
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002335// This implements a variety of operations on a representation of
2336// arbitrary precision, two's-complement, bignum integer values.
2337
Chris Lattner91021d32009-08-23 23:11:28 +00002338// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2339// and unrestricting assumption.
Chris Lattner9f17eb02008-08-17 04:58:58 +00002340#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002341COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002342
2343/* Some handy functions local to this file. */
2344namespace {
2345
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002346 /* Returns the integer part with the least significant BITS set.
2347 BITS cannot be zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002348 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002349 lowBitMask(unsigned int bits)
2350 {
Dan Gohman16e02092010-03-24 19:38:02 +00002351 assert(bits != 0 && bits <= integerPartWidth);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002352
2353 return ~(integerPart) 0 >> (integerPartWidth - bits);
2354 }
2355
Neil Booth055c0b32007-10-06 00:43:45 +00002356 /* Returns the value of the lower half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002357 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002358 lowHalf(integerPart part)
2359 {
2360 return part & lowBitMask(integerPartWidth / 2);
2361 }
2362
Neil Booth055c0b32007-10-06 00:43:45 +00002363 /* Returns the value of the upper half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002364 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002365 highHalf(integerPart part)
2366 {
2367 return part >> (integerPartWidth / 2);
2368 }
2369
Neil Booth055c0b32007-10-06 00:43:45 +00002370 /* Returns the bit number of the most significant set bit of a part.
2371 If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002372 static unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002373 partMSB(integerPart value)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002374 {
2375 unsigned int n, msb;
2376
2377 if (value == 0)
2378 return -1U;
2379
2380 n = integerPartWidth / 2;
2381
2382 msb = 0;
2383 do {
2384 if (value >> n) {
2385 value >>= n;
2386 msb += n;
2387 }
2388
2389 n >>= 1;
2390 } while (n);
2391
2392 return msb;
2393 }
2394
Neil Booth055c0b32007-10-06 00:43:45 +00002395 /* Returns the bit number of the least significant set bit of a
2396 part. If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002397 static unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002398 partLSB(integerPart value)
2399 {
2400 unsigned int n, lsb;
2401
2402 if (value == 0)
2403 return -1U;
2404
2405 lsb = integerPartWidth - 1;
2406 n = integerPartWidth / 2;
2407
2408 do {
2409 if (value << n) {
2410 value <<= n;
2411 lsb -= n;
2412 }
2413
2414 n >>= 1;
2415 } while (n);
2416
2417 return lsb;
2418 }
2419}
2420
2421/* Sets the least significant part of a bignum to the input value, and
2422 zeroes out higher parts. */
2423void
2424APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2425{
2426 unsigned int i;
2427
Dan Gohman16e02092010-03-24 19:38:02 +00002428 assert(parts > 0);
Neil Booth68e53ad2007-10-08 13:47:12 +00002429
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002430 dst[0] = part;
Dan Gohman16e02092010-03-24 19:38:02 +00002431 for (i = 1; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002432 dst[i] = 0;
2433}
2434
2435/* Assign one bignum to another. */
2436void
2437APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2438{
2439 unsigned int i;
2440
Dan Gohman16e02092010-03-24 19:38:02 +00002441 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002442 dst[i] = src[i];
2443}
2444
2445/* Returns true if a bignum is zero, false otherwise. */
2446bool
2447APInt::tcIsZero(const integerPart *src, unsigned int parts)
2448{
2449 unsigned int i;
2450
Dan Gohman16e02092010-03-24 19:38:02 +00002451 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002452 if (src[i])
2453 return false;
2454
2455 return true;
2456}
2457
2458/* Extract the given bit of a bignum; returns 0 or 1. */
2459int
2460APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2461{
Dan Gohman16e02092010-03-24 19:38:02 +00002462 return (parts[bit / integerPartWidth] &
2463 ((integerPart) 1 << bit % integerPartWidth)) != 0;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002464}
2465
John McCalle12b7382010-02-28 02:51:25 +00002466/* Set the given bit of a bignum. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002467void
2468APInt::tcSetBit(integerPart *parts, unsigned int bit)
2469{
2470 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2471}
2472
John McCalle12b7382010-02-28 02:51:25 +00002473/* Clears the given bit of a bignum. */
2474void
2475APInt::tcClearBit(integerPart *parts, unsigned int bit)
2476{
2477 parts[bit / integerPartWidth] &=
2478 ~((integerPart) 1 << (bit % integerPartWidth));
2479}
2480
Neil Booth055c0b32007-10-06 00:43:45 +00002481/* Returns the bit number of the least significant set bit of a
2482 number. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002483unsigned int
2484APInt::tcLSB(const integerPart *parts, unsigned int n)
2485{
2486 unsigned int i, lsb;
2487
Dan Gohman16e02092010-03-24 19:38:02 +00002488 for (i = 0; i < n; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002489 if (parts[i] != 0) {
2490 lsb = partLSB(parts[i]);
2491
2492 return lsb + i * integerPartWidth;
2493 }
2494 }
2495
2496 return -1U;
2497}
2498
Neil Booth055c0b32007-10-06 00:43:45 +00002499/* Returns the bit number of the most significant set bit of a number.
2500 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002501unsigned int
2502APInt::tcMSB(const integerPart *parts, unsigned int n)
2503{
2504 unsigned int msb;
2505
2506 do {
Dan Gohman16e02092010-03-24 19:38:02 +00002507 --n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002508
Dan Gohman16e02092010-03-24 19:38:02 +00002509 if (parts[n] != 0) {
2510 msb = partMSB(parts[n]);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002511
Dan Gohman16e02092010-03-24 19:38:02 +00002512 return msb + n * integerPartWidth;
2513 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002514 } while (n);
2515
2516 return -1U;
2517}
2518
Neil Booth68e53ad2007-10-08 13:47:12 +00002519/* Copy the bit vector of width srcBITS from SRC, starting at bit
2520 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2521 the least significant bit of DST. All high bits above srcBITS in
2522 DST are zero-filled. */
2523void
Evan Chengcf69a742009-05-21 23:47:47 +00002524APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Booth68e53ad2007-10-08 13:47:12 +00002525 unsigned int srcBits, unsigned int srcLSB)
2526{
2527 unsigned int firstSrcPart, dstParts, shift, n;
2528
2529 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
Dan Gohman16e02092010-03-24 19:38:02 +00002530 assert(dstParts <= dstCount);
Neil Booth68e53ad2007-10-08 13:47:12 +00002531
2532 firstSrcPart = srcLSB / integerPartWidth;
2533 tcAssign (dst, src + firstSrcPart, dstParts);
2534
2535 shift = srcLSB % integerPartWidth;
2536 tcShiftRight (dst, dstParts, shift);
2537
2538 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2539 in DST. If this is less that srcBits, append the rest, else
2540 clear the high bits. */
2541 n = dstParts * integerPartWidth - shift;
2542 if (n < srcBits) {
2543 integerPart mask = lowBitMask (srcBits - n);
2544 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2545 << n % integerPartWidth);
2546 } else if (n > srcBits) {
Neil Booth1e8390d2007-10-12 15:31:31 +00002547 if (srcBits % integerPartWidth)
2548 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Booth68e53ad2007-10-08 13:47:12 +00002549 }
2550
2551 /* Clear high parts. */
2552 while (dstParts < dstCount)
2553 dst[dstParts++] = 0;
2554}
2555
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002556/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2557integerPart
2558APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2559 integerPart c, unsigned int parts)
2560{
2561 unsigned int i;
2562
2563 assert(c <= 1);
2564
Dan Gohman16e02092010-03-24 19:38:02 +00002565 for (i = 0; i < parts; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002566 integerPart l;
2567
2568 l = dst[i];
2569 if (c) {
2570 dst[i] += rhs[i] + 1;
2571 c = (dst[i] <= l);
2572 } else {
2573 dst[i] += rhs[i];
2574 c = (dst[i] < l);
2575 }
2576 }
2577
2578 return c;
2579}
2580
2581/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2582integerPart
2583APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2584 integerPart c, unsigned int parts)
2585{
2586 unsigned int i;
2587
2588 assert(c <= 1);
2589
Dan Gohman16e02092010-03-24 19:38:02 +00002590 for (i = 0; i < parts; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002591 integerPart l;
2592
2593 l = dst[i];
2594 if (c) {
2595 dst[i] -= rhs[i] + 1;
2596 c = (dst[i] >= l);
2597 } else {
2598 dst[i] -= rhs[i];
2599 c = (dst[i] > l);
2600 }
2601 }
2602
2603 return c;
2604}
2605
2606/* Negate a bignum in-place. */
2607void
2608APInt::tcNegate(integerPart *dst, unsigned int parts)
2609{
2610 tcComplement(dst, parts);
2611 tcIncrement(dst, parts);
2612}
2613
Neil Booth055c0b32007-10-06 00:43:45 +00002614/* DST += SRC * MULTIPLIER + CARRY if add is true
2615 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002616
2617 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2618 they must start at the same point, i.e. DST == SRC.
2619
2620 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2621 returned. Otherwise DST is filled with the least significant
2622 DSTPARTS parts of the result, and if all of the omitted higher
2623 parts were zero return zero, otherwise overflow occurred and
2624 return one. */
2625int
2626APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2627 integerPart multiplier, integerPart carry,
2628 unsigned int srcParts, unsigned int dstParts,
2629 bool add)
2630{
2631 unsigned int i, n;
2632
2633 /* Otherwise our writes of DST kill our later reads of SRC. */
2634 assert(dst <= src || dst >= src + srcParts);
2635 assert(dstParts <= srcParts + 1);
2636
2637 /* N loops; minimum of dstParts and srcParts. */
2638 n = dstParts < srcParts ? dstParts: srcParts;
2639
Dan Gohman16e02092010-03-24 19:38:02 +00002640 for (i = 0; i < n; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002641 integerPart low, mid, high, srcPart;
2642
2643 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2644
2645 This cannot overflow, because
2646
2647 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2648
2649 which is less than n^2. */
2650
2651 srcPart = src[i];
2652
2653 if (multiplier == 0 || srcPart == 0) {
2654 low = carry;
2655 high = 0;
2656 } else {
2657 low = lowHalf(srcPart) * lowHalf(multiplier);
2658 high = highHalf(srcPart) * highHalf(multiplier);
2659
2660 mid = lowHalf(srcPart) * highHalf(multiplier);
2661 high += highHalf(mid);
2662 mid <<= integerPartWidth / 2;
2663 if (low + mid < low)
2664 high++;
2665 low += mid;
2666
2667 mid = highHalf(srcPart) * lowHalf(multiplier);
2668 high += highHalf(mid);
2669 mid <<= integerPartWidth / 2;
2670 if (low + mid < low)
2671 high++;
2672 low += mid;
2673
2674 /* Now add carry. */
2675 if (low + carry < low)
2676 high++;
2677 low += carry;
2678 }
2679
2680 if (add) {
2681 /* And now DST[i], and store the new low part there. */
2682 if (low + dst[i] < low)
2683 high++;
2684 dst[i] += low;
2685 } else
2686 dst[i] = low;
2687
2688 carry = high;
2689 }
2690
2691 if (i < dstParts) {
2692 /* Full multiplication, there is no overflow. */
2693 assert(i + 1 == dstParts);
2694 dst[i] = carry;
2695 return 0;
2696 } else {
2697 /* We overflowed if there is carry. */
2698 if (carry)
2699 return 1;
2700
2701 /* We would overflow if any significant unwritten parts would be
2702 non-zero. This is true if any remaining src parts are non-zero
2703 and the multiplier is non-zero. */
2704 if (multiplier)
Dan Gohman16e02092010-03-24 19:38:02 +00002705 for (; i < srcParts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002706 if (src[i])
2707 return 1;
2708
2709 /* We fitted in the narrow destination. */
2710 return 0;
2711 }
2712}
2713
2714/* DST = LHS * RHS, where DST has the same width as the operands and
2715 is filled with the least significant parts of the result. Returns
2716 one if overflow occurred, otherwise zero. DST must be disjoint
2717 from both operands. */
2718int
2719APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2720 const integerPart *rhs, unsigned int parts)
2721{
2722 unsigned int i;
2723 int overflow;
2724
2725 assert(dst != lhs && dst != rhs);
2726
2727 overflow = 0;
2728 tcSet(dst, 0, parts);
2729
Dan Gohman16e02092010-03-24 19:38:02 +00002730 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002731 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2732 parts - i, true);
2733
2734 return overflow;
2735}
2736
Neil Booth978661d2007-10-06 00:24:48 +00002737/* DST = LHS * RHS, where DST has width the sum of the widths of the
2738 operands. No overflow occurs. DST must be disjoint from both
2739 operands. Returns the number of parts required to hold the
2740 result. */
2741unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002742APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth978661d2007-10-06 00:24:48 +00002743 const integerPart *rhs, unsigned int lhsParts,
2744 unsigned int rhsParts)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002745{
Neil Booth978661d2007-10-06 00:24:48 +00002746 /* Put the narrower number on the LHS for less loops below. */
2747 if (lhsParts > rhsParts) {
2748 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2749 } else {
2750 unsigned int n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002751
Neil Booth978661d2007-10-06 00:24:48 +00002752 assert(dst != lhs && dst != rhs);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002753
Neil Booth978661d2007-10-06 00:24:48 +00002754 tcSet(dst, 0, rhsParts);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002755
Dan Gohman16e02092010-03-24 19:38:02 +00002756 for (n = 0; n < lhsParts; n++)
Neil Booth978661d2007-10-06 00:24:48 +00002757 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002758
Neil Booth978661d2007-10-06 00:24:48 +00002759 n = lhsParts + rhsParts;
2760
2761 return n - (dst[n - 1] == 0);
2762 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002763}
2764
2765/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2766 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2767 set REMAINDER to the remainder, return zero. i.e.
2768
2769 OLD_LHS = RHS * LHS + REMAINDER
2770
2771 SCRATCH is a bignum of the same size as the operands and result for
2772 use by the routine; its contents need not be initialized and are
2773 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2774*/
2775int
2776APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2777 integerPart *remainder, integerPart *srhs,
2778 unsigned int parts)
2779{
2780 unsigned int n, shiftCount;
2781 integerPart mask;
2782
2783 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2784
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002785 shiftCount = tcMSB(rhs, parts) + 1;
2786 if (shiftCount == 0)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002787 return true;
2788
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002789 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002790 n = shiftCount / integerPartWidth;
2791 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2792
2793 tcAssign(srhs, rhs, parts);
2794 tcShiftLeft(srhs, parts, shiftCount);
2795 tcAssign(remainder, lhs, parts);
2796 tcSet(lhs, 0, parts);
2797
2798 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2799 the total. */
Dan Gohman16e02092010-03-24 19:38:02 +00002800 for (;;) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002801 int compare;
2802
2803 compare = tcCompare(remainder, srhs, parts);
2804 if (compare >= 0) {
2805 tcSubtract(remainder, srhs, 0, parts);
2806 lhs[n] |= mask;
2807 }
2808
2809 if (shiftCount == 0)
2810 break;
2811 shiftCount--;
2812 tcShiftRight(srhs, parts, 1);
2813 if ((mask >>= 1) == 0)
2814 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2815 }
2816
2817 return false;
2818}
2819
2820/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2821 There are no restrictions on COUNT. */
2822void
2823APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2824{
Neil Booth68e53ad2007-10-08 13:47:12 +00002825 if (count) {
2826 unsigned int jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002827
Neil Booth68e53ad2007-10-08 13:47:12 +00002828 /* Jump is the inter-part jump; shift is is intra-part shift. */
2829 jump = count / integerPartWidth;
2830 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002831
Neil Booth68e53ad2007-10-08 13:47:12 +00002832 while (parts > jump) {
2833 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002834
Neil Booth68e53ad2007-10-08 13:47:12 +00002835 parts--;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002836
Neil Booth68e53ad2007-10-08 13:47:12 +00002837 /* dst[i] comes from the two parts src[i - jump] and, if we have
2838 an intra-part shift, src[i - jump - 1]. */
2839 part = dst[parts - jump];
2840 if (shift) {
2841 part <<= shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002842 if (parts >= jump + 1)
2843 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2844 }
2845
Neil Booth68e53ad2007-10-08 13:47:12 +00002846 dst[parts] = part;
2847 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002848
Neil Booth68e53ad2007-10-08 13:47:12 +00002849 while (parts > 0)
2850 dst[--parts] = 0;
2851 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002852}
2853
2854/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2855 zero. There are no restrictions on COUNT. */
2856void
2857APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2858{
Neil Booth68e53ad2007-10-08 13:47:12 +00002859 if (count) {
2860 unsigned int i, jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002861
Neil Booth68e53ad2007-10-08 13:47:12 +00002862 /* Jump is the inter-part jump; shift is is intra-part shift. */
2863 jump = count / integerPartWidth;
2864 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002865
Neil Booth68e53ad2007-10-08 13:47:12 +00002866 /* Perform the shift. This leaves the most significant COUNT bits
2867 of the result at zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00002868 for (i = 0; i < parts; i++) {
Neil Booth68e53ad2007-10-08 13:47:12 +00002869 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002870
Neil Booth68e53ad2007-10-08 13:47:12 +00002871 if (i + jump >= parts) {
2872 part = 0;
2873 } else {
2874 part = dst[i + jump];
2875 if (shift) {
2876 part >>= shift;
2877 if (i + jump + 1 < parts)
2878 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2879 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002880 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002881
Neil Booth68e53ad2007-10-08 13:47:12 +00002882 dst[i] = part;
2883 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002884 }
2885}
2886
2887/* Bitwise and of two bignums. */
2888void
2889APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2890{
2891 unsigned int i;
2892
Dan Gohman16e02092010-03-24 19:38:02 +00002893 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002894 dst[i] &= rhs[i];
2895}
2896
2897/* Bitwise inclusive or of two bignums. */
2898void
2899APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2900{
2901 unsigned int i;
2902
Dan Gohman16e02092010-03-24 19:38:02 +00002903 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002904 dst[i] |= rhs[i];
2905}
2906
2907/* Bitwise exclusive or of two bignums. */
2908void
2909APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2910{
2911 unsigned int i;
2912
Dan Gohman16e02092010-03-24 19:38:02 +00002913 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002914 dst[i] ^= rhs[i];
2915}
2916
2917/* Complement a bignum in-place. */
2918void
2919APInt::tcComplement(integerPart *dst, unsigned int parts)
2920{
2921 unsigned int i;
2922
Dan Gohman16e02092010-03-24 19:38:02 +00002923 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002924 dst[i] = ~dst[i];
2925}
2926
2927/* Comparison (unsigned) of two bignums. */
2928int
2929APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2930 unsigned int parts)
2931{
2932 while (parts) {
2933 parts--;
2934 if (lhs[parts] == rhs[parts])
2935 continue;
2936
2937 if (lhs[parts] > rhs[parts])
2938 return 1;
2939 else
2940 return -1;
2941 }
2942
2943 return 0;
2944}
2945
2946/* Increment a bignum in-place, return the carry flag. */
2947integerPart
2948APInt::tcIncrement(integerPart *dst, unsigned int parts)
2949{
2950 unsigned int i;
2951
Dan Gohman16e02092010-03-24 19:38:02 +00002952 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002953 if (++dst[i] != 0)
2954 break;
2955
2956 return i == parts;
2957}
2958
2959/* Set the least significant BITS bits of a bignum, clear the
2960 rest. */
2961void
2962APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2963 unsigned int bits)
2964{
2965 unsigned int i;
2966
2967 i = 0;
2968 while (bits > integerPartWidth) {
2969 dst[i++] = ~(integerPart) 0;
2970 bits -= integerPartWidth;
2971 }
2972
2973 if (bits)
2974 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2975
2976 while (i < parts)
2977 dst[i++] = 0;
2978}