blob: 9c2016ce79fc522d5af2fddc38f6f263a1194dc5 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by Chris Lattner and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the PPCISelLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "PPCISelLowering.h"
15#include "PPCMachineFunctionInfo.h"
16#include "PPCPredicates.h"
17#include "PPCTargetMachine.h"
18#include "PPCPerfectShuffle.h"
Owen Anderson1636de92007-09-07 04:06:50 +000019#include "llvm/ADT/STLExtras.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/ADT/VectorExtras.h"
21#include "llvm/Analysis/ScalarEvolutionExpressions.h"
22#include "llvm/CodeGen/CallingConvLower.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineFunction.h"
25#include "llvm/CodeGen/MachineInstrBuilder.h"
26#include "llvm/CodeGen/SelectionDAG.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Constants.h"
29#include "llvm/Function.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Support/MathExtras.h"
32#include "llvm/Target/TargetOptions.h"
33#include "llvm/Support/CommandLine.h"
34using namespace llvm;
35
36static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38 cl::Hidden);
39
40PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
42
43 setPow2DivIsCheap();
44
45 // Use _setjmp/_longjmp instead of setjmp/longjmp.
46 setUseUnderscoreSetJmp(true);
47 setUseUnderscoreLongJmp(true);
48
49 // Set up the register classes.
50 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
53
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
57
58 // PowerPC does not have truncstore for i1.
59 setStoreXAction(MVT::i1, Promote);
60
61 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
72
73 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
75
Dale Johannesen472d15d2007-10-06 01:24:11 +000076 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
78 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
Dale Johannesen3d8578b2007-10-10 01:01:31 +000079 // This is used in the ppcf128->int sequence. Note it has different semantics
80 // from FP_ROUND: that rounds to nearest, this rounds to zero.
81 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
Dale Johannesen472d15d2007-10-06 01:24:11 +000082
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083 // PowerPC has no intrinsics for these particular operations
84 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
85 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
86 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
87
88 // PowerPC has no SREM/UREM instructions
89 setOperationAction(ISD::SREM, MVT::i32, Expand);
90 setOperationAction(ISD::UREM, MVT::i32, Expand);
91 setOperationAction(ISD::SREM, MVT::i64, Expand);
92 setOperationAction(ISD::UREM, MVT::i64, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +000093
94 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
95 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
96 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
97 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
98 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
99 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
100 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
101 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
102 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103
Dan Gohman2f7b1982007-10-11 23:21:31 +0000104 // We don't support sin/cos/sqrt/fmod/pow
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000105 setOperationAction(ISD::FSIN , MVT::f64, Expand);
106 setOperationAction(ISD::FCOS , MVT::f64, Expand);
107 setOperationAction(ISD::FREM , MVT::f64, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000108 setOperationAction(ISD::FPOW , MVT::f64, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000109 setOperationAction(ISD::FSIN , MVT::f32, Expand);
110 setOperationAction(ISD::FCOS , MVT::f32, Expand);
111 setOperationAction(ISD::FREM , MVT::f32, Expand);
Dan Gohman2f7b1982007-10-11 23:21:31 +0000112 setOperationAction(ISD::FPOW , MVT::f32, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000113
114 // If we're enabling GP optimizations, use hardware square root
115 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
118 }
119
120 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
122
123 // PowerPC does not have BSWAP, CTPOP or CTTZ
124 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
125 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
126 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
127 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
128 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
129 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
130
131 // PowerPC does not have ROTR
132 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
133
134 // PowerPC does not have Select
135 setOperationAction(ISD::SELECT, MVT::i32, Expand);
136 setOperationAction(ISD::SELECT, MVT::i64, Expand);
137 setOperationAction(ISD::SELECT, MVT::f32, Expand);
138 setOperationAction(ISD::SELECT, MVT::f64, Expand);
139
140 // PowerPC wants to turn select_cc of FP into fsel when possible.
141 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
143
144 // PowerPC wants to optimize integer setcc a bit
145 setOperationAction(ISD::SETCC, MVT::i32, Custom);
146
147 // PowerPC does not have BRCOND which requires SetCC
148 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
149
150 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
151
152 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
154
155 // PowerPC does not have [U|S]INT_TO_FP
156 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
158
159 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
163
164 // We cannot sextinreg(i1). Expand to shifts.
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
166
167 // Support label based line numbers.
168 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
170 if (!TM.getSubtarget<PPCSubtarget>().isDarwin()) {
171 setOperationAction(ISD::LABEL, MVT::Other, Expand);
172 } else {
173 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
174 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
175 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
176 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
177 }
178
179 // We want to legalize GlobalAddress and ConstantPool nodes into the
180 // appropriate instructions to materialize the address.
181 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
182 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
183 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
184 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
185 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
186 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
187 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
188 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
189
190 // RET must be custom lowered, to meet ABI requirements
191 setOperationAction(ISD::RET , MVT::Other, Custom);
Duncan Sands38947cd2007-07-27 12:58:54 +0000192
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000193 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
194 setOperationAction(ISD::VASTART , MVT::Other, Custom);
195
196 // VAARG is custom lowered with ELF 32 ABI
197 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
198 setOperationAction(ISD::VAARG, MVT::Other, Custom);
199 else
200 setOperationAction(ISD::VAARG, MVT::Other, Expand);
201
202 // Use the default implementation.
203 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
204 setOperationAction(ISD::VAEND , MVT::Other, Expand);
205 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
206 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
207 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
208 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
209
210 // We want to custom lower some of our intrinsics.
211 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
212
213 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
214 // They also have instructions for converting between i64 and fp.
215 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
216 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
217 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
218 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
219 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
220
221 // FIXME: disable this lowered code. This generates 64-bit register values,
222 // and we don't model the fact that the top part is clobbered by calls. We
223 // need to flag these together so that the value isn't live across a call.
224 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
225
226 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
227 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
228 } else {
229 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
230 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
231 }
232
233 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000234 // 64-bit PowerPC implementations can support i64 types directly
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000235 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
236 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
237 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
238 } else {
Chris Lattnerc882caf2007-10-19 04:08:28 +0000239 // 32-bit PowerPC wants to expand i64 shifts itself.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000240 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
241 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
242 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
243 }
244
245 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
246 // First set operation action for all vector types to expand. Then we
247 // will selectively turn on ones that can be effectively codegen'd.
248 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
249 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
250 // add/sub are legal for all supported vector VT's.
251 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
252 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
253
254 // We promote all shuffles to v16i8.
255 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
256 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
257
258 // We promote all non-typed operations to v4i32.
259 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
260 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
261 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
262 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
263 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
264 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
265 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
266 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
267 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
268 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
269 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
270 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
271
272 // No other operations are legal.
273 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
274 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
275 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
276 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
277 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
278 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
Evan Chengc5912e32007-07-30 07:51:22 +0000279 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000280 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
281 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
282 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohmanc9130bb2007-10-08 17:28:24 +0000283 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
284 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
285 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
286 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000287 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
Dan Gohman4e22ac42007-10-12 14:08:57 +0000288 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
289 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
290 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
291 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 }
293
294 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
295 // with merges, splats, etc.
296 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
297
298 setOperationAction(ISD::AND , MVT::v4i32, Legal);
299 setOperationAction(ISD::OR , MVT::v4i32, Legal);
300 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
301 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
302 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
303 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
304
305 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
306 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
307 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
308 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
309
310 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
311 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
312 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
313 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
314
315 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
316 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
317
318 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
319 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
320 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
321 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
322 }
323
324 setSetCCResultType(MVT::i32);
325 setShiftAmountType(MVT::i32);
326 setSetCCResultContents(ZeroOrOneSetCCResult);
327
328 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
329 setStackPointerRegisterToSaveRestore(PPC::X1);
330 setExceptionPointerRegister(PPC::X3);
331 setExceptionSelectorRegister(PPC::X4);
332 } else {
333 setStackPointerRegisterToSaveRestore(PPC::R1);
334 setExceptionPointerRegister(PPC::R3);
335 setExceptionSelectorRegister(PPC::R4);
336 }
337
338 // We have target-specific dag combine patterns for the following nodes:
339 setTargetDAGCombine(ISD::SINT_TO_FP);
340 setTargetDAGCombine(ISD::STORE);
341 setTargetDAGCombine(ISD::BR_CC);
342 setTargetDAGCombine(ISD::BSWAP);
343
Dale Johannesen6f3c7bf2007-10-19 00:59:18 +0000344 // Darwin long double math library functions have $LDBL128 appended.
345 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
346 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
347 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
348 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
349 }
350
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000351 computeRegisterProperties();
352}
353
354const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
355 switch (Opcode) {
356 default: return 0;
357 case PPCISD::FSEL: return "PPCISD::FSEL";
358 case PPCISD::FCFID: return "PPCISD::FCFID";
359 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
360 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
361 case PPCISD::STFIWX: return "PPCISD::STFIWX";
362 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
363 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
364 case PPCISD::VPERM: return "PPCISD::VPERM";
365 case PPCISD::Hi: return "PPCISD::Hi";
366 case PPCISD::Lo: return "PPCISD::Lo";
367 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
368 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
369 case PPCISD::SRL: return "PPCISD::SRL";
370 case PPCISD::SRA: return "PPCISD::SRA";
371 case PPCISD::SHL: return "PPCISD::SHL";
372 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
373 case PPCISD::STD_32: return "PPCISD::STD_32";
374 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
375 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
376 case PPCISD::MTCTR: return "PPCISD::MTCTR";
377 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
378 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
379 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
380 case PPCISD::MFCR: return "PPCISD::MFCR";
381 case PPCISD::VCMP: return "PPCISD::VCMP";
382 case PPCISD::VCMPo: return "PPCISD::VCMPo";
383 case PPCISD::LBRX: return "PPCISD::LBRX";
384 case PPCISD::STBRX: return "PPCISD::STBRX";
385 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
386 }
387}
388
389//===----------------------------------------------------------------------===//
390// Node matching predicates, for use by the tblgen matching code.
391//===----------------------------------------------------------------------===//
392
393/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
394static bool isFloatingPointZero(SDOperand Op) {
395 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000396 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
398 // Maybe this has already been legalized into the constant pool?
399 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
400 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000401 return CFP->getValueAPF().isZero();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000402 }
403 return false;
404}
405
406/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
407/// true if Op is undef or if it matches the specified value.
408static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
409 return Op.getOpcode() == ISD::UNDEF ||
410 cast<ConstantSDNode>(Op)->getValue() == Val;
411}
412
413/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
414/// VPKUHUM instruction.
415bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
416 if (!isUnary) {
417 for (unsigned i = 0; i != 16; ++i)
418 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
419 return false;
420 } else {
421 for (unsigned i = 0; i != 8; ++i)
422 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
423 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
424 return false;
425 }
426 return true;
427}
428
429/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
430/// VPKUWUM instruction.
431bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
432 if (!isUnary) {
433 for (unsigned i = 0; i != 16; i += 2)
434 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
435 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
436 return false;
437 } else {
438 for (unsigned i = 0; i != 8; i += 2)
439 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
440 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
441 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
442 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
443 return false;
444 }
445 return true;
446}
447
448/// isVMerge - Common function, used to match vmrg* shuffles.
449///
450static bool isVMerge(SDNode *N, unsigned UnitSize,
451 unsigned LHSStart, unsigned RHSStart) {
452 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
453 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
454 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
455 "Unsupported merge size!");
456
457 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
458 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
459 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
460 LHSStart+j+i*UnitSize) ||
461 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
462 RHSStart+j+i*UnitSize))
463 return false;
464 }
465 return true;
466}
467
468/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
469/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
470bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
471 if (!isUnary)
472 return isVMerge(N, UnitSize, 8, 24);
473 return isVMerge(N, UnitSize, 8, 8);
474}
475
476/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
477/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
478bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
479 if (!isUnary)
480 return isVMerge(N, UnitSize, 0, 16);
481 return isVMerge(N, UnitSize, 0, 0);
482}
483
484
485/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
486/// amount, otherwise return -1.
487int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
488 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
489 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
490 // Find the first non-undef value in the shuffle mask.
491 unsigned i;
492 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
493 /*search*/;
494
495 if (i == 16) return -1; // all undef.
496
497 // Otherwise, check to see if the rest of the elements are consequtively
498 // numbered from this value.
499 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
500 if (ShiftAmt < i) return -1;
501 ShiftAmt -= i;
502
503 if (!isUnary) {
504 // Check the rest of the elements to see if they are consequtive.
505 for (++i; i != 16; ++i)
506 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
507 return -1;
508 } else {
509 // Check the rest of the elements to see if they are consequtive.
510 for (++i; i != 16; ++i)
511 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
512 return -1;
513 }
514
515 return ShiftAmt;
516}
517
518/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
519/// specifies a splat of a single element that is suitable for input to
520/// VSPLTB/VSPLTH/VSPLTW.
521bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
522 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
523 N->getNumOperands() == 16 &&
524 (EltSize == 1 || EltSize == 2 || EltSize == 4));
525
526 // This is a splat operation if each element of the permute is the same, and
527 // if the value doesn't reference the second vector.
528 unsigned ElementBase = 0;
529 SDOperand Elt = N->getOperand(0);
530 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
531 ElementBase = EltV->getValue();
532 else
533 return false; // FIXME: Handle UNDEF elements too!
534
535 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
536 return false;
537
538 // Check that they are consequtive.
539 for (unsigned i = 1; i != EltSize; ++i) {
540 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
541 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
542 return false;
543 }
544
545 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
546 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
547 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
548 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
549 "Invalid VECTOR_SHUFFLE mask!");
550 for (unsigned j = 0; j != EltSize; ++j)
551 if (N->getOperand(i+j) != N->getOperand(j))
552 return false;
553 }
554
555 return true;
556}
557
Evan Chengc5912e32007-07-30 07:51:22 +0000558/// isAllNegativeZeroVector - Returns true if all elements of build_vector
559/// are -0.0.
560bool PPC::isAllNegativeZeroVector(SDNode *N) {
561 assert(N->getOpcode() == ISD::BUILD_VECTOR);
562 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
563 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
Dale Johannesendf8a8312007-08-31 04:03:46 +0000564 return CFP->getValueAPF().isNegZero();
Evan Chengc5912e32007-07-30 07:51:22 +0000565 return false;
566}
567
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000568/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
569/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
570unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
571 assert(isSplatShuffleMask(N, EltSize));
572 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
573}
574
575/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
576/// by using a vspltis[bhw] instruction of the specified element size, return
577/// the constant being splatted. The ByteSize field indicates the number of
578/// bytes of each element [124] -> [bhw].
579SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
580 SDOperand OpVal(0, 0);
581
582 // If ByteSize of the splat is bigger than the element size of the
583 // build_vector, then we have a case where we are checking for a splat where
584 // multiple elements of the buildvector are folded together into a single
585 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
586 unsigned EltSize = 16/N->getNumOperands();
587 if (EltSize < ByteSize) {
588 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
589 SDOperand UniquedVals[4];
590 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
591
592 // See if all of the elements in the buildvector agree across.
593 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
594 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
595 // If the element isn't a constant, bail fully out.
596 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
597
598
599 if (UniquedVals[i&(Multiple-1)].Val == 0)
600 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
601 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
602 return SDOperand(); // no match.
603 }
604
605 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
606 // either constant or undef values that are identical for each chunk. See
607 // if these chunks can form into a larger vspltis*.
608
609 // Check to see if all of the leading entries are either 0 or -1. If
610 // neither, then this won't fit into the immediate field.
611 bool LeadingZero = true;
612 bool LeadingOnes = true;
613 for (unsigned i = 0; i != Multiple-1; ++i) {
614 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
615
616 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
617 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
618 }
619 // Finally, check the least significant entry.
620 if (LeadingZero) {
621 if (UniquedVals[Multiple-1].Val == 0)
622 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
623 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
624 if (Val < 16)
625 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
626 }
627 if (LeadingOnes) {
628 if (UniquedVals[Multiple-1].Val == 0)
629 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
630 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
631 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
632 return DAG.getTargetConstant(Val, MVT::i32);
633 }
634
635 return SDOperand();
636 }
637
638 // Check to see if this buildvec has a single non-undef value in its elements.
639 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
640 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
641 if (OpVal.Val == 0)
642 OpVal = N->getOperand(i);
643 else if (OpVal != N->getOperand(i))
644 return SDOperand();
645 }
646
647 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
648
649 unsigned ValSizeInBytes = 0;
650 uint64_t Value = 0;
651 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
652 Value = CN->getValue();
653 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
654 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
655 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +0000656 Value = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000657 ValSizeInBytes = 4;
658 }
659
660 // If the splat value is larger than the element value, then we can never do
661 // this splat. The only case that we could fit the replicated bits into our
662 // immediate field for would be zero, and we prefer to use vxor for it.
663 if (ValSizeInBytes < ByteSize) return SDOperand();
664
665 // If the element value is larger than the splat value, cut it in half and
666 // check to see if the two halves are equal. Continue doing this until we
667 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
668 while (ValSizeInBytes > ByteSize) {
669 ValSizeInBytes >>= 1;
670
671 // If the top half equals the bottom half, we're still ok.
672 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
673 (Value & ((1 << (8*ValSizeInBytes))-1)))
674 return SDOperand();
675 }
676
677 // Properly sign extend the value.
678 int ShAmt = (4-ByteSize)*8;
679 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
680
681 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
682 if (MaskVal == 0) return SDOperand();
683
684 // Finally, if this value fits in a 5 bit sext field, return it
685 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
686 return DAG.getTargetConstant(MaskVal, MVT::i32);
687 return SDOperand();
688}
689
690//===----------------------------------------------------------------------===//
691// Addressing Mode Selection
692//===----------------------------------------------------------------------===//
693
694/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
695/// or 64-bit immediate, and if the value can be accurately represented as a
696/// sign extension from a 16-bit value. If so, this returns true and the
697/// immediate.
698static bool isIntS16Immediate(SDNode *N, short &Imm) {
699 if (N->getOpcode() != ISD::Constant)
700 return false;
701
702 Imm = (short)cast<ConstantSDNode>(N)->getValue();
703 if (N->getValueType(0) == MVT::i32)
704 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
705 else
706 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
707}
708static bool isIntS16Immediate(SDOperand Op, short &Imm) {
709 return isIntS16Immediate(Op.Val, Imm);
710}
711
712
713/// SelectAddressRegReg - Given the specified addressed, check to see if it
714/// can be represented as an indexed [r+r] operation. Returns false if it
715/// can be more efficiently represented with [r+imm].
716bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
717 SDOperand &Index,
718 SelectionDAG &DAG) {
719 short imm = 0;
720 if (N.getOpcode() == ISD::ADD) {
721 if (isIntS16Immediate(N.getOperand(1), imm))
722 return false; // r+i
723 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
724 return false; // r+i
725
726 Base = N.getOperand(0);
727 Index = N.getOperand(1);
728 return true;
729 } else if (N.getOpcode() == ISD::OR) {
730 if (isIntS16Immediate(N.getOperand(1), imm))
731 return false; // r+i can fold it if we can.
732
733 // If this is an or of disjoint bitfields, we can codegen this as an add
734 // (for better address arithmetic) if the LHS and RHS of the OR are provably
735 // disjoint.
736 uint64_t LHSKnownZero, LHSKnownOne;
737 uint64_t RHSKnownZero, RHSKnownOne;
738 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
739
740 if (LHSKnownZero) {
741 DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
742 // If all of the bits are known zero on the LHS or RHS, the add won't
743 // carry.
744 if ((LHSKnownZero | RHSKnownZero) == ~0U) {
745 Base = N.getOperand(0);
746 Index = N.getOperand(1);
747 return true;
748 }
749 }
750 }
751
752 return false;
753}
754
755/// Returns true if the address N can be represented by a base register plus
756/// a signed 16-bit displacement [r+imm], and if it is not better
757/// represented as reg+reg.
758bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
759 SDOperand &Base, SelectionDAG &DAG){
760 // If this can be more profitably realized as r+r, fail.
761 if (SelectAddressRegReg(N, Disp, Base, DAG))
762 return false;
763
764 if (N.getOpcode() == ISD::ADD) {
765 short imm = 0;
766 if (isIntS16Immediate(N.getOperand(1), imm)) {
767 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
768 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
769 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
770 } else {
771 Base = N.getOperand(0);
772 }
773 return true; // [r+i]
774 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
775 // Match LOAD (ADD (X, Lo(G))).
776 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
777 && "Cannot handle constant offsets yet!");
778 Disp = N.getOperand(1).getOperand(0); // The global address.
779 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
780 Disp.getOpcode() == ISD::TargetConstantPool ||
781 Disp.getOpcode() == ISD::TargetJumpTable);
782 Base = N.getOperand(0);
783 return true; // [&g+r]
784 }
785 } else if (N.getOpcode() == ISD::OR) {
786 short imm = 0;
787 if (isIntS16Immediate(N.getOperand(1), imm)) {
788 // If this is an or of disjoint bitfields, we can codegen this as an add
789 // (for better address arithmetic) if the LHS and RHS of the OR are
790 // provably disjoint.
791 uint64_t LHSKnownZero, LHSKnownOne;
792 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
793 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
794 // If all of the bits are known zero on the LHS or RHS, the add won't
795 // carry.
796 Base = N.getOperand(0);
797 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
798 return true;
799 }
800 }
801 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
802 // Loading from a constant address.
803
804 // If this address fits entirely in a 16-bit sext immediate field, codegen
805 // this as "d, 0"
806 short Imm;
807 if (isIntS16Immediate(CN, Imm)) {
808 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
809 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
810 return true;
811 }
812
813 // Handle 32-bit sext immediates with LIS + addr mode.
814 if (CN->getValueType(0) == MVT::i32 ||
815 (int64_t)CN->getValue() == (int)CN->getValue()) {
816 int Addr = (int)CN->getValue();
817
818 // Otherwise, break this down into an LIS + disp.
819 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
820
821 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
822 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
823 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
824 return true;
825 }
826 }
827
828 Disp = DAG.getTargetConstant(0, getPointerTy());
829 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
830 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
831 else
832 Base = N;
833 return true; // [r+0]
834}
835
836/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
837/// represented as an indexed [r+r] operation.
838bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
839 SDOperand &Index,
840 SelectionDAG &DAG) {
841 // Check to see if we can easily represent this as an [r+r] address. This
842 // will fail if it thinks that the address is more profitably represented as
843 // reg+imm, e.g. where imm = 0.
844 if (SelectAddressRegReg(N, Base, Index, DAG))
845 return true;
846
847 // If the operand is an addition, always emit this as [r+r], since this is
848 // better (for code size, and execution, as the memop does the add for free)
849 // than emitting an explicit add.
850 if (N.getOpcode() == ISD::ADD) {
851 Base = N.getOperand(0);
852 Index = N.getOperand(1);
853 return true;
854 }
855
856 // Otherwise, do it the hard way, using R0 as the base register.
857 Base = DAG.getRegister(PPC::R0, N.getValueType());
858 Index = N;
859 return true;
860}
861
862/// SelectAddressRegImmShift - Returns true if the address N can be
863/// represented by a base register plus a signed 14-bit displacement
864/// [r+imm*4]. Suitable for use by STD and friends.
865bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
866 SDOperand &Base,
867 SelectionDAG &DAG) {
868 // If this can be more profitably realized as r+r, fail.
869 if (SelectAddressRegReg(N, Disp, Base, DAG))
870 return false;
871
872 if (N.getOpcode() == ISD::ADD) {
873 short imm = 0;
874 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
875 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
876 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
877 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
878 } else {
879 Base = N.getOperand(0);
880 }
881 return true; // [r+i]
882 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
883 // Match LOAD (ADD (X, Lo(G))).
884 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
885 && "Cannot handle constant offsets yet!");
886 Disp = N.getOperand(1).getOperand(0); // The global address.
887 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
888 Disp.getOpcode() == ISD::TargetConstantPool ||
889 Disp.getOpcode() == ISD::TargetJumpTable);
890 Base = N.getOperand(0);
891 return true; // [&g+r]
892 }
893 } else if (N.getOpcode() == ISD::OR) {
894 short imm = 0;
895 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
896 // If this is an or of disjoint bitfields, we can codegen this as an add
897 // (for better address arithmetic) if the LHS and RHS of the OR are
898 // provably disjoint.
899 uint64_t LHSKnownZero, LHSKnownOne;
900 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
901 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
902 // If all of the bits are known zero on the LHS or RHS, the add won't
903 // carry.
904 Base = N.getOperand(0);
905 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
906 return true;
907 }
908 }
909 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
910 // Loading from a constant address. Verify low two bits are clear.
911 if ((CN->getValue() & 3) == 0) {
912 // If this address fits entirely in a 14-bit sext immediate field, codegen
913 // this as "d, 0"
914 short Imm;
915 if (isIntS16Immediate(CN, Imm)) {
916 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
917 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
918 return true;
919 }
920
921 // Fold the low-part of 32-bit absolute addresses into addr mode.
922 if (CN->getValueType(0) == MVT::i32 ||
923 (int64_t)CN->getValue() == (int)CN->getValue()) {
924 int Addr = (int)CN->getValue();
925
926 // Otherwise, break this down into an LIS + disp.
927 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
928
929 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
930 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
931 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
932 return true;
933 }
934 }
935 }
936
937 Disp = DAG.getTargetConstant(0, getPointerTy());
938 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
939 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
940 else
941 Base = N;
942 return true; // [r+0]
943}
944
945
946/// getPreIndexedAddressParts - returns true by value, base pointer and
947/// offset pointer and addressing mode by reference if the node's address
948/// can be legally represented as pre-indexed load / store address.
949bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
950 SDOperand &Offset,
951 ISD::MemIndexedMode &AM,
952 SelectionDAG &DAG) {
953 // Disabled by default for now.
954 if (!EnablePPCPreinc) return false;
955
956 SDOperand Ptr;
957 MVT::ValueType VT;
958 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
959 Ptr = LD->getBasePtr();
960 VT = LD->getLoadedVT();
961
962 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
963 ST = ST;
964 Ptr = ST->getBasePtr();
965 VT = ST->getStoredVT();
966 } else
967 return false;
968
969 // PowerPC doesn't have preinc load/store instructions for vectors.
970 if (MVT::isVector(VT))
971 return false;
972
973 // TODO: Check reg+reg first.
974
975 // LDU/STU use reg+imm*4, others use reg+imm.
976 if (VT != MVT::i64) {
977 // reg + imm
978 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
979 return false;
980 } else {
981 // reg + imm * 4.
982 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
983 return false;
984 }
985
986 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
987 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
988 // sext i32 to i64 when addr mode is r+i.
989 if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
990 LD->getExtensionType() == ISD::SEXTLOAD &&
991 isa<ConstantSDNode>(Offset))
992 return false;
993 }
994
995 AM = ISD::PRE_INC;
996 return true;
997}
998
999//===----------------------------------------------------------------------===//
1000// LowerOperation implementation
1001//===----------------------------------------------------------------------===//
1002
1003static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
1004 MVT::ValueType PtrVT = Op.getValueType();
1005 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1006 Constant *C = CP->getConstVal();
1007 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1008 SDOperand Zero = DAG.getConstant(0, PtrVT);
1009
1010 const TargetMachine &TM = DAG.getTarget();
1011
1012 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1013 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1014
1015 // If this is a non-darwin platform, we don't support non-static relo models
1016 // yet.
1017 if (TM.getRelocationModel() == Reloc::Static ||
1018 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1019 // Generate non-pic code that has direct accesses to the constant pool.
1020 // The address of the global is just (hi(&g)+lo(&g)).
1021 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1022 }
1023
1024 if (TM.getRelocationModel() == Reloc::PIC_) {
1025 // With PIC, the first instruction is actually "GR+hi(&G)".
1026 Hi = DAG.getNode(ISD::ADD, PtrVT,
1027 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1028 }
1029
1030 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1031 return Lo;
1032}
1033
1034static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1035 MVT::ValueType PtrVT = Op.getValueType();
1036 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1037 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1038 SDOperand Zero = DAG.getConstant(0, PtrVT);
1039
1040 const TargetMachine &TM = DAG.getTarget();
1041
1042 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1043 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1044
1045 // If this is a non-darwin platform, we don't support non-static relo models
1046 // yet.
1047 if (TM.getRelocationModel() == Reloc::Static ||
1048 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1049 // Generate non-pic code that has direct accesses to the constant pool.
1050 // The address of the global is just (hi(&g)+lo(&g)).
1051 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1052 }
1053
1054 if (TM.getRelocationModel() == Reloc::PIC_) {
1055 // With PIC, the first instruction is actually "GR+hi(&G)".
1056 Hi = DAG.getNode(ISD::ADD, PtrVT,
1057 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1058 }
1059
1060 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1061 return Lo;
1062}
1063
1064static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1065 assert(0 && "TLS not implemented for PPC.");
1066}
1067
1068static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1069 MVT::ValueType PtrVT = Op.getValueType();
1070 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1071 GlobalValue *GV = GSDN->getGlobal();
1072 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1073 SDOperand Zero = DAG.getConstant(0, PtrVT);
1074
1075 const TargetMachine &TM = DAG.getTarget();
1076
1077 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1078 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1079
1080 // If this is a non-darwin platform, we don't support non-static relo models
1081 // yet.
1082 if (TM.getRelocationModel() == Reloc::Static ||
1083 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1084 // Generate non-pic code that has direct accesses to globals.
1085 // The address of the global is just (hi(&g)+lo(&g)).
1086 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1087 }
1088
1089 if (TM.getRelocationModel() == Reloc::PIC_) {
1090 // With PIC, the first instruction is actually "GR+hi(&G)".
1091 Hi = DAG.getNode(ISD::ADD, PtrVT,
1092 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1093 }
1094
1095 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1096
1097 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1098 return Lo;
1099
1100 // If the global is weak or external, we have to go through the lazy
1101 // resolution stub.
1102 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1103}
1104
1105static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1106 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1107
1108 // If we're comparing for equality to zero, expose the fact that this is
1109 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1110 // fold the new nodes.
1111 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1112 if (C->isNullValue() && CC == ISD::SETEQ) {
1113 MVT::ValueType VT = Op.getOperand(0).getValueType();
1114 SDOperand Zext = Op.getOperand(0);
1115 if (VT < MVT::i32) {
1116 VT = MVT::i32;
1117 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1118 }
1119 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1120 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1121 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1122 DAG.getConstant(Log2b, MVT::i32));
1123 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1124 }
1125 // Leave comparisons against 0 and -1 alone for now, since they're usually
1126 // optimized. FIXME: revisit this when we can custom lower all setcc
1127 // optimizations.
1128 if (C->isAllOnesValue() || C->isNullValue())
1129 return SDOperand();
1130 }
1131
1132 // If we have an integer seteq/setne, turn it into a compare against zero
1133 // by xor'ing the rhs with the lhs, which is faster than setting a
1134 // condition register, reading it back out, and masking the correct bit. The
1135 // normal approach here uses sub to do this instead of xor. Using xor exposes
1136 // the result to other bit-twiddling opportunities.
1137 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1138 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1139 MVT::ValueType VT = Op.getValueType();
1140 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1141 Op.getOperand(1));
1142 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1143 }
1144 return SDOperand();
1145}
1146
1147static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1148 int VarArgsFrameIndex,
1149 int VarArgsStackOffset,
1150 unsigned VarArgsNumGPR,
1151 unsigned VarArgsNumFPR,
1152 const PPCSubtarget &Subtarget) {
1153
1154 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1155}
1156
1157static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1158 int VarArgsFrameIndex,
1159 int VarArgsStackOffset,
1160 unsigned VarArgsNumGPR,
1161 unsigned VarArgsNumFPR,
1162 const PPCSubtarget &Subtarget) {
1163
1164 if (Subtarget.isMachoABI()) {
1165 // vastart just stores the address of the VarArgsFrameIndex slot into the
1166 // memory location argument.
1167 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1168 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1169 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1170 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1171 SV->getOffset());
1172 }
1173
1174 // For ELF 32 ABI we follow the layout of the va_list struct.
1175 // We suppose the given va_list is already allocated.
1176 //
1177 // typedef struct {
1178 // char gpr; /* index into the array of 8 GPRs
1179 // * stored in the register save area
1180 // * gpr=0 corresponds to r3,
1181 // * gpr=1 to r4, etc.
1182 // */
1183 // char fpr; /* index into the array of 8 FPRs
1184 // * stored in the register save area
1185 // * fpr=0 corresponds to f1,
1186 // * fpr=1 to f2, etc.
1187 // */
1188 // char *overflow_arg_area;
1189 // /* location on stack that holds
1190 // * the next overflow argument
1191 // */
1192 // char *reg_save_area;
1193 // /* where r3:r10 and f1:f8 (if saved)
1194 // * are stored
1195 // */
1196 // } va_list[1];
1197
1198
1199 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1200 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1201
1202
1203 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1204
1205 SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1206 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1207
1208 SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1209 PtrVT);
1210 SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1211 PtrVT);
1212 SDOperand ConstFPROffset = DAG.getConstant(1, PtrVT);
1213
1214 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1215
1216 // Store first byte : number of int regs
1217 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1218 Op.getOperand(1), SV->getValue(),
1219 SV->getOffset());
1220 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1221 ConstFPROffset);
1222
1223 // Store second byte : number of float regs
1224 SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1225 SV->getValue(), SV->getOffset());
1226 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1227
1228 // Store second word : arguments given on stack
1229 SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1230 SV->getValue(), SV->getOffset());
1231 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1232
1233 // Store third word : arguments given in registers
1234 return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1235 SV->getOffset());
1236
1237}
1238
1239#include "PPCGenCallingConv.inc"
1240
1241/// GetFPR - Get the set of FP registers that should be allocated for arguments,
1242/// depending on which subtarget is selected.
1243static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1244 if (Subtarget.isMachoABI()) {
1245 static const unsigned FPR[] = {
1246 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1247 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1248 };
1249 return FPR;
1250 }
1251
1252
1253 static const unsigned FPR[] = {
1254 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1255 PPC::F8
1256 };
1257 return FPR;
1258}
1259
1260static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1261 int &VarArgsFrameIndex,
1262 int &VarArgsStackOffset,
1263 unsigned &VarArgsNumGPR,
1264 unsigned &VarArgsNumFPR,
1265 const PPCSubtarget &Subtarget) {
1266 // TODO: add description of PPC stack frame format, or at least some docs.
1267 //
1268 MachineFunction &MF = DAG.getMachineFunction();
1269 MachineFrameInfo *MFI = MF.getFrameInfo();
1270 SSARegMap *RegMap = MF.getSSARegMap();
1271 SmallVector<SDOperand, 8> ArgValues;
1272 SDOperand Root = Op.getOperand(0);
1273
1274 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1275 bool isPPC64 = PtrVT == MVT::i64;
1276 bool isMachoABI = Subtarget.isMachoABI();
1277 bool isELF32_ABI = Subtarget.isELF32_ABI();
1278 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1279
1280 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1281
1282 static const unsigned GPR_32[] = { // 32-bit registers.
1283 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1284 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1285 };
1286 static const unsigned GPR_64[] = { // 64-bit registers.
1287 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1288 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1289 };
1290
1291 static const unsigned *FPR = GetFPR(Subtarget);
1292
1293 static const unsigned VR[] = {
1294 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1295 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1296 };
1297
Owen Anderson1636de92007-09-07 04:06:50 +00001298 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001299 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001300 const unsigned Num_VR_Regs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001301
1302 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1303
1304 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1305
1306 // Add DAG nodes to load the arguments or copy them out of registers. On
1307 // entry to a function on PPC, the arguments start after the linkage area,
1308 // although the first ones are often in registers.
1309 //
1310 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1311 // represented with two words (long long or double) must be copied to an
1312 // even GPR_idx value or to an even ArgOffset value.
1313
1314 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1315 SDOperand ArgVal;
1316 bool needsLoad = false;
1317 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1318 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1319 unsigned ArgSize = ObjSize;
1320 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1321 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1322 // See if next argument requires stack alignment in ELF
1323 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1324 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1325 (!(Flags & AlignFlag)));
1326
1327 unsigned CurArgOffset = ArgOffset;
1328 switch (ObjectVT) {
1329 default: assert(0 && "Unhandled argument type!");
1330 case MVT::i32:
1331 // Double word align in ELF
1332 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1333 if (GPR_idx != Num_GPR_Regs) {
1334 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1335 MF.addLiveIn(GPR[GPR_idx], VReg);
1336 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1337 ++GPR_idx;
1338 } else {
1339 needsLoad = true;
1340 ArgSize = PtrByteSize;
1341 }
1342 // Stack align in ELF
1343 if (needsLoad && Expand && isELF32_ABI)
1344 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1345 // All int arguments reserve stack space in Macho ABI.
1346 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1347 break;
1348
1349 case MVT::i64: // PPC64
1350 if (GPR_idx != Num_GPR_Regs) {
1351 unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1352 MF.addLiveIn(GPR[GPR_idx], VReg);
1353 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1354 ++GPR_idx;
1355 } else {
1356 needsLoad = true;
1357 }
1358 // All int arguments reserve stack space in Macho ABI.
1359 if (isMachoABI || needsLoad) ArgOffset += 8;
1360 break;
1361
1362 case MVT::f32:
1363 case MVT::f64:
1364 // Every 4 bytes of argument space consumes one of the GPRs available for
1365 // argument passing.
1366 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1367 ++GPR_idx;
1368 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1369 ++GPR_idx;
1370 }
1371 if (FPR_idx != Num_FPR_Regs) {
1372 unsigned VReg;
1373 if (ObjectVT == MVT::f32)
1374 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1375 else
1376 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1377 MF.addLiveIn(FPR[FPR_idx], VReg);
1378 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1379 ++FPR_idx;
1380 } else {
1381 needsLoad = true;
1382 }
1383
1384 // Stack align in ELF
1385 if (needsLoad && Expand && isELF32_ABI)
1386 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1387 // All FP arguments reserve stack space in Macho ABI.
1388 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1389 break;
1390 case MVT::v4f32:
1391 case MVT::v4i32:
1392 case MVT::v8i16:
1393 case MVT::v16i8:
1394 // Note that vector arguments in registers don't reserve stack space.
1395 if (VR_idx != Num_VR_Regs) {
1396 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
1397 MF.addLiveIn(VR[VR_idx], VReg);
1398 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1399 ++VR_idx;
1400 } else {
1401 // This should be simple, but requires getting 16-byte aligned stack
1402 // values.
1403 assert(0 && "Loading VR argument not implemented yet!");
1404 needsLoad = true;
1405 }
1406 break;
1407 }
1408
1409 // We need to load the argument to a virtual register if we determined above
1410 // that we ran out of physical registers of the appropriate type
1411 if (needsLoad) {
1412 // If the argument is actually used, emit a load from the right stack
1413 // slot.
1414 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1415 int FI = MFI->CreateFixedObject(ObjSize,
1416 CurArgOffset + (ArgSize - ObjSize));
1417 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1418 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1419 } else {
1420 // Don't emit a dead load.
1421 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1422 }
1423 }
1424
1425 ArgValues.push_back(ArgVal);
1426 }
1427
1428 // If the function takes variable number of arguments, make a frame index for
1429 // the start of the first vararg value... for expansion of llvm.va_start.
1430 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1431 if (isVarArg) {
1432
1433 int depth;
1434 if (isELF32_ABI) {
1435 VarArgsNumGPR = GPR_idx;
1436 VarArgsNumFPR = FPR_idx;
1437
1438 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1439 // pointer.
1440 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1441 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1442 MVT::getSizeInBits(PtrVT)/8);
1443
1444 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1445 ArgOffset);
1446
1447 }
1448 else
1449 depth = ArgOffset;
1450
1451 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1452 depth);
1453 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1454
1455 SmallVector<SDOperand, 8> MemOps;
1456
1457 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1458 // stored to the VarArgsFrameIndex on the stack.
1459 if (isELF32_ABI) {
1460 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1461 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1462 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1463 MemOps.push_back(Store);
1464 // Increment the address by four for the next argument to store
1465 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1466 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1467 }
1468 }
1469
1470 // If this function is vararg, store any remaining integer argument regs
1471 // to their spots on the stack so that they may be loaded by deferencing the
1472 // result of va_next.
1473 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1474 unsigned VReg;
1475 if (isPPC64)
1476 VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
1477 else
1478 VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1479
1480 MF.addLiveIn(GPR[GPR_idx], VReg);
1481 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1482 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1483 MemOps.push_back(Store);
1484 // Increment the address by four for the next argument to store
1485 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1486 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1487 }
1488
1489 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1490 // on the stack.
1491 if (isELF32_ABI) {
1492 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1493 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1494 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1495 MemOps.push_back(Store);
1496 // Increment the address by eight for the next argument to store
1497 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1498 PtrVT);
1499 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1500 }
1501
1502 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1503 unsigned VReg;
1504 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1505
1506 MF.addLiveIn(FPR[FPR_idx], VReg);
1507 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1508 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1509 MemOps.push_back(Store);
1510 // Increment the address by eight for the next argument to store
1511 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1512 PtrVT);
1513 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1514 }
1515 }
1516
1517 if (!MemOps.empty())
1518 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1519 }
1520
1521 ArgValues.push_back(Root);
1522
1523 // Return the new list of results.
1524 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1525 Op.Val->value_end());
1526 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1527}
1528
1529/// isCallCompatibleAddress - Return the immediate to use if the specified
1530/// 32-bit value is representable in the immediate field of a BxA instruction.
1531static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1532 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1533 if (!C) return 0;
1534
1535 int Addr = C->getValue();
1536 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1537 (Addr << 6 >> 6) != Addr)
1538 return 0; // Top 6 bits have to be sext of immediate.
1539
Evan Cheng282c6462007-10-22 19:46:19 +00001540 return DAG.getConstant((int)C->getValue() >> 2,
1541 DAG.getTargetLoweringInfo().getPointerTy()).Val;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001542}
1543
1544
1545static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1546 const PPCSubtarget &Subtarget) {
1547 SDOperand Chain = Op.getOperand(0);
1548 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1549 SDOperand Callee = Op.getOperand(4);
1550 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1551
1552 bool isMachoABI = Subtarget.isMachoABI();
1553 bool isELF32_ABI = Subtarget.isELF32_ABI();
1554
1555 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1556 bool isPPC64 = PtrVT == MVT::i64;
1557 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1558
1559 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1560 // SelectExpr to use to put the arguments in the appropriate registers.
1561 std::vector<SDOperand> args_to_use;
1562
1563 // Count how many bytes are to be pushed on the stack, including the linkage
1564 // area, and parameter passing area. We start with 24/48 bytes, which is
1565 // prereserved space for [SP][CR][LR][3 x unused].
1566 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1567
1568 // Add up all the space actually used.
1569 for (unsigned i = 0; i != NumOps; ++i) {
1570 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1571 ArgSize = std::max(ArgSize, PtrByteSize);
1572 NumBytes += ArgSize;
1573 }
1574
1575 // The prolog code of the callee may store up to 8 GPR argument registers to
1576 // the stack, allowing va_start to index over them in memory if its varargs.
1577 // Because we cannot tell if this is needed on the caller side, we have to
1578 // conservatively assume that it is needed. As such, make sure we have at
1579 // least enough stack space for the caller to store the 8 GPRs.
1580 NumBytes = std::max(NumBytes,
1581 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1582
1583 // Adjust the stack pointer for the new arguments...
1584 // These operations are automatically eliminated by the prolog/epilog pass
1585 Chain = DAG.getCALLSEQ_START(Chain,
1586 DAG.getConstant(NumBytes, PtrVT));
1587
1588 // Set up a copy of the stack pointer for use loading and storing any
1589 // arguments that may not fit in the registers available for argument
1590 // passing.
1591 SDOperand StackPtr;
1592 if (isPPC64)
1593 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1594 else
1595 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1596
1597 // Figure out which arguments are going to go in registers, and which in
1598 // memory. Also, if this is a vararg function, floating point operations
1599 // must be stored to our stack, and loaded into integer regs as well, if
1600 // any integer regs are available for argument passing.
1601 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1602 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1603
1604 static const unsigned GPR_32[] = { // 32-bit registers.
1605 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1606 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1607 };
1608 static const unsigned GPR_64[] = { // 64-bit registers.
1609 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1610 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1611 };
1612 static const unsigned *FPR = GetFPR(Subtarget);
1613
1614 static const unsigned VR[] = {
1615 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1616 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1617 };
Owen Anderson1636de92007-09-07 04:06:50 +00001618 const unsigned NumGPRs = array_lengthof(GPR_32);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001619 const unsigned NumFPRs = isMachoABI ? 13 : 8;
Owen Anderson1636de92007-09-07 04:06:50 +00001620 const unsigned NumVRs = array_lengthof( VR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001621
1622 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1623
1624 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1625 SmallVector<SDOperand, 8> MemOpChains;
1626 for (unsigned i = 0; i != NumOps; ++i) {
1627 bool inMem = false;
1628 SDOperand Arg = Op.getOperand(5+2*i);
1629 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1630 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1631 // See if next argument requires stack alignment in ELF
1632 unsigned next = 5+2*(i+1)+1;
1633 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1634 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1635 (!(Flags & AlignFlag)));
1636
1637 // PtrOff will be used to store the current argument to the stack if a
1638 // register cannot be found for it.
1639 SDOperand PtrOff;
1640
1641 // Stack align in ELF 32
1642 if (isELF32_ABI && Expand)
1643 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1644 StackPtr.getValueType());
1645 else
1646 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1647
1648 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1649
1650 // On PPC64, promote integers to 64-bit values.
1651 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1652 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1653
1654 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1655 }
1656
1657 switch (Arg.getValueType()) {
1658 default: assert(0 && "Unexpected ValueType for argument!");
1659 case MVT::i32:
1660 case MVT::i64:
1661 // Double word align in ELF
1662 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1663 if (GPR_idx != NumGPRs) {
1664 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1665 } else {
1666 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1667 inMem = true;
1668 }
1669 if (inMem || isMachoABI) {
1670 // Stack align in ELF
1671 if (isELF32_ABI && Expand)
1672 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1673
1674 ArgOffset += PtrByteSize;
1675 }
1676 break;
1677 case MVT::f32:
1678 case MVT::f64:
1679 if (isVarArg) {
1680 // Float varargs need to be promoted to double.
1681 if (Arg.getValueType() == MVT::f32)
1682 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1683 }
1684
1685 if (FPR_idx != NumFPRs) {
1686 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1687
1688 if (isVarArg) {
1689 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1690 MemOpChains.push_back(Store);
1691
1692 // Float varargs are always shadowed in available integer registers
1693 if (GPR_idx != NumGPRs) {
1694 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1695 MemOpChains.push_back(Load.getValue(1));
1696 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1697 Load));
1698 }
1699 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1700 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1701 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1702 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1703 MemOpChains.push_back(Load.getValue(1));
1704 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1705 Load));
1706 }
1707 } else {
1708 // If we have any FPRs remaining, we may also have GPRs remaining.
1709 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1710 // GPRs.
1711 if (isMachoABI) {
1712 if (GPR_idx != NumGPRs)
1713 ++GPR_idx;
1714 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1715 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1716 ++GPR_idx;
1717 }
1718 }
1719 } else {
1720 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1721 inMem = true;
1722 }
1723 if (inMem || isMachoABI) {
1724 // Stack align in ELF
1725 if (isELF32_ABI && Expand)
1726 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1727 if (isPPC64)
1728 ArgOffset += 8;
1729 else
1730 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1731 }
1732 break;
1733 case MVT::v4f32:
1734 case MVT::v4i32:
1735 case MVT::v8i16:
1736 case MVT::v16i8:
1737 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1738 assert(VR_idx != NumVRs &&
1739 "Don't support passing more than 12 vector args yet!");
1740 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1741 break;
1742 }
1743 }
1744 if (!MemOpChains.empty())
1745 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1746 &MemOpChains[0], MemOpChains.size());
1747
1748 // Build a sequence of copy-to-reg nodes chained together with token chain
1749 // and flag operands which copy the outgoing args into the appropriate regs.
1750 SDOperand InFlag;
1751 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1752 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1753 InFlag);
1754 InFlag = Chain.getValue(1);
1755 }
1756
1757 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1758 if (isVarArg && isELF32_ABI) {
1759 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1760 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1761 InFlag = Chain.getValue(1);
1762 }
1763
1764 std::vector<MVT::ValueType> NodeTys;
1765 NodeTys.push_back(MVT::Other); // Returns a chain
1766 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1767
1768 SmallVector<SDOperand, 8> Ops;
1769 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1770
1771 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1772 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1773 // node so that legalize doesn't hack it.
1774 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1775 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1776 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1777 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1778 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1779 // If this is an absolute destination address, use the munged value.
1780 Callee = SDOperand(Dest, 0);
1781 else {
1782 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1783 // to do the call, we can't use PPCISD::CALL.
1784 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1785 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1786 InFlag = Chain.getValue(1);
1787
1788 // Copy the callee address into R12 on darwin.
1789 if (isMachoABI) {
1790 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1791 InFlag = Chain.getValue(1);
1792 }
1793
1794 NodeTys.clear();
1795 NodeTys.push_back(MVT::Other);
1796 NodeTys.push_back(MVT::Flag);
1797 Ops.push_back(Chain);
1798 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1799 Callee.Val = 0;
1800 }
1801
1802 // If this is a direct call, pass the chain and the callee.
1803 if (Callee.Val) {
1804 Ops.push_back(Chain);
1805 Ops.push_back(Callee);
1806 }
1807
1808 // Add argument registers to the end of the list so that they are known live
1809 // into the call.
1810 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1811 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1812 RegsToPass[i].second.getValueType()));
1813
1814 if (InFlag.Val)
1815 Ops.push_back(InFlag);
1816 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1817 InFlag = Chain.getValue(1);
1818
1819 SDOperand ResultVals[3];
1820 unsigned NumResults = 0;
1821 NodeTys.clear();
1822
1823 // If the call has results, copy the values out of the ret val registers.
1824 switch (Op.Val->getValueType(0)) {
1825 default: assert(0 && "Unexpected ret value!");
1826 case MVT::Other: break;
1827 case MVT::i32:
1828 if (Op.Val->getValueType(1) == MVT::i32) {
1829 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1830 ResultVals[0] = Chain.getValue(0);
1831 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1832 Chain.getValue(2)).getValue(1);
1833 ResultVals[1] = Chain.getValue(0);
1834 NumResults = 2;
1835 NodeTys.push_back(MVT::i32);
1836 } else {
1837 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1838 ResultVals[0] = Chain.getValue(0);
1839 NumResults = 1;
1840 }
1841 NodeTys.push_back(MVT::i32);
1842 break;
1843 case MVT::i64:
1844 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1845 ResultVals[0] = Chain.getValue(0);
1846 NumResults = 1;
1847 NodeTys.push_back(MVT::i64);
1848 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001849 case MVT::f64:
Dale Johannesenac77b272007-10-05 20:04:43 +00001850 if (Op.Val->getValueType(1) == MVT::f64) {
1851 Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1852 ResultVals[0] = Chain.getValue(0);
1853 Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1854 Chain.getValue(2)).getValue(1);
1855 ResultVals[1] = Chain.getValue(0);
1856 NumResults = 2;
1857 NodeTys.push_back(MVT::f64);
1858 NodeTys.push_back(MVT::f64);
1859 break;
1860 }
1861 // else fall through
1862 case MVT::f32:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001863 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1864 InFlag).getValue(1);
1865 ResultVals[0] = Chain.getValue(0);
1866 NumResults = 1;
1867 NodeTys.push_back(Op.Val->getValueType(0));
1868 break;
1869 case MVT::v4f32:
1870 case MVT::v4i32:
1871 case MVT::v8i16:
1872 case MVT::v16i8:
1873 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1874 InFlag).getValue(1);
1875 ResultVals[0] = Chain.getValue(0);
1876 NumResults = 1;
1877 NodeTys.push_back(Op.Val->getValueType(0));
1878 break;
1879 }
1880
1881 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1882 DAG.getConstant(NumBytes, PtrVT));
1883 NodeTys.push_back(MVT::Other);
1884
1885 // If the function returns void, just return the chain.
1886 if (NumResults == 0)
1887 return Chain;
1888
1889 // Otherwise, merge everything together with a MERGE_VALUES node.
1890 ResultVals[NumResults++] = Chain;
1891 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1892 ResultVals, NumResults);
1893 return Res.getValue(Op.ResNo);
1894}
1895
1896static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1897 SmallVector<CCValAssign, 16> RVLocs;
1898 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1899 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1900 CCState CCInfo(CC, isVarArg, TM, RVLocs);
1901 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1902
1903 // If this is the first return lowered for this function, add the regs to the
1904 // liveout set for the function.
1905 if (DAG.getMachineFunction().liveout_empty()) {
1906 for (unsigned i = 0; i != RVLocs.size(); ++i)
1907 DAG.getMachineFunction().addLiveOut(RVLocs[i].getLocReg());
1908 }
1909
1910 SDOperand Chain = Op.getOperand(0);
1911 SDOperand Flag;
1912
1913 // Copy the result values into the output registers.
1914 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1915 CCValAssign &VA = RVLocs[i];
1916 assert(VA.isRegLoc() && "Can only return in registers!");
1917 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1918 Flag = Chain.getValue(1);
1919 }
1920
1921 if (Flag.Val)
1922 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1923 else
1924 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1925}
1926
1927static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1928 const PPCSubtarget &Subtarget) {
1929 // When we pop the dynamic allocation we need to restore the SP link.
1930
1931 // Get the corect type for pointers.
1932 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1933
1934 // Construct the stack pointer operand.
1935 bool IsPPC64 = Subtarget.isPPC64();
1936 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1937 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1938
1939 // Get the operands for the STACKRESTORE.
1940 SDOperand Chain = Op.getOperand(0);
1941 SDOperand SaveSP = Op.getOperand(1);
1942
1943 // Load the old link SP.
1944 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1945
1946 // Restore the stack pointer.
1947 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1948
1949 // Store the old link SP.
1950 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1951}
1952
1953static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1954 const PPCSubtarget &Subtarget) {
1955 MachineFunction &MF = DAG.getMachineFunction();
1956 bool IsPPC64 = Subtarget.isPPC64();
1957 bool isMachoABI = Subtarget.isMachoABI();
1958
1959 // Get current frame pointer save index. The users of this index will be
1960 // primarily DYNALLOC instructions.
1961 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1962 int FPSI = FI->getFramePointerSaveIndex();
1963
1964 // If the frame pointer save index hasn't been defined yet.
1965 if (!FPSI) {
1966 // Find out what the fix offset of the frame pointer save area.
1967 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1968
1969 // Allocate the frame index for frame pointer save area.
1970 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1971 // Save the result.
1972 FI->setFramePointerSaveIndex(FPSI);
1973 }
1974
1975 // Get the inputs.
1976 SDOperand Chain = Op.getOperand(0);
1977 SDOperand Size = Op.getOperand(1);
1978
1979 // Get the corect type for pointers.
1980 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1981 // Negate the size.
1982 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1983 DAG.getConstant(0, PtrVT), Size);
1984 // Construct a node for the frame pointer save index.
1985 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1986 // Build a DYNALLOC node.
1987 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1988 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1989 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1990}
1991
1992
1993/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1994/// possible.
1995static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1996 // Not FP? Not a fsel.
1997 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1998 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1999 return SDOperand();
2000
2001 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2002
2003 // Cannot handle SETEQ/SETNE.
2004 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2005
2006 MVT::ValueType ResVT = Op.getValueType();
2007 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2008 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2009 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
2010
2011 // If the RHS of the comparison is a 0.0, we don't need to do the
2012 // subtraction at all.
2013 if (isFloatingPointZero(RHS))
2014 switch (CC) {
2015 default: break; // SETUO etc aren't handled by fsel.
2016 case ISD::SETULT:
2017 case ISD::SETOLT:
2018 case ISD::SETLT:
2019 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2020 case ISD::SETUGE:
2021 case ISD::SETOGE:
2022 case ISD::SETGE:
2023 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2024 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2025 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2026 case ISD::SETUGT:
2027 case ISD::SETOGT:
2028 case ISD::SETGT:
2029 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2030 case ISD::SETULE:
2031 case ISD::SETOLE:
2032 case ISD::SETLE:
2033 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2034 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2035 return DAG.getNode(PPCISD::FSEL, ResVT,
2036 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2037 }
2038
Chris Lattnera216bee2007-10-15 20:14:52 +00002039 SDOperand Cmp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002040 switch (CC) {
2041 default: break; // SETUO etc aren't handled by fsel.
2042 case ISD::SETULT:
2043 case ISD::SETOLT:
2044 case ISD::SETLT:
2045 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2046 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2047 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2048 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2049 case ISD::SETUGE:
2050 case ISD::SETOGE:
2051 case ISD::SETGE:
2052 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2053 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2054 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2055 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2056 case ISD::SETUGT:
2057 case ISD::SETOGT:
2058 case ISD::SETGT:
2059 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2060 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2061 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2062 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2063 case ISD::SETULE:
2064 case ISD::SETOLE:
2065 case ISD::SETLE:
2066 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2067 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2068 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2069 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2070 }
2071 return SDOperand();
2072}
2073
2074static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2075 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2076 SDOperand Src = Op.getOperand(0);
2077 if (Src.getValueType() == MVT::f32)
2078 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2079
2080 SDOperand Tmp;
2081 switch (Op.getValueType()) {
2082 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2083 case MVT::i32:
2084 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2085 break;
2086 case MVT::i64:
2087 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2088 break;
2089 }
2090
2091 // Convert the FP value to an int value through memory.
Chris Lattnera216bee2007-10-15 20:14:52 +00002092 SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2093
2094 // Emit a store to the stack slot.
2095 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2096
2097 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2098 // add in a bias.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002099 if (Op.getValueType() == MVT::i32)
Chris Lattnera216bee2007-10-15 20:14:52 +00002100 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2101 DAG.getConstant(4, FIPtr.getValueType()));
2102 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002103}
2104
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002105static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2106 assert(Op.getValueType() == MVT::ppcf128);
2107 SDNode *Node = Op.Val;
2108 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
Chris Lattnerc882caf2007-10-19 04:08:28 +00002109 assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00002110 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2111 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2112
2113 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2114 // of the long double, and puts FPSCR back the way it was. We do not
2115 // actually model FPSCR.
2116 std::vector<MVT::ValueType> NodeTys;
2117 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2118
2119 NodeTys.push_back(MVT::f64); // Return register
2120 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2121 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2122 MFFSreg = Result.getValue(0);
2123 InFlag = Result.getValue(1);
2124
2125 NodeTys.clear();
2126 NodeTys.push_back(MVT::Flag); // Returns a flag
2127 Ops[0] = DAG.getConstant(31, MVT::i32);
2128 Ops[1] = InFlag;
2129 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2130 InFlag = Result.getValue(0);
2131
2132 NodeTys.clear();
2133 NodeTys.push_back(MVT::Flag); // Returns a flag
2134 Ops[0] = DAG.getConstant(30, MVT::i32);
2135 Ops[1] = InFlag;
2136 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2137 InFlag = Result.getValue(0);
2138
2139 NodeTys.clear();
2140 NodeTys.push_back(MVT::f64); // result of add
2141 NodeTys.push_back(MVT::Flag); // Returns a flag
2142 Ops[0] = Lo;
2143 Ops[1] = Hi;
2144 Ops[2] = InFlag;
2145 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2146 FPreg = Result.getValue(0);
2147 InFlag = Result.getValue(1);
2148
2149 NodeTys.clear();
2150 NodeTys.push_back(MVT::f64);
2151 Ops[0] = DAG.getConstant(1, MVT::i32);
2152 Ops[1] = MFFSreg;
2153 Ops[2] = FPreg;
2154 Ops[3] = InFlag;
2155 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2156 FPreg = Result.getValue(0);
2157
2158 // We know the low half is about to be thrown away, so just use something
2159 // convenient.
2160 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2161}
2162
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002163static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2164 if (Op.getOperand(0).getValueType() == MVT::i64) {
2165 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2166 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2167 if (Op.getValueType() == MVT::f32)
2168 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2169 return FP;
2170 }
2171
2172 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2173 "Unhandled SINT_TO_FP type in custom expander!");
2174 // Since we only generate this in 64-bit mode, we can take advantage of
2175 // 64-bit registers. In particular, sign extend the input value into the
2176 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2177 // then lfd it and fcfid it.
2178 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2179 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2180 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2181 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2182
2183 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2184 Op.getOperand(0));
2185
2186 // STD the extended value into the stack slot.
2187 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2188 DAG.getEntryNode(), Ext64, FIdx,
2189 DAG.getSrcValue(NULL));
2190 // Load the value as a double.
2191 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2192
2193 // FCFID it and return it.
2194 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2195 if (Op.getValueType() == MVT::f32)
2196 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2197 return FP;
2198}
2199
2200static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2201 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2202 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2203
2204 // Expand into a bunch of logical ops. Note that these ops
2205 // depend on the PPC behavior for oversized shift amounts.
2206 SDOperand Lo = Op.getOperand(0);
2207 SDOperand Hi = Op.getOperand(1);
2208 SDOperand Amt = Op.getOperand(2);
2209
2210 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2211 DAG.getConstant(32, MVT::i32), Amt);
2212 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2213 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2214 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2215 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2216 DAG.getConstant(-32U, MVT::i32));
2217 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2218 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2219 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2220 SDOperand OutOps[] = { OutLo, OutHi };
2221 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2222 OutOps, 2);
2223}
2224
2225static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2226 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2227 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2228
2229 // Otherwise, expand into a bunch of logical ops. Note that these ops
2230 // depend on the PPC behavior for oversized shift amounts.
2231 SDOperand Lo = Op.getOperand(0);
2232 SDOperand Hi = Op.getOperand(1);
2233 SDOperand Amt = Op.getOperand(2);
2234
2235 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2236 DAG.getConstant(32, MVT::i32), Amt);
2237 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2238 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2239 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2240 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2241 DAG.getConstant(-32U, MVT::i32));
2242 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2243 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2244 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2245 SDOperand OutOps[] = { OutLo, OutHi };
2246 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2247 OutOps, 2);
2248}
2249
2250static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2251 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2252 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2253
2254 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2255 SDOperand Lo = Op.getOperand(0);
2256 SDOperand Hi = Op.getOperand(1);
2257 SDOperand Amt = Op.getOperand(2);
2258
2259 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2260 DAG.getConstant(32, MVT::i32), Amt);
2261 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2262 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2263 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2264 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2265 DAG.getConstant(-32U, MVT::i32));
2266 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2267 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2268 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2269 Tmp4, Tmp6, ISD::SETLE);
2270 SDOperand OutOps[] = { OutLo, OutHi };
2271 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2272 OutOps, 2);
2273}
2274
2275//===----------------------------------------------------------------------===//
2276// Vector related lowering.
2277//
2278
2279// If this is a vector of constants or undefs, get the bits. A bit in
2280// UndefBits is set if the corresponding element of the vector is an
2281// ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2282// zero. Return true if this is not an array of constants, false if it is.
2283//
2284static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2285 uint64_t UndefBits[2]) {
2286 // Start with zero'd results.
2287 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2288
2289 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2290 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2291 SDOperand OpVal = BV->getOperand(i);
2292
2293 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2294 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2295
2296 uint64_t EltBits = 0;
2297 if (OpVal.getOpcode() == ISD::UNDEF) {
2298 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2299 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2300 continue;
2301 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2302 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2303 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2304 assert(CN->getValueType(0) == MVT::f32 &&
2305 "Only one legal FP vector type!");
Dale Johannesendf8a8312007-08-31 04:03:46 +00002306 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002307 } else {
2308 // Nonconstant element.
2309 return true;
2310 }
2311
2312 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2313 }
2314
2315 //printf("%llx %llx %llx %llx\n",
2316 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2317 return false;
2318}
2319
2320// If this is a splat (repetition) of a value across the whole vector, return
2321// the smallest size that splats it. For example, "0x01010101010101..." is a
2322// splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2323// SplatSize = 1 byte.
2324static bool isConstantSplat(const uint64_t Bits128[2],
2325 const uint64_t Undef128[2],
2326 unsigned &SplatBits, unsigned &SplatUndef,
2327 unsigned &SplatSize) {
2328
2329 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2330 // the same as the lower 64-bits, ignoring undefs.
2331 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2332 return false; // Can't be a splat if two pieces don't match.
2333
2334 uint64_t Bits64 = Bits128[0] | Bits128[1];
2335 uint64_t Undef64 = Undef128[0] & Undef128[1];
2336
2337 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2338 // undefs.
2339 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2340 return false; // Can't be a splat if two pieces don't match.
2341
2342 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2343 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2344
2345 // If the top 16-bits are different than the lower 16-bits, ignoring
2346 // undefs, we have an i32 splat.
2347 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2348 SplatBits = Bits32;
2349 SplatUndef = Undef32;
2350 SplatSize = 4;
2351 return true;
2352 }
2353
2354 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2355 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2356
2357 // If the top 8-bits are different than the lower 8-bits, ignoring
2358 // undefs, we have an i16 splat.
2359 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2360 SplatBits = Bits16;
2361 SplatUndef = Undef16;
2362 SplatSize = 2;
2363 return true;
2364 }
2365
2366 // Otherwise, we have an 8-bit splat.
2367 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2368 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2369 SplatSize = 1;
2370 return true;
2371}
2372
2373/// BuildSplatI - Build a canonical splati of Val with an element size of
2374/// SplatSize. Cast the result to VT.
2375static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2376 SelectionDAG &DAG) {
2377 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2378
2379 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2380 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2381 };
2382
2383 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2384
2385 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2386 if (Val == -1)
2387 SplatSize = 1;
2388
2389 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2390
2391 // Build a canonical splat for this value.
2392 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2393 SmallVector<SDOperand, 8> Ops;
2394 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2395 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2396 &Ops[0], Ops.size());
2397 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2398}
2399
2400/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2401/// specified intrinsic ID.
2402static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2403 SelectionDAG &DAG,
2404 MVT::ValueType DestVT = MVT::Other) {
2405 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2406 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2407 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2408}
2409
2410/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2411/// specified intrinsic ID.
2412static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2413 SDOperand Op2, SelectionDAG &DAG,
2414 MVT::ValueType DestVT = MVT::Other) {
2415 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2416 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2417 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2418}
2419
2420
2421/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2422/// amount. The result has the specified value type.
2423static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2424 MVT::ValueType VT, SelectionDAG &DAG) {
2425 // Force LHS/RHS to be the right type.
2426 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2427 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2428
2429 SDOperand Ops[16];
2430 for (unsigned i = 0; i != 16; ++i)
2431 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2432 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2433 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2434 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2435}
2436
2437// If this is a case we can't handle, return null and let the default
2438// expansion code take care of it. If we CAN select this case, and if it
2439// selects to a single instruction, return Op. Otherwise, if we can codegen
2440// this case more efficiently than a constant pool load, lower it to the
2441// sequence of ops that should be used.
2442static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2443 // If this is a vector of constants or undefs, get the bits. A bit in
2444 // UndefBits is set if the corresponding element of the vector is an
2445 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2446 // zero.
2447 uint64_t VectorBits[2];
2448 uint64_t UndefBits[2];
2449 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2450 return SDOperand(); // Not a constant vector.
2451
2452 // If this is a splat (repetition) of a value across the whole vector, return
2453 // the smallest size that splats it. For example, "0x01010101010101..." is a
2454 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2455 // SplatSize = 1 byte.
2456 unsigned SplatBits, SplatUndef, SplatSize;
2457 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2458 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2459
2460 // First, handle single instruction cases.
2461
2462 // All zeros?
2463 if (SplatBits == 0) {
2464 // Canonicalize all zero vectors to be v4i32.
2465 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2466 SDOperand Z = DAG.getConstant(0, MVT::i32);
2467 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2468 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2469 }
2470 return Op;
2471 }
2472
2473 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2474 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2475 if (SextVal >= -16 && SextVal <= 15)
2476 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2477
2478
2479 // Two instruction sequences.
2480
2481 // If this value is in the range [-32,30] and is even, use:
2482 // tmp = VSPLTI[bhw], result = add tmp, tmp
2483 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2484 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2485 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2486 }
2487
2488 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2489 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2490 // for fneg/fabs.
2491 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2492 // Make -1 and vspltisw -1:
2493 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2494
2495 // Make the VSLW intrinsic, computing 0x8000_0000.
2496 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2497 OnesV, DAG);
2498
2499 // xor by OnesV to invert it.
2500 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2501 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2502 }
2503
2504 // Check to see if this is a wide variety of vsplti*, binop self cases.
2505 unsigned SplatBitSize = SplatSize*8;
2506 static const signed char SplatCsts[] = {
2507 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2508 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2509 };
2510
Owen Anderson1636de92007-09-07 04:06:50 +00002511 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002512 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2513 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2514 int i = SplatCsts[idx];
2515
2516 // Figure out what shift amount will be used by altivec if shifted by i in
2517 // this splat size.
2518 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2519
2520 // vsplti + shl self.
2521 if (SextVal == (i << (int)TypeShiftAmt)) {
2522 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2523 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2524 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2525 Intrinsic::ppc_altivec_vslw
2526 };
2527 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2528 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2529 }
2530
2531 // vsplti + srl self.
2532 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2533 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2534 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2535 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2536 Intrinsic::ppc_altivec_vsrw
2537 };
2538 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2539 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2540 }
2541
2542 // vsplti + sra self.
2543 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2544 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2545 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2546 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2547 Intrinsic::ppc_altivec_vsraw
2548 };
2549 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2550 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2551 }
2552
2553 // vsplti + rol self.
2554 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2555 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2556 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2557 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2558 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2559 Intrinsic::ppc_altivec_vrlw
2560 };
2561 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2562 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2563 }
2564
2565 // t = vsplti c, result = vsldoi t, t, 1
2566 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2567 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2568 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2569 }
2570 // t = vsplti c, result = vsldoi t, t, 2
2571 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2572 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2573 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2574 }
2575 // t = vsplti c, result = vsldoi t, t, 3
2576 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2577 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2578 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2579 }
2580 }
2581
2582 // Three instruction sequences.
2583
2584 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2585 if (SextVal >= 0 && SextVal <= 31) {
2586 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2587 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002588 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002589 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2590 }
2591 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2592 if (SextVal >= -31 && SextVal <= 0) {
2593 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2594 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
Dale Johannesen6fdf9312007-10-14 01:58:32 +00002595 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002596 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2597 }
2598 }
2599
2600 return SDOperand();
2601}
2602
2603/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2604/// the specified operations to build the shuffle.
2605static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2606 SDOperand RHS, SelectionDAG &DAG) {
2607 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2608 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2609 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2610
2611 enum {
2612 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2613 OP_VMRGHW,
2614 OP_VMRGLW,
2615 OP_VSPLTISW0,
2616 OP_VSPLTISW1,
2617 OP_VSPLTISW2,
2618 OP_VSPLTISW3,
2619 OP_VSLDOI4,
2620 OP_VSLDOI8,
2621 OP_VSLDOI12
2622 };
2623
2624 if (OpNum == OP_COPY) {
2625 if (LHSID == (1*9+2)*9+3) return LHS;
2626 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2627 return RHS;
2628 }
2629
2630 SDOperand OpLHS, OpRHS;
2631 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2632 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2633
2634 unsigned ShufIdxs[16];
2635 switch (OpNum) {
2636 default: assert(0 && "Unknown i32 permute!");
2637 case OP_VMRGHW:
2638 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2639 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2640 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2641 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2642 break;
2643 case OP_VMRGLW:
2644 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2645 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2646 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2647 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2648 break;
2649 case OP_VSPLTISW0:
2650 for (unsigned i = 0; i != 16; ++i)
2651 ShufIdxs[i] = (i&3)+0;
2652 break;
2653 case OP_VSPLTISW1:
2654 for (unsigned i = 0; i != 16; ++i)
2655 ShufIdxs[i] = (i&3)+4;
2656 break;
2657 case OP_VSPLTISW2:
2658 for (unsigned i = 0; i != 16; ++i)
2659 ShufIdxs[i] = (i&3)+8;
2660 break;
2661 case OP_VSPLTISW3:
2662 for (unsigned i = 0; i != 16; ++i)
2663 ShufIdxs[i] = (i&3)+12;
2664 break;
2665 case OP_VSLDOI4:
2666 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2667 case OP_VSLDOI8:
2668 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2669 case OP_VSLDOI12:
2670 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2671 }
2672 SDOperand Ops[16];
2673 for (unsigned i = 0; i != 16; ++i)
2674 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2675
2676 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2677 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2678}
2679
2680/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2681/// is a shuffle we can handle in a single instruction, return it. Otherwise,
2682/// return the code it can be lowered into. Worst case, it can always be
2683/// lowered into a vperm.
2684static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2685 SDOperand V1 = Op.getOperand(0);
2686 SDOperand V2 = Op.getOperand(1);
2687 SDOperand PermMask = Op.getOperand(2);
2688
2689 // Cases that are handled by instructions that take permute immediates
2690 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2691 // selected by the instruction selector.
2692 if (V2.getOpcode() == ISD::UNDEF) {
2693 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2694 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2695 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2696 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2697 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2698 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2699 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2700 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2701 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2702 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2703 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2704 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2705 return Op;
2706 }
2707 }
2708
2709 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2710 // and produce a fixed permutation. If any of these match, do not lower to
2711 // VPERM.
2712 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2713 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2714 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2715 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2716 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2717 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2718 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2719 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2720 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2721 return Op;
2722
2723 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2724 // perfect shuffle table to emit an optimal matching sequence.
2725 unsigned PFIndexes[4];
2726 bool isFourElementShuffle = true;
2727 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2728 unsigned EltNo = 8; // Start out undef.
2729 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
2730 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2731 continue; // Undef, ignore it.
2732
2733 unsigned ByteSource =
2734 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2735 if ((ByteSource & 3) != j) {
2736 isFourElementShuffle = false;
2737 break;
2738 }
2739
2740 if (EltNo == 8) {
2741 EltNo = ByteSource/4;
2742 } else if (EltNo != ByteSource/4) {
2743 isFourElementShuffle = false;
2744 break;
2745 }
2746 }
2747 PFIndexes[i] = EltNo;
2748 }
2749
2750 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2751 // perfect shuffle vector to determine if it is cost effective to do this as
2752 // discrete instructions, or whether we should use a vperm.
2753 if (isFourElementShuffle) {
2754 // Compute the index in the perfect shuffle table.
2755 unsigned PFTableIndex =
2756 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2757
2758 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2759 unsigned Cost = (PFEntry >> 30);
2760
2761 // Determining when to avoid vperm is tricky. Many things affect the cost
2762 // of vperm, particularly how many times the perm mask needs to be computed.
2763 // For example, if the perm mask can be hoisted out of a loop or is already
2764 // used (perhaps because there are multiple permutes with the same shuffle
2765 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
2766 // the loop requires an extra register.
2767 //
2768 // As a compromise, we only emit discrete instructions if the shuffle can be
2769 // generated in 3 or fewer operations. When we have loop information
2770 // available, if this block is within a loop, we should avoid using vperm
2771 // for 3-operation perms and use a constant pool load instead.
2772 if (Cost < 3)
2773 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2774 }
2775
2776 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2777 // vector that will get spilled to the constant pool.
2778 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2779
2780 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2781 // that it is in input element units, not in bytes. Convert now.
2782 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2783 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2784
2785 SmallVector<SDOperand, 16> ResultMask;
2786 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2787 unsigned SrcElt;
2788 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2789 SrcElt = 0;
2790 else
2791 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2792
2793 for (unsigned j = 0; j != BytesPerElement; ++j)
2794 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2795 MVT::i8));
2796 }
2797
2798 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2799 &ResultMask[0], ResultMask.size());
2800 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2801}
2802
2803/// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2804/// altivec comparison. If it is, return true and fill in Opc/isDot with
2805/// information about the intrinsic.
2806static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2807 bool &isDot) {
2808 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2809 CompareOpc = -1;
2810 isDot = false;
2811 switch (IntrinsicID) {
2812 default: return false;
2813 // Comparison predicates.
2814 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
2815 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2816 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
2817 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
2818 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2819 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2820 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2821 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2822 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2823 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2824 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2825 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2826 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2827
2828 // Normal Comparisons.
2829 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
2830 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
2831 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
2832 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
2833 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
2834 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
2835 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
2836 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
2837 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
2838 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
2839 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
2840 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
2841 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
2842 }
2843 return true;
2844}
2845
2846/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2847/// lower, do it, otherwise return null.
2848static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2849 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2850 // opcode number of the comparison.
2851 int CompareOpc;
2852 bool isDot;
2853 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2854 return SDOperand(); // Don't custom lower most intrinsics.
2855
2856 // If this is a non-dot comparison, make the VCMP node and we are done.
2857 if (!isDot) {
2858 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2859 Op.getOperand(1), Op.getOperand(2),
2860 DAG.getConstant(CompareOpc, MVT::i32));
2861 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2862 }
2863
2864 // Create the PPCISD altivec 'dot' comparison node.
2865 SDOperand Ops[] = {
2866 Op.getOperand(2), // LHS
2867 Op.getOperand(3), // RHS
2868 DAG.getConstant(CompareOpc, MVT::i32)
2869 };
2870 std::vector<MVT::ValueType> VTs;
2871 VTs.push_back(Op.getOperand(2).getValueType());
2872 VTs.push_back(MVT::Flag);
2873 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2874
2875 // Now that we have the comparison, emit a copy from the CR to a GPR.
2876 // This is flagged to the above dot comparison.
2877 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2878 DAG.getRegister(PPC::CR6, MVT::i32),
2879 CompNode.getValue(1));
2880
2881 // Unpack the result based on how the target uses it.
2882 unsigned BitNo; // Bit # of CR6.
2883 bool InvertBit; // Invert result?
2884 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2885 default: // Can't happen, don't crash on invalid number though.
2886 case 0: // Return the value of the EQ bit of CR6.
2887 BitNo = 0; InvertBit = false;
2888 break;
2889 case 1: // Return the inverted value of the EQ bit of CR6.
2890 BitNo = 0; InvertBit = true;
2891 break;
2892 case 2: // Return the value of the LT bit of CR6.
2893 BitNo = 2; InvertBit = false;
2894 break;
2895 case 3: // Return the inverted value of the LT bit of CR6.
2896 BitNo = 2; InvertBit = true;
2897 break;
2898 }
2899
2900 // Shift the bit into the low position.
2901 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2902 DAG.getConstant(8-(3-BitNo), MVT::i32));
2903 // Isolate the bit.
2904 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2905 DAG.getConstant(1, MVT::i32));
2906
2907 // If we are supposed to, toggle the bit.
2908 if (InvertBit)
2909 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2910 DAG.getConstant(1, MVT::i32));
2911 return Flags;
2912}
2913
2914static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2915 // Create a stack slot that is 16-byte aligned.
2916 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2917 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2918 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2919 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2920
2921 // Store the input value into Value#0 of the stack slot.
2922 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2923 Op.getOperand(0), FIdx, NULL, 0);
2924 // Load it out.
2925 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2926}
2927
2928static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2929 if (Op.getValueType() == MVT::v4i32) {
2930 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2931
2932 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
2933 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2934
2935 SDOperand RHSSwap = // = vrlw RHS, 16
2936 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2937
2938 // Shrinkify inputs to v8i16.
2939 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2940 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2941 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2942
2943 // Low parts multiplied together, generating 32-bit results (we ignore the
2944 // top parts).
2945 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2946 LHS, RHS, DAG, MVT::v4i32);
2947
2948 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2949 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2950 // Shift the high parts up 16 bits.
2951 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2952 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2953 } else if (Op.getValueType() == MVT::v8i16) {
2954 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2955
2956 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2957
2958 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2959 LHS, RHS, Zero, DAG);
2960 } else if (Op.getValueType() == MVT::v16i8) {
2961 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2962
2963 // Multiply the even 8-bit parts, producing 16-bit sums.
2964 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2965 LHS, RHS, DAG, MVT::v8i16);
2966 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2967
2968 // Multiply the odd 8-bit parts, producing 16-bit sums.
2969 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2970 LHS, RHS, DAG, MVT::v8i16);
2971 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2972
2973 // Merge the results together.
2974 SDOperand Ops[16];
2975 for (unsigned i = 0; i != 8; ++i) {
2976 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
2977 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2978 }
2979 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2980 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2981 } else {
2982 assert(0 && "Unknown mul to lower!");
2983 abort();
2984 }
2985}
2986
2987/// LowerOperation - Provide custom lowering hooks for some operations.
2988///
2989SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2990 switch (Op.getOpcode()) {
2991 default: assert(0 && "Wasn't expecting to be able to lower this!");
2992 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2993 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
2994 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
2995 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2996 case ISD::SETCC: return LowerSETCC(Op, DAG);
2997 case ISD::VASTART:
2998 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
2999 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3000
3001 case ISD::VAARG:
3002 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3003 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3004
3005 case ISD::FORMAL_ARGUMENTS:
3006 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3007 VarArgsStackOffset, VarArgsNumGPR,
3008 VarArgsNumFPR, PPCSubTarget);
3009
3010 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
3011 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3012 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3013 case ISD::DYNAMIC_STACKALLOC:
3014 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3015
3016 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3017 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
3018 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
Dale Johannesen3d8578b2007-10-10 01:01:31 +00003019 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003020
3021 // Lower 64-bit shifts.
3022 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3023 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3024 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3025
3026 // Vector-related lowering.
3027 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3028 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3029 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3030 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3031 case ISD::MUL: return LowerMUL(Op, DAG);
3032
3033 // Frame & Return address. Currently unimplemented
3034 case ISD::RETURNADDR: break;
3035 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3036 }
3037 return SDOperand();
3038}
3039
3040//===----------------------------------------------------------------------===//
3041// Other Lowering Code
3042//===----------------------------------------------------------------------===//
3043
3044MachineBasicBlock *
3045PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3046 MachineBasicBlock *BB) {
3047 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3048 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3049 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3050 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3051 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3052 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3053 "Unexpected instr type to insert");
3054
3055 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3056 // control-flow pattern. The incoming instruction knows the destination vreg
3057 // to set, the condition code register to branch on, the true/false values to
3058 // select between, and a branch opcode to use.
3059 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3060 ilist<MachineBasicBlock>::iterator It = BB;
3061 ++It;
3062
3063 // thisMBB:
3064 // ...
3065 // TrueVal = ...
3066 // cmpTY ccX, r1, r2
3067 // bCC copy1MBB
3068 // fallthrough --> copy0MBB
3069 MachineBasicBlock *thisMBB = BB;
3070 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3071 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3072 unsigned SelectPred = MI->getOperand(4).getImm();
3073 BuildMI(BB, TII->get(PPC::BCC))
3074 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3075 MachineFunction *F = BB->getParent();
3076 F->getBasicBlockList().insert(It, copy0MBB);
3077 F->getBasicBlockList().insert(It, sinkMBB);
3078 // Update machine-CFG edges by first adding all successors of the current
3079 // block to the new block which will contain the Phi node for the select.
3080 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3081 e = BB->succ_end(); i != e; ++i)
3082 sinkMBB->addSuccessor(*i);
3083 // Next, remove all successors of the current block, and add the true
3084 // and fallthrough blocks as its successors.
3085 while(!BB->succ_empty())
3086 BB->removeSuccessor(BB->succ_begin());
3087 BB->addSuccessor(copy0MBB);
3088 BB->addSuccessor(sinkMBB);
3089
3090 // copy0MBB:
3091 // %FalseValue = ...
3092 // # fallthrough to sinkMBB
3093 BB = copy0MBB;
3094
3095 // Update machine-CFG edges
3096 BB->addSuccessor(sinkMBB);
3097
3098 // sinkMBB:
3099 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3100 // ...
3101 BB = sinkMBB;
3102 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3103 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3104 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3105
3106 delete MI; // The pseudo instruction is gone now.
3107 return BB;
3108}
3109
3110//===----------------------------------------------------------------------===//
3111// Target Optimization Hooks
3112//===----------------------------------------------------------------------===//
3113
3114SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3115 DAGCombinerInfo &DCI) const {
3116 TargetMachine &TM = getTargetMachine();
3117 SelectionDAG &DAG = DCI.DAG;
3118 switch (N->getOpcode()) {
3119 default: break;
3120 case PPCISD::SHL:
3121 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3122 if (C->getValue() == 0) // 0 << V -> 0.
3123 return N->getOperand(0);
3124 }
3125 break;
3126 case PPCISD::SRL:
3127 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3128 if (C->getValue() == 0) // 0 >>u V -> 0.
3129 return N->getOperand(0);
3130 }
3131 break;
3132 case PPCISD::SRA:
3133 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3134 if (C->getValue() == 0 || // 0 >>s V -> 0.
3135 C->isAllOnesValue()) // -1 >>s V -> -1.
3136 return N->getOperand(0);
3137 }
3138 break;
3139
3140 case ISD::SINT_TO_FP:
3141 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3142 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3143 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3144 // We allow the src/dst to be either f32/f64, but the intermediate
3145 // type must be i64.
Dale Johannesencbc03512007-10-23 23:20:14 +00003146 if (N->getOperand(0).getValueType() == MVT::i64 &&
3147 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003148 SDOperand Val = N->getOperand(0).getOperand(0);
3149 if (Val.getValueType() == MVT::f32) {
3150 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3151 DCI.AddToWorklist(Val.Val);
3152 }
3153
3154 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3155 DCI.AddToWorklist(Val.Val);
3156 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3157 DCI.AddToWorklist(Val.Val);
3158 if (N->getValueType(0) == MVT::f32) {
3159 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3160 DCI.AddToWorklist(Val.Val);
3161 }
3162 return Val;
3163 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3164 // If the intermediate type is i32, we can avoid the load/store here
3165 // too.
3166 }
3167 }
3168 }
3169 break;
3170 case ISD::STORE:
3171 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3172 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3173 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
Dale Johannesencbc03512007-10-23 23:20:14 +00003174 N->getOperand(1).getValueType() == MVT::i32 &&
3175 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003176 SDOperand Val = N->getOperand(1).getOperand(0);
3177 if (Val.getValueType() == MVT::f32) {
3178 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3179 DCI.AddToWorklist(Val.Val);
3180 }
3181 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3182 DCI.AddToWorklist(Val.Val);
3183
3184 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3185 N->getOperand(2), N->getOperand(3));
3186 DCI.AddToWorklist(Val.Val);
3187 return Val;
3188 }
3189
3190 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3191 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3192 N->getOperand(1).Val->hasOneUse() &&
3193 (N->getOperand(1).getValueType() == MVT::i32 ||
3194 N->getOperand(1).getValueType() == MVT::i16)) {
3195 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3196 // Do an any-extend to 32-bits if this is a half-word input.
3197 if (BSwapOp.getValueType() == MVT::i16)
3198 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3199
3200 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3201 N->getOperand(2), N->getOperand(3),
3202 DAG.getValueType(N->getOperand(1).getValueType()));
3203 }
3204 break;
3205 case ISD::BSWAP:
3206 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3207 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3208 N->getOperand(0).hasOneUse() &&
3209 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3210 SDOperand Load = N->getOperand(0);
3211 LoadSDNode *LD = cast<LoadSDNode>(Load);
3212 // Create the byte-swapping load.
3213 std::vector<MVT::ValueType> VTs;
3214 VTs.push_back(MVT::i32);
3215 VTs.push_back(MVT::Other);
3216 SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3217 SDOperand Ops[] = {
3218 LD->getChain(), // Chain
3219 LD->getBasePtr(), // Ptr
3220 SV, // SrcValue
3221 DAG.getValueType(N->getValueType(0)) // VT
3222 };
3223 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3224
3225 // If this is an i16 load, insert the truncate.
3226 SDOperand ResVal = BSLoad;
3227 if (N->getValueType(0) == MVT::i16)
3228 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3229
3230 // First, combine the bswap away. This makes the value produced by the
3231 // load dead.
3232 DCI.CombineTo(N, ResVal);
3233
3234 // Next, combine the load away, we give it a bogus result value but a real
3235 // chain result. The result value is dead because the bswap is dead.
3236 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3237
3238 // Return N so it doesn't get rechecked!
3239 return SDOperand(N, 0);
3240 }
3241
3242 break;
3243 case PPCISD::VCMP: {
3244 // If a VCMPo node already exists with exactly the same operands as this
3245 // node, use its result instead of this node (VCMPo computes both a CR6 and
3246 // a normal output).
3247 //
3248 if (!N->getOperand(0).hasOneUse() &&
3249 !N->getOperand(1).hasOneUse() &&
3250 !N->getOperand(2).hasOneUse()) {
3251
3252 // Scan all of the users of the LHS, looking for VCMPo's that match.
3253 SDNode *VCMPoNode = 0;
3254
3255 SDNode *LHSN = N->getOperand(0).Val;
3256 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3257 UI != E; ++UI)
3258 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3259 (*UI)->getOperand(1) == N->getOperand(1) &&
3260 (*UI)->getOperand(2) == N->getOperand(2) &&
3261 (*UI)->getOperand(0) == N->getOperand(0)) {
3262 VCMPoNode = *UI;
3263 break;
3264 }
3265
3266 // If there is no VCMPo node, or if the flag value has a single use, don't
3267 // transform this.
3268 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3269 break;
3270
3271 // Look at the (necessarily single) use of the flag value. If it has a
3272 // chain, this transformation is more complex. Note that multiple things
3273 // could use the value result, which we should ignore.
3274 SDNode *FlagUser = 0;
3275 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3276 FlagUser == 0; ++UI) {
3277 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3278 SDNode *User = *UI;
3279 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3280 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3281 FlagUser = User;
3282 break;
3283 }
3284 }
3285 }
3286
3287 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3288 // give up for right now.
3289 if (FlagUser->getOpcode() == PPCISD::MFCR)
3290 return SDOperand(VCMPoNode, 0);
3291 }
3292 break;
3293 }
3294 case ISD::BR_CC: {
3295 // If this is a branch on an altivec predicate comparison, lower this so
3296 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3297 // lowering is done pre-legalize, because the legalizer lowers the predicate
3298 // compare down to code that is difficult to reassemble.
3299 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3300 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3301 int CompareOpc;
3302 bool isDot;
3303
3304 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3305 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3306 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3307 assert(isDot && "Can't compare against a vector result!");
3308
3309 // If this is a comparison against something other than 0/1, then we know
3310 // that the condition is never/always true.
3311 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3312 if (Val != 0 && Val != 1) {
3313 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3314 return N->getOperand(0);
3315 // Always !=, turn it into an unconditional branch.
3316 return DAG.getNode(ISD::BR, MVT::Other,
3317 N->getOperand(0), N->getOperand(4));
3318 }
3319
3320 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3321
3322 // Create the PPCISD altivec 'dot' comparison node.
3323 std::vector<MVT::ValueType> VTs;
3324 SDOperand Ops[] = {
3325 LHS.getOperand(2), // LHS of compare
3326 LHS.getOperand(3), // RHS of compare
3327 DAG.getConstant(CompareOpc, MVT::i32)
3328 };
3329 VTs.push_back(LHS.getOperand(2).getValueType());
3330 VTs.push_back(MVT::Flag);
3331 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3332
3333 // Unpack the result based on how the target uses it.
3334 PPC::Predicate CompOpc;
3335 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3336 default: // Can't happen, don't crash on invalid number though.
3337 case 0: // Branch on the value of the EQ bit of CR6.
3338 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3339 break;
3340 case 1: // Branch on the inverted value of the EQ bit of CR6.
3341 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3342 break;
3343 case 2: // Branch on the value of the LT bit of CR6.
3344 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3345 break;
3346 case 3: // Branch on the inverted value of the LT bit of CR6.
3347 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3348 break;
3349 }
3350
3351 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3352 DAG.getConstant(CompOpc, MVT::i32),
3353 DAG.getRegister(PPC::CR6, MVT::i32),
3354 N->getOperand(4), CompNode.getValue(1));
3355 }
3356 break;
3357 }
3358 }
3359
3360 return SDOperand();
3361}
3362
3363//===----------------------------------------------------------------------===//
3364// Inline Assembly Support
3365//===----------------------------------------------------------------------===//
3366
3367void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3368 uint64_t Mask,
3369 uint64_t &KnownZero,
3370 uint64_t &KnownOne,
3371 const SelectionDAG &DAG,
3372 unsigned Depth) const {
3373 KnownZero = 0;
3374 KnownOne = 0;
3375 switch (Op.getOpcode()) {
3376 default: break;
3377 case PPCISD::LBRX: {
3378 // lhbrx is known to have the top bits cleared out.
3379 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3380 KnownZero = 0xFFFF0000;
3381 break;
3382 }
3383 case ISD::INTRINSIC_WO_CHAIN: {
3384 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3385 default: break;
3386 case Intrinsic::ppc_altivec_vcmpbfp_p:
3387 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3388 case Intrinsic::ppc_altivec_vcmpequb_p:
3389 case Intrinsic::ppc_altivec_vcmpequh_p:
3390 case Intrinsic::ppc_altivec_vcmpequw_p:
3391 case Intrinsic::ppc_altivec_vcmpgefp_p:
3392 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3393 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3394 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3395 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3396 case Intrinsic::ppc_altivec_vcmpgtub_p:
3397 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3398 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3399 KnownZero = ~1U; // All bits but the low one are known to be zero.
3400 break;
3401 }
3402 }
3403 }
3404}
3405
3406
3407/// getConstraintType - Given a constraint, return the type of
3408/// constraint it is for this target.
3409PPCTargetLowering::ConstraintType
3410PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3411 if (Constraint.size() == 1) {
3412 switch (Constraint[0]) {
3413 default: break;
3414 case 'b':
3415 case 'r':
3416 case 'f':
3417 case 'v':
3418 case 'y':
3419 return C_RegisterClass;
3420 }
3421 }
3422 return TargetLowering::getConstraintType(Constraint);
3423}
3424
3425std::pair<unsigned, const TargetRegisterClass*>
3426PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3427 MVT::ValueType VT) const {
3428 if (Constraint.size() == 1) {
3429 // GCC RS6000 Constraint Letters
3430 switch (Constraint[0]) {
3431 case 'b': // R1-R31
3432 case 'r': // R0-R31
3433 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3434 return std::make_pair(0U, PPC::G8RCRegisterClass);
3435 return std::make_pair(0U, PPC::GPRCRegisterClass);
3436 case 'f':
3437 if (VT == MVT::f32)
3438 return std::make_pair(0U, PPC::F4RCRegisterClass);
3439 else if (VT == MVT::f64)
3440 return std::make_pair(0U, PPC::F8RCRegisterClass);
3441 break;
3442 case 'v':
3443 return std::make_pair(0U, PPC::VRRCRegisterClass);
3444 case 'y': // crrc
3445 return std::make_pair(0U, PPC::CRRCRegisterClass);
3446 }
3447 }
3448
3449 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3450}
3451
3452
Chris Lattnera531abc2007-08-25 00:47:38 +00003453/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3454/// vector. If it is invalid, don't add anything to Ops.
3455void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3456 std::vector<SDOperand>&Ops,
3457 SelectionDAG &DAG) {
3458 SDOperand Result(0,0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003459 switch (Letter) {
3460 default: break;
3461 case 'I':
3462 case 'J':
3463 case 'K':
3464 case 'L':
3465 case 'M':
3466 case 'N':
3467 case 'O':
3468 case 'P': {
3469 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
Chris Lattnera531abc2007-08-25 00:47:38 +00003470 if (!CST) return; // Must be an immediate to match.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003471 unsigned Value = CST->getValue();
3472 switch (Letter) {
3473 default: assert(0 && "Unknown constraint letter!");
3474 case 'I': // "I" is a signed 16-bit constant.
3475 if ((short)Value == (int)Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003476 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003477 break;
3478 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3479 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3480 if ((short)Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003481 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003482 break;
3483 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3484 if ((Value >> 16) == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003485 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003486 break;
3487 case 'M': // "M" is a constant that is greater than 31.
3488 if (Value > 31)
Chris Lattnera531abc2007-08-25 00:47:38 +00003489 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003490 break;
3491 case 'N': // "N" is a positive constant that is an exact power of two.
3492 if ((int)Value > 0 && isPowerOf2_32(Value))
Chris Lattnera531abc2007-08-25 00:47:38 +00003493 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003494 break;
3495 case 'O': // "O" is the constant zero.
3496 if (Value == 0)
Chris Lattnera531abc2007-08-25 00:47:38 +00003497 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003498 break;
3499 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3500 if ((short)-Value == (int)-Value)
Chris Lattnera531abc2007-08-25 00:47:38 +00003501 Result = DAG.getTargetConstant(Value, Op.getValueType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003502 break;
3503 }
3504 break;
3505 }
3506 }
3507
Chris Lattnera531abc2007-08-25 00:47:38 +00003508 if (Result.Val) {
3509 Ops.push_back(Result);
3510 return;
3511 }
3512
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003513 // Handle standard constraint letters.
Chris Lattnera531abc2007-08-25 00:47:38 +00003514 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003515}
3516
3517// isLegalAddressingMode - Return true if the addressing mode represented
3518// by AM is legal for this target, for a load/store of the specified type.
3519bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3520 const Type *Ty) const {
3521 // FIXME: PPC does not allow r+i addressing modes for vectors!
3522
3523 // PPC allows a sign-extended 16-bit immediate field.
3524 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3525 return false;
3526
3527 // No global is ever allowed as a base.
3528 if (AM.BaseGV)
3529 return false;
3530
3531 // PPC only support r+r,
3532 switch (AM.Scale) {
3533 case 0: // "r+i" or just "i", depending on HasBaseReg.
3534 break;
3535 case 1:
3536 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3537 return false;
3538 // Otherwise we have r+r or r+i.
3539 break;
3540 case 2:
3541 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3542 return false;
3543 // Allow 2*r as r+r.
3544 break;
3545 default:
3546 // No other scales are supported.
3547 return false;
3548 }
3549
3550 return true;
3551}
3552
3553/// isLegalAddressImmediate - Return true if the integer value can be used
3554/// as the offset of the target addressing mode for load / store of the
3555/// given type.
3556bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3557 // PPC allows a sign-extended 16-bit immediate field.
3558 return (V > -(1 << 16) && V < (1 << 16)-1);
3559}
3560
3561bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3562 return false;
3563}
3564
3565SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG)
3566{
3567 // Depths > 0 not supported yet!
3568 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3569 return SDOperand();
3570
3571 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3572 bool isPPC64 = PtrVT == MVT::i64;
3573
3574 MachineFunction &MF = DAG.getMachineFunction();
3575 MachineFrameInfo *MFI = MF.getFrameInfo();
3576 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3577 && MFI->getStackSize();
3578
3579 if (isPPC64)
3580 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
Bill Wendling5e28ab12007-08-30 00:59:19 +00003581 MVT::i64);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003582 else
3583 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3584 MVT::i32);
3585}