blob: 81cfd8f0bbdc8531ff1438bad486fe428756f338 [file] [log] [blame]
Evan Chengb1290a62008-10-02 18:29:27 +00001//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Misha Brukman2a835f92009-01-08 15:50:22 +00009//
Evan Chengb1290a62008-10-02 18:29:27 +000010// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
Misha Brukman2a835f92009-01-08 15:50:22 +000015// code is inserted and the process repeated.
Evan Chengb1290a62008-10-02 18:29:27 +000016//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
Misha Brukmance07e992009-01-08 16:40:25 +000019// allocation, see the following papers:
Evan Chengb1290a62008-10-02 18:29:27 +000020//
21// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26// architectures. In Proceedings of the Joint Conference on Languages,
27// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28// NY, USA, 139-148.
Misha Brukman2a835f92009-01-08 15:50:22 +000029//
Evan Chengb1290a62008-10-02 18:29:27 +000030//===----------------------------------------------------------------------===//
31
Evan Chengb1290a62008-10-02 18:29:27 +000032#define DEBUG_TYPE "regalloc"
33
Lang Hames6699fb22009-08-06 23:32:48 +000034#include "PBQP/HeuristicSolver.h"
Lang Hames030c4bf2010-01-26 04:49:58 +000035#include "PBQP/Graph.h"
Lang Hames6699fb22009-08-06 23:32:48 +000036#include "PBQP/Heuristics/Briggs.h"
Evan Chengb1290a62008-10-02 18:29:27 +000037#include "VirtRegMap.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000038#include "VirtRegRewriter.h"
Lang Hamesa937f222009-12-14 06:49:42 +000039#include "llvm/CodeGen/CalcSpillWeights.h"
Evan Chengb1290a62008-10-02 18:29:27 +000040#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Lang Hames27601ef2008-11-16 12:12:54 +000041#include "llvm/CodeGen/LiveStackAnalysis.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000042#include "llvm/CodeGen/MachineFunctionPass.h"
Evan Chengb1290a62008-10-02 18:29:27 +000043#include "llvm/CodeGen/MachineLoopInfo.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000044#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/RegAllocRegistry.h"
46#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Chengb1290a62008-10-02 18:29:27 +000047#include "llvm/Support/Debug.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000048#include "llvm/Support/raw_ostream.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000049#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetMachine.h"
51#include <limits>
Evan Chengb1290a62008-10-02 18:29:27 +000052#include <map>
Misha Brukman2a835f92009-01-08 15:50:22 +000053#include <memory>
Evan Chengb1290a62008-10-02 18:29:27 +000054#include <set>
55#include <vector>
Evan Chengb1290a62008-10-02 18:29:27 +000056
57using namespace llvm;
58
59static RegisterRegAlloc
Duncan Sands1aecd152010-02-18 14:10:41 +000060registerPBQPRepAlloc("pbqp", "PBQP register allocator",
Lang Hames030c4bf2010-01-26 04:49:58 +000061 llvm::createPBQPRegisterAllocator);
Evan Chengb1290a62008-10-02 18:29:27 +000062
Lang Hames8481e3b2009-08-19 01:36:14 +000063static cl::opt<bool>
64pbqpCoalescing("pbqp-coalescing",
Lang Hames030c4bf2010-01-26 04:49:58 +000065 cl::desc("Attempt coalescing during PBQP register allocation."),
66 cl::init(false), cl::Hidden);
Lang Hames8481e3b2009-08-19 01:36:14 +000067
Evan Chengb1290a62008-10-02 18:29:27 +000068namespace {
69
Lang Hames6699fb22009-08-06 23:32:48 +000070 ///
71 /// PBQP based allocators solve the register allocation problem by mapping
72 /// register allocation problems to Partitioned Boolean Quadratic
73 /// Programming problems.
Nick Lewycky6726b6d2009-10-25 06:33:48 +000074 class PBQPRegAlloc : public MachineFunctionPass {
Evan Chengb1290a62008-10-02 18:29:27 +000075 public:
76
77 static char ID;
Daniel Dunbara279bc32009-09-20 02:20:51 +000078
Lang Hames6699fb22009-08-06 23:32:48 +000079 /// Construct a PBQP register allocator.
Dan Gohman1b2d0b82009-08-11 15:15:10 +000080 PBQPRegAlloc() : MachineFunctionPass(&ID) {}
Evan Chengb1290a62008-10-02 18:29:27 +000081
Lang Hames6699fb22009-08-06 23:32:48 +000082 /// Return the pass name.
Dan Gohman00b0a242009-08-11 15:35:57 +000083 virtual const char* getPassName() const {
Evan Chengb1290a62008-10-02 18:29:27 +000084 return "PBQP Register Allocator";
85 }
86
Lang Hames6699fb22009-08-06 23:32:48 +000087 /// PBQP analysis usage.
88 virtual void getAnalysisUsage(AnalysisUsage &au) const {
Lang Hames233a60e2009-11-03 23:52:08 +000089 au.addRequired<SlotIndexes>();
90 au.addPreserved<SlotIndexes>();
Lang Hames6699fb22009-08-06 23:32:48 +000091 au.addRequired<LiveIntervals>();
92 //au.addRequiredID(SplitCriticalEdgesID);
Lang Hamesf7c553e2009-08-12 21:04:53 +000093 au.addRequired<RegisterCoalescer>();
Lang Hamesa937f222009-12-14 06:49:42 +000094 au.addRequired<CalculateSpillWeights>();
Lang Hames6699fb22009-08-06 23:32:48 +000095 au.addRequired<LiveStacks>();
96 au.addPreserved<LiveStacks>();
97 au.addRequired<MachineLoopInfo>();
98 au.addPreserved<MachineLoopInfo>();
99 au.addRequired<VirtRegMap>();
100 MachineFunctionPass::getAnalysisUsage(au);
Evan Chengb1290a62008-10-02 18:29:27 +0000101 }
102
Lang Hames6699fb22009-08-06 23:32:48 +0000103 /// Perform register allocation
Evan Chengb1290a62008-10-02 18:29:27 +0000104 virtual bool runOnMachineFunction(MachineFunction &MF);
105
106 private:
107 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
108 typedef std::vector<const LiveInterval*> Node2LIMap;
109 typedef std::vector<unsigned> AllowedSet;
110 typedef std::vector<AllowedSet> AllowedSetMap;
Lang Hames27601ef2008-11-16 12:12:54 +0000111 typedef std::set<unsigned> RegSet;
112 typedef std::pair<unsigned, unsigned> RegPair;
Lang Hames6699fb22009-08-06 23:32:48 +0000113 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
Lang Hames27601ef2008-11-16 12:12:54 +0000114
115 typedef std::set<LiveInterval*> LiveIntervalSet;
Evan Chengb1290a62008-10-02 18:29:27 +0000116
Lang Hames030c4bf2010-01-26 04:49:58 +0000117 typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
118
Evan Chengb1290a62008-10-02 18:29:27 +0000119 MachineFunction *mf;
120 const TargetMachine *tm;
121 const TargetRegisterInfo *tri;
122 const TargetInstrInfo *tii;
123 const MachineLoopInfo *loopInfo;
124 MachineRegisterInfo *mri;
125
Lang Hames27601ef2008-11-16 12:12:54 +0000126 LiveIntervals *lis;
127 LiveStacks *lss;
Evan Chengb1290a62008-10-02 18:29:27 +0000128 VirtRegMap *vrm;
129
130 LI2NodeMap li2Node;
131 Node2LIMap node2LI;
132 AllowedSetMap allowedSets;
Lang Hames27601ef2008-11-16 12:12:54 +0000133 LiveIntervalSet vregIntervalsToAlloc,
134 emptyVRegIntervals;
Lang Hames030c4bf2010-01-26 04:49:58 +0000135 NodeVector problemNodes;
Evan Chengb1290a62008-10-02 18:29:27 +0000136
Misha Brukman2a835f92009-01-08 15:50:22 +0000137
Lang Hames6699fb22009-08-06 23:32:48 +0000138 /// Builds a PBQP cost vector.
Lang Hames27601ef2008-11-16 12:12:54 +0000139 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000140 PBQP::Vector buildCostVector(unsigned vReg,
141 const RegContainer &allowed,
142 const CoalesceMap &cealesces,
143 PBQP::PBQPNum spillCost) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000144
Lang Hames6699fb22009-08-06 23:32:48 +0000145 /// \brief Builds a PBQP interference matrix.
146 ///
147 /// @return Either a pointer to a non-zero PBQP matrix representing the
148 /// allocation option costs, or a null pointer for a zero matrix.
149 ///
150 /// Expects allowed sets for two interfering LiveIntervals. These allowed
151 /// sets should contain only allocable registers from the LiveInterval's
152 /// register class, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000153 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000154 PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
155 const RegContainer &allowed2) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000156
Lang Hames6699fb22009-08-06 23:32:48 +0000157 ///
158 /// Expects allowed sets for two potentially coalescable LiveIntervals,
159 /// and an estimated benefit due to coalescing. The allowed sets should
160 /// contain only allocable registers from the LiveInterval's register
161 /// classes, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000162 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000163 PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
164 const RegContainer &allowed2,
165 PBQP::PBQPNum cBenefit) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000166
Lang Hames6699fb22009-08-06 23:32:48 +0000167 /// \brief Finds coalescing opportunities and returns them as a map.
168 ///
169 /// Any entries in the map are guaranteed coalescable, even if their
170 /// corresponding live intervals overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000171 CoalesceMap findCoalesces();
Evan Chengb1290a62008-10-02 18:29:27 +0000172
Lang Hames6699fb22009-08-06 23:32:48 +0000173 /// \brief Finds the initial set of vreg intervals to allocate.
Lang Hames27601ef2008-11-16 12:12:54 +0000174 void findVRegIntervalsToAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000175
Lang Hames6699fb22009-08-06 23:32:48 +0000176 /// \brief Constructs a PBQP problem representation of the register
177 /// allocation problem for this function.
178 ///
179 /// @return a PBQP solver object for the register allocation problem.
Lang Hames030c4bf2010-01-26 04:49:58 +0000180 PBQP::Graph constructPBQPProblem();
Evan Chengb1290a62008-10-02 18:29:27 +0000181
Lang Hames6699fb22009-08-06 23:32:48 +0000182 /// \brief Adds a stack interval if the given live interval has been
183 /// spilled. Used to support stack slot coloring.
Evan Chengc781a242009-05-03 18:32:42 +0000184 void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
Lang Hames27601ef2008-11-16 12:12:54 +0000185
Lang Hames6699fb22009-08-06 23:32:48 +0000186 /// \brief Given a solved PBQP problem maps this solution back to a register
187 /// assignment.
188 bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
Evan Chengb1290a62008-10-02 18:29:27 +0000189
Lang Hames6699fb22009-08-06 23:32:48 +0000190 /// \brief Postprocessing before final spilling. Sets basic block "live in"
191 /// variables.
Lang Hames27601ef2008-11-16 12:12:54 +0000192 void finalizeAlloc() const;
193
Evan Chengb1290a62008-10-02 18:29:27 +0000194 };
195
196 char PBQPRegAlloc::ID = 0;
197}
198
199
Lang Hames27601ef2008-11-16 12:12:54 +0000200template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000201PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
202 const RegContainer &allowed,
203 const CoalesceMap &coalesces,
204 PBQP::PBQPNum spillCost) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000205
Lang Hames27601ef2008-11-16 12:12:54 +0000206 typedef typename RegContainer::const_iterator AllowedItr;
207
Evan Chengb1290a62008-10-02 18:29:27 +0000208 // Allocate vector. Additional element (0th) used for spill option
Lang Hames6699fb22009-08-06 23:32:48 +0000209 PBQP::Vector v(allowed.size() + 1, 0);
Evan Chengb1290a62008-10-02 18:29:27 +0000210
Lang Hames6699fb22009-08-06 23:32:48 +0000211 v[0] = spillCost;
Evan Chengb1290a62008-10-02 18:29:27 +0000212
Lang Hames27601ef2008-11-16 12:12:54 +0000213 // Iterate over the allowed registers inserting coalesce benefits if there
214 // are any.
215 unsigned ai = 0;
216 for (AllowedItr itr = allowed.begin(), end = allowed.end();
217 itr != end; ++itr, ++ai) {
218
219 unsigned pReg = *itr;
220
221 CoalesceMap::const_iterator cmItr =
222 coalesces.find(RegPair(vReg, pReg));
223
224 // No coalesce - on to the next preg.
225 if (cmItr == coalesces.end())
226 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000227
228 // We have a coalesce - insert the benefit.
Lang Hames6699fb22009-08-06 23:32:48 +0000229 v[ai + 1] = -cmItr->second;
Lang Hames27601ef2008-11-16 12:12:54 +0000230 }
231
Evan Chengb1290a62008-10-02 18:29:27 +0000232 return v;
233}
234
Lang Hames27601ef2008-11-16 12:12:54 +0000235template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000236PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000237 const RegContainer &allowed1, const RegContainer &allowed2) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000238
Lang Hames27601ef2008-11-16 12:12:54 +0000239 typedef typename RegContainer::const_iterator RegContainerIterator;
Evan Chengb1290a62008-10-02 18:29:27 +0000240
241 // Construct a PBQP matrix representing the cost of allocation options. The
242 // rows and columns correspond to the allocation options for the two live
243 // intervals. Elements will be infinite where corresponding registers alias,
244 // since we cannot allocate aliasing registers to interfering live intervals.
245 // All other elements (non-aliasing combinations) will have zero cost. Note
246 // that the spill option (element 0,0) has zero cost, since we can allocate
247 // both intervals to memory safely (the cost for each individual allocation
248 // to memory is accounted for by the cost vectors for each live interval).
Lang Hames6699fb22009-08-06 23:32:48 +0000249 PBQP::Matrix *m =
250 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
Misha Brukman2a835f92009-01-08 15:50:22 +0000251
Evan Chengb1290a62008-10-02 18:29:27 +0000252 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
253 // between interfering live ranges with non-overlapping register sets (e.g.
254 // non-overlapping reg classes, or disjoint sets of allowed regs within the
255 // same class). The term "overlapping" is used advisedly: sets which do not
256 // intersect, but contain registers which alias, will have non-zero matrices.
257 // We optimize zero matrices away to improve solver speed.
258 bool isZeroMatrix = true;
259
260
261 // Row index. Starts at 1, since the 0th row is for the spill option, which
262 // is always zero.
Misha Brukman2a835f92009-01-08 15:50:22 +0000263 unsigned ri = 1;
Evan Chengb1290a62008-10-02 18:29:27 +0000264
Misha Brukman2a835f92009-01-08 15:50:22 +0000265 // Iterate over allowed sets, insert infinities where required.
Lang Hames27601ef2008-11-16 12:12:54 +0000266 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000267 a1Itr != a1End; ++a1Itr) {
268
269 // Column index, starts at 1 as for row index.
270 unsigned ci = 1;
271 unsigned reg1 = *a1Itr;
272
Lang Hames27601ef2008-11-16 12:12:54 +0000273 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000274 a2Itr != a2End; ++a2Itr) {
275
276 unsigned reg2 = *a2Itr;
277
278 // If the row/column regs are identical or alias insert an infinity.
Lang Hames3f2f3f52009-09-03 02:52:02 +0000279 if (tri->regsOverlap(reg1, reg2)) {
Lang Hames6699fb22009-08-06 23:32:48 +0000280 (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
Evan Chengb1290a62008-10-02 18:29:27 +0000281 isZeroMatrix = false;
282 }
283
284 ++ci;
285 }
286
287 ++ri;
288 }
289
290 // If this turns out to be a zero matrix...
291 if (isZeroMatrix) {
292 // free it and return null.
293 delete m;
294 return 0;
295 }
296
297 // ...otherwise return the cost matrix.
298 return m;
299}
300
Lang Hames27601ef2008-11-16 12:12:54 +0000301template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000302PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000303 const RegContainer &allowed1, const RegContainer &allowed2,
Lang Hames6699fb22009-08-06 23:32:48 +0000304 PBQP::PBQPNum cBenefit) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000305
Lang Hames27601ef2008-11-16 12:12:54 +0000306 typedef typename RegContainer::const_iterator RegContainerIterator;
307
308 // Construct a PBQP Matrix representing the benefits of coalescing. As with
309 // interference matrices the rows and columns represent allowed registers
310 // for the LiveIntervals which are (potentially) to be coalesced. The amount
311 // -cBenefit will be placed in any element representing the same register
312 // for both intervals.
Lang Hames6699fb22009-08-06 23:32:48 +0000313 PBQP::Matrix *m =
314 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
Lang Hames27601ef2008-11-16 12:12:54 +0000315
316 // Reset costs to zero.
317 m->reset(0);
318
319 // Assume the matrix is zero till proven otherwise. Zero matrices will be
320 // optimized away as in the interference case.
321 bool isZeroMatrix = true;
322
323 // Row index. Starts at 1, since the 0th row is for the spill option, which
324 // is always zero.
325 unsigned ri = 1;
326
327 // Iterate over the allowed sets, insert coalescing benefits where
328 // appropriate.
329 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
330 a1Itr != a1End; ++a1Itr) {
331
332 // Column index, starts at 1 as for row index.
333 unsigned ci = 1;
334 unsigned reg1 = *a1Itr;
335
336 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
337 a2Itr != a2End; ++a2Itr) {
338
339 // If the row and column represent the same register insert a beneficial
340 // cost to preference this allocation - it would allow us to eliminate a
Misha Brukman2a835f92009-01-08 15:50:22 +0000341 // move instruction.
Lang Hames27601ef2008-11-16 12:12:54 +0000342 if (reg1 == *a2Itr) {
343 (*m)[ri][ci] = -cBenefit;
344 isZeroMatrix = false;
345 }
346
347 ++ci;
348 }
349
350 ++ri;
351 }
352
353 // If this turns out to be a zero matrix...
354 if (isZeroMatrix) {
355 // ...free it and return null.
356 delete m;
357 return 0;
358 }
359
360 return m;
361}
362
363PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
364
365 typedef MachineFunction::const_iterator MFIterator;
366 typedef MachineBasicBlock::const_iterator MBBIterator;
367 typedef LiveInterval::const_vni_iterator VNIIterator;
Misha Brukman2a835f92009-01-08 15:50:22 +0000368
Lang Hames27601ef2008-11-16 12:12:54 +0000369 CoalesceMap coalescesFound;
370
371 // To find coalesces we need to iterate over the function looking for
372 // copy instructions.
373 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000374 bbItr != bbEnd; ++bbItr) {
375
376 const MachineBasicBlock *mbb = &*bbItr;
Evan Chengb1290a62008-10-02 18:29:27 +0000377
Lang Hames27601ef2008-11-16 12:12:54 +0000378 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
379 iItr != iEnd; ++iItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000380
381 const MachineInstr *instr = &*iItr;
Evan Cheng04ee5a12009-01-20 19:12:24 +0000382 unsigned srcReg, dstReg, srcSubReg, dstSubReg;
Evan Chengb1290a62008-10-02 18:29:27 +0000383
Lang Hames27601ef2008-11-16 12:12:54 +0000384 // If this isn't a copy then continue to the next instruction.
Evan Cheng04ee5a12009-01-20 19:12:24 +0000385 if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
Lang Hames27601ef2008-11-16 12:12:54 +0000386 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000387
Lang Hames27601ef2008-11-16 12:12:54 +0000388 // If the registers are already the same our job is nice and easy.
389 if (dstReg == srcReg)
390 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000391
Lang Hames27601ef2008-11-16 12:12:54 +0000392 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
393 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
394
395 // If both registers are physical then we can't coalesce.
396 if (srcRegIsPhysical && dstRegIsPhysical)
397 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000398
Lang Hames27601ef2008-11-16 12:12:54 +0000399 // If it's a copy that includes a virtual register but the source and
400 // destination classes differ then we can't coalesce, so continue with
401 // the next instruction.
402 const TargetRegisterClass *srcRegClass = srcRegIsPhysical ?
403 tri->getPhysicalRegisterRegClass(srcReg) : mri->getRegClass(srcReg);
404
405 const TargetRegisterClass *dstRegClass = dstRegIsPhysical ?
406 tri->getPhysicalRegisterRegClass(dstReg) : mri->getRegClass(dstReg);
407
408 if (srcRegClass != dstRegClass)
409 continue;
410
411 // We also need any physical regs to be allocable, coalescing with
412 // a non-allocable register is invalid.
413 if (srcRegIsPhysical) {
Lang Hames0b23dc02010-02-09 00:50:27 +0000414 if (std::find(dstRegClass->allocation_order_begin(*mf),
415 dstRegClass->allocation_order_end(*mf), srcReg) ==
416 dstRegClass->allocation_order_end(*mf))
Evan Chengb1290a62008-10-02 18:29:27 +0000417 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000418 }
419
Lang Hames27601ef2008-11-16 12:12:54 +0000420 if (dstRegIsPhysical) {
Lang Hames0b23dc02010-02-09 00:50:27 +0000421 if (std::find(srcRegClass->allocation_order_begin(*mf),
422 srcRegClass->allocation_order_end(*mf), dstReg) ==
423 srcRegClass->allocation_order_end(*mf))
Lang Hames27601ef2008-11-16 12:12:54 +0000424 continue;
425 }
426
427 // If we've made it here we have a copy with compatible register classes.
Misha Brukman2a835f92009-01-08 15:50:22 +0000428 // We can probably coalesce, but we need to consider overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000429 const LiveInterval *srcLI = &lis->getInterval(srcReg),
430 *dstLI = &lis->getInterval(dstReg);
431
432 if (srcLI->overlaps(*dstLI)) {
433 // Even in the case of an overlap we might still be able to coalesce,
434 // but we need to make sure that no definition of either range occurs
435 // while the other range is live.
436
437 // Otherwise start by assuming we're ok.
438 bool badDef = false;
439
440 // Test all defs of the source range.
Misha Brukman2a835f92009-01-08 15:50:22 +0000441 for (VNIIterator
Lang Hames27601ef2008-11-16 12:12:54 +0000442 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
443 vniItr != vniEnd; ++vniItr) {
444
Lang Hames0b23dc02010-02-09 00:50:27 +0000445 // If we find a poorly defined def we err on the side of caution.
446 if (!(*vniItr)->def.isValid()) {
447 badDef = true;
448 break;
449 }
450
Lang Hames27601ef2008-11-16 12:12:54 +0000451 // If we find a def that kills the coalescing opportunity then
452 // record it and break from the loop.
453 if (dstLI->liveAt((*vniItr)->def)) {
454 badDef = true;
455 break;
456 }
457 }
458
459 // If we have a bad def give up, continue to the next instruction.
460 if (badDef)
461 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000462
Lang Hames27601ef2008-11-16 12:12:54 +0000463 // Otherwise test definitions of the destination range.
464 for (VNIIterator
465 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
466 vniItr != vniEnd; ++vniItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000467
Lang Hames27601ef2008-11-16 12:12:54 +0000468 // We want to make sure we skip the copy instruction itself.
Lang Hames52c1afc2009-08-10 23:43:28 +0000469 if ((*vniItr)->getCopy() == instr)
Lang Hames27601ef2008-11-16 12:12:54 +0000470 continue;
471
Lang Hames0b23dc02010-02-09 00:50:27 +0000472 if (!(*vniItr)->def.isValid()) {
473 badDef = true;
474 break;
475 }
476
Lang Hames27601ef2008-11-16 12:12:54 +0000477 if (srcLI->liveAt((*vniItr)->def)) {
478 badDef = true;
479 break;
480 }
481 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000482
Lang Hames27601ef2008-11-16 12:12:54 +0000483 // As before a bad def we give up and continue to the next instr.
484 if (badDef)
485 continue;
486 }
487
488 // If we make it to here then either the ranges didn't overlap, or they
489 // did, but none of their definitions would prevent us from coalescing.
490 // We're good to go with the coalesce.
491
492 float cBenefit = powf(10.0f, loopInfo->getLoopDepth(mbb)) / 5.0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000493
Lang Hames27601ef2008-11-16 12:12:54 +0000494 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
495 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
Evan Chengb1290a62008-10-02 18:29:27 +0000496 }
497
498 }
499
Lang Hames27601ef2008-11-16 12:12:54 +0000500 return coalescesFound;
501}
502
503void PBQPRegAlloc::findVRegIntervalsToAlloc() {
504
505 // Iterate over all live ranges.
506 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
507 itr != end; ++itr) {
508
509 // Ignore physical ones.
510 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
511 continue;
512
513 LiveInterval *li = itr->second;
514
515 // If this live interval is non-empty we will use pbqp to allocate it.
516 // Empty intervals we allocate in a simple post-processing stage in
517 // finalizeAlloc.
518 if (!li->empty()) {
519 vregIntervalsToAlloc.insert(li);
520 }
521 else {
522 emptyVRegIntervals.insert(li);
523 }
524 }
Evan Chengb1290a62008-10-02 18:29:27 +0000525}
526
Lang Hames030c4bf2010-01-26 04:49:58 +0000527PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
Evan Chengb1290a62008-10-02 18:29:27 +0000528
529 typedef std::vector<const LiveInterval*> LIVector;
Lang Hames27601ef2008-11-16 12:12:54 +0000530 typedef std::vector<unsigned> RegVector;
Evan Chengb1290a62008-10-02 18:29:27 +0000531
Lang Hames27601ef2008-11-16 12:12:54 +0000532 // This will store the physical intervals for easy reference.
533 LIVector physIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000534
535 // Start by clearing the old node <-> live interval mappings & allowed sets
536 li2Node.clear();
537 node2LI.clear();
538 allowedSets.clear();
539
Lang Hames27601ef2008-11-16 12:12:54 +0000540 // Populate physIntervals, update preg use:
541 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000542 itr != end; ++itr) {
543
Evan Chengb1290a62008-10-02 18:29:27 +0000544 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
545 physIntervals.push_back(itr->second);
546 mri->setPhysRegUsed(itr->second->reg);
547 }
Evan Chengb1290a62008-10-02 18:29:27 +0000548 }
549
Lang Hames27601ef2008-11-16 12:12:54 +0000550 // Iterate over vreg intervals, construct live interval <-> node number
551 // mappings.
Misha Brukman2a835f92009-01-08 15:50:22 +0000552 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000553 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
554 itr != end; ++itr) {
555 const LiveInterval *li = *itr;
556
557 li2Node[li] = node2LI.size();
558 node2LI.push_back(li);
559 }
560
561 // Get the set of potential coalesces.
Lang Hames8481e3b2009-08-19 01:36:14 +0000562 CoalesceMap coalesces;
563
564 if (pbqpCoalescing) {
565 coalesces = findCoalesces();
566 }
Evan Chengb1290a62008-10-02 18:29:27 +0000567
568 // Construct a PBQP solver for this problem
Lang Hames030c4bf2010-01-26 04:49:58 +0000569 PBQP::Graph problem;
570 problemNodes.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000571
572 // Resize allowedSets container appropriately.
Lang Hames27601ef2008-11-16 12:12:54 +0000573 allowedSets.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000574
575 // Iterate over virtual register intervals to compute allowed sets...
576 for (unsigned node = 0; node < node2LI.size(); ++node) {
577
578 // Grab pointers to the interval and its register class.
579 const LiveInterval *li = node2LI[node];
580 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000581
Evan Chengb1290a62008-10-02 18:29:27 +0000582 // Start by assuming all allocable registers in the class are allowed...
Lang Hames27601ef2008-11-16 12:12:54 +0000583 RegVector liAllowed(liRC->allocation_order_begin(*mf),
584 liRC->allocation_order_end(*mf));
Evan Chengb1290a62008-10-02 18:29:27 +0000585
Lang Hames27601ef2008-11-16 12:12:54 +0000586 // Eliminate the physical registers which overlap with this range, along
587 // with all their aliases.
588 for (LIVector::iterator pItr = physIntervals.begin(),
589 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000590
Lang Hames27601ef2008-11-16 12:12:54 +0000591 if (!li->overlaps(**pItr))
592 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000593
Lang Hames27601ef2008-11-16 12:12:54 +0000594 unsigned pReg = (*pItr)->reg;
Evan Chengb1290a62008-10-02 18:29:27 +0000595
Lang Hames27601ef2008-11-16 12:12:54 +0000596 // If we get here then the live intervals overlap, but we're still ok
597 // if they're coalescable.
598 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
599 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000600
Lang Hames27601ef2008-11-16 12:12:54 +0000601 // If we get here then we have a genuine exclusion.
Evan Chengb1290a62008-10-02 18:29:27 +0000602
Lang Hames27601ef2008-11-16 12:12:54 +0000603 // Remove the overlapping reg...
604 RegVector::iterator eraseItr =
605 std::find(liAllowed.begin(), liAllowed.end(), pReg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000606
Lang Hames27601ef2008-11-16 12:12:54 +0000607 if (eraseItr != liAllowed.end())
608 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000609
Lang Hames27601ef2008-11-16 12:12:54 +0000610 const unsigned *aliasItr = tri->getAliasSet(pReg);
611
612 if (aliasItr != 0) {
613 // ...and its aliases.
614 for (; *aliasItr != 0; ++aliasItr) {
615 RegVector::iterator eraseItr =
616 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
Misha Brukman2a835f92009-01-08 15:50:22 +0000617
Lang Hames27601ef2008-11-16 12:12:54 +0000618 if (eraseItr != liAllowed.end()) {
619 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000620 }
Evan Chengb1290a62008-10-02 18:29:27 +0000621 }
Evan Chengb1290a62008-10-02 18:29:27 +0000622 }
Evan Chengb1290a62008-10-02 18:29:27 +0000623 }
624
625 // Copy the allowed set into a member vector for use when constructing cost
626 // vectors & matrices, and mapping PBQP solutions back to assignments.
627 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
628
629 // Set the spill cost to the interval weight, or epsilon if the
630 // interval weight is zero
Lang Hames6699fb22009-08-06 23:32:48 +0000631 PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
632 li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
Evan Chengb1290a62008-10-02 18:29:27 +0000633
634 // Build a cost vector for this interval.
Lang Hames6699fb22009-08-06 23:32:48 +0000635 problemNodes[node] =
636 problem.addNode(
637 buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
Evan Chengb1290a62008-10-02 18:29:27 +0000638
639 }
640
Lang Hames27601ef2008-11-16 12:12:54 +0000641
Evan Chengb1290a62008-10-02 18:29:27 +0000642 // Now add the cost matrices...
643 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
Evan Chengb1290a62008-10-02 18:29:27 +0000644 const LiveInterval *li = node2LI[node1];
645
Evan Chengb1290a62008-10-02 18:29:27 +0000646 // Test for live range overlaps and insert interference matrices.
647 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
648 const LiveInterval *li2 = node2LI[node2];
649
Lang Hames27601ef2008-11-16 12:12:54 +0000650 CoalesceMap::const_iterator cmItr =
651 coalesces.find(RegPair(li->reg, li2->reg));
Evan Chengb1290a62008-10-02 18:29:27 +0000652
Lang Hames6699fb22009-08-06 23:32:48 +0000653 PBQP::Matrix *m = 0;
Evan Chengb1290a62008-10-02 18:29:27 +0000654
Lang Hames27601ef2008-11-16 12:12:54 +0000655 if (cmItr != coalesces.end()) {
656 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
657 cmItr->second);
658 }
659 else if (li->overlaps(*li2)) {
660 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
661 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000662
Lang Hames27601ef2008-11-16 12:12:54 +0000663 if (m != 0) {
Lang Hames6699fb22009-08-06 23:32:48 +0000664 problem.addEdge(problemNodes[node1],
665 problemNodes[node2],
666 *m);
667
Lang Hames27601ef2008-11-16 12:12:54 +0000668 delete m;
Evan Chengb1290a62008-10-02 18:29:27 +0000669 }
670 }
671 }
672
Lang Hames6699fb22009-08-06 23:32:48 +0000673 assert(problem.getNumNodes() == allowedSets.size());
Lang Hames6699fb22009-08-06 23:32:48 +0000674/*
675 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
676 << problem.getNumEdges() << " edges.\n";
677
678 problem.printDot(std::cerr);
679*/
Evan Chengb1290a62008-10-02 18:29:27 +0000680 // We're done, PBQP problem constructed - return it.
Lang Hames6699fb22009-08-06 23:32:48 +0000681 return problem;
Evan Chengb1290a62008-10-02 18:29:27 +0000682}
683
Evan Chengc781a242009-05-03 18:32:42 +0000684void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
685 MachineRegisterInfo* mri) {
Lang Hames27601ef2008-11-16 12:12:54 +0000686 int stackSlot = vrm->getStackSlot(spilled->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000687
688 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
Lang Hames27601ef2008-11-16 12:12:54 +0000689 return;
690
Evan Chengc781a242009-05-03 18:32:42 +0000691 const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
692 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
Lang Hames27601ef2008-11-16 12:12:54 +0000693
694 VNInfo *vni;
695 if (stackInterval.getNumValNums() != 0)
696 vni = stackInterval.getValNumInfo(0);
697 else
Lang Hames86511252009-09-04 20:41:11 +0000698 vni = stackInterval.getNextValue(
Lang Hames233a60e2009-11-03 23:52:08 +0000699 SlotIndex(), 0, false, lss->getVNInfoAllocator());
Lang Hames27601ef2008-11-16 12:12:54 +0000700
701 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
702 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
703}
704
Lang Hames6699fb22009-08-06 23:32:48 +0000705bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
Lang Hamese98b4b02009-11-15 04:39:51 +0000706
Evan Chengb1290a62008-10-02 18:29:27 +0000707 // Set to true if we have any spills
708 bool anotherRoundNeeded = false;
709
710 // Clear the existing allocation.
711 vrm->clearAllVirt();
Daniel Dunbara279bc32009-09-20 02:20:51 +0000712
Evan Chengb1290a62008-10-02 18:29:27 +0000713 // Iterate over the nodes mapping the PBQP solution to a register assignment.
714 for (unsigned node = 0; node < node2LI.size(); ++node) {
Lang Hames27601ef2008-11-16 12:12:54 +0000715 unsigned virtReg = node2LI[node]->reg,
Lang Hames030c4bf2010-01-26 04:49:58 +0000716 allocSelection = solution.getSelection(problemNodes[node]);
Lang Hames6699fb22009-08-06 23:32:48 +0000717
Evan Chengb1290a62008-10-02 18:29:27 +0000718
719 // If the PBQP solution is non-zero it's a physical register...
720 if (allocSelection != 0) {
721 // Get the physical reg, subtracting 1 to account for the spill option.
722 unsigned physReg = allowedSets[node][allocSelection - 1];
723
David Greene30931542010-01-05 01:25:43 +0000724 DEBUG(dbgs() << "VREG " << virtReg << " -> "
Lang Hames233fd9c2009-08-18 23:34:50 +0000725 << tri->getName(physReg) << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000726
727 assert(physReg != 0);
728
Evan Chengb1290a62008-10-02 18:29:27 +0000729 // Add to the virt reg map and update the used phys regs.
Lang Hames27601ef2008-11-16 12:12:54 +0000730 vrm->assignVirt2Phys(virtReg, physReg);
Evan Chengb1290a62008-10-02 18:29:27 +0000731 }
732 // ...Otherwise it's a spill.
733 else {
734
735 // Make sure we ignore this virtual reg on the next round
736 // of allocation
Lang Hames27601ef2008-11-16 12:12:54 +0000737 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
Evan Chengb1290a62008-10-02 18:29:27 +0000738
Evan Chengb1290a62008-10-02 18:29:27 +0000739 // Insert spill ranges for this live range
Lang Hames27601ef2008-11-16 12:12:54 +0000740 const LiveInterval *spillInterval = node2LI[node];
741 double oldSpillWeight = spillInterval->weight;
Evan Chengb1290a62008-10-02 18:29:27 +0000742 SmallVector<LiveInterval*, 8> spillIs;
743 std::vector<LiveInterval*> newSpills =
Evan Chengc781a242009-05-03 18:32:42 +0000744 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
745 addStackInterval(spillInterval, mri);
Lang Hames27601ef2008-11-16 12:12:54 +0000746
Daniel Dunbarbc84ad92009-08-20 20:01:34 +0000747 (void) oldSpillWeight;
David Greene30931542010-01-05 01:25:43 +0000748 DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
Lang Hames233fd9c2009-08-18 23:34:50 +0000749 << oldSpillWeight << ", New vregs: ");
Lang Hames27601ef2008-11-16 12:12:54 +0000750
751 // Copy any newly inserted live intervals into the list of regs to
752 // allocate.
753 for (std::vector<LiveInterval*>::const_iterator
754 itr = newSpills.begin(), end = newSpills.end();
755 itr != end; ++itr) {
756
757 assert(!(*itr)->empty() && "Empty spill range.");
758
David Greene30931542010-01-05 01:25:43 +0000759 DEBUG(dbgs() << (*itr)->reg << " ");
Lang Hames27601ef2008-11-16 12:12:54 +0000760
761 vregIntervalsToAlloc.insert(*itr);
762 }
763
David Greene30931542010-01-05 01:25:43 +0000764 DEBUG(dbgs() << ")\n");
Evan Chengb1290a62008-10-02 18:29:27 +0000765
766 // We need another round if spill intervals were added.
767 anotherRoundNeeded |= !newSpills.empty();
768 }
769 }
770
771 return !anotherRoundNeeded;
772}
773
Lang Hames27601ef2008-11-16 12:12:54 +0000774void PBQPRegAlloc::finalizeAlloc() const {
775 typedef LiveIntervals::iterator LIIterator;
776 typedef LiveInterval::Ranges::const_iterator LRIterator;
777
778 // First allocate registers for the empty intervals.
Argyrios Kyrtzidis3713c0b2008-11-19 12:56:21 +0000779 for (LiveIntervalSet::const_iterator
Daniel Dunbara279bc32009-09-20 02:20:51 +0000780 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
Lang Hames27601ef2008-11-16 12:12:54 +0000781 itr != end; ++itr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000782 LiveInterval *li = *itr;
Lang Hames27601ef2008-11-16 12:12:54 +0000783
Evan Cheng90f95f82009-06-14 20:22:55 +0000784 unsigned physReg = vrm->getRegAllocPref(li->reg);
Lang Hames6699fb22009-08-06 23:32:48 +0000785
Lang Hames27601ef2008-11-16 12:12:54 +0000786 if (physReg == 0) {
787 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000788 physReg = *liRC->allocation_order_begin(*mf);
Lang Hames27601ef2008-11-16 12:12:54 +0000789 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000790
791 vrm->assignVirt2Phys(li->reg, physReg);
Lang Hames27601ef2008-11-16 12:12:54 +0000792 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000793
Lang Hames27601ef2008-11-16 12:12:54 +0000794 // Finally iterate over the basic blocks to compute and set the live-in sets.
795 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
796 MachineBasicBlock *entryMBB = &*mf->begin();
797
798 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
799 liItr != liEnd; ++liItr) {
800
801 const LiveInterval *li = liItr->second;
802 unsigned reg = 0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000803
Lang Hames27601ef2008-11-16 12:12:54 +0000804 // Get the physical register for this interval
805 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
806 reg = li->reg;
807 }
808 else if (vrm->isAssignedReg(li->reg)) {
809 reg = vrm->getPhys(li->reg);
810 }
811 else {
812 // Ranges which are assigned a stack slot only are ignored.
813 continue;
814 }
815
Lang Hamesb0e519f2009-05-17 23:50:36 +0000816 if (reg == 0) {
Lang Hames6699fb22009-08-06 23:32:48 +0000817 // Filter out zero regs - they're for intervals that were spilled.
Lang Hamesb0e519f2009-05-17 23:50:36 +0000818 continue;
819 }
820
Lang Hames27601ef2008-11-16 12:12:54 +0000821 // Iterate over the ranges of the current interval...
822 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
823 lrItr != lrEnd; ++lrItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000824
Lang Hames27601ef2008-11-16 12:12:54 +0000825 // Find the set of basic blocks which this range is live into...
826 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
827 // And add the physreg for this interval to their live-in sets.
828 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
829 if (liveInMBBs[i] != entryMBB) {
830 if (!liveInMBBs[i]->isLiveIn(reg)) {
831 liveInMBBs[i]->addLiveIn(reg);
832 }
833 }
834 }
835 liveInMBBs.clear();
836 }
837 }
838 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000839
Lang Hames27601ef2008-11-16 12:12:54 +0000840}
841
Evan Chengb1290a62008-10-02 18:29:27 +0000842bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
Lang Hames27601ef2008-11-16 12:12:54 +0000843
Evan Chengb1290a62008-10-02 18:29:27 +0000844 mf = &MF;
845 tm = &mf->getTarget();
846 tri = tm->getRegisterInfo();
Lang Hames27601ef2008-11-16 12:12:54 +0000847 tii = tm->getInstrInfo();
Lang Hames233a60e2009-11-03 23:52:08 +0000848 mri = &mf->getRegInfo();
Evan Chengb1290a62008-10-02 18:29:27 +0000849
Lang Hames27601ef2008-11-16 12:12:54 +0000850 lis = &getAnalysis<LiveIntervals>();
851 lss = &getAnalysis<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +0000852 loopInfo = &getAnalysis<MachineLoopInfo>();
853
Owen Anderson49c8aa02009-03-13 05:55:11 +0000854 vrm = &getAnalysis<VirtRegMap>();
Evan Chengb1290a62008-10-02 18:29:27 +0000855
Lang Hames030c4bf2010-01-26 04:49:58 +0000856 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000857
Evan Chengb1290a62008-10-02 18:29:27 +0000858 // Allocator main loop:
Misha Brukman2a835f92009-01-08 15:50:22 +0000859 //
Evan Chengb1290a62008-10-02 18:29:27 +0000860 // * Map current regalloc problem to a PBQP problem
861 // * Solve the PBQP problem
862 // * Map the solution back to a register allocation
863 // * Spill if necessary
Misha Brukman2a835f92009-01-08 15:50:22 +0000864 //
Evan Chengb1290a62008-10-02 18:29:27 +0000865 // This process is continued till no more spills are generated.
866
Lang Hames27601ef2008-11-16 12:12:54 +0000867 // Find the vreg intervals in need of allocation.
868 findVRegIntervalsToAlloc();
Misha Brukman2a835f92009-01-08 15:50:22 +0000869
Lang Hames27601ef2008-11-16 12:12:54 +0000870 // If there are non-empty intervals allocate them using pbqp.
871 if (!vregIntervalsToAlloc.empty()) {
Evan Chengb1290a62008-10-02 18:29:27 +0000872
Lang Hames27601ef2008-11-16 12:12:54 +0000873 bool pbqpAllocComplete = false;
874 unsigned round = 0;
875
876 while (!pbqpAllocComplete) {
David Greene30931542010-01-05 01:25:43 +0000877 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000878
Lang Hames030c4bf2010-01-26 04:49:58 +0000879 PBQP::Graph problem = constructPBQPProblem();
880 PBQP::Solution solution =
881 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
Lang Hames233fd9c2009-08-18 23:34:50 +0000882
Lang Hames6699fb22009-08-06 23:32:48 +0000883 pbqpAllocComplete = mapPBQPToRegAlloc(solution);
Lang Hames27601ef2008-11-16 12:12:54 +0000884
885 ++round;
886 }
Evan Chengb1290a62008-10-02 18:29:27 +0000887 }
888
Lang Hames27601ef2008-11-16 12:12:54 +0000889 // Finalise allocation, allocate empty ranges.
890 finalizeAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000891
Lang Hames27601ef2008-11-16 12:12:54 +0000892 vregIntervalsToAlloc.clear();
893 emptyVRegIntervals.clear();
894 li2Node.clear();
895 node2LI.clear();
896 allowedSets.clear();
Lang Hames030c4bf2010-01-26 04:49:58 +0000897 problemNodes.clear();
Lang Hames27601ef2008-11-16 12:12:54 +0000898
David Greene30931542010-01-05 01:25:43 +0000899 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000900
Lang Hames87e3bca2009-05-06 02:36:21 +0000901 // Run rewriter
902 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
903
904 rewriter->runOnMachineFunction(*mf, *vrm, lis);
Lang Hames27601ef2008-11-16 12:12:54 +0000905
Misha Brukman2a835f92009-01-08 15:50:22 +0000906 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000907}
908
909FunctionPass* llvm::createPBQPRegisterAllocator() {
910 return new PBQPRegAlloc();
911}
912
913
914#undef DEBUG_TYPE