blob: e0d299e39e54100fee81d9fe60981f92e4081898 [file] [log] [blame]
Chris Lattner45762472010-02-03 21:24:49 +00001//===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the X86MCCodeEmitter class.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "x86-emitter"
15#include "X86.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000016#include "X86InstrInfo.h"
Chris Lattner45762472010-02-03 21:24:49 +000017#include "llvm/MC/MCCodeEmitter.h"
Chris Lattner92b1dfe2010-02-03 21:43:43 +000018#include "llvm/MC/MCInst.h"
19#include "llvm/Support/raw_ostream.h"
Chris Lattner45762472010-02-03 21:24:49 +000020using namespace llvm;
21
Chris Lattner5dccfad2010-02-10 06:52:12 +000022// FIXME: This should move to a header.
23namespace llvm {
24namespace X86 {
25enum Fixups {
26 reloc_pcrel_word = FirstTargetFixupKind,
27 reloc_picrel_word,
28 reloc_absolute_word,
29 reloc_absolute_word_sext,
30 reloc_absolute_dword
31};
32}
33}
34
Chris Lattner45762472010-02-03 21:24:49 +000035namespace {
36class X86MCCodeEmitter : public MCCodeEmitter {
37 X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
38 void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT
Chris Lattner92b1dfe2010-02-03 21:43:43 +000039 const TargetMachine &TM;
40 const TargetInstrInfo &TII;
Chris Lattner1ac23b12010-02-05 02:18:40 +000041 bool Is64BitMode;
Chris Lattner45762472010-02-03 21:24:49 +000042public:
Chris Lattner00cb3fe2010-02-05 21:51:35 +000043 X86MCCodeEmitter(TargetMachine &tm, bool is64Bit)
Chris Lattner92b1dfe2010-02-03 21:43:43 +000044 : TM(tm), TII(*TM.getInstrInfo()) {
Chris Lattner00cb3fe2010-02-05 21:51:35 +000045 Is64BitMode = is64Bit;
Chris Lattner45762472010-02-03 21:24:49 +000046 }
47
48 ~X86MCCodeEmitter() {}
Daniel Dunbar73c55742010-02-09 22:59:55 +000049
50 unsigned getNumFixupKinds() const {
51 return 5;
52 }
53
54 MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
55 static MCFixupKindInfo Infos[] = {
56 { "reloc_pcrel_word", 0, 4 * 8 },
57 { "reloc_picrel_word", 0, 4 * 8 },
58 { "reloc_absolute_word", 0, 4 * 8 },
59 { "reloc_absolute_word_sext", 0, 4 * 8 },
60 { "reloc_absolute_dword", 0, 8 * 8 }
61 };
62
63 assert(Kind >= FirstTargetFixupKind && Kind < MaxTargetFixupKind &&
64 "Invalid kind!");
65 return Infos[Kind - FirstTargetFixupKind];
66 }
Chris Lattner45762472010-02-03 21:24:49 +000067
Chris Lattner28249d92010-02-05 01:53:19 +000068 static unsigned GetX86RegNum(const MCOperand &MO) {
69 return X86RegisterInfo::getX86RegNum(MO.getReg());
70 }
71
Chris Lattner37ce80e2010-02-10 06:41:02 +000072 void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +000073 OS << (char)C;
Chris Lattner37ce80e2010-02-10 06:41:02 +000074 ++CurByte;
Chris Lattner45762472010-02-03 21:24:49 +000075 }
Chris Lattner92b1dfe2010-02-03 21:43:43 +000076
Chris Lattner37ce80e2010-02-10 06:41:02 +000077 void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
78 raw_ostream &OS) const {
Chris Lattner28249d92010-02-05 01:53:19 +000079 // Output the constant in little endian byte order.
80 for (unsigned i = 0; i != Size; ++i) {
Chris Lattner37ce80e2010-02-10 06:41:02 +000081 EmitByte(Val & 255, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000082 Val >>= 8;
83 }
84 }
Chris Lattner0e73c392010-02-05 06:16:07 +000085
Chris Lattnera38c7072010-02-11 06:54:23 +000086 void EmitImmediate(const MCOperand &Disp, unsigned ImmSize,
87 unsigned &CurByte, raw_ostream &OS,
88 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +000089
90 inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
91 unsigned RM) {
92 assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
93 return RM | (RegOpcode << 3) | (Mod << 6);
94 }
95
96 void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
Chris Lattner37ce80e2010-02-10 06:41:02 +000097 unsigned &CurByte, raw_ostream &OS) const {
98 EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +000099 }
100
Chris Lattner0e73c392010-02-05 06:16:07 +0000101 void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000102 unsigned &CurByte, raw_ostream &OS) const {
103 // SIB byte is in the same format as the ModRMByte.
104 EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000105 }
106
107
Chris Lattner1ac23b12010-02-05 02:18:40 +0000108 void EmitMemModRMByte(const MCInst &MI, unsigned Op,
Chris Lattner1b670602010-02-11 06:49:52 +0000109 unsigned RegOpcodeField,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000110 unsigned &CurByte, raw_ostream &OS,
111 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner28249d92010-02-05 01:53:19 +0000112
Daniel Dunbar73c55742010-02-09 22:59:55 +0000113 void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
114 SmallVectorImpl<MCFixup> &Fixups) const;
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000115
Chris Lattner45762472010-02-03 21:24:49 +0000116};
117
118} // end anonymous namespace
119
120
Chris Lattner00cb3fe2010-02-05 21:51:35 +0000121MCCodeEmitter *llvm::createX86_32MCCodeEmitter(const Target &,
122 TargetMachine &TM) {
123 return new X86MCCodeEmitter(TM, false);
124}
125
126MCCodeEmitter *llvm::createX86_64MCCodeEmitter(const Target &,
127 TargetMachine &TM) {
128 return new X86MCCodeEmitter(TM, true);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000129}
130
131
Chris Lattner1ac23b12010-02-05 02:18:40 +0000132/// isDisp8 - Return true if this signed displacement fits in a 8-bit
133/// sign-extended field.
134static bool isDisp8(int Value) {
135 return Value == (signed char)Value;
136}
137
Chris Lattner0e73c392010-02-05 06:16:07 +0000138void X86MCCodeEmitter::
Chris Lattnera38c7072010-02-11 06:54:23 +0000139EmitImmediate(const MCOperand &DispOp, unsigned Size,
140 unsigned &CurByte, raw_ostream &OS,
141 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner0e73c392010-02-05 06:16:07 +0000142 // If this is a simple integer displacement that doesn't require a relocation,
143 // emit it now.
Chris Lattner8496a262010-02-10 06:30:00 +0000144 if (DispOp.isImm()) {
Chris Lattnera38c7072010-02-11 06:54:23 +0000145 EmitConstant(DispOp.getImm(), Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000146 return;
147 }
Chris Lattner37ce80e2010-02-10 06:41:02 +0000148
Chris Lattnera38c7072010-02-11 06:54:23 +0000149 // FIXME: Pass in the relocation type.
Chris Lattner0e73c392010-02-05 06:16:07 +0000150#if 0
Chris Lattner0e73c392010-02-05 06:16:07 +0000151 unsigned RelocType = Is64BitMode ?
152 (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext)
153 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
Chris Lattner0e73c392010-02-05 06:16:07 +0000154#endif
Chris Lattner5dccfad2010-02-10 06:52:12 +0000155
156 // Emit a symbolic constant as a fixup and 4 zeros.
157 Fixups.push_back(MCFixup::Create(CurByte, DispOp.getExpr(),
158 MCFixupKind(X86::reloc_absolute_word)));
Chris Lattnera38c7072010-02-11 06:54:23 +0000159 EmitConstant(0, Size, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000160}
161
162
Chris Lattner1ac23b12010-02-05 02:18:40 +0000163void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
164 unsigned RegOpcodeField,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000165 unsigned &CurByte,
Chris Lattner5dccfad2010-02-10 06:52:12 +0000166 raw_ostream &OS,
167 SmallVectorImpl<MCFixup> &Fixups) const{
Chris Lattner8496a262010-02-10 06:30:00 +0000168 const MCOperand &Disp = MI.getOperand(Op+3);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000169 const MCOperand &Base = MI.getOperand(Op);
Chris Lattner0e73c392010-02-05 06:16:07 +0000170 const MCOperand &Scale = MI.getOperand(Op+1);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000171 const MCOperand &IndexReg = MI.getOperand(Op+2);
172 unsigned BaseReg = Base.getReg();
173
Chris Lattnera8168ec2010-02-09 21:57:34 +0000174 // Determine whether a SIB byte is needed.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000175 // If no BaseReg, issue a RIP relative instruction only if the MCE can
176 // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
177 // 2-7) and absolute references.
Chris Lattnera8168ec2010-02-09 21:57:34 +0000178 if (// The SIB byte must be used if there is an index register.
Chris Lattner1ac23b12010-02-05 02:18:40 +0000179 IndexReg.getReg() == 0 &&
Chris Lattnera8168ec2010-02-09 21:57:34 +0000180 // The SIB byte must be used if the base is ESP/RSP.
181 BaseReg != X86::ESP && BaseReg != X86::RSP &&
182 // If there is no base register and we're in 64-bit mode, we need a SIB
183 // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
184 (!Is64BitMode || BaseReg != 0)) {
185
186 if (BaseReg == 0 || // [disp32] in X86-32 mode
187 BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
Chris Lattner37ce80e2010-02-10 06:41:02 +0000188 EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
Chris Lattnera38c7072010-02-11 06:54:23 +0000189 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000190 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000191 }
Chris Lattnera8168ec2010-02-09 21:57:34 +0000192
193 unsigned BaseRegNo = GetX86RegNum(Base);
194
195 // If the base is not EBP/ESP and there is no displacement, use simple
196 // indirect register encoding, this handles addresses like [EAX]. The
197 // encoding for [EBP] with no displacement means [disp32] so we handle it
198 // by emitting a displacement of 0 below.
Chris Lattner8496a262010-02-10 06:30:00 +0000199 if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000200 EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000201 return;
202 }
203
204 // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
Chris Lattner8496a262010-02-10 06:30:00 +0000205 if (Disp.isImm() && isDisp8(Disp.getImm())) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000206 EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
207 EmitConstant(Disp.getImm(), 1, CurByte, OS);
Chris Lattnera8168ec2010-02-09 21:57:34 +0000208 return;
209 }
210
211 // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000212 EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
Chris Lattnera38c7072010-02-11 06:54:23 +0000213 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattner0e73c392010-02-05 06:16:07 +0000214 return;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000215 }
Chris Lattner0e73c392010-02-05 06:16:07 +0000216
217 // We need a SIB byte, so start by outputting the ModR/M byte first
218 assert(IndexReg.getReg() != X86::ESP &&
219 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
220
221 bool ForceDisp32 = false;
222 bool ForceDisp8 = false;
223 if (BaseReg == 0) {
224 // If there is no base register, we emit the special case SIB byte with
225 // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000226 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000227 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000228 } else if (!Disp.isImm()) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000229 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000230 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000231 ForceDisp32 = true;
Chris Lattner8496a262010-02-10 06:30:00 +0000232 } else if (Disp.getImm() == 0 && BaseReg != X86::EBP) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000233 // Emit no displacement ModR/M byte
Chris Lattner37ce80e2010-02-10 06:41:02 +0000234 EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
Chris Lattner8496a262010-02-10 06:30:00 +0000235 } else if (isDisp8(Disp.getImm())) {
Chris Lattner0e73c392010-02-05 06:16:07 +0000236 // Emit the disp8 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000237 EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000238 ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
239 } else {
240 // Emit the normal disp32 encoding.
Chris Lattner37ce80e2010-02-10 06:41:02 +0000241 EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000242 }
243
244 // Calculate what the SS field value should be...
245 static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 };
246 unsigned SS = SSTable[Scale.getImm()];
247
248 if (BaseReg == 0) {
249 // Handle the SIB byte for the case where there is no base, see Intel
250 // Manual 2A, table 2-7. The displacement has already been output.
251 unsigned IndexRegNo;
252 if (IndexReg.getReg())
253 IndexRegNo = GetX86RegNum(IndexReg);
254 else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
255 IndexRegNo = 4;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000256 EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000257 } else {
258 unsigned IndexRegNo;
259 if (IndexReg.getReg())
260 IndexRegNo = GetX86RegNum(IndexReg);
261 else
262 IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
Chris Lattner37ce80e2010-02-10 06:41:02 +0000263 EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
Chris Lattner0e73c392010-02-05 06:16:07 +0000264 }
265
266 // Do we need to output a displacement?
267 if (ForceDisp8)
Chris Lattnera38c7072010-02-11 06:54:23 +0000268 EmitImmediate(Disp, 1, CurByte, OS, Fixups);
Chris Lattner8496a262010-02-10 06:30:00 +0000269 else if (ForceDisp32 || Disp.getImm() != 0)
Chris Lattnera38c7072010-02-11 06:54:23 +0000270 EmitImmediate(Disp, 4, CurByte, OS, Fixups);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000271}
272
Chris Lattner39a612e2010-02-05 22:10:22 +0000273/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
274/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
275/// size, and 3) use of X86-64 extended registers.
276static unsigned DetermineREXPrefix(const MCInst &MI, unsigned TSFlags,
277 const TargetInstrDesc &Desc) {
278 unsigned REX = 0;
279
280 // Pseudo instructions do not need REX prefix byte.
281 if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
282 return 0;
283 if (TSFlags & X86II::REX_W)
284 REX |= 1 << 3;
285
286 if (MI.getNumOperands() == 0) return REX;
287
288 unsigned NumOps = MI.getNumOperands();
289 // FIXME: MCInst should explicitize the two-addrness.
290 bool isTwoAddr = NumOps > 1 &&
291 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
292
293 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
294 unsigned i = isTwoAddr ? 1 : 0;
295 for (; i != NumOps; ++i) {
296 const MCOperand &MO = MI.getOperand(i);
297 if (!MO.isReg()) continue;
298 unsigned Reg = MO.getReg();
299 if (!X86InstrInfo::isX86_64NonExtLowByteReg(Reg)) continue;
Chris Lattnerfaa75f6f2010-02-05 22:48:33 +0000300 // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
301 // that returns non-zero.
Chris Lattner39a612e2010-02-05 22:10:22 +0000302 REX |= 0x40;
303 break;
304 }
305
306 switch (TSFlags & X86II::FormMask) {
307 case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!");
308 case X86II::MRMSrcReg:
309 if (MI.getOperand(0).isReg() &&
310 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
311 REX |= 1 << 2;
312 i = isTwoAddr ? 2 : 1;
313 for (; i != NumOps; ++i) {
314 const MCOperand &MO = MI.getOperand(i);
315 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
316 REX |= 1 << 0;
317 }
318 break;
319 case X86II::MRMSrcMem: {
320 if (MI.getOperand(0).isReg() &&
321 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
322 REX |= 1 << 2;
323 unsigned Bit = 0;
324 i = isTwoAddr ? 2 : 1;
325 for (; i != NumOps; ++i) {
326 const MCOperand &MO = MI.getOperand(i);
327 if (MO.isReg()) {
328 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
329 REX |= 1 << Bit;
330 Bit++;
331 }
332 }
333 break;
334 }
335 case X86II::MRM0m: case X86II::MRM1m:
336 case X86II::MRM2m: case X86II::MRM3m:
337 case X86II::MRM4m: case X86II::MRM5m:
338 case X86II::MRM6m: case X86II::MRM7m:
339 case X86II::MRMDestMem: {
340 unsigned e = (isTwoAddr ? X86AddrNumOperands+1 : X86AddrNumOperands);
341 i = isTwoAddr ? 1 : 0;
342 if (NumOps > e && MI.getOperand(e).isReg() &&
343 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
344 REX |= 1 << 2;
345 unsigned Bit = 0;
346 for (; i != e; ++i) {
347 const MCOperand &MO = MI.getOperand(i);
348 if (MO.isReg()) {
349 if (X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
350 REX |= 1 << Bit;
351 Bit++;
352 }
353 }
354 break;
355 }
356 default:
357 if (MI.getOperand(0).isReg() &&
358 X86InstrInfo::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
359 REX |= 1 << 0;
360 i = isTwoAddr ? 2 : 1;
361 for (unsigned e = NumOps; i != e; ++i) {
362 const MCOperand &MO = MI.getOperand(i);
363 if (MO.isReg() && X86InstrInfo::isX86_64ExtendedReg(MO.getReg()))
364 REX |= 1 << 2;
365 }
366 break;
367 }
368 return REX;
369}
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000370
371void X86MCCodeEmitter::
Daniel Dunbar73c55742010-02-09 22:59:55 +0000372EncodeInstruction(const MCInst &MI, raw_ostream &OS,
373 SmallVectorImpl<MCFixup> &Fixups) const {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000374 unsigned Opcode = MI.getOpcode();
375 const TargetInstrDesc &Desc = TII.get(Opcode);
Chris Lattner1e80f402010-02-03 21:57:59 +0000376 unsigned TSFlags = Desc.TSFlags;
377
Chris Lattner37ce80e2010-02-10 06:41:02 +0000378 // Keep track of the current byte being emitted.
379 unsigned CurByte = 0;
380
Chris Lattner1e80f402010-02-03 21:57:59 +0000381 // FIXME: We should emit the prefixes in exactly the same order as GAS does,
382 // in order to provide diffability.
383
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000384 // Emit the lock opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000385 if (TSFlags & X86II::LOCK)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000386 EmitByte(0xF0, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000387
388 // Emit segment override opcode prefix as needed.
Chris Lattner1e80f402010-02-03 21:57:59 +0000389 switch (TSFlags & X86II::SegOvrMask) {
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000390 default: assert(0 && "Invalid segment!");
391 case 0: break; // No segment override!
392 case X86II::FS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000393 EmitByte(0x64, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000394 break;
395 case X86II::GS:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000396 EmitByte(0x65, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000397 break;
398 }
399
Chris Lattner1e80f402010-02-03 21:57:59 +0000400 // Emit the repeat opcode prefix as needed.
401 if ((TSFlags & X86II::Op0Mask) == X86II::REP)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000402 EmitByte(0xF3, CurByte, OS);
Chris Lattner92b1dfe2010-02-03 21:43:43 +0000403
Chris Lattner1e80f402010-02-03 21:57:59 +0000404 // Emit the operand size opcode prefix as needed.
405 if (TSFlags & X86II::OpSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000406 EmitByte(0x66, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000407
408 // Emit the address size opcode prefix as needed.
409 if (TSFlags & X86II::AdSize)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000410 EmitByte(0x67, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000411
412 bool Need0FPrefix = false;
413 switch (TSFlags & X86II::Op0Mask) {
414 default: assert(0 && "Invalid prefix!");
415 case 0: break; // No prefix!
416 case X86II::REP: break; // already handled.
417 case X86II::TB: // Two-byte opcode prefix
418 case X86II::T8: // 0F 38
419 case X86II::TA: // 0F 3A
420 Need0FPrefix = true;
421 break;
422 case X86II::TF: // F2 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000423 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000424 Need0FPrefix = true;
425 break;
426 case X86II::XS: // F3 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000427 EmitByte(0xF3, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000428 Need0FPrefix = true;
429 break;
430 case X86II::XD: // F2 0F
Chris Lattner37ce80e2010-02-10 06:41:02 +0000431 EmitByte(0xF2, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000432 Need0FPrefix = true;
433 break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000434 case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
435 case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
436 case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
437 case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
438 case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
439 case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
440 case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
441 case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000442 }
443
444 // Handle REX prefix.
Chris Lattner39a612e2010-02-05 22:10:22 +0000445 // FIXME: Can this come before F2 etc to simplify emission?
Chris Lattner1e80f402010-02-03 21:57:59 +0000446 if (Is64BitMode) {
Chris Lattner39a612e2010-02-05 22:10:22 +0000447 if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
Chris Lattner37ce80e2010-02-10 06:41:02 +0000448 EmitByte(0x40 | REX, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000449 }
Chris Lattner1e80f402010-02-03 21:57:59 +0000450
451 // 0x0F escape code must be emitted just before the opcode.
452 if (Need0FPrefix)
Chris Lattner37ce80e2010-02-10 06:41:02 +0000453 EmitByte(0x0F, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000454
455 // FIXME: Pull this up into previous switch if REX can be moved earlier.
456 switch (TSFlags & X86II::Op0Mask) {
457 case X86II::TF: // F2 0F 38
458 case X86II::T8: // 0F 38
Chris Lattner37ce80e2010-02-10 06:41:02 +0000459 EmitByte(0x38, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000460 break;
461 case X86II::TA: // 0F 3A
Chris Lattner37ce80e2010-02-10 06:41:02 +0000462 EmitByte(0x3A, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000463 break;
464 }
465
466 // If this is a two-address instruction, skip one of the register operands.
467 unsigned NumOps = Desc.getNumOperands();
468 unsigned CurOp = 0;
469 if (NumOps > 1 && Desc.getOperandConstraint(1, TOI::TIED_TO) != -1)
470 ++CurOp;
471 else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0)
472 // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32
473 --NumOps;
474
Chris Lattner74a21512010-02-05 19:24:13 +0000475 unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
Chris Lattner1e80f402010-02-03 21:57:59 +0000476 switch (TSFlags & X86II::FormMask) {
Chris Lattnerbe1778f2010-02-05 21:34:18 +0000477 case X86II::MRMInitReg:
478 assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
Chris Lattner1ac23b12010-02-05 02:18:40 +0000479 default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
480 assert(0 && "Unknown FormMask value in X86MCCodeEmitter!");
Chris Lattner1e80f402010-02-03 21:57:59 +0000481 case X86II::RawFrm: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000482 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1e80f402010-02-03 21:57:59 +0000483
484 if (CurOp == NumOps)
485 break;
486
Chris Lattner28249d92010-02-05 01:53:19 +0000487 assert(0 && "Unimpl RawFrm expr");
Chris Lattner1e80f402010-02-03 21:57:59 +0000488 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000489 }
Chris Lattner28249d92010-02-05 01:53:19 +0000490
491 case X86II::AddRegFrm: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000492 EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000493 if (CurOp == NumOps)
494 break;
495
496 const MCOperand &MO1 = MI.getOperand(CurOp++);
497 if (MO1.isImm()) {
Chris Lattner74a21512010-02-05 19:24:13 +0000498 unsigned Size = X86II::getSizeOfImm(TSFlags);
Chris Lattner37ce80e2010-02-10 06:41:02 +0000499 EmitConstant(MO1.getImm(), Size, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000500 break;
501 }
502
503 assert(0 && "Unimpl AddRegFrm expr");
504 break;
Chris Lattner1e80f402010-02-03 21:57:59 +0000505 }
Chris Lattner28249d92010-02-05 01:53:19 +0000506
507 case X86II::MRMDestReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000508 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000509 EmitRegModRMByte(MI.getOperand(CurOp),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000510 GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000511 CurOp += 2;
512 if (CurOp != NumOps)
513 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000514 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner28249d92010-02-05 01:53:19 +0000515 break;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000516
517 case X86II::MRMDestMem:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000518 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000519 EmitMemModRMByte(MI, CurOp,
520 GetX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands)),
Chris Lattner1b670602010-02-11 06:49:52 +0000521 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000522 CurOp += X86AddrNumOperands + 1;
Chris Lattner1ac23b12010-02-05 02:18:40 +0000523 if (CurOp != NumOps)
524 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000525 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner1ac23b12010-02-05 02:18:40 +0000526 break;
Chris Lattnerdaa45552010-02-05 19:04:37 +0000527
528 case X86II::MRMSrcReg:
Chris Lattner37ce80e2010-02-10 06:41:02 +0000529 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000530 EmitRegModRMByte(MI.getOperand(CurOp+1), GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000531 CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000532 CurOp += 2;
533 if (CurOp != NumOps)
534 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000535 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000536 break;
537
538 case X86II::MRMSrcMem: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000539 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000540
541 // FIXME: Maybe lea should have its own form? This is a horrible hack.
542 int AddrOperands;
543 if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
544 Opcode == X86::LEA16r || Opcode == X86::LEA32r)
545 AddrOperands = X86AddrNumOperands - 1; // No segment register
546 else
547 AddrOperands = X86AddrNumOperands;
548
Chris Lattnerdaa45552010-02-05 19:04:37 +0000549 EmitMemModRMByte(MI, CurOp+1, GetX86RegNum(MI.getOperand(CurOp)),
Chris Lattner1b670602010-02-11 06:49:52 +0000550 CurByte, OS, Fixups);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000551 CurOp += AddrOperands + 1;
552 if (CurOp != NumOps)
553 EmitConstant(MI.getOperand(CurOp++).getImm(),
Chris Lattner37ce80e2010-02-10 06:41:02 +0000554 X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattnerdaa45552010-02-05 19:04:37 +0000555 break;
556 }
Chris Lattner82ed17e2010-02-05 19:37:31 +0000557
558 case X86II::MRM0r: case X86II::MRM1r:
559 case X86II::MRM2r: case X86II::MRM3r:
560 case X86II::MRM4r: case X86II::MRM5r:
561 case X86II::MRM6r: case X86II::MRM7r: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000562 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000563
564 // Special handling of lfence, mfence, monitor, and mwait.
565 // FIXME: This is terrible, they should get proper encoding bits in TSFlags.
566 if (Opcode == X86::LFENCE || Opcode == X86::MFENCE ||
567 Opcode == X86::MONITOR || Opcode == X86::MWAIT) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000568 EmitByte(ModRMByte(3, (TSFlags & X86II::FormMask)-X86II::MRM0r, 0),
569 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000570
571 switch (Opcode) {
572 default: break;
Chris Lattner37ce80e2010-02-10 06:41:02 +0000573 case X86::MONITOR: EmitByte(0xC8, CurByte, OS); break;
574 case X86::MWAIT: EmitByte(0xC9, CurByte, OS); break;
Chris Lattner82ed17e2010-02-05 19:37:31 +0000575 }
576 } else {
577 EmitRegModRMByte(MI.getOperand(CurOp++),
578 (TSFlags & X86II::FormMask)-X86II::MRM0r,
Chris Lattner37ce80e2010-02-10 06:41:02 +0000579 CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000580 }
581
582 if (CurOp == NumOps)
583 break;
584
585 const MCOperand &MO1 = MI.getOperand(CurOp++);
586 if (MO1.isImm()) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000587 EmitConstant(MO1.getImm(), X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000588 break;
589 }
590
591 assert(0 && "relo unimpl");
592#if 0
593 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
594 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
595 if (Opcode == X86::MOV64ri32)
596 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
597 if (MO1.isGlobal()) {
598 bool Indirect = gvNeedsNonLazyPtr(MO1, TM);
599 emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0,
600 Indirect);
601 } else if (MO1.isSymbol())
602 emitExternalSymbolAddress(MO1.getSymbolName(), rt);
603 else if (MO1.isCPI())
604 emitConstPoolAddress(MO1.getIndex(), rt);
605 else if (MO1.isJTI())
606 emitJumpTableAddress(MO1.getIndex(), rt);
607 break;
608#endif
609 }
610 case X86II::MRM0m: case X86II::MRM1m:
611 case X86II::MRM2m: case X86II::MRM3m:
612 case X86II::MRM4m: case X86II::MRM5m:
613 case X86II::MRM6m: case X86II::MRM7m: {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000614 EmitByte(BaseOpcode, CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000615 EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
Chris Lattner1b670602010-02-11 06:49:52 +0000616 CurByte, OS, Fixups);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000617 CurOp += X86AddrNumOperands;
618
619 if (CurOp == NumOps)
620 break;
621
622 const MCOperand &MO = MI.getOperand(CurOp++);
623 if (MO.isImm()) {
Chris Lattner37ce80e2010-02-10 06:41:02 +0000624 EmitConstant(MO.getImm(), X86II::getSizeOfImm(TSFlags), CurByte, OS);
Chris Lattner82ed17e2010-02-05 19:37:31 +0000625 break;
626 }
627
628 assert(0 && "relo not handled");
629#if 0
630 unsigned rt = Is64BitMode ? X86::reloc_pcrel_word
631 : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word);
632 if (Opcode == X86::MOV64mi32)
633 rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag?
634 if (MO.isGlobal()) {
635 bool Indirect = gvNeedsNonLazyPtr(MO, TM);
636 emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0,
637 Indirect);
638 } else if (MO.isSymbol())
639 emitExternalSymbolAddress(MO.getSymbolName(), rt);
640 else if (MO.isCPI())
641 emitConstPoolAddress(MO.getIndex(), rt);
642 else if (MO.isJTI())
643 emitJumpTableAddress(MO.getIndex(), rt);
644#endif
645 break;
646 }
Chris Lattner28249d92010-02-05 01:53:19 +0000647 }
648
649#ifndef NDEBUG
Chris Lattner82ed17e2010-02-05 19:37:31 +0000650 // FIXME: Verify.
651 if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
Chris Lattner28249d92010-02-05 01:53:19 +0000652 errs() << "Cannot encode all operands of: ";
653 MI.dump();
654 errs() << '\n';
655 abort();
656 }
657#endif
Chris Lattner45762472010-02-03 21:24:49 +0000658}