blob: 016c328e9e85e5a90a8a9b3c63fff99e5fea559f [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
Chandler Carruthfc72ae62012-03-12 11:19:31 +000021#include "llvm/GlobalAlias.h"
Jay Foad562b84b2011-04-11 09:35:34 +000022#include "llvm/Operator.h"
Duncan Sandsa3c44a52010-12-22 09:40:51 +000023#include "llvm/ADT/Statistic.h"
Chandler Carruth6231d5b2012-03-24 22:34:26 +000024#include "llvm/ADT/SetVector.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000025#include "llvm/Analysis/InstructionSimplify.h"
Nick Lewyckyf7087ea2012-02-26 02:09:49 +000026#include "llvm/Analysis/AliasAnalysis.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000027#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000028#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000029#include "llvm/Analysis/ValueTracking.h"
Nick Lewycky3a73e342011-03-04 07:00:57 +000030#include "llvm/Support/ConstantRange.h"
Chandler Carruthfc72ae62012-03-12 11:19:31 +000031#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000032#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000033#include "llvm/Support/ValueHandle.h"
Micah Villmow3574eca2012-10-08 16:38:25 +000034#include "llvm/DataLayout.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000035using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000036using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000037
Chris Lattner81a0dc92011-02-09 17:15:04 +000038enum { RecursionLimit = 3 };
Duncan Sandsa74a58c2010-11-10 18:23:01 +000039
Duncan Sandsa3c44a52010-12-22 09:40:51 +000040STATISTIC(NumExpand, "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
Duncan Sands0aa85eb2012-03-13 11:42:19 +000044struct Query {
Micah Villmow3574eca2012-10-08 16:38:25 +000045 const DataLayout *TD;
Duncan Sands0aa85eb2012-03-13 11:42:19 +000046 const TargetLibraryInfo *TLI;
47 const DominatorTree *DT;
48
Micah Villmow3574eca2012-10-08 16:38:25 +000049 Query(const DataLayout *td, const TargetLibraryInfo *tli,
Bill Wendling91337832012-05-17 20:27:58 +000050 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
Duncan Sands0aa85eb2012-03-13 11:42:19 +000051};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000055 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000056static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000057 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000058static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
Duncan Sandsbd0fe562012-03-13 14:07:05 +000060static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000061
Duncan Sandsf56138d2011-07-26 15:03:53 +000062/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000065 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000066 "Expected i1 type or a vector of i1!");
67 return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000073 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000074 "Expected i1 type or a vector of i1!");
75 return Constant::getAllOnesValue(Ty);
76}
77
Duncan Sands6dc9e2b2011-10-30 19:56:36 +000078/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80 Value *RHS) {
81 CmpInst *Cmp = dyn_cast<CmpInst>(V);
82 if (!Cmp)
83 return false;
84 CmpInst::Predicate CPred = Cmp->getPredicate();
85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87 return true;
88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89 CRHS == LHS;
90}
91
Duncan Sands18450092010-11-16 12:16:38 +000092/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94 Instruction *I = dyn_cast<Instruction>(V);
95 if (!I)
96 // Arguments and constants dominate all instructions.
97 return true;
98
Chandler Carruthff739c12012-03-21 10:58:47 +000099 // If we are processing instructions (and/or basic blocks) that have not been
100 // fully added to a function, the parent nodes may still be null. Simply
101 // return the conservative answer in these cases.
102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103 return false;
104
Duncan Sands18450092010-11-16 12:16:38 +0000105 // If we have a DominatorTree then do a precise test.
Eli Friedman5b8f0dd2012-03-13 01:06:07 +0000106 if (DT) {
107 if (!DT->isReachableFromEntry(P->getParent()))
108 return true;
109 if (!DT->isReachableFromEntry(I->getParent()))
110 return false;
111 return DT->dominates(I, P);
112 }
Duncan Sands18450092010-11-16 12:16:38 +0000113
114 // Otherwise, if the instruction is in the entry block, and is not an invoke,
115 // then it obviously dominates all phi nodes.
116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117 !isa<InvokeInst>(I))
118 return true;
119
120 return false;
121}
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000122
Duncan Sands3421d902010-12-21 13:32:22 +0000123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000129 unsigned OpcToExpand, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000130 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000132 // Recursion is always used, so bail out at once if we already hit the limit.
133 if (!MaxRecurse--)
134 return 0;
135
136 // Check whether the expression has the form "(A op' B) op C".
137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138 if (Op0->getOpcode() == OpcodeToExpand) {
139 // It does! Try turning it into "(A op C) op' (B op C)".
140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141 // Do "A op C" and "B op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000144 // They do! Return "L op' R" if it simplifies or is already available.
145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000148 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000149 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000150 }
Duncan Sands3421d902010-12-21 13:32:22 +0000151 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000153 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000154 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000155 }
Duncan Sands3421d902010-12-21 13:32:22 +0000156 }
157 }
158
159 // Check whether the expression has the form "A op (B op' C)".
160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161 if (Op1->getOpcode() == OpcodeToExpand) {
162 // It does! Try turning it into "(A op B) op' (A op C)".
163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164 // Do "A op B" and "A op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000167 // They do! Return "L op' R" if it simplifies or is already available.
168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000171 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000172 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000173 }
Duncan Sands3421d902010-12-21 13:32:22 +0000174 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000176 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000177 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000178 }
Duncan Sands3421d902010-12-21 13:32:22 +0000179 }
180 }
181
182 return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract. For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000190 unsigned OpcToExtract, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000191 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000193 // Recursion is always used, so bail out at once if we already hit the limit.
194 if (!MaxRecurse--)
195 return 0;
196
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201 !Op1 || Op1->getOpcode() != OpcodeToExtract)
202 return 0;
203
204 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000207
208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000213 // Form "A op' (B op DD)" if it simplifies completely.
214 // Does "B op DD" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000216 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000217 // If V equals B then "A op' V" is just the LHS. If V equals DD then
218 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000219 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000220 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000221 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000222 }
Duncan Sands3421d902010-12-21 13:32:22 +0000223 // Otherwise return "A op' V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000225 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000226 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000227 }
Duncan Sands3421d902010-12-21 13:32:22 +0000228 }
229 }
230
231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000236 // Form "(A op CC) op' B" if it simplifies completely..
237 // Does "A op CC" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000239 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000240 // If V equals A then "V op' B" is just the LHS. If V equals CC then
241 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000242 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000243 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000244 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000245 }
Duncan Sands3421d902010-12-21 13:32:22 +0000246 // Otherwise return "V op' B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000248 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000249 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000250 }
Duncan Sands3421d902010-12-21 13:32:22 +0000251 }
252 }
253
254 return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000260 const Query &Q, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264 // Recursion is always used, so bail out at once if we already hit the limit.
265 if (!MaxRecurse--)
266 return 0;
267
268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272 if (Op0 && Op0->getOpcode() == Opcode) {
273 Value *A = Op0->getOperand(0);
274 Value *B = Op0->getOperand(1);
275 Value *C = RHS;
276
277 // Does "B op C" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000279 // It does! Return "A op V" if it simplifies or is already available.
280 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000281 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000282 // Otherwise return "A op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000284 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000285 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000286 }
Duncan Sands566edb02010-12-21 08:49:00 +0000287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = LHS;
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "A op B" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000298 // It does! Return "V op C" if it simplifies or is already available.
299 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000300 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000301 // Otherwise return "V op C" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000303 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000304 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000305 }
Duncan Sands566edb02010-12-21 08:49:00 +0000306 }
307 }
308
309 // The remaining transforms require commutativity as well as associativity.
310 if (!Instruction::isCommutative(Opcode))
311 return 0;
312
313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314 if (Op0 && Op0->getOpcode() == Opcode) {
315 Value *A = Op0->getOperand(0);
316 Value *B = Op0->getOperand(1);
317 Value *C = RHS;
318
319 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000321 // It does! Return "V op B" if it simplifies or is already available.
322 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000323 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000324 // Otherwise return "V op B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000326 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000327 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000328 }
Duncan Sands566edb02010-12-21 08:49:00 +0000329 }
330 }
331
332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333 if (Op1 && Op1->getOpcode() == Opcode) {
334 Value *A = LHS;
335 Value *B = Op1->getOperand(0);
336 Value *C = Op1->getOperand(1);
337
338 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000340 // It does! Return "B op V" if it simplifies or is already available.
341 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000342 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000343 // Otherwise return "B op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000345 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000346 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000347 }
Duncan Sands566edb02010-12-21 08:49:00 +0000348 }
349 }
350
351 return 0;
352}
353
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000359 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000360 // Recursion is always used, so bail out at once if we already hit the limit.
361 if (!MaxRecurse--)
362 return 0;
363
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000364 SelectInst *SI;
365 if (isa<SelectInst>(LHS)) {
366 SI = cast<SelectInst>(LHS);
367 } else {
368 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369 SI = cast<SelectInst>(RHS);
370 }
371
372 // Evaluate the BinOp on the true and false branches of the select.
373 Value *TV;
374 Value *FV;
375 if (SI == LHS) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000378 } else {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000381 }
382
Duncan Sands7cf85e72011-01-01 16:12:09 +0000383 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000384 // If they both failed to simplify then return null.
385 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000386 return TV;
387
388 // If one branch simplified to undef, return the other one.
389 if (TV && isa<UndefValue>(TV))
390 return FV;
391 if (FV && isa<UndefValue>(FV))
392 return TV;
393
394 // If applying the operation did not change the true and false select values,
395 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000397 return SI;
398
399 // If one branch simplified and the other did not, and the simplified
400 // value is equal to the unsimplified one, return the simplified value.
401 // For example, select (cond, X, X & Z) & Z -> X & Z.
402 if ((FV && !TV) || (TV && !FV)) {
403 // Check that the simplified value has the form "X op Y" where "op" is the
404 // same as the original operation.
405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406 if (Simplified && Simplified->getOpcode() == Opcode) {
407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408 // We already know that "op" is the same as for the simplified value. See
409 // if the operands match too. If so, return the simplified value.
410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000413 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000415 return Simplified;
416 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000417 Simplified->getOperand(1) == UnsimplifiedLHS &&
418 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000419 return Simplified;
420 }
421 }
422
423 return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value. Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000431 Value *RHS, const Query &Q,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000432 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000433 // Recursion is always used, so bail out at once if we already hit the limit.
434 if (!MaxRecurse--)
435 return 0;
436
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000437 // Make sure the select is on the LHS.
438 if (!isa<SelectInst>(LHS)) {
439 std::swap(LHS, RHS);
440 Pred = CmpInst::getSwappedPredicate(Pred);
441 }
442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443 SelectInst *SI = cast<SelectInst>(LHS);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000444 Value *Cond = SI->getCondition();
445 Value *TV = SI->getTrueValue();
446 Value *FV = SI->getFalseValue();
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000447
Duncan Sands50ca4d32011-02-03 09:37:39 +0000448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000449 // Does "cmp TV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000451 if (TCmp == Cond) {
452 // It not only simplified, it simplified to the select condition. Replace
453 // it with 'true'.
454 TCmp = getTrue(Cond->getType());
455 } else if (!TCmp) {
456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
457 // condition then we can replace it with 'true'. Otherwise give up.
458 if (!isSameCompare(Cond, Pred, TV, RHS))
459 return 0;
460 TCmp = getTrue(Cond->getType());
Duncan Sands50ca4d32011-02-03 09:37:39 +0000461 }
462
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000463 // Does "cmp FV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000465 if (FCmp == Cond) {
466 // It not only simplified, it simplified to the select condition. Replace
467 // it with 'false'.
468 FCmp = getFalse(Cond->getType());
469 } else if (!FCmp) {
470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
471 // condition then we can replace it with 'false'. Otherwise give up.
472 if (!isSameCompare(Cond, Pred, FV, RHS))
473 return 0;
474 FCmp = getFalse(Cond->getType());
475 }
476
477 // If both sides simplified to the same value, then use it as the result of
478 // the original comparison.
479 if (TCmp == FCmp)
480 return TCmp;
Duncan Sandsaa97bb52012-02-10 14:31:24 +0000481
482 // The remaining cases only make sense if the select condition has the same
483 // type as the result of the comparison, so bail out if this is not so.
484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485 return 0;
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000486 // If the false value simplified to false, then the result of the compare
487 // is equal to "Cond && TCmp". This also catches the case when the false
488 // value simplified to false and the true value to true, returning "Cond".
489 if (match(FCmp, m_Zero()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000491 return V;
492 // If the true value simplified to true, then the result of the compare
493 // is equal to "Cond || FCmp".
494 if (match(TCmp, m_One()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000496 return V;
497 // Finally, if the false value simplified to true and the true value to
498 // false, then the result of the compare is equal to "!Cond".
499 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500 if (Value *V =
501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000502 Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000503 return V;
504
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000505 return 0;
506}
507
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value. If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000513 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000514 // Recursion is always used, so bail out at once if we already hit the limit.
515 if (!MaxRecurse--)
516 return 0;
517
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000518 PHINode *PI;
519 if (isa<PHINode>(LHS)) {
520 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000521 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000522 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000523 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000524 } else {
525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000527 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000528 if (!ValueDominatesPHI(LHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000529 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000530 }
531
532 // Evaluate the BinOp on the incoming phi values.
533 Value *CommonValue = 0;
534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000535 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000536 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000537 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000538 Value *V = PI == LHS ?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000541 // If the operation failed to simplify, or simplified to a different value
542 // to previously, then give up.
543 if (!V || (CommonValue && V != CommonValue))
544 return 0;
545 CommonValue = V;
546 }
547
548 return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time. If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000556 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000557 // Recursion is always used, so bail out at once if we already hit the limit.
558 if (!MaxRecurse--)
559 return 0;
560
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000561 // Make sure the phi is on the LHS.
562 if (!isa<PHINode>(LHS)) {
563 std::swap(LHS, RHS);
564 Pred = CmpInst::getSwappedPredicate(Pred);
565 }
566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567 PHINode *PI = cast<PHINode>(LHS);
568
Duncan Sands18450092010-11-16 12:16:38 +0000569 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000570 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000571 return 0;
572
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000573 // Evaluate the BinOp on the incoming phi values.
574 Value *CommonValue = 0;
575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000576 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000577 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000578 if (Incoming == PI) continue;
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000580 // If the operation failed to simplify, or simplified to a different value
581 // to previously, then give up.
582 if (!V || (CommonValue && V != CommonValue))
583 return 0;
584 CommonValue = V;
585 }
586
587 return CommonValue;
588}
589
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000593 const Query &Q, unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598 Q.TD, Q.TLI);
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000599 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000600
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000601 // Canonicalize the constant to the RHS.
602 std::swap(Op0, Op1);
603 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000604
Duncan Sandsfea3b212010-12-15 14:07:39 +0000605 // X + undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000606 if (match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000607 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000608
Duncan Sandsfea3b212010-12-15 14:07:39 +0000609 // X + 0 -> X
610 if (match(Op1, m_Zero()))
611 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000612
Duncan Sandsfea3b212010-12-15 14:07:39 +0000613 // X + (Y - X) -> Y
614 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000615 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000616 Value *Y = 0;
617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000619 return Y;
620
621 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000622 if (match(Op0, m_Not(m_Specific(Op1))) ||
623 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000624 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000625
Duncan Sands82fdab32010-12-21 14:00:22 +0000626 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000627 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000629 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000630
Duncan Sands566edb02010-12-21 08:49:00 +0000631 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
Duncan Sands566edb02010-12-21 08:49:00 +0000633 MaxRecurse))
634 return V;
635
Duncan Sands3421d902010-12-21 13:32:22 +0000636 // Mul distributes over Add. Try some generic simplifications based on this.
637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000638 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000639 return V;
640
Duncan Sands87689cf2010-11-19 09:20:39 +0000641 // Threading Add over selects and phi nodes is pointless, so don't bother.
642 // Threading over the select in "A + select(cond, B, C)" means evaluating
643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644 // only if B and C are equal. If B and C are equal then (since we assume
645 // that operands have already been simplified) "select(cond, B, C)" should
646 // have been simplified to the common value of B and C already. Analysing
647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
648 // for threading over phi nodes.
649
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000650 return 0;
651}
652
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000654 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000655 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000658}
659
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000660/// \brief Accumulate the constant integer offset a GEP represents.
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000661///
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000662/// Given a getelementptr instruction/constantexpr, accumulate the constant
663/// offset from the base pointer into the provided APInt 'Offset'. Returns true
664/// if the GEP has all-constant indices. Returns false if any non-constant
665/// index is encountered leaving the 'Offset' in an undefined state. The
666/// 'Offset' APInt must be the bitwidth of the target's pointer size.
Micah Villmow3574eca2012-10-08 16:38:25 +0000667static bool accumulateGEPOffset(const DataLayout &TD, GEPOperator *GEP,
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000668 APInt &Offset) {
Micah Villmow2c39b152012-10-15 16:24:29 +0000669 unsigned AS = GEP->getPointerAddressSpace();
670 unsigned IntPtrWidth = TD.getPointerSizeInBits(AS);
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000671 assert(IntPtrWidth == Offset.getBitWidth());
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000672
673 gep_type_iterator GTI = gep_type_begin(GEP);
674 for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end(); I != E;
675 ++I, ++GTI) {
676 ConstantInt *OpC = dyn_cast<ConstantInt>(*I);
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000677 if (!OpC) return false;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000678 if (OpC->isZero()) continue;
679
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000680 // Handle a struct index, which adds its field offset to the pointer.
681 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000682 unsigned ElementIdx = OpC->getZExtValue();
683 const StructLayout *SL = TD.getStructLayout(STy);
Duncan Sandsf72e0ca2012-03-15 20:14:42 +0000684 Offset += APInt(IntPtrWidth, SL->getElementOffset(ElementIdx));
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000685 continue;
686 }
687
Duncan Sandsf72e0ca2012-03-15 20:14:42 +0000688 APInt TypeSize(IntPtrWidth, TD.getTypeAllocSize(GTI.getIndexedType()));
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000689 Offset += OpC->getValue().sextOrTrunc(IntPtrWidth) * TypeSize;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000690 }
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000691 return true;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000692}
693
694/// \brief Compute the base pointer and cumulative constant offsets for V.
695///
696/// This strips all constant offsets off of V, leaving it the base pointer, and
697/// accumulates the total constant offset applied in the returned constant. It
698/// returns 0 if V is not a pointer, and returns the constant '0' if there are
699/// no constant offsets applied.
Micah Villmow2c39b152012-10-15 16:24:29 +0000700/// FIXME: This function also exists in InlineCost.cpp.
Micah Villmow3574eca2012-10-08 16:38:25 +0000701static Constant *stripAndComputeConstantOffsets(const DataLayout &TD,
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000702 Value *&V) {
703 if (!V->getType()->isPointerTy())
704 return 0;
705
Micah Villmow2c39b152012-10-15 16:24:29 +0000706 unsigned AS = cast<PointerType>(V->getType())->getAddressSpace();;
707 unsigned IntPtrWidth = TD.getPointerSizeInBits(AS);
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000708 APInt Offset = APInt::getNullValue(IntPtrWidth);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000709
710 // Even though we don't look through PHI nodes, we could be called on an
711 // instruction in an unreachable block, which may be on a cycle.
712 SmallPtrSet<Value *, 4> Visited;
713 Visited.insert(V);
714 do {
715 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Chandler Carruth9d9e29b2012-03-25 20:43:07 +0000716 if (!GEP->isInBounds() || !accumulateGEPOffset(TD, GEP, Offset))
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000717 break;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000718 V = GEP->getPointerOperand();
719 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
720 V = cast<Operator>(V)->getOperand(0);
721 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
722 if (GA->mayBeOverridden())
723 break;
724 V = GA->getAliasee();
725 } else {
726 break;
727 }
728 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
729 } while (Visited.insert(V));
730
Micah Villmowaa76e9e2012-10-24 15:52:52 +0000731 Type *IntPtrTy = TD.getIntPtrType(V->getContext(), AS);
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000732 return ConstantInt::get(IntPtrTy, Offset);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000733}
734
735/// \brief Compute the constant difference between two pointer values.
736/// If the difference is not a constant, returns zero.
Micah Villmow3574eca2012-10-08 16:38:25 +0000737static Constant *computePointerDifference(const DataLayout &TD,
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000738 Value *LHS, Value *RHS) {
739 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
740 if (!LHSOffset)
741 return 0;
742 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
743 if (!RHSOffset)
744 return 0;
745
746 // If LHS and RHS are not related via constant offsets to the same base
747 // value, there is nothing we can do here.
748 if (LHS != RHS)
749 return 0;
750
751 // Otherwise, the difference of LHS - RHS can be computed as:
752 // LHS - RHS
753 // = (LHSOffset + Base) - (RHSOffset + Base)
754 // = LHSOffset - RHSOffset
755 return ConstantExpr::getSub(LHSOffset, RHSOffset);
756}
757
Duncan Sandsfea3b212010-12-15 14:07:39 +0000758/// SimplifySubInst - Given operands for a Sub, see if we can
759/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000760static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000761 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000762 if (Constant *CLHS = dyn_cast<Constant>(Op0))
763 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
764 Constant *Ops[] = { CLHS, CRHS };
765 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000766 Ops, Q.TD, Q.TLI);
Duncan Sandsfea3b212010-12-15 14:07:39 +0000767 }
768
769 // X - undef -> undef
770 // undef - X -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000771 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000772 return UndefValue::get(Op0->getType());
773
774 // X - 0 -> X
775 if (match(Op1, m_Zero()))
776 return Op0;
777
778 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000779 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000780 return Constant::getNullValue(Op0->getType());
781
Duncan Sandsfe02c692011-01-18 09:24:58 +0000782 // (X*2) - X -> X
783 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000784 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000785 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
786 match(Op0, m_Shl(m_Specific(Op1), m_One())))
787 return Op1;
788
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000789 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
790 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
791 Value *Y = 0, *Z = Op1;
792 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
793 // See if "V === Y - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000794 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000795 // It does! Now see if "X + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000796 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000797 // It does, we successfully reassociated!
798 ++NumReassoc;
799 return W;
800 }
801 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000802 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000803 // It does! Now see if "Y + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000804 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000805 // It does, we successfully reassociated!
806 ++NumReassoc;
807 return W;
808 }
809 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000810
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000811 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
812 // For example, X - (X + 1) -> -1
813 X = Op0;
814 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
815 // See if "V === X - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000816 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000817 // It does! Now see if "V - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000818 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000819 // It does, we successfully reassociated!
820 ++NumReassoc;
821 return W;
822 }
823 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000824 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000825 // It does! Now see if "V - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000826 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000827 // It does, we successfully reassociated!
828 ++NumReassoc;
829 return W;
830 }
831 }
832
833 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
834 // For example, X - (X - Y) -> Y.
835 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000836 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
837 // See if "V === Z - X" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000838 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000839 // It does! Now see if "V + Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000840 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsc087e202011-01-14 15:26:10 +0000841 // It does, we successfully reassociated!
842 ++NumReassoc;
843 return W;
844 }
845
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000846 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
847 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
848 match(Op1, m_Trunc(m_Value(Y))))
849 if (X->getType() == Y->getType())
850 // See if "V === X - Y" simplifies.
851 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
852 // It does! Now see if "trunc V" simplifies.
853 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
854 // It does, return the simplified "trunc V".
855 return W;
856
857 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
858 if (Q.TD && match(Op0, m_PtrToInt(m_Value(X))) &&
859 match(Op1, m_PtrToInt(m_Value(Y))))
860 if (Constant *Result = computePointerDifference(*Q.TD, X, Y))
861 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
862
Duncan Sands3421d902010-12-21 13:32:22 +0000863 // Mul distributes over Sub. Try some generic simplifications based on this.
864 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000865 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000866 return V;
867
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000868 // i1 sub -> xor.
869 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000870 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000871 return V;
872
Duncan Sandsfea3b212010-12-15 14:07:39 +0000873 // Threading Sub over selects and phi nodes is pointless, so don't bother.
874 // Threading over the select in "A - select(cond, B, C)" means evaluating
875 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
876 // only if B and C are equal. If B and C are equal then (since we assume
877 // that operands have already been simplified) "select(cond, B, C)" should
878 // have been simplified to the common value of B and C already. Analysing
879 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
880 // for threading over phi nodes.
881
882 return 0;
883}
884
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000885Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000886 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000887 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000888 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
889 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000890}
891
Duncan Sands82fdab32010-12-21 14:00:22 +0000892/// SimplifyMulInst - Given operands for a Mul, see if we can
893/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000894static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
895 unsigned MaxRecurse) {
Duncan Sands82fdab32010-12-21 14:00:22 +0000896 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
897 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
898 Constant *Ops[] = { CLHS, CRHS };
899 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000900 Ops, Q.TD, Q.TLI);
Duncan Sands82fdab32010-12-21 14:00:22 +0000901 }
902
903 // Canonicalize the constant to the RHS.
904 std::swap(Op0, Op1);
905 }
906
907 // X * undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000908 if (match(Op1, m_Undef()))
Duncan Sands82fdab32010-12-21 14:00:22 +0000909 return Constant::getNullValue(Op0->getType());
910
911 // X * 0 -> 0
912 if (match(Op1, m_Zero()))
913 return Op1;
914
915 // X * 1 -> X
916 if (match(Op1, m_One()))
917 return Op0;
918
Duncan Sands1895e982011-01-30 18:03:50 +0000919 // (X / Y) * Y -> X if the division is exact.
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000920 Value *X = 0;
921 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
922 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
923 return X;
Duncan Sands1895e982011-01-30 18:03:50 +0000924
Nick Lewycky54138802011-01-29 19:55:23 +0000925 // i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +0000926 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000927 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000928 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000929
930 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000931 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +0000932 MaxRecurse))
933 return V;
934
935 // Mul distributes over Add. Try some generic simplifications based on this.
936 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000937 Q, MaxRecurse))
Duncan Sands82fdab32010-12-21 14:00:22 +0000938 return V;
939
940 // If the operation is with the result of a select instruction, check whether
941 // operating on either branch of the select always yields the same value.
942 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000943 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +0000944 MaxRecurse))
945 return V;
946
947 // If the operation is with the result of a phi instruction, check whether
948 // operating on all incoming values of the phi always yields the same value.
949 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000950 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +0000951 MaxRecurse))
952 return V;
953
954 return 0;
955}
956
Micah Villmow3574eca2012-10-08 16:38:25 +0000957Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +0000958 const TargetLibraryInfo *TLI,
Duncan Sands82fdab32010-12-21 14:00:22 +0000959 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000960 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands82fdab32010-12-21 14:00:22 +0000961}
962
Duncan Sands593faa52011-01-28 16:51:11 +0000963/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
964/// fold the result. If not, this returns null.
Anders Carlsson479b4b92011-02-05 18:33:43 +0000965static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000966 const Query &Q, unsigned MaxRecurse) {
Duncan Sands593faa52011-01-28 16:51:11 +0000967 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
968 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
969 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000970 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sands593faa52011-01-28 16:51:11 +0000971 }
972 }
973
Duncan Sandsa3e292c2011-01-28 18:50:50 +0000974 bool isSigned = Opcode == Instruction::SDiv;
975
Duncan Sands593faa52011-01-28 16:51:11 +0000976 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000977 if (match(Op1, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +0000978 return Op1;
979
980 // undef / X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000981 if (match(Op0, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +0000982 return Constant::getNullValue(Op0->getType());
983
984 // 0 / X -> 0, we don't need to preserve faults!
985 if (match(Op0, m_Zero()))
986 return Op0;
987
988 // X / 1 -> X
989 if (match(Op1, m_One()))
990 return Op0;
Duncan Sands593faa52011-01-28 16:51:11 +0000991
992 if (Op0->getType()->isIntegerTy(1))
993 // It can't be division by zero, hence it must be division by one.
994 return Op0;
995
996 // X / X -> 1
997 if (Op0 == Op1)
998 return ConstantInt::get(Op0->getType(), 1);
999
1000 // (X * Y) / Y -> X if the multiplication does not overflow.
1001 Value *X = 0, *Y = 0;
1002 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1003 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands32a43cc2011-10-27 19:16:21 +00001004 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
Duncan Sands4b720712011-02-02 20:52:00 +00001005 // If the Mul knows it does not overflow, then we are good to go.
1006 if ((isSigned && Mul->hasNoSignedWrap()) ||
1007 (!isSigned && Mul->hasNoUnsignedWrap()))
1008 return X;
Duncan Sands593faa52011-01-28 16:51:11 +00001009 // If X has the form X = A / Y then X * Y cannot overflow.
1010 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1011 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1012 return X;
1013 }
1014
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001015 // (X rem Y) / Y -> 0
1016 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1017 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1018 return Constant::getNullValue(Op0->getType());
1019
1020 // If the operation is with the result of a select instruction, check whether
1021 // operating on either branch of the select always yields the same value.
1022 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001023 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001024 return V;
1025
1026 // If the operation is with the result of a phi instruction, check whether
1027 // operating on all incoming values of the phi always yields the same value.
1028 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001029 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001030 return V;
1031
Duncan Sands593faa52011-01-28 16:51:11 +00001032 return 0;
1033}
1034
1035/// SimplifySDivInst - Given operands for an SDiv, see if we can
1036/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001037static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1038 unsigned MaxRecurse) {
1039 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001040 return V;
1041
Duncan Sands593faa52011-01-28 16:51:11 +00001042 return 0;
1043}
1044
Micah Villmow3574eca2012-10-08 16:38:25 +00001045Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001046 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001047 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001048 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001049}
1050
1051/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1052/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001053static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1054 unsigned MaxRecurse) {
1055 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001056 return V;
1057
Duncan Sands593faa52011-01-28 16:51:11 +00001058 return 0;
1059}
1060
Micah Villmow3574eca2012-10-08 16:38:25 +00001061Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001062 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001063 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001064 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001065}
1066
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001067static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1068 unsigned) {
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001069 // undef / X -> undef (the undef could be a snan).
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001070 if (match(Op0, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001071 return Op0;
1072
1073 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001074 if (match(Op1, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001075 return Op1;
1076
1077 return 0;
1078}
1079
Micah Villmow3574eca2012-10-08 16:38:25 +00001080Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001081 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001082 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001083 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001084}
1085
Duncan Sandsf24ed772011-05-02 16:27:02 +00001086/// SimplifyRem - Given operands for an SRem or URem, see if we can
1087/// fold the result. If not, this returns null.
1088static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001089 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001090 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1091 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1092 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001093 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001094 }
1095 }
1096
Duncan Sandsf24ed772011-05-02 16:27:02 +00001097 // X % undef -> undef
1098 if (match(Op1, m_Undef()))
1099 return Op1;
1100
1101 // undef % X -> 0
1102 if (match(Op0, m_Undef()))
1103 return Constant::getNullValue(Op0->getType());
1104
1105 // 0 % X -> 0, we don't need to preserve faults!
1106 if (match(Op0, m_Zero()))
1107 return Op0;
1108
1109 // X % 0 -> undef, we don't need to preserve faults!
1110 if (match(Op1, m_Zero()))
1111 return UndefValue::get(Op0->getType());
1112
1113 // X % 1 -> 0
1114 if (match(Op1, m_One()))
1115 return Constant::getNullValue(Op0->getType());
1116
1117 if (Op0->getType()->isIntegerTy(1))
1118 // It can't be remainder by zero, hence it must be remainder by one.
1119 return Constant::getNullValue(Op0->getType());
1120
1121 // X % X -> 0
1122 if (Op0 == Op1)
1123 return Constant::getNullValue(Op0->getType());
1124
1125 // If the operation is with the result of a select instruction, check whether
1126 // operating on either branch of the select always yields the same value.
1127 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001128 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001129 return V;
1130
1131 // If the operation is with the result of a phi instruction, check whether
1132 // operating on all incoming values of the phi always yields the same value.
1133 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001134 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001135 return V;
1136
1137 return 0;
1138}
1139
1140/// SimplifySRemInst - Given operands for an SRem, see if we can
1141/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001142static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1143 unsigned MaxRecurse) {
1144 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001145 return V;
1146
1147 return 0;
1148}
1149
Micah Villmow3574eca2012-10-08 16:38:25 +00001150Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001151 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001152 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001153 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001154}
1155
1156/// SimplifyURemInst - Given operands for a URem, see if we can
1157/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001158static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001159 unsigned MaxRecurse) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001160 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001161 return V;
1162
1163 return 0;
1164}
1165
Micah Villmow3574eca2012-10-08 16:38:25 +00001166Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001167 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001168 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001169 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001170}
1171
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001172static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +00001173 unsigned) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001174 // undef % X -> undef (the undef could be a snan).
1175 if (match(Op0, m_Undef()))
1176 return Op0;
1177
1178 // X % undef -> undef
1179 if (match(Op1, m_Undef()))
1180 return Op1;
1181
1182 return 0;
1183}
1184
Micah Villmow3574eca2012-10-08 16:38:25 +00001185Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001186 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001187 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001188 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001189}
1190
Duncan Sandscf80bc12011-01-14 14:44:12 +00001191/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +00001192/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +00001193static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001194 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +00001195 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1196 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1197 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001198 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001199 }
1200 }
1201
Duncan Sandscf80bc12011-01-14 14:44:12 +00001202 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +00001203 if (match(Op0, m_Zero()))
1204 return Op0;
1205
Duncan Sandscf80bc12011-01-14 14:44:12 +00001206 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +00001207 if (match(Op1, m_Zero()))
1208 return Op0;
1209
Duncan Sandscf80bc12011-01-14 14:44:12 +00001210 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001211 if (match(Op1, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001212 return Op1;
1213
1214 // Shifting by the bitwidth or more is undefined.
1215 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1216 if (CI->getValue().getLimitedValue() >=
1217 Op0->getType()->getScalarSizeInBits())
1218 return UndefValue::get(Op0->getType());
1219
Duncan Sandscf80bc12011-01-14 14:44:12 +00001220 // If the operation is with the result of a select instruction, check whether
1221 // operating on either branch of the select always yields the same value.
1222 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001223 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001224 return V;
1225
1226 // If the operation is with the result of a phi instruction, check whether
1227 // operating on all incoming values of the phi always yields the same value.
1228 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001229 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001230 return V;
1231
1232 return 0;
1233}
1234
1235/// SimplifyShlInst - Given operands for an Shl, see if we can
1236/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001237static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001238 const Query &Q, unsigned MaxRecurse) {
1239 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001240 return V;
1241
1242 // undef << X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001243 if (match(Op0, m_Undef()))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001244 return Constant::getNullValue(Op0->getType());
1245
Chris Lattner81a0dc92011-02-09 17:15:04 +00001246 // (X >> A) << A -> X
1247 Value *X;
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001248 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
Chris Lattner81a0dc92011-02-09 17:15:04 +00001249 return X;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001250 return 0;
1251}
1252
Chris Lattner81a0dc92011-02-09 17:15:04 +00001253Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +00001254 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00001255 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001256 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1257 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001258}
1259
1260/// SimplifyLShrInst - Given operands for an LShr, see if we can
1261/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001262static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001263 const Query &Q, unsigned MaxRecurse) {
1264 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001265 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001266
1267 // undef >>l X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001268 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001269 return Constant::getNullValue(Op0->getType());
1270
Chris Lattner81a0dc92011-02-09 17:15:04 +00001271 // (X << A) >> A -> X
1272 Value *X;
1273 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1274 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1275 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001276
Duncan Sandsc43cee32011-01-14 00:37:45 +00001277 return 0;
1278}
1279
Chris Lattner81a0dc92011-02-09 17:15:04 +00001280Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001281 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001282 const TargetLibraryInfo *TLI,
1283 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001284 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1285 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001286}
1287
1288/// SimplifyAShrInst - Given operands for an AShr, see if we can
1289/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001290static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001291 const Query &Q, unsigned MaxRecurse) {
1292 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001293 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001294
1295 // all ones >>a X -> all ones
1296 if (match(Op0, m_AllOnes()))
1297 return Op0;
1298
1299 // undef >>a X -> all ones
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001300 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001301 return Constant::getAllOnesValue(Op0->getType());
1302
Chris Lattner81a0dc92011-02-09 17:15:04 +00001303 // (X << A) >> A -> X
1304 Value *X;
1305 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1306 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1307 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001308
Duncan Sandsc43cee32011-01-14 00:37:45 +00001309 return 0;
1310}
1311
Chris Lattner81a0dc92011-02-09 17:15:04 +00001312Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001313 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001314 const TargetLibraryInfo *TLI,
1315 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001316 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1317 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001318}
1319
Chris Lattnerd06094f2009-11-10 00:55:12 +00001320/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001321/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001322static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001323 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001324 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1325 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1326 Constant *Ops[] = { CLHS, CRHS };
1327 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001328 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001329 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001330
Chris Lattnerd06094f2009-11-10 00:55:12 +00001331 // Canonicalize the constant to the RHS.
1332 std::swap(Op0, Op1);
1333 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001334
Chris Lattnerd06094f2009-11-10 00:55:12 +00001335 // X & undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001336 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001337 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001338
Chris Lattnerd06094f2009-11-10 00:55:12 +00001339 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001340 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001341 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001342
Duncan Sands2b749872010-11-17 18:52:15 +00001343 // X & 0 = 0
1344 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001345 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001346
Duncan Sands2b749872010-11-17 18:52:15 +00001347 // X & -1 = X
1348 if (match(Op1, m_AllOnes()))
1349 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001350
Chris Lattnerd06094f2009-11-10 00:55:12 +00001351 // A & ~A = ~A & A = 0
Chris Lattner81a0dc92011-02-09 17:15:04 +00001352 if (match(Op0, m_Not(m_Specific(Op1))) ||
1353 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001354 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001355
Chris Lattnerd06094f2009-11-10 00:55:12 +00001356 // (A | ?) & A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001357 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001358 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001359 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001360 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001361
Chris Lattnerd06094f2009-11-10 00:55:12 +00001362 // A & (A | ?) = A
1363 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001364 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001365 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001366
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001367 // A & (-A) = A if A is a power of two or zero.
1368 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1369 match(Op1, m_Neg(m_Specific(Op0)))) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001370 if (isPowerOfTwo(Op0, Q.TD, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001371 return Op0;
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001372 if (isPowerOfTwo(Op1, Q.TD, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001373 return Op1;
1374 }
1375
Duncan Sands566edb02010-12-21 08:49:00 +00001376 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001377 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1378 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001379 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001380
Duncan Sands3421d902010-12-21 13:32:22 +00001381 // And distributes over Or. Try some generic simplifications based on this.
1382 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001383 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001384 return V;
1385
1386 // And distributes over Xor. Try some generic simplifications based on this.
1387 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001388 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001389 return V;
1390
1391 // Or distributes over And. Try some generic simplifications based on this.
1392 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001393 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001394 return V;
1395
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001396 // If the operation is with the result of a select instruction, check whether
1397 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001398 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001399 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1400 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001401 return V;
1402
1403 // If the operation is with the result of a phi instruction, check whether
1404 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001405 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001406 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001407 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001408 return V;
1409
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001410 return 0;
1411}
1412
Micah Villmow3574eca2012-10-08 16:38:25 +00001413Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001414 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001415 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001416 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001417}
1418
Chris Lattnerd06094f2009-11-10 00:55:12 +00001419/// SimplifyOrInst - Given operands for an Or, see if we can
1420/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001421static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1422 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001423 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1424 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1425 Constant *Ops[] = { CLHS, CRHS };
1426 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001427 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001428 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001429
Chris Lattnerd06094f2009-11-10 00:55:12 +00001430 // Canonicalize the constant to the RHS.
1431 std::swap(Op0, Op1);
1432 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001433
Chris Lattnerd06094f2009-11-10 00:55:12 +00001434 // X | undef -> -1
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001435 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001436 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001437
Chris Lattnerd06094f2009-11-10 00:55:12 +00001438 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001439 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001440 return Op0;
1441
Duncan Sands2b749872010-11-17 18:52:15 +00001442 // X | 0 = X
1443 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001444 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001445
Duncan Sands2b749872010-11-17 18:52:15 +00001446 // X | -1 = -1
1447 if (match(Op1, m_AllOnes()))
1448 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001449
Chris Lattnerd06094f2009-11-10 00:55:12 +00001450 // A | ~A = ~A | A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001451 if (match(Op0, m_Not(m_Specific(Op1))) ||
1452 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001453 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001454
Chris Lattnerd06094f2009-11-10 00:55:12 +00001455 // (A & ?) | A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001456 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001457 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001458 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001459 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001460
Chris Lattnerd06094f2009-11-10 00:55:12 +00001461 // A | (A & ?) = A
1462 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001463 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001464 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001465
Benjamin Kramer38f7f662011-02-20 15:20:01 +00001466 // ~(A & ?) | A = -1
1467 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1468 (A == Op1 || B == Op1))
1469 return Constant::getAllOnesValue(Op1->getType());
1470
1471 // A | ~(A & ?) = -1
1472 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1473 (A == Op0 || B == Op0))
1474 return Constant::getAllOnesValue(Op0->getType());
1475
Duncan Sands566edb02010-12-21 08:49:00 +00001476 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001477 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1478 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001479 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001480
Duncan Sands3421d902010-12-21 13:32:22 +00001481 // Or distributes over And. Try some generic simplifications based on this.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001482 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1483 MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001484 return V;
1485
1486 // And distributes over Or. Try some generic simplifications based on this.
1487 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001488 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001489 return V;
1490
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001491 // If the operation is with the result of a select instruction, check whether
1492 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001493 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001494 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001495 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001496 return V;
1497
1498 // If the operation is with the result of a phi instruction, check whether
1499 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001500 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001501 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001502 return V;
1503
Chris Lattnerd06094f2009-11-10 00:55:12 +00001504 return 0;
1505}
1506
Micah Villmow3574eca2012-10-08 16:38:25 +00001507Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001508 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001509 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001510 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001511}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001512
Duncan Sands2b749872010-11-17 18:52:15 +00001513/// SimplifyXorInst - Given operands for a Xor, see if we can
1514/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001515static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1516 unsigned MaxRecurse) {
Duncan Sands2b749872010-11-17 18:52:15 +00001517 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1518 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1519 Constant *Ops[] = { CLHS, CRHS };
1520 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001521 Ops, Q.TD, Q.TLI);
Duncan Sands2b749872010-11-17 18:52:15 +00001522 }
1523
1524 // Canonicalize the constant to the RHS.
1525 std::swap(Op0, Op1);
1526 }
1527
1528 // A ^ undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001529 if (match(Op1, m_Undef()))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001530 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001531
1532 // A ^ 0 = A
1533 if (match(Op1, m_Zero()))
1534 return Op0;
1535
Eli Friedmanf23d4ad2011-08-17 19:31:49 +00001536 // A ^ A = 0
1537 if (Op0 == Op1)
1538 return Constant::getNullValue(Op0->getType());
1539
Duncan Sands2b749872010-11-17 18:52:15 +00001540 // A ^ ~A = ~A ^ A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001541 if (match(Op0, m_Not(m_Specific(Op1))) ||
1542 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sands2b749872010-11-17 18:52:15 +00001543 return Constant::getAllOnesValue(Op0->getType());
1544
Duncan Sands566edb02010-12-21 08:49:00 +00001545 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001546 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1547 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001548 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001549
Duncan Sands3421d902010-12-21 13:32:22 +00001550 // And distributes over Xor. Try some generic simplifications based on this.
1551 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001552 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001553 return V;
1554
Duncan Sands87689cf2010-11-19 09:20:39 +00001555 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1556 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1557 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1558 // only if B and C are equal. If B and C are equal then (since we assume
1559 // that operands have already been simplified) "select(cond, B, C)" should
1560 // have been simplified to the common value of B and C already. Analysing
1561 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1562 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001563
1564 return 0;
1565}
1566
Micah Villmow3574eca2012-10-08 16:38:25 +00001567Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001568 const TargetLibraryInfo *TLI,
Duncan Sands2b749872010-11-17 18:52:15 +00001569 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001570 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands2b749872010-11-17 18:52:15 +00001571}
1572
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001573static Type *GetCompareTy(Value *Op) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001574 return CmpInst::makeCmpResultType(Op->getType());
1575}
1576
Duncan Sandse864b5b2011-05-07 16:56:49 +00001577/// ExtractEquivalentCondition - Rummage around inside V looking for something
1578/// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1579/// otherwise return null. Helper function for analyzing max/min idioms.
1580static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1581 Value *LHS, Value *RHS) {
1582 SelectInst *SI = dyn_cast<SelectInst>(V);
1583 if (!SI)
1584 return 0;
1585 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1586 if (!Cmp)
1587 return 0;
1588 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1589 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1590 return Cmp;
1591 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1592 LHS == CmpRHS && RHS == CmpLHS)
1593 return Cmp;
1594 return 0;
1595}
1596
Micah Villmow3574eca2012-10-08 16:38:25 +00001597static Constant *computePointerICmp(const DataLayout &TD,
Chandler Carruth58725a62012-03-25 21:28:14 +00001598 CmpInst::Predicate Pred,
1599 Value *LHS, Value *RHS) {
1600 // We can only fold certain predicates on pointer comparisons.
1601 switch (Pred) {
1602 default:
1603 return 0;
1604
1605 // Equality comaprisons are easy to fold.
1606 case CmpInst::ICMP_EQ:
1607 case CmpInst::ICMP_NE:
1608 break;
1609
1610 // We can only handle unsigned relational comparisons because 'inbounds' on
1611 // a GEP only protects against unsigned wrapping.
1612 case CmpInst::ICMP_UGT:
1613 case CmpInst::ICMP_UGE:
1614 case CmpInst::ICMP_ULT:
1615 case CmpInst::ICMP_ULE:
1616 // However, we have to switch them to their signed variants to handle
1617 // negative indices from the base pointer.
1618 Pred = ICmpInst::getSignedPredicate(Pred);
1619 break;
1620 }
1621
1622 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1623 if (!LHSOffset)
1624 return 0;
1625 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
1626 if (!RHSOffset)
1627 return 0;
1628
1629 // If LHS and RHS are not related via constant offsets to the same base
1630 // value, there is nothing we can do here.
1631 if (LHS != RHS)
1632 return 0;
1633
1634 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
1635}
Chris Lattner009e2652012-02-24 19:01:58 +00001636
Chris Lattner9dbb4292009-11-09 23:28:39 +00001637/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1638/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001639static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001640 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001641 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001642 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001643
Chris Lattnerd06094f2009-11-10 00:55:12 +00001644 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001645 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001646 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001647
1648 // If we have a constant, make sure it is on the RHS.
1649 std::swap(LHS, RHS);
1650 Pred = CmpInst::getSwappedPredicate(Pred);
1651 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001652
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001653 Type *ITy = GetCompareTy(LHS); // The return type.
1654 Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001655
Chris Lattner210c5d42009-11-09 23:55:12 +00001656 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001657 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1658 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001659 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001660 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001661
Duncan Sands6dc91252011-01-13 08:56:29 +00001662 // Special case logic when the operands have i1 type.
Nick Lewycky66d004e2011-12-01 02:39:36 +00001663 if (OpTy->getScalarType()->isIntegerTy(1)) {
Duncan Sands6dc91252011-01-13 08:56:29 +00001664 switch (Pred) {
1665 default: break;
1666 case ICmpInst::ICMP_EQ:
1667 // X == 1 -> X
1668 if (match(RHS, m_One()))
1669 return LHS;
1670 break;
1671 case ICmpInst::ICMP_NE:
1672 // X != 0 -> X
1673 if (match(RHS, m_Zero()))
1674 return LHS;
1675 break;
1676 case ICmpInst::ICMP_UGT:
1677 // X >u 0 -> X
1678 if (match(RHS, m_Zero()))
1679 return LHS;
1680 break;
1681 case ICmpInst::ICMP_UGE:
1682 // X >=u 1 -> X
1683 if (match(RHS, m_One()))
1684 return LHS;
1685 break;
1686 case ICmpInst::ICMP_SLT:
1687 // X <s 0 -> X
1688 if (match(RHS, m_Zero()))
1689 return LHS;
1690 break;
1691 case ICmpInst::ICMP_SLE:
1692 // X <=s -1 -> X
1693 if (match(RHS, m_One()))
1694 return LHS;
1695 break;
1696 }
1697 }
1698
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001699 // icmp <object*>, <object*/null> - Different identified objects have
1700 // different addresses (unless null), and what's more the address of an
1701 // identified local is never equal to another argument (again, barring null).
1702 // Note that generalizing to the case where LHS is a global variable address
1703 // or null is pointless, since if both LHS and RHS are constants then we
1704 // already constant folded the compare, and if only one of them is then we
1705 // moved it to RHS already.
Benjamin Kramerea79b8e2012-02-16 15:19:59 +00001706 Value *LHSPtr = LHS->stripPointerCasts();
1707 Value *RHSPtr = RHS->stripPointerCasts();
Eli Friedman2c3acb02012-02-18 03:29:25 +00001708 if (LHSPtr == RHSPtr)
1709 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001710
Chris Lattnerb053fc12012-02-20 00:42:49 +00001711 // Be more aggressive about stripping pointer adjustments when checking a
1712 // comparison of an alloca address to another object. We can rip off all
1713 // inbounds GEP operations, even if they are variable.
Chandler Carruth84dfc322012-03-10 08:39:09 +00001714 LHSPtr = LHSPtr->stripInBoundsOffsets();
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001715 if (llvm::isIdentifiedObject(LHSPtr)) {
Chandler Carruth84dfc322012-03-10 08:39:09 +00001716 RHSPtr = RHSPtr->stripInBoundsOffsets();
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001717 if (llvm::isKnownNonNull(LHSPtr) || llvm::isKnownNonNull(RHSPtr)) {
1718 // If both sides are different identified objects, they aren't equal
1719 // unless they're null.
Bill Wendlingc17731d652012-03-10 17:56:03 +00001720 if (LHSPtr != RHSPtr && llvm::isIdentifiedObject(RHSPtr) &&
Bill Wendling798d0132012-03-10 18:20:55 +00001721 Pred == CmpInst::ICMP_EQ)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001722 return ConstantInt::get(ITy, false);
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001723
1724 // A local identified object (alloca or noalias call) can't equal any
Chandler Carruth961e1ac2012-08-07 10:59:59 +00001725 // incoming argument, unless they're both null or they belong to
1726 // different functions. The latter happens during inlining.
1727 if (Instruction *LHSInst = dyn_cast<Instruction>(LHSPtr))
1728 if (Argument *RHSArg = dyn_cast<Argument>(RHSPtr))
1729 if (LHSInst->getParent()->getParent() == RHSArg->getParent() &&
1730 Pred == CmpInst::ICMP_EQ)
1731 return ConstantInt::get(ITy, false);
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00001732 }
1733
1734 // Assume that the constant null is on the right.
Bill Wendlingc17731d652012-03-10 17:56:03 +00001735 if (llvm::isKnownNonNull(LHSPtr) && isa<ConstantPointerNull>(RHSPtr)) {
Bill Wendling798d0132012-03-10 18:20:55 +00001736 if (Pred == CmpInst::ICMP_EQ)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001737 return ConstantInt::get(ITy, false);
Bill Wendling798d0132012-03-10 18:20:55 +00001738 else if (Pred == CmpInst::ICMP_NE)
Bill Wendlingc17731d652012-03-10 17:56:03 +00001739 return ConstantInt::get(ITy, true);
1740 }
Chandler Carruth961e1ac2012-08-07 10:59:59 +00001741 } else if (Argument *LHSArg = dyn_cast<Argument>(LHSPtr)) {
Chandler Carruth84dfc322012-03-10 08:39:09 +00001742 RHSPtr = RHSPtr->stripInBoundsOffsets();
Chandler Carruth961e1ac2012-08-07 10:59:59 +00001743 // An alloca can't be equal to an argument unless they come from separate
1744 // functions via inlining.
1745 if (AllocaInst *RHSInst = dyn_cast<AllocaInst>(RHSPtr)) {
1746 if (LHSArg->getParent() == RHSInst->getParent()->getParent()) {
1747 if (Pred == CmpInst::ICMP_EQ)
1748 return ConstantInt::get(ITy, false);
1749 else if (Pred == CmpInst::ICMP_NE)
1750 return ConstantInt::get(ITy, true);
1751 }
Bill Wendlingc17731d652012-03-10 17:56:03 +00001752 }
Chris Lattnerb053fc12012-02-20 00:42:49 +00001753 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001754
1755 // If we are comparing with zero then try hard since this is a common case.
1756 if (match(RHS, m_Zero())) {
1757 bool LHSKnownNonNegative, LHSKnownNegative;
1758 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001759 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001760 case ICmpInst::ICMP_ULT:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001761 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001762 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001763 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001764 case ICmpInst::ICMP_EQ:
1765 case ICmpInst::ICMP_ULE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001766 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001767 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001768 break;
1769 case ICmpInst::ICMP_NE:
1770 case ICmpInst::ICMP_UGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001771 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001772 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001773 break;
1774 case ICmpInst::ICMP_SLT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001775 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001776 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001777 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001778 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001779 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001780 break;
1781 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001782 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001783 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001784 return getTrue(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001785 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001786 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001787 break;
1788 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001789 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001790 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001791 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001792 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001793 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001794 break;
1795 case ICmpInst::ICMP_SGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001796 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001797 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001798 return getFalse(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001799 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001800 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001801 break;
1802 }
1803 }
1804
1805 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001806 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Nick Lewycky3a73e342011-03-04 07:00:57 +00001807 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1808 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1809 if (RHS_CR.isEmptySet())
1810 return ConstantInt::getFalse(CI->getContext());
1811 if (RHS_CR.isFullSet())
1812 return ConstantInt::getTrue(CI->getContext());
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00001813
Nick Lewycky3a73e342011-03-04 07:00:57 +00001814 // Many binary operators with constant RHS have easy to compute constant
1815 // range. Use them to check whether the comparison is a tautology.
1816 uint32_t Width = CI->getBitWidth();
1817 APInt Lower = APInt(Width, 0);
1818 APInt Upper = APInt(Width, 0);
1819 ConstantInt *CI2;
1820 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1821 // 'urem x, CI2' produces [0, CI2).
1822 Upper = CI2->getValue();
1823 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1824 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1825 Upper = CI2->getValue().abs();
1826 Lower = (-Upper) + 1;
Duncan Sandsc65c7472011-10-28 18:17:44 +00001827 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1828 // 'udiv CI2, x' produces [0, CI2].
Eli Friedman7781ae52011-11-08 21:08:02 +00001829 Upper = CI2->getValue() + 1;
Nick Lewycky3a73e342011-03-04 07:00:57 +00001830 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1831 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1832 APInt NegOne = APInt::getAllOnesValue(Width);
1833 if (!CI2->isZero())
1834 Upper = NegOne.udiv(CI2->getValue()) + 1;
1835 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1836 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1837 APInt IntMin = APInt::getSignedMinValue(Width);
1838 APInt IntMax = APInt::getSignedMaxValue(Width);
1839 APInt Val = CI2->getValue().abs();
1840 if (!Val.isMinValue()) {
1841 Lower = IntMin.sdiv(Val);
1842 Upper = IntMax.sdiv(Val) + 1;
1843 }
1844 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1845 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1846 APInt NegOne = APInt::getAllOnesValue(Width);
1847 if (CI2->getValue().ult(Width))
1848 Upper = NegOne.lshr(CI2->getValue()) + 1;
1849 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
1850 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
1851 APInt IntMin = APInt::getSignedMinValue(Width);
1852 APInt IntMax = APInt::getSignedMaxValue(Width);
1853 if (CI2->getValue().ult(Width)) {
1854 Lower = IntMin.ashr(CI2->getValue());
1855 Upper = IntMax.ashr(CI2->getValue()) + 1;
1856 }
1857 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
1858 // 'or x, CI2' produces [CI2, UINT_MAX].
1859 Lower = CI2->getValue();
1860 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
1861 // 'and x, CI2' produces [0, CI2].
1862 Upper = CI2->getValue() + 1;
1863 }
1864 if (Lower != Upper) {
1865 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
1866 if (RHS_CR.contains(LHS_CR))
1867 return ConstantInt::getTrue(RHS->getContext());
1868 if (RHS_CR.inverse().contains(LHS_CR))
1869 return ConstantInt::getFalse(RHS->getContext());
1870 }
Duncan Sands6dc91252011-01-13 08:56:29 +00001871 }
1872
Duncan Sands9d32f602011-01-20 13:21:55 +00001873 // Compare of cast, for example (zext X) != 0 -> X != 0
1874 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
1875 Instruction *LI = cast<CastInst>(LHS);
1876 Value *SrcOp = LI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001877 Type *SrcTy = SrcOp->getType();
1878 Type *DstTy = LI->getType();
Duncan Sands9d32f602011-01-20 13:21:55 +00001879
1880 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
1881 // if the integer type is the same size as the pointer type.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001882 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
Micah Villmow2c39b152012-10-15 16:24:29 +00001883 Q.TD->getPointerSizeInBits(
1884 cast<PtrToIntInst>(LI)->getPointerAddressSpace()) ==
1885 DstTy->getPrimitiveSizeInBits()) {
Duncan Sands9d32f602011-01-20 13:21:55 +00001886 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1887 // Transfer the cast to the constant.
1888 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
1889 ConstantExpr::getIntToPtr(RHSC, SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001890 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001891 return V;
1892 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
1893 if (RI->getOperand(0)->getType() == SrcTy)
1894 // Compare without the cast.
1895 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001896 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001897 return V;
1898 }
1899 }
1900
1901 if (isa<ZExtInst>(LHS)) {
1902 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
1903 // same type.
1904 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
1905 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1906 // Compare X and Y. Note that signed predicates become unsigned.
1907 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001908 SrcOp, RI->getOperand(0), Q,
Duncan Sands9d32f602011-01-20 13:21:55 +00001909 MaxRecurse-1))
1910 return V;
1911 }
1912 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
1913 // too. If not, then try to deduce the result of the comparison.
1914 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1915 // Compute the constant that would happen if we truncated to SrcTy then
1916 // reextended to DstTy.
1917 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1918 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
1919
1920 // If the re-extended constant didn't change then this is effectively
1921 // also a case of comparing two zero-extended values.
1922 if (RExt == CI && MaxRecurse)
1923 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001924 SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001925 return V;
1926
1927 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
1928 // there. Use this to work out the result of the comparison.
1929 if (RExt != CI) {
1930 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001931 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00001932 // LHS <u RHS.
1933 case ICmpInst::ICMP_EQ:
1934 case ICmpInst::ICMP_UGT:
1935 case ICmpInst::ICMP_UGE:
1936 return ConstantInt::getFalse(CI->getContext());
1937
1938 case ICmpInst::ICMP_NE:
1939 case ICmpInst::ICMP_ULT:
1940 case ICmpInst::ICMP_ULE:
1941 return ConstantInt::getTrue(CI->getContext());
1942
1943 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
1944 // is non-negative then LHS <s RHS.
1945 case ICmpInst::ICMP_SGT:
1946 case ICmpInst::ICMP_SGE:
1947 return CI->getValue().isNegative() ?
1948 ConstantInt::getTrue(CI->getContext()) :
1949 ConstantInt::getFalse(CI->getContext());
1950
1951 case ICmpInst::ICMP_SLT:
1952 case ICmpInst::ICMP_SLE:
1953 return CI->getValue().isNegative() ?
1954 ConstantInt::getFalse(CI->getContext()) :
1955 ConstantInt::getTrue(CI->getContext());
1956 }
1957 }
1958 }
1959 }
1960
1961 if (isa<SExtInst>(LHS)) {
1962 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
1963 // same type.
1964 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
1965 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
1966 // Compare X and Y. Note that the predicate does not change.
1967 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001968 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001969 return V;
1970 }
1971 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
1972 // too. If not, then try to deduce the result of the comparison.
1973 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1974 // Compute the constant that would happen if we truncated to SrcTy then
1975 // reextended to DstTy.
1976 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
1977 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
1978
1979 // If the re-extended constant didn't change then this is effectively
1980 // also a case of comparing two sign-extended values.
1981 if (RExt == CI && MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001982 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00001983 return V;
1984
1985 // Otherwise the upper bits of LHS are all equal, while RHS has varying
1986 // bits there. Use this to work out the result of the comparison.
1987 if (RExt != CI) {
1988 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001989 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00001990 case ICmpInst::ICMP_EQ:
1991 return ConstantInt::getFalse(CI->getContext());
1992 case ICmpInst::ICMP_NE:
1993 return ConstantInt::getTrue(CI->getContext());
1994
1995 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
1996 // LHS >s RHS.
1997 case ICmpInst::ICMP_SGT:
1998 case ICmpInst::ICMP_SGE:
1999 return CI->getValue().isNegative() ?
2000 ConstantInt::getTrue(CI->getContext()) :
2001 ConstantInt::getFalse(CI->getContext());
2002 case ICmpInst::ICMP_SLT:
2003 case ICmpInst::ICMP_SLE:
2004 return CI->getValue().isNegative() ?
2005 ConstantInt::getFalse(CI->getContext()) :
2006 ConstantInt::getTrue(CI->getContext());
2007
2008 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
2009 // LHS >u RHS.
2010 case ICmpInst::ICMP_UGT:
2011 case ICmpInst::ICMP_UGE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002012 // Comparison is true iff the LHS <s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002013 if (MaxRecurse)
2014 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2015 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002016 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002017 return V;
2018 break;
2019 case ICmpInst::ICMP_ULT:
2020 case ICmpInst::ICMP_ULE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002021 // Comparison is true iff the LHS >=s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002022 if (MaxRecurse)
2023 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2024 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002025 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002026 return V;
2027 break;
2028 }
2029 }
2030 }
2031 }
2032 }
2033
Duncan Sands52fb8462011-02-13 17:15:40 +00002034 // Special logic for binary operators.
2035 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2036 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2037 if (MaxRecurse && (LBO || RBO)) {
Duncan Sands52fb8462011-02-13 17:15:40 +00002038 // Analyze the case when either LHS or RHS is an add instruction.
2039 Value *A = 0, *B = 0, *C = 0, *D = 0;
2040 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2041 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2042 if (LBO && LBO->getOpcode() == Instruction::Add) {
2043 A = LBO->getOperand(0); B = LBO->getOperand(1);
2044 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2045 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2046 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2047 }
2048 if (RBO && RBO->getOpcode() == Instruction::Add) {
2049 C = RBO->getOperand(0); D = RBO->getOperand(1);
2050 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2051 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2052 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2053 }
2054
2055 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2056 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2057 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2058 Constant::getNullValue(RHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002059 Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002060 return V;
2061
2062 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2063 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2064 if (Value *V = SimplifyICmpInst(Pred,
2065 Constant::getNullValue(LHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002066 C == LHS ? D : C, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002067 return V;
2068
2069 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2070 if (A && C && (A == C || A == D || B == C || B == D) &&
2071 NoLHSWrapProblem && NoRHSWrapProblem) {
2072 // Determine Y and Z in the form icmp (X+Y), (X+Z).
2073 Value *Y = (A == C || A == D) ? B : A;
2074 Value *Z = (C == A || C == B) ? D : C;
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002075 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002076 return V;
2077 }
2078 }
2079
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002080 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
Nick Lewycky78679272011-03-04 10:06:52 +00002081 bool KnownNonNegative, KnownNegative;
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002082 switch (Pred) {
2083 default:
2084 break;
Nick Lewycky78679272011-03-04 10:06:52 +00002085 case ICmpInst::ICMP_SGT:
2086 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002087 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002088 if (!KnownNonNegative)
2089 break;
2090 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002091 case ICmpInst::ICMP_EQ:
2092 case ICmpInst::ICMP_UGT:
2093 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002094 return getFalse(ITy);
Nick Lewycky78679272011-03-04 10:06:52 +00002095 case ICmpInst::ICMP_SLT:
2096 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002097 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002098 if (!KnownNonNegative)
2099 break;
2100 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002101 case ICmpInst::ICMP_NE:
2102 case ICmpInst::ICMP_ULT:
2103 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002104 return getTrue(ITy);
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002105 }
2106 }
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002107 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2108 bool KnownNonNegative, KnownNegative;
2109 switch (Pred) {
2110 default:
2111 break;
2112 case ICmpInst::ICMP_SGT:
2113 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002114 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002115 if (!KnownNonNegative)
2116 break;
2117 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002118 case ICmpInst::ICMP_NE:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002119 case ICmpInst::ICMP_UGT:
2120 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002121 return getTrue(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002122 case ICmpInst::ICMP_SLT:
2123 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002124 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002125 if (!KnownNonNegative)
2126 break;
2127 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002128 case ICmpInst::ICMP_EQ:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002129 case ICmpInst::ICMP_ULT:
2130 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002131 return getFalse(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002132 }
2133 }
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002134
Duncan Sandsc65c7472011-10-28 18:17:44 +00002135 // x udiv y <=u x.
2136 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2137 // icmp pred (X /u Y), X
2138 if (Pred == ICmpInst::ICMP_UGT)
2139 return getFalse(ITy);
2140 if (Pred == ICmpInst::ICMP_ULE)
2141 return getTrue(ITy);
2142 }
2143
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002144 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2145 LBO->getOperand(1) == RBO->getOperand(1)) {
2146 switch (LBO->getOpcode()) {
2147 default: break;
2148 case Instruction::UDiv:
2149 case Instruction::LShr:
2150 if (ICmpInst::isSigned(Pred))
2151 break;
2152 // fall-through
2153 case Instruction::SDiv:
2154 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002155 if (!LBO->isExact() || !RBO->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002156 break;
2157 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002158 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002159 return V;
2160 break;
2161 case Instruction::Shl: {
Duncan Sandsc9d904e2011-08-04 10:02:21 +00002162 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002163 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2164 if (!NUW && !NSW)
2165 break;
2166 if (!NSW && ICmpInst::isSigned(Pred))
2167 break;
2168 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002169 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002170 return V;
2171 break;
2172 }
2173 }
2174 }
2175
Duncan Sandsad206812011-05-03 19:53:10 +00002176 // Simplify comparisons involving max/min.
2177 Value *A, *B;
2178 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002179 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
Duncan Sandsad206812011-05-03 19:53:10 +00002180
Duncan Sands8140ad32011-05-04 16:05:05 +00002181 // Signed variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002182 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2183 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002184 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002185 // We analyze this as smax(A, B) pred A.
2186 P = Pred;
2187 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2188 (A == LHS || B == LHS)) {
2189 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002190 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002191 // We analyze this as smax(A, B) swapped-pred A.
2192 P = CmpInst::getSwappedPredicate(Pred);
2193 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2194 (A == RHS || B == RHS)) {
2195 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002196 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002197 // We analyze this as smax(-A, -B) swapped-pred -A.
2198 // Note that we do not need to actually form -A or -B thanks to EqP.
2199 P = CmpInst::getSwappedPredicate(Pred);
2200 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2201 (A == LHS || B == LHS)) {
2202 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002203 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002204 // We analyze this as smax(-A, -B) pred -A.
2205 // Note that we do not need to actually form -A or -B thanks to EqP.
2206 P = Pred;
2207 }
2208 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2209 // Cases correspond to "max(A, B) p A".
2210 switch (P) {
2211 default:
2212 break;
2213 case CmpInst::ICMP_EQ:
2214 case CmpInst::ICMP_SLE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002215 // Equivalent to "A EqP B". This may be the same as the condition tested
2216 // in the max/min; if so, we can just return that.
2217 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2218 return V;
2219 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2220 return V;
2221 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002222 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002223 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002224 return V;
2225 break;
2226 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002227 case CmpInst::ICMP_SGT: {
2228 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2229 // Equivalent to "A InvEqP B". This may be the same as the condition
2230 // tested in the max/min; if so, we can just return that.
2231 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2232 return V;
2233 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2234 return V;
2235 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002236 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002237 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002238 return V;
2239 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002240 }
Duncan Sandsad206812011-05-03 19:53:10 +00002241 case CmpInst::ICMP_SGE:
2242 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002243 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002244 case CmpInst::ICMP_SLT:
2245 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002246 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002247 }
2248 }
2249
Duncan Sands8140ad32011-05-04 16:05:05 +00002250 // Unsigned variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002251 P = CmpInst::BAD_ICMP_PREDICATE;
2252 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2253 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002254 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002255 // We analyze this as umax(A, B) pred A.
2256 P = Pred;
2257 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2258 (A == LHS || B == LHS)) {
2259 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002260 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002261 // We analyze this as umax(A, B) swapped-pred A.
2262 P = CmpInst::getSwappedPredicate(Pred);
2263 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2264 (A == RHS || B == RHS)) {
2265 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002266 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002267 // We analyze this as umax(-A, -B) swapped-pred -A.
2268 // Note that we do not need to actually form -A or -B thanks to EqP.
2269 P = CmpInst::getSwappedPredicate(Pred);
2270 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2271 (A == LHS || B == LHS)) {
2272 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002273 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002274 // We analyze this as umax(-A, -B) pred -A.
2275 // Note that we do not need to actually form -A or -B thanks to EqP.
2276 P = Pred;
2277 }
2278 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2279 // Cases correspond to "max(A, B) p A".
2280 switch (P) {
2281 default:
2282 break;
2283 case CmpInst::ICMP_EQ:
2284 case CmpInst::ICMP_ULE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002285 // Equivalent to "A EqP B". This may be the same as the condition tested
2286 // in the max/min; if so, we can just return that.
2287 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2288 return V;
2289 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2290 return V;
2291 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002292 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002293 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002294 return V;
2295 break;
2296 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002297 case CmpInst::ICMP_UGT: {
2298 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2299 // Equivalent to "A InvEqP B". This may be the same as the condition
2300 // tested in the max/min; if so, we can just return that.
2301 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2302 return V;
2303 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2304 return V;
2305 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002306 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002307 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002308 return V;
2309 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002310 }
Duncan Sandsad206812011-05-03 19:53:10 +00002311 case CmpInst::ICMP_UGE:
2312 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002313 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002314 case CmpInst::ICMP_ULT:
2315 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002316 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002317 }
2318 }
2319
Duncan Sands8140ad32011-05-04 16:05:05 +00002320 // Variants on "max(x,y) >= min(x,z)".
2321 Value *C, *D;
2322 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2323 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2324 (A == C || A == D || B == C || B == D)) {
2325 // max(x, ?) pred min(x, ?).
2326 if (Pred == CmpInst::ICMP_SGE)
2327 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002328 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002329 if (Pred == CmpInst::ICMP_SLT)
2330 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002331 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002332 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2333 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2334 (A == C || A == D || B == C || B == D)) {
2335 // min(x, ?) pred max(x, ?).
2336 if (Pred == CmpInst::ICMP_SLE)
2337 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002338 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002339 if (Pred == CmpInst::ICMP_SGT)
2340 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002341 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002342 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2343 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2344 (A == C || A == D || B == C || B == D)) {
2345 // max(x, ?) pred min(x, ?).
2346 if (Pred == CmpInst::ICMP_UGE)
2347 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002348 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002349 if (Pred == CmpInst::ICMP_ULT)
2350 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002351 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002352 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2353 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2354 (A == C || A == D || B == C || B == D)) {
2355 // min(x, ?) pred max(x, ?).
2356 if (Pred == CmpInst::ICMP_ULE)
2357 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002358 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002359 if (Pred == CmpInst::ICMP_UGT)
2360 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002361 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002362 }
2363
Chandler Carruth58725a62012-03-25 21:28:14 +00002364 // Simplify comparisons of related pointers using a powerful, recursive
2365 // GEP-walk when we have target data available..
2366 if (Q.TD && LHS->getType()->isPointerTy() && RHS->getType()->isPointerTy())
2367 if (Constant *C = computePointerICmp(*Q.TD, Pred, LHS, RHS))
2368 return C;
2369
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00002370 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2371 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2372 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2373 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2374 (ICmpInst::isEquality(Pred) ||
2375 (GLHS->isInBounds() && GRHS->isInBounds() &&
2376 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2377 // The bases are equal and the indices are constant. Build a constant
2378 // expression GEP with the same indices and a null base pointer to see
2379 // what constant folding can make out of it.
2380 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2381 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2382 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2383
2384 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2385 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2386 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2387 }
2388 }
2389 }
2390
Duncan Sands1ac7c992010-11-07 16:12:23 +00002391 // If the comparison is with the result of a select instruction, check whether
2392 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002393 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002394 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002395 return V;
2396
2397 // If the comparison is with the result of a phi instruction, check whether
2398 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002399 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002400 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002401 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00002402
Chris Lattner9f3c25a2009-11-09 22:57:59 +00002403 return 0;
2404}
2405
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002406Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002407 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002408 const TargetLibraryInfo *TLI,
2409 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002410 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2411 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002412}
2413
Chris Lattner9dbb4292009-11-09 23:28:39 +00002414/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2415/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002416static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002417 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002418 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2419 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2420
Chris Lattnerd06094f2009-11-10 00:55:12 +00002421 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002422 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002423 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Duncan Sands12a86f52010-11-14 11:23:23 +00002424
Chris Lattnerd06094f2009-11-10 00:55:12 +00002425 // If we have a constant, make sure it is on the RHS.
2426 std::swap(LHS, RHS);
2427 Pred = CmpInst::getSwappedPredicate(Pred);
2428 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002429
Chris Lattner210c5d42009-11-09 23:55:12 +00002430 // Fold trivial predicates.
2431 if (Pred == FCmpInst::FCMP_FALSE)
2432 return ConstantInt::get(GetCompareTy(LHS), 0);
2433 if (Pred == FCmpInst::FCMP_TRUE)
2434 return ConstantInt::get(GetCompareTy(LHS), 1);
2435
Chris Lattner210c5d42009-11-09 23:55:12 +00002436 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2437 return UndefValue::get(GetCompareTy(LHS));
2438
2439 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00002440 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00002441 if (CmpInst::isTrueWhenEqual(Pred))
2442 return ConstantInt::get(GetCompareTy(LHS), 1);
2443 if (CmpInst::isFalseWhenEqual(Pred))
2444 return ConstantInt::get(GetCompareTy(LHS), 0);
2445 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002446
Chris Lattner210c5d42009-11-09 23:55:12 +00002447 // Handle fcmp with constant RHS
2448 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2449 // If the constant is a nan, see if we can fold the comparison based on it.
2450 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2451 if (CFP->getValueAPF().isNaN()) {
2452 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2453 return ConstantInt::getFalse(CFP->getContext());
2454 assert(FCmpInst::isUnordered(Pred) &&
2455 "Comparison must be either ordered or unordered!");
2456 // True if unordered.
2457 return ConstantInt::getTrue(CFP->getContext());
2458 }
Dan Gohman6b617a72010-02-22 04:06:03 +00002459 // Check whether the constant is an infinity.
2460 if (CFP->getValueAPF().isInfinity()) {
2461 if (CFP->getValueAPF().isNegative()) {
2462 switch (Pred) {
2463 case FCmpInst::FCMP_OLT:
2464 // No value is ordered and less than negative infinity.
2465 return ConstantInt::getFalse(CFP->getContext());
2466 case FCmpInst::FCMP_UGE:
2467 // All values are unordered with or at least negative infinity.
2468 return ConstantInt::getTrue(CFP->getContext());
2469 default:
2470 break;
2471 }
2472 } else {
2473 switch (Pred) {
2474 case FCmpInst::FCMP_OGT:
2475 // No value is ordered and greater than infinity.
2476 return ConstantInt::getFalse(CFP->getContext());
2477 case FCmpInst::FCMP_ULE:
2478 // All values are unordered with and at most infinity.
2479 return ConstantInt::getTrue(CFP->getContext());
2480 default:
2481 break;
2482 }
2483 }
2484 }
Chris Lattner210c5d42009-11-09 23:55:12 +00002485 }
2486 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002487
Duncan Sands92826de2010-11-07 16:46:25 +00002488 // If the comparison is with the result of a select instruction, check whether
2489 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002490 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002491 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002492 return V;
2493
2494 // If the comparison is with the result of a phi instruction, check whether
2495 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002496 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002497 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002498 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00002499
Chris Lattner9dbb4292009-11-09 23:28:39 +00002500 return 0;
2501}
2502
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002503Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002504 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002505 const TargetLibraryInfo *TLI,
2506 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002507 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2508 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002509}
2510
Chris Lattner04754262010-04-20 05:32:14 +00002511/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2512/// the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002513static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2514 Value *FalseVal, const Query &Q,
2515 unsigned MaxRecurse) {
Chris Lattner04754262010-04-20 05:32:14 +00002516 // select true, X, Y -> X
2517 // select false, X, Y -> Y
2518 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2519 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002520
Chris Lattner04754262010-04-20 05:32:14 +00002521 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00002522 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00002523 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002524
Chris Lattner04754262010-04-20 05:32:14 +00002525 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2526 if (isa<Constant>(TrueVal))
2527 return TrueVal;
2528 return FalseVal;
2529 }
Dan Gohman68c0dbc2011-07-01 01:03:43 +00002530 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2531 return FalseVal;
2532 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2533 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002534
Chris Lattner04754262010-04-20 05:32:14 +00002535 return 0;
2536}
2537
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002538Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
Micah Villmow3574eca2012-10-08 16:38:25 +00002539 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002540 const TargetLibraryInfo *TLI,
2541 const DominatorTree *DT) {
2542 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2543 RecursionLimit);
2544}
2545
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002546/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2547/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002548static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
Duncan Sands85bbff62010-11-22 13:42:49 +00002549 // The type of the GEP pointer operand.
Nadav Rotem16087692011-12-05 06:29:09 +00002550 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2551 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2552 if (!PtrTy)
2553 return 0;
Duncan Sands85bbff62010-11-22 13:42:49 +00002554
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002555 // getelementptr P -> P.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002556 if (Ops.size() == 1)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002557 return Ops[0];
2558
Duncan Sands85bbff62010-11-22 13:42:49 +00002559 if (isa<UndefValue>(Ops[0])) {
2560 // Compute the (pointer) type returned by the GEP instruction.
Jay Foada9203102011-07-25 09:48:08 +00002561 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002562 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
Duncan Sands85bbff62010-11-22 13:42:49 +00002563 return UndefValue::get(GEPTy);
2564 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002565
Jay Foadb9b54eb2011-07-19 15:07:52 +00002566 if (Ops.size() == 2) {
Duncan Sandse60d79f2010-11-21 13:53:09 +00002567 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002568 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2569 if (C->isZero())
2570 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00002571 // getelementptr P, N -> P if P points to a type of zero size.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002572 if (Q.TD) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002573 Type *Ty = PtrTy->getElementType();
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002574 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00002575 return Ops[0];
2576 }
2577 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002578
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002579 // Check to see if this is constant foldable.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002580 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002581 if (!isa<Constant>(Ops[i]))
2582 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00002583
Jay Foaddab3d292011-07-21 14:31:17 +00002584 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002585}
2586
Micah Villmow3574eca2012-10-08 16:38:25 +00002587Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002588 const TargetLibraryInfo *TLI,
2589 const DominatorTree *DT) {
2590 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2591}
2592
Duncan Sandsdabc2802011-09-05 06:52:48 +00002593/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2594/// can fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002595static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2596 ArrayRef<unsigned> Idxs, const Query &Q,
2597 unsigned) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002598 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2599 if (Constant *CVal = dyn_cast<Constant>(Val))
2600 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2601
2602 // insertvalue x, undef, n -> x
2603 if (match(Val, m_Undef()))
2604 return Agg;
2605
2606 // insertvalue x, (extractvalue y, n), n
2607 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
Benjamin Kramerae707bd2011-09-05 18:16:19 +00002608 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2609 EV->getIndices() == Idxs) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002610 // insertvalue undef, (extractvalue y, n), n -> y
2611 if (match(Agg, m_Undef()))
2612 return EV->getAggregateOperand();
2613
2614 // insertvalue y, (extractvalue y, n), n -> y
2615 if (Agg == EV->getAggregateOperand())
2616 return Agg;
2617 }
2618
2619 return 0;
2620}
2621
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002622Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2623 ArrayRef<unsigned> Idxs,
Micah Villmow3574eca2012-10-08 16:38:25 +00002624 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002625 const TargetLibraryInfo *TLI,
2626 const DominatorTree *DT) {
2627 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2628 RecursionLimit);
2629}
2630
Duncan Sandsff103412010-11-17 04:30:22 +00002631/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002632static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
Duncan Sandsff103412010-11-17 04:30:22 +00002633 // If all of the PHI's incoming values are the same then replace the PHI node
2634 // with the common value.
2635 Value *CommonValue = 0;
2636 bool HasUndefInput = false;
2637 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2638 Value *Incoming = PN->getIncomingValue(i);
2639 // If the incoming value is the phi node itself, it can safely be skipped.
2640 if (Incoming == PN) continue;
2641 if (isa<UndefValue>(Incoming)) {
2642 // Remember that we saw an undef value, but otherwise ignore them.
2643 HasUndefInput = true;
2644 continue;
2645 }
2646 if (CommonValue && Incoming != CommonValue)
2647 return 0; // Not the same, bail out.
2648 CommonValue = Incoming;
2649 }
2650
2651 // If CommonValue is null then all of the incoming values were either undef or
2652 // equal to the phi node itself.
2653 if (!CommonValue)
2654 return UndefValue::get(PN->getType());
2655
2656 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2657 // instruction, we cannot return X as the result of the PHI node unless it
2658 // dominates the PHI block.
2659 if (HasUndefInput)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002660 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
Duncan Sandsff103412010-11-17 04:30:22 +00002661
2662 return CommonValue;
2663}
2664
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002665static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2666 if (Constant *C = dyn_cast<Constant>(Op))
2667 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2668
2669 return 0;
2670}
2671
Micah Villmow3574eca2012-10-08 16:38:25 +00002672Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002673 const TargetLibraryInfo *TLI,
2674 const DominatorTree *DT) {
2675 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2676}
2677
Chris Lattnerd06094f2009-11-10 00:55:12 +00002678//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00002679
Chris Lattnerd06094f2009-11-10 00:55:12 +00002680/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2681/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002682static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002683 const Query &Q, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00002684 switch (Opcode) {
Chris Lattner81a0dc92011-02-09 17:15:04 +00002685 case Instruction::Add:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002686 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002687 Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002688 case Instruction::Sub:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002689 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002690 Q, MaxRecurse);
2691 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
2692 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2693 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2694 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2695 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2696 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2697 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002698 case Instruction::Shl:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002699 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002700 Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002701 case Instruction::LShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002702 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002703 case Instruction::AShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002704 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2705 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2706 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2707 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002708 default:
2709 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2710 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2711 Constant *COps[] = {CLHS, CRHS};
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002712 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2713 Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002714 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002715
Duncan Sands566edb02010-12-21 08:49:00 +00002716 // If the operation is associative, try some generic simplifications.
2717 if (Instruction::isAssociative(Opcode))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002718 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00002719 return V;
2720
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002721 // If the operation is with the result of a select instruction check whether
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002722 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002723 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002724 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002725 return V;
2726
2727 // If the operation is with the result of a phi instruction, check whether
2728 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002729 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002730 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002731 return V;
2732
Chris Lattnerd06094f2009-11-10 00:55:12 +00002733 return 0;
2734 }
2735}
Chris Lattner9dbb4292009-11-09 23:28:39 +00002736
Duncan Sands12a86f52010-11-14 11:23:23 +00002737Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002738 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002739 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002740 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00002741}
2742
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002743/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2744/// fold the result.
2745static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002746 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002747 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002748 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2749 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002750}
2751
2752Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002753 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002754 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002755 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2756 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002757}
Chris Lattnere3453782009-11-10 01:08:51 +00002758
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002759static Value *SimplifyCallInst(CallInst *CI, const Query &) {
Dan Gohman71d05032011-11-04 18:32:42 +00002760 // call undef -> undef
2761 if (isa<UndefValue>(CI->getCalledValue()))
2762 return UndefValue::get(CI->getType());
2763
2764 return 0;
2765}
2766
Chris Lattnere3453782009-11-10 01:08:51 +00002767/// SimplifyInstruction - See if we can compute a simplified version of this
2768/// instruction. If not, this returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00002769Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002770 const TargetLibraryInfo *TLI,
Duncan Sandseff05812010-11-14 18:36:10 +00002771 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00002772 Value *Result;
2773
Chris Lattnere3453782009-11-10 01:08:51 +00002774 switch (I->getOpcode()) {
2775 default:
Chad Rosier618c1db2011-12-01 03:08:23 +00002776 Result = ConstantFoldInstruction(I, TD, TLI);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002777 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00002778 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002779 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
2780 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2781 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002782 TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002783 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00002784 case Instruction::Sub:
2785 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
2786 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2787 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002788 TD, TLI, DT);
Duncan Sandsfea3b212010-12-15 14:07:39 +00002789 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00002790 case Instruction::Mul:
Chad Rosier618c1db2011-12-01 03:08:23 +00002791 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands82fdab32010-12-21 14:00:22 +00002792 break;
Duncan Sands593faa52011-01-28 16:51:11 +00002793 case Instruction::SDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002794 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00002795 break;
2796 case Instruction::UDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002797 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00002798 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00002799 case Instruction::FDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00002800 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00002801 break;
Duncan Sandsf24ed772011-05-02 16:27:02 +00002802 case Instruction::SRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002803 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002804 break;
2805 case Instruction::URem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002806 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002807 break;
2808 case Instruction::FRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00002809 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00002810 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00002811 case Instruction::Shl:
Chris Lattner81a0dc92011-02-09 17:15:04 +00002812 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
2813 cast<BinaryOperator>(I)->hasNoSignedWrap(),
2814 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002815 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00002816 break;
2817 case Instruction::LShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00002818 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
2819 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002820 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00002821 break;
2822 case Instruction::AShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00002823 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
2824 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002825 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00002826 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002827 case Instruction::And:
Chad Rosier618c1db2011-12-01 03:08:23 +00002828 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002829 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002830 case Instruction::Or:
Chad Rosier618c1db2011-12-01 03:08:23 +00002831 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002832 break;
Duncan Sands2b749872010-11-17 18:52:15 +00002833 case Instruction::Xor:
Chad Rosier618c1db2011-12-01 03:08:23 +00002834 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands2b749872010-11-17 18:52:15 +00002835 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002836 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002837 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002838 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002839 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002840 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002841 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00002842 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002843 break;
Chris Lattner04754262010-04-20 05:32:14 +00002844 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00002845 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002846 I->getOperand(2), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002847 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002848 case Instruction::GetElementPtr: {
2849 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002850 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00002851 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002852 }
Duncan Sandsdabc2802011-09-05 06:52:48 +00002853 case Instruction::InsertValue: {
2854 InsertValueInst *IV = cast<InsertValueInst>(I);
2855 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
2856 IV->getInsertedValueOperand(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002857 IV->getIndices(), TD, TLI, DT);
Duncan Sandsdabc2802011-09-05 06:52:48 +00002858 break;
2859 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00002860 case Instruction::PHI:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002861 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
Duncan Sandsd261dc62010-11-17 08:35:29 +00002862 break;
Dan Gohman71d05032011-11-04 18:32:42 +00002863 case Instruction::Call:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002864 Result = SimplifyCallInst(cast<CallInst>(I), Query (TD, TLI, DT));
Dan Gohman71d05032011-11-04 18:32:42 +00002865 break;
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002866 case Instruction::Trunc:
2867 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
2868 break;
Chris Lattnere3453782009-11-10 01:08:51 +00002869 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00002870
2871 /// If called on unreachable code, the above logic may report that the
2872 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00002873 /// detecting that case here, returning a safe value instead.
2874 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00002875}
2876
Chandler Carruth6b980542012-03-24 21:11:24 +00002877/// \brief Implementation of recursive simplification through an instructions
2878/// uses.
Chris Lattner40d8c282009-11-10 22:26:15 +00002879///
Chandler Carruth6b980542012-03-24 21:11:24 +00002880/// This is the common implementation of the recursive simplification routines.
2881/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
2882/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
2883/// instructions to process and attempt to simplify it using
2884/// InstructionSimplify.
2885///
2886/// This routine returns 'true' only when *it* simplifies something. The passed
2887/// in simplified value does not count toward this.
2888static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00002889 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00002890 const TargetLibraryInfo *TLI,
2891 const DominatorTree *DT) {
2892 bool Simplified = false;
Chandler Carruth6231d5b2012-03-24 22:34:26 +00002893 SmallSetVector<Instruction *, 8> Worklist;
Duncan Sands12a86f52010-11-14 11:23:23 +00002894
Chandler Carruth6b980542012-03-24 21:11:24 +00002895 // If we have an explicit value to collapse to, do that round of the
2896 // simplification loop by hand initially.
2897 if (SimpleV) {
2898 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
2899 ++UI)
Chandler Carruthc5b785b2012-03-24 22:34:23 +00002900 if (*UI != I)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00002901 Worklist.insert(cast<Instruction>(*UI));
Duncan Sands12a86f52010-11-14 11:23:23 +00002902
Chandler Carruth6b980542012-03-24 21:11:24 +00002903 // Replace the instruction with its simplified value.
2904 I->replaceAllUsesWith(SimpleV);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00002905
Chandler Carruth6b980542012-03-24 21:11:24 +00002906 // Gracefully handle edge cases where the instruction is not wired into any
2907 // parent block.
2908 if (I->getParent())
2909 I->eraseFromParent();
2910 } else {
Chandler Carruth6231d5b2012-03-24 22:34:26 +00002911 Worklist.insert(I);
Chris Lattner40d8c282009-11-10 22:26:15 +00002912 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002913
Chandler Carruth6231d5b2012-03-24 22:34:26 +00002914 // Note that we must test the size on each iteration, the worklist can grow.
2915 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
2916 I = Worklist[Idx];
Duncan Sands12a86f52010-11-14 11:23:23 +00002917
Chandler Carruth6b980542012-03-24 21:11:24 +00002918 // See if this instruction simplifies.
2919 SimpleV = SimplifyInstruction(I, TD, TLI, DT);
2920 if (!SimpleV)
2921 continue;
2922
2923 Simplified = true;
2924
2925 // Stash away all the uses of the old instruction so we can check them for
2926 // recursive simplifications after a RAUW. This is cheaper than checking all
2927 // uses of To on the recursive step in most cases.
2928 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
2929 ++UI)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00002930 Worklist.insert(cast<Instruction>(*UI));
Chandler Carruth6b980542012-03-24 21:11:24 +00002931
2932 // Replace the instruction with its simplified value.
2933 I->replaceAllUsesWith(SimpleV);
2934
2935 // Gracefully handle edge cases where the instruction is not wired into any
2936 // parent block.
2937 if (I->getParent())
2938 I->eraseFromParent();
2939 }
2940 return Simplified;
2941}
2942
2943bool llvm::recursivelySimplifyInstruction(Instruction *I,
Micah Villmow3574eca2012-10-08 16:38:25 +00002944 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00002945 const TargetLibraryInfo *TLI,
2946 const DominatorTree *DT) {
2947 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
2948}
2949
2950bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00002951 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00002952 const TargetLibraryInfo *TLI,
2953 const DominatorTree *DT) {
2954 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
2955 assert(SimpleV && "Must provide a simplified value.");
2956 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
Chris Lattner40d8c282009-11-10 22:26:15 +00002957}