blob: dcba66fcd0da942ed4d27baa9f70df71c93f701a [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the X86 implementation of the TargetInstrInfo class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86InstrInfo.h"
15#include "X86.h"
16#include "X86GenInstrInfo.inc"
17#include "X86InstrBuilder.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000018#include "X86MachineFunctionInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000019#include "X86Subtarget.h"
20#include "X86TargetMachine.h"
Owen Anderson1636de92007-09-07 04:06:50 +000021#include "llvm/ADT/STLExtras.h"
Owen Anderson6690c7f2008-01-04 23:57:37 +000022#include "llvm/CodeGen/MachineFrameInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000023#include "llvm/CodeGen/MachineInstrBuilder.h"
Chris Lattner1b989192007-12-31 04:13:23 +000024#include "llvm/CodeGen/MachineRegisterInfo.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include "llvm/CodeGen/LiveVariables.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000026#include "llvm/Support/CommandLine.h"
Evan Cheng950aac02007-09-25 01:57:46 +000027#include "llvm/Target/TargetOptions.h"
Nicolas Geoffraycb162a02008-04-16 20:10:13 +000028#include "llvm/Target/TargetAsmInfo.h"
Owen Anderson9a184ef2008-01-07 01:35:02 +000029
Dan Gohmanf17a25c2007-07-18 16:29:46 +000030using namespace llvm;
31
Owen Anderson9a184ef2008-01-07 01:35:02 +000032namespace {
33 cl::opt<bool>
34 NoFusing("disable-spill-fusing",
35 cl::desc("Disable fusing of spill code into instructions"));
36 cl::opt<bool>
37 PrintFailedFusing("print-failed-fuse-candidates",
38 cl::desc("Print instructions that the allocator wants to"
39 " fuse, but the X86 backend currently can't"),
40 cl::Hidden);
Evan Chengc87df652008-04-01 23:26:12 +000041 cl::opt<bool>
42 ReMatPICStubLoad("remat-pic-stub-load",
43 cl::desc("Re-materialize load from stub in PIC mode"),
44 cl::init(false), cl::Hidden);
Owen Anderson9a184ef2008-01-07 01:35:02 +000045}
46
Dan Gohmanf17a25c2007-07-18 16:29:46 +000047X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
Chris Lattnerd2fd6db2008-01-01 01:03:04 +000048 : TargetInstrInfoImpl(X86Insts, array_lengthof(X86Insts)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +000049 TM(tm), RI(tm, *this) {
Owen Anderson9a184ef2008-01-07 01:35:02 +000050 SmallVector<unsigned,16> AmbEntries;
51 static const unsigned OpTbl2Addr[][2] = {
52 { X86::ADC32ri, X86::ADC32mi },
53 { X86::ADC32ri8, X86::ADC32mi8 },
54 { X86::ADC32rr, X86::ADC32mr },
55 { X86::ADC64ri32, X86::ADC64mi32 },
56 { X86::ADC64ri8, X86::ADC64mi8 },
57 { X86::ADC64rr, X86::ADC64mr },
58 { X86::ADD16ri, X86::ADD16mi },
59 { X86::ADD16ri8, X86::ADD16mi8 },
60 { X86::ADD16rr, X86::ADD16mr },
61 { X86::ADD32ri, X86::ADD32mi },
62 { X86::ADD32ri8, X86::ADD32mi8 },
63 { X86::ADD32rr, X86::ADD32mr },
64 { X86::ADD64ri32, X86::ADD64mi32 },
65 { X86::ADD64ri8, X86::ADD64mi8 },
66 { X86::ADD64rr, X86::ADD64mr },
67 { X86::ADD8ri, X86::ADD8mi },
68 { X86::ADD8rr, X86::ADD8mr },
69 { X86::AND16ri, X86::AND16mi },
70 { X86::AND16ri8, X86::AND16mi8 },
71 { X86::AND16rr, X86::AND16mr },
72 { X86::AND32ri, X86::AND32mi },
73 { X86::AND32ri8, X86::AND32mi8 },
74 { X86::AND32rr, X86::AND32mr },
75 { X86::AND64ri32, X86::AND64mi32 },
76 { X86::AND64ri8, X86::AND64mi8 },
77 { X86::AND64rr, X86::AND64mr },
78 { X86::AND8ri, X86::AND8mi },
79 { X86::AND8rr, X86::AND8mr },
80 { X86::DEC16r, X86::DEC16m },
81 { X86::DEC32r, X86::DEC32m },
82 { X86::DEC64_16r, X86::DEC64_16m },
83 { X86::DEC64_32r, X86::DEC64_32m },
84 { X86::DEC64r, X86::DEC64m },
85 { X86::DEC8r, X86::DEC8m },
86 { X86::INC16r, X86::INC16m },
87 { X86::INC32r, X86::INC32m },
88 { X86::INC64_16r, X86::INC64_16m },
89 { X86::INC64_32r, X86::INC64_32m },
90 { X86::INC64r, X86::INC64m },
91 { X86::INC8r, X86::INC8m },
92 { X86::NEG16r, X86::NEG16m },
93 { X86::NEG32r, X86::NEG32m },
94 { X86::NEG64r, X86::NEG64m },
95 { X86::NEG8r, X86::NEG8m },
96 { X86::NOT16r, X86::NOT16m },
97 { X86::NOT32r, X86::NOT32m },
98 { X86::NOT64r, X86::NOT64m },
99 { X86::NOT8r, X86::NOT8m },
100 { X86::OR16ri, X86::OR16mi },
101 { X86::OR16ri8, X86::OR16mi8 },
102 { X86::OR16rr, X86::OR16mr },
103 { X86::OR32ri, X86::OR32mi },
104 { X86::OR32ri8, X86::OR32mi8 },
105 { X86::OR32rr, X86::OR32mr },
106 { X86::OR64ri32, X86::OR64mi32 },
107 { X86::OR64ri8, X86::OR64mi8 },
108 { X86::OR64rr, X86::OR64mr },
109 { X86::OR8ri, X86::OR8mi },
110 { X86::OR8rr, X86::OR8mr },
111 { X86::ROL16r1, X86::ROL16m1 },
112 { X86::ROL16rCL, X86::ROL16mCL },
113 { X86::ROL16ri, X86::ROL16mi },
114 { X86::ROL32r1, X86::ROL32m1 },
115 { X86::ROL32rCL, X86::ROL32mCL },
116 { X86::ROL32ri, X86::ROL32mi },
117 { X86::ROL64r1, X86::ROL64m1 },
118 { X86::ROL64rCL, X86::ROL64mCL },
119 { X86::ROL64ri, X86::ROL64mi },
120 { X86::ROL8r1, X86::ROL8m1 },
121 { X86::ROL8rCL, X86::ROL8mCL },
122 { X86::ROL8ri, X86::ROL8mi },
123 { X86::ROR16r1, X86::ROR16m1 },
124 { X86::ROR16rCL, X86::ROR16mCL },
125 { X86::ROR16ri, X86::ROR16mi },
126 { X86::ROR32r1, X86::ROR32m1 },
127 { X86::ROR32rCL, X86::ROR32mCL },
128 { X86::ROR32ri, X86::ROR32mi },
129 { X86::ROR64r1, X86::ROR64m1 },
130 { X86::ROR64rCL, X86::ROR64mCL },
131 { X86::ROR64ri, X86::ROR64mi },
132 { X86::ROR8r1, X86::ROR8m1 },
133 { X86::ROR8rCL, X86::ROR8mCL },
134 { X86::ROR8ri, X86::ROR8mi },
135 { X86::SAR16r1, X86::SAR16m1 },
136 { X86::SAR16rCL, X86::SAR16mCL },
137 { X86::SAR16ri, X86::SAR16mi },
138 { X86::SAR32r1, X86::SAR32m1 },
139 { X86::SAR32rCL, X86::SAR32mCL },
140 { X86::SAR32ri, X86::SAR32mi },
141 { X86::SAR64r1, X86::SAR64m1 },
142 { X86::SAR64rCL, X86::SAR64mCL },
143 { X86::SAR64ri, X86::SAR64mi },
144 { X86::SAR8r1, X86::SAR8m1 },
145 { X86::SAR8rCL, X86::SAR8mCL },
146 { X86::SAR8ri, X86::SAR8mi },
147 { X86::SBB32ri, X86::SBB32mi },
148 { X86::SBB32ri8, X86::SBB32mi8 },
149 { X86::SBB32rr, X86::SBB32mr },
150 { X86::SBB64ri32, X86::SBB64mi32 },
151 { X86::SBB64ri8, X86::SBB64mi8 },
152 { X86::SBB64rr, X86::SBB64mr },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000153 { X86::SHL16rCL, X86::SHL16mCL },
154 { X86::SHL16ri, X86::SHL16mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000155 { X86::SHL32rCL, X86::SHL32mCL },
156 { X86::SHL32ri, X86::SHL32mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000157 { X86::SHL64rCL, X86::SHL64mCL },
158 { X86::SHL64ri, X86::SHL64mi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000159 { X86::SHL8rCL, X86::SHL8mCL },
160 { X86::SHL8ri, X86::SHL8mi },
161 { X86::SHLD16rrCL, X86::SHLD16mrCL },
162 { X86::SHLD16rri8, X86::SHLD16mri8 },
163 { X86::SHLD32rrCL, X86::SHLD32mrCL },
164 { X86::SHLD32rri8, X86::SHLD32mri8 },
165 { X86::SHLD64rrCL, X86::SHLD64mrCL },
166 { X86::SHLD64rri8, X86::SHLD64mri8 },
167 { X86::SHR16r1, X86::SHR16m1 },
168 { X86::SHR16rCL, X86::SHR16mCL },
169 { X86::SHR16ri, X86::SHR16mi },
170 { X86::SHR32r1, X86::SHR32m1 },
171 { X86::SHR32rCL, X86::SHR32mCL },
172 { X86::SHR32ri, X86::SHR32mi },
173 { X86::SHR64r1, X86::SHR64m1 },
174 { X86::SHR64rCL, X86::SHR64mCL },
175 { X86::SHR64ri, X86::SHR64mi },
176 { X86::SHR8r1, X86::SHR8m1 },
177 { X86::SHR8rCL, X86::SHR8mCL },
178 { X86::SHR8ri, X86::SHR8mi },
179 { X86::SHRD16rrCL, X86::SHRD16mrCL },
180 { X86::SHRD16rri8, X86::SHRD16mri8 },
181 { X86::SHRD32rrCL, X86::SHRD32mrCL },
182 { X86::SHRD32rri8, X86::SHRD32mri8 },
183 { X86::SHRD64rrCL, X86::SHRD64mrCL },
184 { X86::SHRD64rri8, X86::SHRD64mri8 },
185 { X86::SUB16ri, X86::SUB16mi },
186 { X86::SUB16ri8, X86::SUB16mi8 },
187 { X86::SUB16rr, X86::SUB16mr },
188 { X86::SUB32ri, X86::SUB32mi },
189 { X86::SUB32ri8, X86::SUB32mi8 },
190 { X86::SUB32rr, X86::SUB32mr },
191 { X86::SUB64ri32, X86::SUB64mi32 },
192 { X86::SUB64ri8, X86::SUB64mi8 },
193 { X86::SUB64rr, X86::SUB64mr },
194 { X86::SUB8ri, X86::SUB8mi },
195 { X86::SUB8rr, X86::SUB8mr },
196 { X86::XOR16ri, X86::XOR16mi },
197 { X86::XOR16ri8, X86::XOR16mi8 },
198 { X86::XOR16rr, X86::XOR16mr },
199 { X86::XOR32ri, X86::XOR32mi },
200 { X86::XOR32ri8, X86::XOR32mi8 },
201 { X86::XOR32rr, X86::XOR32mr },
202 { X86::XOR64ri32, X86::XOR64mi32 },
203 { X86::XOR64ri8, X86::XOR64mi8 },
204 { X86::XOR64rr, X86::XOR64mr },
205 { X86::XOR8ri, X86::XOR8mi },
206 { X86::XOR8rr, X86::XOR8mr }
207 };
208
209 for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
210 unsigned RegOp = OpTbl2Addr[i][0];
211 unsigned MemOp = OpTbl2Addr[i][1];
212 if (!RegOp2MemOpTable2Addr.insert(std::make_pair((unsigned*)RegOp, MemOp)))
213 assert(false && "Duplicated entries?");
214 unsigned AuxInfo = 0 | (1 << 4) | (1 << 5); // Index 0,folded load and store
215 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
216 std::make_pair(RegOp, AuxInfo))))
217 AmbEntries.push_back(MemOp);
218 }
219
220 // If the third value is 1, then it's folding either a load or a store.
221 static const unsigned OpTbl0[][3] = {
222 { X86::CALL32r, X86::CALL32m, 1 },
223 { X86::CALL64r, X86::CALL64m, 1 },
224 { X86::CMP16ri, X86::CMP16mi, 1 },
225 { X86::CMP16ri8, X86::CMP16mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000226 { X86::CMP16rr, X86::CMP16mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000227 { X86::CMP32ri, X86::CMP32mi, 1 },
228 { X86::CMP32ri8, X86::CMP32mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000229 { X86::CMP32rr, X86::CMP32mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000230 { X86::CMP64ri32, X86::CMP64mi32, 1 },
231 { X86::CMP64ri8, X86::CMP64mi8, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000232 { X86::CMP64rr, X86::CMP64mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000233 { X86::CMP8ri, X86::CMP8mi, 1 },
Dan Gohmanf235d8a2008-03-25 16:53:19 +0000234 { X86::CMP8rr, X86::CMP8mr, 1 },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000235 { X86::DIV16r, X86::DIV16m, 1 },
236 { X86::DIV32r, X86::DIV32m, 1 },
237 { X86::DIV64r, X86::DIV64m, 1 },
238 { X86::DIV8r, X86::DIV8m, 1 },
239 { X86::FsMOVAPDrr, X86::MOVSDmr, 0 },
240 { X86::FsMOVAPSrr, X86::MOVSSmr, 0 },
241 { X86::IDIV16r, X86::IDIV16m, 1 },
242 { X86::IDIV32r, X86::IDIV32m, 1 },
243 { X86::IDIV64r, X86::IDIV64m, 1 },
244 { X86::IDIV8r, X86::IDIV8m, 1 },
245 { X86::IMUL16r, X86::IMUL16m, 1 },
246 { X86::IMUL32r, X86::IMUL32m, 1 },
247 { X86::IMUL64r, X86::IMUL64m, 1 },
248 { X86::IMUL8r, X86::IMUL8m, 1 },
249 { X86::JMP32r, X86::JMP32m, 1 },
250 { X86::JMP64r, X86::JMP64m, 1 },
251 { X86::MOV16ri, X86::MOV16mi, 0 },
252 { X86::MOV16rr, X86::MOV16mr, 0 },
253 { X86::MOV16to16_, X86::MOV16_mr, 0 },
254 { X86::MOV32ri, X86::MOV32mi, 0 },
255 { X86::MOV32rr, X86::MOV32mr, 0 },
256 { X86::MOV32to32_, X86::MOV32_mr, 0 },
257 { X86::MOV64ri32, X86::MOV64mi32, 0 },
258 { X86::MOV64rr, X86::MOV64mr, 0 },
259 { X86::MOV8ri, X86::MOV8mi, 0 },
260 { X86::MOV8rr, X86::MOV8mr, 0 },
261 { X86::MOVAPDrr, X86::MOVAPDmr, 0 },
262 { X86::MOVAPSrr, X86::MOVAPSmr, 0 },
263 { X86::MOVPDI2DIrr, X86::MOVPDI2DImr, 0 },
264 { X86::MOVPQIto64rr,X86::MOVPQI2QImr, 0 },
265 { X86::MOVPS2SSrr, X86::MOVPS2SSmr, 0 },
266 { X86::MOVSDrr, X86::MOVSDmr, 0 },
267 { X86::MOVSDto64rr, X86::MOVSDto64mr, 0 },
268 { X86::MOVSS2DIrr, X86::MOVSS2DImr, 0 },
269 { X86::MOVSSrr, X86::MOVSSmr, 0 },
270 { X86::MOVUPDrr, X86::MOVUPDmr, 0 },
271 { X86::MOVUPSrr, X86::MOVUPSmr, 0 },
272 { X86::MUL16r, X86::MUL16m, 1 },
273 { X86::MUL32r, X86::MUL32m, 1 },
274 { X86::MUL64r, X86::MUL64m, 1 },
275 { X86::MUL8r, X86::MUL8m, 1 },
276 { X86::SETAEr, X86::SETAEm, 0 },
277 { X86::SETAr, X86::SETAm, 0 },
278 { X86::SETBEr, X86::SETBEm, 0 },
279 { X86::SETBr, X86::SETBm, 0 },
280 { X86::SETEr, X86::SETEm, 0 },
281 { X86::SETGEr, X86::SETGEm, 0 },
282 { X86::SETGr, X86::SETGm, 0 },
283 { X86::SETLEr, X86::SETLEm, 0 },
284 { X86::SETLr, X86::SETLm, 0 },
285 { X86::SETNEr, X86::SETNEm, 0 },
286 { X86::SETNPr, X86::SETNPm, 0 },
287 { X86::SETNSr, X86::SETNSm, 0 },
288 { X86::SETPr, X86::SETPm, 0 },
289 { X86::SETSr, X86::SETSm, 0 },
290 { X86::TAILJMPr, X86::TAILJMPm, 1 },
291 { X86::TEST16ri, X86::TEST16mi, 1 },
292 { X86::TEST32ri, X86::TEST32mi, 1 },
293 { X86::TEST64ri32, X86::TEST64mi32, 1 },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000294 { X86::TEST8ri, X86::TEST8mi, 1 }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000295 };
296
297 for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
298 unsigned RegOp = OpTbl0[i][0];
299 unsigned MemOp = OpTbl0[i][1];
300 if (!RegOp2MemOpTable0.insert(std::make_pair((unsigned*)RegOp, MemOp)))
301 assert(false && "Duplicated entries?");
302 unsigned FoldedLoad = OpTbl0[i][2];
303 // Index 0, folded load or store.
304 unsigned AuxInfo = 0 | (FoldedLoad << 4) | ((FoldedLoad^1) << 5);
305 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
306 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
307 std::make_pair(RegOp, AuxInfo))))
308 AmbEntries.push_back(MemOp);
309 }
310
311 static const unsigned OpTbl1[][2] = {
312 { X86::CMP16rr, X86::CMP16rm },
313 { X86::CMP32rr, X86::CMP32rm },
314 { X86::CMP64rr, X86::CMP64rm },
315 { X86::CMP8rr, X86::CMP8rm },
316 { X86::CVTSD2SSrr, X86::CVTSD2SSrm },
317 { X86::CVTSI2SD64rr, X86::CVTSI2SD64rm },
318 { X86::CVTSI2SDrr, X86::CVTSI2SDrm },
319 { X86::CVTSI2SS64rr, X86::CVTSI2SS64rm },
320 { X86::CVTSI2SSrr, X86::CVTSI2SSrm },
321 { X86::CVTSS2SDrr, X86::CVTSS2SDrm },
322 { X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm },
323 { X86::CVTTSD2SIrr, X86::CVTTSD2SIrm },
324 { X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm },
325 { X86::CVTTSS2SIrr, X86::CVTTSS2SIrm },
326 { X86::FsMOVAPDrr, X86::MOVSDrm },
327 { X86::FsMOVAPSrr, X86::MOVSSrm },
328 { X86::IMUL16rri, X86::IMUL16rmi },
329 { X86::IMUL16rri8, X86::IMUL16rmi8 },
330 { X86::IMUL32rri, X86::IMUL32rmi },
331 { X86::IMUL32rri8, X86::IMUL32rmi8 },
332 { X86::IMUL64rri32, X86::IMUL64rmi32 },
333 { X86::IMUL64rri8, X86::IMUL64rmi8 },
334 { X86::Int_CMPSDrr, X86::Int_CMPSDrm },
335 { X86::Int_CMPSSrr, X86::Int_CMPSSrm },
336 { X86::Int_COMISDrr, X86::Int_COMISDrm },
337 { X86::Int_COMISSrr, X86::Int_COMISSrm },
338 { X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm },
339 { X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm },
340 { X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm },
341 { X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm },
342 { X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm },
343 { X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm },
344 { X86::Int_CVTSD2SI64rr,X86::Int_CVTSD2SI64rm },
345 { X86::Int_CVTSD2SIrr, X86::Int_CVTSD2SIrm },
346 { X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm },
347 { X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm },
348 { X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm },
349 { X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm },
350 { X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm },
351 { X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm },
352 { X86::Int_CVTSS2SI64rr,X86::Int_CVTSS2SI64rm },
353 { X86::Int_CVTSS2SIrr, X86::Int_CVTSS2SIrm },
354 { X86::Int_CVTTPD2DQrr, X86::Int_CVTTPD2DQrm },
355 { X86::Int_CVTTPS2DQrr, X86::Int_CVTTPS2DQrm },
356 { X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm },
357 { X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm },
358 { X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm },
359 { X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm },
360 { X86::Int_UCOMISDrr, X86::Int_UCOMISDrm },
361 { X86::Int_UCOMISSrr, X86::Int_UCOMISSrm },
362 { X86::MOV16rr, X86::MOV16rm },
363 { X86::MOV16to16_, X86::MOV16_rm },
364 { X86::MOV32rr, X86::MOV32rm },
365 { X86::MOV32to32_, X86::MOV32_rm },
366 { X86::MOV64rr, X86::MOV64rm },
367 { X86::MOV64toPQIrr, X86::MOVQI2PQIrm },
368 { X86::MOV64toSDrr, X86::MOV64toSDrm },
369 { X86::MOV8rr, X86::MOV8rm },
370 { X86::MOVAPDrr, X86::MOVAPDrm },
371 { X86::MOVAPSrr, X86::MOVAPSrm },
372 { X86::MOVDDUPrr, X86::MOVDDUPrm },
373 { X86::MOVDI2PDIrr, X86::MOVDI2PDIrm },
374 { X86::MOVDI2SSrr, X86::MOVDI2SSrm },
375 { X86::MOVSD2PDrr, X86::MOVSD2PDrm },
376 { X86::MOVSDrr, X86::MOVSDrm },
377 { X86::MOVSHDUPrr, X86::MOVSHDUPrm },
378 { X86::MOVSLDUPrr, X86::MOVSLDUPrm },
379 { X86::MOVSS2PSrr, X86::MOVSS2PSrm },
380 { X86::MOVSSrr, X86::MOVSSrm },
381 { X86::MOVSX16rr8, X86::MOVSX16rm8 },
382 { X86::MOVSX32rr16, X86::MOVSX32rm16 },
383 { X86::MOVSX32rr8, X86::MOVSX32rm8 },
384 { X86::MOVSX64rr16, X86::MOVSX64rm16 },
385 { X86::MOVSX64rr32, X86::MOVSX64rm32 },
386 { X86::MOVSX64rr8, X86::MOVSX64rm8 },
387 { X86::MOVUPDrr, X86::MOVUPDrm },
388 { X86::MOVUPSrr, X86::MOVUPSrm },
389 { X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm },
390 { X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm },
391 { X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm },
392 { X86::MOVZX16rr8, X86::MOVZX16rm8 },
393 { X86::MOVZX32rr16, X86::MOVZX32rm16 },
394 { X86::MOVZX32rr8, X86::MOVZX32rm8 },
395 { X86::MOVZX64rr16, X86::MOVZX64rm16 },
396 { X86::MOVZX64rr8, X86::MOVZX64rm8 },
397 { X86::PSHUFDri, X86::PSHUFDmi },
398 { X86::PSHUFHWri, X86::PSHUFHWmi },
399 { X86::PSHUFLWri, X86::PSHUFLWmi },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000400 { X86::RCPPSr, X86::RCPPSm },
401 { X86::RCPPSr_Int, X86::RCPPSm_Int },
402 { X86::RSQRTPSr, X86::RSQRTPSm },
403 { X86::RSQRTPSr_Int, X86::RSQRTPSm_Int },
404 { X86::RSQRTSSr, X86::RSQRTSSm },
405 { X86::RSQRTSSr_Int, X86::RSQRTSSm_Int },
406 { X86::SQRTPDr, X86::SQRTPDm },
407 { X86::SQRTPDr_Int, X86::SQRTPDm_Int },
408 { X86::SQRTPSr, X86::SQRTPSm },
409 { X86::SQRTPSr_Int, X86::SQRTPSm_Int },
410 { X86::SQRTSDr, X86::SQRTSDm },
411 { X86::SQRTSDr_Int, X86::SQRTSDm_Int },
412 { X86::SQRTSSr, X86::SQRTSSm },
413 { X86::SQRTSSr_Int, X86::SQRTSSm_Int },
414 { X86::TEST16rr, X86::TEST16rm },
415 { X86::TEST32rr, X86::TEST32rm },
416 { X86::TEST64rr, X86::TEST64rm },
417 { X86::TEST8rr, X86::TEST8rm },
418 // FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
419 { X86::UCOMISDrr, X86::UCOMISDrm },
Chris Lattnerf4005a82008-01-11 18:00:50 +0000420 { X86::UCOMISSrr, X86::UCOMISSrm }
Owen Anderson9a184ef2008-01-07 01:35:02 +0000421 };
422
423 for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
424 unsigned RegOp = OpTbl1[i][0];
425 unsigned MemOp = OpTbl1[i][1];
426 if (!RegOp2MemOpTable1.insert(std::make_pair((unsigned*)RegOp, MemOp)))
427 assert(false && "Duplicated entries?");
428 unsigned AuxInfo = 1 | (1 << 4); // Index 1, folded load
429 if (RegOp != X86::FsMOVAPDrr && RegOp != X86::FsMOVAPSrr)
430 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
431 std::make_pair(RegOp, AuxInfo))))
432 AmbEntries.push_back(MemOp);
433 }
434
435 static const unsigned OpTbl2[][2] = {
436 { X86::ADC32rr, X86::ADC32rm },
437 { X86::ADC64rr, X86::ADC64rm },
438 { X86::ADD16rr, X86::ADD16rm },
439 { X86::ADD32rr, X86::ADD32rm },
440 { X86::ADD64rr, X86::ADD64rm },
441 { X86::ADD8rr, X86::ADD8rm },
442 { X86::ADDPDrr, X86::ADDPDrm },
443 { X86::ADDPSrr, X86::ADDPSrm },
444 { X86::ADDSDrr, X86::ADDSDrm },
445 { X86::ADDSSrr, X86::ADDSSrm },
446 { X86::ADDSUBPDrr, X86::ADDSUBPDrm },
447 { X86::ADDSUBPSrr, X86::ADDSUBPSrm },
448 { X86::AND16rr, X86::AND16rm },
449 { X86::AND32rr, X86::AND32rm },
450 { X86::AND64rr, X86::AND64rm },
451 { X86::AND8rr, X86::AND8rm },
452 { X86::ANDNPDrr, X86::ANDNPDrm },
453 { X86::ANDNPSrr, X86::ANDNPSrm },
454 { X86::ANDPDrr, X86::ANDPDrm },
455 { X86::ANDPSrr, X86::ANDPSrm },
456 { X86::CMOVA16rr, X86::CMOVA16rm },
457 { X86::CMOVA32rr, X86::CMOVA32rm },
458 { X86::CMOVA64rr, X86::CMOVA64rm },
459 { X86::CMOVAE16rr, X86::CMOVAE16rm },
460 { X86::CMOVAE32rr, X86::CMOVAE32rm },
461 { X86::CMOVAE64rr, X86::CMOVAE64rm },
462 { X86::CMOVB16rr, X86::CMOVB16rm },
463 { X86::CMOVB32rr, X86::CMOVB32rm },
464 { X86::CMOVB64rr, X86::CMOVB64rm },
465 { X86::CMOVBE16rr, X86::CMOVBE16rm },
466 { X86::CMOVBE32rr, X86::CMOVBE32rm },
467 { X86::CMOVBE64rr, X86::CMOVBE64rm },
468 { X86::CMOVE16rr, X86::CMOVE16rm },
469 { X86::CMOVE32rr, X86::CMOVE32rm },
470 { X86::CMOVE64rr, X86::CMOVE64rm },
471 { X86::CMOVG16rr, X86::CMOVG16rm },
472 { X86::CMOVG32rr, X86::CMOVG32rm },
473 { X86::CMOVG64rr, X86::CMOVG64rm },
474 { X86::CMOVGE16rr, X86::CMOVGE16rm },
475 { X86::CMOVGE32rr, X86::CMOVGE32rm },
476 { X86::CMOVGE64rr, X86::CMOVGE64rm },
477 { X86::CMOVL16rr, X86::CMOVL16rm },
478 { X86::CMOVL32rr, X86::CMOVL32rm },
479 { X86::CMOVL64rr, X86::CMOVL64rm },
480 { X86::CMOVLE16rr, X86::CMOVLE16rm },
481 { X86::CMOVLE32rr, X86::CMOVLE32rm },
482 { X86::CMOVLE64rr, X86::CMOVLE64rm },
483 { X86::CMOVNE16rr, X86::CMOVNE16rm },
484 { X86::CMOVNE32rr, X86::CMOVNE32rm },
485 { X86::CMOVNE64rr, X86::CMOVNE64rm },
486 { X86::CMOVNP16rr, X86::CMOVNP16rm },
487 { X86::CMOVNP32rr, X86::CMOVNP32rm },
488 { X86::CMOVNP64rr, X86::CMOVNP64rm },
489 { X86::CMOVNS16rr, X86::CMOVNS16rm },
490 { X86::CMOVNS32rr, X86::CMOVNS32rm },
491 { X86::CMOVNS64rr, X86::CMOVNS64rm },
492 { X86::CMOVP16rr, X86::CMOVP16rm },
493 { X86::CMOVP32rr, X86::CMOVP32rm },
494 { X86::CMOVP64rr, X86::CMOVP64rm },
495 { X86::CMOVS16rr, X86::CMOVS16rm },
496 { X86::CMOVS32rr, X86::CMOVS32rm },
497 { X86::CMOVS64rr, X86::CMOVS64rm },
498 { X86::CMPPDrri, X86::CMPPDrmi },
499 { X86::CMPPSrri, X86::CMPPSrmi },
500 { X86::CMPSDrr, X86::CMPSDrm },
501 { X86::CMPSSrr, X86::CMPSSrm },
502 { X86::DIVPDrr, X86::DIVPDrm },
503 { X86::DIVPSrr, X86::DIVPSrm },
504 { X86::DIVSDrr, X86::DIVSDrm },
505 { X86::DIVSSrr, X86::DIVSSrm },
Evan Cheng63529862008-02-08 00:12:56 +0000506 { X86::FsANDNPDrr, X86::FsANDNPDrm },
507 { X86::FsANDNPSrr, X86::FsANDNPSrm },
508 { X86::FsANDPDrr, X86::FsANDPDrm },
509 { X86::FsANDPSrr, X86::FsANDPSrm },
510 { X86::FsORPDrr, X86::FsORPDrm },
511 { X86::FsORPSrr, X86::FsORPSrm },
512 { X86::FsXORPDrr, X86::FsXORPDrm },
513 { X86::FsXORPSrr, X86::FsXORPSrm },
Owen Anderson9a184ef2008-01-07 01:35:02 +0000514 { X86::HADDPDrr, X86::HADDPDrm },
515 { X86::HADDPSrr, X86::HADDPSrm },
516 { X86::HSUBPDrr, X86::HSUBPDrm },
517 { X86::HSUBPSrr, X86::HSUBPSrm },
518 { X86::IMUL16rr, X86::IMUL16rm },
519 { X86::IMUL32rr, X86::IMUL32rm },
520 { X86::IMUL64rr, X86::IMUL64rm },
521 { X86::MAXPDrr, X86::MAXPDrm },
522 { X86::MAXPDrr_Int, X86::MAXPDrm_Int },
523 { X86::MAXPSrr, X86::MAXPSrm },
524 { X86::MAXPSrr_Int, X86::MAXPSrm_Int },
525 { X86::MAXSDrr, X86::MAXSDrm },
526 { X86::MAXSDrr_Int, X86::MAXSDrm_Int },
527 { X86::MAXSSrr, X86::MAXSSrm },
528 { X86::MAXSSrr_Int, X86::MAXSSrm_Int },
529 { X86::MINPDrr, X86::MINPDrm },
530 { X86::MINPDrr_Int, X86::MINPDrm_Int },
531 { X86::MINPSrr, X86::MINPSrm },
532 { X86::MINPSrr_Int, X86::MINPSrm_Int },
533 { X86::MINSDrr, X86::MINSDrm },
534 { X86::MINSDrr_Int, X86::MINSDrm_Int },
535 { X86::MINSSrr, X86::MINSSrm },
536 { X86::MINSSrr_Int, X86::MINSSrm_Int },
537 { X86::MULPDrr, X86::MULPDrm },
538 { X86::MULPSrr, X86::MULPSrm },
539 { X86::MULSDrr, X86::MULSDrm },
540 { X86::MULSSrr, X86::MULSSrm },
541 { X86::OR16rr, X86::OR16rm },
542 { X86::OR32rr, X86::OR32rm },
543 { X86::OR64rr, X86::OR64rm },
544 { X86::OR8rr, X86::OR8rm },
545 { X86::ORPDrr, X86::ORPDrm },
546 { X86::ORPSrr, X86::ORPSrm },
547 { X86::PACKSSDWrr, X86::PACKSSDWrm },
548 { X86::PACKSSWBrr, X86::PACKSSWBrm },
549 { X86::PACKUSWBrr, X86::PACKUSWBrm },
550 { X86::PADDBrr, X86::PADDBrm },
551 { X86::PADDDrr, X86::PADDDrm },
552 { X86::PADDQrr, X86::PADDQrm },
553 { X86::PADDSBrr, X86::PADDSBrm },
554 { X86::PADDSWrr, X86::PADDSWrm },
555 { X86::PADDWrr, X86::PADDWrm },
556 { X86::PANDNrr, X86::PANDNrm },
557 { X86::PANDrr, X86::PANDrm },
558 { X86::PAVGBrr, X86::PAVGBrm },
559 { X86::PAVGWrr, X86::PAVGWrm },
560 { X86::PCMPEQBrr, X86::PCMPEQBrm },
561 { X86::PCMPEQDrr, X86::PCMPEQDrm },
562 { X86::PCMPEQWrr, X86::PCMPEQWrm },
563 { X86::PCMPGTBrr, X86::PCMPGTBrm },
564 { X86::PCMPGTDrr, X86::PCMPGTDrm },
565 { X86::PCMPGTWrr, X86::PCMPGTWrm },
566 { X86::PINSRWrri, X86::PINSRWrmi },
567 { X86::PMADDWDrr, X86::PMADDWDrm },
568 { X86::PMAXSWrr, X86::PMAXSWrm },
569 { X86::PMAXUBrr, X86::PMAXUBrm },
570 { X86::PMINSWrr, X86::PMINSWrm },
571 { X86::PMINUBrr, X86::PMINUBrm },
572 { X86::PMULHUWrr, X86::PMULHUWrm },
573 { X86::PMULHWrr, X86::PMULHWrm },
574 { X86::PMULLWrr, X86::PMULLWrm },
575 { X86::PMULUDQrr, X86::PMULUDQrm },
576 { X86::PORrr, X86::PORrm },
577 { X86::PSADBWrr, X86::PSADBWrm },
578 { X86::PSLLDrr, X86::PSLLDrm },
579 { X86::PSLLQrr, X86::PSLLQrm },
580 { X86::PSLLWrr, X86::PSLLWrm },
581 { X86::PSRADrr, X86::PSRADrm },
582 { X86::PSRAWrr, X86::PSRAWrm },
583 { X86::PSRLDrr, X86::PSRLDrm },
584 { X86::PSRLQrr, X86::PSRLQrm },
585 { X86::PSRLWrr, X86::PSRLWrm },
586 { X86::PSUBBrr, X86::PSUBBrm },
587 { X86::PSUBDrr, X86::PSUBDrm },
588 { X86::PSUBSBrr, X86::PSUBSBrm },
589 { X86::PSUBSWrr, X86::PSUBSWrm },
590 { X86::PSUBWrr, X86::PSUBWrm },
591 { X86::PUNPCKHBWrr, X86::PUNPCKHBWrm },
592 { X86::PUNPCKHDQrr, X86::PUNPCKHDQrm },
593 { X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm },
594 { X86::PUNPCKHWDrr, X86::PUNPCKHWDrm },
595 { X86::PUNPCKLBWrr, X86::PUNPCKLBWrm },
596 { X86::PUNPCKLDQrr, X86::PUNPCKLDQrm },
597 { X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm },
598 { X86::PUNPCKLWDrr, X86::PUNPCKLWDrm },
599 { X86::PXORrr, X86::PXORrm },
600 { X86::SBB32rr, X86::SBB32rm },
601 { X86::SBB64rr, X86::SBB64rm },
602 { X86::SHUFPDrri, X86::SHUFPDrmi },
603 { X86::SHUFPSrri, X86::SHUFPSrmi },
604 { X86::SUB16rr, X86::SUB16rm },
605 { X86::SUB32rr, X86::SUB32rm },
606 { X86::SUB64rr, X86::SUB64rm },
607 { X86::SUB8rr, X86::SUB8rm },
608 { X86::SUBPDrr, X86::SUBPDrm },
609 { X86::SUBPSrr, X86::SUBPSrm },
610 { X86::SUBSDrr, X86::SUBSDrm },
611 { X86::SUBSSrr, X86::SUBSSrm },
612 // FIXME: TEST*rr -> swapped operand of TEST*mr.
613 { X86::UNPCKHPDrr, X86::UNPCKHPDrm },
614 { X86::UNPCKHPSrr, X86::UNPCKHPSrm },
615 { X86::UNPCKLPDrr, X86::UNPCKLPDrm },
616 { X86::UNPCKLPSrr, X86::UNPCKLPSrm },
617 { X86::XOR16rr, X86::XOR16rm },
618 { X86::XOR32rr, X86::XOR32rm },
619 { X86::XOR64rr, X86::XOR64rm },
620 { X86::XOR8rr, X86::XOR8rm },
621 { X86::XORPDrr, X86::XORPDrm },
622 { X86::XORPSrr, X86::XORPSrm }
623 };
624
625 for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
626 unsigned RegOp = OpTbl2[i][0];
627 unsigned MemOp = OpTbl2[i][1];
628 if (!RegOp2MemOpTable2.insert(std::make_pair((unsigned*)RegOp, MemOp)))
629 assert(false && "Duplicated entries?");
630 unsigned AuxInfo = 2 | (1 << 4); // Index 1, folded load
631 if (!MemOp2RegOpTable.insert(std::make_pair((unsigned*)MemOp,
632 std::make_pair(RegOp, AuxInfo))))
633 AmbEntries.push_back(MemOp);
634 }
635
636 // Remove ambiguous entries.
637 assert(AmbEntries.empty() && "Duplicated entries in unfolding maps?");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000638}
639
640bool X86InstrInfo::isMoveInstr(const MachineInstr& MI,
641 unsigned& sourceReg,
642 unsigned& destReg) const {
Chris Lattnerff195282008-03-11 19:28:17 +0000643 switch (MI.getOpcode()) {
644 default:
645 return false;
646 case X86::MOV8rr:
647 case X86::MOV16rr:
648 case X86::MOV32rr:
649 case X86::MOV64rr:
650 case X86::MOV16to16_:
651 case X86::MOV32to32_:
Chris Lattnerff195282008-03-11 19:28:17 +0000652 case X86::MOVSSrr:
653 case X86::MOVSDrr:
Chris Lattnerc81df282008-03-11 19:30:09 +0000654
655 // FP Stack register class copies
656 case X86::MOV_Fp3232: case X86::MOV_Fp6464: case X86::MOV_Fp8080:
657 case X86::MOV_Fp3264: case X86::MOV_Fp3280:
658 case X86::MOV_Fp6432: case X86::MOV_Fp8032:
659
Chris Lattnerff195282008-03-11 19:28:17 +0000660 case X86::FsMOVAPSrr:
661 case X86::FsMOVAPDrr:
662 case X86::MOVAPSrr:
663 case X86::MOVAPDrr:
664 case X86::MOVSS2PSrr:
665 case X86::MOVSD2PDrr:
666 case X86::MOVPS2SSrr:
667 case X86::MOVPD2SDrr:
668 case X86::MMX_MOVD64rr:
669 case X86::MMX_MOVQ64rr:
670 assert(MI.getNumOperands() >= 2 &&
671 MI.getOperand(0).isRegister() &&
672 MI.getOperand(1).isRegister() &&
673 "invalid register-register move instruction");
674 sourceReg = MI.getOperand(1).getReg();
675 destReg = MI.getOperand(0).getReg();
676 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000677 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000678}
679
680unsigned X86InstrInfo::isLoadFromStackSlot(MachineInstr *MI,
681 int &FrameIndex) const {
682 switch (MI->getOpcode()) {
683 default: break;
684 case X86::MOV8rm:
685 case X86::MOV16rm:
686 case X86::MOV16_rm:
687 case X86::MOV32rm:
688 case X86::MOV32_rm:
689 case X86::MOV64rm:
690 case X86::LD_Fp64m:
691 case X86::MOVSSrm:
692 case X86::MOVSDrm:
693 case X86::MOVAPSrm:
694 case X86::MOVAPDrm:
695 case X86::MMX_MOVD64rm:
696 case X86::MMX_MOVQ64rm:
Chris Lattner6017d482007-12-30 23:10:15 +0000697 if (MI->getOperand(1).isFI() && MI->getOperand(2).isImm() &&
698 MI->getOperand(3).isReg() && MI->getOperand(4).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000699 MI->getOperand(2).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700 MI->getOperand(3).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000701 MI->getOperand(4).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000702 FrameIndex = MI->getOperand(1).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000703 return MI->getOperand(0).getReg();
704 }
705 break;
706 }
707 return 0;
708}
709
710unsigned X86InstrInfo::isStoreToStackSlot(MachineInstr *MI,
711 int &FrameIndex) const {
712 switch (MI->getOpcode()) {
713 default: break;
714 case X86::MOV8mr:
715 case X86::MOV16mr:
716 case X86::MOV16_mr:
717 case X86::MOV32mr:
718 case X86::MOV32_mr:
719 case X86::MOV64mr:
720 case X86::ST_FpP64m:
721 case X86::MOVSSmr:
722 case X86::MOVSDmr:
723 case X86::MOVAPSmr:
724 case X86::MOVAPDmr:
725 case X86::MMX_MOVD64mr:
726 case X86::MMX_MOVQ64mr:
727 case X86::MMX_MOVNTQmr:
Chris Lattner6017d482007-12-30 23:10:15 +0000728 if (MI->getOperand(0).isFI() && MI->getOperand(1).isImm() &&
729 MI->getOperand(2).isReg() && MI->getOperand(3).isImm() &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000730 MI->getOperand(1).getImm() == 1 &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000731 MI->getOperand(2).getReg() == 0 &&
Chris Lattnera96056a2007-12-30 20:49:49 +0000732 MI->getOperand(3).getImm() == 0) {
Chris Lattner6017d482007-12-30 23:10:15 +0000733 FrameIndex = MI->getOperand(0).getIndex();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734 return MI->getOperand(4).getReg();
735 }
736 break;
737 }
738 return 0;
739}
740
741
Evan Chengb819a512008-03-27 01:45:11 +0000742/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
743/// X86::MOVPC32r.
744static bool regIsPICBase(unsigned BaseReg, MachineRegisterInfo &MRI) {
745 bool isPICBase = false;
746 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
747 E = MRI.def_end(); I != E; ++I) {
748 MachineInstr *DefMI = I.getOperand().getParent();
749 if (DefMI->getOpcode() != X86::MOVPC32r)
750 return false;
751 assert(!isPICBase && "More than one PIC base?");
752 isPICBase = true;
753 }
754 return isPICBase;
755}
Evan Chenge9caab52008-03-31 07:54:19 +0000756
757/// isGVStub - Return true if the GV requires an extra load to get the
758/// real address.
759static inline bool isGVStub(GlobalValue *GV, X86TargetMachine &TM) {
760 return TM.getSubtarget<X86Subtarget>().GVRequiresExtraLoad(GV, TM, false);
761}
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000762
Bill Wendling0fe34c22007-12-08 23:58:46 +0000763bool X86InstrInfo::isReallyTriviallyReMaterializable(MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000764 switch (MI->getOpcode()) {
765 default: break;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000766 case X86::MOV8rm:
767 case X86::MOV16rm:
768 case X86::MOV16_rm:
769 case X86::MOV32rm:
770 case X86::MOV32_rm:
771 case X86::MOV64rm:
772 case X86::LD_Fp64m:
773 case X86::MOVSSrm:
774 case X86::MOVSDrm:
775 case X86::MOVAPSrm:
776 case X86::MOVAPDrm:
777 case X86::MMX_MOVD64rm:
778 case X86::MMX_MOVQ64rm: {
779 // Loads from constant pools are trivially rematerializable.
780 if (MI->getOperand(1).isReg() &&
781 MI->getOperand(2).isImm() &&
782 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
Evan Chenge9caab52008-03-31 07:54:19 +0000783 (MI->getOperand(4).isCPI() ||
784 (MI->getOperand(4).isGlobal() &&
785 isGVStub(MI->getOperand(4).getGlobal(), TM)))) {
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000786 unsigned BaseReg = MI->getOperand(1).getReg();
787 if (BaseReg == 0)
788 return true;
789 // Allow re-materialization of PIC load.
Evan Chengc87df652008-04-01 23:26:12 +0000790 if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
791 return false;
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000792 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
793 bool isPICBase = false;
794 for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
795 E = MRI.def_end(); I != E; ++I) {
796 MachineInstr *DefMI = I.getOperand().getParent();
797 if (DefMI->getOpcode() != X86::MOVPC32r)
798 return false;
799 assert(!isPICBase && "More than one PIC base?");
800 isPICBase = true;
801 }
802 return isPICBase;
803 }
804 return false;
Evan Cheng60490e62008-02-22 09:25:47 +0000805 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000806
807 case X86::LEA32r:
808 case X86::LEA64r: {
809 if (MI->getOperand(1).isReg() &&
810 MI->getOperand(2).isImm() &&
811 MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
812 !MI->getOperand(4).isReg()) {
813 // lea fi#, lea GV, etc. are all rematerializable.
814 unsigned BaseReg = MI->getOperand(1).getReg();
815 if (BaseReg == 0)
816 return true;
817 // Allow re-materialization of lea PICBase + x.
Evan Chengb819a512008-03-27 01:45:11 +0000818 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
819 return regIsPICBase(BaseReg, MRI);
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000820 }
821 return false;
822 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000823 }
Evan Cheng1ea8e6b2008-03-27 01:41:09 +0000824
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000825 // All other instructions marked M_REMATERIALIZABLE are always trivially
826 // rematerializable.
827 return true;
828}
829
Evan Cheng7d73efc2008-03-31 20:40:39 +0000830void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
831 MachineBasicBlock::iterator I,
832 unsigned DestReg,
833 const MachineInstr *Orig) const {
834 // MOV32r0 etc. are implemented with xor which clobbers condition code.
835 // Re-materialize them as movri instructions to avoid side effects.
836 switch (Orig->getOpcode()) {
837 case X86::MOV8r0:
838 BuildMI(MBB, I, get(X86::MOV8ri), DestReg).addImm(0);
839 break;
840 case X86::MOV16r0:
841 BuildMI(MBB, I, get(X86::MOV16ri), DestReg).addImm(0);
842 break;
843 case X86::MOV32r0:
844 BuildMI(MBB, I, get(X86::MOV32ri), DestReg).addImm(0);
845 break;
846 case X86::MOV64r0:
847 BuildMI(MBB, I, get(X86::MOV64ri32), DestReg).addImm(0);
848 break;
849 default: {
850 MachineInstr *MI = Orig->clone();
851 MI->getOperand(0).setReg(DestReg);
852 MBB.insert(I, MI);
853 break;
854 }
855 }
856}
857
Chris Lattnerea3a1812008-01-10 23:08:24 +0000858/// isInvariantLoad - Return true if the specified instruction (which is marked
859/// mayLoad) is loading from a location whose value is invariant across the
860/// function. For example, loading a value from the constant pool or from
861/// from the argument area of a function if it does not change. This should
862/// only return true of *all* loads the instruction does are invariant (if it
863/// does multiple loads).
864bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
Chris Lattner0875b572008-01-12 00:35:08 +0000865 // This code cares about loads from three cases: constant pool entries,
866 // invariant argument slots, and global stubs. In order to handle these cases
867 // for all of the myriad of X86 instructions, we just scan for a CP/FI/GV
Chris Lattner828fe302008-01-12 00:53:16 +0000868 // operand and base our analysis on it. This is safe because the address of
Chris Lattner0875b572008-01-12 00:35:08 +0000869 // none of these three cases is ever used as anything other than a load base
870 // and X86 doesn't have any instructions that load from multiple places.
871
872 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
873 const MachineOperand &MO = MI->getOperand(i);
Chris Lattnerea3a1812008-01-10 23:08:24 +0000874 // Loads from constant pools are trivially invariant.
Chris Lattner0875b572008-01-12 00:35:08 +0000875 if (MO.isCPI())
Chris Lattner00e46fa2008-01-05 05:28:30 +0000876 return true;
Evan Chenge9caab52008-03-31 07:54:19 +0000877
878 if (MO.isGlobal())
879 return isGVStub(MO.getGlobal(), TM);
Chris Lattner0875b572008-01-12 00:35:08 +0000880
881 // If this is a load from an invariant stack slot, the load is a constant.
882 if (MO.isFI()) {
883 const MachineFrameInfo &MFI =
884 *MI->getParent()->getParent()->getFrameInfo();
885 int Idx = MO.getIndex();
Chris Lattner41aed732008-01-10 04:16:31 +0000886 return MFI.isFixedObjectIndex(Idx) && MFI.isImmutableObjectIndex(Idx);
887 }
Bill Wendling57e31d62007-12-17 23:07:56 +0000888 }
Chris Lattner0875b572008-01-12 00:35:08 +0000889
Chris Lattnerea3a1812008-01-10 23:08:24 +0000890 // All other instances of these instructions are presumed to have other
891 // issues.
Chris Lattnereb0f16f2008-01-05 05:26:26 +0000892 return false;
Bill Wendling57e31d62007-12-17 23:07:56 +0000893}
894
Evan Chengfa1a4952007-10-05 08:04:01 +0000895/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
896/// is not marked dead.
897static bool hasLiveCondCodeDef(MachineInstr *MI) {
Evan Chengfa1a4952007-10-05 08:04:01 +0000898 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
899 MachineOperand &MO = MI->getOperand(i);
900 if (MO.isRegister() && MO.isDef() &&
901 MO.getReg() == X86::EFLAGS && !MO.isDead()) {
902 return true;
903 }
904 }
905 return false;
906}
907
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000908/// convertToThreeAddress - This method must be implemented by targets that
909/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
910/// may be able to convert a two-address instruction into a true
911/// three-address instruction on demand. This allows the X86 target (for
912/// example) to convert ADD and SHL instructions into LEA instructions if they
913/// would require register copies due to two-addressness.
914///
915/// This method returns a null pointer if the transformation cannot be
916/// performed, otherwise it returns the new instruction.
917///
918MachineInstr *
919X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
920 MachineBasicBlock::iterator &MBBI,
921 LiveVariables &LV) const {
922 MachineInstr *MI = MBBI;
923 // All instructions input are two-addr instructions. Get the known operands.
924 unsigned Dest = MI->getOperand(0).getReg();
925 unsigned Src = MI->getOperand(1).getReg();
926
927 MachineInstr *NewMI = NULL;
928 // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
929 // we have better subtarget support, enable the 16-bit LEA generation here.
930 bool DisableLEA16 = true;
931
Evan Cheng6b96ed32007-10-05 20:34:26 +0000932 unsigned MIOpc = MI->getOpcode();
933 switch (MIOpc) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000934 case X86::SHUFPSrri: {
935 assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
936 if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
937
938 unsigned A = MI->getOperand(0).getReg();
939 unsigned B = MI->getOperand(1).getReg();
940 unsigned C = MI->getOperand(2).getReg();
941 unsigned M = MI->getOperand(3).getImm();
942 if (B != C) return 0;
943 NewMI = BuildMI(get(X86::PSHUFDri), A).addReg(B).addImm(M);
944 break;
945 }
946 case X86::SHL64ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000947 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000948 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
949 // the flags produced by a shift yet, so this is safe.
950 unsigned Dest = MI->getOperand(0).getReg();
951 unsigned Src = MI->getOperand(1).getReg();
952 unsigned ShAmt = MI->getOperand(2).getImm();
953 if (ShAmt == 0 || ShAmt >= 4) return 0;
954
955 NewMI = BuildMI(get(X86::LEA64r), Dest)
956 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
957 break;
958 }
959 case X86::SHL32ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000960 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
962 // the flags produced by a shift yet, so this is safe.
963 unsigned Dest = MI->getOperand(0).getReg();
964 unsigned Src = MI->getOperand(1).getReg();
965 unsigned ShAmt = MI->getOperand(2).getImm();
966 if (ShAmt == 0 || ShAmt >= 4) return 0;
967
968 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit() ?
969 X86::LEA64_32r : X86::LEA32r;
970 NewMI = BuildMI(get(Opc), Dest)
971 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
972 break;
973 }
974 case X86::SHL16ri: {
Evan Cheng55687072007-09-14 21:48:26 +0000975 assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
Evan Cheng0b1e8712007-09-06 00:14:41 +0000976 // NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
977 // the flags produced by a shift yet, so this is safe.
978 unsigned Dest = MI->getOperand(0).getReg();
979 unsigned Src = MI->getOperand(1).getReg();
980 unsigned ShAmt = MI->getOperand(2).getImm();
981 if (ShAmt == 0 || ShAmt >= 4) return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982
Christopher Lamb380c6272007-08-10 21:18:25 +0000983 if (DisableLEA16) {
984 // If 16-bit LEA is disabled, use 32-bit LEA via subregisters.
Chris Lattner1b989192007-12-31 04:13:23 +0000985 MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
Evan Cheng0b1e8712007-09-06 00:14:41 +0000986 unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
987 ? X86::LEA64_32r : X86::LEA32r;
Chris Lattner1b989192007-12-31 04:13:23 +0000988 unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
989 unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
Evan Chengbd97af02008-03-10 19:31:26 +0000990
Christopher Lamb8d226a22008-03-11 10:27:36 +0000991 // Build and insert into an implicit UNDEF value. This is OK because
992 // well be shifting and then extracting the lower 16-bits.
Christopher Lamb76d72da2008-03-16 03:12:01 +0000993 MachineInstr *Undef = BuildMI(get(X86::IMPLICIT_DEF), leaInReg);
994
Christopher Lamb8d226a22008-03-11 10:27:36 +0000995 MachineInstr *Ins =
Christopher Lambb371e032008-03-13 05:47:01 +0000996 BuildMI(get(X86::INSERT_SUBREG),leaInReg)
Christopher Lamb76d72da2008-03-16 03:12:01 +0000997 .addReg(leaInReg).addReg(Src).addImm(X86::SUBREG_16BIT);
Christopher Lamb380c6272007-08-10 21:18:25 +0000998
999 NewMI = BuildMI(get(Opc), leaOutReg)
1000 .addReg(0).addImm(1 << ShAmt).addReg(leaInReg).addImm(0);
1001
Evan Cheng0b1e8712007-09-06 00:14:41 +00001002 MachineInstr *Ext =
Christopher Lamb8d226a22008-03-11 10:27:36 +00001003 BuildMI(get(X86::EXTRACT_SUBREG), Dest)
1004 .addReg(leaOutReg).addImm(X86::SUBREG_16BIT);
Christopher Lamb380c6272007-08-10 21:18:25 +00001005 Ext->copyKillDeadInfo(MI);
1006
Christopher Lamb76d72da2008-03-16 03:12:01 +00001007 MFI->insert(MBBI, Undef);
Christopher Lamb380c6272007-08-10 21:18:25 +00001008 MFI->insert(MBBI, Ins); // Insert the insert_subreg
1009 LV.instructionChanged(MI, NewMI); // Update live variables
1010 LV.addVirtualRegisterKilled(leaInReg, NewMI);
1011 MFI->insert(MBBI, NewMI); // Insert the new inst
1012 LV.addVirtualRegisterKilled(leaOutReg, Ext);
Evan Cheng0b1e8712007-09-06 00:14:41 +00001013 MFI->insert(MBBI, Ext); // Insert the extract_subreg
Christopher Lamb380c6272007-08-10 21:18:25 +00001014 return Ext;
1015 } else {
1016 NewMI = BuildMI(get(X86::LEA16r), Dest)
1017 .addReg(0).addImm(1 << ShAmt).addReg(Src).addImm(0);
1018 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 break;
1020 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001021 default: {
1022 // The following opcodes also sets the condition code register(s). Only
1023 // convert them to equivalent lea if the condition code register def's
1024 // are dead!
1025 if (hasLiveCondCodeDef(MI))
1026 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027
Evan Chenga28a9562007-10-09 07:14:53 +00001028 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001029 switch (MIOpc) {
1030 default: return 0;
1031 case X86::INC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001032 case X86::INC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001033 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001034 unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
1035 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001036 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, 1);
1037 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001039 case X86::INC16r:
1040 case X86::INC64_16r:
1041 if (DisableLEA16) return 0;
1042 assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
1043 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, 1);
1044 break;
1045 case X86::DEC64r:
Evan Cheng3cdc7192007-10-05 21:55:32 +00001046 case X86::DEC32r: {
Evan Cheng6b96ed32007-10-05 20:34:26 +00001047 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001048 unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
1049 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001050 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src, -1);
1051 break;
1052 }
1053 case X86::DEC16r:
1054 case X86::DEC64_16r:
1055 if (DisableLEA16) return 0;
1056 assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
1057 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src, -1);
1058 break;
1059 case X86::ADD64rr:
1060 case X86::ADD32rr: {
1061 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001062 unsigned Opc = MIOpc == X86::ADD64rr ? X86::LEA64r
1063 : (is64Bit ? X86::LEA64_32r : X86::LEA32r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001064 NewMI = addRegReg(BuildMI(get(Opc), Dest), Src,
1065 MI->getOperand(2).getReg());
1066 break;
1067 }
1068 case X86::ADD16rr:
1069 if (DisableLEA16) return 0;
1070 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1071 NewMI = addRegReg(BuildMI(get(X86::LEA16r), Dest), Src,
1072 MI->getOperand(2).getReg());
1073 break;
1074 case X86::ADD64ri32:
1075 case X86::ADD64ri8:
1076 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1077 if (MI->getOperand(2).isImmediate())
1078 NewMI = addRegOffset(BuildMI(get(X86::LEA64r), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001079 MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001080 break;
1081 case X86::ADD32ri:
1082 case X86::ADD32ri8:
1083 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
Evan Chenga28a9562007-10-09 07:14:53 +00001084 if (MI->getOperand(2).isImmediate()) {
1085 unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
1086 NewMI = addRegOffset(BuildMI(get(Opc), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001087 MI->getOperand(2).getImm());
Evan Chenga28a9562007-10-09 07:14:53 +00001088 }
Evan Cheng6b96ed32007-10-05 20:34:26 +00001089 break;
1090 case X86::ADD16ri:
1091 case X86::ADD16ri8:
1092 if (DisableLEA16) return 0;
1093 assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
1094 if (MI->getOperand(2).isImmediate())
1095 NewMI = addRegOffset(BuildMI(get(X86::LEA16r), Dest), Src,
Chris Lattnera96056a2007-12-30 20:49:49 +00001096 MI->getOperand(2).getImm());
Evan Cheng6b96ed32007-10-05 20:34:26 +00001097 break;
1098 case X86::SHL16ri:
1099 if (DisableLEA16) return 0;
1100 case X86::SHL32ri:
1101 case X86::SHL64ri: {
1102 assert(MI->getNumOperands() >= 3 && MI->getOperand(2).isImmediate() &&
1103 "Unknown shl instruction!");
Chris Lattnera96056a2007-12-30 20:49:49 +00001104 unsigned ShAmt = MI->getOperand(2).getImm();
Evan Cheng6b96ed32007-10-05 20:34:26 +00001105 if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
1106 X86AddressMode AM;
1107 AM.Scale = 1 << ShAmt;
1108 AM.IndexReg = Src;
1109 unsigned Opc = MIOpc == X86::SHL64ri ? X86::LEA64r
Evan Chenga28a9562007-10-09 07:14:53 +00001110 : (MIOpc == X86::SHL32ri
1111 ? (is64Bit ? X86::LEA64_32r : X86::LEA32r) : X86::LEA16r);
Evan Cheng6b96ed32007-10-05 20:34:26 +00001112 NewMI = addFullAddress(BuildMI(get(Opc), Dest), AM);
1113 }
1114 break;
1115 }
1116 }
1117 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001118 }
1119
Evan Chengc3cb24d2008-02-07 08:29:53 +00001120 if (!NewMI) return 0;
1121
Evan Cheng6b96ed32007-10-05 20:34:26 +00001122 NewMI->copyKillDeadInfo(MI);
1123 LV.instructionChanged(MI, NewMI); // Update live variables
1124 MFI->insert(MBBI, NewMI); // Insert the new inst
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001125 return NewMI;
1126}
1127
1128/// commuteInstruction - We have a few instructions that must be hacked on to
1129/// commute them.
1130///
1131MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001132 switch (MI->getOpcode()) {
1133 case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
1134 case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
1135 case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001136 case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
1137 case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
1138 case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001139 unsigned Opc;
1140 unsigned Size;
1141 switch (MI->getOpcode()) {
1142 default: assert(0 && "Unreachable!");
1143 case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
1144 case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
1145 case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
1146 case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
Dan Gohman4d9fc4a2007-09-14 23:17:45 +00001147 case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
1148 case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001149 }
Chris Lattnera96056a2007-12-30 20:49:49 +00001150 unsigned Amt = MI->getOperand(3).getImm();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001151 unsigned A = MI->getOperand(0).getReg();
1152 unsigned B = MI->getOperand(1).getReg();
1153 unsigned C = MI->getOperand(2).getReg();
1154 bool BisKill = MI->getOperand(1).isKill();
1155 bool CisKill = MI->getOperand(2).isKill();
Evan Chengb554e532008-02-13 02:46:49 +00001156 // If machine instrs are no longer in two-address forms, update
1157 // destination register as well.
1158 if (A == B) {
1159 // Must be two address instruction!
1160 assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
1161 "Expecting a two-address instruction!");
1162 A = C;
1163 CisKill = false;
1164 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001165 return BuildMI(get(Opc), A).addReg(C, false, false, CisKill)
1166 .addReg(B, false, false, BisKill).addImm(Size-Amt);
1167 }
Evan Cheng926658c2007-10-05 23:13:21 +00001168 case X86::CMOVB16rr:
1169 case X86::CMOVB32rr:
1170 case X86::CMOVB64rr:
1171 case X86::CMOVAE16rr:
1172 case X86::CMOVAE32rr:
1173 case X86::CMOVAE64rr:
1174 case X86::CMOVE16rr:
1175 case X86::CMOVE32rr:
1176 case X86::CMOVE64rr:
1177 case X86::CMOVNE16rr:
1178 case X86::CMOVNE32rr:
1179 case X86::CMOVNE64rr:
1180 case X86::CMOVBE16rr:
1181 case X86::CMOVBE32rr:
1182 case X86::CMOVBE64rr:
1183 case X86::CMOVA16rr:
1184 case X86::CMOVA32rr:
1185 case X86::CMOVA64rr:
1186 case X86::CMOVL16rr:
1187 case X86::CMOVL32rr:
1188 case X86::CMOVL64rr:
1189 case X86::CMOVGE16rr:
1190 case X86::CMOVGE32rr:
1191 case X86::CMOVGE64rr:
1192 case X86::CMOVLE16rr:
1193 case X86::CMOVLE32rr:
1194 case X86::CMOVLE64rr:
1195 case X86::CMOVG16rr:
1196 case X86::CMOVG32rr:
1197 case X86::CMOVG64rr:
1198 case X86::CMOVS16rr:
1199 case X86::CMOVS32rr:
1200 case X86::CMOVS64rr:
1201 case X86::CMOVNS16rr:
1202 case X86::CMOVNS32rr:
1203 case X86::CMOVNS64rr:
1204 case X86::CMOVP16rr:
1205 case X86::CMOVP32rr:
1206 case X86::CMOVP64rr:
1207 case X86::CMOVNP16rr:
1208 case X86::CMOVNP32rr:
1209 case X86::CMOVNP64rr: {
Evan Cheng926658c2007-10-05 23:13:21 +00001210 unsigned Opc = 0;
1211 switch (MI->getOpcode()) {
1212 default: break;
1213 case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
1214 case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
1215 case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
1216 case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
1217 case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
1218 case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
1219 case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
1220 case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
1221 case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
1222 case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
1223 case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
1224 case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
1225 case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
1226 case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
1227 case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
1228 case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
1229 case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
1230 case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
1231 case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
1232 case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
1233 case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
1234 case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
1235 case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
1236 case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
1237 case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
1238 case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
1239 case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
1240 case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
1241 case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
1242 case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
1243 case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
1244 case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
1245 case X86::CMOVS64rr: Opc = X86::CMOVNS32rr; break;
1246 case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
1247 case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
1248 case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
1249 case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
1250 case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
1251 case X86::CMOVP64rr: Opc = X86::CMOVNP32rr; break;
1252 case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
1253 case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
1254 case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
1255 }
1256
Chris Lattner86bb02f2008-01-11 18:10:50 +00001257 MI->setDesc(get(Opc));
Evan Cheng926658c2007-10-05 23:13:21 +00001258 // Fallthrough intended.
1259 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001260 default:
Chris Lattner6ca3a8e2008-01-01 01:05:34 +00001261 return TargetInstrInfoImpl::commuteInstruction(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001262 }
1263}
1264
1265static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
1266 switch (BrOpc) {
1267 default: return X86::COND_INVALID;
1268 case X86::JE: return X86::COND_E;
1269 case X86::JNE: return X86::COND_NE;
1270 case X86::JL: return X86::COND_L;
1271 case X86::JLE: return X86::COND_LE;
1272 case X86::JG: return X86::COND_G;
1273 case X86::JGE: return X86::COND_GE;
1274 case X86::JB: return X86::COND_B;
1275 case X86::JBE: return X86::COND_BE;
1276 case X86::JA: return X86::COND_A;
1277 case X86::JAE: return X86::COND_AE;
1278 case X86::JS: return X86::COND_S;
1279 case X86::JNS: return X86::COND_NS;
1280 case X86::JP: return X86::COND_P;
1281 case X86::JNP: return X86::COND_NP;
1282 case X86::JO: return X86::COND_O;
1283 case X86::JNO: return X86::COND_NO;
1284 }
1285}
1286
1287unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
1288 switch (CC) {
1289 default: assert(0 && "Illegal condition code!");
Evan Cheng621216e2007-09-29 00:00:36 +00001290 case X86::COND_E: return X86::JE;
1291 case X86::COND_NE: return X86::JNE;
1292 case X86::COND_L: return X86::JL;
1293 case X86::COND_LE: return X86::JLE;
1294 case X86::COND_G: return X86::JG;
1295 case X86::COND_GE: return X86::JGE;
1296 case X86::COND_B: return X86::JB;
1297 case X86::COND_BE: return X86::JBE;
1298 case X86::COND_A: return X86::JA;
1299 case X86::COND_AE: return X86::JAE;
1300 case X86::COND_S: return X86::JS;
1301 case X86::COND_NS: return X86::JNS;
1302 case X86::COND_P: return X86::JP;
1303 case X86::COND_NP: return X86::JNP;
1304 case X86::COND_O: return X86::JO;
1305 case X86::COND_NO: return X86::JNO;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001306 }
1307}
1308
1309/// GetOppositeBranchCondition - Return the inverse of the specified condition,
1310/// e.g. turning COND_E to COND_NE.
1311X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
1312 switch (CC) {
1313 default: assert(0 && "Illegal condition code!");
1314 case X86::COND_E: return X86::COND_NE;
1315 case X86::COND_NE: return X86::COND_E;
1316 case X86::COND_L: return X86::COND_GE;
1317 case X86::COND_LE: return X86::COND_G;
1318 case X86::COND_G: return X86::COND_LE;
1319 case X86::COND_GE: return X86::COND_L;
1320 case X86::COND_B: return X86::COND_AE;
1321 case X86::COND_BE: return X86::COND_A;
1322 case X86::COND_A: return X86::COND_BE;
1323 case X86::COND_AE: return X86::COND_B;
1324 case X86::COND_S: return X86::COND_NS;
1325 case X86::COND_NS: return X86::COND_S;
1326 case X86::COND_P: return X86::COND_NP;
1327 case X86::COND_NP: return X86::COND_P;
1328 case X86::COND_O: return X86::COND_NO;
1329 case X86::COND_NO: return X86::COND_O;
1330 }
1331}
1332
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001333bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
Chris Lattner5b930372008-01-07 07:27:27 +00001334 const TargetInstrDesc &TID = MI->getDesc();
1335 if (!TID.isTerminator()) return false;
Chris Lattner62327602008-01-07 01:56:04 +00001336
1337 // Conditional branch is a special case.
Chris Lattner5b930372008-01-07 07:27:27 +00001338 if (TID.isBranch() && !TID.isBarrier())
Chris Lattner62327602008-01-07 01:56:04 +00001339 return true;
Chris Lattner5b930372008-01-07 07:27:27 +00001340 if (!TID.isPredicable())
Chris Lattner62327602008-01-07 01:56:04 +00001341 return true;
1342 return !isPredicated(MI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001343}
1344
Evan Cheng12515792007-07-26 17:32:14 +00001345// For purposes of branch analysis do not count FP_REG_KILL as a terminator.
1346static bool isBrAnalysisUnpredicatedTerminator(const MachineInstr *MI,
1347 const X86InstrInfo &TII) {
1348 if (MI->getOpcode() == X86::FP_REG_KILL)
1349 return false;
1350 return TII.isUnpredicatedTerminator(MI);
1351}
1352
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001353bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
1354 MachineBasicBlock *&TBB,
1355 MachineBasicBlock *&FBB,
1356 std::vector<MachineOperand> &Cond) const {
1357 // If the block has no terminators, it just falls into the block after it.
1358 MachineBasicBlock::iterator I = MBB.end();
Evan Cheng12515792007-07-26 17:32:14 +00001359 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001360 return false;
1361
1362 // Get the last instruction in the block.
1363 MachineInstr *LastInst = I;
1364
1365 // If there is only one terminator instruction, process it.
Evan Cheng12515792007-07-26 17:32:14 +00001366 if (I == MBB.begin() || !isBrAnalysisUnpredicatedTerminator(--I, *this)) {
Chris Lattner5b930372008-01-07 07:27:27 +00001367 if (!LastInst->getDesc().isBranch())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001368 return true;
1369
1370 // If the block ends with a branch there are 3 possibilities:
1371 // it's an unconditional, conditional, or indirect branch.
1372
1373 if (LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001374 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001375 return false;
1376 }
1377 X86::CondCode BranchCode = GetCondFromBranchOpc(LastInst->getOpcode());
1378 if (BranchCode == X86::COND_INVALID)
1379 return true; // Can't handle indirect branch.
1380
1381 // Otherwise, block ends with fall-through condbranch.
Chris Lattner6017d482007-12-30 23:10:15 +00001382 TBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001383 Cond.push_back(MachineOperand::CreateImm(BranchCode));
1384 return false;
1385 }
1386
1387 // Get the instruction before it if it's a terminator.
1388 MachineInstr *SecondLastInst = I;
1389
1390 // If there are three terminators, we don't know what sort of block this is.
Evan Cheng12515792007-07-26 17:32:14 +00001391 if (SecondLastInst && I != MBB.begin() &&
1392 isBrAnalysisUnpredicatedTerminator(--I, *this))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001393 return true;
1394
1395 // If the block ends with X86::JMP and a conditional branch, handle it.
1396 X86::CondCode BranchCode = GetCondFromBranchOpc(SecondLastInst->getOpcode());
1397 if (BranchCode != X86::COND_INVALID && LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001398 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001399 Cond.push_back(MachineOperand::CreateImm(BranchCode));
Chris Lattner6017d482007-12-30 23:10:15 +00001400 FBB = LastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001401 return false;
1402 }
1403
1404 // If the block ends with two X86::JMPs, handle it. The second one is not
1405 // executed, so remove it.
1406 if (SecondLastInst->getOpcode() == X86::JMP &&
1407 LastInst->getOpcode() == X86::JMP) {
Chris Lattner6017d482007-12-30 23:10:15 +00001408 TBB = SecondLastInst->getOperand(0).getMBB();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001409 I = LastInst;
1410 I->eraseFromParent();
1411 return false;
1412 }
1413
1414 // Otherwise, can't handle this.
1415 return true;
1416}
1417
1418unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
1419 MachineBasicBlock::iterator I = MBB.end();
1420 if (I == MBB.begin()) return 0;
1421 --I;
1422 if (I->getOpcode() != X86::JMP &&
1423 GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1424 return 0;
1425
1426 // Remove the branch.
1427 I->eraseFromParent();
1428
1429 I = MBB.end();
1430
1431 if (I == MBB.begin()) return 1;
1432 --I;
1433 if (GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
1434 return 1;
1435
1436 // Remove the branch.
1437 I->eraseFromParent();
1438 return 2;
1439}
1440
Owen Anderson81875432008-01-01 21:11:32 +00001441static const MachineInstrBuilder &X86InstrAddOperand(MachineInstrBuilder &MIB,
1442 MachineOperand &MO) {
1443 if (MO.isRegister())
1444 MIB = MIB.addReg(MO.getReg(), MO.isDef(), MO.isImplicit(),
1445 false, false, MO.getSubReg());
1446 else if (MO.isImmediate())
1447 MIB = MIB.addImm(MO.getImm());
1448 else if (MO.isFrameIndex())
1449 MIB = MIB.addFrameIndex(MO.getIndex());
1450 else if (MO.isGlobalAddress())
1451 MIB = MIB.addGlobalAddress(MO.getGlobal(), MO.getOffset());
1452 else if (MO.isConstantPoolIndex())
1453 MIB = MIB.addConstantPoolIndex(MO.getIndex(), MO.getOffset());
1454 else if (MO.isJumpTableIndex())
1455 MIB = MIB.addJumpTableIndex(MO.getIndex());
1456 else if (MO.isExternalSymbol())
1457 MIB = MIB.addExternalSymbol(MO.getSymbolName());
1458 else
1459 assert(0 && "Unknown operand for X86InstrAddOperand!");
1460
1461 return MIB;
1462}
1463
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001464unsigned
1465X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
1466 MachineBasicBlock *FBB,
1467 const std::vector<MachineOperand> &Cond) const {
1468 // Shouldn't be a fall through.
1469 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
1470 assert((Cond.size() == 1 || Cond.size() == 0) &&
1471 "X86 branch conditions have one component!");
1472
1473 if (FBB == 0) { // One way branch.
1474 if (Cond.empty()) {
1475 // Unconditional branch?
1476 BuildMI(&MBB, get(X86::JMP)).addMBB(TBB);
1477 } else {
1478 // Conditional branch.
1479 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1480 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1481 }
1482 return 1;
1483 }
1484
1485 // Two-way Conditional branch.
1486 unsigned Opc = GetCondBranchFromCond((X86::CondCode)Cond[0].getImm());
1487 BuildMI(&MBB, get(Opc)).addMBB(TBB);
1488 BuildMI(&MBB, get(X86::JMP)).addMBB(FBB);
1489 return 2;
1490}
1491
Owen Anderson8f2c8932007-12-31 06:32:00 +00001492void X86InstrInfo::copyRegToReg(MachineBasicBlock &MBB,
Chris Lattner8869eeb2008-03-09 08:46:19 +00001493 MachineBasicBlock::iterator MI,
1494 unsigned DestReg, unsigned SrcReg,
1495 const TargetRegisterClass *DestRC,
1496 const TargetRegisterClass *SrcRC) const {
Chris Lattner59707122008-03-09 07:58:04 +00001497 if (DestRC == SrcRC) {
1498 unsigned Opc;
1499 if (DestRC == &X86::GR64RegClass) {
1500 Opc = X86::MOV64rr;
1501 } else if (DestRC == &X86::GR32RegClass) {
1502 Opc = X86::MOV32rr;
1503 } else if (DestRC == &X86::GR16RegClass) {
1504 Opc = X86::MOV16rr;
1505 } else if (DestRC == &X86::GR8RegClass) {
1506 Opc = X86::MOV8rr;
1507 } else if (DestRC == &X86::GR32_RegClass) {
1508 Opc = X86::MOV32_rr;
1509 } else if (DestRC == &X86::GR16_RegClass) {
1510 Opc = X86::MOV16_rr;
1511 } else if (DestRC == &X86::RFP32RegClass) {
1512 Opc = X86::MOV_Fp3232;
1513 } else if (DestRC == &X86::RFP64RegClass || DestRC == &X86::RSTRegClass) {
1514 Opc = X86::MOV_Fp6464;
1515 } else if (DestRC == &X86::RFP80RegClass) {
1516 Opc = X86::MOV_Fp8080;
1517 } else if (DestRC == &X86::FR32RegClass) {
1518 Opc = X86::FsMOVAPSrr;
1519 } else if (DestRC == &X86::FR64RegClass) {
1520 Opc = X86::FsMOVAPDrr;
1521 } else if (DestRC == &X86::VR128RegClass) {
1522 Opc = X86::MOVAPSrr;
1523 } else if (DestRC == &X86::VR64RegClass) {
1524 Opc = X86::MMX_MOVQ64rr;
1525 } else {
1526 assert(0 && "Unknown regclass");
1527 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001528 }
Chris Lattner59707122008-03-09 07:58:04 +00001529 BuildMI(MBB, MI, get(Opc), DestReg).addReg(SrcReg);
1530 return;
Owen Anderson8f2c8932007-12-31 06:32:00 +00001531 }
Chris Lattner59707122008-03-09 07:58:04 +00001532
1533 // Moving EFLAGS to / from another register requires a push and a pop.
1534 if (SrcRC == &X86::CCRRegClass) {
1535 assert(SrcReg == X86::EFLAGS);
1536 if (DestRC == &X86::GR64RegClass) {
1537 BuildMI(MBB, MI, get(X86::PUSHFQ));
1538 BuildMI(MBB, MI, get(X86::POP64r), DestReg);
1539 return;
1540 } else if (DestRC == &X86::GR32RegClass) {
1541 BuildMI(MBB, MI, get(X86::PUSHFD));
1542 BuildMI(MBB, MI, get(X86::POP32r), DestReg);
1543 return;
1544 }
1545 } else if (DestRC == &X86::CCRRegClass) {
1546 assert(DestReg == X86::EFLAGS);
1547 if (SrcRC == &X86::GR64RegClass) {
1548 BuildMI(MBB, MI, get(X86::PUSH64r)).addReg(SrcReg);
1549 BuildMI(MBB, MI, get(X86::POPFQ));
1550 return;
1551 } else if (SrcRC == &X86::GR32RegClass) {
1552 BuildMI(MBB, MI, get(X86::PUSH32r)).addReg(SrcReg);
1553 BuildMI(MBB, MI, get(X86::POPFD));
1554 return;
1555 }
Owen Anderson8f2c8932007-12-31 06:32:00 +00001556 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001557
Chris Lattner0d128722008-03-09 09:15:31 +00001558 // Moving from ST(0) turns into FpGET_ST0_32 etc.
Chris Lattner8869eeb2008-03-09 08:46:19 +00001559 if (SrcRC == &X86::RSTRegClass) {
Chris Lattner60d14d82008-03-21 06:38:26 +00001560 // Copying from ST(0)/ST(1).
1561 assert((SrcReg == X86::ST0 || SrcReg == X86::ST1) &&
1562 "Can only copy from ST(0)/ST(1) right now");
1563 bool isST0 = SrcReg == X86::ST0;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001564 unsigned Opc;
1565 if (DestRC == &X86::RFP32RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001566 Opc = isST0 ? X86::FpGET_ST0_32 : X86::FpGET_ST1_32;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001567 else if (DestRC == &X86::RFP64RegClass)
Chris Lattner60d14d82008-03-21 06:38:26 +00001568 Opc = isST0 ? X86::FpGET_ST0_64 : X86::FpGET_ST1_64;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001569 else {
1570 assert(DestRC == &X86::RFP80RegClass);
Chris Lattner60d14d82008-03-21 06:38:26 +00001571 Opc = isST0 ? X86::FpGET_ST0_80 : X86::FpGET_ST1_80;
Chris Lattner8869eeb2008-03-09 08:46:19 +00001572 }
1573 BuildMI(MBB, MI, get(Opc), DestReg);
1574 return;
1575 }
Chris Lattner0d128722008-03-09 09:15:31 +00001576
1577 // Moving to ST(0) turns into FpSET_ST0_32 etc.
1578 if (DestRC == &X86::RSTRegClass) {
1579 // Copying to ST(0). FIXME: handle ST(1) also
1580 assert(DestReg == X86::ST0 && "Can only copy to TOS right now");
1581 unsigned Opc;
1582 if (SrcRC == &X86::RFP32RegClass)
1583 Opc = X86::FpSET_ST0_32;
1584 else if (SrcRC == &X86::RFP64RegClass)
1585 Opc = X86::FpSET_ST0_64;
1586 else {
1587 assert(SrcRC == &X86::RFP80RegClass);
1588 Opc = X86::FpSET_ST0_80;
1589 }
1590 BuildMI(MBB, MI, get(Opc)).addReg(SrcReg);
1591 return;
1592 }
Chris Lattner8869eeb2008-03-09 08:46:19 +00001593
Chris Lattnercffd2472008-03-10 23:56:08 +00001594 assert(0 && "Not yet supported!");
Chris Lattner59707122008-03-09 07:58:04 +00001595 abort();
Owen Anderson8f2c8932007-12-31 06:32:00 +00001596}
1597
Owen Anderson81875432008-01-01 21:11:32 +00001598static unsigned getStoreRegOpcode(const TargetRegisterClass *RC,
1599 unsigned StackAlign) {
1600 unsigned Opc = 0;
1601 if (RC == &X86::GR64RegClass) {
1602 Opc = X86::MOV64mr;
1603 } else if (RC == &X86::GR32RegClass) {
1604 Opc = X86::MOV32mr;
1605 } else if (RC == &X86::GR16RegClass) {
1606 Opc = X86::MOV16mr;
1607 } else if (RC == &X86::GR8RegClass) {
1608 Opc = X86::MOV8mr;
1609 } else if (RC == &X86::GR32_RegClass) {
1610 Opc = X86::MOV32_mr;
1611 } else if (RC == &X86::GR16_RegClass) {
1612 Opc = X86::MOV16_mr;
1613 } else if (RC == &X86::RFP80RegClass) {
1614 Opc = X86::ST_FpP80m; // pops
1615 } else if (RC == &X86::RFP64RegClass) {
1616 Opc = X86::ST_Fp64m;
1617 } else if (RC == &X86::RFP32RegClass) {
1618 Opc = X86::ST_Fp32m;
1619 } else if (RC == &X86::FR32RegClass) {
1620 Opc = X86::MOVSSmr;
1621 } else if (RC == &X86::FR64RegClass) {
1622 Opc = X86::MOVSDmr;
1623 } else if (RC == &X86::VR128RegClass) {
1624 // FIXME: Use movaps once we are capable of selectively
1625 // aligning functions that spill SSE registers on 16-byte boundaries.
1626 Opc = StackAlign >= 16 ? X86::MOVAPSmr : X86::MOVUPSmr;
1627 } else if (RC == &X86::VR64RegClass) {
1628 Opc = X86::MMX_MOVQ64mr;
1629 } else {
1630 assert(0 && "Unknown regclass");
1631 abort();
1632 }
1633
1634 return Opc;
1635}
1636
1637void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1638 MachineBasicBlock::iterator MI,
1639 unsigned SrcReg, bool isKill, int FrameIdx,
1640 const TargetRegisterClass *RC) const {
1641 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1642 addFrameReference(BuildMI(MBB, MI, get(Opc)), FrameIdx)
1643 .addReg(SrcReg, false, false, isKill);
1644}
1645
1646void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
1647 bool isKill,
1648 SmallVectorImpl<MachineOperand> &Addr,
1649 const TargetRegisterClass *RC,
1650 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1651 unsigned Opc = getStoreRegOpcode(RC, RI.getStackAlignment());
1652 MachineInstrBuilder MIB = BuildMI(get(Opc));
1653 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1654 MIB = X86InstrAddOperand(MIB, Addr[i]);
1655 MIB.addReg(SrcReg, false, false, isKill);
1656 NewMIs.push_back(MIB);
1657}
1658
1659static unsigned getLoadRegOpcode(const TargetRegisterClass *RC,
1660 unsigned StackAlign) {
1661 unsigned Opc = 0;
1662 if (RC == &X86::GR64RegClass) {
1663 Opc = X86::MOV64rm;
1664 } else if (RC == &X86::GR32RegClass) {
1665 Opc = X86::MOV32rm;
1666 } else if (RC == &X86::GR16RegClass) {
1667 Opc = X86::MOV16rm;
1668 } else if (RC == &X86::GR8RegClass) {
1669 Opc = X86::MOV8rm;
1670 } else if (RC == &X86::GR32_RegClass) {
1671 Opc = X86::MOV32_rm;
1672 } else if (RC == &X86::GR16_RegClass) {
1673 Opc = X86::MOV16_rm;
1674 } else if (RC == &X86::RFP80RegClass) {
1675 Opc = X86::LD_Fp80m;
1676 } else if (RC == &X86::RFP64RegClass) {
1677 Opc = X86::LD_Fp64m;
1678 } else if (RC == &X86::RFP32RegClass) {
1679 Opc = X86::LD_Fp32m;
1680 } else if (RC == &X86::FR32RegClass) {
1681 Opc = X86::MOVSSrm;
1682 } else if (RC == &X86::FR64RegClass) {
1683 Opc = X86::MOVSDrm;
1684 } else if (RC == &X86::VR128RegClass) {
1685 // FIXME: Use movaps once we are capable of selectively
1686 // aligning functions that spill SSE registers on 16-byte boundaries.
1687 Opc = StackAlign >= 16 ? X86::MOVAPSrm : X86::MOVUPSrm;
1688 } else if (RC == &X86::VR64RegClass) {
1689 Opc = X86::MMX_MOVQ64rm;
1690 } else {
1691 assert(0 && "Unknown regclass");
1692 abort();
1693 }
1694
1695 return Opc;
1696}
1697
1698void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1699 MachineBasicBlock::iterator MI,
1700 unsigned DestReg, int FrameIdx,
1701 const TargetRegisterClass *RC) const{
1702 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1703 addFrameReference(BuildMI(MBB, MI, get(Opc), DestReg), FrameIdx);
1704}
1705
1706void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
1707 SmallVectorImpl<MachineOperand> &Addr,
1708 const TargetRegisterClass *RC,
1709 SmallVectorImpl<MachineInstr*> &NewMIs) const {
1710 unsigned Opc = getLoadRegOpcode(RC, RI.getStackAlignment());
1711 MachineInstrBuilder MIB = BuildMI(get(Opc), DestReg);
1712 for (unsigned i = 0, e = Addr.size(); i != e; ++i)
1713 MIB = X86InstrAddOperand(MIB, Addr[i]);
1714 NewMIs.push_back(MIB);
1715}
1716
Owen Anderson6690c7f2008-01-04 23:57:37 +00001717bool X86InstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1718 MachineBasicBlock::iterator MI,
1719 const std::vector<CalleeSavedInfo> &CSI) const {
1720 if (CSI.empty())
1721 return false;
1722
1723 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1724 unsigned SlotSize = is64Bit ? 8 : 4;
1725
1726 MachineFunction &MF = *MBB.getParent();
1727 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1728 X86FI->setCalleeSavedFrameSize(CSI.size() * SlotSize);
1729
1730 unsigned Opc = is64Bit ? X86::PUSH64r : X86::PUSH32r;
1731 for (unsigned i = CSI.size(); i != 0; --i) {
1732 unsigned Reg = CSI[i-1].getReg();
1733 // Add the callee-saved register as live-in. It's killed at the spill.
1734 MBB.addLiveIn(Reg);
1735 BuildMI(MBB, MI, get(Opc)).addReg(Reg);
1736 }
1737 return true;
1738}
1739
1740bool X86InstrInfo::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1741 MachineBasicBlock::iterator MI,
1742 const std::vector<CalleeSavedInfo> &CSI) const {
1743 if (CSI.empty())
1744 return false;
1745
1746 bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
1747
1748 unsigned Opc = is64Bit ? X86::POP64r : X86::POP32r;
1749 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1750 unsigned Reg = CSI[i].getReg();
1751 BuildMI(MBB, MI, get(Opc), Reg);
1752 }
1753 return true;
1754}
1755
Owen Anderson9a184ef2008-01-07 01:35:02 +00001756static MachineInstr *FuseTwoAddrInst(unsigned Opcode,
1757 SmallVector<MachineOperand,4> &MOs,
1758 MachineInstr *MI, const TargetInstrInfo &TII) {
1759 // Create the base instruction with the memory operand as the first part.
1760 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1761 MachineInstrBuilder MIB(NewMI);
1762 unsigned NumAddrOps = MOs.size();
1763 for (unsigned i = 0; i != NumAddrOps; ++i)
1764 MIB = X86InstrAddOperand(MIB, MOs[i]);
1765 if (NumAddrOps < 4) // FrameIndex only
1766 MIB.addImm(1).addReg(0).addImm(0);
1767
1768 // Loop over the rest of the ri operands, converting them over.
Chris Lattner5b930372008-01-07 07:27:27 +00001769 unsigned NumOps = MI->getDesc().getNumOperands()-2;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001770 for (unsigned i = 0; i != NumOps; ++i) {
1771 MachineOperand &MO = MI->getOperand(i+2);
1772 MIB = X86InstrAddOperand(MIB, MO);
1773 }
1774 for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
1775 MachineOperand &MO = MI->getOperand(i);
1776 MIB = X86InstrAddOperand(MIB, MO);
1777 }
1778 return MIB;
1779}
1780
1781static MachineInstr *FuseInst(unsigned Opcode, unsigned OpNo,
1782 SmallVector<MachineOperand,4> &MOs,
1783 MachineInstr *MI, const TargetInstrInfo &TII) {
1784 MachineInstr *NewMI = new MachineInstr(TII.get(Opcode), true);
1785 MachineInstrBuilder MIB(NewMI);
1786
1787 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1788 MachineOperand &MO = MI->getOperand(i);
1789 if (i == OpNo) {
1790 assert(MO.isRegister() && "Expected to fold into reg operand!");
1791 unsigned NumAddrOps = MOs.size();
1792 for (unsigned i = 0; i != NumAddrOps; ++i)
1793 MIB = X86InstrAddOperand(MIB, MOs[i]);
1794 if (NumAddrOps < 4) // FrameIndex only
1795 MIB.addImm(1).addReg(0).addImm(0);
1796 } else {
1797 MIB = X86InstrAddOperand(MIB, MO);
1798 }
1799 }
1800 return MIB;
1801}
1802
1803static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
1804 SmallVector<MachineOperand,4> &MOs,
1805 MachineInstr *MI) {
1806 MachineInstrBuilder MIB = BuildMI(TII.get(Opcode));
1807
1808 unsigned NumAddrOps = MOs.size();
1809 for (unsigned i = 0; i != NumAddrOps; ++i)
1810 MIB = X86InstrAddOperand(MIB, MOs[i]);
1811 if (NumAddrOps < 4) // FrameIndex only
1812 MIB.addImm(1).addReg(0).addImm(0);
1813 return MIB.addImm(0);
1814}
1815
1816MachineInstr*
1817X86InstrInfo::foldMemoryOperand(MachineInstr *MI, unsigned i,
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001818 SmallVector<MachineOperand,4> &MOs) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001819 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
1820 bool isTwoAddrFold = false;
Chris Lattner5b930372008-01-07 07:27:27 +00001821 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001822 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00001823 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001824
1825 MachineInstr *NewMI = NULL;
1826 // Folding a memory location into the two-address part of a two-address
1827 // instruction is different than folding it other places. It requires
1828 // replacing the *two* registers with the memory location.
1829 if (isTwoAddr && NumOps >= 2 && i < 2 &&
1830 MI->getOperand(0).isRegister() &&
1831 MI->getOperand(1).isRegister() &&
1832 MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
1833 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
1834 isTwoAddrFold = true;
1835 } else if (i == 0) { // If operand 0
1836 if (MI->getOpcode() == X86::MOV16r0)
1837 NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
1838 else if (MI->getOpcode() == X86::MOV32r0)
1839 NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
1840 else if (MI->getOpcode() == X86::MOV64r0)
1841 NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
1842 else if (MI->getOpcode() == X86::MOV8r0)
1843 NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
1844 if (NewMI) {
1845 NewMI->copyKillDeadInfo(MI);
1846 return NewMI;
1847 }
1848
1849 OpcodeTablePtr = &RegOp2MemOpTable0;
1850 } else if (i == 1) {
1851 OpcodeTablePtr = &RegOp2MemOpTable1;
1852 } else if (i == 2) {
1853 OpcodeTablePtr = &RegOp2MemOpTable2;
1854 }
1855
1856 // If table selected...
1857 if (OpcodeTablePtr) {
1858 // Find the Opcode to fuse
1859 DenseMap<unsigned*, unsigned>::iterator I =
1860 OpcodeTablePtr->find((unsigned*)MI->getOpcode());
1861 if (I != OpcodeTablePtr->end()) {
1862 if (isTwoAddrFold)
1863 NewMI = FuseTwoAddrInst(I->second, MOs, MI, *this);
1864 else
1865 NewMI = FuseInst(I->second, i, MOs, MI, *this);
1866 NewMI->copyKillDeadInfo(MI);
1867 return NewMI;
1868 }
1869 }
1870
1871 // No fusion
1872 if (PrintFailedFusing)
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001873 cerr << "We failed to fuse operand " << i << *MI;
Owen Anderson9a184ef2008-01-07 01:35:02 +00001874 return NULL;
1875}
1876
1877
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001878MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1879 MachineInstr *MI,
Owen Anderson9a184ef2008-01-07 01:35:02 +00001880 SmallVectorImpl<unsigned> &Ops,
1881 int FrameIndex) const {
1882 // Check switch flag
1883 if (NoFusing) return NULL;
1884
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001885 const MachineFrameInfo *MFI = MF.getFrameInfo();
1886 unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
1887 // FIXME: Move alignment requirement into tables?
1888 if (Alignment < 16) {
1889 switch (MI->getOpcode()) {
1890 default: break;
1891 // Not always safe to fold movsd into these instructions since their load
1892 // folding variants expects the address to be 16 byte aligned.
1893 case X86::FsANDNPDrr:
1894 case X86::FsANDNPSrr:
1895 case X86::FsANDPDrr:
1896 case X86::FsANDPSrr:
1897 case X86::FsORPDrr:
1898 case X86::FsORPSrr:
1899 case X86::FsXORPDrr:
1900 case X86::FsXORPSrr:
1901 return NULL;
1902 }
1903 }
1904
Owen Anderson9a184ef2008-01-07 01:35:02 +00001905 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1906 unsigned NewOpc = 0;
1907 switch (MI->getOpcode()) {
1908 default: return NULL;
1909 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1910 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1911 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1912 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1913 }
1914 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00001915 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001916 MI->getOperand(1).ChangeToImmediate(0);
1917 } else if (Ops.size() != 1)
1918 return NULL;
1919
1920 SmallVector<MachineOperand,4> MOs;
1921 MOs.push_back(MachineOperand::CreateFI(FrameIndex));
1922 return foldMemoryOperand(MI, Ops[0], MOs);
1923}
1924
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001925MachineInstr* X86InstrInfo::foldMemoryOperand(MachineFunction &MF,
1926 MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001927 SmallVectorImpl<unsigned> &Ops,
1928 MachineInstr *LoadMI) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001929 // Check switch flag
1930 if (NoFusing) return NULL;
1931
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001932 unsigned Alignment = 0;
1933 for (unsigned i = 0, e = LoadMI->getNumMemOperands(); i != e; ++i) {
Dan Gohman1fad9e62008-04-07 19:35:22 +00001934 const MachineMemOperand &MRO = LoadMI->getMemOperand(i);
Evan Cheng4f2f3f62008-02-08 21:20:40 +00001935 unsigned Align = MRO.getAlignment();
1936 if (Align > Alignment)
1937 Alignment = Align;
1938 }
1939
1940 // FIXME: Move alignment requirement into tables?
1941 if (Alignment < 16) {
1942 switch (MI->getOpcode()) {
1943 default: break;
1944 // Not always safe to fold movsd into these instructions since their load
1945 // folding variants expects the address to be 16 byte aligned.
1946 case X86::FsANDNPDrr:
1947 case X86::FsANDNPSrr:
1948 case X86::FsANDPDrr:
1949 case X86::FsANDPSrr:
1950 case X86::FsORPDrr:
1951 case X86::FsORPSrr:
1952 case X86::FsXORPDrr:
1953 case X86::FsXORPSrr:
1954 return NULL;
1955 }
1956 }
1957
Owen Anderson9a184ef2008-01-07 01:35:02 +00001958 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1959 unsigned NewOpc = 0;
1960 switch (MI->getOpcode()) {
1961 default: return NULL;
1962 case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
1963 case X86::TEST16rr: NewOpc = X86::CMP16ri; break;
1964 case X86::TEST32rr: NewOpc = X86::CMP32ri; break;
1965 case X86::TEST64rr: NewOpc = X86::CMP64ri32; break;
1966 }
1967 // Change to CMPXXri r, 0 first.
Chris Lattner86bb02f2008-01-11 18:10:50 +00001968 MI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00001969 MI->getOperand(1).ChangeToImmediate(0);
1970 } else if (Ops.size() != 1)
1971 return NULL;
1972
1973 SmallVector<MachineOperand,4> MOs;
Chris Lattner5b930372008-01-07 07:27:27 +00001974 unsigned NumOps = LoadMI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00001975 for (unsigned i = NumOps - 4; i != NumOps; ++i)
1976 MOs.push_back(LoadMI->getOperand(i));
1977 return foldMemoryOperand(MI, Ops[0], MOs);
1978}
1979
1980
1981bool X86InstrInfo::canFoldMemoryOperand(MachineInstr *MI,
Chris Lattnerb4cbb682008-01-09 00:37:18 +00001982 SmallVectorImpl<unsigned> &Ops) const {
Owen Anderson9a184ef2008-01-07 01:35:02 +00001983 // Check switch flag
1984 if (NoFusing) return 0;
1985
1986 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1987 switch (MI->getOpcode()) {
1988 default: return false;
1989 case X86::TEST8rr:
1990 case X86::TEST16rr:
1991 case X86::TEST32rr:
1992 case X86::TEST64rr:
1993 return true;
1994 }
1995 }
1996
1997 if (Ops.size() != 1)
1998 return false;
1999
2000 unsigned OpNum = Ops[0];
2001 unsigned Opc = MI->getOpcode();
Chris Lattner5b930372008-01-07 07:27:27 +00002002 unsigned NumOps = MI->getDesc().getNumOperands();
Owen Anderson9a184ef2008-01-07 01:35:02 +00002003 bool isTwoAddr = NumOps > 1 &&
Chris Lattner5b930372008-01-07 07:27:27 +00002004 MI->getDesc().getOperandConstraint(1, TOI::TIED_TO) != -1;
Owen Anderson9a184ef2008-01-07 01:35:02 +00002005
2006 // Folding a memory location into the two-address part of a two-address
2007 // instruction is different than folding it other places. It requires
2008 // replacing the *two* registers with the memory location.
2009 const DenseMap<unsigned*, unsigned> *OpcodeTablePtr = NULL;
2010 if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
2011 OpcodeTablePtr = &RegOp2MemOpTable2Addr;
2012 } else if (OpNum == 0) { // If operand 0
2013 switch (Opc) {
2014 case X86::MOV16r0:
2015 case X86::MOV32r0:
2016 case X86::MOV64r0:
2017 case X86::MOV8r0:
2018 return true;
2019 default: break;
2020 }
2021 OpcodeTablePtr = &RegOp2MemOpTable0;
2022 } else if (OpNum == 1) {
2023 OpcodeTablePtr = &RegOp2MemOpTable1;
2024 } else if (OpNum == 2) {
2025 OpcodeTablePtr = &RegOp2MemOpTable2;
2026 }
2027
2028 if (OpcodeTablePtr) {
2029 // Find the Opcode to fuse
2030 DenseMap<unsigned*, unsigned>::iterator I =
2031 OpcodeTablePtr->find((unsigned*)Opc);
2032 if (I != OpcodeTablePtr->end())
2033 return true;
2034 }
2035 return false;
2036}
2037
2038bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
2039 unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
2040 SmallVectorImpl<MachineInstr*> &NewMIs) const {
2041 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2042 MemOp2RegOpTable.find((unsigned*)MI->getOpcode());
2043 if (I == MemOp2RegOpTable.end())
2044 return false;
2045 unsigned Opc = I->second.first;
2046 unsigned Index = I->second.second & 0xf;
2047 bool FoldedLoad = I->second.second & (1 << 4);
2048 bool FoldedStore = I->second.second & (1 << 5);
2049 if (UnfoldLoad && !FoldedLoad)
2050 return false;
2051 UnfoldLoad &= FoldedLoad;
2052 if (UnfoldStore && !FoldedStore)
2053 return false;
2054 UnfoldStore &= FoldedStore;
2055
Chris Lattner5b930372008-01-07 07:27:27 +00002056 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002057 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002058 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002059 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2060 SmallVector<MachineOperand,4> AddrOps;
2061 SmallVector<MachineOperand,2> BeforeOps;
2062 SmallVector<MachineOperand,2> AfterOps;
2063 SmallVector<MachineOperand,4> ImpOps;
2064 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2065 MachineOperand &Op = MI->getOperand(i);
2066 if (i >= Index && i < Index+4)
2067 AddrOps.push_back(Op);
2068 else if (Op.isRegister() && Op.isImplicit())
2069 ImpOps.push_back(Op);
2070 else if (i < Index)
2071 BeforeOps.push_back(Op);
2072 else if (i > Index)
2073 AfterOps.push_back(Op);
2074 }
2075
2076 // Emit the load instruction.
2077 if (UnfoldLoad) {
2078 loadRegFromAddr(MF, Reg, AddrOps, RC, NewMIs);
2079 if (UnfoldStore) {
2080 // Address operands cannot be marked isKill.
2081 for (unsigned i = 1; i != 5; ++i) {
2082 MachineOperand &MO = NewMIs[0]->getOperand(i);
2083 if (MO.isRegister())
2084 MO.setIsKill(false);
2085 }
2086 }
2087 }
2088
2089 // Emit the data processing instruction.
2090 MachineInstr *DataMI = new MachineInstr(TID, true);
2091 MachineInstrBuilder MIB(DataMI);
2092
2093 if (FoldedStore)
2094 MIB.addReg(Reg, true);
2095 for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
2096 MIB = X86InstrAddOperand(MIB, BeforeOps[i]);
2097 if (FoldedLoad)
2098 MIB.addReg(Reg);
2099 for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
2100 MIB = X86InstrAddOperand(MIB, AfterOps[i]);
2101 for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
2102 MachineOperand &MO = ImpOps[i];
2103 MIB.addReg(MO.getReg(), MO.isDef(), true, MO.isKill(), MO.isDead());
2104 }
2105 // Change CMP32ri r, 0 back to TEST32rr r, r, etc.
2106 unsigned NewOpc = 0;
2107 switch (DataMI->getOpcode()) {
2108 default: break;
2109 case X86::CMP64ri32:
2110 case X86::CMP32ri:
2111 case X86::CMP16ri:
2112 case X86::CMP8ri: {
2113 MachineOperand &MO0 = DataMI->getOperand(0);
2114 MachineOperand &MO1 = DataMI->getOperand(1);
2115 if (MO1.getImm() == 0) {
2116 switch (DataMI->getOpcode()) {
2117 default: break;
2118 case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
2119 case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
2120 case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
2121 case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
2122 }
Chris Lattner86bb02f2008-01-11 18:10:50 +00002123 DataMI->setDesc(get(NewOpc));
Owen Anderson9a184ef2008-01-07 01:35:02 +00002124 MO1.ChangeToRegister(MO0.getReg(), false);
2125 }
2126 }
2127 }
2128 NewMIs.push_back(DataMI);
2129
2130 // Emit the store instruction.
2131 if (UnfoldStore) {
2132 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002133 const TargetRegisterClass *DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002134 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2135 storeRegToAddr(MF, Reg, true, AddrOps, DstRC, NewMIs);
2136 }
2137
2138 return true;
2139}
2140
2141bool
2142X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
2143 SmallVectorImpl<SDNode*> &NewNodes) const {
2144 if (!N->isTargetOpcode())
2145 return false;
2146
2147 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2148 MemOp2RegOpTable.find((unsigned*)N->getTargetOpcode());
2149 if (I == MemOp2RegOpTable.end())
2150 return false;
2151 unsigned Opc = I->second.first;
2152 unsigned Index = I->second.second & 0xf;
2153 bool FoldedLoad = I->second.second & (1 << 4);
2154 bool FoldedStore = I->second.second & (1 << 5);
Chris Lattner5b930372008-01-07 07:27:27 +00002155 const TargetInstrDesc &TID = get(Opc);
Owen Anderson9a184ef2008-01-07 01:35:02 +00002156 const TargetOperandInfo &TOI = TID.OpInfo[Index];
Chris Lattnereeedb482008-01-07 02:39:19 +00002157 const TargetRegisterClass *RC = TOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002158 ? getPointerRegClass() : RI.getRegClass(TOI.RegClass);
2159 std::vector<SDOperand> AddrOps;
2160 std::vector<SDOperand> BeforeOps;
2161 std::vector<SDOperand> AfterOps;
2162 unsigned NumOps = N->getNumOperands();
2163 for (unsigned i = 0; i != NumOps-1; ++i) {
2164 SDOperand Op = N->getOperand(i);
2165 if (i >= Index && i < Index+4)
2166 AddrOps.push_back(Op);
2167 else if (i < Index)
2168 BeforeOps.push_back(Op);
2169 else if (i > Index)
2170 AfterOps.push_back(Op);
2171 }
2172 SDOperand Chain = N->getOperand(NumOps-1);
2173 AddrOps.push_back(Chain);
2174
2175 // Emit the load instruction.
2176 SDNode *Load = 0;
2177 if (FoldedLoad) {
2178 MVT::ValueType VT = *RC->vt_begin();
2179 Load = DAG.getTargetNode(getLoadRegOpcode(RC, RI.getStackAlignment()), VT,
2180 MVT::Other, &AddrOps[0], AddrOps.size());
2181 NewNodes.push_back(Load);
2182 }
2183
2184 // Emit the data processing instruction.
2185 std::vector<MVT::ValueType> VTs;
2186 const TargetRegisterClass *DstRC = 0;
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002187 if (TID.getNumDefs() > 0) {
Owen Anderson9a184ef2008-01-07 01:35:02 +00002188 const TargetOperandInfo &DstTOI = TID.OpInfo[0];
Chris Lattnereeedb482008-01-07 02:39:19 +00002189 DstRC = DstTOI.isLookupPtrRegClass()
Owen Anderson9a184ef2008-01-07 01:35:02 +00002190 ? getPointerRegClass() : RI.getRegClass(DstTOI.RegClass);
2191 VTs.push_back(*DstRC->vt_begin());
2192 }
2193 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
2194 MVT::ValueType VT = N->getValueType(i);
Chris Lattner0c2a4f32008-01-07 03:13:06 +00002195 if (VT != MVT::Other && i >= (unsigned)TID.getNumDefs())
Owen Anderson9a184ef2008-01-07 01:35:02 +00002196 VTs.push_back(VT);
2197 }
2198 if (Load)
2199 BeforeOps.push_back(SDOperand(Load, 0));
2200 std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
2201 SDNode *NewNode= DAG.getTargetNode(Opc, VTs, &BeforeOps[0], BeforeOps.size());
2202 NewNodes.push_back(NewNode);
2203
2204 // Emit the store instruction.
2205 if (FoldedStore) {
2206 AddrOps.pop_back();
2207 AddrOps.push_back(SDOperand(NewNode, 0));
2208 AddrOps.push_back(Chain);
2209 SDNode *Store = DAG.getTargetNode(getStoreRegOpcode(DstRC, RI.getStackAlignment()),
2210 MVT::Other, &AddrOps[0], AddrOps.size());
2211 NewNodes.push_back(Store);
2212 }
2213
2214 return true;
2215}
2216
2217unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
2218 bool UnfoldLoad, bool UnfoldStore) const {
2219 DenseMap<unsigned*, std::pair<unsigned,unsigned> >::iterator I =
2220 MemOp2RegOpTable.find((unsigned*)Opc);
2221 if (I == MemOp2RegOpTable.end())
2222 return 0;
2223 bool FoldedLoad = I->second.second & (1 << 4);
2224 bool FoldedStore = I->second.second & (1 << 5);
2225 if (UnfoldLoad && !FoldedLoad)
2226 return 0;
2227 if (UnfoldStore && !FoldedStore)
2228 return 0;
2229 return I->second.first;
2230}
2231
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002232bool X86InstrInfo::BlockHasNoFallThrough(MachineBasicBlock &MBB) const {
2233 if (MBB.empty()) return false;
2234
2235 switch (MBB.back().getOpcode()) {
Arnold Schwaighofere2d6bbb2007-10-11 19:40:01 +00002236 case X86::TCRETURNri:
2237 case X86::TCRETURNdi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002238 case X86::RET: // Return.
2239 case X86::RETI:
2240 case X86::TAILJMPd:
2241 case X86::TAILJMPr:
2242 case X86::TAILJMPm:
2243 case X86::JMP: // Uncond branch.
2244 case X86::JMP32r: // Indirect branch.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002245 case X86::JMP64r: // Indirect branch (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002246 case X86::JMP32m: // Indirect branch through mem.
Dan Gohmanb15b6b52007-09-17 15:19:08 +00002247 case X86::JMP64m: // Indirect branch through mem (64-bit).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002248 return true;
2249 default: return false;
2250 }
2251}
2252
2253bool X86InstrInfo::
2254ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
2255 assert(Cond.size() == 1 && "Invalid X86 branch condition!");
2256 Cond[0].setImm(GetOppositeBranchCondition((X86::CondCode)Cond[0].getImm()));
2257 return false;
2258}
2259
2260const TargetRegisterClass *X86InstrInfo::getPointerRegClass() const {
2261 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
2262 if (Subtarget->is64Bit())
2263 return &X86::GR64RegClass;
2264 else
2265 return &X86::GR32RegClass;
2266}
Nicolas Geoffraycb162a02008-04-16 20:10:13 +00002267
2268unsigned X86InstrInfo::sizeOfImm(const TargetInstrDesc *Desc) {
2269 switch (Desc->TSFlags & X86II::ImmMask) {
2270 case X86II::Imm8: return 1;
2271 case X86II::Imm16: return 2;
2272 case X86II::Imm32: return 4;
2273 case X86II::Imm64: return 8;
2274 default: assert(0 && "Immediate size not set!");
2275 return 0;
2276 }
2277}
2278
2279/// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended register?
2280/// e.g. r8, xmm8, etc.
2281bool X86InstrInfo::isX86_64ExtendedReg(const MachineOperand &MO) {
2282 if (!MO.isRegister()) return false;
2283 switch (MO.getReg()) {
2284 default: break;
2285 case X86::R8: case X86::R9: case X86::R10: case X86::R11:
2286 case X86::R12: case X86::R13: case X86::R14: case X86::R15:
2287 case X86::R8D: case X86::R9D: case X86::R10D: case X86::R11D:
2288 case X86::R12D: case X86::R13D: case X86::R14D: case X86::R15D:
2289 case X86::R8W: case X86::R9W: case X86::R10W: case X86::R11W:
2290 case X86::R12W: case X86::R13W: case X86::R14W: case X86::R15W:
2291 case X86::R8B: case X86::R9B: case X86::R10B: case X86::R11B:
2292 case X86::R12B: case X86::R13B: case X86::R14B: case X86::R15B:
2293 case X86::XMM8: case X86::XMM9: case X86::XMM10: case X86::XMM11:
2294 case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
2295 return true;
2296 }
2297 return false;
2298}
2299
2300
2301/// determineREX - Determine if the MachineInstr has to be encoded with a X86-64
2302/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
2303/// size, and 3) use of X86-64 extended registers.
2304unsigned X86InstrInfo::determineREX(const MachineInstr &MI) {
2305 unsigned REX = 0;
2306 const TargetInstrDesc &Desc = MI.getDesc();
2307
2308 // Pseudo instructions do not need REX prefix byte.
2309 if ((Desc.TSFlags & X86II::FormMask) == X86II::Pseudo)
2310 return 0;
2311 if (Desc.TSFlags & X86II::REX_W)
2312 REX |= 1 << 3;
2313
2314 unsigned NumOps = Desc.getNumOperands();
2315 if (NumOps) {
2316 bool isTwoAddr = NumOps > 1 &&
2317 Desc.getOperandConstraint(1, TOI::TIED_TO) != -1;
2318
2319 // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
2320 unsigned i = isTwoAddr ? 1 : 0;
2321 for (unsigned e = NumOps; i != e; ++i) {
2322 const MachineOperand& MO = MI.getOperand(i);
2323 if (MO.isRegister()) {
2324 unsigned Reg = MO.getReg();
2325 if (isX86_64NonExtLowByteReg(Reg))
2326 REX |= 0x40;
2327 }
2328 }
2329
2330 switch (Desc.TSFlags & X86II::FormMask) {
2331 case X86II::MRMInitReg:
2332 if (isX86_64ExtendedReg(MI.getOperand(0)))
2333 REX |= (1 << 0) | (1 << 2);
2334 break;
2335 case X86II::MRMSrcReg: {
2336 if (isX86_64ExtendedReg(MI.getOperand(0)))
2337 REX |= 1 << 2;
2338 i = isTwoAddr ? 2 : 1;
2339 for (unsigned e = NumOps; i != e; ++i) {
2340 const MachineOperand& MO = MI.getOperand(i);
2341 if (isX86_64ExtendedReg(MO))
2342 REX |= 1 << 0;
2343 }
2344 break;
2345 }
2346 case X86II::MRMSrcMem: {
2347 if (isX86_64ExtendedReg(MI.getOperand(0)))
2348 REX |= 1 << 2;
2349 unsigned Bit = 0;
2350 i = isTwoAddr ? 2 : 1;
2351 for (; i != NumOps; ++i) {
2352 const MachineOperand& MO = MI.getOperand(i);
2353 if (MO.isRegister()) {
2354 if (isX86_64ExtendedReg(MO))
2355 REX |= 1 << Bit;
2356 Bit++;
2357 }
2358 }
2359 break;
2360 }
2361 case X86II::MRM0m: case X86II::MRM1m:
2362 case X86II::MRM2m: case X86II::MRM3m:
2363 case X86II::MRM4m: case X86II::MRM5m:
2364 case X86II::MRM6m: case X86II::MRM7m:
2365 case X86II::MRMDestMem: {
2366 unsigned e = isTwoAddr ? 5 : 4;
2367 i = isTwoAddr ? 1 : 0;
2368 if (NumOps > e && isX86_64ExtendedReg(MI.getOperand(e)))
2369 REX |= 1 << 2;
2370 unsigned Bit = 0;
2371 for (; i != e; ++i) {
2372 const MachineOperand& MO = MI.getOperand(i);
2373 if (MO.isRegister()) {
2374 if (isX86_64ExtendedReg(MO))
2375 REX |= 1 << Bit;
2376 Bit++;
2377 }
2378 }
2379 break;
2380 }
2381 default: {
2382 if (isX86_64ExtendedReg(MI.getOperand(0)))
2383 REX |= 1 << 0;
2384 i = isTwoAddr ? 2 : 1;
2385 for (unsigned e = NumOps; i != e; ++i) {
2386 const MachineOperand& MO = MI.getOperand(i);
2387 if (isX86_64ExtendedReg(MO))
2388 REX |= 1 << 2;
2389 }
2390 break;
2391 }
2392 }
2393 }
2394 return REX;
2395}
2396
2397/// sizePCRelativeBlockAddress - This method returns the size of a PC
2398/// relative block address instruction
2399///
2400static unsigned sizePCRelativeBlockAddress() {
2401 return 4;
2402}
2403
2404/// sizeGlobalAddress - Give the size of the emission of this global address
2405///
2406static unsigned sizeGlobalAddress(bool dword) {
2407 return dword ? 8 : 4;
2408}
2409
2410/// sizeConstPoolAddress - Give the size of the emission of this constant
2411/// pool address
2412///
2413static unsigned sizeConstPoolAddress(bool dword) {
2414 return dword ? 8 : 4;
2415}
2416
2417/// sizeExternalSymbolAddress - Give the size of the emission of this external
2418/// symbol
2419///
2420static unsigned sizeExternalSymbolAddress(bool dword) {
2421 return dword ? 8 : 4;
2422}
2423
2424/// sizeJumpTableAddress - Give the size of the emission of this jump
2425/// table address
2426///
2427static unsigned sizeJumpTableAddress(bool dword) {
2428 return dword ? 8 : 4;
2429}
2430
2431static unsigned sizeConstant(unsigned Size) {
2432 return Size;
2433}
2434
2435static unsigned sizeRegModRMByte(){
2436 return 1;
2437}
2438
2439static unsigned sizeSIBByte(){
2440 return 1;
2441}
2442
2443static unsigned getDisplacementFieldSize(const MachineOperand *RelocOp) {
2444 unsigned FinalSize = 0;
2445 // If this is a simple integer displacement that doesn't require a relocation.
2446 if (!RelocOp) {
2447 FinalSize += sizeConstant(4);
2448 return FinalSize;
2449 }
2450
2451 // Otherwise, this is something that requires a relocation.
2452 if (RelocOp->isGlobalAddress()) {
2453 FinalSize += sizeGlobalAddress(false);
2454 } else if (RelocOp->isConstantPoolIndex()) {
2455 FinalSize += sizeConstPoolAddress(false);
2456 } else if (RelocOp->isJumpTableIndex()) {
2457 FinalSize += sizeJumpTableAddress(false);
2458 } else {
2459 assert(0 && "Unknown value to relocate!");
2460 }
2461 return FinalSize;
2462}
2463
2464static unsigned getMemModRMByteSize(const MachineInstr &MI, unsigned Op,
2465 bool IsPIC, bool Is64BitMode) {
2466 const MachineOperand &Op3 = MI.getOperand(Op+3);
2467 int DispVal = 0;
2468 const MachineOperand *DispForReloc = 0;
2469 unsigned FinalSize = 0;
2470
2471 // Figure out what sort of displacement we have to handle here.
2472 if (Op3.isGlobalAddress()) {
2473 DispForReloc = &Op3;
2474 } else if (Op3.isConstantPoolIndex()) {
2475 if (Is64BitMode || IsPIC) {
2476 DispForReloc = &Op3;
2477 } else {
2478 DispVal = 1;
2479 }
2480 } else if (Op3.isJumpTableIndex()) {
2481 if (Is64BitMode || IsPIC) {
2482 DispForReloc = &Op3;
2483 } else {
2484 DispVal = 1;
2485 }
2486 } else {
2487 DispVal = 1;
2488 }
2489
2490 const MachineOperand &Base = MI.getOperand(Op);
2491 const MachineOperand &IndexReg = MI.getOperand(Op+2);
2492
2493 unsigned BaseReg = Base.getReg();
2494
2495 // Is a SIB byte needed?
2496 if (IndexReg.getReg() == 0 &&
2497 (BaseReg == 0 || X86RegisterInfo::getX86RegNum(BaseReg) != N86::ESP)) {
2498 if (BaseReg == 0) { // Just a displacement?
2499 // Emit special case [disp32] encoding
2500 ++FinalSize;
2501 FinalSize += getDisplacementFieldSize(DispForReloc);
2502 } else {
2503 unsigned BaseRegNo = X86RegisterInfo::getX86RegNum(BaseReg);
2504 if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) {
2505 // Emit simple indirect register encoding... [EAX] f.e.
2506 ++FinalSize;
2507 // Be pessimistic and assume it's a disp32, not a disp8
2508 } else {
2509 // Emit the most general non-SIB encoding: [REG+disp32]
2510 ++FinalSize;
2511 FinalSize += getDisplacementFieldSize(DispForReloc);
2512 }
2513 }
2514
2515 } else { // We need a SIB byte, so start by outputting the ModR/M byte first
2516 assert(IndexReg.getReg() != X86::ESP &&
2517 IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
2518
2519 bool ForceDisp32 = false;
2520 if (BaseReg == 0 || DispForReloc) {
2521 // Emit the normal disp32 encoding.
2522 ++FinalSize;
2523 ForceDisp32 = true;
2524 } else {
2525 ++FinalSize;
2526 }
2527
2528 FinalSize += sizeSIBByte();
2529
2530 // Do we need to output a displacement?
2531 if (DispVal != 0 || ForceDisp32) {
2532 FinalSize += getDisplacementFieldSize(DispForReloc);
2533 }
2534 }
2535 return FinalSize;
2536}
2537
2538
2539static unsigned GetInstSizeWithDesc(const MachineInstr &MI,
2540 const TargetInstrDesc *Desc,
2541 bool IsPIC, bool Is64BitMode) {
2542
2543 unsigned Opcode = Desc->Opcode;
2544 unsigned FinalSize = 0;
2545
2546 // Emit the lock opcode prefix as needed.
2547 if (Desc->TSFlags & X86II::LOCK) ++FinalSize;
2548
2549 // Emit the repeat opcode prefix as needed.
2550 if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) ++FinalSize;
2551
2552 // Emit the operand size opcode prefix as needed.
2553 if (Desc->TSFlags & X86II::OpSize) ++FinalSize;
2554
2555 // Emit the address size opcode prefix as needed.
2556 if (Desc->TSFlags & X86II::AdSize) ++FinalSize;
2557
2558 bool Need0FPrefix = false;
2559 switch (Desc->TSFlags & X86II::Op0Mask) {
2560 case X86II::TB: // Two-byte opcode prefix
2561 case X86II::T8: // 0F 38
2562 case X86II::TA: // 0F 3A
2563 Need0FPrefix = true;
2564 break;
2565 case X86II::REP: break; // already handled.
2566 case X86II::XS: // F3 0F
2567 ++FinalSize;
2568 Need0FPrefix = true;
2569 break;
2570 case X86II::XD: // F2 0F
2571 ++FinalSize;
2572 Need0FPrefix = true;
2573 break;
2574 case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB:
2575 case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF:
2576 ++FinalSize;
2577 break; // Two-byte opcode prefix
2578 default: assert(0 && "Invalid prefix!");
2579 case 0: break; // No prefix!
2580 }
2581
2582 if (Is64BitMode) {
2583 // REX prefix
2584 unsigned REX = X86InstrInfo::determineREX(MI);
2585 if (REX)
2586 ++FinalSize;
2587 }
2588
2589 // 0x0F escape code must be emitted just before the opcode.
2590 if (Need0FPrefix)
2591 ++FinalSize;
2592
2593 switch (Desc->TSFlags & X86II::Op0Mask) {
2594 case X86II::T8: // 0F 38
2595 ++FinalSize;
2596 break;
2597 case X86II::TA: // 0F 3A
2598 ++FinalSize;
2599 break;
2600 }
2601
2602 // If this is a two-address instruction, skip one of the register operands.
2603 unsigned NumOps = Desc->getNumOperands();
2604 unsigned CurOp = 0;
2605 if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1)
2606 CurOp++;
2607
2608 switch (Desc->TSFlags & X86II::FormMask) {
2609 default: assert(0 && "Unknown FormMask value in X86 MachineCodeEmitter!");
2610 case X86II::Pseudo:
2611 // Remember the current PC offset, this is the PIC relocation
2612 // base address.
2613 switch (Opcode) {
2614 default:
2615 break;
2616 case TargetInstrInfo::INLINEASM: {
2617 const MachineFunction *MF = MI.getParent()->getParent();
2618 const char *AsmStr = MI.getOperand(0).getSymbolName();
2619 const TargetAsmInfo* AI = MF->getTarget().getTargetAsmInfo();
2620 FinalSize += AI->getInlineAsmLength(AsmStr);
2621 break;
2622 }
2623 case TargetInstrInfo::LABEL:
2624 break;
2625 case TargetInstrInfo::IMPLICIT_DEF:
2626 case TargetInstrInfo::DECLARE:
2627 case X86::DWARF_LOC:
2628 case X86::FP_REG_KILL:
2629 break;
2630 case X86::MOVPC32r: {
2631 // This emits the "call" portion of this pseudo instruction.
2632 ++FinalSize;
2633 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2634 break;
2635 }
2636 }
2637 CurOp = NumOps;
2638 break;
2639 case X86II::RawFrm:
2640 ++FinalSize;
2641
2642 if (CurOp != NumOps) {
2643 const MachineOperand &MO = MI.getOperand(CurOp++);
2644 if (MO.isMachineBasicBlock()) {
2645 FinalSize += sizePCRelativeBlockAddress();
2646 } else if (MO.isGlobalAddress()) {
2647 FinalSize += sizeGlobalAddress(false);
2648 } else if (MO.isExternalSymbol()) {
2649 FinalSize += sizeExternalSymbolAddress(false);
2650 } else if (MO.isImmediate()) {
2651 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2652 } else {
2653 assert(0 && "Unknown RawFrm operand!");
2654 }
2655 }
2656 break;
2657
2658 case X86II::AddRegFrm:
2659 ++FinalSize;
2660
2661 if (CurOp != NumOps) {
2662 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2663 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2664 if (MO1.isImmediate())
2665 FinalSize += sizeConstant(Size);
2666 else {
2667 bool dword = false;
2668 if (Opcode == X86::MOV64ri)
2669 dword = true;
2670 if (MO1.isGlobalAddress()) {
2671 FinalSize += sizeGlobalAddress(dword);
2672 } else if (MO1.isExternalSymbol())
2673 FinalSize += sizeExternalSymbolAddress(dword);
2674 else if (MO1.isConstantPoolIndex())
2675 FinalSize += sizeConstPoolAddress(dword);
2676 else if (MO1.isJumpTableIndex())
2677 FinalSize += sizeJumpTableAddress(dword);
2678 }
2679 }
2680 break;
2681
2682 case X86II::MRMDestReg: {
2683 ++FinalSize;
2684 FinalSize += sizeRegModRMByte();
2685 CurOp += 2;
2686 if (CurOp != NumOps)
2687 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2688 break;
2689 }
2690 case X86II::MRMDestMem: {
2691 ++FinalSize;
2692 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2693 CurOp += 5;
2694 if (CurOp != NumOps)
2695 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2696 break;
2697 }
2698
2699 case X86II::MRMSrcReg:
2700 ++FinalSize;
2701 FinalSize += sizeRegModRMByte();
2702 CurOp += 2;
2703 if (CurOp != NumOps)
2704 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2705 break;
2706
2707 case X86II::MRMSrcMem: {
2708
2709 ++FinalSize;
2710 FinalSize += getMemModRMByteSize(MI, CurOp+1, IsPIC, Is64BitMode);
2711 CurOp += 5;
2712 if (CurOp != NumOps)
2713 FinalSize += sizeConstant(X86InstrInfo::sizeOfImm(Desc));
2714 break;
2715 }
2716
2717 case X86II::MRM0r: case X86II::MRM1r:
2718 case X86II::MRM2r: case X86II::MRM3r:
2719 case X86II::MRM4r: case X86II::MRM5r:
2720 case X86II::MRM6r: case X86II::MRM7r:
2721 ++FinalSize;
2722 FinalSize += sizeRegModRMByte();
2723
2724 if (CurOp != NumOps) {
2725 const MachineOperand &MO1 = MI.getOperand(CurOp++);
2726 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2727 if (MO1.isImmediate())
2728 FinalSize += sizeConstant(Size);
2729 else {
2730 bool dword = false;
2731 if (Opcode == X86::MOV64ri32)
2732 dword = true;
2733 if (MO1.isGlobalAddress()) {
2734 FinalSize += sizeGlobalAddress(dword);
2735 } else if (MO1.isExternalSymbol())
2736 FinalSize += sizeExternalSymbolAddress(dword);
2737 else if (MO1.isConstantPoolIndex())
2738 FinalSize += sizeConstPoolAddress(dword);
2739 else if (MO1.isJumpTableIndex())
2740 FinalSize += sizeJumpTableAddress(dword);
2741 }
2742 }
2743 break;
2744
2745 case X86II::MRM0m: case X86II::MRM1m:
2746 case X86II::MRM2m: case X86II::MRM3m:
2747 case X86II::MRM4m: case X86II::MRM5m:
2748 case X86II::MRM6m: case X86II::MRM7m: {
2749
2750 ++FinalSize;
2751 FinalSize += getMemModRMByteSize(MI, CurOp, IsPIC, Is64BitMode);
2752 CurOp += 4;
2753
2754 if (CurOp != NumOps) {
2755 const MachineOperand &MO = MI.getOperand(CurOp++);
2756 unsigned Size = X86InstrInfo::sizeOfImm(Desc);
2757 if (MO.isImmediate())
2758 FinalSize += sizeConstant(Size);
2759 else {
2760 bool dword = false;
2761 if (Opcode == X86::MOV64mi32)
2762 dword = true;
2763 if (MO.isGlobalAddress()) {
2764 FinalSize += sizeGlobalAddress(dword);
2765 } else if (MO.isExternalSymbol())
2766 FinalSize += sizeExternalSymbolAddress(dword);
2767 else if (MO.isConstantPoolIndex())
2768 FinalSize += sizeConstPoolAddress(dword);
2769 else if (MO.isJumpTableIndex())
2770 FinalSize += sizeJumpTableAddress(dword);
2771 }
2772 }
2773 break;
2774 }
2775
2776 case X86II::MRMInitReg:
2777 ++FinalSize;
2778 // Duplicate register, used by things like MOV8r0 (aka xor reg,reg).
2779 FinalSize += sizeRegModRMByte();
2780 ++CurOp;
2781 break;
2782 }
2783
2784 if (!Desc->isVariadic() && CurOp != NumOps) {
2785 cerr << "Cannot determine size: ";
2786 MI.dump();
2787 cerr << '\n';
2788 abort();
2789 }
2790
2791
2792 return FinalSize;
2793}
2794
2795
2796unsigned X86InstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
2797 const TargetInstrDesc &Desc = MI->getDesc();
2798 bool IsPIC = (TM.getRelocationModel() == Reloc::PIC_);
2799 bool Is64BitMode = ((X86Subtarget*)TM.getSubtargetImpl())->is64Bit();
2800 unsigned Size = GetInstSizeWithDesc(*MI, &Desc, IsPIC, Is64BitMode);
2801 if (Desc.getOpcode() == X86::MOVPC32r) {
2802 Size += GetInstSizeWithDesc(*MI, &get(X86::POP32r), IsPIC, Is64BitMode);
2803 }
2804 return Size;
2805}