blob: 992fba72ca6893083b1887a19f2a844901ecf828 [file] [log] [blame]
Chris Lattner72614082002-10-25 22:55:53 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for x86 ------===//
2//
3// This file defines a simple peephole instruction selector for the x86 platform
4//
5//===----------------------------------------------------------------------===//
6
7#include "X86.h"
Chris Lattner055c9652002-10-29 21:05:24 +00008#include "X86InstrInfo.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +00009#include "X86InstrBuilder.h"
Chris Lattner72614082002-10-25 22:55:53 +000010#include "llvm/Function.h"
11#include "llvm/iTerminators.h"
Brian Gaeke1749d632002-11-07 17:59:21 +000012#include "llvm/iOperators.h"
Brian Gaekea1719c92002-10-31 23:03:59 +000013#include "llvm/iOther.h"
Chris Lattner51b49a92002-11-02 19:45:49 +000014#include "llvm/iPHINode.h"
Chris Lattner6fc3c522002-11-17 21:11:55 +000015#include "llvm/iMemory.h"
Chris Lattner72614082002-10-25 22:55:53 +000016#include "llvm/Type.h"
Chris Lattnerc5291f52002-10-27 21:16:59 +000017#include "llvm/Constants.h"
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000018#include "llvm/Pass.h"
Chris Lattner341a9372002-10-29 17:43:55 +000019#include "llvm/CodeGen/MachineFunction.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000020#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/Target/TargetMachine.h"
Chris Lattner72614082002-10-25 22:55:53 +000022#include "llvm/Support/InstVisitor.h"
Misha Brukmand2cc0172002-11-20 00:58:23 +000023#include "llvm/Target/MRegisterInfo.h"
24#include <map>
Chris Lattner72614082002-10-25 22:55:53 +000025
Chris Lattner06925362002-11-17 21:56:38 +000026using namespace MOTy; // Get Use, Def, UseAndDef
27
Chris Lattner72614082002-10-25 22:55:53 +000028namespace {
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000029 struct ISel : public FunctionPass, InstVisitor<ISel> {
30 TargetMachine &TM;
Chris Lattner341a9372002-10-29 17:43:55 +000031 MachineFunction *F; // The function we are compiling into
32 MachineBasicBlock *BB; // The current MBB we are compiling
Chris Lattner72614082002-10-25 22:55:53 +000033
34 unsigned CurReg;
35 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
36
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000037 ISel(TargetMachine &tm)
38 : TM(tm), F(0), BB(0), CurReg(MRegisterInfo::FirstVirtualRegister) {}
Chris Lattner72614082002-10-25 22:55:53 +000039
40 /// runOnFunction - Top level implementation of instruction selection for
41 /// the entire function.
42 ///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000043 bool runOnFunction(Function &Fn) {
Chris Lattner36b36032002-10-29 23:40:58 +000044 F = &MachineFunction::construct(&Fn, TM);
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000045 visit(Fn);
Chris Lattner72614082002-10-25 22:55:53 +000046 RegMap.clear();
Chris Lattner94e8ee22002-11-21 17:26:58 +000047 CurReg = MRegisterInfo::FirstVirtualRegister;
Chris Lattnerb4f68ed2002-10-29 22:37:54 +000048 F = 0;
Chris Lattner72614082002-10-25 22:55:53 +000049 return false; // We never modify the LLVM itself.
50 }
51
52 /// visitBasicBlock - This method is called when we are visiting a new basic
Chris Lattner33f53b52002-10-29 20:48:56 +000053 /// block. This simply creates a new MachineBasicBlock to emit code into
54 /// and adds it to the current MachineFunction. Subsequent visit* for
55 /// instructions will be invoked for all instructions in the basic block.
Chris Lattner72614082002-10-25 22:55:53 +000056 ///
57 void visitBasicBlock(BasicBlock &LLVM_BB) {
Chris Lattner42c77862002-10-30 00:47:40 +000058 BB = new MachineBasicBlock(&LLVM_BB);
Chris Lattner72614082002-10-25 22:55:53 +000059 // FIXME: Use the auto-insert form when it's available
60 F->getBasicBlockList().push_back(BB);
61 }
62
63 // Visitation methods for various instructions. These methods simply emit
64 // fixed X86 code for each instruction.
65 //
Brian Gaekefa8d5712002-11-22 11:07:01 +000066
67 // Control flow operators
Chris Lattner72614082002-10-25 22:55:53 +000068 void visitReturnInst(ReturnInst &RI);
Chris Lattner2df035b2002-11-02 19:27:56 +000069 void visitBranchInst(BranchInst &BI);
Brian Gaekefa8d5712002-11-22 11:07:01 +000070 void visitCallInst(CallInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000071
72 // Arithmetic operators
Chris Lattnerf01729e2002-11-02 20:54:46 +000073 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
Chris Lattner68aad932002-11-02 20:13:22 +000074 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
75 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
Chris Lattnerca9671d2002-11-02 20:28:58 +000076 void visitMul(BinaryOperator &B);
Chris Lattnere2954c82002-11-02 20:04:26 +000077
Chris Lattnerf01729e2002-11-02 20:54:46 +000078 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
79 void visitRem(BinaryOperator &B) { visitDivRem(B); }
80 void visitDivRem(BinaryOperator &B);
81
Chris Lattnere2954c82002-11-02 20:04:26 +000082 // Bitwise operators
Chris Lattner68aad932002-11-02 20:13:22 +000083 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
84 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
85 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
Chris Lattnere2954c82002-11-02 20:04:26 +000086
87 // Binary comparison operators
Chris Lattner05093a52002-11-21 15:52:38 +000088 void visitSetCCInst(SetCondInst &I, unsigned OpNum);
89 void visitSetEQ(SetCondInst &I) { visitSetCCInst(I, 0); }
90 void visitSetNE(SetCondInst &I) { visitSetCCInst(I, 1); }
91 void visitSetLT(SetCondInst &I) { visitSetCCInst(I, 2); }
92 void visitSetGT(SetCondInst &I) { visitSetCCInst(I, 3); }
93 void visitSetLE(SetCondInst &I) { visitSetCCInst(I, 4); }
94 void visitSetGE(SetCondInst &I) { visitSetCCInst(I, 5); }
Chris Lattner6fc3c522002-11-17 21:11:55 +000095
96 // Memory Instructions
97 void visitLoadInst(LoadInst &I);
98 void visitStoreInst(StoreInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +000099
100 // Other operators
Brian Gaekea1719c92002-10-31 23:03:59 +0000101 void visitShiftInst(ShiftInst &I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000102 void visitPHINode(PHINode &I);
Brian Gaekefa8d5712002-11-22 11:07:01 +0000103 void visitCastInst(CastInst &I);
Chris Lattner72614082002-10-25 22:55:53 +0000104
105 void visitInstruction(Instruction &I) {
106 std::cerr << "Cannot instruction select: " << I;
107 abort();
108 }
109
Brian Gaekec2505982002-11-30 11:57:28 +0000110 void promote32 (const unsigned targetReg, Value *v);
Chris Lattnerc5291f52002-10-27 21:16:59 +0000111
112 /// copyConstantToRegister - Output the instructions required to put the
113 /// specified constant into the specified register.
114 ///
115 void copyConstantToRegister(Constant *C, unsigned Reg);
116
Chris Lattner72614082002-10-25 22:55:53 +0000117 /// getReg - This method turns an LLVM value into a register number. This
118 /// is guaranteed to produce the same register number for a particular value
119 /// every time it is queried.
120 ///
121 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
122 unsigned getReg(Value *V) {
123 unsigned &Reg = RegMap[V];
Misha Brukmand2cc0172002-11-20 00:58:23 +0000124 if (Reg == 0) {
Chris Lattner72614082002-10-25 22:55:53 +0000125 Reg = CurReg++;
Misha Brukmand2cc0172002-11-20 00:58:23 +0000126 RegMap[V] = Reg;
127
128 // Add the mapping of regnumber => reg class to MachineFunction
129 F->addRegMap(Reg,
130 TM.getRegisterInfo()->getRegClassForType(V->getType()));
131 }
Chris Lattner72614082002-10-25 22:55:53 +0000132
Chris Lattner6f8fd252002-10-27 21:23:43 +0000133 // If this operand is a constant, emit the code to copy the constant into
134 // the register here...
135 //
Chris Lattnerc5291f52002-10-27 21:16:59 +0000136 if (Constant *C = dyn_cast<Constant>(V))
137 copyConstantToRegister(C, Reg);
138
Chris Lattner72614082002-10-25 22:55:53 +0000139 return Reg;
140 }
Chris Lattner72614082002-10-25 22:55:53 +0000141 };
142}
143
Chris Lattner43189d12002-11-17 20:07:45 +0000144/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
145/// Representation.
146///
147enum TypeClass {
148 cByte, cShort, cInt, cLong, cFloat, cDouble
149};
150
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000151/// getClass - Turn a primitive type into a "class" number which is based on the
152/// size of the type, and whether or not it is floating point.
153///
Chris Lattner43189d12002-11-17 20:07:45 +0000154static inline TypeClass getClass(const Type *Ty) {
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000155 switch (Ty->getPrimitiveID()) {
156 case Type::SByteTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000157 case Type::UByteTyID: return cByte; // Byte operands are class #0
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000158 case Type::ShortTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000159 case Type::UShortTyID: return cShort; // Short operands are class #1
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000160 case Type::IntTyID:
161 case Type::UIntTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000162 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000163
164 case Type::LongTyID:
Chris Lattner43189d12002-11-17 20:07:45 +0000165 case Type::ULongTyID: return cLong; // Longs are class #3
166 case Type::FloatTyID: return cFloat; // Float is class #4
167 case Type::DoubleTyID: return cDouble; // Doubles are class #5
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000168 default:
169 assert(0 && "Invalid type to getClass!");
Chris Lattner43189d12002-11-17 20:07:45 +0000170 return cByte; // not reached
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000171 }
172}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000173
Chris Lattner06925362002-11-17 21:56:38 +0000174
Chris Lattnerc5291f52002-10-27 21:16:59 +0000175/// copyConstantToRegister - Output the instructions required to put the
176/// specified constant into the specified register.
177///
178void ISel::copyConstantToRegister(Constant *C, unsigned R) {
179 assert (!isa<ConstantExpr>(C) && "Constant expressions not yet handled!\n");
180
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000181 if (C->getType()->isIntegral()) {
182 unsigned Class = getClass(C->getType());
183 assert(Class != 3 && "Type not handled yet!");
184
185 static const unsigned IntegralOpcodeTab[] = {
186 X86::MOVir8, X86::MOVir16, X86::MOVir32
187 };
188
189 if (C->getType()->isSigned()) {
190 ConstantSInt *CSI = cast<ConstantSInt>(C);
191 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addSImm(CSI->getValue());
192 } else {
193 ConstantUInt *CUI = cast<ConstantUInt>(C);
194 BuildMI(BB, IntegralOpcodeTab[Class], 1, R).addZImm(CUI->getValue());
195 }
196 } else {
197 assert(0 && "Type not handled yet!");
Chris Lattnerc5291f52002-10-27 21:16:59 +0000198 }
199}
200
Chris Lattner06925362002-11-17 21:56:38 +0000201
Brian Gaeke1749d632002-11-07 17:59:21 +0000202/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
203/// register, then move it to wherever the result should be.
204/// We handle FP setcc instructions by pushing them, doing a
205/// compare-and-pop-twice, and then copying the concodes to the main
206/// processor's concodes (I didn't make this up, it's in the Intel manual)
207///
Chris Lattner05093a52002-11-21 15:52:38 +0000208void ISel::visitSetCCInst(SetCondInst &I, unsigned OpNum) {
Brian Gaeke1749d632002-11-07 17:59:21 +0000209 // The arguments are already supposed to be of the same type.
Chris Lattner05093a52002-11-21 15:52:38 +0000210 const Type *CompTy = I.getOperand(0)->getType();
211 unsigned reg1 = getReg(I.getOperand(0));
212 unsigned reg2 = getReg(I.getOperand(1));
213
214 unsigned Class = getClass(CompTy);
215 switch (Class) {
216 // Emit: cmp <var1>, <var2> (do the comparison). We can
217 // compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
218 // 32-bit.
219 case cByte:
220 BuildMI (BB, X86::CMPrr8, 2).addReg (reg1).addReg (reg2);
221 break;
222 case cShort:
223 BuildMI (BB, X86::CMPrr16, 2).addReg (reg1).addReg (reg2);
224 break;
225 case cInt:
226 BuildMI (BB, X86::CMPrr32, 2).addReg (reg1).addReg (reg2);
227 break;
228
229 // Push the variables on the stack with fldl opcodes.
230 // FIXME: assuming var1, var2 are in memory, if not, spill to
231 // stack first
232 case cFloat: // Floats
Chris Lattner3a9a6932002-11-21 22:49:20 +0000233 BuildMI (BB, X86::FLDr4, 1).addReg (reg1);
234 BuildMI (BB, X86::FLDr4, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000235 break;
236 case cDouble: // Doubles
Chris Lattner3a9a6932002-11-21 22:49:20 +0000237 BuildMI (BB, X86::FLDr8, 1).addReg (reg1);
238 BuildMI (BB, X86::FLDr8, 1).addReg (reg2);
Chris Lattner05093a52002-11-21 15:52:38 +0000239 break;
240 case cLong:
241 default:
242 visitInstruction(I);
243 }
244
245 if (CompTy->isFloatingPoint()) {
246 // (Non-trapping) compare and pop twice.
247 BuildMI (BB, X86::FUCOMPP, 0);
248 // Move fp status word (concodes) to ax.
249 BuildMI (BB, X86::FNSTSWr8, 1, X86::AX);
250 // Load real concodes from ax.
251 BuildMI (BB, X86::SAHF, 1).addReg(X86::AH);
252 }
253
Brian Gaeke1749d632002-11-07 17:59:21 +0000254 // Emit setOp instruction (extract concode; clobbers ax),
255 // using the following mapping:
256 // LLVM -> X86 signed X86 unsigned
257 // ----- ----- -----
258 // seteq -> sete sete
259 // setne -> setne setne
260 // setlt -> setl setb
261 // setgt -> setg seta
262 // setle -> setle setbe
263 // setge -> setge setae
Chris Lattner05093a52002-11-21 15:52:38 +0000264
265 static const unsigned OpcodeTab[2][6] = {
Chris Lattner4b4e9dd2002-11-21 16:19:42 +0000266 {X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAr, X86::SETBEr, X86::SETAEr},
267 {X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGr, X86::SETLEr, X86::SETGEr},
Chris Lattner05093a52002-11-21 15:52:38 +0000268 };
269
270 BuildMI(BB, OpcodeTab[CompTy->isSigned()][OpNum], 0, X86::AL);
271
Brian Gaeke1749d632002-11-07 17:59:21 +0000272 // Put it in the result using a move.
Chris Lattner05093a52002-11-21 15:52:38 +0000273 BuildMI (BB, X86::MOVrr8, 1, getReg(I)).addReg(X86::AL);
Brian Gaeke1749d632002-11-07 17:59:21 +0000274}
Chris Lattner51b49a92002-11-02 19:45:49 +0000275
Brian Gaekec2505982002-11-30 11:57:28 +0000276/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
277/// operand, in the specified target register.
278void
279ISel::promote32 (const unsigned targetReg, Value *v)
280{
281 unsigned vReg = getReg (v);
282 unsigned Class = getClass (v->getType ());
283 bool isUnsigned = v->getType ()->isUnsigned ();
284 assert (((Class == cByte) || (Class == cShort) || (Class == cInt))
285 && "Unpromotable operand class in promote32");
286 switch (Class)
287 {
288 case cByte:
289 // Extend value into target register (8->32)
290 if (isUnsigned)
291 BuildMI (BB, X86::MOVZXr32r8, 1, targetReg).addReg (vReg);
292 else
293 BuildMI (BB, X86::MOVSXr32r8, 1, targetReg).addReg (vReg);
294 break;
295 case cShort:
296 // Extend value into target register (16->32)
297 if (isUnsigned)
298 BuildMI (BB, X86::MOVZXr32r16, 1, targetReg).addReg (vReg);
299 else
300 BuildMI (BB, X86::MOVSXr32r16, 1, targetReg).addReg (vReg);
301 break;
302 case cInt:
303 // Move value into target register (32->32)
304 BuildMI (BB, X86::MOVrr32, 1, targetReg).addReg (vReg);
305 break;
306 }
307}
Chris Lattnerc5291f52002-10-27 21:16:59 +0000308
Chris Lattner72614082002-10-25 22:55:53 +0000309/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
310/// we have the following possibilities:
311///
312/// ret void: No return value, simply emit a 'ret' instruction
313/// ret sbyte, ubyte : Extend value into EAX and return
314/// ret short, ushort: Extend value into EAX and return
315/// ret int, uint : Move value into EAX and return
316/// ret pointer : Move value into EAX and return
Chris Lattner06925362002-11-17 21:56:38 +0000317/// ret long, ulong : Move value into EAX/EDX and return
318/// ret float/double : Top of FP stack
Chris Lattner72614082002-10-25 22:55:53 +0000319///
Brian Gaekec2505982002-11-30 11:57:28 +0000320void
321ISel::visitReturnInst (ReturnInst &I)
322{
323 if (I.getNumOperands () == 0)
324 {
325 // Emit a 'ret' instruction
326 BuildMI (BB, X86::RET, 0);
327 return;
328 }
329 Value *rv = I.getOperand (0);
330 unsigned Class = getClass (rv->getType ());
331 switch (Class)
332 {
333 // integral return values: extend or move into EAX and return.
334 case cByte:
335 case cShort:
336 case cInt:
337 promote32 (X86::EAX, rv);
338 break;
339 // ret float/double: top of FP stack
340 // FLD <val>
341 case cFloat: // Floats
342 BuildMI (BB, X86::FLDr4, 1).addReg (getReg (rv));
343 break;
344 case cDouble: // Doubles
345 BuildMI (BB, X86::FLDr8, 1).addReg (getReg (rv));
346 break;
347 case cLong:
348 // ret long: use EAX(least significant 32 bits)/EDX (most
349 // significant 32)...uh, I think so Brain, but how do i call
350 // up the two parts of the value from inside this mouse
351 // cage? *zort*
352 default:
353 visitInstruction (I);
354 }
Chris Lattner43189d12002-11-17 20:07:45 +0000355 // Emit a 'ret' instruction
Brian Gaekec2505982002-11-30 11:57:28 +0000356 BuildMI (BB, X86::RET, 0);
Chris Lattner72614082002-10-25 22:55:53 +0000357}
358
Chris Lattner51b49a92002-11-02 19:45:49 +0000359/// visitBranchInst - Handle conditional and unconditional branches here. Note
360/// that since code layout is frozen at this point, that if we are trying to
361/// jump to a block that is the immediate successor of the current block, we can
362/// just make a fall-through. (but we don't currently).
363///
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000364void
365ISel::visitBranchInst (BranchInst & BI)
366{
367 if (BI.isConditional ())
368 {
369 BasicBlock *ifTrue = BI.getSuccessor (0);
370 BasicBlock *ifFalse = BI.getSuccessor (1); // this is really unobvious
Chris Lattner2df035b2002-11-02 19:27:56 +0000371
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000372 // simplest thing I can think of: compare condition with zero,
373 // followed by jump-if-equal to ifFalse, and jump-if-nonequal to
374 // ifTrue
375 unsigned int condReg = getReg (BI.getCondition ());
Chris Lattner97ad9e12002-11-21 01:59:50 +0000376 BuildMI (BB, X86::CMPri8, 2).addReg (condReg).addZImm (0);
Brian Gaekec03a0cb2002-11-19 09:08:47 +0000377 BuildMI (BB, X86::JNE, 1).addPCDisp (BI.getSuccessor (0));
378 BuildMI (BB, X86::JE, 1).addPCDisp (BI.getSuccessor (1));
379 }
380 else // unconditional branch
381 {
382 BuildMI (BB, X86::JMP, 1).addPCDisp (BI.getSuccessor (0));
383 }
Chris Lattner2df035b2002-11-02 19:27:56 +0000384}
385
Brian Gaeke18a20212002-11-29 12:01:58 +0000386/// visitCallInst - Push args on stack and do a procedure call instruction.
387void
388ISel::visitCallInst (CallInst & CI)
389{
390 // Push the arguments on the stack in reverse order, as specified by
391 // the ABI.
392 for (unsigned i = CI.getNumOperands (); i >= 1; --i)
393 {
394 Value *v = CI.getOperand (i);
395 unsigned argReg = getReg (v);
396 switch (getClass (v->getType ()))
397 {
Brian Gaekec2505982002-11-30 11:57:28 +0000398 case cByte:
399 case cShort:
400 promote32 (X86::EAX, v);
401 BuildMI (BB, X86::PUSHr32, 1).addReg (X86::EAX);
402 break;
Brian Gaeke18a20212002-11-29 12:01:58 +0000403 case cInt:
404 case cFloat:
405 BuildMI (BB, X86::PUSHr32, 1).addReg (argReg);
406 break;
407 default:
408 // FIXME
409 visitInstruction (CI);
410 break;
411 }
412 }
413 // Emit a CALL instruction with PC-relative displacement.
414 BuildMI (BB, X86::CALLpcrel32, 1).addPCDisp (CI.getCalledValue ());
Brian Gaekefa8d5712002-11-22 11:07:01 +0000415}
Chris Lattner2df035b2002-11-02 19:27:56 +0000416
Chris Lattner68aad932002-11-02 20:13:22 +0000417/// visitSimpleBinary - Implement simple binary operators for integral types...
418/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or,
419/// 4 for Xor.
420///
421void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
422 if (B.getType() == Type::BoolTy) // FIXME: Handle bools for logicals
Chris Lattnere2954c82002-11-02 20:04:26 +0000423 visitInstruction(B);
424
425 unsigned Class = getClass(B.getType());
426 if (Class > 2) // FIXME: Handle longs
427 visitInstruction(B);
428
429 static const unsigned OpcodeTab[][4] = {
Chris Lattner68aad932002-11-02 20:13:22 +0000430 // Arithmetic operators
431 { X86::ADDrr8, X86::ADDrr16, X86::ADDrr32, 0 }, // ADD
432 { X86::SUBrr8, X86::SUBrr16, X86::SUBrr32, 0 }, // SUB
433
434 // Bitwise operators
Chris Lattnere2954c82002-11-02 20:04:26 +0000435 { X86::ANDrr8, X86::ANDrr16, X86::ANDrr32, 0 }, // AND
436 { X86:: ORrr8, X86:: ORrr16, X86:: ORrr32, 0 }, // OR
437 { X86::XORrr8, X86::XORrr16, X86::XORrr32, 0 }, // XOR
438 };
439
440 unsigned Opcode = OpcodeTab[OperatorClass][Class];
441 unsigned Op0r = getReg(B.getOperand(0));
442 unsigned Op1r = getReg(B.getOperand(1));
443 BuildMI(BB, Opcode, 2, getReg(B)).addReg(Op0r).addReg(Op1r);
444}
445
Chris Lattnerca9671d2002-11-02 20:28:58 +0000446/// visitMul - Multiplies are not simple binary operators because they must deal
447/// with the EAX register explicitly.
448///
449void ISel::visitMul(BinaryOperator &I) {
450 unsigned Class = getClass(I.getType());
451 if (Class > 2) // FIXME: Handle longs
452 visitInstruction(I);
Chris Lattnere2954c82002-11-02 20:04:26 +0000453
Chris Lattnerca9671d2002-11-02 20:28:58 +0000454 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
455 static const unsigned MulOpcode[]={ X86::MULrr8, X86::MULrr16, X86::MULrr32 };
456 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
457
Chris Lattner06925362002-11-17 21:56:38 +0000458 unsigned Reg = Regs[Class];
Chris Lattner06925362002-11-17 21:56:38 +0000459 unsigned Op0Reg = getReg(I.getOperand(0));
460 unsigned Op1Reg = getReg(I.getOperand(1));
Chris Lattnerca9671d2002-11-02 20:28:58 +0000461
462 // Put the first operand into one of the A registers...
463 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
464
Chris Lattner06925362002-11-17 21:56:38 +0000465 // Emit the appropriate multiply instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000466 BuildMI(BB, MulOpcode[Class], 1).addReg(Op1Reg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000467
468 // Put the result into the destination register...
469 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(Reg);
Chris Lattnerf01729e2002-11-02 20:54:46 +0000470}
Chris Lattnerca9671d2002-11-02 20:28:58 +0000471
Chris Lattner06925362002-11-17 21:56:38 +0000472
Chris Lattnerf01729e2002-11-02 20:54:46 +0000473/// visitDivRem - Handle division and remainder instructions... these
474/// instruction both require the same instructions to be generated, they just
475/// select the result from a different register. Note that both of these
476/// instructions work differently for signed and unsigned operands.
477///
478void ISel::visitDivRem(BinaryOperator &I) {
479 unsigned Class = getClass(I.getType());
480 if (Class > 2) // FIXME: Handle longs
481 visitInstruction(I);
482
483 static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
484 static const unsigned MovOpcode[]={ X86::MOVrr8, X86::MOVrr16, X86::MOVrr32 };
Brian Gaeke6559bb92002-11-14 22:32:30 +0000485 static const unsigned ExtOpcode[]={ X86::CBW , X86::CWD , X86::CDQ };
Chris Lattnerf01729e2002-11-02 20:54:46 +0000486 static const unsigned ClrOpcode[]={ X86::XORrr8, X86::XORrr16, X86::XORrr32 };
487 static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
488
489 static const unsigned DivOpcode[][4] = {
490 { X86::DIVrr8 , X86::DIVrr16 , X86::DIVrr32 , 0 }, // Unsigned division
491 { X86::IDIVrr8, X86::IDIVrr16, X86::IDIVrr32, 0 }, // Signed division
492 };
493
494 bool isSigned = I.getType()->isSigned();
495 unsigned Reg = Regs[Class];
496 unsigned ExtReg = ExtRegs[Class];
Chris Lattner6fc3c522002-11-17 21:11:55 +0000497 unsigned Op0Reg = getReg(I.getOperand(0));
Chris Lattnerf01729e2002-11-02 20:54:46 +0000498 unsigned Op1Reg = getReg(I.getOperand(1));
499
500 // Put the first operand into one of the A registers...
501 BuildMI(BB, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
502
503 if (isSigned) {
504 // Emit a sign extension instruction...
505 BuildMI(BB, ExtOpcode[Class], 1, ExtReg).addReg(Reg);
506 } else {
507 // If unsigned, emit a zeroing instruction... (reg = xor reg, reg)
508 BuildMI(BB, ClrOpcode[Class], 2, ExtReg).addReg(ExtReg).addReg(ExtReg);
509 }
510
Chris Lattner06925362002-11-17 21:56:38 +0000511 // Emit the appropriate divide or remainder instruction...
Chris Lattner92845e32002-11-21 18:54:29 +0000512 BuildMI(BB, DivOpcode[isSigned][Class], 1).addReg(Op1Reg);
Chris Lattner06925362002-11-17 21:56:38 +0000513
Chris Lattnerf01729e2002-11-02 20:54:46 +0000514 // Figure out which register we want to pick the result out of...
515 unsigned DestReg = (I.getOpcode() == Instruction::Div) ? Reg : ExtReg;
516
Chris Lattnerf01729e2002-11-02 20:54:46 +0000517 // Put the result into the destination register...
518 BuildMI(BB, MovOpcode[Class], 1, getReg(I)).addReg(DestReg);
Chris Lattnerca9671d2002-11-02 20:28:58 +0000519}
Chris Lattnere2954c82002-11-02 20:04:26 +0000520
Chris Lattner06925362002-11-17 21:56:38 +0000521
Brian Gaekea1719c92002-10-31 23:03:59 +0000522/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
523/// for constant immediate shift values, and for constant immediate
524/// shift values equal to 1. Even the general case is sort of special,
525/// because the shift amount has to be in CL, not just any old register.
526///
Chris Lattnerf01729e2002-11-02 20:54:46 +0000527void ISel::visitShiftInst (ShiftInst &I) {
528 unsigned Op0r = getReg (I.getOperand(0));
529 unsigned DestReg = getReg(I);
Chris Lattnere9913f22002-11-02 01:41:55 +0000530 bool isLeftShift = I.getOpcode() == Instruction::Shl;
531 bool isOperandSigned = I.getType()->isUnsigned();
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000532 unsigned OperandClass = getClass(I.getType());
533
534 if (OperandClass > 2)
535 visitInstruction(I); // Can't handle longs yet!
Chris Lattner796df732002-11-02 00:44:25 +0000536
Brian Gaekea1719c92002-10-31 23:03:59 +0000537 if (ConstantUInt *CUI = dyn_cast <ConstantUInt> (I.getOperand (1)))
538 {
Chris Lattner796df732002-11-02 00:44:25 +0000539 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
540 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
541 unsigned char shAmt = CUI->getValue();
542
Chris Lattnere9913f22002-11-02 01:41:55 +0000543 static const unsigned ConstantOperand[][4] = {
544 { X86::SHRir8, X86::SHRir16, X86::SHRir32, 0 }, // SHR
545 { X86::SARir8, X86::SARir16, X86::SARir32, 0 }, // SAR
546 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SHL
547 { X86::SHLir8, X86::SHLir16, X86::SHLir32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000548 };
549
Chris Lattnere9913f22002-11-02 01:41:55 +0000550 const unsigned *OpTab = // Figure out the operand table to use
551 ConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000552
Brian Gaekea1719c92002-10-31 23:03:59 +0000553 // Emit: <insn> reg, shamt (shift-by-immediate opcode "ir" form.)
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000554 BuildMI(BB, OpTab[OperandClass], 2, DestReg).addReg(Op0r).addZImm(shAmt);
Brian Gaekea1719c92002-10-31 23:03:59 +0000555 }
556 else
557 {
558 // The shift amount is non-constant.
559 //
560 // In fact, you can only shift with a variable shift amount if
561 // that amount is already in the CL register, so we have to put it
562 // there first.
563 //
Chris Lattnere9913f22002-11-02 01:41:55 +0000564
Brian Gaekea1719c92002-10-31 23:03:59 +0000565 // Emit: move cl, shiftAmount (put the shift amount in CL.)
Chris Lattnerca9671d2002-11-02 20:28:58 +0000566 BuildMI(BB, X86::MOVrr8, 1, X86::CL).addReg(getReg(I.getOperand(1)));
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000567
568 // This is a shift right (SHR).
Chris Lattnere9913f22002-11-02 01:41:55 +0000569 static const unsigned NonConstantOperand[][4] = {
570 { X86::SHRrr8, X86::SHRrr16, X86::SHRrr32, 0 }, // SHR
571 { X86::SARrr8, X86::SARrr16, X86::SARrr32, 0 }, // SAR
572 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SHL
573 { X86::SHLrr8, X86::SHLrr16, X86::SHLrr32, 0 }, // SAL = SHL
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000574 };
575
Chris Lattnere9913f22002-11-02 01:41:55 +0000576 const unsigned *OpTab = // Figure out the operand table to use
577 NonConstantOperand[isLeftShift*2+isOperandSigned];
Chris Lattnerb1761fc2002-11-02 01:15:18 +0000578
Chris Lattner3a9a6932002-11-21 22:49:20 +0000579 BuildMI(BB, OpTab[OperandClass], 1, DestReg).addReg(Op0r);
Brian Gaekea1719c92002-10-31 23:03:59 +0000580 }
581}
582
Chris Lattner06925362002-11-17 21:56:38 +0000583
Chris Lattner6fc3c522002-11-17 21:11:55 +0000584/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
585/// instruction.
586///
587void ISel::visitLoadInst(LoadInst &I) {
588 unsigned Class = getClass(I.getType());
589 if (Class > 2) // FIXME: Handle longs and others...
590 visitInstruction(I);
591
592 static const unsigned Opcode[] = { X86::MOVmr8, X86::MOVmr16, X86::MOVmr32 };
593
594 unsigned AddressReg = getReg(I.getOperand(0));
595 addDirectMem(BuildMI(BB, Opcode[Class], 4, getReg(I)), AddressReg);
596}
597
Chris Lattner06925362002-11-17 21:56:38 +0000598
Chris Lattner6fc3c522002-11-17 21:11:55 +0000599/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
600/// instruction.
601///
602void ISel::visitStoreInst(StoreInst &I) {
603 unsigned Class = getClass(I.getOperand(0)->getType());
604 if (Class > 2) // FIXME: Handle longs and others...
605 visitInstruction(I);
606
607 static const unsigned Opcode[] = { X86::MOVrm8, X86::MOVrm16, X86::MOVrm32 };
608
609 unsigned ValReg = getReg(I.getOperand(0));
610 unsigned AddressReg = getReg(I.getOperand(1));
611 addDirectMem(BuildMI(BB, Opcode[Class], 1+4), AddressReg).addReg(ValReg);
612}
613
614
Chris Lattnere2954c82002-11-02 20:04:26 +0000615/// visitPHINode - Turn an LLVM PHI node into an X86 PHI node...
616///
617void ISel::visitPHINode(PHINode &PN) {
618 MachineInstr *MI = BuildMI(BB, X86::PHI, PN.getNumOperands(), getReg(PN));
Chris Lattner72614082002-10-25 22:55:53 +0000619
Chris Lattnere2954c82002-11-02 20:04:26 +0000620 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
621 // FIXME: This will put constants after the PHI nodes in the block, which
622 // is invalid. They should be put inline into the PHI node eventually.
623 //
624 MI->addRegOperand(getReg(PN.getIncomingValue(i)));
625 MI->addPCDispOperand(PN.getIncomingBlock(i));
626 }
Chris Lattner72614082002-10-25 22:55:53 +0000627}
628
Brian Gaekec11232a2002-11-26 10:43:30 +0000629/// visitCastInst - Here we have various kinds of copying with or without
630/// sign extension going on.
Brian Gaekefa8d5712002-11-22 11:07:01 +0000631void
632ISel::visitCastInst (CastInst &CI)
633{
Brian Gaekec11232a2002-11-26 10:43:30 +0000634//> cast larger int to smaller int --> copy least significant byte/word w/ mov?
635//
636//I'm not really sure what to do with this. We could insert a pseudo-op
637//that says take the low X bits of a Y bit register, but for now we can just
638//force the value into, say, EAX, then rip out AL or AX. The advantage of
639//the former is that the register allocator could use any register it wants,
640//but for now this obviously doesn't matter. :)
641
642// if target type is bool
643// Emit Compare
644// Emit Set-if-not-zero
645
646// if size of target type == size of source type
647// Emit Mov reg(target) <- reg(source)
648
649// if size of target type > size of source type
650// if both types are integer types
651// if source type is signed
652// sbyte to short, ushort: Emit movsx 8->16
653// sbyte to int, uint: Emit movsx 8->32
654// short to int, uint: Emit movsx 16->32
655// else if source type is unsigned
656// ubyte to short, ushort: Emit movzx 8->16
657// ubyte to int, uint: Emit movzx 8->32
658// ushort to int, uint: Emit movzx 16->32
659// if both types are fp types
660// float to double: Emit fstp, fld (???)
661
Brian Gaekefa8d5712002-11-22 11:07:01 +0000662 visitInstruction (CI);
663}
Brian Gaekea1719c92002-10-31 23:03:59 +0000664
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000665/// createSimpleX86InstructionSelector - This pass converts an LLVM function
666/// into a machine code representation is a very simple peep-hole fashion. The
Chris Lattner72614082002-10-25 22:55:53 +0000667/// generated code sucks but the implementation is nice and simple.
668///
Chris Lattnerb4f68ed2002-10-29 22:37:54 +0000669Pass *createSimpleX86InstructionSelector(TargetMachine &TM) {
670 return new ISel(TM);
Chris Lattner72614082002-10-25 22:55:53 +0000671}