blob: d2834841b0c91eb48cd19c17bbc1af6556529772 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
213 assert(false && "Duplicated entries?");
214 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
215 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
216 std::make_pair(RegOp, AuxInfo))))
217 AmbEntries.push_back(MemOp);
218 }
219
220 // If the third value is 1, then it's folding either a load or a store.
221 static const unsigned OpTbl0[][3] = {
222 { X86::CALL32r, X86::CALL32m, 1 },
223 { X86::CALL64r, X86::CALL64m, 1 },
224 { X86::CMP16ri, X86::CMP16mi, 1 },
225 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000226 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000227 { X86::CMP32ri, X86::CMP32mi, 1 },
228 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000229 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000230 { X86::CMP64ri32, X86::CMP64mi32, 1 },
231 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000232 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000233 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::DIV16r, X86::DIV16m, 1 },
236 { X86::DIV32r, X86::DIV32m, 1 },
237 { X86::DIV64r, X86::DIV64m, 1 },
238 { X86::DIV8r, X86::DIV8m, 1 },
239 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
240 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
241 { X86::IDIV16r, X86::IDIV16m, 1 },
242 { X86::IDIV32r, X86::IDIV32m, 1 },
243 { X86::IDIV64r, X86::IDIV64m, 1 },
244 { X86::IDIV8r, X86::IDIV8m, 1 },
245 { X86::IMUL16r, X86::IMUL16m, 1 },
246 { X86::IMUL32r, X86::IMUL32m, 1 },
247 { X86::IMUL64r, X86::IMUL64m, 1 },
248 { X86::IMUL8r, X86::IMUL8m, 1 },
249 { X86::JMP32r, X86::JMP32m, 1 },
250 { X86::JMP64r, X86::JMP64m, 1 },
251 { X86::MOV16ri, X86::MOV16mi, 0 },
252 { X86::MOV16rr, X86::MOV16mr, 0 },
253 { X86::MOV16to16_, X86::MOV16_mr, 0 },
254 { X86::MOV32ri, X86::MOV32mi, 0 },
255 { X86::MOV32rr, X86::MOV32mr, 0 },
256 { X86::MOV32to32_, X86::MOV32_mr, 0 },
257 { X86::MOV64ri32, X86::MOV64mi32, 0 },
258 { X86::MOV64rr, X86::MOV64mr, 0 },
259 { X86::MOV8ri, X86::MOV8mi, 0 },
260 { X86::MOV8rr, X86::MOV8mr, 0 },
261 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
262 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
263 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
264 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
265 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
266 { X86::MOVSDrr, X86::MOVSDmr, 0 },
267 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
268 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
269 { X86::MOVSSrr, X86::MOVSSmr, 0 },
270 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
271 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
272 { X86::MUL16r, X86::MUL16m, 1 },
273 { X86::MUL32r, X86::MUL32m, 1 },
274 { X86::MUL64r, X86::MUL64m, 1 },
275 { X86::MUL8r, X86::MUL8m, 1 },
276 { X86::SETAEr, X86::SETAEm, 0 },
277 { X86::SETAr, X86::SETAm, 0 },
278 { X86::SETBEr, X86::SETBEm, 0 },
279 { X86::SETBr, X86::SETBm, 0 },
280 { X86::SETEr, X86::SETEm, 0 },
281 { X86::SETGEr, X86::SETGEm, 0 },
282 { X86::SETGr, X86::SETGm, 0 },
283 { X86::SETLEr, X86::SETLEm, 0 },
284 { X86::SETLr, X86::SETLm, 0 },
285 { X86::SETNEr, X86::SETNEm, 0 },
286 { X86::SETNPr, X86::SETNPm, 0 },
287 { X86::SETNSr, X86::SETNSm, 0 },
288 { X86::SETPr, X86::SETPm, 0 },
289 { X86::SETSr, X86::SETSm, 0 },
290 { X86::TAILJMPr, X86::TAILJMPm, 1 },
291 { X86::TEST16ri, X86::TEST16mi, 1 },
292 { X86::TEST32ri, X86::TEST32mi, 1 },
293 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000294 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000295 };
296
297 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
298 unsigned RegOp = OpTbl0[i][0];
299 unsigned MemOp = OpTbl0[i][1];
300 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
301 assert(false && "Duplicated entries?");
302 unsigned FoldedLoad = OpTbl0[i][2];
303 // Index 0, folded load or store.
304 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
305 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
306 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
307 std::make_pair(RegOp, AuxInfo))))
308 AmbEntries.push_back(MemOp);
309 }
310
311 static const unsigned OpTbl1[][2] = {
312 { X86::CMP16rr, X86::CMP16rm },
313 { X86::CMP32rr, X86::CMP32rm },
314 { X86::CMP64rr, X86::CMP64rm },
315 { X86::CMP8rr, X86::CMP8rm },
316 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
317 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
318 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
319 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
320 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
321 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
322 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
323 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
324 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
325 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
326 { X86::FsMOVAPDrr, X86::MOVSDrm },
327 { X86::FsMOVAPSrr, X86::MOVSSrm },
328 { X86::IMUL16rri, X86::IMUL16rmi },
329 { X86::IMUL16rri8, X86::IMUL16rmi8 },
330 { X86::IMUL32rri, X86::IMUL32rmi },
331 { X86::IMUL32rri8, X86::IMUL32rmi8 },
332 { X86::IMUL64rri32, X86::IMUL64rmi32 },
333 { X86::IMUL64rri8, X86::IMUL64rmi8 },
334 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
335 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
336 { X86::Int_COMISDrr, X86::Int_COMISDrm },
337 { X86::Int_COMISSrr, X86::Int_COMISSrm },
338 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
339 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
340 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
341 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
342 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
343 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
344 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
345 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
346 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
347 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
348 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
349 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
350 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
351 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
352 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
353 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
354 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
355 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
356 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
357 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
358 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
359 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
360 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
361 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
362 { X86::MOV16rr, X86::MOV16rm },
363 { X86::MOV16to16_, X86::MOV16_rm },
364 { X86::MOV32rr, X86::MOV32rm },
365 { X86::MOV32to32_, X86::MOV32_rm },
366 { X86::MOV64rr, X86::MOV64rm },
367 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
368 { X86::MOV64toSDrr, X86::MOV64toSDrm },
369 { X86::MOV8rr, X86::MOV8rm },
370 { X86::MOVAPDrr, X86::MOVAPDrm },
371 { X86::MOVAPSrr, X86::MOVAPSrm },
372 { X86::MOVDDUPrr, X86::MOVDDUPrm },
373 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
374 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
375 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
376 { X86::MOVSDrr, X86::MOVSDrm },
377 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
378 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
379 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
380 { X86::MOVSSrr, X86::MOVSSrm },
381 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
382 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
383 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
384 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
385 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
386 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
387 { X86::MOVUPDrr, X86::MOVUPDrm },
388 { X86::MOVUPSrr, X86::MOVUPSrm },
389 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
390 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
391 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
392 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
393 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
394 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
395 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
396 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
397 { X86::PSHUFDri, X86::PSHUFDmi },
398 { X86::PSHUFHWri, X86::PSHUFHWmi },
399 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000400 { X86::RCPPSr, X86::RCPPSm },
401 { X86::RCPPSr_Int, X86::RCPPSm_Int },
402 { X86::RSQRTPSr, X86::RSQRTPSm },
403 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
404 { X86::RSQRTSSr, X86::RSQRTSSm },
405 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
406 { X86::SQRTPDr, X86::SQRTPDm },
407 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
408 { X86::SQRTPSr, X86::SQRTPSm },
409 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
410 { X86::SQRTSDr, X86::SQRTSDm },
411 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
412 { X86::SQRTSSr, X86::SQRTSSm },
413 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
414 { X86::TEST16rr, X86::TEST16rm },
415 { X86::TEST32rr, X86::TEST32rm },
416 { X86::TEST64rr, X86::TEST64rm },
417 { X86::TEST8rr, X86::TEST8rm },
418 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
419 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000420 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000421 };
422
423 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
424 unsigned RegOp = OpTbl1[i][0];
425 unsigned MemOp = OpTbl1[i][1];
426 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
427 assert(false && "Duplicated entries?");
428 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
429 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
430 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
431 std::make_pair(RegOp, AuxInfo))))
432 AmbEntries.push_back(MemOp);
433 }
434
435 static const unsigned OpTbl2[][2] = {
436 { X86::ADC32rr, X86::ADC32rm },
437 { X86::ADC64rr, X86::ADC64rm },
438 { X86::ADD16rr, X86::ADD16rm },
439 { X86::ADD32rr, X86::ADD32rm },
440 { X86::ADD64rr, X86::ADD64rm },
441 { X86::ADD8rr, X86::ADD8rm },
442 { X86::ADDPDrr, X86::ADDPDrm },
443 { X86::ADDPSrr, X86::ADDPSrm },
444 { X86::ADDSDrr, X86::ADDSDrm },
445 { X86::ADDSSrr, X86::ADDSSrm },
446 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
447 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
448 { X86::AND16rr, X86::AND16rm },
449 { X86::AND32rr, X86::AND32rm },
450 { X86::AND64rr, X86::AND64rm },
451 { X86::AND8rr, X86::AND8rm },
452 { X86::ANDNPDrr, X86::ANDNPDrm },
453 { X86::ANDNPSrr, X86::ANDNPSrm },
454 { X86::ANDPDrr, X86::ANDPDrm },
455 { X86::ANDPSrr, X86::ANDPSrm },
456 { X86::CMOVA16rr, X86::CMOVA16rm },
457 { X86::CMOVA32rr, X86::CMOVA32rm },
458 { X86::CMOVA64rr, X86::CMOVA64rm },
459 { X86::CMOVAE16rr, X86::CMOVAE16rm },
460 { X86::CMOVAE32rr, X86::CMOVAE32rm },
461 { X86::CMOVAE64rr, X86::CMOVAE64rm },
462 { X86::CMOVB16rr, X86::CMOVB16rm },
463 { X86::CMOVB32rr, X86::CMOVB32rm },
464 { X86::CMOVB64rr, X86::CMOVB64rm },
465 { X86::CMOVBE16rr, X86::CMOVBE16rm },
466 { X86::CMOVBE32rr, X86::CMOVBE32rm },
467 { X86::CMOVBE64rr, X86::CMOVBE64rm },
468 { X86::CMOVE16rr, X86::CMOVE16rm },
469 { X86::CMOVE32rr, X86::CMOVE32rm },
470 { X86::CMOVE64rr, X86::CMOVE64rm },
471 { X86::CMOVG16rr, X86::CMOVG16rm },
472 { X86::CMOVG32rr, X86::CMOVG32rm },
473 { X86::CMOVG64rr, X86::CMOVG64rm },
474 { X86::CMOVGE16rr, X86::CMOVGE16rm },
475 { X86::CMOVGE32rr, X86::CMOVGE32rm },
476 { X86::CMOVGE64rr, X86::CMOVGE64rm },
477 { X86::CMOVL16rr, X86::CMOVL16rm },
478 { X86::CMOVL32rr, X86::CMOVL32rm },
479 { X86::CMOVL64rr, X86::CMOVL64rm },
480 { X86::CMOVLE16rr, X86::CMOVLE16rm },
481 { X86::CMOVLE32rr, X86::CMOVLE32rm },
482 { X86::CMOVLE64rr, X86::CMOVLE64rm },
483 { X86::CMOVNE16rr, X86::CMOVNE16rm },
484 { X86::CMOVNE32rr, X86::CMOVNE32rm },
485 { X86::CMOVNE64rr, X86::CMOVNE64rm },
486 { X86::CMOVNP16rr, X86::CMOVNP16rm },
487 { X86::CMOVNP32rr, X86::CMOVNP32rm },
488 { X86::CMOVNP64rr, X86::CMOVNP64rm },
489 { X86::CMOVNS16rr, X86::CMOVNS16rm },
490 { X86::CMOVNS32rr, X86::CMOVNS32rm },
491 { X86::CMOVNS64rr, X86::CMOVNS64rm },
492 { X86::CMOVP16rr, X86::CMOVP16rm },
493 { X86::CMOVP32rr, X86::CMOVP32rm },
494 { X86::CMOVP64rr, X86::CMOVP64rm },
495 { X86::CMOVS16rr, X86::CMOVS16rm },
496 { X86::CMOVS32rr, X86::CMOVS32rm },
497 { X86::CMOVS64rr, X86::CMOVS64rm },
498 { X86::CMPPDrri, X86::CMPPDrmi },
499 { X86::CMPPSrri, X86::CMPPSrmi },
500 { X86::CMPSDrr, X86::CMPSDrm },
501 { X86::CMPSSrr, X86::CMPSSrm },
502 { X86::DIVPDrr, X86::DIVPDrm },
503 { X86::DIVPSrr, X86::DIVPSrm },
504 { X86::DIVSDrr, X86::DIVSDrm },
505 { X86::DIVSSrr, X86::DIVSSrm },
506 { X86::HADDPDrr, X86::HADDPDrm },
507 { X86::HADDPSrr, X86::HADDPSrm },
508 { X86::HSUBPDrr, X86::HSUBPDrm },
509 { X86::HSUBPSrr, X86::HSUBPSrm },
510 { X86::IMUL16rr, X86::IMUL16rm },
511 { X86::IMUL32rr, X86::IMUL32rm },
512 { X86::IMUL64rr, X86::IMUL64rm },
513 { X86::MAXPDrr, X86::MAXPDrm },
514 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
515 { X86::MAXPSrr, X86::MAXPSrm },
516 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
517 { X86::MAXSDrr, X86::MAXSDrm },
518 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
519 { X86::MAXSSrr, X86::MAXSSrm },
520 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
521 { X86::MINPDrr, X86::MINPDrm },
522 { X86::MINPDrr_Int, X86::MINPDrm_Int },
523 { X86::MINPSrr, X86::MINPSrm },
524 { X86::MINPSrr_Int, X86::MINPSrm_Int },
525 { X86::MINSDrr, X86::MINSDrm },
526 { X86::MINSDrr_Int, X86::MINSDrm_Int },
527 { X86::MINSSrr, X86::MINSSrm },
528 { X86::MINSSrr_Int, X86::MINSSrm_Int },
529 { X86::MULPDrr, X86::MULPDrm },
530 { X86::MULPSrr, X86::MULPSrm },
531 { X86::MULSDrr, X86::MULSDrm },
532 { X86::MULSSrr, X86::MULSSrm },
533 { X86::OR16rr, X86::OR16rm },
534 { X86::OR32rr, X86::OR32rm },
535 { X86::OR64rr, X86::OR64rm },
536 { X86::OR8rr, X86::OR8rm },
537 { X86::ORPDrr, X86::ORPDrm },
538 { X86::ORPSrr, X86::ORPSrm },
539 { X86::PACKSSDWrr, X86::PACKSSDWrm },
540 { X86::PACKSSWBrr, X86::PACKSSWBrm },
541 { X86::PACKUSWBrr, X86::PACKUSWBrm },
542 { X86::PADDBrr, X86::PADDBrm },
543 { X86::PADDDrr, X86::PADDDrm },
544 { X86::PADDQrr, X86::PADDQrm },
545 { X86::PADDSBrr, X86::PADDSBrm },
546 { X86::PADDSWrr, X86::PADDSWrm },
547 { X86::PADDWrr, X86::PADDWrm },
548 { X86::PANDNrr, X86::PANDNrm },
549 { X86::PANDrr, X86::PANDrm },
550 { X86::PAVGBrr, X86::PAVGBrm },
551 { X86::PAVGWrr, X86::PAVGWrm },
552 { X86::PCMPEQBrr, X86::PCMPEQBrm },
553 { X86::PCMPEQDrr, X86::PCMPEQDrm },
554 { X86::PCMPEQWrr, X86::PCMPEQWrm },
555 { X86::PCMPGTBrr, X86::PCMPGTBrm },
556 { X86::PCMPGTDrr, X86::PCMPGTDrm },
557 { X86::PCMPGTWrr, X86::PCMPGTWrm },
558 { X86::PINSRWrri, X86::PINSRWrmi },
559 { X86::PMADDWDrr, X86::PMADDWDrm },
560 { X86::PMAXSWrr, X86::PMAXSWrm },
561 { X86::PMAXUBrr, X86::PMAXUBrm },
562 { X86::PMINSWrr, X86::PMINSWrm },
563 { X86::PMINUBrr, X86::PMINUBrm },
564 { X86::PMULHUWrr, X86::PMULHUWrm },
565 { X86::PMULHWrr, X86::PMULHWrm },
566 { X86::PMULLWrr, X86::PMULLWrm },
567 { X86::PMULUDQrr, X86::PMULUDQrm },
568 { X86::PORrr, X86::PORrm },
569 { X86::PSADBWrr, X86::PSADBWrm },
570 { X86::PSLLDrr, X86::PSLLDrm },
571 { X86::PSLLQrr, X86::PSLLQrm },
572 { X86::PSLLWrr, X86::PSLLWrm },
573 { X86::PSRADrr, X86::PSRADrm },
574 { X86::PSRAWrr, X86::PSRAWrm },
575 { X86::PSRLDrr, X86::PSRLDrm },
576 { X86::PSRLQrr, X86::PSRLQrm },
577 { X86::PSRLWrr, X86::PSRLWrm },
578 { X86::PSUBBrr, X86::PSUBBrm },
579 { X86::PSUBDrr, X86::PSUBDrm },
580 { X86::PSUBSBrr, X86::PSUBSBrm },
581 { X86::PSUBSWrr, X86::PSUBSWrm },
582 { X86::PSUBWrr, X86::PSUBWrm },
583 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
584 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
585 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
586 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
587 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
588 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
589 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
590 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
591 { X86::PXORrr, X86::PXORrm },
592 { X86::SBB32rr, X86::SBB32rm },
593 { X86::SBB64rr, X86::SBB64rm },
594 { X86::SHUFPDrri, X86::SHUFPDrmi },
595 { X86::SHUFPSrri, X86::SHUFPSrmi },
596 { X86::SUB16rr, X86::SUB16rm },
597 { X86::SUB32rr, X86::SUB32rm },
598 { X86::SUB64rr, X86::SUB64rm },
599 { X86::SUB8rr, X86::SUB8rm },
600 { X86::SUBPDrr, X86::SUBPDrm },
601 { X86::SUBPSrr, X86::SUBPSrm },
602 { X86::SUBSDrr, X86::SUBSDrm },
603 { X86::SUBSSrr, X86::SUBSSrm },
604 // FIXME: TEST*rr -> swapped operand of TEST*mr.
605 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
606 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
607 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
608 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
609 { X86::XOR16rr, X86::XOR16rm },
610 { X86::XOR32rr, X86::XOR32rm },
611 { X86::XOR64rr, X86::XOR64rm },
612 { X86::XOR8rr, X86::XOR8rm },
613 { X86::XORPDrr, X86::XORPDrm },
614 { X86::XORPSrr, X86::XORPSrm }
615 };
616
617 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
618 unsigned RegOp = OpTbl2[i][0];
619 unsigned MemOp = OpTbl2[i][1];
620 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
621 assert(false && "Duplicated entries?");
622 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
623 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
624 std::make_pair(RegOp, AuxInfo))))
625 AmbEntries.push_back(MemOp);
626 }
627
628 // Remove ambiguous entries.
629 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630}
631
632bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
633 unsigned& sourceReg,
634 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000635 switch (MI.getOpcode()) {
636 default:
637 return false;
638 case X86::MOV8rr:
639 case X86::MOV16rr:
640 case X86::MOV32rr:
641 case X86::MOV64rr:
642 case X86::MOV16to16_:
643 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000644 case X86::MOVSSrr:
645 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000646
647 // FP Stack register class copies
648 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
649 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
650 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
651
Chris Lattnerff195282008-03-11 19:28:17 +0000652 case X86::FsMOVAPSrr:
653 case X86::FsMOVAPDrr:
654 case X86::MOVAPSrr:
655 case X86::MOVAPDrr:
656 case X86::MOVSS2PSrr:
657 case X86::MOVSD2PDrr:
658 case X86::MOVPS2SSrr:
659 case X86::MOVPD2SDrr:
660 case X86::MMX_MOVD64rr:
661 case X86::MMX_MOVQ64rr:
662 assert(MI.getNumOperands() >= 2 &&
663 MI.getOperand(0).isRegister() &&
664 MI.getOperand(1).isRegister() &&
665 "invalid register-register move instruction");
666 sourceReg = MI.getOperand(1).getReg();
667 destReg = MI.getOperand(0).getReg();
668 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000669 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000670}
671
672unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
673 int &FrameIndex) const {
674 switch (MI->getOpcode()) {
675 default: break;
676 case X86::MOV8rm:
677 case X86::MOV16rm:
678 case X86::MOV16_rm:
679 case X86::MOV32rm:
680 case X86::MOV32_rm:
681 case X86::MOV64rm:
682 case X86::LD_Fp64m:
683 case X86::MOVSSrm:
684 case X86::MOVSDrm:
685 case X86::MOVAPSrm:
686 case X86::MOVAPDrm:
687 case X86::MMX_MOVD64rm:
688 case X86::MMX_MOVQ64rm:
Chris Lattner6017d482007-12-30 23:10:15 +0000689 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
690 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000691 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000692 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000693 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000694 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000695 return MI->getOperand(0).getReg();
696 }
697 break;
698 }
699 return 0;
700}
701
702unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
703 int &FrameIndex) const {
704 switch (MI->getOpcode()) {
705 default: break;
706 case X86::MOV8mr:
707 case X86::MOV16mr:
708 case X86::MOV16_mr:
709 case X86::MOV32mr:
710 case X86::MOV32_mr:
711 case X86::MOV64mr:
712 case X86::ST_FpP64m:
713 case X86::MOVSSmr:
714 case X86::MOVSDmr:
715 case X86::MOVAPSmr:
716 case X86::MOVAPDmr:
717 case X86::MMX_MOVD64mr:
718 case X86::MMX_MOVQ64mr:
719 case X86::MMX_MOVNTQmr:
Chris Lattner6017d482007-12-30 23:10:15 +0000720 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
721 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000722 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000723 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000724 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000725 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000726 return MI->getOperand(4).getReg();
727 }
728 break;
729 }
730 return 0;
731}
732
733
Evan Chengb819a512008-03-27 01:45:11 +0000734/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
735/// X86::MOVPC32r.
736static bool regIsPICBase(unsigned BaseReg, MachineRegisterInfo &MRI) {
737 bool isPICBase = false;
738 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
739 E = MRI.def_end(); I != E; ++I) {
740 MachineInstr *DefMI = I.getOperand().getParent();
741 if (DefMI->getOpcode() != X86::MOVPC32r)
742 return false;
743 assert(!isPICBase && "More than one PIC base?");
744 isPICBase = true;
745 }
746 return isPICBase;
747}
Evan Chenge9caab52008-03-31 07:54:19 +0000748
749/// isGVStub - Return true if the GV requires an extra load to get the
750/// real address.
751static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
752 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
753}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000754
Bill Wendling0fe34c22007-12-08 23:58:46 +0000755bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000756 switch (MI->getOpcode()) {
757 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000758 case X86::MOV8rm:
759 case X86::MOV16rm:
760 case X86::MOV16_rm:
761 case X86::MOV32rm:
762 case X86::MOV32_rm:
763 case X86::MOV64rm:
764 case X86::LD_Fp64m:
765 case X86::MOVSSrm:
766 case X86::MOVSDrm:
767 case X86::MOVAPSrm:
768 case X86::MOVAPDrm:
769 case X86::MMX_MOVD64rm:
770 case X86::MMX_MOVQ64rm: {
771 // Loads from constant pools are trivially rematerializable.
772 if (MI->getOperand(1).isReg() &&
773 MI->getOperand(2).isImm() &&
774 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Chenge9caab52008-03-31 07:54:19 +0000775 (MI->getOperand(4).isCPI() ||
776 (MI->getOperand(4).isGlobal() &&
777 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000778 unsigned BaseReg = MI->getOperand(1).getReg();
779 if (BaseReg == 0)
780 return true;
781 // Allow re-materialization of PIC load.
Evan Chengc87df652008-04-01 23:26:12 +0000782 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
783 return false;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000784 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
785 bool isPICBase = false;
786 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
787 E = MRI.def_end(); I != E; ++I) {
788 MachineInstr *DefMI = I.getOperand().getParent();
789 if (DefMI->getOpcode() != X86::MOVPC32r)
790 return false;
791 assert(!isPICBase && "More than one PIC base?");
792 isPICBase = true;
793 }
794 return isPICBase;
795 }
796 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000797 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000798
799 case X86::LEA32r:
800 case X86::LEA64r: {
801 if (MI->getOperand(1).isReg() &&
802 MI->getOperand(2).isImm() &&
803 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
804 !MI->getOperand(4).isReg()) {
805 // lea fi#, lea GV, etc. are all rematerializable.
806 unsigned BaseReg = MI->getOperand(1).getReg();
807 if (BaseReg == 0)
808 return true;
809 // Allow re-materialization of lea PICBase + x.
Evan Chengb819a512008-03-27 01:45:11 +0000810 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
811 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000812 }
813 return false;
814 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000815 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000816
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000817 // All other instructions marked M_REMATERIALIZABLE are always trivially
818 // rematerializable.
819 return true;
820}
821
Evan Cheng7d73efc2008-03-31 20:40:39 +0000822void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
823 MachineBasicBlock::iterator I,
824 unsigned DestReg,
825 const MachineInstr *Orig) const {
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000826 unsigned SubIdx = Orig->getOperand(0).isReg()
827 ? Orig->getOperand(0).getSubReg() : 0;
828 bool ChangeSubIdx = SubIdx != 0;
829 if (SubIdx && TargetRegisterInfo::isPhysicalRegister(DestReg)) {
830 DestReg = RI.getSubReg(DestReg, SubIdx);
831 SubIdx = 0;
832 }
833
Evan Cheng7d73efc2008-03-31 20:40:39 +0000834 // MOV32r0 etc. are implemented with xor which clobbers condition code.
835 // Re-materialize them as movri instructions to avoid side effects.
836 switch (Orig->getOpcode()) {
837 case X86::MOV8r0:
838 BuildMI(MBB, I, get(X86::MOV8ri), DestReg).addImm(0);
839 break;
840 case X86::MOV16r0:
841 BuildMI(MBB, I, get(X86::MOV16ri), DestReg).addImm(0);
842 break;
843 case X86::MOV32r0:
844 BuildMI(MBB, I, get(X86::MOV32ri), DestReg).addImm(0);
845 break;
846 case X86::MOV64r0:
847 BuildMI(MBB, I, get(X86::MOV64ri32), DestReg).addImm(0);
848 break;
849 default: {
850 MachineInstr *MI = Orig->clone();
851 MI->getOperand(0).setReg(DestReg);
852 MBB.insert(I, MI);
853 break;
854 }
855 }
Evan Cheng1c32d2d2008-04-16 23:44:44 +0000856
857 if (ChangeSubIdx) {
858 MachineInstr *NewMI = prior(I);
859 NewMI->getOperand(0).setSubReg(SubIdx);
860 }
Evan Cheng7d73efc2008-03-31 20:40:39 +0000861}
862
Chris Lattnerea3a1812008-01-10 23:08:24 +0000863/// isInvariantLoad - Return true if the specified instruction (which is marked
864/// mayLoad) is loading from a location whose value is invariant across the
865/// function. For example, loading a value from the constant pool or from
866/// from the argument area of a function if it does not change. This should
867/// only return true of *all* loads the instruction does are invariant (if it
868/// does multiple loads).
869bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000870 // This code cares about loads from three cases: constant pool entries,
871 // invariant argument slots, and global stubs. In order to handle these cases
872 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000873 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000874 // none of these three cases is ever used as anything other than a load base
875 // and X86 doesn't have any instructions that load from multiple places.
876
877 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
878 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000879 // Loads from constant pools are trivially invariant.
Chris Lattner0875b572008-01-12 00:35:08 +0000880 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000881 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000882
883 if (MO.isGlobal())
884 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000885
886 // If this is a load from an invariant stack slot, the load is a constant.
887 if (MO.isFI()) {
888 const MachineFrameInfo &MFI =
889 *MI->getParent()->getParent()->getFrameInfo();
890 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000891 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
892 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000893 }
Chris Lattner0875b572008-01-12 00:35:08 +0000894
Chris Lattnerea3a1812008-01-10 23:08:24 +0000895 // All other instances of these instructions are presumed to have other
896 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000897 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000898}
899
Evan Chengfa1a4952007-10-05 08:04:01 +0000900/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
901/// is not marked dead.
902static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000903 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
904 MachineOperand &MO = MI->getOperand(i);
905 if (MO.isRegister() && MO.isDef() &&
906 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
907 return true;
908 }
909 }
910 return false;
911}
912
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000913/// convertToThreeAddress - This method must be implemented by targets that
914/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
915/// may be able to convert a two-address instruction into a true
916/// three-address instruction on demand. This allows the X86 target (for
917/// example) to convert ADD and SHL instructions into LEA instructions if they
918/// would require register copies due to two-addressness.
919///
920/// This method returns a null pointer if the transformation cannot be
921/// performed, otherwise it returns the new instruction.
922///
923MachineInstr *
924X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
925 MachineBasicBlock::iterator &MBBI,
926 LiveVariables &LV) const {
927 MachineInstr *MI = MBBI;
928 // All instructions input are two-addr instructions. Get the known operands.
929 unsigned Dest = MI->getOperand(0).getReg();
930 unsigned Src = MI->getOperand(1).getReg();
931
932 MachineInstr *NewMI = NULL;
933 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
934 // we have better subtarget support, enable the 16-bit LEA generation here.
935 bool DisableLEA16 = true;
936
Evan Cheng6b96ed32007-10-05 20:34:26 +0000937 unsigned MIOpc = MI->getOpcode();
938 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000939 case X86::SHUFPSrri: {
940 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
941 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
942
943 unsigned A = MI->getOperand(0).getReg();
944 unsigned B = MI->getOperand(1).getReg();
945 unsigned C = MI->getOperand(2).getReg();
946 unsigned M = MI->getOperand(3).getImm();
947 if (B != C) return 0;
948 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
949 break;
950 }
951 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000952 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
954 // the flags produced by a shift yet, so this is safe.
955 unsigned Dest = MI->getOperand(0).getReg();
956 unsigned Src = MI->getOperand(1).getReg();
957 unsigned ShAmt = MI->getOperand(2).getImm();
958 if (ShAmt == 0 || ShAmt >= 4) return 0;
959
960 NewMI = BuildMI(get(X86::LEA64r), Dest)
961 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
962 break;
963 }
964 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000965 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000966 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
967 // the flags produced by a shift yet, so this is safe.
968 unsigned Dest = MI->getOperand(0).getReg();
969 unsigned Src = MI->getOperand(1).getReg();
970 unsigned ShAmt = MI->getOperand(2).getImm();
971 if (ShAmt == 0 || ShAmt >= 4) return 0;
972
973 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
974 X86::LEA64_32r : X86::LEA32r;
975 NewMI = BuildMI(get(Opc), Dest)
976 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
977 break;
978 }
979 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000980 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +0000981 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
982 // the flags produced by a shift yet, so this is safe.
983 unsigned Dest = MI->getOperand(0).getReg();
984 unsigned Src = MI->getOperand(1).getReg();
985 unsigned ShAmt = MI->getOperand(2).getImm();
986 if (ShAmt == 0 || ShAmt >= 4) return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000987
Christopher Lamb380c6272007-08-10 21:18:25 +0000988 if (DisableLEA16) {
989 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +0000990 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +0000991 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
992 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +0000993 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
994 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +0000995
Christopher Lamb8d226a22008-03-11 10:27:36 +0000996 // Build and insert into an implicit UNDEF value. This is OK because
997 // well be shifting and then extracting the lower 16-bits.
Christopher Lamb76d72da2008-03-16 03:12:01 +0000998 MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
999
Christopher Lamb8d226a22008-03-11 10:27:36 +00001000 MachineInstr *Ins =
Christopher Lambb371e032008-03-13 05:47:01 +00001001 BuildMI(get(X86::INSERT_SUBREG),leaInReg)
Christopher Lamb76d72da2008-03-16 03:12:01 +00001002 .addReg(leaInReg).addReg(Src).addImm(X86::SUBREG_16BIT);
Christopher Lamb380c6272007-08-10 21:18:25 +00001003
1004 NewMI = BuildMI(get(Opc), leaOutReg)
1005 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
1006
Evan Cheng0b1e8712007-09-06 00:14:41 +00001007 MachineInstr *Ext =
Christopher Lamb8d226a22008-03-11 10:27:36 +00001008 BuildMI(get(X86::EXTRACT_SUBREG), Dest)
1009 .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
Christopher Lamb380c6272007-08-10 21:18:25 +00001010 Ext->copyKillDeadInfo(MI);
1011
Christopher Lamb76d72da2008-03-16 03:12:01 +00001012 MFI->insert(MBBI, Undef);
Christopher Lamb380c6272007-08-10 21:18:25 +00001013 MFI->insert(MBBI, Ins); // Insert the insert_subreg
1014 LV.instructionChanged(MI, NewMI); // Update live variables
1015 LV.addVirtualRegisterKilled(leaInReg, NewMI);
1016 MFI->insert(MBBI, NewMI); // Insert the new inst
1017 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng0b1e8712007-09-06 00:14:41 +00001018 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lamb380c6272007-08-10 21:18:25 +00001019 return Ext;
1020 } else {
1021 NewMI = BuildMI(get(X86::LEA16r), Dest)
1022 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
1023 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001024 break;
1025 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001026 default: {
1027 // The following opcodes also sets the condition code register(s). Only
1028 // convert them to equivalent lea if the condition code register def's
1029 // are dead!
1030 if (hasLiveCondCodeDef(MI))
1031 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032
Evan Chenga28a9562007-10-09 07:14:53 +00001033 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001034 switch (MIOpc) {
1035 default: return 0;
1036 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001037 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001038 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001039 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1040 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001041 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
1042 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001043 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001044 case X86::INC16r:
1045 case X86::INC64_16r:
1046 if (DisableLEA16) return 0;
1047 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1048 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
1049 break;
1050 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001051 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001052 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001053 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1054 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001055 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
1056 break;
1057 }
1058 case X86::DEC16r:
1059 case X86::DEC64_16r:
1060 if (DisableLEA16) return 0;
1061 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1062 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
1063 break;
1064 case X86::ADD64rr:
1065 case X86::ADD32rr: {
1066 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001067 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1068 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001069 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
1070 MI->getOperand(2).getReg());
1071 break;
1072 }
1073 case X86::ADD16rr:
1074 if (DisableLEA16) return 0;
1075 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1076 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
1077 MI->getOperand(2).getReg());
1078 break;
1079 case X86::ADD64ri32:
1080 case X86::ADD64ri8:
1081 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1082 if (MI->getOperand(2).isImmediate())
1083 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001084 MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001085 break;
1086 case X86::ADD32ri:
1087 case X86::ADD32ri8:
1088 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001089 if (MI->getOperand(2).isImmediate()) {
1090 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1091 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001092 MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001093 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001094 break;
1095 case X86::ADD16ri:
1096 case X86::ADD16ri8:
1097 if (DisableLEA16) return 0;
1098 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1099 if (MI->getOperand(2).isImmediate())
1100 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001101 MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001102 break;
1103 case X86::SHL16ri:
1104 if (DisableLEA16) return 0;
1105 case X86::SHL32ri:
1106 case X86::SHL64ri: {
1107 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1108 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001109 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001110 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1111 X86AddressMode AM;
1112 AM.Scale = 1 << ShAmt;
1113 AM.IndexReg = Src;
1114 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001115 : (MIOpc == X86::SHL32ri
1116 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001117 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1118 }
1119 break;
1120 }
1121 }
1122 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001123 }
1124
Evan Chengc3cb24d2008-02-07 08:29:53 +00001125 if (!NewMI) return 0;
1126
Evan Cheng6b96ed32007-10-05 20:34:26 +00001127 NewMI->copyKillDeadInfo(MI);
1128 LV.instructionChanged(MI, NewMI); // Update live variables
1129 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001130 return NewMI;
1131}
1132
1133/// commuteInstruction - We have a few instructions that must be hacked on to
1134/// commute them.
1135///
1136MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001137 switch (MI->getOpcode()) {
1138 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1139 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1140 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001141 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1142 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1143 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001144 unsigned Opc;
1145 unsigned Size;
1146 switch (MI->getOpcode()) {
1147 default: assert(0 && "Unreachable!");
1148 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1149 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1150 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1151 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001152 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1153 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001154 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001155 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001156 unsigned A = MI->getOperand(0).getReg();
1157 unsigned B = MI->getOperand(1).getReg();
1158 unsigned C = MI->getOperand(2).getReg();
1159 bool BisKill = MI->getOperand(1).isKill();
1160 bool CisKill = MI->getOperand(2).isKill();
Evan Chengb554e532008-02-13 02:46:49 +00001161 // If machine instrs are no longer in two-address forms, update
1162 // destination register as well.
1163 if (A == B) {
1164 // Must be two address instruction!
1165 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1166 "Expecting a two-address instruction!");
1167 A = C;
1168 CisKill = false;
1169 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001170 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
1171 .addReg(B, false, false, BisKill).addImm(Size-Amt);
1172 }
Evan Cheng926658c2007-10-05 23:13:21 +00001173 case X86::CMOVB16rr:
1174 case X86::CMOVB32rr:
1175 case X86::CMOVB64rr:
1176 case X86::CMOVAE16rr:
1177 case X86::CMOVAE32rr:
1178 case X86::CMOVAE64rr:
1179 case X86::CMOVE16rr:
1180 case X86::CMOVE32rr:
1181 case X86::CMOVE64rr:
1182 case X86::CMOVNE16rr:
1183 case X86::CMOVNE32rr:
1184 case X86::CMOVNE64rr:
1185 case X86::CMOVBE16rr:
1186 case X86::CMOVBE32rr:
1187 case X86::CMOVBE64rr:
1188 case X86::CMOVA16rr:
1189 case X86::CMOVA32rr:
1190 case X86::CMOVA64rr:
1191 case X86::CMOVL16rr:
1192 case X86::CMOVL32rr:
1193 case X86::CMOVL64rr:
1194 case X86::CMOVGE16rr:
1195 case X86::CMOVGE32rr:
1196 case X86::CMOVGE64rr:
1197 case X86::CMOVLE16rr:
1198 case X86::CMOVLE32rr:
1199 case X86::CMOVLE64rr:
1200 case X86::CMOVG16rr:
1201 case X86::CMOVG32rr:
1202 case X86::CMOVG64rr:
1203 case X86::CMOVS16rr:
1204 case X86::CMOVS32rr:
1205 case X86::CMOVS64rr:
1206 case X86::CMOVNS16rr:
1207 case X86::CMOVNS32rr:
1208 case X86::CMOVNS64rr:
1209 case X86::CMOVP16rr:
1210 case X86::CMOVP32rr:
1211 case X86::CMOVP64rr:
1212 case X86::CMOVNP16rr:
1213 case X86::CMOVNP32rr:
1214 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001215 unsigned Opc = 0;
1216 switch (MI->getOpcode()) {
1217 default: break;
1218 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1219 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1220 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1221 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1222 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1223 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1224 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1225 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1226 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1227 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1228 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1229 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1230 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1231 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1232 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1233 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1234 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1235 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1236 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1237 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1238 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1239 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1240 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1241 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1242 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1243 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1244 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1245 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1246 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1247 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1248 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1249 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1250 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1251 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1252 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1253 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1254 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1255 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1256 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1257 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1258 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1259 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1260 }
1261
Chris Lattner86bb02f2008-01-11 18:10:50 +00001262 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001263 // Fallthrough intended.
1264 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001265 default:
Chris Lattner6ca3a8e2008-01-01 01:05:34 +00001266 return TargetInstrInfoImpl::commuteInstruction(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 }
1268}
1269
1270static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1271 switch (BrOpc) {
1272 default: return X86::COND_INVALID;
1273 case X86::JE: return X86::COND_E;
1274 case X86::JNE: return X86::COND_NE;
1275 case X86::JL: return X86::COND_L;
1276 case X86::JLE: return X86::COND_LE;
1277 case X86::JG: return X86::COND_G;
1278 case X86::JGE: return X86::COND_GE;
1279 case X86::JB: return X86::COND_B;
1280 case X86::JBE: return X86::COND_BE;
1281 case X86::JA: return X86::COND_A;
1282 case X86::JAE: return X86::COND_AE;
1283 case X86::JS: return X86::COND_S;
1284 case X86::JNS: return X86::COND_NS;
1285 case X86::JP: return X86::COND_P;
1286 case X86::JNP: return X86::COND_NP;
1287 case X86::JO: return X86::COND_O;
1288 case X86::JNO: return X86::COND_NO;
1289 }
1290}
1291
1292unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1293 switch (CC) {
1294 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001295 case X86::COND_E: return X86::JE;
1296 case X86::COND_NE: return X86::JNE;
1297 case X86::COND_L: return X86::JL;
1298 case X86::COND_LE: return X86::JLE;
1299 case X86::COND_G: return X86::JG;
1300 case X86::COND_GE: return X86::JGE;
1301 case X86::COND_B: return X86::JB;
1302 case X86::COND_BE: return X86::JBE;
1303 case X86::COND_A: return X86::JA;
1304 case X86::COND_AE: return X86::JAE;
1305 case X86::COND_S: return X86::JS;
1306 case X86::COND_NS: return X86::JNS;
1307 case X86::COND_P: return X86::JP;
1308 case X86::COND_NP: return X86::JNP;
1309 case X86::COND_O: return X86::JO;
1310 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001311 }
1312}
1313
1314/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1315/// e.g. turning COND_E to COND_NE.
1316X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1317 switch (CC) {
1318 default: assert(0 && "Illegal condition code!");
1319 case X86::COND_E: return X86::COND_NE;
1320 case X86::COND_NE: return X86::COND_E;
1321 case X86::COND_L: return X86::COND_GE;
1322 case X86::COND_LE: return X86::COND_G;
1323 case X86::COND_G: return X86::COND_LE;
1324 case X86::COND_GE: return X86::COND_L;
1325 case X86::COND_B: return X86::COND_AE;
1326 case X86::COND_BE: return X86::COND_A;
1327 case X86::COND_A: return X86::COND_BE;
1328 case X86::COND_AE: return X86::COND_B;
1329 case X86::COND_S: return X86::COND_NS;
1330 case X86::COND_NS: return X86::COND_S;
1331 case X86::COND_P: return X86::COND_NP;
1332 case X86::COND_NP: return X86::COND_P;
1333 case X86::COND_O: return X86::COND_NO;
1334 case X86::COND_NO: return X86::COND_O;
1335 }
1336}
1337
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001338bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001339 const TargetInstrDesc &TID = MI->getDesc();
1340 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001341
1342 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001343 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001344 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001345 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001346 return true;
1347 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001348}
1349
Evan Cheng12515792007-07-26 17:32:14 +00001350// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1351static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1352 const X86InstrInfo &TII) {
1353 if (MI->getOpcode() == X86::FP_REG_KILL)
1354 return false;
1355 return TII.isUnpredicatedTerminator(MI);
1356}
1357
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001358bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1359 MachineBasicBlock *&TBB,
1360 MachineBasicBlock *&FBB,
1361 std::vector<MachineOperand> &Cond) const {
1362 // If the block has no terminators, it just falls into the block after it.
1363 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001364 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001365 return false;
1366
1367 // Get the last instruction in the block.
1368 MachineInstr *LastInst = I;
1369
1370 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001371 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001372 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001373 return true;
1374
1375 // If the block ends with a branch there are 3 possibilities:
1376 // it's an unconditional, conditional, or indirect branch.
1377
1378 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001379 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380 return false;
1381 }
1382 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1383 if (BranchCode == X86::COND_INVALID)
1384 return true; // Can't handle indirect branch.
1385
1386 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001387 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001388 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1389 return false;
1390 }
1391
1392 // Get the instruction before it if it's a terminator.
1393 MachineInstr *SecondLastInst = I;
1394
1395 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001396 if (SecondLastInst && I != MBB.begin() &&
1397 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001398 return true;
1399
1400 // If the block ends with X86::JMP and a conditional branch, handle it.
1401 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1402 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001403 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001404 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001405 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001406 return false;
1407 }
1408
1409 // If the block ends with two X86::JMPs, handle it. The second one is not
1410 // executed, so remove it.
1411 if (SecondLastInst->getOpcode() == X86::JMP &&
1412 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001413 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001414 I = LastInst;
1415 I->eraseFromParent();
1416 return false;
1417 }
1418
1419 // Otherwise, can't handle this.
1420 return true;
1421}
1422
1423unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1424 MachineBasicBlock::iterator I = MBB.end();
1425 if (I == MBB.begin()) return 0;
1426 --I;
1427 if (I->getOpcode() != X86::JMP &&
1428 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1429 return 0;
1430
1431 // Remove the branch.
1432 I->eraseFromParent();
1433
1434 I = MBB.end();
1435
1436 if (I == MBB.begin()) return 1;
1437 --I;
1438 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1439 return 1;
1440
1441 // Remove the branch.
1442 I->eraseFromParent();
1443 return 2;
1444}
1445
Owen Anderson81875432008-01-01 21:11:32 +00001446static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1447 MachineOperand &MO) {
1448 if (MO.isRegister())
1449 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1450 false, false, MO.getSubReg());
1451 else if (MO.isImmediate())
1452 MIB = MIB.addImm(MO.getImm());
1453 else if (MO.isFrameIndex())
1454 MIB = MIB.addFrameIndex(MO.getIndex());
1455 else if (MO.isGlobalAddress())
1456 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1457 else if (MO.isConstantPoolIndex())
1458 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1459 else if (MO.isJumpTableIndex())
1460 MIB = MIB.addJumpTableIndex(MO.getIndex());
1461 else if (MO.isExternalSymbol())
1462 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1463 else
1464 assert(0 && "Unknown operand for X86InstrAddOperand!");
1465
1466 return MIB;
1467}
1468
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001469unsigned
1470X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1471 MachineBasicBlock *FBB,
1472 const std::vector<MachineOperand> &Cond) const {
1473 // Shouldn't be a fall through.
1474 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1475 assert((Cond.size() == 1 || Cond.size() == 0) &&
1476 "X86 branch conditions have one component!");
1477
1478 if (FBB == 0) { // One way branch.
1479 if (Cond.empty()) {
1480 // Unconditional branch?
1481 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1482 } else {
1483 // Conditional branch.
1484 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1485 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1486 }
1487 return 1;
1488 }
1489
1490 // Two-way Conditional branch.
1491 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1492 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1493 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1494 return 2;
1495}
1496
Owen Anderson8f2c8932007-12-31 06:32:00 +00001497void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001498 MachineBasicBlock::iterator MI,
1499 unsigned DestReg, unsigned SrcReg,
1500 const TargetRegisterClass *DestRC,
1501 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001502 if (DestRC == SrcRC) {
1503 unsigned Opc;
1504 if (DestRC == &X86::GR64RegClass) {
1505 Opc = X86::MOV64rr;
1506 } else if (DestRC == &X86::GR32RegClass) {
1507 Opc = X86::MOV32rr;
1508 } else if (DestRC == &X86::GR16RegClass) {
1509 Opc = X86::MOV16rr;
1510 } else if (DestRC == &X86::GR8RegClass) {
1511 Opc = X86::MOV8rr;
1512 } else if (DestRC == &X86::GR32_RegClass) {
1513 Opc = X86::MOV32_rr;
1514 } else if (DestRC == &X86::GR16_RegClass) {
1515 Opc = X86::MOV16_rr;
1516 } else if (DestRC == &X86::RFP32RegClass) {
1517 Opc = X86::MOV_Fp3232;
1518 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1519 Opc = X86::MOV_Fp6464;
1520 } else if (DestRC == &X86::RFP80RegClass) {
1521 Opc = X86::MOV_Fp8080;
1522 } else if (DestRC == &X86::FR32RegClass) {
1523 Opc = X86::FsMOVAPSrr;
1524 } else if (DestRC == &X86::FR64RegClass) {
1525 Opc = X86::FsMOVAPDrr;
1526 } else if (DestRC == &X86::VR128RegClass) {
1527 Opc = X86::MOVAPSrr;
1528 } else if (DestRC == &X86::VR64RegClass) {
1529 Opc = X86::MMX_MOVQ64rr;
1530 } else {
1531 assert(0 && "Unknown regclass");
1532 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001533 }
Chris Lattner59707122008-03-09 07:58:04 +00001534 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1535 return;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001536 }
Chris Lattner59707122008-03-09 07:58:04 +00001537
1538 // Moving EFLAGS to / from another register requires a push and a pop.
1539 if (SrcRC == &X86::CCRRegClass) {
1540 assert(SrcReg == X86::EFLAGS);
1541 if (DestRC == &X86::GR64RegClass) {
1542 BuildMI(MBB, MI, get(X86::PUSHFQ));
1543 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1544 return;
1545 } else if (DestRC == &X86::GR32RegClass) {
1546 BuildMI(MBB, MI, get(X86::PUSHFD));
1547 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1548 return;
1549 }
1550 } else if (DestRC == &X86::CCRRegClass) {
1551 assert(DestReg == X86::EFLAGS);
1552 if (SrcRC == &X86::GR64RegClass) {
1553 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1554 BuildMI(MBB, MI, get(X86::POPFQ));
1555 return;
1556 } else if (SrcRC == &X86::GR32RegClass) {
1557 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1558 BuildMI(MBB, MI, get(X86::POPFD));
1559 return;
1560 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001561 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001562
Chris Lattner0d128722008-03-09 09:15:31 +00001563 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001564 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001565 // Copying from ST(0)/ST(1).
1566 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1567 "Can only copy from ST(0)/ST(1) right now");
1568 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001569 unsigned Opc;
1570 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001571 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001572 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001573 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001574 else {
1575 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner60d14d82008-03-21 06:38:26 +00001576 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001577 }
1578 BuildMI(MBB, MI, get(Opc), DestReg);
1579 return;
1580 }
Chris Lattner0d128722008-03-09 09:15:31 +00001581
1582 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1583 if (DestRC == &X86::RSTRegClass) {
1584 // Copying to ST(0). FIXME: handle ST(1) also
1585 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1586 unsigned Opc;
1587 if (SrcRC == &X86::RFP32RegClass)
1588 Opc = X86::FpSET_ST0_32;
1589 else if (SrcRC == &X86::RFP64RegClass)
1590 Opc = X86::FpSET_ST0_64;
1591 else {
1592 assert(SrcRC == &X86::RFP80RegClass);
1593 Opc = X86::FpSET_ST0_80;
1594 }
1595 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1596 return;
1597 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001598
Chris Lattnercffd2472008-03-10 23:56:08 +00001599 assert(0 && "Not yet supported!");
Chris Lattner59707122008-03-09 07:58:04 +00001600 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001601}
1602
Owen Anderson81875432008-01-01 21:11:32 +00001603static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1604 unsigned StackAlign) {
1605 unsigned Opc = 0;
1606 if (RC == &X86::GR64RegClass) {
1607 Opc = X86::MOV64mr;
1608 } else if (RC == &X86::GR32RegClass) {
1609 Opc = X86::MOV32mr;
1610 } else if (RC == &X86::GR16RegClass) {
1611 Opc = X86::MOV16mr;
1612 } else if (RC == &X86::GR8RegClass) {
1613 Opc = X86::MOV8mr;
1614 } else if (RC == &X86::GR32_RegClass) {
1615 Opc = X86::MOV32_mr;
1616 } else if (RC == &X86::GR16_RegClass) {
1617 Opc = X86::MOV16_mr;
1618 } else if (RC == &X86::RFP80RegClass) {
1619 Opc = X86::ST_FpP80m; // pops
1620 } else if (RC == &X86::RFP64RegClass) {
1621 Opc = X86::ST_Fp64m;
1622 } else if (RC == &X86::RFP32RegClass) {
1623 Opc = X86::ST_Fp32m;
1624 } else if (RC == &X86::FR32RegClass) {
1625 Opc = X86::MOVSSmr;
1626 } else if (RC == &X86::FR64RegClass) {
1627 Opc = X86::MOVSDmr;
1628 } else if (RC == &X86::VR128RegClass) {
1629 // FIXME: Use movaps once we are capable of selectively
1630 // aligning functions that spill SSE registers on 16-byte boundaries.
1631 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1632 } else if (RC == &X86::VR64RegClass) {
1633 Opc = X86::MMX_MOVQ64mr;
1634 } else {
1635 assert(0 && "Unknown regclass");
1636 abort();
1637 }
1638
1639 return Opc;
1640}
1641
1642void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1643 MachineBasicBlock::iterator MI,
1644 unsigned SrcReg, bool isKill, int FrameIdx,
1645 const TargetRegisterClass *RC) const {
1646 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1647 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1648 .addReg(SrcReg, false, false, isKill);
1649}
1650
1651void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1652 bool isKill,
1653 SmallVectorImpl<MachineOperand> &Addr,
1654 const TargetRegisterClass *RC,
1655 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1656 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1657 MachineInstrBuilder MIB = BuildMI(get(Opc));
1658 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1659 MIB = X86InstrAddOperand(MIB, Addr[i]);
1660 MIB.addReg(SrcReg, false, false, isKill);
1661 NewMIs.push_back(MIB);
1662}
1663
1664static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1665 unsigned StackAlign) {
1666 unsigned Opc = 0;
1667 if (RC == &X86::GR64RegClass) {
1668 Opc = X86::MOV64rm;
1669 } else if (RC == &X86::GR32RegClass) {
1670 Opc = X86::MOV32rm;
1671 } else if (RC == &X86::GR16RegClass) {
1672 Opc = X86::MOV16rm;
1673 } else if (RC == &X86::GR8RegClass) {
1674 Opc = X86::MOV8rm;
1675 } else if (RC == &X86::GR32_RegClass) {
1676 Opc = X86::MOV32_rm;
1677 } else if (RC == &X86::GR16_RegClass) {
1678 Opc = X86::MOV16_rm;
1679 } else if (RC == &X86::RFP80RegClass) {
1680 Opc = X86::LD_Fp80m;
1681 } else if (RC == &X86::RFP64RegClass) {
1682 Opc = X86::LD_Fp64m;
1683 } else if (RC == &X86::RFP32RegClass) {
1684 Opc = X86::LD_Fp32m;
1685 } else if (RC == &X86::FR32RegClass) {
1686 Opc = X86::MOVSSrm;
1687 } else if (RC == &X86::FR64RegClass) {
1688 Opc = X86::MOVSDrm;
1689 } else if (RC == &X86::VR128RegClass) {
1690 // FIXME: Use movaps once we are capable of selectively
1691 // aligning functions that spill SSE registers on 16-byte boundaries.
1692 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1693 } else if (RC == &X86::VR64RegClass) {
1694 Opc = X86::MMX_MOVQ64rm;
1695 } else {
1696 assert(0 && "Unknown regclass");
1697 abort();
1698 }
1699
1700 return Opc;
1701}
1702
1703void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1704 MachineBasicBlock::iterator MI,
1705 unsigned DestReg, int FrameIdx,
1706 const TargetRegisterClass *RC) const{
1707 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1708 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1709}
1710
1711void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1712 SmallVectorImpl<MachineOperand> &Addr,
1713 const TargetRegisterClass *RC,
1714 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1715 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1716 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1717 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1718 MIB = X86InstrAddOperand(MIB, Addr[i]);
1719 NewMIs.push_back(MIB);
1720}
1721
Owen Anderson6690c7f2008-01-04 23:57:37 +00001722bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1723 MachineBasicBlock::iterator MI,
1724 const std::vector<CalleeSavedInfo> &CSI) const {
1725 if (CSI.empty())
1726 return false;
1727
1728 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1729 unsigned SlotSize = is64Bit ? 8 : 4;
1730
1731 MachineFunction &MF = *MBB.getParent();
1732 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1733 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1734
1735 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1736 for (unsigned i = CSI.size(); i != 0; --i) {
1737 unsigned Reg = CSI[i-1].getReg();
1738 // Add the callee-saved register as live-in. It's killed at the spill.
1739 MBB.addLiveIn(Reg);
1740 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1741 }
1742 return true;
1743}
1744
1745bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1746 MachineBasicBlock::iterator MI,
1747 const std::vector<CalleeSavedInfo> &CSI) const {
1748 if (CSI.empty())
1749 return false;
1750
1751 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1752
1753 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1754 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1755 unsigned Reg = CSI[i].getReg();
1756 BuildMI(MBB, MI, get(Opc), Reg);
1757 }
1758 return true;
1759}
1760
Owen Anderson9a184ef2008-01-07 01:35:02 +00001761static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1762 SmallVector<MachineOperand,4> &MOs,
1763 MachineInstr *MI, const TargetInstrInfo &TII) {
1764 // Create the base instruction with the memory operand as the first part.
1765 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1766 MachineInstrBuilder MIB(NewMI);
1767 unsigned NumAddrOps = MOs.size();
1768 for (unsigned i = 0; i != NumAddrOps; ++i)
1769 MIB = X86InstrAddOperand(MIB, MOs[i]);
1770 if (NumAddrOps < 4) // FrameIndex only
1771 MIB.addImm(1).addReg(0).addImm(0);
1772
1773 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001774 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001775 for (unsigned i = 0; i != NumOps; ++i) {
1776 MachineOperand &MO = MI->getOperand(i+2);
1777 MIB = X86InstrAddOperand(MIB, MO);
1778 }
1779 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1780 MachineOperand &MO = MI->getOperand(i);
1781 MIB = X86InstrAddOperand(MIB, MO);
1782 }
1783 return MIB;
1784}
1785
1786static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1787 SmallVector<MachineOperand,4> &MOs,
1788 MachineInstr *MI, const TargetInstrInfo &TII) {
1789 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1790 MachineInstrBuilder MIB(NewMI);
1791
1792 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1793 MachineOperand &MO = MI->getOperand(i);
1794 if (i == OpNo) {
1795 assert(MO.isRegister() && "Expected to fold into reg operand!");
1796 unsigned NumAddrOps = MOs.size();
1797 for (unsigned i = 0; i != NumAddrOps; ++i)
1798 MIB = X86InstrAddOperand(MIB, MOs[i]);
1799 if (NumAddrOps < 4) // FrameIndex only
1800 MIB.addImm(1).addReg(0).addImm(0);
1801 } else {
1802 MIB = X86InstrAddOperand(MIB, MO);
1803 }
1804 }
1805 return MIB;
1806}
1807
1808static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1809 SmallVector<MachineOperand,4> &MOs,
1810 MachineInstr *MI) {
1811 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1812
1813 unsigned NumAddrOps = MOs.size();
1814 for (unsigned i = 0; i != NumAddrOps; ++i)
1815 MIB = X86InstrAddOperand(MIB, MOs[i]);
1816 if (NumAddrOps < 4) // FrameIndex only
1817 MIB.addImm(1).addReg(0).addImm(0);
1818 return MIB.addImm(0);
1819}
1820
1821MachineInstr*
1822X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001823 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001824 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1825 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001826 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001827 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001828 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001829
1830 MachineInstr *NewMI = NULL;
1831 // Folding a memory location into the two-address part of a two-address
1832 // instruction is different than folding it other places. It requires
1833 // replacing the *two* registers with the memory location.
1834 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1835 MI->getOperand(0).isRegister() &&
1836 MI->getOperand(1).isRegister() &&
1837 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1838 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1839 isTwoAddrFold = true;
1840 } else if (i == 0) { // If operand 0
1841 if (MI->getOpcode() == X86::MOV16r0)
1842 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1843 else if (MI->getOpcode() == X86::MOV32r0)
1844 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1845 else if (MI->getOpcode() == X86::MOV64r0)
1846 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1847 else if (MI->getOpcode() == X86::MOV8r0)
1848 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1849 if (NewMI) {
1850 NewMI->copyKillDeadInfo(MI);
1851 return NewMI;
1852 }
1853
1854 OpcodeTablePtr = &RegOp2MemOpTable0;
1855 } else if (i == 1) {
1856 OpcodeTablePtr = &RegOp2MemOpTable1;
1857 } else if (i == 2) {
1858 OpcodeTablePtr = &RegOp2MemOpTable2;
1859 }
1860
1861 // If table selected...
1862 if (OpcodeTablePtr) {
1863 // Find the Opcode to fuse
1864 DenseMap<unsigned*, unsigned>::iterator I =
1865 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1866 if (I != OpcodeTablePtr->end()) {
1867 if (isTwoAddrFold)
1868 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1869 else
1870 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1871 NewMI->copyKillDeadInfo(MI);
1872 return NewMI;
1873 }
1874 }
1875
1876 // No fusion
1877 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001878 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001879 return NULL;
1880}
1881
1882
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001883MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1884 MachineInstr *MI,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001885 SmallVectorImpl<unsigned> &Ops,
1886 int FrameIndex) const {
1887 // Check switch flag
1888 if (NoFusing) return NULL;
1889
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001890 const MachineFrameInfo *MFI = MF.getFrameInfo();
1891 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1892 // FIXME: Move alignment requirement into tables?
1893 if (Alignment < 16) {
1894 switch (MI->getOpcode()) {
1895 default: break;
1896 // Not always safe to fold movsd into these instructions since their load
1897 // folding variants expects the address to be 16 byte aligned.
1898 case X86::FsANDNPDrr:
1899 case X86::FsANDNPSrr:
1900 case X86::FsANDPDrr:
1901 case X86::FsANDPSrr:
1902 case X86::FsORPDrr:
1903 case X86::FsORPSrr:
1904 case X86::FsXORPDrr:
1905 case X86::FsXORPSrr:
1906 return NULL;
1907 }
1908 }
1909
Owen Anderson9a184ef2008-01-07 01:35:02 +00001910 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1911 unsigned NewOpc = 0;
1912 switch (MI->getOpcode()) {
1913 default: return NULL;
1914 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1915 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1916 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1917 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1918 }
1919 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00001920 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001921 MI->getOperand(1).ChangeToImmediate(0);
1922 } else if (Ops.size() != 1)
1923 return NULL;
1924
1925 SmallVector<MachineOperand,4> MOs;
1926 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1927 return foldMemoryOperand(MI, Ops[0], MOs);
1928}
1929
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001930MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1931 MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001932 SmallVectorImpl<unsigned> &Ops,
1933 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001934 // Check switch flag
1935 if (NoFusing) return NULL;
1936
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001937 unsigned Alignment = 0;
1938 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
Dan Gohman1fad9e62008-04-07 19:35:22 +00001939 const MachineMemOperand &MRO = LoadMI->getMemOperand(i);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001940 unsigned Align = MRO.getAlignment();
1941 if (Align > Alignment)
1942 Alignment = Align;
1943 }
1944
1945 // FIXME: Move alignment requirement into tables?
1946 if (Alignment < 16) {
1947 switch (MI->getOpcode()) {
1948 default: break;
1949 // Not always safe to fold movsd into these instructions since their load
1950 // folding variants expects the address to be 16 byte aligned.
1951 case X86::FsANDNPDrr:
1952 case X86::FsANDNPSrr:
1953 case X86::FsANDPDrr:
1954 case X86::FsANDPSrr:
1955 case X86::FsORPDrr:
1956 case X86::FsORPSrr:
1957 case X86::FsXORPDrr:
1958 case X86::FsXORPSrr:
1959 return NULL;
1960 }
1961 }
1962
Owen Anderson9a184ef2008-01-07 01:35:02 +00001963 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1964 unsigned NewOpc = 0;
1965 switch (MI->getOpcode()) {
1966 default: return NULL;
1967 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1968 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1969 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1970 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1971 }
1972 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00001973 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001974 MI->getOperand(1).ChangeToImmediate(0);
1975 } else if (Ops.size() != 1)
1976 return NULL;
1977
1978 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00001979 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001980 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1981 MOs.push_back(LoadMI->getOperand(i));
1982 return foldMemoryOperand(MI, Ops[0], MOs);
1983}
1984
1985
1986bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001987 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001988 // Check switch flag
1989 if (NoFusing) return 0;
1990
1991 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1992 switch (MI->getOpcode()) {
1993 default: return false;
1994 case X86::TEST8rr:
1995 case X86::TEST16rr:
1996 case X86::TEST32rr:
1997 case X86::TEST64rr:
1998 return true;
1999 }
2000 }
2001
2002 if (Ops.size() != 1)
2003 return false;
2004
2005 unsigned OpNum = Ops[0];
2006 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002007 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002008 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002009 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002010
2011 // Folding a memory location into the two-address part of a two-address
2012 // instruction is different than folding it other places. It requires
2013 // replacing the *two* registers with the memory location.
2014 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2015 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2016 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2017 } else if (OpNum == 0) { // If operand 0
2018 switch (Opc) {
2019 case X86::MOV16r0:
2020 case X86::MOV32r0:
2021 case X86::MOV64r0:
2022 case X86::MOV8r0:
2023 return true;
2024 default: break;
2025 }
2026 OpcodeTablePtr = &RegOp2MemOpTable0;
2027 } else if (OpNum == 1) {
2028 OpcodeTablePtr = &RegOp2MemOpTable1;
2029 } else if (OpNum == 2) {
2030 OpcodeTablePtr = &RegOp2MemOpTable2;
2031 }
2032
2033 if (OpcodeTablePtr) {
2034 // Find the Opcode to fuse
2035 DenseMap<unsigned*, unsigned>::iterator I =
2036 OpcodeTablePtr->find((unsigned*)Opc);
2037 if (I != OpcodeTablePtr->end())
2038 return true;
2039 }
2040 return false;
2041}
2042
2043bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2044 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2045 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2046 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2047 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2048 if (I == MemOp2RegOpTable.end())
2049 return false;
2050 unsigned Opc = I->second.first;
2051 unsigned Index = I->second.second & 0xf;
2052 bool FoldedLoad = I->second.second & (1 << 4);
2053 bool FoldedStore = I->second.second & (1 << 5);
2054 if (UnfoldLoad && !FoldedLoad)
2055 return false;
2056 UnfoldLoad &= FoldedLoad;
2057 if (UnfoldStore && !FoldedStore)
2058 return false;
2059 UnfoldStore &= FoldedStore;
2060
Chris Lattner5b930372008-01-07 07:27:27 +00002061 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002062 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002063 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002064 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2065 SmallVector<MachineOperand,4> AddrOps;
2066 SmallVector<MachineOperand,2> BeforeOps;
2067 SmallVector<MachineOperand,2> AfterOps;
2068 SmallVector<MachineOperand,4> ImpOps;
2069 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2070 MachineOperand &Op = MI->getOperand(i);
2071 if (i >= Index && i < Index+4)
2072 AddrOps.push_back(Op);
2073 else if (Op.isRegister() && Op.isImplicit())
2074 ImpOps.push_back(Op);
2075 else if (i < Index)
2076 BeforeOps.push_back(Op);
2077 else if (i > Index)
2078 AfterOps.push_back(Op);
2079 }
2080
2081 // Emit the load instruction.
2082 if (UnfoldLoad) {
2083 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2084 if (UnfoldStore) {
2085 // Address operands cannot be marked isKill.
2086 for (unsigned i = 1; i != 5; ++i) {
2087 MachineOperand &MO = NewMIs[0]->getOperand(i);
2088 if (MO.isRegister())
2089 MO.setIsKill(false);
2090 }
2091 }
2092 }
2093
2094 // Emit the data processing instruction.
2095 MachineInstr *DataMI = new MachineInstr(TID, true);
2096 MachineInstrBuilder MIB(DataMI);
2097
2098 if (FoldedStore)
2099 MIB.addReg(Reg, true);
2100 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2101 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2102 if (FoldedLoad)
2103 MIB.addReg(Reg);
2104 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2105 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2106 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2107 MachineOperand &MO = ImpOps[i];
2108 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2109 }
2110 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2111 unsigned NewOpc = 0;
2112 switch (DataMI->getOpcode()) {
2113 default: break;
2114 case X86::CMP64ri32:
2115 case X86::CMP32ri:
2116 case X86::CMP16ri:
2117 case X86::CMP8ri: {
2118 MachineOperand &MO0 = DataMI->getOperand(0);
2119 MachineOperand &MO1 = DataMI->getOperand(1);
2120 if (MO1.getImm() == 0) {
2121 switch (DataMI->getOpcode()) {
2122 default: break;
2123 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2124 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2125 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2126 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2127 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002128 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002129 MO1.ChangeToRegister(MO0.getReg(), false);
2130 }
2131 }
2132 }
2133 NewMIs.push_back(DataMI);
2134
2135 // Emit the store instruction.
2136 if (UnfoldStore) {
2137 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002138 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002139 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2140 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2141 }
2142
2143 return true;
2144}
2145
2146bool
2147X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2148 SmallVectorImpl<SDNode*> &NewNodes) const {
2149 if (!N->isTargetOpcode())
2150 return false;
2151
2152 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2153 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2154 if (I == MemOp2RegOpTable.end())
2155 return false;
2156 unsigned Opc = I->second.first;
2157 unsigned Index = I->second.second & 0xf;
2158 bool FoldedLoad = I->second.second & (1 << 4);
2159 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002160 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002161 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002162 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002163 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2164 std::vector<SDOperand> AddrOps;
2165 std::vector<SDOperand> BeforeOps;
2166 std::vector<SDOperand> AfterOps;
2167 unsigned NumOps = N->getNumOperands();
2168 for (unsigned i = 0; i != NumOps-1; ++i) {
2169 SDOperand Op = N->getOperand(i);
2170 if (i >= Index && i < Index+4)
2171 AddrOps.push_back(Op);
2172 else if (i < Index)
2173 BeforeOps.push_back(Op);
2174 else if (i > Index)
2175 AfterOps.push_back(Op);
2176 }
2177 SDOperand Chain = N->getOperand(NumOps-1);
2178 AddrOps.push_back(Chain);
2179
2180 // Emit the load instruction.
2181 SDNode *Load = 0;
2182 if (FoldedLoad) {
2183 MVT::ValueType VT = *RC->vt_begin();
2184 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2185 MVT::Other, &AddrOps[0], AddrOps.size());
2186 NewNodes.push_back(Load);
2187 }
2188
2189 // Emit the data processing instruction.
2190 std::vector<MVT::ValueType> VTs;
2191 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002192 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002193 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002194 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002195 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2196 VTs.push_back(*DstRC->vt_begin());
2197 }
2198 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2199 MVT::ValueType VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002200 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002201 VTs.push_back(VT);
2202 }
2203 if (Load)
2204 BeforeOps.push_back(SDOperand(Load, 0));
2205 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2206 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2207 NewNodes.push_back(NewNode);
2208
2209 // Emit the store instruction.
2210 if (FoldedStore) {
2211 AddrOps.pop_back();
2212 AddrOps.push_back(SDOperand(NewNode, 0));
2213 AddrOps.push_back(Chain);
2214 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2215 MVT::Other, &AddrOps[0], AddrOps.size());
2216 NewNodes.push_back(Store);
2217 }
2218
2219 return true;
2220}
2221
2222unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2223 bool UnfoldLoad, bool UnfoldStore) const {
2224 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2225 MemOp2RegOpTable.find((unsigned*)Opc);
2226 if (I == MemOp2RegOpTable.end())
2227 return 0;
2228 bool FoldedLoad = I->second.second & (1 << 4);
2229 bool FoldedStore = I->second.second & (1 << 5);
2230 if (UnfoldLoad && !FoldedLoad)
2231 return 0;
2232 if (UnfoldStore && !FoldedStore)
2233 return 0;
2234 return I->second.first;
2235}
2236
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002237bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2238 if (MBB.empty()) return false;
2239
2240 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002241 case X86::TCRETURNri:
2242 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002243 case X86::RET: // Return.
2244 case X86::RETI:
2245 case X86::TAILJMPd:
2246 case X86::TAILJMPr:
2247 case X86::TAILJMPm:
2248 case X86::JMP: // Uncond branch.
2249 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002250 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002251 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002252 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002253 return true;
2254 default: return false;
2255 }
2256}
2257
2258bool X86InstrInfo::
2259ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
2260 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2261 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2262 return false;
2263}
2264
2265const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2266 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2267 if (Subtarget->is64Bit())
2268 return &X86::GR64RegClass;
2269 else
2270 return &X86::GR32RegClass;
2271}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002272
2273unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2274 switch (Desc->TSFlags & X86II::ImmMask) {
2275 case X86II::Imm8: return 1;
2276 case X86II::Imm16: return 2;
2277 case X86II::Imm32: return 4;
2278 case X86II::Imm64: return 8;
2279 default: assert(0 && "Immediate size not set!");
2280 return 0;
2281 }
2282}
2283
2284/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2285/// e.g. r8, xmm8, etc.
2286bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2287 if (!MO.isRegister()) return false;
2288 switch (MO.getReg()) {
2289 default: break;
2290 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2291 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2292 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2293 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2294 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2295 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2296 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2297 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2298 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2299 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2300 return true;
2301 }
2302 return false;
2303}
2304
2305
2306/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2307/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2308/// size, and 3) use of X86-64 extended registers.
2309unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2310 unsigned REX = 0;
2311 const TargetInstrDesc &Desc = MI.getDesc();
2312
2313 // Pseudo instructions do not need REX prefix byte.
2314 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2315 return 0;
2316 if (Desc.TSFlags & X86II::REX_W)
2317 REX |= 1 << 3;
2318
2319 unsigned NumOps = Desc.getNumOperands();
2320 if (NumOps) {
2321 bool isTwoAddr = NumOps > 1 &&
2322 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2323
2324 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2325 unsigned i = isTwoAddr ? 1 : 0;
2326 for (unsigned e = NumOps; i != e; ++i) {
2327 const MachineOperand& MO = MI.getOperand(i);
2328 if (MO.isRegister()) {
2329 unsigned Reg = MO.getReg();
2330 if (isX86_64NonExtLowByteReg(Reg))
2331 REX |= 0x40;
2332 }
2333 }
2334
2335 switch (Desc.TSFlags & X86II::FormMask) {
2336 case X86II::MRMInitReg:
2337 if (isX86_64ExtendedReg(MI.getOperand(0)))
2338 REX |= (1 << 0) | (1 << 2);
2339 break;
2340 case X86II::MRMSrcReg: {
2341 if (isX86_64ExtendedReg(MI.getOperand(0)))
2342 REX |= 1 << 2;
2343 i = isTwoAddr ? 2 : 1;
2344 for (unsigned e = NumOps; i != e; ++i) {
2345 const MachineOperand& MO = MI.getOperand(i);
2346 if (isX86_64ExtendedReg(MO))
2347 REX |= 1 << 0;
2348 }
2349 break;
2350 }
2351 case X86II::MRMSrcMem: {
2352 if (isX86_64ExtendedReg(MI.getOperand(0)))
2353 REX |= 1 << 2;
2354 unsigned Bit = 0;
2355 i = isTwoAddr ? 2 : 1;
2356 for (; i != NumOps; ++i) {
2357 const MachineOperand& MO = MI.getOperand(i);
2358 if (MO.isRegister()) {
2359 if (isX86_64ExtendedReg(MO))
2360 REX |= 1 << Bit;
2361 Bit++;
2362 }
2363 }
2364 break;
2365 }
2366 case X86II::MRM0m: case X86II::MRM1m:
2367 case X86II::MRM2m: case X86II::MRM3m:
2368 case X86II::MRM4m: case X86II::MRM5m:
2369 case X86II::MRM6m: case X86II::MRM7m:
2370 case X86II::MRMDestMem: {
2371 unsigned e = isTwoAddr ? 5 : 4;
2372 i = isTwoAddr ? 1 : 0;
2373 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2374 REX |= 1 << 2;
2375 unsigned Bit = 0;
2376 for (; i != e; ++i) {
2377 const MachineOperand& MO = MI.getOperand(i);
2378 if (MO.isRegister()) {
2379 if (isX86_64ExtendedReg(MO))
2380 REX |= 1 << Bit;
2381 Bit++;
2382 }
2383 }
2384 break;
2385 }
2386 default: {
2387 if (isX86_64ExtendedReg(MI.getOperand(0)))
2388 REX |= 1 << 0;
2389 i = isTwoAddr ? 2 : 1;
2390 for (unsigned e = NumOps; i != e; ++i) {
2391 const MachineOperand& MO = MI.getOperand(i);
2392 if (isX86_64ExtendedReg(MO))
2393 REX |= 1 << 2;
2394 }
2395 break;
2396 }
2397 }
2398 }
2399 return REX;
2400}
2401
2402/// sizePCRelativeBlockAddress - This method returns the size of a PC
2403/// relative block address instruction
2404///
2405static unsigned sizePCRelativeBlockAddress() {
2406 return 4;
2407}
2408
2409/// sizeGlobalAddress - Give the size of the emission of this global address
2410///
2411static unsigned sizeGlobalAddress(bool dword) {
2412 return dword ? 8 : 4;
2413}
2414
2415/// sizeConstPoolAddress - Give the size of the emission of this constant
2416/// pool address
2417///
2418static unsigned sizeConstPoolAddress(bool dword) {
2419 return dword ? 8 : 4;
2420}
2421
2422/// sizeExternalSymbolAddress - Give the size of the emission of this external
2423/// symbol
2424///
2425static unsigned sizeExternalSymbolAddress(bool dword) {
2426 return dword ? 8 : 4;
2427}
2428
2429/// sizeJumpTableAddress - Give the size of the emission of this jump
2430/// table address
2431///
2432static unsigned sizeJumpTableAddress(bool dword) {
2433 return dword ? 8 : 4;
2434}
2435
2436static unsigned sizeConstant(unsigned Size) {
2437 return Size;
2438}
2439
2440static unsigned sizeRegModRMByte(){
2441 return 1;
2442}
2443
2444static unsigned sizeSIBByte(){
2445 return 1;
2446}
2447
2448static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2449 unsigned FinalSize = 0;
2450 // If this is a simple integer displacement that doesn't require a relocation.
2451 if (!RelocOp) {
2452 FinalSize += sizeConstant(4);
2453 return FinalSize;
2454 }
2455
2456 // Otherwise, this is something that requires a relocation.
2457 if (RelocOp->isGlobalAddress()) {
2458 FinalSize += sizeGlobalAddress(false);
2459 } else if (RelocOp->isConstantPoolIndex()) {
2460 FinalSize += sizeConstPoolAddress(false);
2461 } else if (RelocOp->isJumpTableIndex()) {
2462 FinalSize += sizeJumpTableAddress(false);
2463 } else {
2464 assert(0 && "Unknown value to relocate!");
2465 }
2466 return FinalSize;
2467}
2468
2469static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2470 bool IsPIC, bool Is64BitMode) {
2471 const MachineOperand &Op3 = MI.getOperand(Op+3);
2472 int DispVal = 0;
2473 const MachineOperand *DispForReloc = 0;
2474 unsigned FinalSize = 0;
2475
2476 // Figure out what sort of displacement we have to handle here.
2477 if (Op3.isGlobalAddress()) {
2478 DispForReloc = &Op3;
2479 } else if (Op3.isConstantPoolIndex()) {
2480 if (Is64BitMode || IsPIC) {
2481 DispForReloc = &Op3;
2482 } else {
2483 DispVal = 1;
2484 }
2485 } else if (Op3.isJumpTableIndex()) {
2486 if (Is64BitMode || IsPIC) {
2487 DispForReloc = &Op3;
2488 } else {
2489 DispVal = 1;
2490 }
2491 } else {
2492 DispVal = 1;
2493 }
2494
2495 const MachineOperand &Base = MI.getOperand(Op);
2496 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2497
2498 unsigned BaseReg = Base.getReg();
2499
2500 // Is a SIB byte needed?
2501 if (IndexReg.getReg() == 0 &&
2502 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2503 if (BaseReg == 0) { // Just a displacement?
2504 // Emit special case [disp32] encoding
2505 ++FinalSize;
2506 FinalSize += getDisplacementFieldSize(DispForReloc);
2507 } else {
2508 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2509 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2510 // Emit simple indirect register encoding... [EAX] f.e.
2511 ++FinalSize;
2512 // Be pessimistic and assume it's a disp32, not a disp8
2513 } else {
2514 // Emit the most general non-SIB encoding: [REG+disp32]
2515 ++FinalSize;
2516 FinalSize += getDisplacementFieldSize(DispForReloc);
2517 }
2518 }
2519
2520 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2521 assert(IndexReg.getReg() != X86::ESP &&
2522 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2523
2524 bool ForceDisp32 = false;
2525 if (BaseReg == 0 || DispForReloc) {
2526 // Emit the normal disp32 encoding.
2527 ++FinalSize;
2528 ForceDisp32 = true;
2529 } else {
2530 ++FinalSize;
2531 }
2532
2533 FinalSize += sizeSIBByte();
2534
2535 // Do we need to output a displacement?
2536 if (DispVal != 0 || ForceDisp32) {
2537 FinalSize += getDisplacementFieldSize(DispForReloc);
2538 }
2539 }
2540 return FinalSize;
2541}
2542
2543
2544static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2545 const TargetInstrDesc *Desc,
2546 bool IsPIC, bool Is64BitMode) {
2547
2548 unsigned Opcode = Desc->Opcode;
2549 unsigned FinalSize = 0;
2550
2551 // Emit the lock opcode prefix as needed.
2552 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2553
2554 // Emit the repeat opcode prefix as needed.
2555 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2556
2557 // Emit the operand size opcode prefix as needed.
2558 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2559
2560 // Emit the address size opcode prefix as needed.
2561 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2562
2563 bool Need0FPrefix = false;
2564 switch (Desc->TSFlags & X86II::Op0Mask) {
2565 case X86II::TB: // Two-byte opcode prefix
2566 case X86II::T8: // 0F 38
2567 case X86II::TA: // 0F 3A
2568 Need0FPrefix = true;
2569 break;
2570 case X86II::REP: break; // already handled.
2571 case X86II::XS: // F3 0F
2572 ++FinalSize;
2573 Need0FPrefix = true;
2574 break;
2575 case X86II::XD: // F2 0F
2576 ++FinalSize;
2577 Need0FPrefix = true;
2578 break;
2579 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2580 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2581 ++FinalSize;
2582 break; // Two-byte opcode prefix
2583 default: assert(0 && "Invalid prefix!");
2584 case 0: break; // No prefix!
2585 }
2586
2587 if (Is64BitMode) {
2588 // REX prefix
2589 unsigned REX = X86InstrInfo::determineREX(MI);
2590 if (REX)
2591 ++FinalSize;
2592 }
2593
2594 // 0x0F escape code must be emitted just before the opcode.
2595 if (Need0FPrefix)
2596 ++FinalSize;
2597
2598 switch (Desc->TSFlags & X86II::Op0Mask) {
2599 case X86II::T8: // 0F 38
2600 ++FinalSize;
2601 break;
2602 case X86II::TA: // 0F 3A
2603 ++FinalSize;
2604 break;
2605 }
2606
2607 // If this is a two-address instruction, skip one of the register operands.
2608 unsigned NumOps = Desc->getNumOperands();
2609 unsigned CurOp = 0;
2610 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2611 CurOp++;
2612
2613 switch (Desc->TSFlags & X86II::FormMask) {
2614 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2615 case X86II::Pseudo:
2616 // Remember the current PC offset, this is the PIC relocation
2617 // base address.
2618 switch (Opcode) {
2619 default:
2620 break;
2621 case TargetInstrInfo::INLINEASM: {
2622 const MachineFunction *MF = MI.getParent()->getParent();
2623 const char *AsmStr = MI.getOperand(0).getSymbolName();
2624 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2625 FinalSize += AI->getInlineAsmLength(AsmStr);
2626 break;
2627 }
2628 case TargetInstrInfo::LABEL:
2629 break;
2630 case TargetInstrInfo::IMPLICIT_DEF:
2631 case TargetInstrInfo::DECLARE:
2632 case X86::DWARF_LOC:
2633 case X86::FP_REG_KILL:
2634 break;
2635 case X86::MOVPC32r: {
2636 // This emits the "call" portion of this pseudo instruction.
2637 ++FinalSize;
2638 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2639 break;
2640 }
2641 }
2642 CurOp = NumOps;
2643 break;
2644 case X86II::RawFrm:
2645 ++FinalSize;
2646
2647 if (CurOp != NumOps) {
2648 const MachineOperand &MO = MI.getOperand(CurOp++);
2649 if (MO.isMachineBasicBlock()) {
2650 FinalSize += sizePCRelativeBlockAddress();
2651 } else if (MO.isGlobalAddress()) {
2652 FinalSize += sizeGlobalAddress(false);
2653 } else if (MO.isExternalSymbol()) {
2654 FinalSize += sizeExternalSymbolAddress(false);
2655 } else if (MO.isImmediate()) {
2656 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2657 } else {
2658 assert(0 && "Unknown RawFrm operand!");
2659 }
2660 }
2661 break;
2662
2663 case X86II::AddRegFrm:
2664 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002665 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002666
2667 if (CurOp != NumOps) {
2668 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2669 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2670 if (MO1.isImmediate())
2671 FinalSize += sizeConstant(Size);
2672 else {
2673 bool dword = false;
2674 if (Opcode == X86::MOV64ri)
2675 dword = true;
2676 if (MO1.isGlobalAddress()) {
2677 FinalSize += sizeGlobalAddress(dword);
2678 } else if (MO1.isExternalSymbol())
2679 FinalSize += sizeExternalSymbolAddress(dword);
2680 else if (MO1.isConstantPoolIndex())
2681 FinalSize += sizeConstPoolAddress(dword);
2682 else if (MO1.isJumpTableIndex())
2683 FinalSize += sizeJumpTableAddress(dword);
2684 }
2685 }
2686 break;
2687
2688 case X86II::MRMDestReg: {
2689 ++FinalSize;
2690 FinalSize += sizeRegModRMByte();
2691 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002692 if (CurOp != NumOps) {
2693 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002694 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002695 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002696 break;
2697 }
2698 case X86II::MRMDestMem: {
2699 ++FinalSize;
2700 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2701 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002702 if (CurOp != NumOps) {
2703 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002704 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002705 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002706 break;
2707 }
2708
2709 case X86II::MRMSrcReg:
2710 ++FinalSize;
2711 FinalSize += sizeRegModRMByte();
2712 CurOp += 2;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002713 if (CurOp != NumOps) {
2714 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002715 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002716 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002717 break;
2718
2719 case X86II::MRMSrcMem: {
2720
2721 ++FinalSize;
2722 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2723 CurOp += 5;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002724 if (CurOp != NumOps) {
2725 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002726 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002727 }
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002728 break;
2729 }
2730
2731 case X86II::MRM0r: case X86II::MRM1r:
2732 case X86II::MRM2r: case X86II::MRM3r:
2733 case X86II::MRM4r: case X86II::MRM5r:
2734 case X86II::MRM6r: case X86II::MRM7r:
2735 ++FinalSize;
Nicolas Geoffrayf22f1cd2008-04-20 23:36:47 +00002736 ++CurOp;
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002737 FinalSize += sizeRegModRMByte();
2738
2739 if (CurOp != NumOps) {
2740 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2741 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2742 if (MO1.isImmediate())
2743 FinalSize += sizeConstant(Size);
2744 else {
2745 bool dword = false;
2746 if (Opcode == X86::MOV64ri32)
2747 dword = true;
2748 if (MO1.isGlobalAddress()) {
2749 FinalSize += sizeGlobalAddress(dword);
2750 } else if (MO1.isExternalSymbol())
2751 FinalSize += sizeExternalSymbolAddress(dword);
2752 else if (MO1.isConstantPoolIndex())
2753 FinalSize += sizeConstPoolAddress(dword);
2754 else if (MO1.isJumpTableIndex())
2755 FinalSize += sizeJumpTableAddress(dword);
2756 }
2757 }
2758 break;
2759
2760 case X86II::MRM0m: case X86II::MRM1m:
2761 case X86II::MRM2m: case X86II::MRM3m:
2762 case X86II::MRM4m: case X86II::MRM5m:
2763 case X86II::MRM6m: case X86II::MRM7m: {
2764
2765 ++FinalSize;
2766 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2767 CurOp += 4;
2768
2769 if (CurOp != NumOps) {
2770 const MachineOperand &MO = MI.getOperand(CurOp++);
2771 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2772 if (MO.isImmediate())
2773 FinalSize += sizeConstant(Size);
2774 else {
2775 bool dword = false;
2776 if (Opcode == X86::MOV64mi32)
2777 dword = true;
2778 if (MO.isGlobalAddress()) {
2779 FinalSize += sizeGlobalAddress(dword);
2780 } else if (MO.isExternalSymbol())
2781 FinalSize += sizeExternalSymbolAddress(dword);
2782 else if (MO.isConstantPoolIndex())
2783 FinalSize += sizeConstPoolAddress(dword);
2784 else if (MO.isJumpTableIndex())
2785 FinalSize += sizeJumpTableAddress(dword);
2786 }
2787 }
2788 break;
2789 }
2790
2791 case X86II::MRMInitReg:
2792 ++FinalSize;
2793 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2794 FinalSize += sizeRegModRMByte();
2795 ++CurOp;
2796 break;
2797 }
2798
2799 if (!Desc->isVariadic() && CurOp != NumOps) {
2800 cerr << "Cannot determine size: ";
2801 MI.dump();
2802 cerr << '\n';
2803 abort();
2804 }
2805
2806
2807 return FinalSize;
2808}
2809
2810
2811unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2812 const TargetInstrDesc &Desc = MI->getDesc();
2813 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
2814 bool Is64BitMode = ((X86Subtarget*)TM.getSubtargetImpl())->is64Bit();
2815 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2816 if (Desc.getOpcode() == X86::MOVPC32r) {
2817 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2818 }
2819 return Size;
2820}