blob: e0e641e1ac9fcc85e8a76182fbf0c3308d5011bf [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
John Criswellb576c942003-10-20 19:43:21 +00002//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Chris Lattner72614082002-10-25 22:55:53 +00009//
Chris Lattner3e130a22003-01-13 00:32:26 +000010// This file defines a simple peephole instruction selector for the x86 target
Chris Lattner72614082002-10-25 22:55:53 +000011//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "X86InstrBuilder.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000016#include "X86InstrInfo.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
Chris Lattner72614082002-10-25 22:55:53 +000019#include "llvm/Function.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000020#include "llvm/Instructions.h"
Chris Lattner44827152003-12-28 09:47:19 +000021#include "llvm/IntrinsicLowering.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000022#include "llvm/Pass.h"
23#include "llvm/CodeGen/MachineConstantPool.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
Chris Lattner341a9372002-10-29 17:43:55 +000025#include "llvm/CodeGen/MachineFunction.h"
Chris Lattner94af4142002-12-25 05:13:53 +000026#include "llvm/CodeGen/SSARegMap.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000027#include "llvm/Target/MRegisterInfo.h"
Misha Brukmanc8893fc2003-10-23 16:22:08 +000028#include "llvm/Target/TargetMachine.h"
Chris Lattner3f1e8e72004-02-22 07:04:00 +000029#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner67580ed2003-05-13 20:21:19 +000030#include "llvm/Support/InstVisitor.h"
Chris Lattner986618e2004-02-22 19:47:26 +000031#include "Support/Statistic.h"
Chris Lattner44827152003-12-28 09:47:19 +000032using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000033
Chris Lattner986618e2004-02-22 19:47:26 +000034namespace {
35 Statistic<>
36 NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
Chris Lattner427aeb42004-04-11 19:21:59 +000037
38 /// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
39 /// Representation.
40 ///
41 enum TypeClass {
42 cByte, cShort, cInt, cFP, cLong
43 };
44}
45
46/// getClass - Turn a primitive type into a "class" number which is based on the
47/// size of the type, and whether or not it is floating point.
48///
49static inline TypeClass getClass(const Type *Ty) {
50 switch (Ty->getPrimitiveID()) {
51 case Type::SByteTyID:
52 case Type::UByteTyID: return cByte; // Byte operands are class #0
53 case Type::ShortTyID:
54 case Type::UShortTyID: return cShort; // Short operands are class #1
55 case Type::IntTyID:
56 case Type::UIntTyID:
57 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
58
59 case Type::FloatTyID:
60 case Type::DoubleTyID: return cFP; // Floating Point is #3
61
62 case Type::LongTyID:
63 case Type::ULongTyID: return cLong; // Longs are class #4
64 default:
65 assert(0 && "Invalid type to getClass!");
66 return cByte; // not reached
67 }
68}
69
70// getClassB - Just like getClass, but treat boolean values as bytes.
71static inline TypeClass getClassB(const Type *Ty) {
72 if (Ty == Type::BoolTy) return cByte;
73 return getClass(Ty);
Chris Lattner986618e2004-02-22 19:47:26 +000074}
Chris Lattnercf93cdd2004-01-30 22:13:44 +000075
Chris Lattner72614082002-10-25 22:55:53 +000076namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000077 struct ISel : public FunctionPass, InstVisitor<ISel> {
78 TargetMachine &TM;
Chris Lattnereca195e2003-05-08 19:44:13 +000079 MachineFunction *F; // The function we are compiling into
80 MachineBasicBlock *BB; // The current MBB we are compiling
81 int VarArgsFrameIndex; // FrameIndex for start of varargs area
Chris Lattner0e5b79c2004-02-15 01:04:03 +000082 int ReturnAddressIndex; // FrameIndex for the return address
Chris Lattner72614082002-10-25 22:55:53 +000083
Chris Lattner72614082002-10-25 22:55:53 +000084 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
85
Chris Lattner333b2fa2002-12-13 10:09:43 +000086 // MBBMap - Mapping between LLVM BB -> Machine BB
87 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
88
Chris Lattnercb2fd552004-05-13 07:40:27 +000089 // AllocaMap - Mapping from fixed sized alloca instructions to the
90 // FrameIndex for the alloca.
91 std::map<AllocaInst*, unsigned> AllocaMap;
92
Chris Lattnerf70e0c22003-12-28 21:23:38 +000093 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
Chris Lattner72614082002-10-25 22:55:53 +000094
95 /// runOnFunction - Top level implementation of instruction selection for
96 /// the entire function.
97 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000098 bool runOnFunction(Function &Fn) {
Chris Lattner44827152003-12-28 09:47:19 +000099 // First pass over the function, lower any unknown intrinsic functions
100 // with the IntrinsicLowering class.
101 LowerUnknownIntrinsicFunctionCalls(Fn);
102
Chris Lattner36b36032002-10-29 23:40:58 +0000103 F = &MachineFunction::construct(&Fn, TM);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000104
Chris Lattner065faeb2002-12-28 20:24:02 +0000105 // Create all of the machine basic blocks for the function...
Chris Lattner333b2fa2002-12-13 10:09:43 +0000106 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
107 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
108
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000109 BB = &F->front();
Chris Lattnerdbd73722003-05-06 21:32:22 +0000110
Chris Lattner0e5b79c2004-02-15 01:04:03 +0000111 // Set up a frame object for the return address. This is used by the
112 // llvm.returnaddress & llvm.frameaddress intrinisics.
113 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
114
Chris Lattnerdbd73722003-05-06 21:32:22 +0000115 // Copy incoming arguments off of the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000116 LoadArgumentsToVirtualRegs(Fn);
Chris Lattner14aa7fe2002-12-16 22:54:46 +0000117
Chris Lattner333b2fa2002-12-13 10:09:43 +0000118 // Instruction select everything except PHI nodes
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000119 visit(Fn);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000120
121 // Select the PHI nodes
122 SelectPHINodes();
123
Chris Lattner986618e2004-02-22 19:47:26 +0000124 // Insert the FP_REG_KILL instructions into blocks that need them.
125 InsertFPRegKills();
126
Chris Lattner72614082002-10-25 22:55:53 +0000127 RegMap.clear();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000128 MBBMap.clear();
Chris Lattnercb2fd552004-05-13 07:40:27 +0000129 AllocaMap.clear();
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000130 F = 0;
Chris Lattner2a865b02003-07-26 23:05:37 +0000131 // We always build a machine code representation for the function
132 return true;
Chris Lattner72614082002-10-25 22:55:53 +0000133 }
134
Chris Lattnerf0eb7be2002-12-15 21:13:40 +0000135 virtual const char *getPassName() const {
136 return "X86 Simple Instruction Selection";
137 }
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +0000140 /// block. This simply creates a new MachineBasicBlock to emit code into
141 /// and adds it to the current MachineFunction. Subsequent visit* for
142 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +0000143 ///
144 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner333b2fa2002-12-13 10:09:43 +0000145 BB = MBBMap[&LLVM_BB];
Chris Lattner72614082002-10-25 22:55:53 +0000146 }
147
Chris Lattner44827152003-12-28 09:47:19 +0000148 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
149 /// function, lowering any calls to unknown intrinsic functions into the
150 /// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +0000151 ///
Chris Lattner44827152003-12-28 09:47:19 +0000152 void LowerUnknownIntrinsicFunctionCalls(Function &F);
153
Chris Lattner065faeb2002-12-28 20:24:02 +0000154 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
155 /// from the stack into virtual registers.
156 ///
157 void LoadArgumentsToVirtualRegs(Function &F);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000158
159 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
160 /// because we have to generate our sources into the source basic blocks,
161 /// not the current one.
162 ///
163 void SelectPHINodes();
164
Chris Lattner986618e2004-02-22 19:47:26 +0000165 /// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
166 /// that need them. This only occurs due to the floating point stackifier
167 /// not being aggressive enough to handle arbitrary global stackification.
168 ///
169 void InsertFPRegKills();
170
Chris Lattner72614082002-10-25 22:55:53 +0000171 // Visitation methods for various instructions. These methods simply emit
172 // fixed X86 code for each instruction.
173 //
Brian Gaekefa8d5712002-11-22 11:07:01 +0000174
175 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +0000176 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +0000177 void visitBranchInst(BranchInst &BI);
Chris Lattner3e130a22003-01-13 00:32:26 +0000178
179 struct ValueRecord {
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000180 Value *Val;
Chris Lattner3e130a22003-01-13 00:32:26 +0000181 unsigned Reg;
182 const Type *Ty;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +0000183 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
184 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
Chris Lattner3e130a22003-01-13 00:32:26 +0000185 };
186 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000187 const std::vector<ValueRecord> &Args);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000188 void visitCallInst(CallInst &I);
Brian Gaeked0fde302003-11-11 22:41:34 +0000189 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000190
191 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +0000192 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +0000193 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
194 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +0000195 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +0000196
Chris Lattnerf01729e2002-11-02 20:54:46 +0000197 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
198 void visitRem(BinaryOperator &B) { visitDivRem(B); }
199 void visitDivRem(BinaryOperator &B);
200
Chris Lattnere2954c82002-11-02 20:04:26 +0000201 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +0000202 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
203 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
204 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +0000205
Chris Lattner6d40c192003-01-16 16:43:00 +0000206 // Comparison operators...
207 void visitSetCondInst(SetCondInst &I);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000208 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
209 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000210 MachineBasicBlock::iterator MBBI);
Chris Lattner12d96a02004-03-30 21:22:00 +0000211 void visitSelectInst(SelectInst &SI);
212
Chris Lattnerb2acc512003-10-19 21:09:10 +0000213
Chris Lattner6fc3c522002-11-17 21:11:55 +0000214 // Memory Instructions
215 void visitLoadInst(LoadInst &I);
216 void visitStoreInst(StoreInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000217 void visitGetElementPtrInst(GetElementPtrInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000218 void visitAllocaInst(AllocaInst &I);
Chris Lattner3e130a22003-01-13 00:32:26 +0000219 void visitMallocInst(MallocInst &I);
220 void visitFreeInst(FreeInst &I);
Brian Gaeke20244b72002-12-12 15:33:40 +0000221
Chris Lattnere2954c82002-11-02 20:04:26 +0000222 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000223 void visitShiftInst(ShiftInst &I);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000224 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
Brian Gaekefa8d5712002-11-22 11:07:01 +0000225 void visitCastInst(CastInst &I);
Chris Lattner73815062003-10-18 05:56:40 +0000226 void visitVANextInst(VANextInst &I);
227 void visitVAArgInst(VAArgInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000228
229 void visitInstruction(Instruction &I) {
230 std::cerr << "Cannot instruction select: " << I;
231 abort();
232 }
233
Brian Gaeke95780cc2002-12-13 07:56:18 +0000234 /// promote32 - Make a value 32-bits wide, and put it somewhere.
Chris Lattner3e130a22003-01-13 00:32:26 +0000235 ///
236 void promote32(unsigned targetReg, const ValueRecord &VR);
237
Chris Lattner721d2d42004-03-08 01:18:36 +0000238 /// getAddressingMode - Get the addressing mode to use to address the
239 /// specified value. The returned value should be used with addFullAddress.
240 void getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
241 unsigned &IndexReg, unsigned &Disp);
242
243
244 /// getGEPIndex - This is used to fold GEP instructions into X86 addressing
245 /// expressions.
Chris Lattnerb6bac512004-02-25 06:13:04 +0000246 void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
247 std::vector<Value*> &GEPOps,
248 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
249 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
250
251 /// isGEPFoldable - Return true if the specified GEP can be completely
252 /// folded into the addressing mode of a load/store or lea instruction.
253 bool isGEPFoldable(MachineBasicBlock *MBB,
254 Value *Src, User::op_iterator IdxBegin,
255 User::op_iterator IdxEnd, unsigned &BaseReg,
256 unsigned &Scale, unsigned &IndexReg, unsigned &Disp);
257
Chris Lattner3e130a22003-01-13 00:32:26 +0000258 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
259 /// constant expression GEP support.
260 ///
Chris Lattner827832c2004-02-22 17:05:38 +0000261 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
Chris Lattner333b2fa2002-12-13 10:09:43 +0000262 Value *Src, User::op_iterator IdxBegin,
Chris Lattnerc0812d82002-12-13 06:56:29 +0000263 User::op_iterator IdxEnd, unsigned TargetReg);
264
Chris Lattner548f61d2003-04-23 17:22:12 +0000265 /// emitCastOperation - Common code shared between visitCastInst and
266 /// constant expression cast support.
Misha Brukman538607f2004-03-01 23:53:11 +0000267 ///
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000268 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +0000269 Value *Src, const Type *DestTy, unsigned TargetReg);
270
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000271 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
272 /// and constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000273 ///
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000274 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000275 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000276 Value *Op0, Value *Op1,
277 unsigned OperatorClass, unsigned TargetReg);
278
Chris Lattner6621ed92004-04-11 21:23:56 +0000279 /// emitBinaryFPOperation - This method handles emission of floating point
280 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
281 void emitBinaryFPOperation(MachineBasicBlock *BB,
282 MachineBasicBlock::iterator IP,
283 Value *Op0, Value *Op1,
284 unsigned OperatorClass, unsigned TargetReg);
285
Chris Lattner462fa822004-04-11 20:56:28 +0000286 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
287 Value *Op0, Value *Op1, unsigned TargetReg);
288
289 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
290 unsigned DestReg, const Type *DestTy,
291 unsigned Op0Reg, unsigned Op1Reg);
292 void doMultiplyConst(MachineBasicBlock *MBB,
293 MachineBasicBlock::iterator MBBI,
294 unsigned DestReg, const Type *DestTy,
295 unsigned Op0Reg, unsigned Op1Val);
296
Chris Lattnercadff442003-10-23 17:21:43 +0000297 void emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000298 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +0000299 Value *Op0, Value *Op1, bool isDiv,
300 unsigned TargetReg);
Chris Lattnercadff442003-10-23 17:21:43 +0000301
Chris Lattner58c41fe2003-08-24 19:19:47 +0000302 /// emitSetCCOperation - Common code shared between visitSetCondInst and
303 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000304 ///
Chris Lattner58c41fe2003-08-24 19:19:47 +0000305 void emitSetCCOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000306 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +0000307 Value *Op0, Value *Op1, unsigned Opcode,
308 unsigned TargetReg);
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000309
310 /// emitShiftOperation - Common code shared between visitShiftInst and
311 /// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +0000312 ///
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000313 void emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000314 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000315 Value *Op, Value *ShiftAmount, bool isLeftShift,
316 const Type *ResultTy, unsigned DestReg);
317
Chris Lattner12d96a02004-03-30 21:22:00 +0000318 /// emitSelectOperation - Common code shared between visitSelectInst and the
319 /// constant expression support.
320 void emitSelectOperation(MachineBasicBlock *MBB,
321 MachineBasicBlock::iterator IP,
322 Value *Cond, Value *TrueVal, Value *FalseVal,
323 unsigned DestReg);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000324
Chris Lattnerc5291f52002-10-27 21:16:59 +0000325 /// copyConstantToRegister - Output the instructions required to put the
326 /// specified constant into the specified register.
327 ///
Chris Lattner8a307e82002-12-16 19:32:50 +0000328 void copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000329 MachineBasicBlock::iterator MBBI,
Chris Lattner8a307e82002-12-16 19:32:50 +0000330 Constant *C, unsigned Reg);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000331
Chris Lattner3e130a22003-01-13 00:32:26 +0000332 /// makeAnotherReg - This method returns the next register number we haven't
333 /// yet used.
334 ///
335 /// Long values are handled somewhat specially. They are always allocated
336 /// as pairs of 32 bit integer values. The register number returned is the
337 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
338 /// of the long value.
339 ///
Chris Lattnerc0812d82002-12-13 06:56:29 +0000340 unsigned makeAnotherReg(const Type *Ty) {
Chris Lattner7db1fa92003-07-30 05:33:48 +0000341 assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
342 "Current target doesn't have X86 reg info??");
343 const X86RegisterInfo *MRI =
344 static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
Chris Lattner3e130a22003-01-13 00:32:26 +0000345 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000346 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
347 // Create the lower part
348 F->getSSARegMap()->createVirtualRegister(RC);
349 // Create the upper part.
350 return F->getSSARegMap()->createVirtualRegister(RC)-1;
Chris Lattner3e130a22003-01-13 00:32:26 +0000351 }
352
Chris Lattnerc0812d82002-12-13 06:56:29 +0000353 // Add the mapping of regnumber => reg class to MachineFunction
Chris Lattner7db1fa92003-07-30 05:33:48 +0000354 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
Chris Lattner3e130a22003-01-13 00:32:26 +0000355 return F->getSSARegMap()->createVirtualRegister(RC);
Brian Gaeke20244b72002-12-12 15:33:40 +0000356 }
357
Chris Lattnercb2fd552004-05-13 07:40:27 +0000358 /// getReg - This method turns an LLVM value into a register number.
Chris Lattner72614082002-10-25 22:55:53 +0000359 ///
360 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000361 unsigned getReg(Value *V) {
362 // Just append to the end of the current bb.
363 MachineBasicBlock::iterator It = BB->end();
364 return getReg(V, BB, It);
365 }
Brian Gaeke71794c02002-12-13 11:22:48 +0000366 unsigned getReg(Value *V, MachineBasicBlock *MBB,
Chris Lattnercb2fd552004-05-13 07:40:27 +0000367 MachineBasicBlock::iterator IPt);
Chris Lattner427aeb42004-04-11 19:21:59 +0000368
Chris Lattnercb2fd552004-05-13 07:40:27 +0000369 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
370 /// that is to be statically allocated with the initial stack frame
371 /// adjustment.
372 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
Chris Lattner72614082002-10-25 22:55:53 +0000373 };
374}
375
Chris Lattnercb2fd552004-05-13 07:40:27 +0000376/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
377/// instruction in the entry block, return it. Otherwise, return a null
378/// pointer.
379static AllocaInst *dyn_castFixedAlloca(Value *V) {
380 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
381 BasicBlock *BB = AI->getParent();
382 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
383 return AI;
384 }
385 return 0;
386}
387
388/// getReg - This method turns an LLVM value into a register number.
389///
390unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
391 MachineBasicBlock::iterator IPt) {
392 // If this operand is a constant, emit the code to copy the constant into
393 // the register here...
394 //
395 if (Constant *C = dyn_cast<Constant>(V)) {
396 unsigned Reg = makeAnotherReg(V->getType());
397 copyConstantToRegister(MBB, IPt, C, Reg);
398 return Reg;
399 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
400 unsigned Reg = makeAnotherReg(V->getType());
401 // Move the address of the global into the register
402 BuildMI(*MBB, IPt, X86::MOV32ri, 1, Reg).addGlobalAddress(GV);
403 return Reg;
404 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
405 // Do not emit noop casts at all.
406 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
407 return getReg(CI->getOperand(0), MBB, IPt);
408 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
409 // If the alloca address couldn't be folded into the instruction addressing,
410 // emit an explicit LEA as appropriate.
411 unsigned Reg = makeAnotherReg(V->getType());
412 unsigned FI = getFixedSizedAllocaFI(AI);
413 addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
414 return Reg;
415 }
416
417 unsigned &Reg = RegMap[V];
418 if (Reg == 0) {
419 Reg = makeAnotherReg(V->getType());
420 RegMap[V] = Reg;
421 }
422
423 return Reg;
424}
425
426/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
427/// that is to be statically allocated with the initial stack frame
428/// adjustment.
429unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
430 // Already computed this?
431 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
432 if (I != AllocaMap.end() && I->first == AI) return I->second;
433
434 const Type *Ty = AI->getAllocatedType();
435 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
436 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
437 TySize *= CUI->getValue(); // Get total allocated size...
438 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
439
440 // Create a new stack object using the frame manager...
441 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
442 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
443 return FrameIdx;
444}
445
446
Chris Lattnerc5291f52002-10-27 21:16:59 +0000447/// copyConstantToRegister - Output the instructions required to put the
448/// specified constant into the specified register.
449///
Chris Lattner8a307e82002-12-16 19:32:50 +0000450void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000451 MachineBasicBlock::iterator IP,
Chris Lattner8a307e82002-12-16 19:32:50 +0000452 Constant *C, unsigned R) {
Chris Lattnerc0812d82002-12-13 06:56:29 +0000453 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000454 unsigned Class = 0;
455 switch (CE->getOpcode()) {
456 case Instruction::GetElementPtr:
Brian Gaeke68b1edc2002-12-16 04:23:29 +0000457 emitGEPOperation(MBB, IP, CE->getOperand(0),
Chris Lattner333b2fa2002-12-13 10:09:43 +0000458 CE->op_begin()+1, CE->op_end(), R);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000459 return;
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000460 case Instruction::Cast:
Chris Lattner548f61d2003-04-23 17:22:12 +0000461 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
Chris Lattner4b12cde2003-04-21 21:33:44 +0000462 return;
Chris Lattnerc0812d82002-12-13 06:56:29 +0000463
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000464 case Instruction::Xor: ++Class; // FALL THROUGH
465 case Instruction::Or: ++Class; // FALL THROUGH
466 case Instruction::And: ++Class; // FALL THROUGH
467 case Instruction::Sub: ++Class; // FALL THROUGH
468 case Instruction::Add:
469 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
470 Class, R);
471 return;
472
Chris Lattner462fa822004-04-11 20:56:28 +0000473 case Instruction::Mul:
474 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
Chris Lattnercadff442003-10-23 17:21:43 +0000475 return;
Chris Lattner462fa822004-04-11 20:56:28 +0000476
Chris Lattnercadff442003-10-23 17:21:43 +0000477 case Instruction::Div:
Chris Lattner462fa822004-04-11 20:56:28 +0000478 case Instruction::Rem:
479 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
480 CE->getOpcode() == Instruction::Div, R);
Chris Lattnercadff442003-10-23 17:21:43 +0000481 return;
Chris Lattnercadff442003-10-23 17:21:43 +0000482
Chris Lattner58c41fe2003-08-24 19:19:47 +0000483 case Instruction::SetNE:
484 case Instruction::SetEQ:
485 case Instruction::SetLT:
486 case Instruction::SetGT:
487 case Instruction::SetLE:
488 case Instruction::SetGE:
489 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
490 CE->getOpcode(), R);
491 return;
492
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000493 case Instruction::Shl:
494 case Instruction::Shr:
495 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
Brian Gaekedfcc9cf2003-11-22 06:49:41 +0000496 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
497 return;
Brian Gaeke2dd3e1b2003-11-22 05:18:35 +0000498
Chris Lattner12d96a02004-03-30 21:22:00 +0000499 case Instruction::Select:
500 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
501 CE->getOperand(2), R);
502 return;
503
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000504 default:
505 std::cerr << "Offending expr: " << C << "\n";
Chris Lattnerb2acc512003-10-19 21:09:10 +0000506 assert(0 && "Constant expression not yet handled!\n");
Chris Lattnerb515f6d2003-05-08 20:49:25 +0000507 }
Brian Gaeke20244b72002-12-12 15:33:40 +0000508 }
Chris Lattnerc5291f52002-10-27 21:16:59 +0000509
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000510 if (C->getType()->isIntegral()) {
Chris Lattner6b993cc2002-12-15 08:02:15 +0000511 unsigned Class = getClassB(C->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +0000512
513 if (Class == cLong) {
514 // Copy the value into the register pair.
Chris Lattnerc07736a2003-07-23 15:22:26 +0000515 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000516 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
517 BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
Chris Lattner3e130a22003-01-13 00:32:26 +0000518 return;
519 }
520
Chris Lattner94af4142002-12-25 05:13:53 +0000521 assert(Class <= cInt && "Type not handled yet!");
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000522
523 static const unsigned IntegralOpcodeTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000524 X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000525 };
526
Chris Lattner6b993cc2002-12-15 08:02:15 +0000527 if (C->getType() == Type::BoolTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000528 BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000529 } else {
Chris Lattnerc07736a2003-07-23 15:22:26 +0000530 ConstantInt *CI = cast<ConstantInt>(C);
Chris Lattneree352852004-02-29 07:22:16 +0000531 BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000532 }
Chris Lattner94af4142002-12-25 05:13:53 +0000533 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Chris Lattneraf703622004-02-02 18:56:30 +0000534 if (CFP->isExactlyValue(+0.0))
Chris Lattneree352852004-02-29 07:22:16 +0000535 BuildMI(*MBB, IP, X86::FLD0, 0, R);
Chris Lattneraf703622004-02-02 18:56:30 +0000536 else if (CFP->isExactlyValue(+1.0))
Chris Lattneree352852004-02-29 07:22:16 +0000537 BuildMI(*MBB, IP, X86::FLD1, 0, R);
Chris Lattner94af4142002-12-25 05:13:53 +0000538 else {
Chris Lattner3e130a22003-01-13 00:32:26 +0000539 // Otherwise we need to spill the constant to memory...
540 MachineConstantPool *CP = F->getConstantPool();
541 unsigned CPI = CP->getConstantPoolIndex(CFP);
Chris Lattner6c09db22003-10-20 04:11:23 +0000542 const Type *Ty = CFP->getType();
543
544 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000545 unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
Chris Lattneree352852004-02-29 07:22:16 +0000546 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
Chris Lattner94af4142002-12-25 05:13:53 +0000547 }
548
Chris Lattnerf08ad9f2002-12-13 10:50:40 +0000549 } else if (isa<ConstantPointerNull>(C)) {
Brian Gaeke20244b72002-12-12 15:33:40 +0000550 // Copy zero (null pointer) to the register.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000551 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
Chris Lattnerc0812d82002-12-13 06:56:29 +0000552 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000553 BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(CPR->getValue());
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000554 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +0000555 std::cerr << "Offending constant: " << C << "\n";
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000556 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000557 }
558}
559
Chris Lattner065faeb2002-12-28 20:24:02 +0000560/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
561/// the stack into virtual registers.
562///
563void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
564 // Emit instructions to load the arguments... On entry to a function on the
565 // X86, the stack frame looks like this:
566 //
567 // [ESP] -- return address
Chris Lattner3e130a22003-01-13 00:32:26 +0000568 // [ESP + 4] -- first argument (leftmost lexically)
569 // [ESP + 8] -- second argument, if first argument is four bytes in size
Chris Lattner065faeb2002-12-28 20:24:02 +0000570 // ...
571 //
Chris Lattnerf158da22003-01-16 02:20:12 +0000572 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
Chris Lattneraa09b752002-12-28 21:08:28 +0000573 MachineFrameInfo *MFI = F->getFrameInfo();
Chris Lattner065faeb2002-12-28 20:24:02 +0000574
575 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
Chris Lattner427aeb42004-04-11 19:21:59 +0000576 bool ArgLive = !I->use_empty();
577 unsigned Reg = ArgLive ? getReg(*I) : 0;
Chris Lattner065faeb2002-12-28 20:24:02 +0000578 int FI; // Frame object index
Chris Lattner427aeb42004-04-11 19:21:59 +0000579
Chris Lattner065faeb2002-12-28 20:24:02 +0000580 switch (getClassB(I->getType())) {
581 case cByte:
Chris Lattner427aeb42004-04-11 19:21:59 +0000582 if (ArgLive) {
583 FI = MFI->CreateFixedObject(1, ArgOffset);
584 addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
585 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000586 break;
587 case cShort:
Chris Lattner427aeb42004-04-11 19:21:59 +0000588 if (ArgLive) {
589 FI = MFI->CreateFixedObject(2, ArgOffset);
590 addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
591 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000592 break;
593 case cInt:
Chris Lattner427aeb42004-04-11 19:21:59 +0000594 if (ArgLive) {
595 FI = MFI->CreateFixedObject(4, ArgOffset);
596 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
597 }
Chris Lattner065faeb2002-12-28 20:24:02 +0000598 break;
Chris Lattner3e130a22003-01-13 00:32:26 +0000599 case cLong:
Chris Lattner427aeb42004-04-11 19:21:59 +0000600 if (ArgLive) {
601 FI = MFI->CreateFixedObject(8, ArgOffset);
602 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
603 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
604 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000605 ArgOffset += 4; // longs require 4 additional bytes
606 break;
Chris Lattner065faeb2002-12-28 20:24:02 +0000607 case cFP:
Chris Lattner427aeb42004-04-11 19:21:59 +0000608 if (ArgLive) {
609 unsigned Opcode;
610 if (I->getType() == Type::FloatTy) {
611 Opcode = X86::FLD32m;
612 FI = MFI->CreateFixedObject(4, ArgOffset);
613 } else {
614 Opcode = X86::FLD64m;
615 FI = MFI->CreateFixedObject(8, ArgOffset);
616 }
617 addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
Chris Lattner065faeb2002-12-28 20:24:02 +0000618 }
Chris Lattner427aeb42004-04-11 19:21:59 +0000619 if (I->getType() == Type::DoubleTy)
620 ArgOffset += 4; // doubles require 4 additional bytes
Chris Lattner065faeb2002-12-28 20:24:02 +0000621 break;
622 default:
623 assert(0 && "Unhandled argument type!");
624 }
Chris Lattner3e130a22003-01-13 00:32:26 +0000625 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Chris Lattner065faeb2002-12-28 20:24:02 +0000626 }
Chris Lattnereca195e2003-05-08 19:44:13 +0000627
628 // If the function takes variable number of arguments, add a frame offset for
629 // the start of the first vararg value... this is used to expand
630 // llvm.va_start.
631 if (Fn.getFunctionType()->isVarArg())
632 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
Chris Lattner065faeb2002-12-28 20:24:02 +0000633}
634
635
Chris Lattner333b2fa2002-12-13 10:09:43 +0000636/// SelectPHINodes - Insert machine code to generate phis. This is tricky
637/// because we have to generate our sources into the source basic blocks, not
638/// the current one.
639///
640void ISel::SelectPHINodes() {
Chris Lattner3501fea2003-01-14 22:00:31 +0000641 const TargetInstrInfo &TII = TM.getInstrInfo();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000642 const Function &LF = *F->getFunction(); // The LLVM function...
643 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
644 const BasicBlock *BB = I;
Chris Lattner168aa902004-02-29 07:10:16 +0000645 MachineBasicBlock &MBB = *MBBMap[I];
Chris Lattner333b2fa2002-12-13 10:09:43 +0000646
647 // Loop over all of the PHI nodes in the LLVM basic block...
Chris Lattner168aa902004-02-29 07:10:16 +0000648 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
Chris Lattner333b2fa2002-12-13 10:09:43 +0000649 for (BasicBlock::const_iterator I = BB->begin();
Chris Lattnera81fc682003-10-19 00:26:11 +0000650 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
Chris Lattner3e130a22003-01-13 00:32:26 +0000651
Chris Lattner333b2fa2002-12-13 10:09:43 +0000652 // Create a new machine instr PHI node, and insert it.
Chris Lattner3e130a22003-01-13 00:32:26 +0000653 unsigned PHIReg = getReg(*PN);
Chris Lattner168aa902004-02-29 07:10:16 +0000654 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
655 X86::PHI, PN->getNumOperands(), PHIReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000656
657 MachineInstr *LongPhiMI = 0;
Chris Lattner168aa902004-02-29 07:10:16 +0000658 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
659 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
660 X86::PHI, PN->getNumOperands(), PHIReg+1);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000661
Chris Lattnera6e73f12003-05-12 14:22:21 +0000662 // PHIValues - Map of blocks to incoming virtual registers. We use this
663 // so that we only initialize one incoming value for a particular block,
664 // even if the block has multiple entries in the PHI node.
665 //
666 std::map<MachineBasicBlock*, unsigned> PHIValues;
667
Chris Lattner333b2fa2002-12-13 10:09:43 +0000668 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
669 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
Chris Lattnera6e73f12003-05-12 14:22:21 +0000670 unsigned ValReg;
671 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
672 PHIValues.lower_bound(PredMBB);
Chris Lattner333b2fa2002-12-13 10:09:43 +0000673
Chris Lattnera6e73f12003-05-12 14:22:21 +0000674 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
675 // We already inserted an initialization of the register for this
676 // predecessor. Recycle it.
677 ValReg = EntryIt->second;
678
679 } else {
Chris Lattnera81fc682003-10-19 00:26:11 +0000680 // Get the incoming value into a virtual register.
Chris Lattnera6e73f12003-05-12 14:22:21 +0000681 //
Chris Lattnera81fc682003-10-19 00:26:11 +0000682 Value *Val = PN->getIncomingValue(i);
683
684 // If this is a constant or GlobalValue, we may have to insert code
685 // into the basic block to compute it into a virtual register.
Chris Lattnercb2fd552004-05-13 07:40:27 +0000686 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
687 isa<GlobalValue>(Val)) {
688 // Simple constants get emitted at the end of the basic block,
689 // before any terminator instructions. We "know" that the code to
690 // move a constant into a register will never clobber any flags.
691 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
Chris Lattnera81fc682003-10-19 00:26:11 +0000692 } else {
Chris Lattnercb2fd552004-05-13 07:40:27 +0000693 // Because we don't want to clobber any values which might be in
694 // physical registers with the computation of this constant (which
695 // might be arbitrarily complex if it is a constant expression),
696 // just insert the computation at the top of the basic block.
697 MachineBasicBlock::iterator PI = PredMBB->begin();
698
699 // Skip over any PHI nodes though!
700 while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
701 ++PI;
702
703 ValReg = getReg(Val, PredMBB, PI);
Chris Lattnera81fc682003-10-19 00:26:11 +0000704 }
Chris Lattnera6e73f12003-05-12 14:22:21 +0000705
706 // Remember that we inserted a value for this PHI for this predecessor
707 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
708 }
709
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000710 PhiMI->addRegOperand(ValReg);
Chris Lattner3e130a22003-01-13 00:32:26 +0000711 PhiMI->addMachineBasicBlockOperand(PredMBB);
Misha Brukmanc8893fc2003-10-23 16:22:08 +0000712 if (LongPhiMI) {
713 LongPhiMI->addRegOperand(ValReg+1);
714 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
715 }
Chris Lattner333b2fa2002-12-13 10:09:43 +0000716 }
Chris Lattner168aa902004-02-29 07:10:16 +0000717
718 // Now that we emitted all of the incoming values for the PHI node, make
719 // sure to reposition the InsertPoint after the PHI that we just added.
720 // This is needed because we might have inserted a constant into this
721 // block, right after the PHI's which is before the old insert point!
722 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
723 ++PHIInsertPoint;
Chris Lattner333b2fa2002-12-13 10:09:43 +0000724 }
725 }
726}
727
Chris Lattner986618e2004-02-22 19:47:26 +0000728/// RequiresFPRegKill - The floating point stackifier pass cannot insert
729/// compensation code on critical edges. As such, it requires that we kill all
730/// FP registers on the exit from any blocks that either ARE critical edges, or
731/// branch to a block that has incoming critical edges.
732///
733/// Note that this kill instruction will eventually be eliminated when
734/// restrictions in the stackifier are relaxed.
735///
Brian Gaeke1afe7732004-04-28 04:45:55 +0000736static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000737#if 0
Brian Gaeke1afe7732004-04-28 04:45:55 +0000738 const BasicBlock *BB = MBB->getBasicBlock ();
Chris Lattner986618e2004-02-22 19:47:26 +0000739 for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
740 const BasicBlock *Succ = *SI;
741 pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
742 ++PI; // Block have at least one predecessory
743 if (PI != PE) { // If it has exactly one, this isn't crit edge
744 // If this block has more than one predecessor, check all of the
745 // predecessors to see if they have multiple successors. If so, then the
746 // block we are analyzing needs an FPRegKill.
747 for (PI = pred_begin(Succ); PI != PE; ++PI) {
748 const BasicBlock *Pred = *PI;
749 succ_const_iterator SI2 = succ_begin(Pred);
750 ++SI2; // There must be at least one successor of this block.
751 if (SI2 != succ_end(Pred))
752 return true; // Yes, we must insert the kill on this edge.
753 }
754 }
755 }
756 // If we got this far, there is no need to insert the kill instruction.
757 return false;
758#else
759 return true;
760#endif
761}
762
763// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
764// need them. This only occurs due to the floating point stackifier not being
765// aggressive enough to handle arbitrary global stackification.
766//
767// Currently we insert an FP_REG_KILL instruction into each block that uses or
768// defines a floating point virtual register.
769//
770// When the global register allocators (like linear scan) finally update live
771// variable analysis, we can keep floating point values in registers across
772// portions of the CFG that do not involve critical edges. This will be a big
773// win, but we are waiting on the global allocators before we can do this.
774//
775// With a bit of work, the floating point stackifier pass can be enhanced to
776// break critical edges as needed (to make a place to put compensation code),
777// but this will require some infrastructure improvements as well.
778//
779void ISel::InsertFPRegKills() {
780 SSARegMap &RegMap = *F->getSSARegMap();
Chris Lattner986618e2004-02-22 19:47:26 +0000781
782 for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
Chris Lattner986618e2004-02-22 19:47:26 +0000783 for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000784 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
785 MachineOperand& MO = I->getOperand(i);
786 if (MO.isRegister() && MO.getReg()) {
787 unsigned Reg = MO.getReg();
Chris Lattner986618e2004-02-22 19:47:26 +0000788 if (MRegisterInfo::isVirtualRegister(Reg))
Chris Lattner65cf42d2004-02-23 07:29:45 +0000789 if (RegMap.getRegClass(Reg)->getSize() == 10)
790 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000791 }
Alkis Evlogimenos71e353e2004-02-26 22:00:20 +0000792 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000793 // If we haven't found an FP register use or def in this basic block, check
794 // to see if any of our successors has an FP PHI node, which will cause a
795 // copy to be inserted into this block.
Brian Gaeke235aa5e2004-04-28 04:34:16 +0000796 for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
797 SE = BB->succ_end(); SI != SE; ++SI) {
798 MachineBasicBlock *SBB = *SI;
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000799 for (MachineBasicBlock::iterator I = SBB->begin();
800 I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
801 if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
802 goto UsesFPReg;
Chris Lattner986618e2004-02-22 19:47:26 +0000803 }
Chris Lattnerfbc39d52004-02-23 07:42:19 +0000804 }
Chris Lattner65cf42d2004-02-23 07:29:45 +0000805 continue;
806 UsesFPReg:
807 // Okay, this block uses an FP register. If the block has successors (ie,
808 // it's not an unwind/return), insert the FP_REG_KILL instruction.
Brian Gaeke1afe7732004-04-28 04:45:55 +0000809 if (BB->succ_size () && RequiresFPRegKill(BB)) {
Chris Lattneree352852004-02-29 07:22:16 +0000810 BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
Chris Lattner65cf42d2004-02-23 07:29:45 +0000811 ++NumFPKill;
Chris Lattner986618e2004-02-22 19:47:26 +0000812 }
813 }
814}
815
816
Chris Lattner9f1b5312004-05-13 15:12:43 +0000817void ISel::getAddressingMode(Value *Addr, unsigned &BaseReg, unsigned &Scale,
818 unsigned &IndexReg, unsigned &Disp) {
819 BaseReg = 0; Scale = 1; IndexReg = 0; Disp = 0;
820 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
821 if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
822 BaseReg, Scale, IndexReg, Disp))
823 return;
824 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
825 if (CE->getOpcode() == Instruction::GetElementPtr)
826 if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
827 BaseReg, Scale, IndexReg, Disp))
828 return;
829 }
830
831 // If it's not foldable, reset addr mode.
832 BaseReg = getReg(Addr);
833 Scale = 1; IndexReg = 0; Disp = 0;
834}
835
Chris Lattner307ecba2004-03-30 22:39:09 +0000836// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
837// it into the conditional branch or select instruction which is the only user
838// of the cc instruction. This is the case if the conditional branch is the
839// only user of the setcc, and if the setcc is in the same basic block as the
840// conditional branch. We also don't handle long arguments below, so we reject
841// them here as well.
Chris Lattner6d40c192003-01-16 16:43:00 +0000842//
Chris Lattner307ecba2004-03-30 22:39:09 +0000843static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
Chris Lattner6d40c192003-01-16 16:43:00 +0000844 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
Chris Lattner307ecba2004-03-30 22:39:09 +0000845 if (SCI->hasOneUse()) {
846 Instruction *User = cast<Instruction>(SCI->use_back());
847 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
848 SCI->getParent() == User->getParent() &&
Chris Lattner48c937e2004-04-06 17:34:50 +0000849 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
850 SCI->getOpcode() == Instruction::SetEQ ||
851 SCI->getOpcode() == Instruction::SetNE))
Chris Lattner6d40c192003-01-16 16:43:00 +0000852 return SCI;
853 }
854 return 0;
855}
Chris Lattner333b2fa2002-12-13 10:09:43 +0000856
Chris Lattner6d40c192003-01-16 16:43:00 +0000857// Return a fixed numbering for setcc instructions which does not depend on the
858// order of the opcodes.
859//
860static unsigned getSetCCNumber(unsigned Opcode) {
861 switch(Opcode) {
862 default: assert(0 && "Unknown setcc instruction!");
863 case Instruction::SetEQ: return 0;
864 case Instruction::SetNE: return 1;
865 case Instruction::SetLT: return 2;
Chris Lattner55f6fab2003-01-16 18:07:23 +0000866 case Instruction::SetGE: return 3;
867 case Instruction::SetGT: return 4;
868 case Instruction::SetLE: return 5;
Chris Lattner6d40c192003-01-16 16:43:00 +0000869 }
870}
Chris Lattner06925362002-11-17 21:56:38 +0000871
Chris Lattner6d40c192003-01-16 16:43:00 +0000872// LLVM -> X86 signed X86 unsigned
873// ----- ---------- ------------
874// seteq -> sete sete
875// setne -> setne setne
876// setlt -> setl setb
Chris Lattner55f6fab2003-01-16 18:07:23 +0000877// setge -> setge setae
Chris Lattner6d40c192003-01-16 16:43:00 +0000878// setgt -> setg seta
879// setle -> setle setbe
Chris Lattnerb2acc512003-10-19 21:09:10 +0000880// ----
881// sets // Used by comparison with 0 optimization
882// setns
883static const unsigned SetCCOpcodeTab[2][8] = {
884 { X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
885 0, 0 },
886 { X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
887 X86::SETSr, X86::SETNSr },
Chris Lattner6d40c192003-01-16 16:43:00 +0000888};
889
Chris Lattnerb2acc512003-10-19 21:09:10 +0000890// EmitComparison - This function emits a comparison of the two operands,
891// returning the extended setcc code to use.
892unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
893 MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +0000894 MachineBasicBlock::iterator IP) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000895 // The arguments are already supposed to be of the same type.
Chris Lattner6d40c192003-01-16 16:43:00 +0000896 const Type *CompTy = Op0->getType();
Chris Lattner3e130a22003-01-13 00:32:26 +0000897 unsigned Class = getClassB(CompTy);
Chris Lattner58c41fe2003-08-24 19:19:47 +0000898 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattner333864d2003-06-05 19:30:30 +0000899
900 // Special case handling of: cmp R, i
Chris Lattner260195d2004-05-07 19:55:55 +0000901 if (isa<ConstantPointerNull>(Op1)) {
902 if (OpNum < 2) // seteq/setne -> test
903 BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
904 else
905 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
906 return OpNum;
907
908 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnere80e6372004-04-06 16:02:27 +0000909 if (Class == cByte || Class == cShort || Class == cInt) {
910 unsigned Op1v = CI->getRawValue();
Chris Lattnerc07736a2003-07-23 15:22:26 +0000911
Chris Lattner333864d2003-06-05 19:30:30 +0000912 // Mask off any upper bits of the constant, if there are any...
913 Op1v &= (1ULL << (8 << Class)) - 1;
914
Chris Lattnerb2acc512003-10-19 21:09:10 +0000915 // If this is a comparison against zero, emit more efficient code. We
916 // can't handle unsigned comparisons against zero unless they are == or
917 // !=. These should have been strength reduced already anyway.
918 if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
919 static const unsigned TESTTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000920 X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
Chris Lattnerb2acc512003-10-19 21:09:10 +0000921 };
Chris Lattneree352852004-02-29 07:22:16 +0000922 BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000923
924 if (OpNum == 2) return 6; // Map jl -> js
925 if (OpNum == 3) return 7; // Map jg -> jns
926 return OpNum;
Chris Lattner333864d2003-06-05 19:30:30 +0000927 }
Chris Lattnerb2acc512003-10-19 21:09:10 +0000928
929 static const unsigned CMPTab[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000930 X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
Chris Lattnerb2acc512003-10-19 21:09:10 +0000931 };
932
Chris Lattneree352852004-02-29 07:22:16 +0000933 BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
Chris Lattnerb2acc512003-10-19 21:09:10 +0000934 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000935 } else {
936 assert(Class == cLong && "Unknown integer class!");
937 unsigned LowCst = CI->getRawValue();
938 unsigned HiCst = CI->getRawValue() >> 32;
939 if (OpNum < 2) { // seteq, setne
940 unsigned LoTmp = Op0r;
941 if (LowCst != 0) {
942 LoTmp = makeAnotherReg(Type::IntTy);
943 BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
944 }
945 unsigned HiTmp = Op0r+1;
946 if (HiCst != 0) {
947 HiTmp = makeAnotherReg(Type::IntTy);
Chris Lattner48c937e2004-04-06 17:34:50 +0000948 BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
Chris Lattnere80e6372004-04-06 16:02:27 +0000949 }
950 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
951 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
952 return OpNum;
Chris Lattner48c937e2004-04-06 17:34:50 +0000953 } else {
954 // Emit a sequence of code which compares the high and low parts once
955 // each, then uses a conditional move to handle the overflow case. For
956 // example, a setlt for long would generate code like this:
957 //
Chris Lattner9984fd02004-05-09 23:16:33 +0000958 // AL = lo(op1) < lo(op2) // Always unsigned comparison
959 // BL = hi(op1) < hi(op2) // Signedness depends on operands
960 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner48c937e2004-04-06 17:34:50 +0000961 //
962
963 // FIXME: This would be much better if we had hierarchical register
964 // classes! Until then, hardcode registers so that we can deal with
965 // their aliases (because we don't have conditional byte moves).
966 //
967 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
968 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
969 BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
970 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
971 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
972 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
973 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
974 .addReg(X86::AX);
975 // NOTE: visitSetCondInst knows that the value is dumped into the BL
976 // register at this point for long values...
977 return OpNum;
Chris Lattnere80e6372004-04-06 16:02:27 +0000978 }
Chris Lattner333864d2003-06-05 19:30:30 +0000979 }
Chris Lattnere80e6372004-04-06 16:02:27 +0000980 }
Chris Lattner333864d2003-06-05 19:30:30 +0000981
Chris Lattner9f08a922004-02-03 18:54:04 +0000982 // Special case handling of comparison against +/- 0.0
983 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
984 if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
Chris Lattneree352852004-02-29 07:22:16 +0000985 BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000986 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +0000987 BuildMI(*MBB, IP, X86::SAHF, 1);
Chris Lattner9f08a922004-02-03 18:54:04 +0000988 return OpNum;
989 }
990
Chris Lattner58c41fe2003-08-24 19:19:47 +0000991 unsigned Op1r = getReg(Op1, MBB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +0000992 switch (Class) {
993 default: assert(0 && "Unknown type class!");
994 // Emit: cmp <var1>, <var2> (do the comparison). We can
995 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
996 // 32-bit.
997 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +0000998 BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +0000999 break;
1000 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001001 BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001002 break;
1003 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001004 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner3e130a22003-01-13 00:32:26 +00001005 break;
1006 case cFP:
Chris Lattner8d2822e2004-04-12 01:43:36 +00001007 if (0) { // for processors prior to the P6
1008 BuildMI(*MBB, IP, X86::FpUCOM, 2).addReg(Op0r).addReg(Op1r);
1009 BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
1010 BuildMI(*MBB, IP, X86::SAHF, 1);
1011 } else {
Chris Lattner133dbb12004-04-12 03:02:48 +00001012 BuildMI(*MBB, IP, X86::FpUCOMI, 2).addReg(Op0r).addReg(Op1r);
Chris Lattner8d2822e2004-04-12 01:43:36 +00001013 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001014 break;
1015
1016 case cLong:
1017 if (OpNum < 2) { // seteq, setne
1018 unsigned LoTmp = makeAnotherReg(Type::IntTy);
1019 unsigned HiTmp = makeAnotherReg(Type::IntTy);
1020 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001021 BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
1022 BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
1023 BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
Chris Lattner3e130a22003-01-13 00:32:26 +00001024 break; // Allow the sete or setne to be generated from flags set by OR
1025 } else {
1026 // Emit a sequence of code which compares the high and low parts once
1027 // each, then uses a conditional move to handle the overflow case. For
1028 // example, a setlt for long would generate code like this:
1029 //
1030 // AL = lo(op1) < lo(op2) // Signedness depends on operands
1031 // BL = hi(op1) < hi(op2) // Always unsigned comparison
Chris Lattner9984fd02004-05-09 23:16:33 +00001032 // dest = hi(op1) == hi(op2) ? BL : AL;
Chris Lattner3e130a22003-01-13 00:32:26 +00001033 //
1034
Chris Lattner6d40c192003-01-16 16:43:00 +00001035 // FIXME: This would be much better if we had hierarchical register
Chris Lattner3e130a22003-01-13 00:32:26 +00001036 // classes! Until then, hardcode registers so that we can deal with their
1037 // aliases (because we don't have conditional byte moves).
1038 //
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001039 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
Chris Lattneree352852004-02-29 07:22:16 +00001040 BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001041 BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
Chris Lattneree352852004-02-29 07:22:16 +00001042 BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
1043 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
1044 BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001045 BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
Chris Lattneree352852004-02-29 07:22:16 +00001046 .addReg(X86::AX);
Chris Lattner6d40c192003-01-16 16:43:00 +00001047 // NOTE: visitSetCondInst knows that the value is dumped into the BL
1048 // register at this point for long values...
Chris Lattnerb2acc512003-10-19 21:09:10 +00001049 return OpNum;
Chris Lattner3e130a22003-01-13 00:32:26 +00001050 }
1051 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00001052 return OpNum;
Chris Lattner6d40c192003-01-16 16:43:00 +00001053}
Chris Lattner3e130a22003-01-13 00:32:26 +00001054
Chris Lattner6d40c192003-01-16 16:43:00 +00001055/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
1056/// register, then move it to wherever the result should be.
1057///
1058void ISel::visitSetCondInst(SetCondInst &I) {
Chris Lattner307ecba2004-03-30 22:39:09 +00001059 if (canFoldSetCCIntoBranchOrSelect(&I))
1060 return; // Fold this into a branch or select.
Chris Lattner6d40c192003-01-16 16:43:00 +00001061
Chris Lattner6d40c192003-01-16 16:43:00 +00001062 unsigned DestReg = getReg(I);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001063 MachineBasicBlock::iterator MII = BB->end();
1064 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
1065 DestReg);
1066}
Chris Lattner6d40c192003-01-16 16:43:00 +00001067
Chris Lattner58c41fe2003-08-24 19:19:47 +00001068/// emitSetCCOperation - Common code shared between visitSetCondInst and
1069/// constant expression support.
Misha Brukman538607f2004-03-01 23:53:11 +00001070///
Chris Lattner58c41fe2003-08-24 19:19:47 +00001071void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00001072 MachineBasicBlock::iterator IP,
Chris Lattner58c41fe2003-08-24 19:19:47 +00001073 Value *Op0, Value *Op1, unsigned Opcode,
1074 unsigned TargetReg) {
1075 unsigned OpNum = getSetCCNumber(Opcode);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001076 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
Chris Lattner58c41fe2003-08-24 19:19:47 +00001077
Chris Lattnerb2acc512003-10-19 21:09:10 +00001078 const Type *CompTy = Op0->getType();
1079 unsigned CompClass = getClassB(CompTy);
1080 bool isSigned = CompTy->isSigned() && CompClass != cFP;
1081
1082 if (CompClass != cLong || OpNum < 2) {
Chris Lattner6d40c192003-01-16 16:43:00 +00001083 // Handle normal comparisons with a setcc instruction...
Chris Lattneree352852004-02-29 07:22:16 +00001084 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
Chris Lattner6d40c192003-01-16 16:43:00 +00001085 } else {
1086 // Handle long comparisons by copying the value which is already in BL into
1087 // the register we want...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001088 BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
Chris Lattner6d40c192003-01-16 16:43:00 +00001089 }
Brian Gaeke1749d632002-11-07 17:59:21 +00001090}
Chris Lattner51b49a92002-11-02 19:45:49 +00001091
Chris Lattner12d96a02004-03-30 21:22:00 +00001092void ISel::visitSelectInst(SelectInst &SI) {
1093 unsigned DestReg = getReg(SI);
1094 MachineBasicBlock::iterator MII = BB->end();
1095 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
1096 SI.getFalseValue(), DestReg);
1097}
1098
1099/// emitSelect - Common code shared between visitSelectInst and the constant
1100/// expression support.
1101void ISel::emitSelectOperation(MachineBasicBlock *MBB,
1102 MachineBasicBlock::iterator IP,
1103 Value *Cond, Value *TrueVal, Value *FalseVal,
1104 unsigned DestReg) {
1105 unsigned SelectClass = getClassB(TrueVal->getType());
1106
1107 // We don't support 8-bit conditional moves. If we have incoming constants,
1108 // transform them into 16-bit constants to avoid having a run-time conversion.
1109 if (SelectClass == cByte) {
1110 if (Constant *T = dyn_cast<Constant>(TrueVal))
1111 TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
1112 if (Constant *F = dyn_cast<Constant>(FalseVal))
1113 FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
1114 }
1115
Chris Lattner82c5a992004-04-13 21:56:09 +00001116 unsigned TrueReg = getReg(TrueVal, MBB, IP);
1117 unsigned FalseReg = getReg(FalseVal, MBB, IP);
1118 if (TrueReg == FalseReg) {
1119 static const unsigned Opcode[] = {
1120 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
1121 };
1122 BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
1123 if (SelectClass == cLong)
1124 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
1125 return;
1126 }
1127
Chris Lattner307ecba2004-03-30 22:39:09 +00001128 unsigned Opcode;
1129 if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
1130 // We successfully folded the setcc into the select instruction.
1131
1132 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1133 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
1134 IP);
1135
1136 const Type *CompTy = SCI->getOperand(0)->getType();
1137 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1138
1139 // LLVM -> X86 signed X86 unsigned
1140 // ----- ---------- ------------
1141 // seteq -> cmovNE cmovNE
1142 // setne -> cmovE cmovE
1143 // setlt -> cmovGE cmovAE
1144 // setge -> cmovL cmovB
1145 // setgt -> cmovLE cmovBE
1146 // setle -> cmovG cmovA
1147 // ----
1148 // cmovNS // Used by comparison with 0 optimization
1149 // cmovS
1150
1151 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001152 default: assert(0 && "Unknown value class!");
1153 case cFP: {
1154 // Annoyingly, we don't have a full set of floating point conditional
1155 // moves. :(
1156 static const unsigned OpcodeTab[2][8] = {
1157 { X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
1158 X86::FCMOVBE, X86::FCMOVA, 0, 0 },
1159 { X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
1160 };
1161 Opcode = OpcodeTab[isSigned][OpNum];
1162
1163 // If opcode == 0, we hit a case that we don't support. Output a setcc
1164 // and compare the result against zero.
1165 if (Opcode == 0) {
1166 unsigned CompClass = getClassB(CompTy);
1167 unsigned CondReg;
1168 if (CompClass != cLong || OpNum < 2) {
1169 CondReg = makeAnotherReg(Type::BoolTy);
1170 // Handle normal comparisons with a setcc instruction...
1171 BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
1172 } else {
1173 // Long comparisons end up in the BL register.
1174 CondReg = X86::BL;
1175 }
1176
Chris Lattner68626c22004-03-31 22:22:36 +00001177 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner352eb482004-03-31 22:03:35 +00001178 Opcode = X86::FCMOVE;
1179 }
1180 break;
1181 }
Chris Lattner307ecba2004-03-30 22:39:09 +00001182 case cByte:
1183 case cShort: {
1184 static const unsigned OpcodeTab[2][8] = {
1185 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
1186 X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
1187 { X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
1188 X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
1189 };
1190 Opcode = OpcodeTab[isSigned][OpNum];
1191 break;
1192 }
1193 case cInt:
1194 case cLong: {
1195 static const unsigned OpcodeTab[2][8] = {
1196 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
1197 X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
1198 { X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
1199 X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
1200 };
1201 Opcode = OpcodeTab[isSigned][OpNum];
1202 break;
1203 }
1204 }
1205 } else {
1206 // Get the value being branched on, and use it to set the condition codes.
1207 unsigned CondReg = getReg(Cond, MBB, IP);
Chris Lattner68626c22004-03-31 22:22:36 +00001208 BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
Chris Lattner307ecba2004-03-30 22:39:09 +00001209 switch (SelectClass) {
Chris Lattner352eb482004-03-31 22:03:35 +00001210 default: assert(0 && "Unknown value class!");
1211 case cFP: Opcode = X86::FCMOVE; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001212 case cByte:
Chris Lattner352eb482004-03-31 22:03:35 +00001213 case cShort: Opcode = X86::CMOVE16rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001214 case cInt:
Chris Lattner352eb482004-03-31 22:03:35 +00001215 case cLong: Opcode = X86::CMOVE32rr; break;
Chris Lattner307ecba2004-03-30 22:39:09 +00001216 }
1217 }
Chris Lattner12d96a02004-03-30 21:22:00 +00001218
Chris Lattner12d96a02004-03-30 21:22:00 +00001219 unsigned RealDestReg = DestReg;
Chris Lattner12d96a02004-03-30 21:22:00 +00001220
Chris Lattner12d96a02004-03-30 21:22:00 +00001221
1222 // Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
1223 // this, we have to promote the incoming values to 16 bits, perform a 16-bit
1224 // cmove, then truncate the result.
1225 if (SelectClass == cByte) {
1226 DestReg = makeAnotherReg(Type::ShortTy);
1227 if (getClassB(TrueVal->getType()) == cByte) {
1228 // Promote the true value, by storing it into AL, and reading from AX.
1229 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
1230 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
1231 TrueReg = makeAnotherReg(Type::ShortTy);
1232 BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
1233 }
1234 if (getClassB(FalseVal->getType()) == cByte) {
1235 // Promote the true value, by storing it into CL, and reading from CX.
1236 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
1237 BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
1238 FalseReg = makeAnotherReg(Type::ShortTy);
1239 BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
1240 }
1241 }
1242
1243 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
1244
1245 switch (SelectClass) {
1246 case cByte:
1247 // We did the computation with 16-bit registers. Truncate back to our
1248 // result by copying into AX then copying out AL.
1249 BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
1250 BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
1251 break;
1252 case cLong:
1253 // Move the upper half of the value as well.
1254 BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
1255 break;
1256 }
1257}
Chris Lattner58c41fe2003-08-24 19:19:47 +00001258
1259
1260
Brian Gaekec2505982002-11-30 11:57:28 +00001261/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
1262/// operand, in the specified target register.
Misha Brukman538607f2004-03-01 23:53:11 +00001263///
Chris Lattner3e130a22003-01-13 00:32:26 +00001264void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
Chris Lattner9984fd02004-05-09 23:16:33 +00001265 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001266
Chris Lattner29bf0622004-04-06 01:21:00 +00001267 Value *Val = VR.Val;
1268 const Type *Ty = VR.Ty;
Chris Lattner502e36c2004-04-06 01:25:33 +00001269 if (Val) {
Chris Lattner29bf0622004-04-06 01:21:00 +00001270 if (Constant *C = dyn_cast<Constant>(Val)) {
1271 Val = ConstantExpr::getCast(C, Type::IntTy);
1272 Ty = Type::IntTy;
1273 }
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001274
Chris Lattner502e36c2004-04-06 01:25:33 +00001275 // If this is a simple constant, just emit a MOVri directly to avoid the
1276 // copy.
1277 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1278 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
Chris Lattner2b10b082004-05-12 16:35:04 +00001279 BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
Chris Lattner502e36c2004-04-06 01:25:33 +00001280 return;
1281 }
1282 }
1283
Chris Lattner29bf0622004-04-06 01:21:00 +00001284 // Make sure we have the register number for this value...
1285 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1286
1287 switch (getClassB(Ty)) {
Chris Lattner94af4142002-12-25 05:13:53 +00001288 case cByte:
1289 // Extend value into target register (8->32)
1290 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001291 BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001292 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001293 BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001294 break;
1295 case cShort:
1296 // Extend value into target register (16->32)
1297 if (isUnsigned)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001298 BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001299 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001300 BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001301 break;
1302 case cInt:
1303 // Move value into target register (32->32)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001304 BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
Chris Lattner94af4142002-12-25 05:13:53 +00001305 break;
1306 default:
1307 assert(0 && "Unpromotable operand class in promote32");
1308 }
Brian Gaekec2505982002-11-30 11:57:28 +00001309}
Chris Lattnerc5291f52002-10-27 21:16:59 +00001310
Chris Lattner72614082002-10-25 22:55:53 +00001311/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
1312/// we have the following possibilities:
1313///
1314/// ret void: No return value, simply emit a 'ret' instruction
1315/// ret sbyte, ubyte : Extend value into EAX and return
1316/// ret short, ushort: Extend value into EAX and return
1317/// ret int, uint : Move value into EAX and return
1318/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +00001319/// ret long, ulong : Move value into EAX/EDX and return
1320/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +00001321///
Chris Lattner3e130a22003-01-13 00:32:26 +00001322void ISel::visitReturnInst(ReturnInst &I) {
Chris Lattner94af4142002-12-25 05:13:53 +00001323 if (I.getNumOperands() == 0) {
1324 BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
1325 return;
1326 }
1327
1328 Value *RetVal = I.getOperand(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00001329 switch (getClassB(RetVal->getType())) {
Chris Lattner94af4142002-12-25 05:13:53 +00001330 case cByte: // integral return values: extend or move into EAX and return
1331 case cShort:
1332 case cInt:
Chris Lattner29bf0622004-04-06 01:21:00 +00001333 promote32(X86::EAX, ValueRecord(RetVal));
Chris Lattnerdbd73722003-05-06 21:32:22 +00001334 // Declare that EAX is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001335 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001336 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001337 case cFP: { // Floats & Doubles: Return in ST(0)
1338 unsigned RetReg = getReg(RetVal);
Chris Lattner3e130a22003-01-13 00:32:26 +00001339 BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001340 // Declare that top-of-stack is live on exit
Chris Lattnerc2489032003-05-07 19:21:28 +00001341 BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
Chris Lattner94af4142002-12-25 05:13:53 +00001342 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001343 }
1344 case cLong: {
1345 unsigned RetReg = getReg(RetVal);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001346 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
1347 BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
Chris Lattnerdbd73722003-05-06 21:32:22 +00001348 // Declare that EAX & EDX are live on exit
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001349 BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
1350 .addReg(X86::ESP);
Chris Lattner3e130a22003-01-13 00:32:26 +00001351 break;
Chris Lattner29bf0622004-04-06 01:21:00 +00001352 }
Chris Lattner94af4142002-12-25 05:13:53 +00001353 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00001354 visitInstruction(I);
Chris Lattner94af4142002-12-25 05:13:53 +00001355 }
Chris Lattner43189d12002-11-17 20:07:45 +00001356 // Emit a 'ret' instruction
Chris Lattner94af4142002-12-25 05:13:53 +00001357 BuildMI(BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +00001358}
1359
Chris Lattner55f6fab2003-01-16 18:07:23 +00001360// getBlockAfter - Return the basic block which occurs lexically after the
1361// specified one.
1362static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1363 Function::iterator I = BB; ++I; // Get iterator to next block
1364 return I != BB->getParent()->end() ? &*I : 0;
1365}
1366
Chris Lattner51b49a92002-11-02 19:45:49 +00001367/// visitBranchInst - Handle conditional and unconditional branches here. Note
1368/// that since code layout is frozen at this point, that if we are trying to
1369/// jump to a block that is the immediate successor of the current block, we can
Chris Lattner6d40c192003-01-16 16:43:00 +00001370/// just make a fall-through (but we don't currently).
Chris Lattner51b49a92002-11-02 19:45:49 +00001371///
Chris Lattner94af4142002-12-25 05:13:53 +00001372void ISel::visitBranchInst(BranchInst &BI) {
Brian Gaekeea9ca672004-04-28 04:19:37 +00001373 // Update machine-CFG edges
1374 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1375 if (BI.isConditional())
1376 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
1377
Chris Lattner55f6fab2003-01-16 18:07:23 +00001378 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1379
1380 if (!BI.isConditional()) { // Unconditional branch?
Chris Lattnercf93cdd2004-01-30 22:13:44 +00001381 if (BI.getSuccessor(0) != NextBB)
Chris Lattner55f6fab2003-01-16 18:07:23 +00001382 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
Chris Lattner6d40c192003-01-16 16:43:00 +00001383 return;
1384 }
1385
1386 // See if we can fold the setcc into the branch itself...
Chris Lattner307ecba2004-03-30 22:39:09 +00001387 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
Chris Lattner6d40c192003-01-16 16:43:00 +00001388 if (SCI == 0) {
1389 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1390 // computed some other way...
Chris Lattner065faeb2002-12-28 20:24:02 +00001391 unsigned condReg = getReg(BI.getCondition());
Chris Lattner68626c22004-03-31 22:22:36 +00001392 BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
Chris Lattner55f6fab2003-01-16 18:07:23 +00001393 if (BI.getSuccessor(1) == NextBB) {
1394 if (BI.getSuccessor(0) != NextBB)
1395 BuildMI(BB, X86::JNE, 1).addPCDisp(BI.getSuccessor(0));
1396 } else {
1397 BuildMI(BB, X86::JE, 1).addPCDisp(BI.getSuccessor(1));
1398
1399 if (BI.getSuccessor(0) != NextBB)
1400 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(0));
1401 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001402 return;
Chris Lattner94af4142002-12-25 05:13:53 +00001403 }
Chris Lattner6d40c192003-01-16 16:43:00 +00001404
1405 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
Chris Lattner58c41fe2003-08-24 19:19:47 +00001406 MachineBasicBlock::iterator MII = BB->end();
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001407 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
Chris Lattnerb2acc512003-10-19 21:09:10 +00001408
1409 const Type *CompTy = SCI->getOperand(0)->getType();
1410 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
Chris Lattner6d40c192003-01-16 16:43:00 +00001411
Chris Lattnerb2acc512003-10-19 21:09:10 +00001412
Chris Lattner6d40c192003-01-16 16:43:00 +00001413 // LLVM -> X86 signed X86 unsigned
1414 // ----- ---------- ------------
1415 // seteq -> je je
1416 // setne -> jne jne
1417 // setlt -> jl jb
Chris Lattner55f6fab2003-01-16 18:07:23 +00001418 // setge -> jge jae
Chris Lattner6d40c192003-01-16 16:43:00 +00001419 // setgt -> jg ja
1420 // setle -> jle jbe
Chris Lattnerb2acc512003-10-19 21:09:10 +00001421 // ----
1422 // js // Used by comparison with 0 optimization
1423 // jns
1424
1425 static const unsigned OpcodeTab[2][8] = {
1426 { X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
1427 { X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
1428 X86::JS, X86::JNS },
Chris Lattner6d40c192003-01-16 16:43:00 +00001429 };
1430
Chris Lattner55f6fab2003-01-16 18:07:23 +00001431 if (BI.getSuccessor(0) != NextBB) {
1432 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(0));
1433 if (BI.getSuccessor(1) != NextBB)
1434 BuildMI(BB, X86::JMP, 1).addPCDisp(BI.getSuccessor(1));
1435 } else {
1436 // Change to the inverse condition...
1437 if (BI.getSuccessor(1) != NextBB) {
1438 OpNum ^= 1;
1439 BuildMI(BB, OpcodeTab[isSigned][OpNum], 1).addPCDisp(BI.getSuccessor(1));
1440 }
1441 }
Chris Lattner2df035b2002-11-02 19:27:56 +00001442}
1443
Chris Lattner3e130a22003-01-13 00:32:26 +00001444
1445/// doCall - This emits an abstract call instruction, setting up the arguments
1446/// and the return value as appropriate. For the actual function call itself,
1447/// it inserts the specified CallMI instruction into the stream.
1448///
1449void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001450 const std::vector<ValueRecord> &Args) {
Chris Lattner3e130a22003-01-13 00:32:26 +00001451
Chris Lattner065faeb2002-12-28 20:24:02 +00001452 // Count how many bytes are to be pushed on the stack...
1453 unsigned NumBytes = 0;
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001454
Chris Lattner3e130a22003-01-13 00:32:26 +00001455 if (!Args.empty()) {
1456 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1457 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001458 case cByte: case cShort: case cInt:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001459 NumBytes += 4; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001460 case cLong:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001461 NumBytes += 8; break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001462 case cFP:
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001463 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1464 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001465 default: assert(0 && "Unknown class!");
1466 }
1467
1468 // Adjust the stack pointer for the new arguments...
Chris Lattneree352852004-02-29 07:22:16 +00001469 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
Chris Lattner065faeb2002-12-28 20:24:02 +00001470
1471 // Arguments go on the stack in reverse order, as specified by the ABI.
1472 unsigned ArgOffset = 0;
Chris Lattner3e130a22003-01-13 00:32:26 +00001473 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
Chris Lattnerce6096f2004-03-01 02:34:08 +00001474 unsigned ArgReg;
Chris Lattner3e130a22003-01-13 00:32:26 +00001475 switch (getClassB(Args[i].Ty)) {
Chris Lattner065faeb2002-12-28 20:24:02 +00001476 case cByte:
Chris Lattner2b10b082004-05-12 16:35:04 +00001477 if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
1478 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1479 .addImm(Args[i].Val == ConstantBool::True);
1480 break;
1481 }
1482 // FALL THROUGH
Chris Lattner21585222004-03-01 02:42:43 +00001483 case cShort:
1484 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1485 // Zero/Sign extend constant, then stuff into memory.
1486 ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
1487 Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
1488 addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
1489 .addImm(Val->getRawValue() & 0xFFFFFFFF);
1490 } else {
1491 // Promote arg to 32 bits wide into a temporary register...
1492 ArgReg = makeAnotherReg(Type::UIntTy);
1493 promote32(ArgReg, Args[i]);
1494 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1495 X86::ESP, ArgOffset).addReg(ArgReg);
1496 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001497 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001498 case cInt:
Chris Lattner21585222004-03-01 02:42:43 +00001499 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1500 unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1501 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1502 X86::ESP, ArgOffset).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00001503 } else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
1504 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1505 X86::ESP, ArgOffset).addImm(0);
Chris Lattner21585222004-03-01 02:42:43 +00001506 } else {
1507 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1508 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1509 X86::ESP, ArgOffset).addReg(ArgReg);
1510 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001511 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001512 case cLong:
Chris Lattner92900a62004-04-06 03:23:00 +00001513 if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
1514 uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
1515 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1516 X86::ESP, ArgOffset).addImm(Val & ~0U);
1517 addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
1518 X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
1519 } else {
1520 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1521 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1522 X86::ESP, ArgOffset).addReg(ArgReg);
1523 addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
1524 X86::ESP, ArgOffset+4).addReg(ArgReg+1);
1525 }
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001526 ArgOffset += 4; // 8 byte entry, not 4.
1527 break;
1528
Chris Lattner065faeb2002-12-28 20:24:02 +00001529 case cFP:
Chris Lattnerce6096f2004-03-01 02:34:08 +00001530 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001531 if (Args[i].Ty == Type::FloatTy) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001532 addRegOffset(BuildMI(BB, X86::FST32m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001533 X86::ESP, ArgOffset).addReg(ArgReg);
1534 } else {
1535 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001536 addRegOffset(BuildMI(BB, X86::FST64m, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001537 X86::ESP, ArgOffset).addReg(ArgReg);
1538 ArgOffset += 4; // 8 byte entry, not 4.
1539 }
1540 break;
Chris Lattner065faeb2002-12-28 20:24:02 +00001541
Chris Lattner3e130a22003-01-13 00:32:26 +00001542 default: assert(0 && "Unknown class!");
Chris Lattner065faeb2002-12-28 20:24:02 +00001543 }
1544 ArgOffset += 4;
Chris Lattner94af4142002-12-25 05:13:53 +00001545 }
Chris Lattner3e130a22003-01-13 00:32:26 +00001546 } else {
Chris Lattneree352852004-02-29 07:22:16 +00001547 BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
Chris Lattner94af4142002-12-25 05:13:53 +00001548 }
Chris Lattner6e49a4b2002-12-13 14:13:27 +00001549
Chris Lattner3e130a22003-01-13 00:32:26 +00001550 BB->push_back(CallMI);
Misha Brukman0d2cf3a2002-12-04 19:22:53 +00001551
Chris Lattneree352852004-02-29 07:22:16 +00001552 BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
Chris Lattnera3243642002-12-04 23:45:28 +00001553
1554 // If there is a return value, scavenge the result from the location the call
1555 // leaves it in...
1556 //
Chris Lattner3e130a22003-01-13 00:32:26 +00001557 if (Ret.Ty != Type::VoidTy) {
1558 unsigned DestClass = getClassB(Ret.Ty);
1559 switch (DestClass) {
Brian Gaeke20244b72002-12-12 15:33:40 +00001560 case cByte:
1561 case cShort:
1562 case cInt: {
1563 // Integral results are in %eax, or the appropriate portion
1564 // thereof.
1565 static const unsigned regRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001566 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
Brian Gaeke20244b72002-12-12 15:33:40 +00001567 };
1568 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
Chris Lattner3e130a22003-01-13 00:32:26 +00001569 BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001570 break;
Brian Gaeke20244b72002-12-12 15:33:40 +00001571 }
Chris Lattner94af4142002-12-25 05:13:53 +00001572 case cFP: // Floating-point return values live in %ST(0)
Chris Lattner3e130a22003-01-13 00:32:26 +00001573 BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
Brian Gaeke20244b72002-12-12 15:33:40 +00001574 break;
Chris Lattner3e130a22003-01-13 00:32:26 +00001575 case cLong: // Long values are left in EDX:EAX
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001576 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
1577 BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
Chris Lattner3e130a22003-01-13 00:32:26 +00001578 break;
1579 default: assert(0 && "Unknown class!");
Chris Lattner4fa1acc2002-12-04 23:50:28 +00001580 }
Chris Lattnera3243642002-12-04 23:45:28 +00001581 }
Brian Gaekefa8d5712002-11-22 11:07:01 +00001582}
Chris Lattner2df035b2002-11-02 19:27:56 +00001583
Chris Lattner3e130a22003-01-13 00:32:26 +00001584
1585/// visitCallInst - Push args on stack and do a procedure call instruction.
1586void ISel::visitCallInst(CallInst &CI) {
1587 MachineInstr *TheCall;
1588 if (Function *F = CI.getCalledFunction()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001589 // Is it an intrinsic function call?
Brian Gaeked0fde302003-11-11 22:41:34 +00001590 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001591 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1592 return;
1593 }
1594
Chris Lattner3e130a22003-01-13 00:32:26 +00001595 // Emit a CALL instruction with PC-relative displacement.
1596 TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
1597 } else { // Emit an indirect call...
1598 unsigned Reg = getReg(CI.getCalledValue());
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001599 TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
Chris Lattner3e130a22003-01-13 00:32:26 +00001600 }
1601
1602 std::vector<ValueRecord> Args;
1603 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00001604 Args.push_back(ValueRecord(CI.getOperand(i)));
Chris Lattner3e130a22003-01-13 00:32:26 +00001605
1606 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1607 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00001608}
Chris Lattner3e130a22003-01-13 00:32:26 +00001609
Chris Lattneraeb54b82003-08-28 21:23:43 +00001610
Chris Lattner44827152003-12-28 09:47:19 +00001611/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1612/// function, lowering any calls to unknown intrinsic functions into the
1613/// equivalent LLVM code.
Misha Brukman538607f2004-03-01 23:53:11 +00001614///
Chris Lattner44827152003-12-28 09:47:19 +00001615void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1616 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1617 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1618 if (CallInst *CI = dyn_cast<CallInst>(I++))
1619 if (Function *F = CI->getCalledFunction())
1620 switch (F->getIntrinsicID()) {
Chris Lattneraed386e2003-12-28 09:53:23 +00001621 case Intrinsic::not_intrinsic:
Chris Lattner317201d2004-03-13 00:24:00 +00001622 case Intrinsic::vastart:
1623 case Intrinsic::vacopy:
1624 case Intrinsic::vaend:
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001625 case Intrinsic::returnaddress:
1626 case Intrinsic::frameaddress:
Chris Lattner915e5e52004-02-12 17:53:22 +00001627 case Intrinsic::memcpy:
Chris Lattner2a0f2242004-02-14 04:46:05 +00001628 case Intrinsic::memset:
John Criswell4ffff9e2004-04-08 20:31:47 +00001629 case Intrinsic::readport:
1630 case Intrinsic::writeport:
Chris Lattner44827152003-12-28 09:47:19 +00001631 // We directly implement these intrinsics
1632 break;
John Criswelle5a4c152004-04-13 22:13:14 +00001633 case Intrinsic::readio: {
1634 // On X86, memory operations are in-order. Lower this intrinsic
1635 // into a volatile load.
1636 Instruction *Before = CI->getPrev();
1637 LoadInst * LI = new LoadInst (CI->getOperand(1), "", true, CI);
1638 CI->replaceAllUsesWith (LI);
1639 BB->getInstList().erase (CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001640 break;
1641 }
1642 case Intrinsic::writeio: {
1643 // On X86, memory operations are in-order. Lower this intrinsic
1644 // into a volatile store.
1645 Instruction *Before = CI->getPrev();
1646 StoreInst * LI = new StoreInst (CI->getOperand(1),
1647 CI->getOperand(2), true, CI);
1648 CI->replaceAllUsesWith (LI);
1649 BB->getInstList().erase (CI);
John Criswelle5a4c152004-04-13 22:13:14 +00001650 break;
1651 }
Chris Lattner44827152003-12-28 09:47:19 +00001652 default:
1653 // All other intrinsic calls we must lower.
1654 Instruction *Before = CI->getPrev();
Chris Lattnerf70e0c22003-12-28 21:23:38 +00001655 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
Chris Lattner44827152003-12-28 09:47:19 +00001656 if (Before) { // Move iterator to instruction after call
1657 I = Before; ++I;
1658 } else {
1659 I = BB->begin();
1660 }
1661 }
1662
1663}
1664
Brian Gaeked0fde302003-11-11 22:41:34 +00001665void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
Chris Lattnereca195e2003-05-08 19:44:13 +00001666 unsigned TmpReg1, TmpReg2;
1667 switch (ID) {
Chris Lattner5634b9f2004-03-13 00:24:52 +00001668 case Intrinsic::vastart:
Chris Lattnereca195e2003-05-08 19:44:13 +00001669 // Get the address of the first vararg value...
Chris Lattner73815062003-10-18 05:56:40 +00001670 TmpReg1 = getReg(CI);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001671 addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
Chris Lattnereca195e2003-05-08 19:44:13 +00001672 return;
1673
Chris Lattner5634b9f2004-03-13 00:24:52 +00001674 case Intrinsic::vacopy:
Chris Lattner73815062003-10-18 05:56:40 +00001675 TmpReg1 = getReg(CI);
1676 TmpReg2 = getReg(CI.getOperand(1));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001677 BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
Chris Lattnereca195e2003-05-08 19:44:13 +00001678 return;
Chris Lattner5634b9f2004-03-13 00:24:52 +00001679 case Intrinsic::vaend: return; // Noop on X86
Chris Lattnereca195e2003-05-08 19:44:13 +00001680
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001681 case Intrinsic::returnaddress:
1682 case Intrinsic::frameaddress:
1683 TmpReg1 = getReg(CI);
1684 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1685 if (ID == Intrinsic::returnaddress) {
1686 // Just load the return address
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001687 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001688 ReturnAddressIndex);
1689 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001690 addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001691 ReturnAddressIndex, -4);
1692 }
1693 } else {
1694 // Values other than zero are not implemented yet.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001695 BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
Chris Lattner0e5b79c2004-02-15 01:04:03 +00001696 }
1697 return;
1698
Chris Lattner915e5e52004-02-12 17:53:22 +00001699 case Intrinsic::memcpy: {
1700 assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
1701 unsigned Align = 1;
1702 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1703 Align = AlignC->getRawValue();
1704 if (Align == 0) Align = 1;
1705 }
1706
1707 // Turn the byte code into # iterations
Chris Lattner915e5e52004-02-12 17:53:22 +00001708 unsigned CountReg;
Chris Lattner2a0f2242004-02-14 04:46:05 +00001709 unsigned Opcode;
Chris Lattner915e5e52004-02-12 17:53:22 +00001710 switch (Align & 3) {
1711 case 2: // WORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001712 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1713 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
1714 } else {
1715 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001716 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001717 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner07122832004-02-13 23:36:47 +00001718 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001719 Opcode = X86::REP_MOVSW;
Chris Lattner915e5e52004-02-12 17:53:22 +00001720 break;
1721 case 0: // DWORD aligned
Chris Lattner07122832004-02-13 23:36:47 +00001722 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
1723 CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
1724 } else {
1725 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001726 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001727 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner07122832004-02-13 23:36:47 +00001728 }
Chris Lattner2a0f2242004-02-14 04:46:05 +00001729 Opcode = X86::REP_MOVSD;
Chris Lattner915e5e52004-02-12 17:53:22 +00001730 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001731 default: // BYTE aligned
Chris Lattner07122832004-02-13 23:36:47 +00001732 CountReg = getReg(CI.getOperand(3));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001733 Opcode = X86::REP_MOVSB;
Chris Lattner915e5e52004-02-12 17:53:22 +00001734 break;
1735 }
1736
1737 // No matter what the alignment is, we put the source in ESI, the
1738 // destination in EDI, and the count in ECX.
1739 TmpReg1 = getReg(CI.getOperand(1));
1740 TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001741 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1742 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
1743 BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001744 BuildMI(BB, Opcode, 0);
1745 return;
1746 }
1747 case Intrinsic::memset: {
1748 assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
1749 unsigned Align = 1;
1750 if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
1751 Align = AlignC->getRawValue();
1752 if (Align == 0) Align = 1;
Chris Lattner915e5e52004-02-12 17:53:22 +00001753 }
1754
Chris Lattner2a0f2242004-02-14 04:46:05 +00001755 // Turn the byte code into # iterations
Chris Lattner2a0f2242004-02-14 04:46:05 +00001756 unsigned CountReg;
1757 unsigned Opcode;
1758 if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
1759 unsigned Val = ValC->getRawValue() & 255;
1760
1761 // If the value is a constant, then we can potentially use larger copies.
1762 switch (Align & 3) {
1763 case 2: // WORD aligned
1764 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001765 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001766 } else {
1767 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001768 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001769 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001770 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001771 BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001772 Opcode = X86::REP_STOSW;
1773 break;
1774 case 0: // DWORD aligned
1775 if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
Chris Lattner300d0ed2004-02-14 06:00:36 +00001776 CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
Chris Lattner2a0f2242004-02-14 04:46:05 +00001777 } else {
1778 CountReg = makeAnotherReg(Type::IntTy);
Chris Lattner8dd8d262004-02-26 01:20:02 +00001779 unsigned ByteReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001780 BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001781 }
1782 Val = (Val << 8) | Val;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001783 BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001784 Opcode = X86::REP_STOSD;
1785 break;
Chris Lattner8dd8d262004-02-26 01:20:02 +00001786 default: // BYTE aligned
Chris Lattner2a0f2242004-02-14 04:46:05 +00001787 CountReg = getReg(CI.getOperand(3));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001788 BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001789 Opcode = X86::REP_STOSB;
1790 break;
1791 }
1792 } else {
1793 // If it's not a constant value we are storing, just fall back. We could
1794 // try to be clever to form 16 bit and 32 bit values, but we don't yet.
1795 unsigned ValReg = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001796 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001797 CountReg = getReg(CI.getOperand(3));
1798 Opcode = X86::REP_STOSB;
1799 }
1800
1801 // No matter what the alignment is, we put the source in ESI, the
1802 // destination in EDI, and the count in ECX.
1803 TmpReg1 = getReg(CI.getOperand(1));
1804 //TmpReg2 = getReg(CI.getOperand(2));
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00001805 BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
1806 BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
Chris Lattner2a0f2242004-02-14 04:46:05 +00001807 BuildMI(BB, Opcode, 0);
Chris Lattner915e5e52004-02-12 17:53:22 +00001808 return;
1809 }
1810
Chris Lattner87e18de2004-04-13 17:20:37 +00001811 case Intrinsic::readport: {
1812 // First, determine that the size of the operand falls within the acceptable
1813 // range for this architecture.
John Criswell4ffff9e2004-04-08 20:31:47 +00001814 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001815 if (getClassB(CI.getOperand(1)->getType()) != cShort) {
John Criswellca6ea0f2004-04-08 22:39:13 +00001816 std::cerr << "llvm.readport: Address size is not 16 bits\n";
Chris Lattner87e18de2004-04-13 17:20:37 +00001817 exit(1);
John Criswellca6ea0f2004-04-08 22:39:13 +00001818 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001819
John Criswell4ffff9e2004-04-08 20:31:47 +00001820 // Now, move the I/O port address into the DX register and use the IN
1821 // instruction to get the input data.
1822 //
Chris Lattner87e18de2004-04-13 17:20:37 +00001823 unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
1824 unsigned DestReg = getReg(CI);
John Criswell4ffff9e2004-04-08 20:31:47 +00001825
Chris Lattner87e18de2004-04-13 17:20:37 +00001826 // If the port is a single-byte constant, use the immediate form.
1827 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
1828 if ((C->getRawValue() & 255) == C->getRawValue()) {
1829 switch (Class) {
1830 case cByte:
1831 BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
1832 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1833 return;
1834 case cShort:
1835 BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
1836 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1837 return;
1838 case cInt:
1839 BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
1840 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1841 return;
1842 }
1843 }
1844
1845 unsigned Reg = getReg(CI.getOperand(1));
1846 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1847 switch (Class) {
1848 case cByte:
1849 BuildMI(BB, X86::IN8rr, 0);
1850 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
1851 break;
1852 case cShort:
1853 BuildMI(BB, X86::IN16rr, 0);
1854 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
1855 break;
1856 case cInt:
1857 BuildMI(BB, X86::IN32rr, 0);
1858 BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
1859 break;
1860 default:
1861 std::cerr << "Cannot do input on this data type";
John Criswellca6ea0f2004-04-08 22:39:13 +00001862 exit (1);
1863 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001864 return;
Chris Lattner87e18de2004-04-13 17:20:37 +00001865 }
John Criswell4ffff9e2004-04-08 20:31:47 +00001866
Chris Lattner87e18de2004-04-13 17:20:37 +00001867 case Intrinsic::writeport: {
1868 // First, determine that the size of the operand falls within the
1869 // acceptable range for this architecture.
1870 if (getClass(CI.getOperand(2)->getType()) != cShort) {
1871 std::cerr << "llvm.writeport: Address size is not 16 bits\n";
1872 exit(1);
1873 }
1874
1875 unsigned Class = getClassB(CI.getOperand(1)->getType());
1876 unsigned ValReg = getReg(CI.getOperand(1));
1877 switch (Class) {
1878 case cByte:
1879 BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
1880 break;
1881 case cShort:
1882 BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
1883 break;
1884 case cInt:
1885 BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
1886 break;
1887 default:
1888 std::cerr << "llvm.writeport: invalid data type for X86 target";
1889 exit(1);
1890 }
1891
1892
1893 // If the port is a single-byte constant, use the immediate form.
1894 if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
1895 if ((C->getRawValue() & 255) == C->getRawValue()) {
1896 static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
1897 BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
1898 return;
1899 }
1900
1901 // Otherwise, move the I/O port address into the DX register and the value
1902 // to write into the AL/AX/EAX register.
1903 static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
1904 unsigned Reg = getReg(CI.getOperand(2));
1905 BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
1906 BuildMI(BB, Opc[Class], 0);
1907 return;
1908 }
1909
Chris Lattner44827152003-12-28 09:47:19 +00001910 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
Chris Lattnereca195e2003-05-08 19:44:13 +00001911 }
1912}
1913
Chris Lattner7dee5da2004-03-08 01:58:35 +00001914static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
1915 if (LI.getParent() != User.getParent())
1916 return false;
1917 BasicBlock::iterator It = &LI;
1918 // Check all of the instructions between the load and the user. We should
1919 // really use alias analysis here, but for now we just do something simple.
1920 for (++It; It != BasicBlock::iterator(&User); ++It) {
1921 switch (It->getOpcode()) {
Chris Lattner85c84e72004-03-18 06:29:54 +00001922 case Instruction::Free:
Chris Lattner7dee5da2004-03-08 01:58:35 +00001923 case Instruction::Store:
1924 case Instruction::Call:
1925 case Instruction::Invoke:
1926 return false;
Chris Lattner133dbb12004-04-12 03:02:48 +00001927 case Instruction::Load:
1928 if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
1929 return false;
1930 break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00001931 }
1932 }
1933 return true;
1934}
1935
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001936/// visitSimpleBinary - Implement simple binary operators for integral types...
1937/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1938/// Xor.
Misha Brukman538607f2004-03-01 23:53:11 +00001939///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00001940void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1941 unsigned DestReg = getReg(B);
1942 MachineBasicBlock::iterator MI = BB->end();
Chris Lattner721d2d42004-03-08 01:18:36 +00001943 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001944 unsigned Class = getClassB(B.getType());
Chris Lattner721d2d42004-03-08 01:18:36 +00001945
Chris Lattner7dee5da2004-03-08 01:58:35 +00001946 // Special case: op Reg, load [mem]
Chris Lattnerc81e6ba2004-05-10 15:15:55 +00001947 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
1948 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
Chris Lattner7dee5da2004-03-08 01:58:35 +00001949 if (!B.swapOperands())
1950 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
1951
Chris Lattner95157f72004-04-11 22:05:45 +00001952 if (isa<LoadInst>(Op1) && Class != cLong &&
Chris Lattner7dee5da2004-03-08 01:58:35 +00001953 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
1954
Chris Lattner95157f72004-04-11 22:05:45 +00001955 unsigned Opcode;
1956 if (Class != cFP) {
1957 static const unsigned OpcodeTab[][3] = {
1958 // Arithmetic operators
1959 { X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
1960 { X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
1961
1962 // Bitwise operators
1963 { X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
1964 { X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
1965 { X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
1966 };
1967 Opcode = OpcodeTab[OperatorClass][Class];
1968 } else {
1969 static const unsigned OpcodeTab[][2] = {
1970 { X86::FADD32m, X86::FADD64m }, // ADD
1971 { X86::FSUB32m, X86::FSUB64m }, // SUB
1972 };
1973 const Type *Ty = Op0->getType();
1974 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1975 Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
1976 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00001977
Chris Lattner7dee5da2004-03-08 01:58:35 +00001978 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00001979 if (AllocaInst *AI =
1980 dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
1981 unsigned FI = getFixedSizedAllocaFI(AI);
1982 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
1983
1984 } else {
1985 unsigned BaseReg, Scale, IndexReg, Disp;
1986 getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), BaseReg,
1987 Scale, IndexReg, Disp);
1988
1989 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r),
1990 BaseReg, Scale, IndexReg, Disp);
1991 }
Chris Lattner7dee5da2004-03-08 01:58:35 +00001992 return;
1993 }
1994
Chris Lattner95157f72004-04-11 22:05:45 +00001995 // If this is a floating point subtract, check to see if we can fold the first
1996 // operand in.
1997 if (Class == cFP && OperatorClass == 1 &&
1998 isa<LoadInst>(Op0) &&
1999 isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
2000 const Type *Ty = Op0->getType();
2001 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2002 unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
2003
Chris Lattner95157f72004-04-11 22:05:45 +00002004 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002005 if (AllocaInst *AI =
2006 dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
2007 unsigned FI = getFixedSizedAllocaFI(AI);
2008 addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
2009 } else {
2010 unsigned BaseReg, Scale, IndexReg, Disp;
2011 getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), BaseReg,
2012 Scale, IndexReg, Disp);
2013
2014 addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r),
2015 BaseReg, Scale, IndexReg, Disp);
2016 }
Chris Lattner95157f72004-04-11 22:05:45 +00002017 return;
2018 }
2019
Chris Lattner721d2d42004-03-08 01:18:36 +00002020 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002021}
Chris Lattner3e130a22003-01-13 00:32:26 +00002022
Chris Lattner6621ed92004-04-11 21:23:56 +00002023
2024/// emitBinaryFPOperation - This method handles emission of floating point
2025/// Add (0), Sub (1), Mul (2), and Div (3) operations.
2026void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
2027 MachineBasicBlock::iterator IP,
2028 Value *Op0, Value *Op1,
2029 unsigned OperatorClass, unsigned DestReg) {
2030
2031 // Special case: op Reg, <const fp>
2032 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
2033 if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
2034 // Create a constant pool entry for this constant.
2035 MachineConstantPool *CP = F->getConstantPool();
2036 unsigned CPI = CP->getConstantPoolIndex(Op1C);
2037 const Type *Ty = Op1->getType();
2038
2039 static const unsigned OpcodeTab[][4] = {
2040 { X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
2041 { X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
2042 };
2043
2044 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
2045 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2046 unsigned Op0r = getReg(Op0, BB, IP);
2047 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2048 DestReg).addReg(Op0r), CPI);
2049 return;
2050 }
2051
Chris Lattner13c07fe2004-04-12 00:12:04 +00002052 // Special case: R1 = op <const fp>, R2
Chris Lattner6621ed92004-04-11 21:23:56 +00002053 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
2054 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
2055 // -0.0 - X === -X
2056 unsigned op1Reg = getReg(Op1, BB, IP);
2057 BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
2058 return;
2059 } else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
Chris Lattner13c07fe2004-04-12 00:12:04 +00002060 // R1 = op CST, R2 --> R1 = opr R2, CST
Chris Lattner6621ed92004-04-11 21:23:56 +00002061
2062 // Create a constant pool entry for this constant.
2063 MachineConstantPool *CP = F->getConstantPool();
2064 unsigned CPI = CP->getConstantPoolIndex(CFP);
2065 const Type *Ty = CFP->getType();
2066
2067 static const unsigned OpcodeTab[][4] = {
2068 { X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
2069 { X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
2070 };
2071
2072 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2073 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
2074 unsigned Op1r = getReg(Op1, BB, IP);
2075 addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
2076 DestReg).addReg(Op1r), CPI);
2077 return;
2078 }
2079
2080 // General case.
2081 static const unsigned OpcodeTab[4] = {
2082 X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
2083 };
2084
2085 unsigned Opcode = OpcodeTab[OperatorClass];
2086 unsigned Op0r = getReg(Op0, BB, IP);
2087 unsigned Op1r = getReg(Op1, BB, IP);
2088 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2089}
2090
Chris Lattnerb2acc512003-10-19 21:09:10 +00002091/// emitSimpleBinaryOperation - Implement simple binary operators for integral
2092/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
2093/// Or, 4 for Xor.
Chris Lattner68aad932002-11-02 20:13:22 +00002094///
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002095/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
2096/// and constant expression support.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002097///
2098void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002099 MachineBasicBlock::iterator IP,
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002100 Value *Op0, Value *Op1,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002101 unsigned OperatorClass, unsigned DestReg) {
Chris Lattnerb515f6d2003-05-08 20:49:25 +00002102 unsigned Class = getClassB(Op0->getType());
Chris Lattnerb2acc512003-10-19 21:09:10 +00002103
Chris Lattner6621ed92004-04-11 21:23:56 +00002104 if (Class == cFP) {
2105 assert(OperatorClass < 2 && "No logical ops for FP!");
2106 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
2107 return;
2108 }
2109
Chris Lattnerb2acc512003-10-19 21:09:10 +00002110 // sub 0, X -> neg X
Chris Lattner48b0c972004-04-11 20:26:20 +00002111 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
2112 if (OperatorClass == 1 && CI->isNullValue()) {
2113 unsigned op1Reg = getReg(Op1, MBB, IP);
2114 static unsigned const NEGTab[] = {
2115 X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
2116 };
2117 BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
2118
2119 if (Class == cLong) {
2120 // We just emitted: Dl = neg Sl
2121 // Now emit : T = addc Sh, 0
2122 // : Dh = neg T
2123 unsigned T = makeAnotherReg(Type::IntTy);
2124 BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
2125 BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002126 }
Chris Lattner48b0c972004-04-11 20:26:20 +00002127 return;
2128 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002129
Chris Lattner48b0c972004-04-11 20:26:20 +00002130 // Special case: op Reg, <const int>
2131 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner721d2d42004-03-08 01:18:36 +00002132 unsigned Op0r = getReg(Op0, MBB, IP);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002133
Chris Lattner721d2d42004-03-08 01:18:36 +00002134 // xor X, -1 -> not X
2135 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002136 static unsigned const NOTTab[] = {
2137 X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
2138 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002139 BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002140 if (Class == cLong) // Invert the top part too
2141 BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
Chris Lattner721d2d42004-03-08 01:18:36 +00002142 return;
2143 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002144
Chris Lattner721d2d42004-03-08 01:18:36 +00002145 // add X, -1 -> dec X
Chris Lattner06521672004-04-06 03:36:57 +00002146 if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
2147 // Note that we can't use dec for 64-bit decrements, because it does not
2148 // set the carry flag!
2149 static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
Chris Lattner721d2d42004-03-08 01:18:36 +00002150 BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
2151 return;
2152 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002153
Chris Lattner721d2d42004-03-08 01:18:36 +00002154 // add X, 1 -> inc X
Chris Lattner06521672004-04-06 03:36:57 +00002155 if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
2156 // Note that we can't use inc for 64-bit increments, because it does not
2157 // set the carry flag!
2158 static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
Alkis Evlogimenosbee8a092004-04-02 18:11:32 +00002159 BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
Chris Lattner721d2d42004-03-08 01:18:36 +00002160 return;
2161 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002162
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002163 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002164 // Arithmetic operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002165 { X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
2166 { X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
Chris Lattnerb2acc512003-10-19 21:09:10 +00002167
Chris Lattner721d2d42004-03-08 01:18:36 +00002168 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002169 { X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
2170 { X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
2171 { X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
Chris Lattner721d2d42004-03-08 01:18:36 +00002172 };
2173
Chris Lattner721d2d42004-03-08 01:18:36 +00002174 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner33f7fa32004-04-06 03:15:53 +00002175 unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
Chris Lattner721d2d42004-03-08 01:18:36 +00002176
Chris Lattner33f7fa32004-04-06 03:15:53 +00002177 if (Class != cLong) {
2178 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2179 return;
Chris Lattner6621ed92004-04-11 21:23:56 +00002180 }
2181
2182 // If this is a long value and the high or low bits have a special
2183 // property, emit some special cases.
2184 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
2185
2186 // If the constant is zero in the low 32-bits, just copy the low part
2187 // across and apply the normal 32-bit operation to the high parts. There
2188 // will be no carry or borrow into the top.
2189 if (Op1l == 0) {
2190 if (OperatorClass != 2) // All but and...
2191 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
2192 else
2193 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2194 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
2195 .addReg(Op0r+1).addImm(Op1h);
Chris Lattner33f7fa32004-04-06 03:15:53 +00002196 return;
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002197 }
Chris Lattner6621ed92004-04-11 21:23:56 +00002198
2199 // If this is a logical operation and the top 32-bits are zero, just
2200 // operate on the lower 32.
2201 if (Op1h == 0 && OperatorClass > 1) {
2202 BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
2203 .addReg(Op0r).addImm(Op1l);
2204 if (OperatorClass != 2) // All but and
2205 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
2206 else
2207 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
2208 return;
2209 }
2210
2211 // TODO: We could handle lots of other special cases here, such as AND'ing
2212 // with 0xFFFFFFFF00000000 -> noop, etc.
2213
2214 // Otherwise, code generate the full operation with a constant.
2215 static const unsigned TopTab[] = {
2216 X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
2217 };
2218
2219 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
2220 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
2221 .addReg(Op0r+1).addImm(Op1h);
2222 return;
Chris Lattner721d2d42004-03-08 01:18:36 +00002223 }
2224
2225 // Finally, handle the general case now.
Chris Lattner7ba92302004-04-06 02:13:25 +00002226 static const unsigned OpcodeTab[][5] = {
Chris Lattner721d2d42004-03-08 01:18:36 +00002227 // Arithmetic operators
Chris Lattner6621ed92004-04-11 21:23:56 +00002228 { X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
2229 { X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
Chris Lattner721d2d42004-03-08 01:18:36 +00002230
Chris Lattnerb2acc512003-10-19 21:09:10 +00002231 // Bitwise operators
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002232 { X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
2233 { X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
2234 { X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
Chris Lattnerb2acc512003-10-19 21:09:10 +00002235 };
Chris Lattner721d2d42004-03-08 01:18:36 +00002236
Chris Lattnerb2acc512003-10-19 21:09:10 +00002237 unsigned Opcode = OpcodeTab[OperatorClass][Class];
Chris Lattner721d2d42004-03-08 01:18:36 +00002238 unsigned Op0r = getReg(Op0, MBB, IP);
2239 unsigned Op1r = getReg(Op1, MBB, IP);
2240 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
2241
Chris Lattnerab1d0e02004-04-06 02:11:49 +00002242 if (Class == cLong) { // Handle the upper 32 bits of long values...
Chris Lattner721d2d42004-03-08 01:18:36 +00002243 static const unsigned TopTab[] = {
2244 X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
2245 };
2246 BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
2247 DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
2248 }
Chris Lattnere2954c82002-11-02 20:04:26 +00002249}
2250
Chris Lattner3e130a22003-01-13 00:32:26 +00002251/// doMultiply - Emit appropriate instructions to multiply together the
2252/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
2253/// result should be given as DestTy.
2254///
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002255void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
Chris Lattner3e130a22003-01-13 00:32:26 +00002256 unsigned DestReg, const Type *DestTy,
Chris Lattner8a307e82002-12-16 19:32:50 +00002257 unsigned op0Reg, unsigned op1Reg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002258 unsigned Class = getClass(DestTy);
Chris Lattner94af4142002-12-25 05:13:53 +00002259 switch (Class) {
Chris Lattner0f1c4612003-06-21 17:16:58 +00002260 case cInt:
2261 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002262 BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
Chris Lattner0f1c4612003-06-21 17:16:58 +00002263 .addReg(op0Reg).addReg(op1Reg);
2264 return;
2265 case cByte:
2266 // Must use the MUL instruction, which forces use of AL...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002267 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
2268 BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
2269 BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
Chris Lattner0f1c4612003-06-21 17:16:58 +00002270 return;
Chris Lattner94af4142002-12-25 05:13:53 +00002271 default:
Chris Lattner3e130a22003-01-13 00:32:26 +00002272 case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
Chris Lattner94af4142002-12-25 05:13:53 +00002273 }
Brian Gaeke20244b72002-12-12 15:33:40 +00002274}
2275
Chris Lattnerb2acc512003-10-19 21:09:10 +00002276// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
2277// returns zero when the input is not exactly a power of two.
2278static unsigned ExactLog2(unsigned Val) {
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002279 if (Val == 0 || (Val & (Val-1))) return 0;
Chris Lattnerb2acc512003-10-19 21:09:10 +00002280 unsigned Count = 0;
2281 while (Val != 1) {
Chris Lattnerb2acc512003-10-19 21:09:10 +00002282 Val >>= 1;
2283 ++Count;
2284 }
2285 return Count+1;
2286}
2287
Chris Lattner462fa822004-04-11 20:56:28 +00002288
2289/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
2290/// 16, or 32-bit integer multiply by a constant.
Chris Lattnerb2acc512003-10-19 21:09:10 +00002291void ISel::doMultiplyConst(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002292 MachineBasicBlock::iterator IP,
Chris Lattnerb2acc512003-10-19 21:09:10 +00002293 unsigned DestReg, const Type *DestTy,
2294 unsigned op0Reg, unsigned ConstRHS) {
Chris Lattner6ab06d52004-04-06 04:55:43 +00002295 static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
2296 static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002297 static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
Chris Lattner6ab06d52004-04-06 04:55:43 +00002298
Chris Lattnerb2acc512003-10-19 21:09:10 +00002299 unsigned Class = getClass(DestTy);
2300
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002301 // Handle special cases here.
2302 switch (ConstRHS) {
2303 case 0:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002304 BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
2305 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002306 case 1:
Chris Lattner6ab06d52004-04-06 04:55:43 +00002307 BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
2308 return;
Chris Lattner9eb9b8e2004-05-04 15:47:14 +00002309 case 2:
2310 BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
2311 return;
2312 case 3:
2313 case 5:
2314 case 9:
2315 if (Class == cInt) {
2316 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg),
2317 op0Reg, ConstRHS-1, op0Reg, 0);
2318 return;
2319 }
Chris Lattner6ab06d52004-04-06 04:55:43 +00002320 }
2321
Chris Lattnerb2acc512003-10-19 21:09:10 +00002322 // If the element size is exactly a power of 2, use a shift to get it.
2323 if (unsigned Shift = ExactLog2(ConstRHS)) {
2324 switch (Class) {
2325 default: assert(0 && "Unknown class for this function!");
2326 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002327 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002328 return;
2329 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002330 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002331 return;
2332 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002333 BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002334 return;
2335 }
2336 }
Chris Lattnerc01d1232003-10-20 03:42:58 +00002337
2338 if (Class == cShort) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002339 BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002340 return;
2341 } else if (Class == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002342 BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
Chris Lattnerc01d1232003-10-20 03:42:58 +00002343 return;
2344 }
Chris Lattnerb2acc512003-10-19 21:09:10 +00002345
2346 // Most general case, emit a normal multiply...
Chris Lattnerb2acc512003-10-19 21:09:10 +00002347 unsigned TmpReg = makeAnotherReg(DestTy);
Chris Lattneree352852004-02-29 07:22:16 +00002348 BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002349
2350 // Emit a MUL to multiply the register holding the index by
2351 // elementSize, putting the result in OffsetReg.
2352 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
2353}
2354
Chris Lattnerca9671d2002-11-02 20:28:58 +00002355/// visitMul - Multiplies are not simple binary operators because they must deal
2356/// with the EAX register explicitly.
2357///
2358void ISel::visitMul(BinaryOperator &I) {
Chris Lattner462fa822004-04-11 20:56:28 +00002359 unsigned ResultReg = getReg(I);
2360
Chris Lattner95157f72004-04-11 22:05:45 +00002361 Value *Op0 = I.getOperand(0);
2362 Value *Op1 = I.getOperand(1);
2363
2364 // Fold loads into floating point multiplies.
2365 if (getClass(Op0->getType()) == cFP) {
2366 if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
2367 if (!I.swapOperands())
2368 std::swap(Op0, Op1); // Make sure any loads are in the RHS.
2369 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2370 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2371 const Type *Ty = Op0->getType();
2372 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2373 unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
2374
Chris Lattner95157f72004-04-11 22:05:45 +00002375 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002376 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2377 unsigned FI = getFixedSizedAllocaFI(AI);
2378 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2379 } else {
2380 unsigned BaseReg, Scale, IndexReg, Disp;
2381 getAddressingMode(LI->getOperand(0), BaseReg,
2382 Scale, IndexReg, Disp);
2383
2384 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r),
2385 BaseReg, Scale, IndexReg, Disp);
2386 }
Chris Lattner95157f72004-04-11 22:05:45 +00002387 return;
2388 }
2389 }
2390
Chris Lattner462fa822004-04-11 20:56:28 +00002391 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002392 emitMultiply(BB, IP, Op0, Op1, ResultReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002393}
2394
2395void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
2396 Value *Op0, Value *Op1, unsigned DestReg) {
2397 MachineBasicBlock &BB = *MBB;
2398 TypeClass Class = getClass(Op0->getType());
Chris Lattner3e130a22003-01-13 00:32:26 +00002399
2400 // Simple scalar multiply?
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002401 unsigned Op0Reg = getReg(Op0, &BB, IP);
Chris Lattner462fa822004-04-11 20:56:28 +00002402 switch (Class) {
2403 case cByte:
2404 case cShort:
2405 case cInt:
2406 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
Chris Lattner462fa822004-04-11 20:56:28 +00002407 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
2408 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002409 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002410 unsigned Op1Reg = getReg(Op1, &BB, IP);
2411 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
Chris Lattnerb2acc512003-10-19 21:09:10 +00002412 }
Chris Lattner462fa822004-04-11 20:56:28 +00002413 return;
2414 case cFP:
Chris Lattner6621ed92004-04-11 21:23:56 +00002415 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
2416 return;
Chris Lattner462fa822004-04-11 20:56:28 +00002417 case cLong:
2418 break;
2419 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002420
Chris Lattner462fa822004-04-11 20:56:28 +00002421 // Long value. We have to do things the hard way...
2422 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2423 unsigned CLow = CI->getRawValue();
2424 unsigned CHi = CI->getRawValue() >> 32;
2425
2426 if (CLow == 0) {
2427 // If the low part of the constant is all zeros, things are simple.
2428 BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
2429 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
2430 return;
2431 }
2432
2433 // Multiply the two low parts... capturing carry into EDX
2434 unsigned OverflowReg = 0;
2435 if (CLow == 1) {
2436 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
Chris Lattner028adc42004-04-06 04:29:36 +00002437 } else {
Chris Lattner462fa822004-04-11 20:56:28 +00002438 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
2439 OverflowReg = makeAnotherReg(Type::UIntTy);
2440 BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
2441 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2442 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
Chris Lattner028adc42004-04-06 04:29:36 +00002443
Chris Lattner462fa822004-04-11 20:56:28 +00002444 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2445 BuildMI(BB, IP, X86::MOV32rr, 1,
2446 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2447 }
2448
2449 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2450 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
2451
2452 unsigned AHBLplusOverflowReg;
2453 if (OverflowReg) {
2454 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2455 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002456 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
Chris Lattner462fa822004-04-11 20:56:28 +00002457 } else {
2458 AHBLplusOverflowReg = AHBLReg;
2459 }
2460
2461 if (CHi == 0) {
2462 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
2463 } else {
Chris Lattner028adc42004-04-06 04:29:36 +00002464 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
Chris Lattner462fa822004-04-11 20:56:28 +00002465 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
Chris Lattner028adc42004-04-06 04:29:36 +00002466
Chris Lattner462fa822004-04-11 20:56:28 +00002467 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
Chris Lattner028adc42004-04-06 04:29:36 +00002468 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
2469 }
Chris Lattner462fa822004-04-11 20:56:28 +00002470 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002471 }
Chris Lattner462fa822004-04-11 20:56:28 +00002472
2473 // General 64x64 multiply
2474
2475 unsigned Op1Reg = getReg(Op1, &BB, IP);
2476 // Multiply the two low parts... capturing carry into EDX
2477 BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
2478 BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
2479
2480 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
2481 BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
2482 BuildMI(BB, IP, X86::MOV32rr, 1,
2483 OverflowReg).addReg(X86::EDX); // AL*BL >> 32
2484
2485 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
2486 BuildMI(BB, IP, X86::IMUL32rr, 2,
2487 AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
2488
2489 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
2490 BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
2491 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
2492
2493 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
2494 BuildMI(BB, IP, X86::IMUL32rr, 2,
2495 ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
2496
2497 BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
2498 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002499}
Chris Lattnerca9671d2002-11-02 20:28:58 +00002500
Chris Lattner06925362002-11-17 21:56:38 +00002501
Chris Lattnerf01729e2002-11-02 20:54:46 +00002502/// visitDivRem - Handle division and remainder instructions... these
2503/// instruction both require the same instructions to be generated, they just
2504/// select the result from a different register. Note that both of these
2505/// instructions work differently for signed and unsigned operands.
2506///
2507void ISel::visitDivRem(BinaryOperator &I) {
Chris Lattnercadff442003-10-23 17:21:43 +00002508 unsigned ResultReg = getReg(I);
Chris Lattner95157f72004-04-11 22:05:45 +00002509 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2510
2511 // Fold loads into floating point divides.
2512 if (getClass(Op0->getType()) == cFP) {
2513 if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
2514 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2515 const Type *Ty = Op0->getType();
2516 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2517 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
2518
Chris Lattner95157f72004-04-11 22:05:45 +00002519 unsigned Op0r = getReg(Op0);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002520 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2521 unsigned FI = getFixedSizedAllocaFI(AI);
2522 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
2523 } else {
2524 unsigned BaseReg, Scale, IndexReg, Disp;
2525 getAddressingMode(LI->getOperand(0), BaseReg,
2526 Scale, IndexReg, Disp);
2527
2528 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r),
2529 BaseReg, Scale, IndexReg, Disp);
2530 }
Chris Lattner95157f72004-04-11 22:05:45 +00002531 return;
2532 }
2533
2534 if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
2535 if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
2536 const Type *Ty = Op0->getType();
2537 assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
2538 unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
2539
Chris Lattner95157f72004-04-11 22:05:45 +00002540 unsigned Op1r = getReg(Op1);
Chris Lattner9f1b5312004-05-13 15:12:43 +00002541 if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
2542 unsigned FI = getFixedSizedAllocaFI(AI);
2543 addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
2544 } else {
2545 unsigned BaseReg, Scale, IndexReg, Disp;
2546 getAddressingMode(LI->getOperand(0), BaseReg, Scale, IndexReg, Disp);
2547 addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r),
2548 BaseReg, Scale, IndexReg, Disp);
2549 }
Chris Lattner95157f72004-04-11 22:05:45 +00002550 return;
2551 }
2552 }
2553
Chris Lattner94af4142002-12-25 05:13:53 +00002554
Chris Lattnercadff442003-10-23 17:21:43 +00002555 MachineBasicBlock::iterator IP = BB->end();
Chris Lattner95157f72004-04-11 22:05:45 +00002556 emitDivRemOperation(BB, IP, Op0, Op1,
Chris Lattner462fa822004-04-11 20:56:28 +00002557 I.getOpcode() == Instruction::Div, ResultReg);
Chris Lattnercadff442003-10-23 17:21:43 +00002558}
2559
2560void ISel::emitDivRemOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002561 MachineBasicBlock::iterator IP,
Chris Lattner462fa822004-04-11 20:56:28 +00002562 Value *Op0, Value *Op1, bool isDiv,
2563 unsigned ResultReg) {
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002564 const Type *Ty = Op0->getType();
2565 unsigned Class = getClass(Ty);
Chris Lattner94af4142002-12-25 05:13:53 +00002566 switch (Class) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002567 case cFP: // Floating point divide
Chris Lattnercadff442003-10-23 17:21:43 +00002568 if (isDiv) {
Chris Lattner6621ed92004-04-11 21:23:56 +00002569 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
2570 return;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00002571 } else { // Floating point remainder...
Chris Lattner462fa822004-04-11 20:56:28 +00002572 unsigned Op0Reg = getReg(Op0, BB, IP);
2573 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner3e130a22003-01-13 00:32:26 +00002574 MachineInstr *TheCall =
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002575 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00002576 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002577 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
2578 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002579 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
2580 }
Chris Lattner94af4142002-12-25 05:13:53 +00002581 return;
Chris Lattner3e130a22003-01-13 00:32:26 +00002582 case cLong: {
2583 static const char *FnName[] =
2584 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
Chris Lattner462fa822004-04-11 20:56:28 +00002585 unsigned Op0Reg = getReg(Op0, BB, IP);
2586 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattner8ebf1c32004-04-11 21:09:14 +00002587 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
Chris Lattner3e130a22003-01-13 00:32:26 +00002588 MachineInstr *TheCall =
2589 BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
2590
2591 std::vector<ValueRecord> Args;
Chris Lattnercadff442003-10-23 17:21:43 +00002592 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
2593 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
Chris Lattner3e130a22003-01-13 00:32:26 +00002594 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
2595 return;
2596 }
2597 case cByte: case cShort: case cInt:
Misha Brukmancf00c4a2003-10-10 17:57:28 +00002598 break; // Small integrals, handled below...
Chris Lattner3e130a22003-01-13 00:32:26 +00002599 default: assert(0 && "Unknown class!");
Chris Lattner94af4142002-12-25 05:13:53 +00002600 }
Chris Lattnerf01729e2002-11-02 20:54:46 +00002601
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002602 static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002603 static const unsigned NEGOpcode[] = { X86::NEG8r, X86::NEG16r, X86::NEG32r };
2604 static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
2605 static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
2606 static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
2607
2608 // Special case signed division by power of 2.
2609 if (isDiv)
2610 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
2611 assert(Class != cLong && "This doesn't handle 64-bit divides!");
2612 int V = CI->getValue();
2613
2614 if (V == 1) { // X /s 1 => X
2615 unsigned Op0Reg = getReg(Op0, BB, IP);
2616 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2617 return;
2618 }
2619
2620 if (V == -1) { // X /s -1 => -X
2621 unsigned Op0Reg = getReg(Op0, BB, IP);
2622 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
2623 return;
2624 }
2625
2626 bool isNeg = false;
2627 if (V < 0) { // Not a positive power of 2?
2628 V = -V;
2629 isNeg = true; // Maybe it's a negative power of 2.
2630 }
2631 if (unsigned Log = ExactLog2(V)) {
2632 --Log;
2633 unsigned Op0Reg = getReg(Op0, BB, IP);
2634 unsigned TmpReg = makeAnotherReg(Op0->getType());
2635 if (Log != 1)
2636 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
2637 .addReg(Op0Reg).addImm(Log-1);
2638 else
2639 BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg).addReg(Op0Reg);
2640 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2641 BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
2642 .addReg(TmpReg).addImm(32-Log);
2643 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
2644 BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
2645 .addReg(Op0Reg).addReg(TmpReg2);
2646
2647 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
2648 BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
2649 .addReg(Op0Reg).addImm(Log);
2650 if (isNeg)
2651 BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
2652 return;
2653 }
2654 }
2655
2656 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002657 static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
Chris Lattnerf01729e2002-11-02 20:54:46 +00002658 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
2659
2660 static const unsigned DivOpcode[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002661 { X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
2662 { X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
Chris Lattnerf01729e2002-11-02 20:54:46 +00002663 };
2664
Chris Lattnerf01729e2002-11-02 20:54:46 +00002665 unsigned Reg = Regs[Class];
2666 unsigned ExtReg = ExtRegs[Class];
Chris Lattnerf01729e2002-11-02 20:54:46 +00002667
2668 // Put the first operand into one of the A registers...
Chris Lattner462fa822004-04-11 20:56:28 +00002669 unsigned Op0Reg = getReg(Op0, BB, IP);
2670 unsigned Op1Reg = getReg(Op1, BB, IP);
Chris Lattneree352852004-02-29 07:22:16 +00002671 BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002672
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002673 if (Ty->isSigned()) {
Chris Lattnerf01729e2002-11-02 20:54:46 +00002674 // Emit a sign extension instruction...
Chris Lattner462fa822004-04-11 20:56:28 +00002675 unsigned ShiftResult = makeAnotherReg(Op0->getType());
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002676 BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
Chris Lattneree352852004-02-29 07:22:16 +00002677 BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002678
2679 // Emit the appropriate divide or remainder instruction...
2680 BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002681 } else {
Alkis Evlogimenosf998a7e2004-01-12 07:22:45 +00002682 // If unsigned, emit a zeroing instruction... (reg = 0)
Chris Lattneree352852004-02-29 07:22:16 +00002683 BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
Chris Lattnerf01729e2002-11-02 20:54:46 +00002684
Chris Lattnerc8af02c2004-05-04 19:33:58 +00002685 // Emit the appropriate divide or remainder instruction...
2686 BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
2687 }
Chris Lattner06925362002-11-17 21:56:38 +00002688
Chris Lattnerf01729e2002-11-02 20:54:46 +00002689 // Figure out which register we want to pick the result out of...
Chris Lattnercadff442003-10-23 17:21:43 +00002690 unsigned DestReg = isDiv ? Reg : ExtReg;
Chris Lattnerf01729e2002-11-02 20:54:46 +00002691
Chris Lattnerf01729e2002-11-02 20:54:46 +00002692 // Put the result into the destination register...
Chris Lattneree352852004-02-29 07:22:16 +00002693 BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +00002694}
Chris Lattnere2954c82002-11-02 20:04:26 +00002695
Chris Lattner06925362002-11-17 21:56:38 +00002696
Brian Gaekea1719c92002-10-31 23:03:59 +00002697/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2698/// for constant immediate shift values, and for constant immediate
2699/// shift values equal to 1. Even the general case is sort of special,
2700/// because the shift amount has to be in CL, not just any old register.
2701///
Chris Lattner3e130a22003-01-13 00:32:26 +00002702void ISel::visitShiftInst(ShiftInst &I) {
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002703 MachineBasicBlock::iterator IP = BB->end ();
2704 emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
2705 I.getOpcode () == Instruction::Shl, I.getType (),
2706 getReg (I));
2707}
2708
2709/// emitShiftOperation - Common code shared between visitShiftInst and
2710/// constant expression support.
2711void ISel::emitShiftOperation(MachineBasicBlock *MBB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00002712 MachineBasicBlock::iterator IP,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002713 Value *Op, Value *ShiftAmount, bool isLeftShift,
2714 const Type *ResultTy, unsigned DestReg) {
2715 unsigned SrcReg = getReg (Op, MBB, IP);
2716 bool isSigned = ResultTy->isSigned ();
2717 unsigned Class = getClass (ResultTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00002718
2719 static const unsigned ConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002720 { X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
2721 { X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
2722 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
2723 { X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002724 };
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002725
Chris Lattner3e130a22003-01-13 00:32:26 +00002726 static const unsigned NonConstantOperand[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002727 { X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
2728 { X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
2729 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
2730 { X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
Chris Lattner3e130a22003-01-13 00:32:26 +00002731 };
Chris Lattner796df732002-11-02 00:44:25 +00002732
Chris Lattner3e130a22003-01-13 00:32:26 +00002733 // Longs, as usual, are handled specially...
2734 if (Class == cLong) {
2735 // If we have a constant shift, we can generate much more efficient code
2736 // than otherwise...
2737 //
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002738 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002739 unsigned Amount = CUI->getValue();
2740 if (Amount < 32) {
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002741 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
2742 if (isLeftShift) {
Chris Lattneree352852004-02-29 07:22:16 +00002743 BuildMI(*MBB, IP, Opc[3], 3,
2744 DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
2745 BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002746 } else {
Chris Lattneree352852004-02-29 07:22:16 +00002747 BuildMI(*MBB, IP, Opc[3], 3,
2748 DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
2749 BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002750 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002751 } else { // Shifting more than 32 bits
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002752 Amount -= 32;
2753 if (isLeftShift) {
Chris Lattner722070e2004-04-06 03:42:38 +00002754 if (Amount != 0) {
2755 BuildMI(*MBB, IP, X86::SHL32ri, 2,
2756 DestReg + 1).addReg(SrcReg).addImm(Amount);
2757 } else {
2758 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
2759 }
2760 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002761 } else {
Chris Lattner722070e2004-04-06 03:42:38 +00002762 if (Amount != 0) {
2763 BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
2764 DestReg).addReg(SrcReg+1).addImm(Amount);
2765 } else {
2766 BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
2767 }
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002768 BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Misha Brukmanc8893fc2003-10-23 16:22:08 +00002769 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002770 }
2771 } else {
Chris Lattner9171ef52003-06-01 01:56:54 +00002772 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2773
2774 if (!isLeftShift && isSigned) {
2775 // If this is a SHR of a Long, then we need to do funny sign extension
2776 // stuff. TmpReg gets the value to use as the high-part if we are
2777 // shifting more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002778 BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
Chris Lattner9171ef52003-06-01 01:56:54 +00002779 } else {
2780 // Other shifts use a fixed zero value if the shift is more than 32
2781 // bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002782 BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
Chris Lattner9171ef52003-06-01 01:56:54 +00002783 }
2784
2785 // Initialize CL with the shift amount...
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002786 unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002787 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002788
2789 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
2790 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2791 if (isLeftShift) {
2792 // TmpReg2 = shld inHi, inLo
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002793 BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
Chris Lattneree352852004-02-29 07:22:16 +00002794 .addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002795 // TmpReg3 = shl inLo, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002796 BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002797
2798 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002799 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002800
2801 // DestHi = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002802 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002803 DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
2804 // DestLo = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002805 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002806 DestReg).addReg(TmpReg3).addReg(TmpReg);
Chris Lattner9171ef52003-06-01 01:56:54 +00002807 } else {
2808 // TmpReg2 = shrd inLo, inHi
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002809 BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
Chris Lattneree352852004-02-29 07:22:16 +00002810 .addReg(SrcReg+1);
Chris Lattner9171ef52003-06-01 01:56:54 +00002811 // TmpReg3 = s[ah]r inHi, CL
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002812 BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
Chris Lattner9171ef52003-06-01 01:56:54 +00002813 .addReg(SrcReg+1);
2814
2815 // Set the flags to indicate whether the shift was by more than 32 bits.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002816 BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
Chris Lattner9171ef52003-06-01 01:56:54 +00002817
2818 // DestLo = (>32) ? TmpReg3 : TmpReg2;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002819 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002820 DestReg).addReg(TmpReg2).addReg(TmpReg3);
2821
2822 // DestHi = (>32) ? TmpReg : TmpReg3;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002823 BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
Chris Lattner9171ef52003-06-01 01:56:54 +00002824 DestReg+1).addReg(TmpReg3).addReg(TmpReg);
2825 }
Brian Gaekea1719c92002-10-31 23:03:59 +00002826 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002827 return;
2828 }
Chris Lattnere9913f22002-11-02 01:41:55 +00002829
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002830 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00002831 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2832 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002833
Chris Lattner3e130a22003-01-13 00:32:26 +00002834 const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002835 BuildMI(*MBB, IP, Opc[Class], 2,
2836 DestReg).addReg(SrcReg).addImm(CUI->getValue());
Chris Lattner3e130a22003-01-13 00:32:26 +00002837 } else { // The shift amount is non-constant.
Brian Gaekedfcc9cf2003-11-22 06:49:41 +00002838 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002839 BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002840
Chris Lattner3e130a22003-01-13 00:32:26 +00002841 const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
Chris Lattneree352852004-02-29 07:22:16 +00002842 BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00002843 }
2844}
Chris Lattnerb1761fc2002-11-02 01:15:18 +00002845
Chris Lattner3e130a22003-01-13 00:32:26 +00002846
Chris Lattner6fc3c522002-11-17 21:11:55 +00002847/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
Chris Lattnere8f0d922002-12-24 00:03:11 +00002848/// instruction. The load and store instructions are the only place where we
2849/// need to worry about the memory layout of the target machine.
Chris Lattner6fc3c522002-11-17 21:11:55 +00002850///
2851void ISel::visitLoadInst(LoadInst &I) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002852 // Check to see if this load instruction is going to be folded into a binary
2853 // instruction, like add. If so, we don't want to emit it. Wouldn't a real
2854 // pattern matching instruction selector be nice?
Chris Lattner95157f72004-04-11 22:05:45 +00002855 unsigned Class = getClassB(I.getType());
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002856 if (I.hasOneUse()) {
Chris Lattner7dee5da2004-03-08 01:58:35 +00002857 Instruction *User = cast<Instruction>(I.use_back());
2858 switch (User->getOpcode()) {
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002859 case Instruction::Cast:
2860 // If this is a cast from a signed-integer type to a floating point type,
2861 // fold the cast here.
2862 if (getClass(User->getType()) == cFP &&
2863 (I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
2864 I.getType() == Type::LongTy)) {
2865 unsigned DestReg = getReg(User);
2866 static const unsigned Opcode[] = {
2867 0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
2868 };
Chris Lattner9f1b5312004-05-13 15:12:43 +00002869
2870 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
2871 unsigned FI = getFixedSizedAllocaFI(AI);
2872 addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
2873 } else {
2874 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
2875 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
2876 addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg),
2877 BaseReg, Scale, IndexReg, Disp);
2878 }
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002879 return;
2880 } else {
2881 User = 0;
2882 }
2883 break;
Chris Lattner13c07fe2004-04-12 00:12:04 +00002884
Chris Lattner7dee5da2004-03-08 01:58:35 +00002885 case Instruction::Add:
2886 case Instruction::Sub:
2887 case Instruction::And:
2888 case Instruction::Or:
2889 case Instruction::Xor:
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002890 if (Class == cLong) User = 0;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002891 break;
Chris Lattner95157f72004-04-11 22:05:45 +00002892 case Instruction::Mul:
2893 case Instruction::Div:
Chris Lattner13c07fe2004-04-12 00:12:04 +00002894 if (Class != cFP) User = 0;
Chris Lattnerfeac3e12004-04-11 23:21:26 +00002895 break; // Folding only implemented for floating point.
Chris Lattner95157f72004-04-11 22:05:45 +00002896 default: User = 0; break;
Chris Lattner7dee5da2004-03-08 01:58:35 +00002897 }
2898
2899 if (User) {
2900 // Okay, we found a user. If the load is the first operand and there is
2901 // no second operand load, reverse the operand ordering. Note that this
2902 // can fail for a subtract (ie, no change will be made).
2903 if (!isa<LoadInst>(User->getOperand(1)))
2904 cast<BinaryOperator>(User)->swapOperands();
2905
2906 // Okay, now that everything is set up, if this load is used by the second
2907 // operand, and if there are no instructions that invalidate the load
2908 // before the binary operator, eliminate the load.
2909 if (User->getOperand(1) == &I &&
2910 isSafeToFoldLoadIntoInstruction(I, *User))
2911 return; // Eliminate the load!
Chris Lattner95157f72004-04-11 22:05:45 +00002912
2913 // If this is a floating point sub or div, we won't be able to swap the
2914 // operands, but we will still be able to eliminate the load.
2915 if (Class == cFP && User->getOperand(0) == &I &&
2916 !isa<LoadInst>(User->getOperand(1)) &&
2917 (User->getOpcode() == Instruction::Sub ||
2918 User->getOpcode() == Instruction::Div) &&
2919 isSafeToFoldLoadIntoInstruction(I, *User))
2920 return; // Eliminate the load!
Chris Lattner7dee5da2004-03-08 01:58:35 +00002921 }
2922 }
2923
Chris Lattner6ac1d712003-10-20 04:48:06 +00002924 static const unsigned Opcodes[] = {
Chris Lattner9f1b5312004-05-13 15:12:43 +00002925 X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
Chris Lattner3e130a22003-01-13 00:32:26 +00002926 };
Chris Lattner6ac1d712003-10-20 04:48:06 +00002927 unsigned Opcode = Opcodes[Class];
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002928 if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00002929
2930 unsigned DestReg = getReg(I);
2931
2932 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
2933 unsigned FI = getFixedSizedAllocaFI(AI);
2934 if (Class == cLong) {
2935 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
2936 addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
2937 } else {
2938 addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
2939 }
2940 } else {
2941 unsigned BaseReg = 0, Scale = 1, IndexReg = 0, Disp = 0;
2942 getAddressingMode(I.getOperand(0), BaseReg, Scale, IndexReg, Disp);
2943
2944 if (Class == cLong) {
2945 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg),
2946 BaseReg, Scale, IndexReg, Disp);
2947 addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1),
2948 BaseReg, Scale, IndexReg, Disp+4);
2949 } else {
2950 addFullAddress(BuildMI(BB, Opcode, 4, DestReg),
2951 BaseReg, Scale, IndexReg, Disp);
2952 }
2953 }
Chris Lattner3e130a22003-01-13 00:32:26 +00002954}
2955
Chris Lattner6fc3c522002-11-17 21:11:55 +00002956/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
2957/// instruction.
2958///
2959void ISel::visitStoreInst(StoreInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00002960 unsigned BaseReg = ~0U, Scale = ~0U, IndexReg = ~0U, Disp = ~0U;
2961 unsigned AllocaFrameIdx = ~0U;
2962
2963 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(1)))
2964 AllocaFrameIdx = getFixedSizedAllocaFI(AI);
2965 else
2966 getAddressingMode(I.getOperand(1), BaseReg, Scale, IndexReg, Disp);
Chris Lattnerb6bac512004-02-25 06:13:04 +00002967
Chris Lattner6c09db22003-10-20 04:11:23 +00002968 const Type *ValTy = I.getOperand(0)->getType();
2969 unsigned Class = getClassB(ValTy);
Chris Lattner6ac1d712003-10-20 04:48:06 +00002970
Chris Lattner5a830962004-02-25 02:56:58 +00002971 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
2972 uint64_t Val = CI->getRawValue();
2973 if (Class == cLong) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00002974 if (AllocaFrameIdx != ~0U) {
2975 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
2976 AllocaFrameIdx).addImm(Val & ~0U);
2977 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
2978 AllocaFrameIdx, 4).addImm(Val>>32);
2979 } else {
2980 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2981 BaseReg, Scale, IndexReg, Disp).addImm(Val & ~0U);
2982 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
2983 BaseReg, Scale, IndexReg, Disp+4).addImm(Val>>32);
2984 }
Chris Lattner5a830962004-02-25 02:56:58 +00002985 } else {
2986 static const unsigned Opcodes[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00002987 X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
Chris Lattner5a830962004-02-25 02:56:58 +00002988 };
2989 unsigned Opcode = Opcodes[Class];
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00002990 if (AllocaFrameIdx != ~0U)
Chris Lattner9f1b5312004-05-13 15:12:43 +00002991 addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addImm(Val);
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00002992 else
Chris Lattner9f1b5312004-05-13 15:12:43 +00002993 addFullAddress(BuildMI(BB, Opcode, 5),
2994 BaseReg, Scale, IndexReg, Disp).addImm(Val);
Chris Lattner5a830962004-02-25 02:56:58 +00002995 }
Chris Lattnerb7cb9ff2004-05-13 15:26:48 +00002996 } else if (isa<ConstantPointerNull>(I.getOperand(0))) {
2997 if (AllocaFrameIdx != ~0U)
2998 addFrameReference(BuildMI(BB, X86::MOV32mi, 5), AllocaFrameIdx).addImm(0);
2999 else
3000 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3001 BaseReg, Scale, IndexReg, Disp).addImm(0);
3002
Chris Lattner5a830962004-02-25 02:56:58 +00003003 } else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003004 if (AllocaFrameIdx != ~0U)
3005 addFrameReference(BuildMI(BB, X86::MOV8mi, 5),
3006 AllocaFrameIdx).addImm(CB->getValue());
3007 else
3008 addFullAddress(BuildMI(BB, X86::MOV8mi, 5),
3009 BaseReg, Scale, IndexReg, Disp).addImm(CB->getValue());
Chris Lattnere7a31c92004-05-07 21:18:15 +00003010 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
3011 // Store constant FP values with integer instructions to avoid having to
3012 // load the constants from the constant pool then do a store.
3013 if (CFP->getType() == Type::FloatTy) {
3014 union {
3015 unsigned I;
3016 float F;
3017 } V;
3018 V.F = CFP->getValue();
Chris Lattner9f1b5312004-05-13 15:12:43 +00003019 if (AllocaFrameIdx != ~0U)
3020 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3021 AllocaFrameIdx).addImm(V.I);
3022 else
3023 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3024 BaseReg, Scale, IndexReg, Disp).addImm(V.I);
Chris Lattner5a830962004-02-25 02:56:58 +00003025 } else {
Chris Lattnere7a31c92004-05-07 21:18:15 +00003026 union {
3027 uint64_t I;
3028 double F;
3029 } V;
3030 V.F = CFP->getValue();
Chris Lattner9f1b5312004-05-13 15:12:43 +00003031 if (AllocaFrameIdx != ~0U) {
3032 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3033 AllocaFrameIdx).addImm((unsigned)V.I);
3034 addFrameReference(BuildMI(BB, X86::MOV32mi, 5),
3035 AllocaFrameIdx, 4).addImm(unsigned(V.I >> 32));
3036 } else {
3037 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3038 BaseReg, Scale, IndexReg, Disp).addImm((unsigned)V.I);
3039 addFullAddress(BuildMI(BB, X86::MOV32mi, 5),
3040 BaseReg, Scale, IndexReg, Disp+4).addImm(
Chris Lattnere7a31c92004-05-07 21:18:15 +00003041 unsigned(V.I >> 32));
Chris Lattner9f1b5312004-05-13 15:12:43 +00003042 }
Chris Lattner5a830962004-02-25 02:56:58 +00003043 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003044
3045 } else if (Class == cLong) {
3046 unsigned ValReg = getReg(I.getOperand(0));
Chris Lattner9f1b5312004-05-13 15:12:43 +00003047 if (AllocaFrameIdx != ~0U) {
3048 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
3049 AllocaFrameIdx).addReg(ValReg);
3050 addFrameReference(BuildMI(BB, X86::MOV32mr, 5),
3051 AllocaFrameIdx, 4).addReg(ValReg+1);
3052 } else {
3053 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
3054 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
3055 addFullAddress(BuildMI(BB, X86::MOV32mr, 5),
3056 BaseReg, Scale, IndexReg, Disp+4).addReg(ValReg+1);
3057 }
Chris Lattnere7a31c92004-05-07 21:18:15 +00003058 } else {
3059 unsigned ValReg = getReg(I.getOperand(0));
3060 static const unsigned Opcodes[] = {
3061 X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
3062 };
3063 unsigned Opcode = Opcodes[Class];
3064 if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003065
3066 if (AllocaFrameIdx != ~0U)
3067 addFrameReference(BuildMI(BB, Opcode, 5), AllocaFrameIdx).addReg(ValReg);
3068 else
3069 addFullAddress(BuildMI(BB, Opcode, 1+4),
3070 BaseReg, Scale, IndexReg, Disp).addReg(ValReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003071 }
Chris Lattner6fc3c522002-11-17 21:11:55 +00003072}
3073
3074
Misha Brukman538607f2004-03-01 23:53:11 +00003075/// visitCastInst - Here we have various kinds of copying with or without sign
3076/// extension going on.
3077///
Chris Lattner3e130a22003-01-13 00:32:26 +00003078void ISel::visitCastInst(CastInst &CI) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003079 Value *Op = CI.getOperand(0);
Chris Lattner427aeb42004-04-11 19:21:59 +00003080
Chris Lattner99382862004-04-12 00:23:04 +00003081 unsigned SrcClass = getClassB(Op->getType());
3082 unsigned DestClass = getClassB(CI.getType());
3083 // Noop casts are not emitted: getReg will return the source operand as the
3084 // register to use for any uses of the noop cast.
3085 if (DestClass == SrcClass)
Chris Lattner427aeb42004-04-11 19:21:59 +00003086 return;
3087
Chris Lattnerf5854472003-06-21 16:01:24 +00003088 // If this is a cast from a 32-bit integer to a Long type, and the only uses
3089 // of the case are GEP instructions, then the cast does not need to be
3090 // generated explicitly, it will be folded into the GEP.
Chris Lattner99382862004-04-12 00:23:04 +00003091 if (DestClass == cLong && SrcClass == cInt) {
Chris Lattnerf5854472003-06-21 16:01:24 +00003092 bool AllUsesAreGEPs = true;
3093 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
3094 if (!isa<GetElementPtrInst>(*I)) {
3095 AllUsesAreGEPs = false;
3096 break;
3097 }
3098
3099 // No need to codegen this cast if all users are getelementptr instrs...
3100 if (AllUsesAreGEPs) return;
3101 }
3102
Chris Lattner99382862004-04-12 00:23:04 +00003103 // If this cast converts a load from a short,int, or long integer to a FP
3104 // value, we will have folded this cast away.
3105 if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
3106 (Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
3107 Op->getType() == Type::LongTy))
3108 return;
3109
3110
Chris Lattner548f61d2003-04-23 17:22:12 +00003111 unsigned DestReg = getReg(CI);
3112 MachineBasicBlock::iterator MI = BB->end();
Chris Lattnerf5854472003-06-21 16:01:24 +00003113 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
Chris Lattner548f61d2003-04-23 17:22:12 +00003114}
3115
Misha Brukman538607f2004-03-01 23:53:11 +00003116/// emitCastOperation - Common code shared between visitCastInst and constant
3117/// expression cast support.
3118///
Chris Lattner548f61d2003-04-23 17:22:12 +00003119void ISel::emitCastOperation(MachineBasicBlock *BB,
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003120 MachineBasicBlock::iterator IP,
Chris Lattner548f61d2003-04-23 17:22:12 +00003121 Value *Src, const Type *DestTy,
3122 unsigned DestReg) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003123 const Type *SrcTy = Src->getType();
3124 unsigned SrcClass = getClassB(SrcTy);
Chris Lattner3e130a22003-01-13 00:32:26 +00003125 unsigned DestClass = getClassB(DestTy);
Chris Lattnerfeac3e12004-04-11 23:21:26 +00003126 unsigned SrcReg = getReg(Src, BB, IP);
3127
Chris Lattner3e130a22003-01-13 00:32:26 +00003128 // Implement casts to bool by using compare on the operand followed by set if
3129 // not zero on the result.
3130 if (DestTy == Type::BoolTy) {
Chris Lattner20772542003-06-01 03:38:24 +00003131 switch (SrcClass) {
3132 case cByte:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003133 BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003134 break;
3135 case cShort:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003136 BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003137 break;
3138 case cInt:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003139 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
Chris Lattner20772542003-06-01 03:38:24 +00003140 break;
3141 case cLong: {
3142 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003143 BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
Chris Lattner20772542003-06-01 03:38:24 +00003144 break;
3145 }
3146 case cFP:
Chris Lattneree352852004-02-29 07:22:16 +00003147 BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003148 BuildMI(*BB, IP, X86::FNSTSW8r, 0);
Chris Lattneree352852004-02-29 07:22:16 +00003149 BuildMI(*BB, IP, X86::SAHF, 1);
Chris Lattner311ca2e2004-02-23 03:21:41 +00003150 break;
Chris Lattner20772542003-06-01 03:38:24 +00003151 }
3152
3153 // If the zero flag is not set, then the value is true, set the byte to
3154 // true.
Chris Lattneree352852004-02-29 07:22:16 +00003155 BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
Chris Lattner94af4142002-12-25 05:13:53 +00003156 return;
3157 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003158
3159 static const unsigned RegRegMove[] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003160 X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
Chris Lattner3e130a22003-01-13 00:32:26 +00003161 };
3162
3163 // Implement casts between values of the same type class (as determined by
3164 // getClass) by using a register-to-register move.
3165 if (SrcClass == DestClass) {
3166 if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
Chris Lattneree352852004-02-29 07:22:16 +00003167 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003168 } else if (SrcClass == cFP) {
3169 if (SrcTy == Type::FloatTy) { // double -> float
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003170 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
Chris Lattneree352852004-02-29 07:22:16 +00003171 BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003172 } else { // float -> double
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003173 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
3174 "Unknown cFP member!");
3175 // Truncate from double to float by storing to memory as short, then
3176 // reading it back.
3177 unsigned FltAlign = TM.getTargetData().getFloatAlignment();
Chris Lattner3e130a22003-01-13 00:32:26 +00003178 int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003179 addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
3180 addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003181 }
3182 } else if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003183 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
3184 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003185 } else {
Chris Lattnerc53544a2003-05-12 20:16:58 +00003186 assert(0 && "Cannot handle this type of cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003187 abort();
Brian Gaeked474e9c2002-12-06 10:49:33 +00003188 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003189 return;
3190 }
3191
3192 // Handle cast of SMALLER int to LARGER int using a move with sign extension
3193 // or zero extension, depending on whether the source type was signed.
3194 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
3195 SrcClass < DestClass) {
3196 bool isLong = DestClass == cLong;
3197 if (isLong) DestClass = cInt;
3198
3199 static const unsigned Opc[][4] = {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003200 { X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
3201 { X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
Chris Lattner3e130a22003-01-13 00:32:26 +00003202 };
3203
Chris Lattner96e3b422004-05-09 22:28:45 +00003204 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Chris Lattneree352852004-02-29 07:22:16 +00003205 BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
Chris Lattner548f61d2003-04-23 17:22:12 +00003206 DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003207
3208 if (isLong) { // Handle upper 32 bits as appropriate...
3209 if (isUnsigned) // Zero out top bits...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003210 BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
Chris Lattner3e130a22003-01-13 00:32:26 +00003211 else // Sign extend bottom half...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003212 BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
Brian Gaeked474e9c2002-12-06 10:49:33 +00003213 }
Chris Lattner3e130a22003-01-13 00:32:26 +00003214 return;
3215 }
3216
3217 // Special case long -> int ...
3218 if (SrcClass == cLong && DestClass == cInt) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003219 BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003220 return;
3221 }
3222
3223 // Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
3224 // move out of AX or AL.
3225 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
3226 && SrcClass > DestClass) {
3227 static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
Chris Lattneree352852004-02-29 07:22:16 +00003228 BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
3229 BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
Chris Lattner3e130a22003-01-13 00:32:26 +00003230 return;
3231 }
3232
3233 // Handle casts from integer to floating point now...
3234 if (DestClass == cFP) {
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003235 // Promote the integer to a type supported by FLD. We do this because there
3236 // are no unsigned FLD instructions, so we must promote an unsigned value to
3237 // a larger signed value, then use FLD on the larger value.
3238 //
3239 const Type *PromoteType = 0;
Chris Lattner85aa7092004-04-10 18:32:01 +00003240 unsigned PromoteOpcode = 0;
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003241 unsigned RealDestReg = DestReg;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003242 switch (SrcTy->getPrimitiveID()) {
3243 case Type::BoolTyID:
3244 case Type::SByteTyID:
3245 // We don't have the facilities for directly loading byte sized data from
3246 // memory (even signed). Promote it to 16 bits.
3247 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003248 PromoteOpcode = X86::MOVSX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003249 break;
3250 case Type::UByteTyID:
3251 PromoteType = Type::ShortTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003252 PromoteOpcode = X86::MOVZX16rr8;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003253 break;
3254 case Type::UShortTyID:
3255 PromoteType = Type::IntTy;
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003256 PromoteOpcode = X86::MOVZX32rr16;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003257 break;
3258 case Type::UIntTyID: {
3259 // Make a 64 bit temporary... and zero out the top of it...
3260 unsigned TmpReg = makeAnotherReg(Type::LongTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003261 BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
3262 BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003263 SrcTy = Type::LongTy;
3264 SrcClass = cLong;
3265 SrcReg = TmpReg;
3266 break;
3267 }
3268 case Type::ULongTyID:
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003269 // Don't fild into the read destination.
3270 DestReg = makeAnotherReg(Type::DoubleTy);
3271 break;
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003272 default: // No promotion needed...
3273 break;
3274 }
3275
3276 if (PromoteType) {
3277 unsigned TmpReg = makeAnotherReg(PromoteType);
Chris Lattner7b92de1e2004-04-06 19:29:36 +00003278 BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
Chris Lattner4d5a50a2003-05-12 20:36:13 +00003279 SrcTy = PromoteType;
3280 SrcClass = getClass(PromoteType);
Chris Lattner3e130a22003-01-13 00:32:26 +00003281 SrcReg = TmpReg;
3282 }
3283
3284 // Spill the integer to memory and reload it from there...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003285 int FrameIdx =
3286 F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
Chris Lattner3e130a22003-01-13 00:32:26 +00003287
3288 if (SrcClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003289 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003290 FrameIdx).addReg(SrcReg);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003291 addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003292 FrameIdx, 4).addReg(SrcReg+1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003293 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003294 static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
Chris Lattneree352852004-02-29 07:22:16 +00003295 addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
3296 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003297 }
3298
3299 static const unsigned Op2[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003300 { 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
Chris Lattneree352852004-02-29 07:22:16 +00003301 addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003302
3303 // We need special handling for unsigned 64-bit integer sources. If the
3304 // input number has the "sign bit" set, then we loaded it incorrectly as a
3305 // negative 64-bit number. In this case, add an offset value.
3306 if (SrcTy == Type::ULongTy) {
3307 // Emit a test instruction to see if the dynamic input value was signed.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003308 BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003309
Chris Lattnerb6bac512004-02-25 06:13:04 +00003310 // If the sign bit is set, get a pointer to an offset, otherwise get a
3311 // pointer to a zero.
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003312 MachineConstantPool *CP = F->getConstantPool();
3313 unsigned Zero = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003314 Constant *Null = Constant::getNullValue(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003315 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003316 CP->getConstantPoolIndex(Null));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003317 unsigned Offset = makeAnotherReg(Type::IntTy);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003318 Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
3319
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003320 addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003321 CP->getConstantPoolIndex(OffsetCst));
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003322 unsigned Addr = makeAnotherReg(Type::IntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003323 BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003324
3325 // Load the constant for an add. FIXME: this could make an 'fadd' that
3326 // reads directly from memory, but we don't support these yet.
3327 unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003328 addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003329
Chris Lattneree352852004-02-29 07:22:16 +00003330 BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
3331 .addReg(ConstReg).addReg(DestReg);
Chris Lattnerbaa58a52004-02-23 03:10:10 +00003332 }
3333
Chris Lattner3e130a22003-01-13 00:32:26 +00003334 return;
3335 }
3336
3337 // Handle casts from floating point to integer now...
3338 if (SrcClass == cFP) {
3339 // Change the floating point control register to use "round towards zero"
3340 // mode when truncating to an integer value.
3341 //
3342 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003343 addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003344
3345 // Load the old value of the high byte of the control word...
3346 unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003347 addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
Chris Lattneree352852004-02-29 07:22:16 +00003348 CWFrameIdx, 1);
Chris Lattner3e130a22003-01-13 00:32:26 +00003349
3350 // Set the high part to be round to zero...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003351 addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
Chris Lattneree352852004-02-29 07:22:16 +00003352 CWFrameIdx, 1).addImm(12);
Chris Lattner3e130a22003-01-13 00:32:26 +00003353
3354 // Reload the modified control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003355 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003356
3357 // Restore the memory image of control word to original value
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003358 addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003359 CWFrameIdx, 1).addReg(HighPartOfCW);
Chris Lattner3e130a22003-01-13 00:32:26 +00003360
3361 // We don't have the facilities for directly storing byte sized data to
3362 // memory. Promote it to 16 bits. We also must promote unsigned values to
3363 // larger classes because we only have signed FP stores.
3364 unsigned StoreClass = DestClass;
3365 const Type *StoreTy = DestTy;
3366 if (StoreClass == cByte || DestTy->isUnsigned())
3367 switch (StoreClass) {
3368 case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
3369 case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
3370 case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
Brian Gaeked4615052003-07-18 20:23:43 +00003371 // The following treatment of cLong may not be perfectly right,
3372 // but it survives chains of casts of the form
3373 // double->ulong->double.
3374 case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
Chris Lattner3e130a22003-01-13 00:32:26 +00003375 default: assert(0 && "Unknown store class!");
3376 }
3377
3378 // Spill the integer to memory and reload it from there...
3379 int FrameIdx =
3380 F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
3381
3382 static const unsigned Op1[] =
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003383 { 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
Chris Lattneree352852004-02-29 07:22:16 +00003384 addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
3385 FrameIdx).addReg(SrcReg);
Chris Lattner3e130a22003-01-13 00:32:26 +00003386
3387 if (DestClass == cLong) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003388 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
3389 addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
Chris Lattneree352852004-02-29 07:22:16 +00003390 FrameIdx, 4);
Chris Lattner3e130a22003-01-13 00:32:26 +00003391 } else {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003392 static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
Chris Lattneree352852004-02-29 07:22:16 +00003393 addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003394 }
3395
3396 // Reload the original control word now...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003397 addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
Chris Lattner3e130a22003-01-13 00:32:26 +00003398 return;
3399 }
3400
Brian Gaeked474e9c2002-12-06 10:49:33 +00003401 // Anything we haven't handled already, we can't (yet) handle at all.
Chris Lattnerc53544a2003-05-12 20:16:58 +00003402 assert(0 && "Unhandled cast instruction!");
Chris Lattner548f61d2003-04-23 17:22:12 +00003403 abort();
Brian Gaekefa8d5712002-11-22 11:07:01 +00003404}
Brian Gaekea1719c92002-10-31 23:03:59 +00003405
Chris Lattner73815062003-10-18 05:56:40 +00003406/// visitVANextInst - Implement the va_next instruction...
Chris Lattnereca195e2003-05-08 19:44:13 +00003407///
Chris Lattner73815062003-10-18 05:56:40 +00003408void ISel::visitVANextInst(VANextInst &I) {
3409 unsigned VAList = getReg(I.getOperand(0));
Chris Lattnereca195e2003-05-08 19:44:13 +00003410 unsigned DestReg = getReg(I);
3411
Chris Lattnereca195e2003-05-08 19:44:13 +00003412 unsigned Size;
Chris Lattner73815062003-10-18 05:56:40 +00003413 switch (I.getArgType()->getPrimitiveID()) {
Chris Lattnereca195e2003-05-08 19:44:13 +00003414 default:
3415 std::cerr << I;
Chris Lattner73815062003-10-18 05:56:40 +00003416 assert(0 && "Error: bad type for va_next instruction!");
Chris Lattnereca195e2003-05-08 19:44:13 +00003417 return;
3418 case Type::PointerTyID:
3419 case Type::UIntTyID:
3420 case Type::IntTyID:
3421 Size = 4;
Chris Lattnereca195e2003-05-08 19:44:13 +00003422 break;
3423 case Type::ULongTyID:
3424 case Type::LongTyID:
Chris Lattnereca195e2003-05-08 19:44:13 +00003425 case Type::DoubleTyID:
3426 Size = 8;
Chris Lattnereca195e2003-05-08 19:44:13 +00003427 break;
3428 }
3429
3430 // Increment the VAList pointer...
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003431 BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
Chris Lattner73815062003-10-18 05:56:40 +00003432}
Chris Lattnereca195e2003-05-08 19:44:13 +00003433
Chris Lattner73815062003-10-18 05:56:40 +00003434void ISel::visitVAArgInst(VAArgInst &I) {
3435 unsigned VAList = getReg(I.getOperand(0));
3436 unsigned DestReg = getReg(I);
3437
3438 switch (I.getType()->getPrimitiveID()) {
3439 default:
3440 std::cerr << I;
3441 assert(0 && "Error: bad type for va_next instruction!");
3442 return;
3443 case Type::PointerTyID:
3444 case Type::UIntTyID:
3445 case Type::IntTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003446 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003447 break;
3448 case Type::ULongTyID:
3449 case Type::LongTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003450 addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
3451 addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
Chris Lattner73815062003-10-18 05:56:40 +00003452 break;
3453 case Type::DoubleTyID:
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003454 addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
Chris Lattner73815062003-10-18 05:56:40 +00003455 break;
3456 }
Chris Lattnereca195e2003-05-08 19:44:13 +00003457}
3458
Misha Brukman538607f2004-03-01 23:53:11 +00003459/// visitGetElementPtrInst - instruction-select GEP instructions
3460///
Chris Lattner3e130a22003-01-13 00:32:26 +00003461void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
Chris Lattnerb6bac512004-02-25 06:13:04 +00003462 // If this GEP instruction will be folded into all of its users, we don't need
3463 // to explicitly calculate it!
3464 unsigned A, B, C, D;
3465 if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), A,B,C,D)) {
3466 // Check all of the users of the instruction to see if they are loads and
3467 // stores.
3468 bool AllWillFold = true;
3469 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
3470 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
3471 if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
3472 cast<Instruction>(*UI)->getOperand(0) == &I) {
3473 AllWillFold = false;
3474 break;
3475 }
3476
3477 // If the instruction is foldable, and will be folded into all users, don't
3478 // emit it!
3479 if (AllWillFold) return;
3480 }
3481
Chris Lattner3e130a22003-01-13 00:32:26 +00003482 unsigned outputReg = getReg(I);
Chris Lattner827832c2004-02-22 17:05:38 +00003483 emitGEPOperation(BB, BB->end(), I.getOperand(0),
Brian Gaeke68b1edc2002-12-16 04:23:29 +00003484 I.op_begin()+1, I.op_end(), outputReg);
Chris Lattnerc0812d82002-12-13 06:56:29 +00003485}
3486
Chris Lattner985fe3d2004-02-25 03:45:50 +00003487/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
3488/// GEPTypes (the derived types being stepped through at each level). On return
3489/// from this function, if some indexes of the instruction are representable as
3490/// an X86 lea instruction, the machine operands are put into the Ops
3491/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
3492/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
3493/// addressing mode that only partially consumes the input, the BaseReg input of
3494/// the addressing mode must be left free.
3495///
3496/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
3497///
Chris Lattnerb6bac512004-02-25 06:13:04 +00003498void ISel::getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
3499 std::vector<Value*> &GEPOps,
3500 std::vector<const Type*> &GEPTypes, unsigned &BaseReg,
3501 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
3502 const TargetData &TD = TM.getTargetData();
3503
Chris Lattner985fe3d2004-02-25 03:45:50 +00003504 // Clear out the state we are working with...
Chris Lattnerb6bac512004-02-25 06:13:04 +00003505 BaseReg = 0; // No base register
3506 Scale = 1; // Unit scale
3507 IndexReg = 0; // No index register
3508 Disp = 0; // No displacement
3509
Chris Lattner985fe3d2004-02-25 03:45:50 +00003510 // While there are GEP indexes that can be folded into the current address,
3511 // keep processing them.
3512 while (!GEPTypes.empty()) {
3513 if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
3514 // It's a struct access. CUI is the index into the structure,
3515 // which names the field. This index must have unsigned type.
3516 const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
3517
3518 // Use the TargetData structure to pick out what the layout of the
3519 // structure is in memory. Since the structure index must be constant, we
3520 // can get its value and use it to find the right byte offset from the
3521 // StructLayout class's list of structure member offsets.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003522 Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
Chris Lattner985fe3d2004-02-25 03:45:50 +00003523 GEPOps.pop_back(); // Consume a GEP operand
3524 GEPTypes.pop_back();
3525 } else {
3526 // It's an array or pointer access: [ArraySize x ElementType].
3527 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3528 Value *idx = GEPOps.back();
3529
3530 // idx is the index into the array. Unlike with structure
3531 // indices, we may not know its actual value at code-generation
3532 // time.
Chris Lattner985fe3d2004-02-25 03:45:50 +00003533
3534 // If idx is a constant, fold it into the offset.
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003535 unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
Chris Lattner985fe3d2004-02-25 03:45:50 +00003536 if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003537 Disp += TypeSize*CSI->getValue();
Chris Lattner28977af2004-04-05 01:30:19 +00003538 } else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
3539 Disp += TypeSize*CUI->getValue();
Chris Lattner985fe3d2004-02-25 03:45:50 +00003540 } else {
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003541 // If the index reg is already taken, we can't handle this index.
3542 if (IndexReg) return;
3543
3544 // If this is a size that we can handle, then add the index as
3545 switch (TypeSize) {
3546 case 1: case 2: case 4: case 8:
3547 // These are all acceptable scales on X86.
3548 Scale = TypeSize;
3549 break;
3550 default:
3551 // Otherwise, we can't handle this scale
3552 return;
3553 }
3554
3555 if (CastInst *CI = dyn_cast<CastInst>(idx))
3556 if (CI->getOperand(0)->getType() == Type::IntTy ||
3557 CI->getOperand(0)->getType() == Type::UIntTy)
3558 idx = CI->getOperand(0);
3559
3560 IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003561 }
3562
3563 GEPOps.pop_back(); // Consume a GEP operand
3564 GEPTypes.pop_back();
3565 }
3566 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003567
3568 // GEPTypes is empty, which means we have a single operand left. See if we
3569 // can set it as the base register.
3570 //
3571 // FIXME: When addressing modes are more powerful/correct, we could load
3572 // global addresses directly as 32-bit immediates.
3573 assert(BaseReg == 0);
Chris Lattner5f2c7b12004-02-25 07:00:55 +00003574 BaseReg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
Chris Lattnerb6bac512004-02-25 06:13:04 +00003575 GEPOps.pop_back(); // Consume the last GEP operand
Chris Lattner985fe3d2004-02-25 03:45:50 +00003576}
3577
3578
Chris Lattnerb6bac512004-02-25 06:13:04 +00003579/// isGEPFoldable - Return true if the specified GEP can be completely
3580/// folded into the addressing mode of a load/store or lea instruction.
3581bool ISel::isGEPFoldable(MachineBasicBlock *MBB,
3582 Value *Src, User::op_iterator IdxBegin,
3583 User::op_iterator IdxEnd, unsigned &BaseReg,
3584 unsigned &Scale, unsigned &IndexReg, unsigned &Disp) {
Chris Lattner7ca04092004-02-22 17:35:42 +00003585 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3586 Src = CPR->getValue();
3587
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003588 std::vector<Value*> GEPOps;
3589 GEPOps.resize(IdxEnd-IdxBegin+1);
3590 GEPOps[0] = Src;
3591 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3592
3593 std::vector<const Type*> GEPTypes;
3594 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3595 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
3596
Chris Lattnerb6bac512004-02-25 06:13:04 +00003597 MachineBasicBlock::iterator IP;
3598 if (MBB) IP = MBB->end();
3599 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
3600
3601 // We can fold it away iff the getGEPIndex call eliminated all operands.
3602 return GEPOps.empty();
3603}
3604
3605void ISel::emitGEPOperation(MachineBasicBlock *MBB,
3606 MachineBasicBlock::iterator IP,
3607 Value *Src, User::op_iterator IdxBegin,
3608 User::op_iterator IdxEnd, unsigned TargetReg) {
3609 const TargetData &TD = TM.getTargetData();
3610 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
3611 Src = CPR->getValue();
3612
3613 std::vector<Value*> GEPOps;
3614 GEPOps.resize(IdxEnd-IdxBegin+1);
3615 GEPOps[0] = Src;
3616 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
3617
3618 std::vector<const Type*> GEPTypes;
3619 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
3620 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
Chris Lattner985fe3d2004-02-25 03:45:50 +00003621
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003622 // Keep emitting instructions until we consume the entire GEP instruction.
3623 while (!GEPOps.empty()) {
3624 unsigned OldSize = GEPOps.size();
Chris Lattnerb6bac512004-02-25 06:13:04 +00003625 unsigned BaseReg, Scale, IndexReg, Disp;
3626 getGEPIndex(MBB, IP, GEPOps, GEPTypes, BaseReg, Scale, IndexReg, Disp);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003627
Chris Lattner985fe3d2004-02-25 03:45:50 +00003628 if (GEPOps.size() != OldSize) {
3629 // getGEPIndex consumed some of the input. Build an LEA instruction here.
Chris Lattnerb6bac512004-02-25 06:13:04 +00003630 unsigned NextTarget = 0;
3631 if (!GEPOps.empty()) {
3632 assert(BaseReg == 0 &&
3633 "getGEPIndex should have left the base register open for chaining!");
3634 NextTarget = BaseReg = makeAnotherReg(Type::UIntTy);
Chris Lattner985fe3d2004-02-25 03:45:50 +00003635 }
Chris Lattnerb6bac512004-02-25 06:13:04 +00003636
3637 if (IndexReg == 0 && Disp == 0)
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003638 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattnerb6bac512004-02-25 06:13:04 +00003639 else
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003640 addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg),
Chris Lattnerb6bac512004-02-25 06:13:04 +00003641 BaseReg, Scale, IndexReg, Disp);
3642 --IP;
3643 TargetReg = NextTarget;
Chris Lattner985fe3d2004-02-25 03:45:50 +00003644 } else if (GEPTypes.empty()) {
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003645 // The getGEPIndex operation didn't want to build an LEA. Check to see if
3646 // all operands are consumed but the base pointer. If so, just load it
3647 // into the register.
Chris Lattner7ca04092004-02-22 17:35:42 +00003648 if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003649 BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
Chris Lattner7ca04092004-02-22 17:35:42 +00003650 } else {
3651 unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003652 BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
Chris Lattner7ca04092004-02-22 17:35:42 +00003653 }
3654 break; // we are now done
Chris Lattnerb6bac512004-02-25 06:13:04 +00003655
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003656 } else {
Brian Gaeke20244b72002-12-12 15:33:40 +00003657 // It's an array or pointer access: [ArraySize x ElementType].
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003658 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
3659 Value *idx = GEPOps.back();
3660 GEPOps.pop_back(); // Consume a GEP operand
3661 GEPTypes.pop_back();
Chris Lattner8a307e82002-12-16 19:32:50 +00003662
Chris Lattner28977af2004-04-05 01:30:19 +00003663 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
Chris Lattnerf5854472003-06-21 16:01:24 +00003664 // operand on X86. Handle this case directly now...
3665 if (CastInst *CI = dyn_cast<CastInst>(idx))
3666 if (CI->getOperand(0)->getType() == Type::IntTy ||
3667 CI->getOperand(0)->getType() == Type::UIntTy)
3668 idx = CI->getOperand(0);
3669
Chris Lattner3e130a22003-01-13 00:32:26 +00003670 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
Chris Lattner8a307e82002-12-16 19:32:50 +00003671 // must find the size of the pointed-to type (Not coincidentally, the next
3672 // type is the type of the elements in the array).
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003673 const Type *ElTy = SqTy->getElementType();
3674 unsigned elementSize = TD.getTypeSize(ElTy);
Chris Lattner8a307e82002-12-16 19:32:50 +00003675
3676 // If idxReg is a constant, we don't need to perform the multiply!
Chris Lattner28977af2004-04-05 01:30:19 +00003677 if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
Chris Lattner3e130a22003-01-13 00:32:26 +00003678 if (!CSI->isNullValue()) {
Chris Lattner28977af2004-04-05 01:30:19 +00003679 unsigned Offset = elementSize*CSI->getRawValue();
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003680 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003681 BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003682 .addReg(Reg).addImm(Offset);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003683 --IP; // Insert the next instruction before this one.
3684 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003685 }
3686 } else if (elementSize == 1) {
3687 // If the element size is 1, we don't have to multiply, just add
3688 unsigned idxReg = getReg(idx, MBB, IP);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003689 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003690 BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003691 --IP; // Insert the next instruction before this one.
3692 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003693 } else {
3694 unsigned idxReg = getReg(idx, MBB, IP);
3695 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003696
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003697 // Make sure we can back the iterator up to point to the first
3698 // instruction emitted.
3699 MachineBasicBlock::iterator BeforeIt = IP;
3700 if (IP == MBB->begin())
3701 BeforeIt = MBB->end();
3702 else
3703 --BeforeIt;
Chris Lattnerb2acc512003-10-19 21:09:10 +00003704 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
3705
Chris Lattner8a307e82002-12-16 19:32:50 +00003706 // Emit an ADD to add OffsetReg to the basePtr.
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003707 unsigned Reg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003708 BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
Chris Lattneree352852004-02-29 07:22:16 +00003709 .addReg(Reg).addReg(OffsetReg);
Chris Lattner3f1e8e72004-02-22 07:04:00 +00003710
3711 // Step to the first instruction of the multiply.
3712 if (BeforeIt == MBB->end())
3713 IP = MBB->begin();
3714 else
3715 IP = ++BeforeIt;
3716
3717 TargetReg = Reg; // Codegen the rest of the GEP into this
Chris Lattner8a307e82002-12-16 19:32:50 +00003718 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003719 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003720 }
Brian Gaeke20244b72002-12-12 15:33:40 +00003721}
3722
Chris Lattner065faeb2002-12-28 20:24:02 +00003723/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
3724/// frame manager, otherwise do it the hard way.
3725///
3726void ISel::visitAllocaInst(AllocaInst &I) {
Chris Lattner9f1b5312004-05-13 15:12:43 +00003727 // If this is a fixed size alloca in the entry block for the function, we
3728 // statically stack allocate the space, so we don't need to do anything here.
3729 //
Chris Lattnercb2fd552004-05-13 07:40:27 +00003730 if (dyn_castFixedAlloca(&I)) return;
Chris Lattner9f1b5312004-05-13 15:12:43 +00003731
Brian Gaekee48ec012002-12-13 06:46:31 +00003732 // Find the data size of the alloca inst's getAllocatedType.
Chris Lattner065faeb2002-12-28 20:24:02 +00003733 const Type *Ty = I.getAllocatedType();
3734 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
3735
Chris Lattner065faeb2002-12-28 20:24:02 +00003736 // Create a register to hold the temporary result of multiplying the type size
3737 // constant by the variable amount.
3738 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
3739 unsigned SrcReg1 = getReg(I.getArraySize());
Chris Lattner065faeb2002-12-28 20:24:02 +00003740
3741 // TotalSizeReg = mul <numelements>, <TypeSize>
3742 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003743 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003744
3745 // AddedSize = add <TotalSizeReg>, 15
3746 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003747 BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003748
3749 // AlignedSize = and <AddedSize>, ~15
3750 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003751 BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
Chris Lattner065faeb2002-12-28 20:24:02 +00003752
Brian Gaekee48ec012002-12-13 06:46:31 +00003753 // Subtract size from stack pointer, thereby allocating some space.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003754 BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
Chris Lattner065faeb2002-12-28 20:24:02 +00003755
Brian Gaekee48ec012002-12-13 06:46:31 +00003756 // Put a pointer to the space into the result register, by copying
3757 // the stack pointer.
Alkis Evlogimenos8295f202004-02-29 08:50:03 +00003758 BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
Chris Lattner065faeb2002-12-28 20:24:02 +00003759
Misha Brukman48196b32003-05-03 02:18:17 +00003760 // Inform the Frame Information that we have just allocated a variable-sized
Chris Lattner065faeb2002-12-28 20:24:02 +00003761 // object.
3762 F->getFrameInfo()->CreateVariableSizedObject();
Brian Gaeke20244b72002-12-12 15:33:40 +00003763}
Chris Lattner3e130a22003-01-13 00:32:26 +00003764
3765/// visitMallocInst - Malloc instructions are code generated into direct calls
3766/// to the library malloc.
3767///
3768void ISel::visitMallocInst(MallocInst &I) {
3769 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
3770 unsigned Arg;
3771
3772 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
3773 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
3774 } else {
3775 Arg = makeAnotherReg(Type::UIntTy);
Chris Lattnerb2acc512003-10-19 21:09:10 +00003776 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattner3e130a22003-01-13 00:32:26 +00003777 MachineBasicBlock::iterator MBBI = BB->end();
Chris Lattnerb2acc512003-10-19 21:09:10 +00003778 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
Chris Lattner3e130a22003-01-13 00:32:26 +00003779 }
3780
3781 std::vector<ValueRecord> Args;
3782 Args.push_back(ValueRecord(Arg, Type::UIntTy));
3783 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003784 1).addExternalSymbol("malloc", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003785 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
3786}
3787
3788
3789/// visitFreeInst - Free instructions are code gen'd to call the free libc
3790/// function.
3791///
3792void ISel::visitFreeInst(FreeInst &I) {
3793 std::vector<ValueRecord> Args;
Chris Lattner5e2cb8b2003-08-04 02:12:48 +00003794 Args.push_back(ValueRecord(I.getOperand(0)));
Chris Lattner3e130a22003-01-13 00:32:26 +00003795 MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
Misha Brukmanc8893fc2003-10-23 16:22:08 +00003796 1).addExternalSymbol("free", true);
Chris Lattner3e130a22003-01-13 00:32:26 +00003797 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
3798}
3799
Chris Lattnerd281de22003-07-26 23:49:58 +00003800/// createX86SimpleInstructionSelector - This pass converts an LLVM function
Chris Lattnerb4f68ed2002-10-29 22:37:54 +00003801/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +00003802/// generated code sucks but the implementation is nice and simple.
3803///
Chris Lattnerf70e0c22003-12-28 21:23:38 +00003804FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
3805 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +00003806}