blob: 143ded920e217b1c03ce2658b38f011521863554 [file] [log] [blame]
Zhou Shengfd43dcf2007-02-06 03:00:16 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Zhou Shengfd43dcf2007-02-06 03:00:16 +00007//
8//===----------------------------------------------------------------------===//
9//
Reid Spencer5d0d05c2007-02-25 19:32:03 +000010// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
Zhou Shengfd43dcf2007-02-06 03:00:16 +000012//
13//===----------------------------------------------------------------------===//
14
Reid Spencer9d6c9192007-02-24 03:58:46 +000015#define DEBUG_TYPE "apint"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000016#include "llvm/ADT/APInt.h"
Daniel Dunbar689ad6e2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremeneke420deb2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Reid Spencer9d6c9192007-02-24 03:58:46 +000020#include "llvm/Support/Debug.h"
Torok Edwinc25e7582009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Zhou Shengfd43dcf2007-02-06 03:00:16 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner944fac72008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattnerfad86b02008-08-17 07:19:36 +000024#include <cmath>
Jeff Cohen09dfd8e2007-03-20 20:42:36 +000025#include <limits>
Zhou Shenga3832fd2007-02-07 06:14:53 +000026#include <cstring>
Zhou Shengfd43dcf2007-02-06 03:00:16 +000027#include <cstdlib>
28using namespace llvm;
29
Reid Spencer5d0d05c2007-02-25 19:32:03 +000030/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
Zhou Sheng353815d2007-02-06 06:04:53 +000037}
38
Eric Christopherd37eda82009-08-21 04:06:45 +000039/// A utility function for allocating memory and checking for allocation
Reid Spencer5d0d05c2007-02-25 19:32:03 +000040/// failure. The content is not zeroed.
Chris Lattner455e9ab2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Reid Spenceraf0e9562007-02-18 18:38:44 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000047/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000049 unsigned r;
50
Douglas Gregordcd99962011-09-14 15:54:46 +000051 if (radix == 16 || radix == 36) {
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000052 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
Douglas Gregorf34fa6f2011-09-20 18:33:29 +000057 if (r <= radix - 11U)
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000058 return r + 10;
59
60 r = cdigit - 'a';
Douglas Gregorf34fa6f2011-09-20 18:33:29 +000061 if (r <= radix - 11U)
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000062 return r + 10;
Douglas Gregorf83f0f82011-09-20 18:11:52 +000063
64 radix = 10;
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000065 }
66
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +000067 r = cdigit - '0';
68 if (r < radix)
69 return r;
70
71 return -1U;
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +000072}
73
74
Chris Lattner455e9ab2009-01-21 18:09:24 +000075void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +000076 pVal = getClearedMemory(getNumWords());
77 pVal[0] = val;
Eric Christopherd37eda82009-08-21 04:06:45 +000078 if (isSigned && int64_t(val) < 0)
Chris Lattner98f8ccf2008-08-20 17:02:31 +000079 for (unsigned i = 1; i < getNumWords(); ++i)
80 pVal[i] = -1ULL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +000081}
82
Chris Lattner119c30b2008-10-11 22:07:19 +000083void APInt::initSlowCase(const APInt& that) {
84 pVal = getMemory(getNumWords());
85 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
86}
87
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +000088void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
Erick Tryzelaarbb975312009-08-21 03:15:14 +000089 assert(BitWidth && "Bitwidth too small");
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +000090 assert(bigVal.data() && "Null pointer detected!");
Zhou Shengfd43dcf2007-02-06 03:00:16 +000091 if (isSingleWord())
Reid Spencer610fad82007-02-24 10:01:42 +000092 VAL = bigVal[0];
Zhou Shengfd43dcf2007-02-06 03:00:16 +000093 else {
Reid Spencer610fad82007-02-24 10:01:42 +000094 // Get memory, cleared to 0
95 pVal = getClearedMemory(getNumWords());
96 // Calculate the number of words to copy
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +000097 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
Reid Spencer610fad82007-02-24 10:01:42 +000098 // Copy the words from bigVal to pVal
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +000099 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000100 }
Reid Spencer610fad82007-02-24 10:01:42 +0000101 // Make sure unused high bits are cleared
102 clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000103}
104
Jeffrey Yasskin3ba292d2011-07-18 21:45:40 +0000105APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
106 : BitWidth(numBits), VAL(0) {
107 initFromArray(bigVal);
108}
109
110APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
111 : BitWidth(numBits), VAL(0) {
112 initFromArray(makeArrayRef(bigVal, numWords));
113}
114
Benjamin Kramer38e59892010-07-14 22:38:02 +0000115APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
Reid Spencer385f7542007-02-21 03:55:44 +0000116 : BitWidth(numbits), VAL(0) {
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000117 assert(BitWidth && "Bitwidth too small");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000118 fromString(numbits, Str, radix);
Zhou Shenga3832fd2007-02-07 06:14:53 +0000119}
120
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000121APInt& APInt::AssignSlowCase(const APInt& RHS) {
Reid Spencer9ac44112007-02-26 23:38:21 +0000122 // Don't do anything for X = X
123 if (this == &RHS)
124 return *this;
125
Reid Spencer9ac44112007-02-26 23:38:21 +0000126 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000127 // assume same bit-width single-word case is already handled
128 assert(!isSingleWord());
129 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Reid Spencer9ac44112007-02-26 23:38:21 +0000130 return *this;
131 }
132
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000133 if (isSingleWord()) {
134 // assume case where both are single words is already handled
135 assert(!RHS.isSingleWord());
136 VAL = 0;
137 pVal = getMemory(RHS.getNumWords());
138 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
Eric Christopherd37eda82009-08-21 04:06:45 +0000139 } else if (getNumWords() == RHS.getNumWords())
Reid Spencer9ac44112007-02-26 23:38:21 +0000140 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
141 else if (RHS.isSingleWord()) {
142 delete [] pVal;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000143 VAL = RHS.VAL;
Reid Spencer9ac44112007-02-26 23:38:21 +0000144 } else {
145 delete [] pVal;
146 pVal = getMemory(RHS.getNumWords());
147 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
148 }
149 BitWidth = RHS.BitWidth;
150 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000151}
152
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000153APInt& APInt::operator=(uint64_t RHS) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000154 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +0000155 VAL = RHS;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000156 else {
157 pVal[0] = RHS;
Reid Spencera58f0582007-02-18 20:09:41 +0000158 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000159 }
Reid Spencer9ac44112007-02-26 23:38:21 +0000160 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000161}
162
Ted Kremeneke420deb2008-01-19 04:23:33 +0000163/// Profile - This method 'profiles' an APInt for use with FoldingSet.
164void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremeneka795aca2008-02-19 20:50:41 +0000165 ID.AddInteger(BitWidth);
Eric Christopherd37eda82009-08-21 04:06:45 +0000166
Ted Kremeneke420deb2008-01-19 04:23:33 +0000167 if (isSingleWord()) {
168 ID.AddInteger(VAL);
169 return;
170 }
171
Chris Lattner455e9ab2009-01-21 18:09:24 +0000172 unsigned NumWords = getNumWords();
Ted Kremeneke420deb2008-01-19 04:23:33 +0000173 for (unsigned i = 0; i < NumWords; ++i)
174 ID.AddInteger(pVal[i]);
175}
176
Eric Christopherd37eda82009-08-21 04:06:45 +0000177/// add_1 - This function adds a single "digit" integer, y, to the multiple
Reid Spenceraf0e9562007-02-18 18:38:44 +0000178/// "digit" integer array, x[]. x[] is modified to reflect the addition and
179/// 1 is returned if there is a carry out, otherwise 0 is returned.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000180/// @returns the carry of the addition.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000181static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
182 for (unsigned i = 0; i < len; ++i) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000183 dest[i] = y + x[i];
184 if (dest[i] < y)
Reid Spencer610fad82007-02-24 10:01:42 +0000185 y = 1; // Carry one to next digit.
Reid Spencerf2c521c2007-02-18 06:39:42 +0000186 else {
Reid Spencer610fad82007-02-24 10:01:42 +0000187 y = 0; // No need to carry so exit early
Reid Spencerf2c521c2007-02-18 06:39:42 +0000188 break;
189 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000190 }
Reid Spencerf2c521c2007-02-18 06:39:42 +0000191 return y;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000192}
193
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000194/// @brief Prefix increment operator. Increments the APInt by one.
195APInt& APInt::operator++() {
Eric Christopherd37eda82009-08-21 04:06:45 +0000196 if (isSingleWord())
Reid Spencere81d2da2007-02-16 22:36:51 +0000197 ++VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000198 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000199 add_1(pVal, pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000200 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000201}
202
Eric Christopherd37eda82009-08-21 04:06:45 +0000203/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
204/// the multi-digit integer array, x[], propagating the borrowed 1 value until
Reid Spenceraf0e9562007-02-18 18:38:44 +0000205/// no further borrowing is neeeded or it runs out of "digits" in x. The result
206/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
207/// In other words, if y > x then this function returns 1, otherwise 0.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000208/// @returns the borrow out of the subtraction
Chris Lattner455e9ab2009-01-21 18:09:24 +0000209static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
210 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000211 uint64_t X = x[i];
Reid Spencerf2c521c2007-02-18 06:39:42 +0000212 x[i] -= y;
Eric Christopherd37eda82009-08-21 04:06:45 +0000213 if (y > X)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000214 y = 1; // We have to "borrow 1" from next "digit"
Reid Spencer5e0a8512007-02-17 03:16:00 +0000215 else {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000216 y = 0; // No need to borrow
217 break; // Remaining digits are unchanged so exit early
Reid Spencer5e0a8512007-02-17 03:16:00 +0000218 }
219 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000220 return bool(y);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000221}
222
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000223/// @brief Prefix decrement operator. Decrements the APInt by one.
224APInt& APInt::operator--() {
Eric Christopherd37eda82009-08-21 04:06:45 +0000225 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000226 --VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000227 else
Zhou Shenga3832fd2007-02-07 06:14:53 +0000228 sub_1(pVal, getNumWords(), 1);
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000229 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000230}
231
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000232/// add - This function adds the integer array x to the integer array Y and
Eric Christopherd37eda82009-08-21 04:06:45 +0000233/// places the result in dest.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000234/// @returns the carry out from the addition
235/// @brief General addition of 64-bit integer arrays
Eric Christopherd37eda82009-08-21 04:06:45 +0000236static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000237 unsigned len) {
Reid Spencer9d6c9192007-02-24 03:58:46 +0000238 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000239 for (unsigned i = 0; i< len; ++i) {
Reid Spencer92904632007-02-23 01:57:13 +0000240 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
Reid Spencer54362ca2007-02-20 23:40:25 +0000241 dest[i] = x[i] + y[i] + carry;
Reid Spencer60c0a6a2007-02-21 05:44:56 +0000242 carry = dest[i] < limit || (carry && dest[i] == limit);
Reid Spencer5e0a8512007-02-17 03:16:00 +0000243 }
244 return carry;
245}
246
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000247/// Adds the RHS APint to this APInt.
248/// @returns this, after addition of RHS.
Eric Christopherd37eda82009-08-21 04:06:45 +0000249/// @brief Addition assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000250APInt& APInt::operator+=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000251 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopherd37eda82009-08-21 04:06:45 +0000252 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000253 VAL += RHS.VAL;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000254 else {
Reid Spencer54362ca2007-02-20 23:40:25 +0000255 add(pVal, pVal, RHS.pVal, getNumWords());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000256 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000257 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000258}
259
Eric Christopherd37eda82009-08-21 04:06:45 +0000260/// Subtracts the integer array y from the integer array x
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000261/// @returns returns the borrow out.
262/// @brief Generalized subtraction of 64-bit integer arrays.
Eric Christopherd37eda82009-08-21 04:06:45 +0000263static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattner455e9ab2009-01-21 18:09:24 +0000264 unsigned len) {
Reid Spencer385f7542007-02-21 03:55:44 +0000265 bool borrow = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000266 for (unsigned i = 0; i < len; ++i) {
Reid Spencer385f7542007-02-21 03:55:44 +0000267 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
268 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
269 dest[i] = x_tmp - y[i];
Reid Spencer5e0a8512007-02-17 03:16:00 +0000270 }
Reid Spencer54362ca2007-02-20 23:40:25 +0000271 return borrow;
Reid Spencer5e0a8512007-02-17 03:16:00 +0000272}
273
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000274/// Subtracts the RHS APInt from this APInt
275/// @returns this, after subtraction
Eric Christopherd37eda82009-08-21 04:06:45 +0000276/// @brief Subtraction assignment operator.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000277APInt& APInt::operator-=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000278 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Eric Christopherd37eda82009-08-21 04:06:45 +0000279 if (isSingleWord())
Reid Spencer54362ca2007-02-20 23:40:25 +0000280 VAL -= RHS.VAL;
281 else
282 sub(pVal, pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000283 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000284}
285
Dan Gohmanf451cb82010-02-10 16:03:48 +0000286/// Multiplies an integer array, x, by a uint64_t integer and places the result
Eric Christopherd37eda82009-08-21 04:06:45 +0000287/// into dest.
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000288/// @returns the carry out of the multiplication.
289/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000290static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Reid Spencer610fad82007-02-24 10:01:42 +0000291 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
Reid Spencer5e0a8512007-02-17 03:16:00 +0000292 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000293 uint64_t carry = 0;
294
295 // For each digit of x.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000296 for (unsigned i = 0; i < len; ++i) {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000297 // Split x into high and low words
298 uint64_t lx = x[i] & 0xffffffffULL;
299 uint64_t hx = x[i] >> 32;
300 // hasCarry - A flag to indicate if there is a carry to the next digit.
Reid Spencer5e0a8512007-02-17 03:16:00 +0000301 // hasCarry == 0, no carry
302 // hasCarry == 1, has carry
303 // hasCarry == 2, no carry and the calculation result == 0.
304 uint8_t hasCarry = 0;
305 dest[i] = carry + lx * ly;
306 // Determine if the add above introduces carry.
307 hasCarry = (dest[i] < carry) ? 1 : 0;
308 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
Eric Christopherd37eda82009-08-21 04:06:45 +0000309 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000310 // (2^32 - 1) + 2^32 = 2^64.
311 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
312
313 carry += (lx * hy) & 0xffffffffULL;
314 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
Eric Christopherd37eda82009-08-21 04:06:45 +0000315 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000316 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
317 }
Reid Spencer5e0a8512007-02-17 03:16:00 +0000318 return carry;
319}
320
Eric Christopherd37eda82009-08-21 04:06:45 +0000321/// Multiplies integer array x by integer array y and stores the result into
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000322/// the integer array dest. Note that dest's size must be >= xlen + ylen.
323/// @brief Generalized multiplicate of integer arrays.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000324static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
325 unsigned ylen) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000326 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000327 for (unsigned i = 1; i < ylen; ++i) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000328 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
Reid Spencere0cdd332007-02-21 08:21:52 +0000329 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000330 for (unsigned j = 0; j < xlen; ++j) {
Reid Spencer5e0a8512007-02-17 03:16:00 +0000331 lx = x[j] & 0xffffffffULL;
332 hx = x[j] >> 32;
333 // hasCarry - A flag to indicate if has carry.
334 // hasCarry == 0, no carry
335 // hasCarry == 1, has carry
336 // hasCarry == 2, no carry and the calculation result == 0.
337 uint8_t hasCarry = 0;
338 uint64_t resul = carry + lx * ly;
339 hasCarry = (resul < carry) ? 1 : 0;
340 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
341 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
342
343 carry += (lx * hy) & 0xffffffffULL;
344 resul = (carry << 32) | (resul & 0xffffffffULL);
345 dest[i+j] += resul;
346 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
Eric Christopherd37eda82009-08-21 04:06:45 +0000347 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
Reid Spencer5e0a8512007-02-17 03:16:00 +0000348 ((lx * hy) >> 32) + hx * hy;
349 }
350 dest[i+xlen] = carry;
351 }
352}
353
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000354APInt& APInt::operator*=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000355 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencere0cdd332007-02-21 08:21:52 +0000356 if (isSingleWord()) {
Reid Spencer61eb1802007-02-20 20:42:10 +0000357 VAL *= RHS.VAL;
Reid Spencere0cdd332007-02-21 08:21:52 +0000358 clearUnusedBits();
359 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000360 }
Reid Spencere0cdd332007-02-21 08:21:52 +0000361
362 // Get some bit facts about LHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000363 unsigned lhsBits = getActiveBits();
364 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Eric Christopherd37eda82009-08-21 04:06:45 +0000365 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +0000366 // 0 * X ===> 0
367 return *this;
368
369 // Get some bit facts about RHS and check for zero
Chris Lattner455e9ab2009-01-21 18:09:24 +0000370 unsigned rhsBits = RHS.getActiveBits();
371 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Reid Spencere0cdd332007-02-21 08:21:52 +0000372 if (!rhsWords) {
373 // X * 0 ===> 0
Jay Foad7a874dd2010-12-01 08:53:58 +0000374 clearAllBits();
Reid Spencere0cdd332007-02-21 08:21:52 +0000375 return *this;
376 }
377
378 // Allocate space for the result
Chris Lattner455e9ab2009-01-21 18:09:24 +0000379 unsigned destWords = rhsWords + lhsWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000380 uint64_t *dest = getMemory(destWords);
381
382 // Perform the long multiply
383 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
384
385 // Copy result back into *this
Jay Foad7a874dd2010-12-01 08:53:58 +0000386 clearAllBits();
Chris Lattner455e9ab2009-01-21 18:09:24 +0000387 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Reid Spencere0cdd332007-02-21 08:21:52 +0000388 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
Eli Friedman9eb6b4d2011-10-07 23:40:49 +0000389 clearUnusedBits();
Reid Spencere0cdd332007-02-21 08:21:52 +0000390
391 // delete dest array and return
392 delete[] dest;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000393 return *this;
394}
395
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000396APInt& APInt::operator&=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000397 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000398 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000399 VAL &= RHS.VAL;
400 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000401 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000402 unsigned numWords = getNumWords();
403 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000404 pVal[i] &= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000405 return *this;
406}
407
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000408APInt& APInt::operator|=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000409 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000410 if (isSingleWord()) {
Reid Spenceraf0e9562007-02-18 18:38:44 +0000411 VAL |= RHS.VAL;
412 return *this;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000413 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000414 unsigned numWords = getNumWords();
415 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000416 pVal[i] |= RHS.pVal[i];
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000417 return *this;
418}
419
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000420APInt& APInt::operator^=(const APInt& RHS) {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000421 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000422 if (isSingleWord()) {
Reid Spencerf2c521c2007-02-18 06:39:42 +0000423 VAL ^= RHS.VAL;
Reid Spencer54362ca2007-02-20 23:40:25 +0000424 this->clearUnusedBits();
Reid Spencerf2c521c2007-02-18 06:39:42 +0000425 return *this;
Eric Christopherd37eda82009-08-21 04:06:45 +0000426 }
Chris Lattner455e9ab2009-01-21 18:09:24 +0000427 unsigned numWords = getNumWords();
428 for (unsigned i = 0; i < numWords; ++i)
Reid Spenceraf0e9562007-02-18 18:38:44 +0000429 pVal[i] ^= RHS.pVal[i];
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000430 return clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000431}
432
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000433APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000434 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000435 uint64_t* val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000436 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000437 val[i] = pVal[i] & RHS.pVal[i];
438 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000439}
440
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000441APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000442 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000443 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000444 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000445 val[i] = pVal[i] | RHS.pVal[i];
446 return APInt(val, getBitWidth());
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000447}
448
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000449APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000450 unsigned numWords = getNumWords();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000451 uint64_t *val = getMemory(numWords);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000452 for (unsigned i = 0; i < numWords; ++i)
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000453 val[i] = pVal[i] ^ RHS.pVal[i];
454
455 // 0^0==1 so clear the high bits in case they got set.
456 return APInt(val, getBitWidth()).clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000457}
458
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000459bool APInt::operator !() const {
460 if (isSingleWord())
461 return !VAL;
Reid Spenceraf0e9562007-02-18 18:38:44 +0000462
Chris Lattner455e9ab2009-01-21 18:09:24 +0000463 for (unsigned i = 0; i < getNumWords(); ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +0000464 if (pVal[i])
Reid Spenceraf0e9562007-02-18 18:38:44 +0000465 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000466 return true;
467}
468
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000469APInt APInt::operator*(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000470 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000471 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000472 return APInt(BitWidth, VAL * RHS.VAL);
Reid Spencer61eb1802007-02-20 20:42:10 +0000473 APInt Result(*this);
474 Result *= RHS;
Eli Friedman9eb6b4d2011-10-07 23:40:49 +0000475 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000476}
477
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000478APInt APInt::operator+(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000479 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000480 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000481 return APInt(BitWidth, VAL + RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000482 APInt Result(BitWidth, 0);
483 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000484 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000485}
486
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000487APInt APInt::operator-(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +0000488 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000489 if (isSingleWord())
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000490 return APInt(BitWidth, VAL - RHS.VAL);
Reid Spencer54362ca2007-02-20 23:40:25 +0000491 APInt Result(BitWidth, 0);
492 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000493 return Result.clearUnusedBits();
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000494}
495
Chris Lattner455e9ab2009-01-21 18:09:24 +0000496bool APInt::operator[](unsigned bitPosition) const {
Dan Gohman078d9672010-11-18 17:14:56 +0000497 assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
Eric Christopherd37eda82009-08-21 04:06:45 +0000498 return (maskBit(bitPosition) &
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000499 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000500}
501
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000502bool APInt::EqualSlowCase(const APInt& RHS) const {
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000503 // Get some facts about the number of bits used in the two operands.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000504 unsigned n1 = getActiveBits();
505 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000506
507 // If the number of bits isn't the same, they aren't equal
Eric Christopherd37eda82009-08-21 04:06:45 +0000508 if (n1 != n2)
Reid Spencer54362ca2007-02-20 23:40:25 +0000509 return false;
510
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000511 // If the number of bits fits in a word, we only need to compare the low word.
Reid Spencer54362ca2007-02-20 23:40:25 +0000512 if (n1 <= APINT_BITS_PER_WORD)
513 return pVal[0] == RHS.pVal[0];
514
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000515 // Otherwise, compare everything
Reid Spencer54362ca2007-02-20 23:40:25 +0000516 for (int i = whichWord(n1 - 1); i >= 0; --i)
Eric Christopherd37eda82009-08-21 04:06:45 +0000517 if (pVal[i] != RHS.pVal[i])
Reid Spencer54362ca2007-02-20 23:40:25 +0000518 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000519 return true;
520}
521
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000522bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000523 unsigned n = getActiveBits();
Reid Spencer54362ca2007-02-20 23:40:25 +0000524 if (n <= APINT_BITS_PER_WORD)
525 return pVal[0] == Val;
526 else
527 return false;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000528}
529
Reid Spencere81d2da2007-02-16 22:36:51 +0000530bool APInt::ult(const APInt& RHS) const {
531 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
532 if (isSingleWord())
533 return VAL < RHS.VAL;
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000534
535 // Get active bit length of both operands
Chris Lattner455e9ab2009-01-21 18:09:24 +0000536 unsigned n1 = getActiveBits();
537 unsigned n2 = RHS.getActiveBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000538
539 // If magnitude of LHS is less than RHS, return true.
540 if (n1 < n2)
541 return true;
542
543 // If magnitude of RHS is greather than LHS, return false.
544 if (n2 < n1)
545 return false;
546
547 // If they bot fit in a word, just compare the low order word
548 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
549 return pVal[0] < RHS.pVal[0];
550
551 // Otherwise, compare all words
Chris Lattner455e9ab2009-01-21 18:09:24 +0000552 unsigned topWord = whichWord(std::max(n1,n2)-1);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000553 for (int i = topWord; i >= 0; --i) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000554 if (pVal[i] > RHS.pVal[i])
Reid Spencere81d2da2007-02-16 22:36:51 +0000555 return false;
Eric Christopherd37eda82009-08-21 04:06:45 +0000556 if (pVal[i] < RHS.pVal[i])
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000557 return true;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000558 }
559 return false;
560}
561
Reid Spencere81d2da2007-02-16 22:36:51 +0000562bool APInt::slt(const APInt& RHS) const {
563 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
Reid Spencera58f0582007-02-18 20:09:41 +0000564 if (isSingleWord()) {
565 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
566 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
567 return lhsSext < rhsSext;
Reid Spencere81d2da2007-02-16 22:36:51 +0000568 }
Reid Spencera58f0582007-02-18 20:09:41 +0000569
570 APInt lhs(*this);
Reid Spencer1fa111e2007-02-27 18:23:40 +0000571 APInt rhs(RHS);
572 bool lhsNeg = isNegative();
573 bool rhsNeg = rhs.isNegative();
574 if (lhsNeg) {
575 // Sign bit is set so perform two's complement to make it positive
Jay Foad7a874dd2010-12-01 08:53:58 +0000576 lhs.flipAllBits();
Reid Spencera58f0582007-02-18 20:09:41 +0000577 lhs++;
578 }
Reid Spencer1fa111e2007-02-27 18:23:40 +0000579 if (rhsNeg) {
580 // Sign bit is set so perform two's complement to make it positive
Jay Foad7a874dd2010-12-01 08:53:58 +0000581 rhs.flipAllBits();
Reid Spencera58f0582007-02-18 20:09:41 +0000582 rhs++;
583 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000584
585 // Now we have unsigned values to compare so do the comparison if necessary
586 // based on the negativeness of the values.
Reid Spencer1fa111e2007-02-27 18:23:40 +0000587 if (lhsNeg)
588 if (rhsNeg)
589 return lhs.ugt(rhs);
Reid Spencera58f0582007-02-18 20:09:41 +0000590 else
591 return true;
Reid Spencer1fa111e2007-02-27 18:23:40 +0000592 else if (rhsNeg)
Reid Spencera58f0582007-02-18 20:09:41 +0000593 return false;
Eric Christopherd37eda82009-08-21 04:06:45 +0000594 else
Reid Spencera58f0582007-02-18 20:09:41 +0000595 return lhs.ult(rhs);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000596}
597
Jay Foad7a874dd2010-12-01 08:53:58 +0000598void APInt::setBit(unsigned bitPosition) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000599 if (isSingleWord())
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000600 VAL |= maskBit(bitPosition);
Eric Christopherd37eda82009-08-21 04:06:45 +0000601 else
Reid Spencer5d0d05c2007-02-25 19:32:03 +0000602 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000603}
604
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000605/// Set the given bit to 0 whose position is given as "bitPosition".
606/// @brief Set a given bit to 0.
Jay Foad7a874dd2010-12-01 08:53:58 +0000607void APInt::clearBit(unsigned bitPosition) {
Eric Christopherd37eda82009-08-21 04:06:45 +0000608 if (isSingleWord())
Reid Spenceraf0e9562007-02-18 18:38:44 +0000609 VAL &= ~maskBit(bitPosition);
Eric Christopherd37eda82009-08-21 04:06:45 +0000610 else
Reid Spenceraf0e9562007-02-18 18:38:44 +0000611 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000612}
613
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000614/// @brief Toggle every bit to its opposite value.
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000615
Eric Christopherd37eda82009-08-21 04:06:45 +0000616/// Toggle a given bit to its opposite value whose position is given
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000617/// as "bitPosition".
618/// @brief Toggles a given bit to its opposite value.
Jay Foad7a874dd2010-12-01 08:53:58 +0000619void APInt::flipBit(unsigned bitPosition) {
Reid Spencere81d2da2007-02-16 22:36:51 +0000620 assert(bitPosition < BitWidth && "Out of the bit-width range!");
Jay Foad7a874dd2010-12-01 08:53:58 +0000621 if ((*this)[bitPosition]) clearBit(bitPosition);
622 else setBit(bitPosition);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000623}
624
Benjamin Kramer38e59892010-07-14 22:38:02 +0000625unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000626 assert(!str.empty() && "Invalid string length");
Douglas Gregordcd99962011-09-14 15:54:46 +0000627 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
628 radix == 36) &&
629 "Radix should be 2, 8, 10, 16, or 36!");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +0000630
631 size_t slen = str.size();
Reid Spencer57ae4f52007-04-13 19:19:07 +0000632
Eric Christophere250f2a2009-08-21 04:10:31 +0000633 // Each computation below needs to know if it's negative.
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000634 StringRef::iterator p = str.begin();
Eric Christophere250f2a2009-08-21 04:10:31 +0000635 unsigned isNegative = *p == '-';
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000636 if (*p == '-' || *p == '+') {
637 p++;
Reid Spencer57ae4f52007-04-13 19:19:07 +0000638 slen--;
Eric Christophere250f2a2009-08-21 04:10:31 +0000639 assert(slen && "String is only a sign, needs a value.");
Reid Spencer57ae4f52007-04-13 19:19:07 +0000640 }
Eric Christophere250f2a2009-08-21 04:10:31 +0000641
Reid Spencer57ae4f52007-04-13 19:19:07 +0000642 // For radixes of power-of-two values, the bits required is accurately and
643 // easily computed
644 if (radix == 2)
645 return slen + isNegative;
646 if (radix == 8)
647 return slen * 3 + isNegative;
648 if (radix == 16)
649 return slen * 4 + isNegative;
650
Douglas Gregordcd99962011-09-14 15:54:46 +0000651 // FIXME: base 36
652
Reid Spencer57ae4f52007-04-13 19:19:07 +0000653 // This is grossly inefficient but accurate. We could probably do something
654 // with a computation of roughly slen*64/20 and then adjust by the value of
655 // the first few digits. But, I'm not sure how accurate that could be.
656
657 // Compute a sufficient number of bits that is always large enough but might
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +0000658 // be too large. This avoids the assertion in the constructor. This
659 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
660 // bits in that case.
Douglas Gregordcd99962011-09-14 15:54:46 +0000661 unsigned sufficient
662 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
663 : (slen == 1 ? 7 : slen * 16/3);
Reid Spencer57ae4f52007-04-13 19:19:07 +0000664
665 // Convert to the actual binary value.
Erick Tryzelaarbb975312009-08-21 03:15:14 +0000666 APInt tmp(sufficient, StringRef(p, slen), radix);
Reid Spencer57ae4f52007-04-13 19:19:07 +0000667
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +0000668 // Compute how many bits are required. If the log is infinite, assume we need
669 // just bit.
670 unsigned log = tmp.logBase2();
671 if (log == (unsigned)-1) {
672 return isNegative + 1;
673 } else {
674 return isNegative + log + 1;
675 }
Reid Spencer57ae4f52007-04-13 19:19:07 +0000676}
677
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000678// From http://www.burtleburtle.net, byBob Jenkins.
679// When targeting x86, both GCC and LLVM seem to recognize this as a
680// rotate instruction.
681#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Reid Spencer794f4722007-02-26 21:02:27 +0000682
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000683// From http://www.burtleburtle.net, by Bob Jenkins.
684#define mix(a,b,c) \
685 { \
686 a -= c; a ^= rot(c, 4); c += b; \
687 b -= a; b ^= rot(a, 6); a += c; \
688 c -= b; c ^= rot(b, 8); b += a; \
689 a -= c; a ^= rot(c,16); c += b; \
690 b -= a; b ^= rot(a,19); a += c; \
691 c -= b; c ^= rot(b, 4); b += a; \
692 }
693
694// From http://www.burtleburtle.net, by Bob Jenkins.
695#define final(a,b,c) \
696 { \
697 c ^= b; c -= rot(b,14); \
698 a ^= c; a -= rot(c,11); \
699 b ^= a; b -= rot(a,25); \
700 c ^= b; c -= rot(b,16); \
701 a ^= c; a -= rot(c,4); \
702 b ^= a; b -= rot(a,14); \
703 c ^= b; c -= rot(b,24); \
704 }
705
706// hashword() was adapted from http://www.burtleburtle.net, by Bob
707// Jenkins. k is a pointer to an array of uint32_t values; length is
708// the length of the key, in 32-bit chunks. This version only handles
709// keys that are a multiple of 32 bits in size.
710static inline uint32_t hashword(const uint64_t *k64, size_t length)
711{
712 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
713 uint32_t a,b,c;
714
715 /* Set up the internal state */
716 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
717
718 /*------------------------------------------------- handle most of the key */
Dan Gohman16e02092010-03-24 19:38:02 +0000719 while (length > 3) {
720 a += k[0];
721 b += k[1];
722 c += k[2];
723 mix(a,b,c);
724 length -= 3;
725 k += 3;
726 }
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000727
728 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stumpf3dc0c02009-05-13 23:23:20 +0000729 switch (length) { /* all the case statements fall through */
730 case 3 : c+=k[2];
731 case 2 : b+=k[1];
732 case 1 : a+=k[0];
733 final(a,b,c);
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000734 case 0: /* case 0: nothing left to add */
735 break;
736 }
737 /*------------------------------------------------------ report the result */
738 return c;
739}
740
741// hashword8() was adapted from http://www.burtleburtle.net, by Bob
742// Jenkins. This computes a 32-bit hash from one 64-bit word. When
743// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
744// function into about 35 instructions when inlined.
745static inline uint32_t hashword8(const uint64_t k64)
746{
747 uint32_t a,b,c;
748 a = b = c = 0xdeadbeef + 4;
749 b += k64 >> 32;
750 a += k64 & 0xffffffff;
751 final(a,b,c);
752 return c;
753}
754#undef final
755#undef mix
756#undef rot
757
758uint64_t APInt::getHashValue() const {
759 uint64_t hash;
Reid Spencer794f4722007-02-26 21:02:27 +0000760 if (isSingleWord())
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000761 hash = hashword8(VAL);
Reid Spencer794f4722007-02-26 21:02:27 +0000762 else
Stuart Hastingsd52ec652009-03-13 21:51:13 +0000763 hash = hashword(pVal, getNumWords()*2);
Reid Spencer794f4722007-02-26 21:02:27 +0000764 return hash;
765}
766
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000767/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000768APInt APInt::getHiBits(unsigned numBits) const {
Reid Spencere81d2da2007-02-16 22:36:51 +0000769 return APIntOps::lshr(*this, BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000770}
771
772/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000773APInt APInt::getLoBits(unsigned numBits) const {
Eric Christopherd37eda82009-08-21 04:06:45 +0000774 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
Reid Spencere81d2da2007-02-16 22:36:51 +0000775 BitWidth - numBits);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000776}
777
Chris Lattner455e9ab2009-01-21 18:09:24 +0000778unsigned APInt::countLeadingZerosSlowCase() const {
John McCall281d0512010-02-03 03:42:44 +0000779 // Treat the most significand word differently because it might have
780 // meaningless bits set beyond the precision.
781 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD;
782 integerPart MSWMask;
783 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1;
784 else {
785 MSWMask = ~integerPart(0);
786 BitsInMSW = APINT_BITS_PER_WORD;
787 }
788
789 unsigned i = getNumWords();
790 integerPart MSW = pVal[i-1] & MSWMask;
791 if (MSW)
792 return CountLeadingZeros_64(MSW) - (APINT_BITS_PER_WORD - BitsInMSW);
793
794 unsigned Count = BitsInMSW;
795 for (--i; i > 0u; --i) {
Chris Lattner98f8ccf2008-08-20 17:02:31 +0000796 if (pVal[i-1] == 0)
797 Count += APINT_BITS_PER_WORD;
798 else {
799 Count += CountLeadingZeros_64(pVal[i-1]);
800 break;
Reid Spencere549c492007-02-21 00:29:48 +0000801 }
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000802 }
John McCall281d0512010-02-03 03:42:44 +0000803 return Count;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000804}
805
Chris Lattner455e9ab2009-01-21 18:09:24 +0000806static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
807 unsigned Count = 0;
Reid Spencer681dcd12007-02-27 21:59:26 +0000808 if (skip)
809 V <<= skip;
810 while (V && (V & (1ULL << 63))) {
811 Count++;
812 V <<= 1;
813 }
814 return Count;
815}
816
Chris Lattner455e9ab2009-01-21 18:09:24 +0000817unsigned APInt::countLeadingOnes() const {
Reid Spencer681dcd12007-02-27 21:59:26 +0000818 if (isSingleWord())
819 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
820
Chris Lattner455e9ab2009-01-21 18:09:24 +0000821 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
Torok Edwin2d0f1c52009-01-27 18:06:03 +0000822 unsigned shift;
823 if (!highWordBits) {
824 highWordBits = APINT_BITS_PER_WORD;
825 shift = 0;
826 } else {
827 shift = APINT_BITS_PER_WORD - highWordBits;
828 }
Reid Spencer681dcd12007-02-27 21:59:26 +0000829 int i = getNumWords() - 1;
Chris Lattner455e9ab2009-01-21 18:09:24 +0000830 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Reid Spencer681dcd12007-02-27 21:59:26 +0000831 if (Count == highWordBits) {
832 for (i--; i >= 0; --i) {
833 if (pVal[i] == -1ULL)
834 Count += APINT_BITS_PER_WORD;
835 else {
836 Count += countLeadingOnes_64(pVal[i], 0);
837 break;
838 }
839 }
840 }
841 return Count;
842}
843
Chris Lattner455e9ab2009-01-21 18:09:24 +0000844unsigned APInt::countTrailingZeros() const {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000845 if (isSingleWord())
Chris Lattner455e9ab2009-01-21 18:09:24 +0000846 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
847 unsigned Count = 0;
848 unsigned i = 0;
Reid Spencer47fbe9e2007-02-26 07:44:38 +0000849 for (; i < getNumWords() && pVal[i] == 0; ++i)
850 Count += APINT_BITS_PER_WORD;
851 if (i < getNumWords())
852 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner5e557122007-11-23 22:36:25 +0000853 return std::min(Count, BitWidth);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000854}
855
Chris Lattner455e9ab2009-01-21 18:09:24 +0000856unsigned APInt::countTrailingOnesSlowCase() const {
857 unsigned Count = 0;
858 unsigned i = 0;
Dan Gohman5a0e7b42008-02-14 22:38:45 +0000859 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohman42dd77f2008-02-13 21:11:05 +0000860 Count += APINT_BITS_PER_WORD;
861 if (i < getNumWords())
862 Count += CountTrailingOnes_64(pVal[i]);
863 return std::min(Count, BitWidth);
864}
865
Chris Lattner455e9ab2009-01-21 18:09:24 +0000866unsigned APInt::countPopulationSlowCase() const {
867 unsigned Count = 0;
868 for (unsigned i = 0; i < getNumWords(); ++i)
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000869 Count += CountPopulation_64(pVal[i]);
870 return Count;
871}
872
Richard Smithe73db4e2011-11-23 21:33:37 +0000873/// Perform a logical right-shift from Src to Dst, which must be equal or
874/// non-overlapping, of Words words, by Shift, which must be less than 64.
875static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words,
876 unsigned Shift) {
877 uint64_t Carry = 0;
878 for (int I = Words - 1; I >= 0; --I) {
879 uint64_t Tmp = Src[I];
880 Dst[I] = (Tmp >> Shift) | Carry;
881 Carry = Tmp << (64 - Shift);
882 }
883}
884
Reid Spencere81d2da2007-02-16 22:36:51 +0000885APInt APInt::byteSwap() const {
886 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
887 if (BitWidth == 16)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000888 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
Richard Smithe73db4e2011-11-23 21:33:37 +0000889 if (BitWidth == 32)
Chris Lattner455e9ab2009-01-21 18:09:24 +0000890 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Richard Smithe73db4e2011-11-23 21:33:37 +0000891 if (BitWidth == 48) {
Chris Lattner455e9ab2009-01-21 18:09:24 +0000892 unsigned Tmp1 = unsigned(VAL >> 16);
Zhou Shengb04973e2007-02-15 06:36:31 +0000893 Tmp1 = ByteSwap_32(Tmp1);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000894 uint16_t Tmp2 = uint16_t(VAL);
Zhou Shengb04973e2007-02-15 06:36:31 +0000895 Tmp2 = ByteSwap_16(Tmp2);
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000896 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
Zhou Shengb04973e2007-02-15 06:36:31 +0000897 }
Richard Smithe73db4e2011-11-23 21:33:37 +0000898 if (BitWidth == 64)
899 return APInt(BitWidth, ByteSwap_64(VAL));
900
901 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
902 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
903 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]);
904 if (Result.BitWidth != BitWidth) {
905 lshrNear(Result.pVal, Result.pVal, getNumWords(),
906 Result.BitWidth - BitWidth);
907 Result.BitWidth = BitWidth;
908 }
909 return Result;
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000910}
911
Eric Christopherd37eda82009-08-21 04:06:45 +0000912APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
Zhou Sheng0b706b12007-02-08 14:35:19 +0000913 const APInt& API2) {
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000914 APInt A = API1, B = API2;
915 while (!!B) {
916 APInt T = B;
Reid Spencere81d2da2007-02-16 22:36:51 +0000917 B = APIntOps::urem(A, B);
Zhou Shengfd43dcf2007-02-06 03:00:16 +0000918 A = T;
919 }
920 return A;
921}
Chris Lattner6ad4c142007-02-06 05:38:37 +0000922
Chris Lattner455e9ab2009-01-21 18:09:24 +0000923APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Zhou Shengd93f00c2007-02-12 20:02:55 +0000924 union {
925 double D;
926 uint64_t I;
927 } T;
928 T.D = Double;
Reid Spencer30f44f32007-02-27 01:28:10 +0000929
930 // Get the sign bit from the highest order bit
Zhou Shengd93f00c2007-02-12 20:02:55 +0000931 bool isNeg = T.I >> 63;
Reid Spencer30f44f32007-02-27 01:28:10 +0000932
933 // Get the 11-bit exponent and adjust for the 1023 bit bias
Zhou Shengd93f00c2007-02-12 20:02:55 +0000934 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
Reid Spencer30f44f32007-02-27 01:28:10 +0000935
936 // If the exponent is negative, the value is < 0 so just return 0.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000937 if (exp < 0)
Reid Spencerff605762007-02-28 01:30:08 +0000938 return APInt(width, 0u);
Reid Spencer30f44f32007-02-27 01:28:10 +0000939
940 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
941 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
942
943 // If the exponent doesn't shift all bits out of the mantissa
Zhou Shengd93f00c2007-02-12 20:02:55 +0000944 if (exp < 52)
Eric Christopherd37eda82009-08-21 04:06:45 +0000945 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
Reid Spencer1fa111e2007-02-27 18:23:40 +0000946 APInt(width, mantissa >> (52 - exp));
947
948 // If the client didn't provide enough bits for us to shift the mantissa into
949 // then the result is undefined, just return 0
950 if (width <= exp - 52)
951 return APInt(width, 0);
Reid Spencer30f44f32007-02-27 01:28:10 +0000952
953 // Otherwise, we have to shift the mantissa bits up to the right location
Reid Spencer1fa111e2007-02-27 18:23:40 +0000954 APInt Tmp(width, mantissa);
Chris Lattner455e9ab2009-01-21 18:09:24 +0000955 Tmp = Tmp.shl((unsigned)exp - 52);
Zhou Shengd93f00c2007-02-12 20:02:55 +0000956 return isNeg ? -Tmp : Tmp;
957}
958
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000959/// RoundToDouble - This function converts this APInt to a double.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000960/// The layout for double is as following (IEEE Standard 754):
961/// --------------------------------------
962/// | Sign Exponent Fraction Bias |
963/// |-------------------------------------- |
964/// | 1[63] 11[62-52] 52[51-00] 1023 |
Eric Christopherd37eda82009-08-21 04:06:45 +0000965/// --------------------------------------
Reid Spencere81d2da2007-02-16 22:36:51 +0000966double APInt::roundToDouble(bool isSigned) const {
Reid Spencer9c0696f2007-02-20 08:51:03 +0000967
968 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesen4e97a0f2009-08-12 18:04:11 +0000969 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Reid Spencera58f0582007-02-18 20:09:41 +0000970 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
971 if (isSigned) {
Dale Johannesen39c177d2009-08-12 17:42:34 +0000972 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Reid Spencera58f0582007-02-18 20:09:41 +0000973 return double(sext);
974 } else
Dale Johannesen39c177d2009-08-12 17:42:34 +0000975 return double(getWord(0));
Reid Spencera58f0582007-02-18 20:09:41 +0000976 }
977
Reid Spencer9c0696f2007-02-20 08:51:03 +0000978 // Determine if the value is negative.
Reid Spencere81d2da2007-02-16 22:36:51 +0000979 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
Reid Spencer9c0696f2007-02-20 08:51:03 +0000980
981 // Construct the absolute value if we're negative.
Zhou Shengd93f00c2007-02-12 20:02:55 +0000982 APInt Tmp(isNeg ? -(*this) : (*this));
Reid Spencer9c0696f2007-02-20 08:51:03 +0000983
984 // Figure out how many bits we're using.
Chris Lattner455e9ab2009-01-21 18:09:24 +0000985 unsigned n = Tmp.getActiveBits();
Zhou Shengd93f00c2007-02-12 20:02:55 +0000986
Reid Spencer9c0696f2007-02-20 08:51:03 +0000987 // The exponent (without bias normalization) is just the number of bits
988 // we are using. Note that the sign bit is gone since we constructed the
989 // absolute value.
990 uint64_t exp = n;
Zhou Shengd93f00c2007-02-12 20:02:55 +0000991
Reid Spencer9c0696f2007-02-20 08:51:03 +0000992 // Return infinity for exponent overflow
993 if (exp > 1023) {
994 if (!isSigned || !isNeg)
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000995 return std::numeric_limits<double>::infinity();
Eric Christopherd37eda82009-08-21 04:06:45 +0000996 else
Jeff Cohen09dfd8e2007-03-20 20:42:36 +0000997 return -std::numeric_limits<double>::infinity();
Reid Spencer9c0696f2007-02-20 08:51:03 +0000998 }
999 exp += 1023; // Increment for 1023 bias
1000
1001 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
1002 // extract the high 52 bits from the correct words in pVal.
Zhou Shengd93f00c2007-02-12 20:02:55 +00001003 uint64_t mantissa;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001004 unsigned hiWord = whichWord(n-1);
1005 if (hiWord == 0) {
1006 mantissa = Tmp.pVal[0];
1007 if (n > 52)
1008 mantissa >>= n - 52; // shift down, we want the top 52 bits.
1009 } else {
1010 assert(hiWord > 0 && "huh?");
1011 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
1012 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
1013 mantissa = hibits | lobits;
1014 }
1015
Zhou Shengd93f00c2007-02-12 20:02:55 +00001016 // The leading bit of mantissa is implicit, so get rid of it.
Reid Spencer443b5702007-02-18 00:44:22 +00001017 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
Zhou Shengd93f00c2007-02-12 20:02:55 +00001018 union {
1019 double D;
1020 uint64_t I;
1021 } T;
1022 T.I = sign | (exp << 52) | mantissa;
1023 return T.D;
1024}
1025
Reid Spencere81d2da2007-02-16 22:36:51 +00001026// Truncate to new width.
Jay Foad40f8f622010-12-07 08:25:19 +00001027APInt APInt::trunc(unsigned width) const {
Reid Spencere81d2da2007-02-16 22:36:51 +00001028 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner98f8ccf2008-08-20 17:02:31 +00001029 assert(width && "Can't truncate to 0 bits");
Jay Foad40f8f622010-12-07 08:25:19 +00001030
1031 if (width <= APINT_BITS_PER_WORD)
1032 return APInt(width, getRawData()[0]);
1033
1034 APInt Result(getMemory(getNumWords(width)), width);
1035
1036 // Copy full words.
1037 unsigned i;
1038 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
1039 Result.pVal[i] = pVal[i];
1040
1041 // Truncate and copy any partial word.
1042 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
1043 if (bits != 0)
1044 Result.pVal[i] = pVal[i] << bits >> bits;
1045
1046 return Result;
Reid Spencere81d2da2007-02-16 22:36:51 +00001047}
1048
1049// Sign extend to a new width.
Jay Foad40f8f622010-12-07 08:25:19 +00001050APInt APInt::sext(unsigned width) const {
Reid Spencere81d2da2007-02-16 22:36:51 +00001051 assert(width > BitWidth && "Invalid APInt SignExtend request");
Jay Foad40f8f622010-12-07 08:25:19 +00001052
1053 if (width <= APINT_BITS_PER_WORD) {
1054 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth);
1055 val = (int64_t)val >> (width - BitWidth);
1056 return APInt(width, val >> (APINT_BITS_PER_WORD - width));
Reid Spencer9eec2412007-02-25 23:44:53 +00001057 }
1058
Jay Foad40f8f622010-12-07 08:25:19 +00001059 APInt Result(getMemory(getNumWords(width)), width);
Reid Spencer9eec2412007-02-25 23:44:53 +00001060
Jay Foad40f8f622010-12-07 08:25:19 +00001061 // Copy full words.
1062 unsigned i;
1063 uint64_t word = 0;
1064 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) {
1065 word = getRawData()[i];
1066 Result.pVal[i] = word;
Reid Spencer9eec2412007-02-25 23:44:53 +00001067 }
1068
Jay Foad40f8f622010-12-07 08:25:19 +00001069 // Read and sign-extend any partial word.
1070 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD;
1071 if (bits != 0)
1072 word = (int64_t)getRawData()[i] << bits >> bits;
1073 else
1074 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
1075
1076 // Write remaining full words.
1077 for (; i != width / APINT_BITS_PER_WORD; i++) {
1078 Result.pVal[i] = word;
1079 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1);
Reid Spencer9eec2412007-02-25 23:44:53 +00001080 }
Jay Foad40f8f622010-12-07 08:25:19 +00001081
1082 // Write any partial word.
1083 bits = (0 - width) % APINT_BITS_PER_WORD;
1084 if (bits != 0)
1085 Result.pVal[i] = word << bits >> bits;
1086
1087 return Result;
Reid Spencere81d2da2007-02-16 22:36:51 +00001088}
1089
1090// Zero extend to a new width.
Jay Foad40f8f622010-12-07 08:25:19 +00001091APInt APInt::zext(unsigned width) const {
Reid Spencere81d2da2007-02-16 22:36:51 +00001092 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Jay Foad40f8f622010-12-07 08:25:19 +00001093
1094 if (width <= APINT_BITS_PER_WORD)
1095 return APInt(width, VAL);
1096
1097 APInt Result(getMemory(getNumWords(width)), width);
1098
1099 // Copy words.
1100 unsigned i;
1101 for (i = 0; i != getNumWords(); i++)
1102 Result.pVal[i] = getRawData()[i];
1103
1104 // Zero remaining words.
1105 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE);
1106
1107 return Result;
Reid Spencere81d2da2007-02-16 22:36:51 +00001108}
1109
Jay Foad40f8f622010-12-07 08:25:19 +00001110APInt APInt::zextOrTrunc(unsigned width) const {
Reid Spencer68e23002007-03-01 17:15:32 +00001111 if (BitWidth < width)
1112 return zext(width);
1113 if (BitWidth > width)
1114 return trunc(width);
1115 return *this;
1116}
1117
Jay Foad40f8f622010-12-07 08:25:19 +00001118APInt APInt::sextOrTrunc(unsigned width) const {
Reid Spencer68e23002007-03-01 17:15:32 +00001119 if (BitWidth < width)
1120 return sext(width);
1121 if (BitWidth > width)
1122 return trunc(width);
1123 return *this;
1124}
1125
Zhou Shengff4304f2007-02-09 07:48:24 +00001126/// Arithmetic right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001127/// @brief Arithmetic right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001128APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001129 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001130}
1131
1132/// Arithmetic right-shift this APInt by shiftAmt.
1133/// @brief Arithmetic right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001134APInt APInt::ashr(unsigned shiftAmt) const {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001135 assert(shiftAmt <= BitWidth && "Invalid shift amount");
Reid Spencer46f9c942007-03-02 22:39:11 +00001136 // Handle a degenerate case
1137 if (shiftAmt == 0)
1138 return *this;
1139
1140 // Handle single word shifts with built-in ashr
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001141 if (isSingleWord()) {
1142 if (shiftAmt == BitWidth)
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001143 return APInt(BitWidth, 0); // undefined
1144 else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001145 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Eric Christopherd37eda82009-08-21 04:06:45 +00001146 return APInt(BitWidth,
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001147 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1148 }
Zhou Sheng0b706b12007-02-08 14:35:19 +00001149 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001150
Reid Spencer46f9c942007-03-02 22:39:11 +00001151 // If all the bits were shifted out, the result is, technically, undefined.
1152 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1153 // issues in the algorithm below.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001154 if (shiftAmt == BitWidth) {
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001155 if (isNegative())
Zhou Shengbfde7d62008-06-05 13:27:38 +00001156 return APInt(BitWidth, -1ULL, true);
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001157 else
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001158 return APInt(BitWidth, 0);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001159 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001160
1161 // Create some space for the result.
1162 uint64_t * val = new uint64_t[getNumWords()];
1163
Reid Spencer46f9c942007-03-02 22:39:11 +00001164 // Compute some values needed by the following shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001165 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1166 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1167 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1168 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Reid Spencer46f9c942007-03-02 22:39:11 +00001169 if (bitsInWord == 0)
1170 bitsInWord = APINT_BITS_PER_WORD;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001171
1172 // If we are shifting whole words, just move whole words
1173 if (wordShift == 0) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001174 // Move the words containing significant bits
Chris Lattner455e9ab2009-01-21 18:09:24 +00001175 for (unsigned i = 0; i <= breakWord; ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001176 val[i] = pVal[i+offset]; // move whole word
1177
1178 // Adjust the top significant word for sign bit fill, if negative
1179 if (isNegative())
1180 if (bitsInWord < APINT_BITS_PER_WORD)
1181 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1182 } else {
Eric Christopherd37eda82009-08-21 04:06:45 +00001183 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001184 for (unsigned i = 0; i < breakWord; ++i) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001185 // This combines the shifted corresponding word with the low bits from
1186 // the next word (shifted into this word's high bits).
Eric Christopherd37eda82009-08-21 04:06:45 +00001187 val[i] = (pVal[i+offset] >> wordShift) |
Reid Spencer46f9c942007-03-02 22:39:11 +00001188 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1189 }
1190
1191 // Shift the break word. In this case there are no bits from the next word
1192 // to include in this word.
1193 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1194
1195 // Deal with sign extenstion in the break word, and possibly the word before
1196 // it.
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001197 if (isNegative()) {
Reid Spencer46f9c942007-03-02 22:39:11 +00001198 if (wordShift > bitsInWord) {
1199 if (breakWord > 0)
Eric Christopherd37eda82009-08-21 04:06:45 +00001200 val[breakWord-1] |=
Reid Spencer46f9c942007-03-02 22:39:11 +00001201 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1202 val[breakWord] |= ~0ULL;
Eric Christopherd37eda82009-08-21 04:06:45 +00001203 } else
Reid Spencer46f9c942007-03-02 22:39:11 +00001204 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001205 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001206 }
1207
Reid Spencer46f9c942007-03-02 22:39:11 +00001208 // Remaining words are 0 or -1, just assign them.
1209 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001210 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencer46f9c942007-03-02 22:39:11 +00001211 val[i] = fillValue;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001212 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001213}
1214
Zhou Shengff4304f2007-02-09 07:48:24 +00001215/// Logical right-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001216/// @brief Logical right-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001217APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001218 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001219}
1220
1221/// Logical right-shift this APInt by shiftAmt.
1222/// @brief Logical right-shift function.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001223APInt APInt::lshr(unsigned shiftAmt) const {
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001224 if (isSingleWord()) {
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001225 if (shiftAmt == BitWidth)
1226 return APInt(BitWidth, 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00001227 else
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001228 return APInt(BitWidth, this->VAL >> shiftAmt);
Chris Lattnera5ae15e2007-05-03 18:15:36 +00001229 }
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001230
Reid Spencerba81c2b2007-02-26 01:19:48 +00001231 // If all the bits were shifted out, the result is 0. This avoids issues
1232 // with shifting by the size of the integer type, which produces undefined
1233 // results. We define these "undefined results" to always be 0.
1234 if (shiftAmt == BitWidth)
1235 return APInt(BitWidth, 0);
1236
Reid Spencer02ae8b72007-05-17 06:26:29 +00001237 // If none of the bits are shifted out, the result is *this. This avoids
Eric Christopherd37eda82009-08-21 04:06:45 +00001238 // issues with shifting by the size of the integer type, which produces
Reid Spencer02ae8b72007-05-17 06:26:29 +00001239 // undefined results in the code below. This is also an optimization.
1240 if (shiftAmt == 0)
1241 return *this;
1242
Reid Spencerba81c2b2007-02-26 01:19:48 +00001243 // Create some space for the result.
1244 uint64_t * val = new uint64_t[getNumWords()];
1245
1246 // If we are shifting less than a word, compute the shift with a simple carry
1247 if (shiftAmt < APINT_BITS_PER_WORD) {
Richard Smithe73db4e2011-11-23 21:33:37 +00001248 lshrNear(val, pVal, getNumWords(), shiftAmt);
Reid Spencerba81c2b2007-02-26 01:19:48 +00001249 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001250 }
1251
Reid Spencerba81c2b2007-02-26 01:19:48 +00001252 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001253 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1254 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencerba81c2b2007-02-26 01:19:48 +00001255
1256 // If we are shifting whole words, just move whole words
1257 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001258 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001259 val[i] = pVal[i+offset];
Chris Lattner455e9ab2009-01-21 18:09:24 +00001260 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001261 val[i] = 0;
1262 return APInt(val,BitWidth).clearUnusedBits();
1263 }
1264
Eric Christopherd37eda82009-08-21 04:06:45 +00001265 // Shift the low order words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001266 unsigned breakWord = getNumWords() - offset -1;
1267 for (unsigned i = 0; i < breakWord; ++i)
Reid Spenceraf8fb192007-03-01 05:39:56 +00001268 val[i] = (pVal[i+offset] >> wordShift) |
1269 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
Reid Spencerba81c2b2007-02-26 01:19:48 +00001270 // Shift the break word.
1271 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1272
1273 // Remaining words are 0
Chris Lattner455e9ab2009-01-21 18:09:24 +00001274 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Reid Spencerba81c2b2007-02-26 01:19:48 +00001275 val[i] = 0;
1276 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001277}
1278
Zhou Shengff4304f2007-02-09 07:48:24 +00001279/// Left-shift this APInt by shiftAmt.
Zhou Sheng0b706b12007-02-08 14:35:19 +00001280/// @brief Left-shift function.
Dan Gohmancf609572008-02-29 01:40:47 +00001281APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky4bd47872009-01-19 17:42:33 +00001282 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001283 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001284}
1285
Chris Lattner455e9ab2009-01-21 18:09:24 +00001286APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Reid Spencer87553802007-02-25 00:56:44 +00001287 // If all the bits were shifted out, the result is 0. This avoids issues
1288 // with shifting by the size of the integer type, which produces undefined
1289 // results. We define these "undefined results" to always be 0.
1290 if (shiftAmt == BitWidth)
1291 return APInt(BitWidth, 0);
1292
Reid Spencer92c72832007-05-12 18:01:57 +00001293 // If none of the bits are shifted out, the result is *this. This avoids a
1294 // lshr by the words size in the loop below which can produce incorrect
1295 // results. It also avoids the expensive computation below for a common case.
1296 if (shiftAmt == 0)
1297 return *this;
1298
Reid Spencer87553802007-02-25 00:56:44 +00001299 // Create some space for the result.
1300 uint64_t * val = new uint64_t[getNumWords()];
1301
1302 // If we are shifting less than a word, do it the easy way
1303 if (shiftAmt < APINT_BITS_PER_WORD) {
1304 uint64_t carry = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001305 for (unsigned i = 0; i < getNumWords(); i++) {
Reid Spencer87553802007-02-25 00:56:44 +00001306 val[i] = pVal[i] << shiftAmt | carry;
1307 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1308 }
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001309 return APInt(val, BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001310 }
1311
Reid Spencer87553802007-02-25 00:56:44 +00001312 // Compute some values needed by the remaining shift algorithms
Chris Lattner455e9ab2009-01-21 18:09:24 +00001313 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1314 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Reid Spencer87553802007-02-25 00:56:44 +00001315
1316 // If we are shifting whole words, just move whole words
1317 if (wordShift == 0) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001318 for (unsigned i = 0; i < offset; i++)
Reid Spencer87553802007-02-25 00:56:44 +00001319 val[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001320 for (unsigned i = offset; i < getNumWords(); i++)
Reid Spencer87553802007-02-25 00:56:44 +00001321 val[i] = pVal[i-offset];
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001322 return APInt(val,BitWidth).clearUnusedBits();
Reid Spencer5bce8542007-02-24 20:19:37 +00001323 }
Reid Spencer87553802007-02-25 00:56:44 +00001324
1325 // Copy whole words from this to Result.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001326 unsigned i = getNumWords() - 1;
Reid Spencer87553802007-02-25 00:56:44 +00001327 for (; i > offset; --i)
1328 val[i] = pVal[i-offset] << wordShift |
1329 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
Reid Spencer438d71e2007-02-25 01:08:58 +00001330 val[offset] = pVal[0] << wordShift;
Reid Spencer87553802007-02-25 00:56:44 +00001331 for (i = 0; i < offset; ++i)
1332 val[i] = 0;
Reid Spencer5d0d05c2007-02-25 19:32:03 +00001333 return APInt(val, BitWidth).clearUnusedBits();
Zhou Sheng0b706b12007-02-08 14:35:19 +00001334}
1335
Dan Gohmancf609572008-02-29 01:40:47 +00001336APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001337 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001338}
1339
Chris Lattner455e9ab2009-01-21 18:09:24 +00001340APInt APInt::rotl(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001341 if (rotateAmt == 0)
1342 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001343 // Don't get too fancy, just use existing shift/or facilities
1344 APInt hi(*this);
1345 APInt lo(*this);
1346 hi.shl(rotateAmt);
1347 lo.lshr(BitWidth - rotateAmt);
1348 return hi | lo;
1349}
1350
Dan Gohmancf609572008-02-29 01:40:47 +00001351APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001352 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohmancf609572008-02-29 01:40:47 +00001353}
1354
Chris Lattner455e9ab2009-01-21 18:09:24 +00001355APInt APInt::rotr(unsigned rotateAmt) const {
Reid Spencer69944e82007-05-14 00:15:28 +00001356 if (rotateAmt == 0)
1357 return *this;
Reid Spencer19dc32a2007-05-13 23:44:59 +00001358 // Don't get too fancy, just use existing shift/or facilities
1359 APInt hi(*this);
1360 APInt lo(*this);
1361 lo.lshr(rotateAmt);
1362 hi.shl(BitWidth - rotateAmt);
1363 return hi | lo;
1364}
Reid Spenceraf8fb192007-03-01 05:39:56 +00001365
1366// Square Root - this method computes and returns the square root of "this".
1367// Three mechanisms are used for computation. For small values (<= 5 bits),
1368// a table lookup is done. This gets some performance for common cases. For
1369// values using less than 52 bits, the value is converted to double and then
1370// the libc sqrt function is called. The result is rounded and then converted
1371// back to a uint64_t which is then used to construct the result. Finally,
Eric Christopherd37eda82009-08-21 04:06:45 +00001372// the Babylonian method for computing square roots is used.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001373APInt APInt::sqrt() const {
1374
1375 // Determine the magnitude of the value.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001376 unsigned magnitude = getActiveBits();
Reid Spenceraf8fb192007-03-01 05:39:56 +00001377
1378 // Use a fast table for some small values. This also gets rid of some
1379 // rounding errors in libc sqrt for small values.
1380 if (magnitude <= 5) {
Reid Spencer4e1e87f2007-03-01 17:47:31 +00001381 static const uint8_t results[32] = {
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001382 /* 0 */ 0,
1383 /* 1- 2 */ 1, 1,
Eric Christopherd37eda82009-08-21 04:06:45 +00001384 /* 3- 6 */ 2, 2, 2, 2,
Reid Spencerb5ca2cd2007-03-01 06:23:32 +00001385 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1386 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1387 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1388 /* 31 */ 6
1389 };
1390 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
Reid Spenceraf8fb192007-03-01 05:39:56 +00001391 }
1392
1393 // If the magnitude of the value fits in less than 52 bits (the precision of
1394 // an IEEE double precision floating point value), then we can use the
1395 // libc sqrt function which will probably use a hardware sqrt computation.
1396 // This should be faster than the algorithm below.
Jeff Cohenca5183d2007-03-05 00:00:42 +00001397 if (magnitude < 52) {
Chris Lattner4c297c92010-05-15 17:11:55 +00001398#if HAVE_ROUND
Eric Christopherd37eda82009-08-21 04:06:45 +00001399 return APInt(BitWidth,
Reid Spenceraf8fb192007-03-01 05:39:56 +00001400 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
Chris Lattner4c297c92010-05-15 17:11:55 +00001401#else
1402 return APInt(BitWidth,
Chris Lattnerc4cb2372011-05-22 06:03:53 +00001403 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5));
Jeff Cohenca5183d2007-03-05 00:00:42 +00001404#endif
1405 }
Reid Spenceraf8fb192007-03-01 05:39:56 +00001406
1407 // Okay, all the short cuts are exhausted. We must compute it. The following
1408 // is a classical Babylonian method for computing the square root. This code
1409 // was adapted to APINt from a wikipedia article on such computations.
1410 // See http://www.wikipedia.org/ and go to the page named
Eric Christopherd37eda82009-08-21 04:06:45 +00001411 // Calculate_an_integer_square_root.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001412 unsigned nbits = BitWidth, i = 4;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001413 APInt testy(BitWidth, 16);
1414 APInt x_old(BitWidth, 1);
1415 APInt x_new(BitWidth, 0);
1416 APInt two(BitWidth, 2);
1417
1418 // Select a good starting value using binary logarithms.
Eric Christopherd37eda82009-08-21 04:06:45 +00001419 for (;; i += 2, testy = testy.shl(2))
Reid Spenceraf8fb192007-03-01 05:39:56 +00001420 if (i >= nbits || this->ule(testy)) {
1421 x_old = x_old.shl(i / 2);
1422 break;
1423 }
1424
Eric Christopherd37eda82009-08-21 04:06:45 +00001425 // Use the Babylonian method to arrive at the integer square root:
Reid Spenceraf8fb192007-03-01 05:39:56 +00001426 for (;;) {
1427 x_new = (this->udiv(x_old) + x_old).udiv(two);
1428 if (x_old.ule(x_new))
1429 break;
1430 x_old = x_new;
1431 }
1432
1433 // Make sure we return the closest approximation
Eric Christopherd37eda82009-08-21 04:06:45 +00001434 // NOTE: The rounding calculation below is correct. It will produce an
Reid Spencerf09aef72007-03-02 04:21:55 +00001435 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
Eric Christopherd37eda82009-08-21 04:06:45 +00001436 // determined to be a rounding issue with pari/gp as it begins to use a
Reid Spencerf09aef72007-03-02 04:21:55 +00001437 // floating point representation after 192 bits. There are no discrepancies
1438 // between this algorithm and pari/gp for bit widths < 192 bits.
Reid Spenceraf8fb192007-03-01 05:39:56 +00001439 APInt square(x_old * x_old);
1440 APInt nextSquare((x_old + 1) * (x_old +1));
1441 if (this->ult(square))
1442 return x_old;
David Blaikie18c7ec12011-12-01 20:58:30 +00001443 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation");
1444 APInt midpoint((nextSquare - square).udiv(two));
1445 APInt offset(*this - square);
1446 if (offset.ult(midpoint))
1447 return x_old;
Reid Spenceraf8fb192007-03-01 05:39:56 +00001448 return x_old + 1;
1449}
1450
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001451/// Computes the multiplicative inverse of this APInt for a given modulo. The
1452/// iterative extended Euclidean algorithm is used to solve for this value,
1453/// however we simplify it to speed up calculating only the inverse, and take
1454/// advantage of div+rem calculations. We also use some tricks to avoid copying
1455/// (potentially large) APInts around.
1456APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1457 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1458
1459 // Using the properties listed at the following web page (accessed 06/21/08):
1460 // http://www.numbertheory.org/php/euclid.html
1461 // (especially the properties numbered 3, 4 and 9) it can be proved that
1462 // BitWidth bits suffice for all the computations in the algorithm implemented
1463 // below. More precisely, this number of bits suffice if the multiplicative
1464 // inverse exists, but may not suffice for the general extended Euclidean
1465 // algorithm.
1466
1467 APInt r[2] = { modulo, *this };
1468 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1469 APInt q(BitWidth, 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00001470
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001471 unsigned i;
1472 for (i = 0; r[i^1] != 0; i ^= 1) {
1473 // An overview of the math without the confusing bit-flipping:
1474 // q = r[i-2] / r[i-1]
1475 // r[i] = r[i-2] % r[i-1]
1476 // t[i] = t[i-2] - t[i-1] * q
1477 udivrem(r[i], r[i^1], q, r[i]);
1478 t[i] -= t[i^1] * q;
1479 }
1480
1481 // If this APInt and the modulo are not coprime, there is no multiplicative
1482 // inverse, so return 0. We check this by looking at the next-to-last
1483 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1484 // algorithm.
1485 if (r[i] != 1)
1486 return APInt(BitWidth, 0);
1487
1488 // The next-to-last t is the multiplicative inverse. However, we are
1489 // interested in a positive inverse. Calcuate a positive one from a negative
1490 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewiczde0f2382008-07-20 15:55:14 +00001491 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00001492 return t[i].isNegative() ? t[i] + modulo : t[i];
1493}
1494
Jay Foad4e5ea552009-04-30 10:15:35 +00001495/// Calculate the magic numbers required to implement a signed integer division
1496/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1497/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1498/// Warren, Jr., chapter 10.
1499APInt::ms APInt::magic() const {
1500 const APInt& d = *this;
1501 unsigned p;
1502 APInt ad, anc, delta, q1, r1, q2, r2, t;
Jay Foad4e5ea552009-04-30 10:15:35 +00001503 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
Jay Foad4e5ea552009-04-30 10:15:35 +00001504 struct ms mag;
Eric Christopherd37eda82009-08-21 04:06:45 +00001505
Jay Foad4e5ea552009-04-30 10:15:35 +00001506 ad = d.abs();
1507 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1508 anc = t - 1 - t.urem(ad); // absolute value of nc
1509 p = d.getBitWidth() - 1; // initialize p
1510 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1511 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1512 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1513 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1514 do {
1515 p = p + 1;
1516 q1 = q1<<1; // update q1 = 2p/abs(nc)
1517 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1518 if (r1.uge(anc)) { // must be unsigned comparison
1519 q1 = q1 + 1;
1520 r1 = r1 - anc;
1521 }
1522 q2 = q2<<1; // update q2 = 2p/abs(d)
1523 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1524 if (r2.uge(ad)) { // must be unsigned comparison
1525 q2 = q2 + 1;
1526 r2 = r2 - ad;
1527 }
1528 delta = ad - r2;
Cameron Zwarich8d7285d2011-02-21 00:22:02 +00001529 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
Eric Christopherd37eda82009-08-21 04:06:45 +00001530
Jay Foad4e5ea552009-04-30 10:15:35 +00001531 mag.m = q2 + 1;
1532 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1533 mag.s = p - d.getBitWidth(); // resulting shift
1534 return mag;
1535}
1536
1537/// Calculate the magic numbers required to implement an unsigned integer
1538/// division by a constant as a sequence of multiplies, adds and shifts.
1539/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1540/// S. Warren, Jr., chapter 10.
Benjamin Kramerd9103df2011-03-17 20:39:06 +00001541/// LeadingZeros can be used to simplify the calculation if the upper bits
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001542/// of the divided value are known zero.
Benjamin Kramerd9103df2011-03-17 20:39:06 +00001543APInt::mu APInt::magicu(unsigned LeadingZeros) const {
Jay Foad4e5ea552009-04-30 10:15:35 +00001544 const APInt& d = *this;
1545 unsigned p;
1546 APInt nc, delta, q1, r1, q2, r2;
1547 struct mu magu;
1548 magu.a = 0; // initialize "add" indicator
Benjamin Kramerd9103df2011-03-17 20:39:06 +00001549 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
Jay Foad4e5ea552009-04-30 10:15:35 +00001550 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1551 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1552
1553 nc = allOnes - (-d).urem(d);
1554 p = d.getBitWidth() - 1; // initialize p
1555 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1556 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1557 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1558 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1559 do {
1560 p = p + 1;
1561 if (r1.uge(nc - r1)) {
1562 q1 = q1 + q1 + 1; // update q1
1563 r1 = r1 + r1 - nc; // update r1
1564 }
1565 else {
1566 q1 = q1+q1; // update q1
1567 r1 = r1+r1; // update r1
1568 }
1569 if ((r2 + 1).uge(d - r2)) {
1570 if (q2.uge(signedMax)) magu.a = 1;
1571 q2 = q2+q2 + 1; // update q2
1572 r2 = r2+r2 + 1 - d; // update r2
1573 }
1574 else {
1575 if (q2.uge(signedMin)) magu.a = 1;
1576 q2 = q2+q2; // update q2
1577 r2 = r2+r2 + 1; // update r2
1578 }
1579 delta = d - 1 - r2;
1580 } while (p < d.getBitWidth()*2 &&
1581 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1582 magu.m = q2 + 1; // resulting magic number
1583 magu.s = p - d.getBitWidth(); // resulting shift
1584 return magu;
1585}
1586
Reid Spencer9c0696f2007-02-20 08:51:03 +00001587/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1588/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1589/// variables here have the same names as in the algorithm. Comments explain
1590/// the algorithm and any deviation from it.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001591static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1592 unsigned m, unsigned n) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00001593 assert(u && "Must provide dividend");
1594 assert(v && "Must provide divisor");
1595 assert(q && "Must provide quotient");
Reid Spencer9d6c9192007-02-24 03:58:46 +00001596 assert(u != v && u != q && v != q && "Must us different memory");
Reid Spencer9c0696f2007-02-20 08:51:03 +00001597 assert(n>1 && "n must be > 1");
1598
1599 // Knuth uses the value b as the base of the number system. In our case b
1600 // is 2^31 so we just set it to -1u.
1601 uint64_t b = uint64_t(1) << 32;
1602
Chris Lattnerfad86b02008-08-17 07:19:36 +00001603#if 0
David Greene465abed2010-01-05 01:28:52 +00001604 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1605 DEBUG(dbgs() << "KnuthDiv: original:");
1606 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1607 DEBUG(dbgs() << " by");
1608 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1609 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001610#endif
Eric Christopherd37eda82009-08-21 04:06:45 +00001611 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1612 // u and v by d. Note that we have taken Knuth's advice here to use a power
1613 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1614 // 2 allows us to shift instead of multiply and it is easy to determine the
Reid Spencer9c0696f2007-02-20 08:51:03 +00001615 // shift amount from the leading zeros. We are basically normalizing the u
1616 // and v so that its high bits are shifted to the top of v's range without
1617 // overflow. Note that this can require an extra word in u so that u must
1618 // be of length m+n+1.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001619 unsigned shift = CountLeadingZeros_32(v[n-1]);
1620 unsigned v_carry = 0;
1621 unsigned u_carry = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001622 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001623 for (unsigned i = 0; i < m+n; ++i) {
1624 unsigned u_tmp = u[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001625 u[i] = (u[i] << shift) | u_carry;
1626 u_carry = u_tmp;
Reid Spencer5e0a8512007-02-17 03:16:00 +00001627 }
Chris Lattner455e9ab2009-01-21 18:09:24 +00001628 for (unsigned i = 0; i < n; ++i) {
1629 unsigned v_tmp = v[i] >> (32 - shift);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001630 v[i] = (v[i] << shift) | v_carry;
1631 v_carry = v_tmp;
1632 }
1633 }
1634 u[m+n] = u_carry;
Chris Lattnerfad86b02008-08-17 07:19:36 +00001635#if 0
David Greene465abed2010-01-05 01:28:52 +00001636 DEBUG(dbgs() << "KnuthDiv: normal:");
1637 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1638 DEBUG(dbgs() << " by");
1639 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]);
1640 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001641#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001642
1643 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1644 int j = m;
1645 do {
David Greene465abed2010-01-05 01:28:52 +00001646 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n');
Eric Christopherd37eda82009-08-21 04:06:45 +00001647 // D3. [Calculate q'.].
Reid Spencer9c0696f2007-02-20 08:51:03 +00001648 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1649 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1650 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1651 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1652 // on v[n-2] determines at high speed most of the cases in which the trial
Eric Christopherd37eda82009-08-21 04:06:45 +00001653 // value qp is one too large, and it eliminates all cases where qp is two
1654 // too large.
Reid Spencer92904632007-02-23 01:57:13 +00001655 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
David Greene465abed2010-01-05 01:28:52 +00001656 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n');
Reid Spencer92904632007-02-23 01:57:13 +00001657 uint64_t qp = dividend / v[n-1];
1658 uint64_t rp = dividend % v[n-1];
Reid Spencer9c0696f2007-02-20 08:51:03 +00001659 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1660 qp--;
1661 rp += v[n-1];
Reid Spencer610fad82007-02-24 10:01:42 +00001662 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
Reid Spencer9d6c9192007-02-24 03:58:46 +00001663 qp--;
Reid Spencer92904632007-02-23 01:57:13 +00001664 }
David Greene465abed2010-01-05 01:28:52 +00001665 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001666
Reid Spencer92904632007-02-23 01:57:13 +00001667 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1668 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1669 // consists of a simple multiplication by a one-place number, combined with
Eric Christopherd37eda82009-08-21 04:06:45 +00001670 // a subtraction.
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001671 bool isNeg = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001672 for (unsigned i = 0; i < n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001673 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
Reid Spencer9d6c9192007-02-24 03:58:46 +00001674 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
Reid Spencer610fad82007-02-24 10:01:42 +00001675 bool borrow = subtrahend > u_tmp;
David Greene465abed2010-01-05 01:28:52 +00001676 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp
Daniel Dunbara53902b2009-07-13 05:27:30 +00001677 << ", subtrahend == " << subtrahend
1678 << ", borrow = " << borrow << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001679
Reid Spencer610fad82007-02-24 10:01:42 +00001680 uint64_t result = u_tmp - subtrahend;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001681 unsigned k = j + i;
1682 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1683 u[k++] = (unsigned)(result >> 32); // subtract high word
Reid Spencer610fad82007-02-24 10:01:42 +00001684 while (borrow && k <= m+n) { // deal with borrow to the left
1685 borrow = u[k] == 0;
1686 u[k]--;
1687 k++;
1688 }
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001689 isNeg |= borrow;
David Greene465abed2010-01-05 01:28:52 +00001690 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Eric Christopherd37eda82009-08-21 04:06:45 +00001691 u[j+i+1] << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001692 }
David Greene465abed2010-01-05 01:28:52 +00001693 DEBUG(dbgs() << "KnuthDiv: after subtraction:");
1694 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1695 DEBUG(dbgs() << '\n');
Eric Christopherd37eda82009-08-21 04:06:45 +00001696 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1697 // this step is actually negative, (u[j+n]...u[j]) should be left as the
Reid Spencer610fad82007-02-24 10:01:42 +00001698 // true value plus b**(n+1), namely as the b's complement of
Reid Spencer92904632007-02-23 01:57:13 +00001699 // the true value, and a "borrow" to the left should be remembered.
1700 //
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001701 if (isNeg) {
Reid Spencer610fad82007-02-24 10:01:42 +00001702 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattner455e9ab2009-01-21 18:09:24 +00001703 for (unsigned i = 0; i <= m+n; ++i) {
Reid Spencer610fad82007-02-24 10:01:42 +00001704 u[i] = ~u[i] + carry; // b's complement
1705 carry = carry && u[i] == 0;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001706 }
Reid Spencer92904632007-02-23 01:57:13 +00001707 }
David Greene465abed2010-01-05 01:28:52 +00001708 DEBUG(dbgs() << "KnuthDiv: after complement:");
1709 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]);
1710 DEBUG(dbgs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001711
Eric Christopherd37eda82009-08-21 04:06:45 +00001712 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
Reid Spencer9c0696f2007-02-20 08:51:03 +00001713 // negative, go to step D6; otherwise go on to step D7.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001714 q[j] = (unsigned)qp;
Reid Spencer47fbe9e2007-02-26 07:44:38 +00001715 if (isNeg) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001716 // D6. [Add back]. The probability that this step is necessary is very
Reid Spencer9c0696f2007-02-20 08:51:03 +00001717 // small, on the order of only 2/b. Make sure that test data accounts for
Eric Christopherd37eda82009-08-21 04:06:45 +00001718 // this possibility. Decrease q[j] by 1
Reid Spencer92904632007-02-23 01:57:13 +00001719 q[j]--;
Eric Christopherd37eda82009-08-21 04:06:45 +00001720 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1721 // A carry will occur to the left of u[j+n], and it should be ignored
Reid Spencer92904632007-02-23 01:57:13 +00001722 // since it cancels with the borrow that occurred in D4.
1723 bool carry = false;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001724 for (unsigned i = 0; i < n; i++) {
1725 unsigned limit = std::min(u[j+i],v[i]);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001726 u[j+i] += v[i] + carry;
Reid Spencer9d6c9192007-02-24 03:58:46 +00001727 carry = u[j+i] < limit || (carry && u[j+i] == limit);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001728 }
Reid Spencer9d6c9192007-02-24 03:58:46 +00001729 u[j+n] += carry;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001730 }
David Greene465abed2010-01-05 01:28:52 +00001731 DEBUG(dbgs() << "KnuthDiv: after correction:");
1732 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]);
1733 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001734
Reid Spencer92904632007-02-23 01:57:13 +00001735 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1736 } while (--j >= 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001737
David Greene465abed2010-01-05 01:28:52 +00001738 DEBUG(dbgs() << "KnuthDiv: quotient:");
1739 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]);
1740 DEBUG(dbgs() << '\n');
Reid Spencer9d6c9192007-02-24 03:58:46 +00001741
Reid Spencer9c0696f2007-02-20 08:51:03 +00001742 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1743 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1744 // compute the remainder (urem uses this).
1745 if (r) {
1746 // The value d is expressed by the "shift" value above since we avoided
1747 // multiplication by d by using a shift left. So, all we have to do is
1748 // shift right here. In order to mak
Reid Spencer1050ec52007-02-24 20:38:01 +00001749 if (shift) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001750 unsigned carry = 0;
David Greene465abed2010-01-05 01:28:52 +00001751 DEBUG(dbgs() << "KnuthDiv: remainder:");
Reid Spencer1050ec52007-02-24 20:38:01 +00001752 for (int i = n-1; i >= 0; i--) {
1753 r[i] = (u[i] >> shift) | carry;
1754 carry = u[i] << (32 - shift);
David Greene465abed2010-01-05 01:28:52 +00001755 DEBUG(dbgs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001756 }
1757 } else {
1758 for (int i = n-1; i >= 0; i--) {
1759 r[i] = u[i];
David Greene465abed2010-01-05 01:28:52 +00001760 DEBUG(dbgs() << " " << r[i]);
Reid Spencer1050ec52007-02-24 20:38:01 +00001761 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001762 }
David Greene465abed2010-01-05 01:28:52 +00001763 DEBUG(dbgs() << '\n');
Reid Spencer9c0696f2007-02-20 08:51:03 +00001764 }
Chris Lattnerfad86b02008-08-17 07:19:36 +00001765#if 0
David Greene465abed2010-01-05 01:28:52 +00001766 DEBUG(dbgs() << '\n');
Chris Lattnerfad86b02008-08-17 07:19:36 +00001767#endif
Reid Spencer9c0696f2007-02-20 08:51:03 +00001768}
1769
Chris Lattner455e9ab2009-01-21 18:09:24 +00001770void APInt::divide(const APInt LHS, unsigned lhsWords,
1771 const APInt &RHS, unsigned rhsWords,
Reid Spencer9c0696f2007-02-20 08:51:03 +00001772 APInt *Quotient, APInt *Remainder)
1773{
1774 assert(lhsWords >= rhsWords && "Fractional result");
1775
Eric Christopherd37eda82009-08-21 04:06:45 +00001776 // First, compose the values into an array of 32-bit words instead of
Reid Spencer9c0696f2007-02-20 08:51:03 +00001777 // 64-bit words. This is a necessity of both the "short division" algorithm
Dan Gohmanf451cb82010-02-10 16:03:48 +00001778 // and the Knuth "classical algorithm" which requires there to be native
Eric Christopherd37eda82009-08-21 04:06:45 +00001779 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1780 // can't use 64-bit operands here because we don't have native results of
1781 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Reid Spencer9c0696f2007-02-20 08:51:03 +00001782 // work on large-endian machines.
Dan Gohmande551f92009-04-01 18:45:54 +00001783 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001784 unsigned n = rhsWords * 2;
1785 unsigned m = (lhsWords * 2) - n;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001786
1787 // Allocate space for the temporary values we need either on the stack, if
1788 // it will fit, or on the heap if it won't.
Chris Lattner455e9ab2009-01-21 18:09:24 +00001789 unsigned SPACE[128];
1790 unsigned *U = 0;
1791 unsigned *V = 0;
1792 unsigned *Q = 0;
1793 unsigned *R = 0;
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001794 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1795 U = &SPACE[0];
1796 V = &SPACE[m+n+1];
1797 Q = &SPACE[(m+n+1) + n];
1798 if (Remainder)
1799 R = &SPACE[(m+n+1) + n + (m+n)];
1800 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001801 U = new unsigned[m + n + 1];
1802 V = new unsigned[n];
1803 Q = new unsigned[m+n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001804 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001805 R = new unsigned[n];
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001806 }
1807
1808 // Initialize the dividend
Chris Lattner455e9ab2009-01-21 18:09:24 +00001809 memset(U, 0, (m+n+1)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001810 for (unsigned i = 0; i < lhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001811 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001812 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001813 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001814 }
1815 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1816
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001817 // Initialize the divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00001818 memset(V, 0, (n)*sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001819 for (unsigned i = 0; i < rhsWords; ++i) {
Reid Spencer15aab8a2007-02-22 00:58:45 +00001820 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattner455e9ab2009-01-21 18:09:24 +00001821 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmande551f92009-04-01 18:45:54 +00001822 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001823 }
1824
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001825 // initialize the quotient and remainder
Chris Lattner455e9ab2009-01-21 18:09:24 +00001826 memset(Q, 0, (m+n) * sizeof(unsigned));
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001827 if (Remainder)
Chris Lattner455e9ab2009-01-21 18:09:24 +00001828 memset(R, 0, n * sizeof(unsigned));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001829
Eric Christopherd37eda82009-08-21 04:06:45 +00001830 // Now, adjust m and n for the Knuth division. n is the number of words in
Reid Spencer9c0696f2007-02-20 08:51:03 +00001831 // the divisor. m is the number of words by which the dividend exceeds the
Eric Christopherd37eda82009-08-21 04:06:45 +00001832 // divisor (i.e. m+n is the length of the dividend). These sizes must not
Reid Spencer9c0696f2007-02-20 08:51:03 +00001833 // contain any zero words or the Knuth algorithm fails.
1834 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1835 n--;
1836 m++;
1837 }
1838 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1839 m--;
1840
1841 // If we're left with only a single word for the divisor, Knuth doesn't work
1842 // so we implement the short division algorithm here. This is much simpler
1843 // and faster because we are certain that we can divide a 64-bit quantity
1844 // by a 32-bit quantity at hardware speed and short division is simply a
1845 // series of such operations. This is just like doing short division but we
1846 // are using base 2^32 instead of base 10.
1847 assert(n != 0 && "Divide by zero?");
1848 if (n == 1) {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001849 unsigned divisor = V[0];
1850 unsigned remainder = 0;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001851 for (int i = m+n-1; i >= 0; i--) {
1852 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1853 if (partial_dividend == 0) {
1854 Q[i] = 0;
1855 remainder = 0;
1856 } else if (partial_dividend < divisor) {
1857 Q[i] = 0;
Chris Lattner455e9ab2009-01-21 18:09:24 +00001858 remainder = (unsigned)partial_dividend;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001859 } else if (partial_dividend == divisor) {
1860 Q[i] = 1;
1861 remainder = 0;
1862 } else {
Chris Lattner455e9ab2009-01-21 18:09:24 +00001863 Q[i] = (unsigned)(partial_dividend / divisor);
1864 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Reid Spencer9c0696f2007-02-20 08:51:03 +00001865 }
1866 }
1867 if (R)
1868 R[0] = remainder;
1869 } else {
1870 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1871 // case n > 1.
1872 KnuthDiv(U, V, Q, R, m, n);
1873 }
1874
1875 // If the caller wants the quotient
1876 if (Quotient) {
1877 // Set up the Quotient value's memory.
1878 if (Quotient->BitWidth != LHS.BitWidth) {
1879 if (Quotient->isSingleWord())
1880 Quotient->VAL = 0;
1881 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001882 delete [] Quotient->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001883 Quotient->BitWidth = LHS.BitWidth;
1884 if (!Quotient->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001885 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001886 } else
Jay Foad7a874dd2010-12-01 08:53:58 +00001887 Quotient->clearAllBits();
Reid Spencer9c0696f2007-02-20 08:51:03 +00001888
Eric Christopherd37eda82009-08-21 04:06:45 +00001889 // The quotient is in Q. Reconstitute the quotient into Quotient's low
Reid Spencer9c0696f2007-02-20 08:51:03 +00001890 // order words.
1891 if (lhsWords == 1) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001892 uint64_t tmp =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001893 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1894 if (Quotient->isSingleWord())
1895 Quotient->VAL = tmp;
1896 else
1897 Quotient->pVal[0] = tmp;
1898 } else {
1899 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1900 for (unsigned i = 0; i < lhsWords; ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +00001901 Quotient->pVal[i] =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001902 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1903 }
1904 }
1905
1906 // If the caller wants the remainder
1907 if (Remainder) {
1908 // Set up the Remainder value's memory.
1909 if (Remainder->BitWidth != RHS.BitWidth) {
1910 if (Remainder->isSingleWord())
1911 Remainder->VAL = 0;
1912 else
Reid Spencer9ac44112007-02-26 23:38:21 +00001913 delete [] Remainder->pVal;
Reid Spencer9c0696f2007-02-20 08:51:03 +00001914 Remainder->BitWidth = RHS.BitWidth;
1915 if (!Remainder->isSingleWord())
Reid Spencere0cdd332007-02-21 08:21:52 +00001916 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
Reid Spencer9c0696f2007-02-20 08:51:03 +00001917 } else
Jay Foad7a874dd2010-12-01 08:53:58 +00001918 Remainder->clearAllBits();
Reid Spencer9c0696f2007-02-20 08:51:03 +00001919
1920 // The remainder is in R. Reconstitute the remainder into Remainder's low
1921 // order words.
1922 if (rhsWords == 1) {
Eric Christopherd37eda82009-08-21 04:06:45 +00001923 uint64_t tmp =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001924 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1925 if (Remainder->isSingleWord())
1926 Remainder->VAL = tmp;
1927 else
1928 Remainder->pVal[0] = tmp;
1929 } else {
1930 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1931 for (unsigned i = 0; i < rhsWords; ++i)
Eric Christopherd37eda82009-08-21 04:06:45 +00001932 Remainder->pVal[i] =
Reid Spencer9c0696f2007-02-20 08:51:03 +00001933 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1934 }
1935 }
1936
1937 // Clean up the memory we allocated.
Reid Spencer24c4a8f2007-02-25 01:56:07 +00001938 if (U != &SPACE[0]) {
1939 delete [] U;
1940 delete [] V;
1941 delete [] Q;
1942 delete [] R;
1943 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00001944}
1945
Reid Spencere81d2da2007-02-16 22:36:51 +00001946APInt APInt::udiv(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001947 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001948
1949 // First, deal with the easy case
1950 if (isSingleWord()) {
1951 assert(RHS.VAL != 0 && "Divide by zero?");
1952 return APInt(BitWidth, VAL / RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001953 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001954
Reid Spencer71bd08f2007-02-17 02:07:07 +00001955 // Get some facts about the LHS and RHS number of bits and words
Chris Lattner455e9ab2009-01-21 18:09:24 +00001956 unsigned rhsBits = RHS.getActiveBits();
1957 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001958 assert(rhsWords && "Divided by zero???");
Chris Lattner455e9ab2009-01-21 18:09:24 +00001959 unsigned lhsBits = this->getActiveBits();
1960 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001961
1962 // Deal with some degenerate cases
Eric Christopherd37eda82009-08-21 04:06:45 +00001963 if (!lhsWords)
Reid Spencere0cdd332007-02-21 08:21:52 +00001964 // 0 / X ===> 0
Eric Christopherd37eda82009-08-21 04:06:45 +00001965 return APInt(BitWidth, 0);
Reid Spencere0cdd332007-02-21 08:21:52 +00001966 else if (lhsWords < rhsWords || this->ult(RHS)) {
1967 // X / Y ===> 0, iff X < Y
1968 return APInt(BitWidth, 0);
1969 } else if (*this == RHS) {
1970 // X / X ===> 1
1971 return APInt(BitWidth, 1);
Reid Spencer9c0696f2007-02-20 08:51:03 +00001972 } else if (lhsWords == 1 && rhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00001973 // All high words are zero, just use native divide
Reid Spencere0cdd332007-02-21 08:21:52 +00001974 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001975 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00001976
1977 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1978 APInt Quotient(1,0); // to hold result.
1979 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1980 return Quotient;
Zhou Sheng0b706b12007-02-08 14:35:19 +00001981}
1982
Reid Spencere81d2da2007-02-16 22:36:51 +00001983APInt APInt::urem(const APInt& RHS) const {
Reid Spencercd6f2bf2007-02-17 00:18:01 +00001984 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
Reid Spencer71bd08f2007-02-17 02:07:07 +00001985 if (isSingleWord()) {
1986 assert(RHS.VAL != 0 && "Remainder by zero?");
1987 return APInt(BitWidth, VAL % RHS.VAL);
Zhou Sheng0b706b12007-02-08 14:35:19 +00001988 }
Reid Spencer71bd08f2007-02-17 02:07:07 +00001989
Reid Spencere0cdd332007-02-21 08:21:52 +00001990 // Get some facts about the LHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001991 unsigned lhsBits = getActiveBits();
1992 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001993
1994 // Get some facts about the RHS
Chris Lattner455e9ab2009-01-21 18:09:24 +00001995 unsigned rhsBits = RHS.getActiveBits();
1996 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer71bd08f2007-02-17 02:07:07 +00001997 assert(rhsWords && "Performing remainder operation by zero ???");
1998
Reid Spencer71bd08f2007-02-17 02:07:07 +00001999 // Check the degenerate cases
Reid Spencer9c0696f2007-02-20 08:51:03 +00002000 if (lhsWords == 0) {
Reid Spencere0cdd332007-02-21 08:21:52 +00002001 // 0 % Y ===> 0
2002 return APInt(BitWidth, 0);
2003 } else if (lhsWords < rhsWords || this->ult(RHS)) {
2004 // X % Y ===> X, iff X < Y
2005 return *this;
2006 } else if (*this == RHS) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00002007 // X % X == 0;
Reid Spencere0cdd332007-02-21 08:21:52 +00002008 return APInt(BitWidth, 0);
Reid Spencer9c0696f2007-02-20 08:51:03 +00002009 } else if (lhsWords == 1) {
Reid Spencer71bd08f2007-02-17 02:07:07 +00002010 // All high words are zero, just use native remainder
Reid Spencere0cdd332007-02-21 08:21:52 +00002011 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
Reid Spencer71bd08f2007-02-17 02:07:07 +00002012 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002013
Reid Spencer19dc32a2007-05-13 23:44:59 +00002014 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
Reid Spencer9c0696f2007-02-20 08:51:03 +00002015 APInt Remainder(1,0);
2016 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
2017 return Remainder;
Zhou Sheng0b706b12007-02-08 14:35:19 +00002018}
Reid Spencer5e0a8512007-02-17 03:16:00 +00002019
Eric Christopherd37eda82009-08-21 04:06:45 +00002020void APInt::udivrem(const APInt &LHS, const APInt &RHS,
Reid Spencer19dc32a2007-05-13 23:44:59 +00002021 APInt &Quotient, APInt &Remainder) {
2022 // Get some size facts about the dividend and divisor
Chris Lattner455e9ab2009-01-21 18:09:24 +00002023 unsigned lhsBits = LHS.getActiveBits();
2024 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
2025 unsigned rhsBits = RHS.getActiveBits();
2026 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Reid Spencer19dc32a2007-05-13 23:44:59 +00002027
2028 // Check the degenerate cases
Eric Christopherd37eda82009-08-21 04:06:45 +00002029 if (lhsWords == 0) {
Reid Spencer19dc32a2007-05-13 23:44:59 +00002030 Quotient = 0; // 0 / Y ===> 0
2031 Remainder = 0; // 0 % Y ===> 0
2032 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002033 }
2034
2035 if (lhsWords < rhsWords || LHS.ult(RHS)) {
Reid Spencer19dc32a2007-05-13 23:44:59 +00002036 Remainder = LHS; // X % Y ===> X, iff X < Y
John McCalld73bf592009-12-24 08:52:06 +00002037 Quotient = 0; // X / Y ===> 0, iff X < Y
Reid Spencer19dc32a2007-05-13 23:44:59 +00002038 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002039 }
2040
Reid Spencer19dc32a2007-05-13 23:44:59 +00002041 if (LHS == RHS) {
2042 Quotient = 1; // X / X ===> 1
2043 Remainder = 0; // X % X ===> 0;
2044 return;
Eric Christopherd37eda82009-08-21 04:06:45 +00002045 }
2046
Reid Spencer19dc32a2007-05-13 23:44:59 +00002047 if (lhsWords == 1 && rhsWords == 1) {
2048 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz300c6c52008-06-23 19:39:50 +00002049 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
2050 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
2051 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
2052 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Reid Spencer19dc32a2007-05-13 23:44:59 +00002053 return;
2054 }
2055
2056 // Okay, lets do it the long way
2057 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2058}
2059
Chris Lattner0a0a5852010-10-13 23:54:10 +00002060APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002061 APInt Res = *this+RHS;
2062 Overflow = isNonNegative() == RHS.isNonNegative() &&
2063 Res.isNonNegative() != isNonNegative();
2064 return Res;
2065}
2066
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002067APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
2068 APInt Res = *this+RHS;
2069 Overflow = Res.ult(RHS);
2070 return Res;
2071}
2072
Chris Lattner0a0a5852010-10-13 23:54:10 +00002073APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002074 APInt Res = *this - RHS;
2075 Overflow = isNonNegative() != RHS.isNonNegative() &&
2076 Res.isNonNegative() != isNonNegative();
2077 return Res;
2078}
2079
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002080APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnera5bbde82010-10-14 00:30:00 +00002081 APInt Res = *this-RHS;
2082 Overflow = Res.ugt(*this);
Chris Lattnereafc5cb2010-10-14 00:05:07 +00002083 return Res;
2084}
2085
Chris Lattner0a0a5852010-10-13 23:54:10 +00002086APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002087 // MININT/-1 --> overflow.
2088 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
2089 return sdiv(RHS);
2090}
2091
Chris Lattner0a0a5852010-10-13 23:54:10 +00002092APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002093 APInt Res = *this * RHS;
2094
2095 if (*this != 0 && RHS != 0)
2096 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
2097 else
2098 Overflow = false;
2099 return Res;
2100}
2101
Frits van Bommel62086102011-03-27 14:26:13 +00002102APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
2103 APInt Res = *this * RHS;
2104
2105 if (*this != 0 && RHS != 0)
2106 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
2107 else
2108 Overflow = false;
2109 return Res;
2110}
2111
Chris Lattner0a0a5852010-10-13 23:54:10 +00002112APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const {
Chris Lattnerf2ddc642010-10-13 23:46:33 +00002113 Overflow = ShAmt >= getBitWidth();
2114 if (Overflow)
2115 ShAmt = getBitWidth()-1;
2116
2117 if (isNonNegative()) // Don't allow sign change.
2118 Overflow = ShAmt >= countLeadingZeros();
2119 else
2120 Overflow = ShAmt >= countLeadingOnes();
2121
2122 return *this << ShAmt;
2123}
2124
2125
2126
2127
Benjamin Kramer38e59892010-07-14 22:38:02 +00002128void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
Reid Spencer385f7542007-02-21 03:55:44 +00002129 // Check our assumptions here
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002130 assert(!str.empty() && "Invalid string length");
Douglas Gregordcd99962011-09-14 15:54:46 +00002131 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||
2132 radix == 36) &&
2133 "Radix should be 2, 8, 10, 16, or 36!");
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002134
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002135 StringRef::iterator p = str.begin();
2136 size_t slen = str.size();
2137 bool isNeg = *p == '-';
Erick Tryzelaarbb975312009-08-21 03:15:14 +00002138 if (*p == '-' || *p == '+') {
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002139 p++;
2140 slen--;
Eric Christophere250f2a2009-08-21 04:10:31 +00002141 assert(slen && "String is only a sign, needs a value.");
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002142 }
Chris Lattnera5ae15e2007-05-03 18:15:36 +00002143 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner38300e92009-04-25 18:34:04 +00002144 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2145 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
Dan Gohman16e02092010-03-24 19:38:02 +00002146 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&
2147 "Insufficient bit width");
Reid Spencer385f7542007-02-21 03:55:44 +00002148
2149 // Allocate memory
2150 if (!isSingleWord())
2151 pVal = getClearedMemory(getNumWords());
2152
2153 // Figure out if we can shift instead of multiply
Chris Lattner455e9ab2009-01-21 18:09:24 +00002154 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Reid Spencer385f7542007-02-21 03:55:44 +00002155
2156 // Set up an APInt for the digit to add outside the loop so we don't
2157 // constantly construct/destruct it.
2158 APInt apdigit(getBitWidth(), 0);
2159 APInt apradix(getBitWidth(), radix);
2160
2161 // Enter digit traversal loop
Daniel Dunbar689ad6e2009-08-13 02:33:34 +00002162 for (StringRef::iterator e = str.end(); p != e; ++p) {
Erick Tryzelaarae8f78d2009-08-21 03:15:28 +00002163 unsigned digit = getDigit(*p, radix);
Erick Tryzelaar56c39eb2009-08-21 06:48:37 +00002164 assert(digit < radix && "Invalid character in digit string");
Reid Spencer385f7542007-02-21 03:55:44 +00002165
Reid Spencer6551dcd2007-05-16 19:18:22 +00002166 // Shift or multiply the value by the radix
Chris Lattner38300e92009-04-25 18:34:04 +00002167 if (slen > 1) {
2168 if (shift)
2169 *this <<= shift;
2170 else
2171 *this *= apradix;
2172 }
Reid Spencer385f7542007-02-21 03:55:44 +00002173
2174 // Add in the digit we just interpreted
Reid Spencer5bce8542007-02-24 20:19:37 +00002175 if (apdigit.isSingleWord())
2176 apdigit.VAL = digit;
2177 else
2178 apdigit.pVal[0] = digit;
Reid Spencer385f7542007-02-21 03:55:44 +00002179 *this += apdigit;
Reid Spencer5e0a8512007-02-17 03:16:00 +00002180 }
Reid Spencer9eec2412007-02-25 23:44:53 +00002181 // If its negative, put it in two's complement form
Reid Spencer47fbe9e2007-02-26 07:44:38 +00002182 if (isNeg) {
2183 (*this)--;
Jay Foad7a874dd2010-12-01 08:53:58 +00002184 this->flipAllBits();
Reid Spencer9eec2412007-02-25 23:44:53 +00002185 }
Reid Spencer5e0a8512007-02-17 03:16:00 +00002186}
Reid Spencer9c0696f2007-02-20 08:51:03 +00002187
Chris Lattnerfad86b02008-08-17 07:19:36 +00002188void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
Ted Kremenekcf886182011-06-15 00:51:55 +00002189 bool Signed, bool formatAsCLiteral) const {
Douglas Gregordcd99962011-09-14 15:54:46 +00002190 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||
2191 Radix == 36) &&
Dylan Noblesmithefb0d1e2011-12-16 20:36:31 +00002192 "Radix should be 2, 8, 10, 16, or 36!");
Eric Christopherd37eda82009-08-21 04:06:45 +00002193
Ted Kremenekcf886182011-06-15 00:51:55 +00002194 const char *Prefix = "";
2195 if (formatAsCLiteral) {
2196 switch (Radix) {
2197 case 2:
2198 // Binary literals are a non-standard extension added in gcc 4.3:
2199 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2200 Prefix = "0b";
2201 break;
2202 case 8:
2203 Prefix = "0";
2204 break;
Dylan Noblesmithefb0d1e2011-12-16 20:36:31 +00002205 case 10:
2206 break; // No prefix
Ted Kremenekcf886182011-06-15 00:51:55 +00002207 case 16:
2208 Prefix = "0x";
2209 break;
Dylan Noblesmithefb0d1e2011-12-16 20:36:31 +00002210 default:
2211 llvm_unreachable("Invalid radix!");
Ted Kremenekcf886182011-06-15 00:51:55 +00002212 }
2213 }
2214
Chris Lattnerfad86b02008-08-17 07:19:36 +00002215 // First, check for a zero value and just short circuit the logic below.
2216 if (*this == 0) {
Ted Kremenekcf886182011-06-15 00:51:55 +00002217 while (*Prefix) {
2218 Str.push_back(*Prefix);
2219 ++Prefix;
2220 };
Chris Lattnerfad86b02008-08-17 07:19:36 +00002221 Str.push_back('0');
2222 return;
2223 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002224
Douglas Gregordcd99962011-09-14 15:54:46 +00002225 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
Eric Christopherd37eda82009-08-21 04:06:45 +00002226
Reid Spencer9c0696f2007-02-20 08:51:03 +00002227 if (isSingleWord()) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002228 char Buffer[65];
2229 char *BufPtr = Buffer+65;
Eric Christopherd37eda82009-08-21 04:06:45 +00002230
Chris Lattnerfad86b02008-08-17 07:19:36 +00002231 uint64_t N;
Chris Lattner50839122010-08-18 00:33:47 +00002232 if (!Signed) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002233 N = getZExtValue();
Chris Lattner50839122010-08-18 00:33:47 +00002234 } else {
2235 int64_t I = getSExtValue();
2236 if (I >= 0) {
2237 N = I;
2238 } else {
2239 Str.push_back('-');
2240 N = -(uint64_t)I;
2241 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002242 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002243
Ted Kremenekcf886182011-06-15 00:51:55 +00002244 while (*Prefix) {
2245 Str.push_back(*Prefix);
2246 ++Prefix;
2247 };
2248
Chris Lattnerfad86b02008-08-17 07:19:36 +00002249 while (N) {
2250 *--BufPtr = Digits[N % Radix];
2251 N /= Radix;
2252 }
2253 Str.append(BufPtr, Buffer+65);
2254 return;
Reid Spencer9c0696f2007-02-20 08:51:03 +00002255 }
2256
Chris Lattnerfad86b02008-08-17 07:19:36 +00002257 APInt Tmp(*this);
Eric Christopherd37eda82009-08-21 04:06:45 +00002258
Chris Lattnerfad86b02008-08-17 07:19:36 +00002259 if (Signed && isNegative()) {
Reid Spencer9c0696f2007-02-20 08:51:03 +00002260 // They want to print the signed version and it is a negative value
2261 // Flip the bits and add one to turn it into the equivalent positive
2262 // value and put a '-' in the result.
Jay Foad7a874dd2010-12-01 08:53:58 +00002263 Tmp.flipAllBits();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002264 Tmp++;
2265 Str.push_back('-');
Reid Spencer9c0696f2007-02-20 08:51:03 +00002266 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002267
Ted Kremenekcf886182011-06-15 00:51:55 +00002268 while (*Prefix) {
2269 Str.push_back(*Prefix);
2270 ++Prefix;
2271 };
2272
Chris Lattnerfad86b02008-08-17 07:19:36 +00002273 // We insert the digits backward, then reverse them to get the right order.
2274 unsigned StartDig = Str.size();
Eric Christopherd37eda82009-08-21 04:06:45 +00002275
2276 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2277 // because the number of bits per digit (1, 3 and 4 respectively) divides
Chris Lattnerfad86b02008-08-17 07:19:36 +00002278 // equaly. We just shift until the value is zero.
Douglas Gregordcd99962011-09-14 15:54:46 +00002279 if (Radix == 2 || Radix == 8 || Radix == 16) {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002280 // Just shift tmp right for each digit width until it becomes zero
2281 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2282 unsigned MaskAmt = Radix - 1;
Eric Christopherd37eda82009-08-21 04:06:45 +00002283
Chris Lattnerfad86b02008-08-17 07:19:36 +00002284 while (Tmp != 0) {
2285 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2286 Str.push_back(Digits[Digit]);
2287 Tmp = Tmp.lshr(ShiftAmt);
2288 }
2289 } else {
Douglas Gregordcd99962011-09-14 15:54:46 +00002290 APInt divisor(Radix == 10? 4 : 8, Radix);
Chris Lattnerfad86b02008-08-17 07:19:36 +00002291 while (Tmp != 0) {
2292 APInt APdigit(1, 0);
2293 APInt tmp2(Tmp.getBitWidth(), 0);
Eric Christopherd37eda82009-08-21 04:06:45 +00002294 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
Chris Lattnerfad86b02008-08-17 07:19:36 +00002295 &APdigit);
Chris Lattner455e9ab2009-01-21 18:09:24 +00002296 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002297 assert(Digit < Radix && "divide failed");
2298 Str.push_back(Digits[Digit]);
2299 Tmp = tmp2;
2300 }
Reid Spencer9c0696f2007-02-20 08:51:03 +00002301 }
Eric Christopherd37eda82009-08-21 04:06:45 +00002302
Chris Lattnerfad86b02008-08-17 07:19:36 +00002303 // Reverse the digits before returning.
2304 std::reverse(Str.begin()+StartDig, Str.end());
Reid Spencer9c0696f2007-02-20 08:51:03 +00002305}
2306
Chris Lattnerfad86b02008-08-17 07:19:36 +00002307/// toString - This returns the APInt as a std::string. Note that this is an
2308/// inefficient method. It is better to pass in a SmallVector/SmallString
2309/// to the methods above.
2310std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2311 SmallString<40> S;
Ted Kremenekcf886182011-06-15 00:51:55 +00002312 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002313 return S.str();
Reid Spencer385f7542007-02-21 03:55:44 +00002314}
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002315
Chris Lattnerfad86b02008-08-17 07:19:36 +00002316
2317void APInt::dump() const {
2318 SmallString<40> S, U;
2319 this->toStringUnsigned(U);
2320 this->toStringSigned(S);
David Greene465abed2010-01-05 01:28:52 +00002321 dbgs() << "APInt(" << BitWidth << "b, "
Daniel Dunbardddfd342009-08-19 20:07:03 +00002322 << U.str() << "u " << S.str() << "s)";
Chris Lattnerfad86b02008-08-17 07:19:36 +00002323}
2324
Chris Lattner944fac72008-08-23 22:23:09 +00002325void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattnerfad86b02008-08-17 07:19:36 +00002326 SmallString<40> S;
Ted Kremenekcf886182011-06-15 00:51:55 +00002327 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
Daniel Dunbardddfd342009-08-19 20:07:03 +00002328 OS << S.str();
Chris Lattnerfad86b02008-08-17 07:19:36 +00002329}
2330
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002331// This implements a variety of operations on a representation of
2332// arbitrary precision, two's-complement, bignum integer values.
2333
Chris Lattner91021d32009-08-23 23:11:28 +00002334// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2335// and unrestricting assumption.
Chris Lattner9f17eb02008-08-17 04:58:58 +00002336#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002337COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002338
2339/* Some handy functions local to this file. */
2340namespace {
2341
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002342 /* Returns the integer part with the least significant BITS set.
2343 BITS cannot be zero. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002344 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002345 lowBitMask(unsigned int bits)
2346 {
Dan Gohman16e02092010-03-24 19:38:02 +00002347 assert(bits != 0 && bits <= integerPartWidth);
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002348
2349 return ~(integerPart) 0 >> (integerPartWidth - bits);
2350 }
2351
Neil Booth055c0b32007-10-06 00:43:45 +00002352 /* Returns the value of the lower half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002353 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002354 lowHalf(integerPart part)
2355 {
2356 return part & lowBitMask(integerPartWidth / 2);
2357 }
2358
Neil Booth055c0b32007-10-06 00:43:45 +00002359 /* Returns the value of the upper half of PART. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002360 static inline integerPart
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002361 highHalf(integerPart part)
2362 {
2363 return part >> (integerPartWidth / 2);
2364 }
2365
Neil Booth055c0b32007-10-06 00:43:45 +00002366 /* Returns the bit number of the most significant set bit of a part.
2367 If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002368 static unsigned int
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002369 partMSB(integerPart value)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002370 {
2371 unsigned int n, msb;
2372
2373 if (value == 0)
2374 return -1U;
2375
2376 n = integerPartWidth / 2;
2377
2378 msb = 0;
2379 do {
2380 if (value >> n) {
2381 value >>= n;
2382 msb += n;
2383 }
2384
2385 n >>= 1;
2386 } while (n);
2387
2388 return msb;
2389 }
2390
Neil Booth055c0b32007-10-06 00:43:45 +00002391 /* Returns the bit number of the least significant set bit of a
2392 part. If the input number has no bits set -1U is returned. */
Dan Gohman3bd659b2008-04-10 21:11:47 +00002393 static unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002394 partLSB(integerPart value)
2395 {
2396 unsigned int n, lsb;
2397
2398 if (value == 0)
2399 return -1U;
2400
2401 lsb = integerPartWidth - 1;
2402 n = integerPartWidth / 2;
2403
2404 do {
2405 if (value << n) {
2406 value <<= n;
2407 lsb -= n;
2408 }
2409
2410 n >>= 1;
2411 } while (n);
2412
2413 return lsb;
2414 }
2415}
2416
2417/* Sets the least significant part of a bignum to the input value, and
2418 zeroes out higher parts. */
2419void
2420APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2421{
2422 unsigned int i;
2423
Dan Gohman16e02092010-03-24 19:38:02 +00002424 assert(parts > 0);
Neil Booth68e53ad2007-10-08 13:47:12 +00002425
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002426 dst[0] = part;
Dan Gohman16e02092010-03-24 19:38:02 +00002427 for (i = 1; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002428 dst[i] = 0;
2429}
2430
2431/* Assign one bignum to another. */
2432void
2433APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2434{
2435 unsigned int i;
2436
Dan Gohman16e02092010-03-24 19:38:02 +00002437 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002438 dst[i] = src[i];
2439}
2440
2441/* Returns true if a bignum is zero, false otherwise. */
2442bool
2443APInt::tcIsZero(const integerPart *src, unsigned int parts)
2444{
2445 unsigned int i;
2446
Dan Gohman16e02092010-03-24 19:38:02 +00002447 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002448 if (src[i])
2449 return false;
2450
2451 return true;
2452}
2453
2454/* Extract the given bit of a bignum; returns 0 or 1. */
2455int
2456APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2457{
Dan Gohman16e02092010-03-24 19:38:02 +00002458 return (parts[bit / integerPartWidth] &
2459 ((integerPart) 1 << bit % integerPartWidth)) != 0;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002460}
2461
John McCalle12b7382010-02-28 02:51:25 +00002462/* Set the given bit of a bignum. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002463void
2464APInt::tcSetBit(integerPart *parts, unsigned int bit)
2465{
2466 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2467}
2468
John McCalle12b7382010-02-28 02:51:25 +00002469/* Clears the given bit of a bignum. */
2470void
2471APInt::tcClearBit(integerPart *parts, unsigned int bit)
2472{
2473 parts[bit / integerPartWidth] &=
2474 ~((integerPart) 1 << (bit % integerPartWidth));
2475}
2476
Neil Booth055c0b32007-10-06 00:43:45 +00002477/* Returns the bit number of the least significant set bit of a
2478 number. If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002479unsigned int
2480APInt::tcLSB(const integerPart *parts, unsigned int n)
2481{
2482 unsigned int i, lsb;
2483
Dan Gohman16e02092010-03-24 19:38:02 +00002484 for (i = 0; i < n; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002485 if (parts[i] != 0) {
2486 lsb = partLSB(parts[i]);
2487
2488 return lsb + i * integerPartWidth;
2489 }
2490 }
2491
2492 return -1U;
2493}
2494
Neil Booth055c0b32007-10-06 00:43:45 +00002495/* Returns the bit number of the most significant set bit of a number.
2496 If the input number has no bits set -1U is returned. */
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002497unsigned int
2498APInt::tcMSB(const integerPart *parts, unsigned int n)
2499{
2500 unsigned int msb;
2501
2502 do {
Dan Gohman16e02092010-03-24 19:38:02 +00002503 --n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002504
Dan Gohman16e02092010-03-24 19:38:02 +00002505 if (parts[n] != 0) {
2506 msb = partMSB(parts[n]);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002507
Dan Gohman16e02092010-03-24 19:38:02 +00002508 return msb + n * integerPartWidth;
2509 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002510 } while (n);
2511
2512 return -1U;
2513}
2514
Neil Booth68e53ad2007-10-08 13:47:12 +00002515/* Copy the bit vector of width srcBITS from SRC, starting at bit
2516 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2517 the least significant bit of DST. All high bits above srcBITS in
2518 DST are zero-filled. */
2519void
Evan Chengcf69a742009-05-21 23:47:47 +00002520APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Booth68e53ad2007-10-08 13:47:12 +00002521 unsigned int srcBits, unsigned int srcLSB)
2522{
2523 unsigned int firstSrcPart, dstParts, shift, n;
2524
2525 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
Dan Gohman16e02092010-03-24 19:38:02 +00002526 assert(dstParts <= dstCount);
Neil Booth68e53ad2007-10-08 13:47:12 +00002527
2528 firstSrcPart = srcLSB / integerPartWidth;
2529 tcAssign (dst, src + firstSrcPart, dstParts);
2530
2531 shift = srcLSB % integerPartWidth;
2532 tcShiftRight (dst, dstParts, shift);
2533
2534 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2535 in DST. If this is less that srcBits, append the rest, else
2536 clear the high bits. */
2537 n = dstParts * integerPartWidth - shift;
2538 if (n < srcBits) {
2539 integerPart mask = lowBitMask (srcBits - n);
2540 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2541 << n % integerPartWidth);
2542 } else if (n > srcBits) {
Neil Booth1e8390d2007-10-12 15:31:31 +00002543 if (srcBits % integerPartWidth)
2544 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Booth68e53ad2007-10-08 13:47:12 +00002545 }
2546
2547 /* Clear high parts. */
2548 while (dstParts < dstCount)
2549 dst[dstParts++] = 0;
2550}
2551
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002552/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2553integerPart
2554APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2555 integerPart c, unsigned int parts)
2556{
2557 unsigned int i;
2558
2559 assert(c <= 1);
2560
Dan Gohman16e02092010-03-24 19:38:02 +00002561 for (i = 0; i < parts; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002562 integerPart l;
2563
2564 l = dst[i];
2565 if (c) {
2566 dst[i] += rhs[i] + 1;
2567 c = (dst[i] <= l);
2568 } else {
2569 dst[i] += rhs[i];
2570 c = (dst[i] < l);
2571 }
2572 }
2573
2574 return c;
2575}
2576
2577/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2578integerPart
2579APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2580 integerPart c, unsigned int parts)
2581{
2582 unsigned int i;
2583
2584 assert(c <= 1);
2585
Dan Gohman16e02092010-03-24 19:38:02 +00002586 for (i = 0; i < parts; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002587 integerPart l;
2588
2589 l = dst[i];
2590 if (c) {
2591 dst[i] -= rhs[i] + 1;
2592 c = (dst[i] >= l);
2593 } else {
2594 dst[i] -= rhs[i];
2595 c = (dst[i] > l);
2596 }
2597 }
2598
2599 return c;
2600}
2601
2602/* Negate a bignum in-place. */
2603void
2604APInt::tcNegate(integerPart *dst, unsigned int parts)
2605{
2606 tcComplement(dst, parts);
2607 tcIncrement(dst, parts);
2608}
2609
Neil Booth055c0b32007-10-06 00:43:45 +00002610/* DST += SRC * MULTIPLIER + CARRY if add is true
2611 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002612
2613 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2614 they must start at the same point, i.e. DST == SRC.
2615
2616 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2617 returned. Otherwise DST is filled with the least significant
2618 DSTPARTS parts of the result, and if all of the omitted higher
2619 parts were zero return zero, otherwise overflow occurred and
2620 return one. */
2621int
2622APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2623 integerPart multiplier, integerPart carry,
2624 unsigned int srcParts, unsigned int dstParts,
2625 bool add)
2626{
2627 unsigned int i, n;
2628
2629 /* Otherwise our writes of DST kill our later reads of SRC. */
2630 assert(dst <= src || dst >= src + srcParts);
2631 assert(dstParts <= srcParts + 1);
2632
2633 /* N loops; minimum of dstParts and srcParts. */
2634 n = dstParts < srcParts ? dstParts: srcParts;
2635
Dan Gohman16e02092010-03-24 19:38:02 +00002636 for (i = 0; i < n; i++) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002637 integerPart low, mid, high, srcPart;
2638
2639 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2640
2641 This cannot overflow, because
2642
2643 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2644
2645 which is less than n^2. */
2646
2647 srcPart = src[i];
2648
2649 if (multiplier == 0 || srcPart == 0) {
2650 low = carry;
2651 high = 0;
2652 } else {
2653 low = lowHalf(srcPart) * lowHalf(multiplier);
2654 high = highHalf(srcPart) * highHalf(multiplier);
2655
2656 mid = lowHalf(srcPart) * highHalf(multiplier);
2657 high += highHalf(mid);
2658 mid <<= integerPartWidth / 2;
2659 if (low + mid < low)
2660 high++;
2661 low += mid;
2662
2663 mid = highHalf(srcPart) * lowHalf(multiplier);
2664 high += highHalf(mid);
2665 mid <<= integerPartWidth / 2;
2666 if (low + mid < low)
2667 high++;
2668 low += mid;
2669
2670 /* Now add carry. */
2671 if (low + carry < low)
2672 high++;
2673 low += carry;
2674 }
2675
2676 if (add) {
2677 /* And now DST[i], and store the new low part there. */
2678 if (low + dst[i] < low)
2679 high++;
2680 dst[i] += low;
2681 } else
2682 dst[i] = low;
2683
2684 carry = high;
2685 }
2686
2687 if (i < dstParts) {
2688 /* Full multiplication, there is no overflow. */
2689 assert(i + 1 == dstParts);
2690 dst[i] = carry;
2691 return 0;
2692 } else {
2693 /* We overflowed if there is carry. */
2694 if (carry)
2695 return 1;
2696
2697 /* We would overflow if any significant unwritten parts would be
2698 non-zero. This is true if any remaining src parts are non-zero
2699 and the multiplier is non-zero. */
2700 if (multiplier)
Dan Gohman16e02092010-03-24 19:38:02 +00002701 for (; i < srcParts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002702 if (src[i])
2703 return 1;
2704
2705 /* We fitted in the narrow destination. */
2706 return 0;
2707 }
2708}
2709
2710/* DST = LHS * RHS, where DST has the same width as the operands and
2711 is filled with the least significant parts of the result. Returns
2712 one if overflow occurred, otherwise zero. DST must be disjoint
2713 from both operands. */
2714int
2715APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2716 const integerPart *rhs, unsigned int parts)
2717{
2718 unsigned int i;
2719 int overflow;
2720
2721 assert(dst != lhs && dst != rhs);
2722
2723 overflow = 0;
2724 tcSet(dst, 0, parts);
2725
Dan Gohman16e02092010-03-24 19:38:02 +00002726 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002727 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2728 parts - i, true);
2729
2730 return overflow;
2731}
2732
Neil Booth978661d2007-10-06 00:24:48 +00002733/* DST = LHS * RHS, where DST has width the sum of the widths of the
2734 operands. No overflow occurs. DST must be disjoint from both
2735 operands. Returns the number of parts required to hold the
2736 result. */
2737unsigned int
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002738APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth978661d2007-10-06 00:24:48 +00002739 const integerPart *rhs, unsigned int lhsParts,
2740 unsigned int rhsParts)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002741{
Neil Booth978661d2007-10-06 00:24:48 +00002742 /* Put the narrower number on the LHS for less loops below. */
2743 if (lhsParts > rhsParts) {
2744 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2745 } else {
2746 unsigned int n;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002747
Neil Booth978661d2007-10-06 00:24:48 +00002748 assert(dst != lhs && dst != rhs);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002749
Neil Booth978661d2007-10-06 00:24:48 +00002750 tcSet(dst, 0, rhsParts);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002751
Dan Gohman16e02092010-03-24 19:38:02 +00002752 for (n = 0; n < lhsParts; n++)
Neil Booth978661d2007-10-06 00:24:48 +00002753 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002754
Neil Booth978661d2007-10-06 00:24:48 +00002755 n = lhsParts + rhsParts;
2756
2757 return n - (dst[n - 1] == 0);
2758 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002759}
2760
2761/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2762 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2763 set REMAINDER to the remainder, return zero. i.e.
2764
2765 OLD_LHS = RHS * LHS + REMAINDER
2766
2767 SCRATCH is a bignum of the same size as the operands and result for
2768 use by the routine; its contents need not be initialized and are
2769 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2770*/
2771int
2772APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2773 integerPart *remainder, integerPart *srhs,
2774 unsigned int parts)
2775{
2776 unsigned int n, shiftCount;
2777 integerPart mask;
2778
2779 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2780
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002781 shiftCount = tcMSB(rhs, parts) + 1;
2782 if (shiftCount == 0)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002783 return true;
2784
Chris Lattnerb39cdde2007-08-20 22:49:32 +00002785 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002786 n = shiftCount / integerPartWidth;
2787 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2788
2789 tcAssign(srhs, rhs, parts);
2790 tcShiftLeft(srhs, parts, shiftCount);
2791 tcAssign(remainder, lhs, parts);
2792 tcSet(lhs, 0, parts);
2793
2794 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2795 the total. */
Dan Gohman16e02092010-03-24 19:38:02 +00002796 for (;;) {
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002797 int compare;
2798
2799 compare = tcCompare(remainder, srhs, parts);
2800 if (compare >= 0) {
2801 tcSubtract(remainder, srhs, 0, parts);
2802 lhs[n] |= mask;
2803 }
2804
2805 if (shiftCount == 0)
2806 break;
2807 shiftCount--;
2808 tcShiftRight(srhs, parts, 1);
2809 if ((mask >>= 1) == 0)
2810 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2811 }
2812
2813 return false;
2814}
2815
2816/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2817 There are no restrictions on COUNT. */
2818void
2819APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2820{
Neil Booth68e53ad2007-10-08 13:47:12 +00002821 if (count) {
2822 unsigned int jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002823
Neil Booth68e53ad2007-10-08 13:47:12 +00002824 /* Jump is the inter-part jump; shift is is intra-part shift. */
2825 jump = count / integerPartWidth;
2826 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002827
Neil Booth68e53ad2007-10-08 13:47:12 +00002828 while (parts > jump) {
2829 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002830
Neil Booth68e53ad2007-10-08 13:47:12 +00002831 parts--;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002832
Neil Booth68e53ad2007-10-08 13:47:12 +00002833 /* dst[i] comes from the two parts src[i - jump] and, if we have
2834 an intra-part shift, src[i - jump - 1]. */
2835 part = dst[parts - jump];
2836 if (shift) {
2837 part <<= shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002838 if (parts >= jump + 1)
2839 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2840 }
2841
Neil Booth68e53ad2007-10-08 13:47:12 +00002842 dst[parts] = part;
2843 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002844
Neil Booth68e53ad2007-10-08 13:47:12 +00002845 while (parts > 0)
2846 dst[--parts] = 0;
2847 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002848}
2849
2850/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2851 zero. There are no restrictions on COUNT. */
2852void
2853APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2854{
Neil Booth68e53ad2007-10-08 13:47:12 +00002855 if (count) {
2856 unsigned int i, jump, shift;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002857
Neil Booth68e53ad2007-10-08 13:47:12 +00002858 /* Jump is the inter-part jump; shift is is intra-part shift. */
2859 jump = count / integerPartWidth;
2860 shift = count % integerPartWidth;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002861
Neil Booth68e53ad2007-10-08 13:47:12 +00002862 /* Perform the shift. This leaves the most significant COUNT bits
2863 of the result at zero. */
Dan Gohman16e02092010-03-24 19:38:02 +00002864 for (i = 0; i < parts; i++) {
Neil Booth68e53ad2007-10-08 13:47:12 +00002865 integerPart part;
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002866
Neil Booth68e53ad2007-10-08 13:47:12 +00002867 if (i + jump >= parts) {
2868 part = 0;
2869 } else {
2870 part = dst[i + jump];
2871 if (shift) {
2872 part >>= shift;
2873 if (i + jump + 1 < parts)
2874 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2875 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002876 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002877
Neil Booth68e53ad2007-10-08 13:47:12 +00002878 dst[i] = part;
2879 }
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002880 }
2881}
2882
2883/* Bitwise and of two bignums. */
2884void
2885APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2886{
2887 unsigned int i;
2888
Dan Gohman16e02092010-03-24 19:38:02 +00002889 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002890 dst[i] &= rhs[i];
2891}
2892
2893/* Bitwise inclusive or of two bignums. */
2894void
2895APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2896{
2897 unsigned int i;
2898
Dan Gohman16e02092010-03-24 19:38:02 +00002899 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002900 dst[i] |= rhs[i];
2901}
2902
2903/* Bitwise exclusive or of two bignums. */
2904void
2905APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2906{
2907 unsigned int i;
2908
Dan Gohman16e02092010-03-24 19:38:02 +00002909 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002910 dst[i] ^= rhs[i];
2911}
2912
2913/* Complement a bignum in-place. */
2914void
2915APInt::tcComplement(integerPart *dst, unsigned int parts)
2916{
2917 unsigned int i;
2918
Dan Gohman16e02092010-03-24 19:38:02 +00002919 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002920 dst[i] = ~dst[i];
2921}
2922
2923/* Comparison (unsigned) of two bignums. */
2924int
2925APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2926 unsigned int parts)
2927{
2928 while (parts) {
2929 parts--;
2930 if (lhs[parts] == rhs[parts])
2931 continue;
2932
2933 if (lhs[parts] > rhs[parts])
2934 return 1;
2935 else
2936 return -1;
2937 }
2938
2939 return 0;
2940}
2941
2942/* Increment a bignum in-place, return the carry flag. */
2943integerPart
2944APInt::tcIncrement(integerPart *dst, unsigned int parts)
2945{
2946 unsigned int i;
2947
Dan Gohman16e02092010-03-24 19:38:02 +00002948 for (i = 0; i < parts; i++)
Chris Lattnerfe8e14a2007-08-16 15:56:55 +00002949 if (++dst[i] != 0)
2950 break;
2951
2952 return i == parts;
2953}
2954
2955/* Set the least significant BITS bits of a bignum, clear the
2956 rest. */
2957void
2958APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2959 unsigned int bits)
2960{
2961 unsigned int i;
2962
2963 i = 0;
2964 while (bits > integerPartWidth) {
2965 dst[i++] = ~(integerPart) 0;
2966 bits -= integerPartWidth;
2967 }
2968
2969 if (bits)
2970 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2971
2972 while (i < parts)
2973 dst[i++] = 0;
2974}