blob: 7e61a12a7eea5ccf48d746391ea0033528d1e503 [file] [log] [blame]
Evan Chengb1290a62008-10-02 18:29:27 +00001//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
Misha Brukman2a835f92009-01-08 15:50:22 +00009//
Evan Chengb1290a62008-10-02 18:29:27 +000010// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
11// register allocator for LLVM. This allocator works by constructing a PBQP
12// problem representing the register allocation problem under consideration,
13// solving this using a PBQP solver, and mapping the solution back to a
14// register assignment. If any variables are selected for spilling then spill
Misha Brukman2a835f92009-01-08 15:50:22 +000015// code is inserted and the process repeated.
Evan Chengb1290a62008-10-02 18:29:27 +000016//
17// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
18// for register allocation. For more information on PBQP for register
Misha Brukmance07e992009-01-08 16:40:25 +000019// allocation, see the following papers:
Evan Chengb1290a62008-10-02 18:29:27 +000020//
21// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
22// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
23// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
24//
25// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
26// architectures. In Proceedings of the Joint Conference on Languages,
27// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
28// NY, USA, 139-148.
Misha Brukman2a835f92009-01-08 15:50:22 +000029//
Evan Chengb1290a62008-10-02 18:29:27 +000030//===----------------------------------------------------------------------===//
31
Evan Chengb1290a62008-10-02 18:29:27 +000032#define DEBUG_TYPE "regalloc"
33
Lang Hames6699fb22009-08-06 23:32:48 +000034#include "PBQP/HeuristicSolver.h"
Lang Hames030c4bf2010-01-26 04:49:58 +000035#include "PBQP/Graph.h"
Lang Hames6699fb22009-08-06 23:32:48 +000036#include "PBQP/Heuristics/Briggs.h"
Evan Chengb1290a62008-10-02 18:29:27 +000037#include "VirtRegMap.h"
Lang Hames87e3bca2009-05-06 02:36:21 +000038#include "VirtRegRewriter.h"
Lang Hamesa937f222009-12-14 06:49:42 +000039#include "llvm/CodeGen/CalcSpillWeights.h"
Evan Chengb1290a62008-10-02 18:29:27 +000040#include "llvm/CodeGen/LiveIntervalAnalysis.h"
Lang Hames27601ef2008-11-16 12:12:54 +000041#include "llvm/CodeGen/LiveStackAnalysis.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000042#include "llvm/CodeGen/MachineFunctionPass.h"
Evan Chengb1290a62008-10-02 18:29:27 +000043#include "llvm/CodeGen/MachineLoopInfo.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000044#include "llvm/CodeGen/MachineRegisterInfo.h"
45#include "llvm/CodeGen/RegAllocRegistry.h"
46#include "llvm/CodeGen/RegisterCoalescer.h"
Evan Chengb1290a62008-10-02 18:29:27 +000047#include "llvm/Support/Debug.h"
Daniel Dunbarce63ffb2009-07-25 00:23:56 +000048#include "llvm/Support/raw_ostream.h"
Misha Brukman2a835f92009-01-08 15:50:22 +000049#include "llvm/Target/TargetInstrInfo.h"
50#include "llvm/Target/TargetMachine.h"
51#include <limits>
Evan Chengb1290a62008-10-02 18:29:27 +000052#include <map>
Misha Brukman2a835f92009-01-08 15:50:22 +000053#include <memory>
Evan Chengb1290a62008-10-02 18:29:27 +000054#include <set>
55#include <vector>
Evan Chengb1290a62008-10-02 18:29:27 +000056
57using namespace llvm;
58
59static RegisterRegAlloc
Duncan Sands1aecd152010-02-18 14:10:41 +000060registerPBQPRepAlloc("pbqp", "PBQP register allocator",
Lang Hames030c4bf2010-01-26 04:49:58 +000061 llvm::createPBQPRegisterAllocator);
Evan Chengb1290a62008-10-02 18:29:27 +000062
Lang Hames8481e3b2009-08-19 01:36:14 +000063static cl::opt<bool>
64pbqpCoalescing("pbqp-coalescing",
Lang Hames030c4bf2010-01-26 04:49:58 +000065 cl::desc("Attempt coalescing during PBQP register allocation."),
66 cl::init(false), cl::Hidden);
Lang Hames8481e3b2009-08-19 01:36:14 +000067
Evan Chengb1290a62008-10-02 18:29:27 +000068namespace {
69
Lang Hames6699fb22009-08-06 23:32:48 +000070 ///
71 /// PBQP based allocators solve the register allocation problem by mapping
72 /// register allocation problems to Partitioned Boolean Quadratic
73 /// Programming problems.
Nick Lewycky6726b6d2009-10-25 06:33:48 +000074 class PBQPRegAlloc : public MachineFunctionPass {
Evan Chengb1290a62008-10-02 18:29:27 +000075 public:
76
77 static char ID;
Daniel Dunbara279bc32009-09-20 02:20:51 +000078
Lang Hames6699fb22009-08-06 23:32:48 +000079 /// Construct a PBQP register allocator.
Dan Gohman1b2d0b82009-08-11 15:15:10 +000080 PBQPRegAlloc() : MachineFunctionPass(&ID) {}
Evan Chengb1290a62008-10-02 18:29:27 +000081
Lang Hames6699fb22009-08-06 23:32:48 +000082 /// Return the pass name.
Dan Gohman00b0a242009-08-11 15:35:57 +000083 virtual const char* getPassName() const {
Evan Chengb1290a62008-10-02 18:29:27 +000084 return "PBQP Register Allocator";
85 }
86
Lang Hames6699fb22009-08-06 23:32:48 +000087 /// PBQP analysis usage.
88 virtual void getAnalysisUsage(AnalysisUsage &au) const {
Lang Hames233a60e2009-11-03 23:52:08 +000089 au.addRequired<SlotIndexes>();
90 au.addPreserved<SlotIndexes>();
Lang Hames6699fb22009-08-06 23:32:48 +000091 au.addRequired<LiveIntervals>();
92 //au.addRequiredID(SplitCriticalEdgesID);
Lang Hamesf7c553e2009-08-12 21:04:53 +000093 au.addRequired<RegisterCoalescer>();
Lang Hamesa937f222009-12-14 06:49:42 +000094 au.addRequired<CalculateSpillWeights>();
Lang Hames6699fb22009-08-06 23:32:48 +000095 au.addRequired<LiveStacks>();
96 au.addPreserved<LiveStacks>();
97 au.addRequired<MachineLoopInfo>();
98 au.addPreserved<MachineLoopInfo>();
99 au.addRequired<VirtRegMap>();
100 MachineFunctionPass::getAnalysisUsage(au);
Evan Chengb1290a62008-10-02 18:29:27 +0000101 }
102
Lang Hames6699fb22009-08-06 23:32:48 +0000103 /// Perform register allocation
Evan Chengb1290a62008-10-02 18:29:27 +0000104 virtual bool runOnMachineFunction(MachineFunction &MF);
105
106 private:
107 typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
108 typedef std::vector<const LiveInterval*> Node2LIMap;
109 typedef std::vector<unsigned> AllowedSet;
110 typedef std::vector<AllowedSet> AllowedSetMap;
Lang Hames27601ef2008-11-16 12:12:54 +0000111 typedef std::set<unsigned> RegSet;
112 typedef std::pair<unsigned, unsigned> RegPair;
Lang Hames6699fb22009-08-06 23:32:48 +0000113 typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
Lang Hames27601ef2008-11-16 12:12:54 +0000114
115 typedef std::set<LiveInterval*> LiveIntervalSet;
Evan Chengb1290a62008-10-02 18:29:27 +0000116
Lang Hames030c4bf2010-01-26 04:49:58 +0000117 typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
118
Evan Chengb1290a62008-10-02 18:29:27 +0000119 MachineFunction *mf;
120 const TargetMachine *tm;
121 const TargetRegisterInfo *tri;
122 const TargetInstrInfo *tii;
123 const MachineLoopInfo *loopInfo;
124 MachineRegisterInfo *mri;
125
Lang Hames27601ef2008-11-16 12:12:54 +0000126 LiveIntervals *lis;
127 LiveStacks *lss;
Evan Chengb1290a62008-10-02 18:29:27 +0000128 VirtRegMap *vrm;
129
130 LI2NodeMap li2Node;
131 Node2LIMap node2LI;
132 AllowedSetMap allowedSets;
Lang Hames27601ef2008-11-16 12:12:54 +0000133 LiveIntervalSet vregIntervalsToAlloc,
134 emptyVRegIntervals;
Lang Hames030c4bf2010-01-26 04:49:58 +0000135 NodeVector problemNodes;
Evan Chengb1290a62008-10-02 18:29:27 +0000136
Misha Brukman2a835f92009-01-08 15:50:22 +0000137
Lang Hames6699fb22009-08-06 23:32:48 +0000138 /// Builds a PBQP cost vector.
Lang Hames27601ef2008-11-16 12:12:54 +0000139 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000140 PBQP::Vector buildCostVector(unsigned vReg,
141 const RegContainer &allowed,
142 const CoalesceMap &cealesces,
143 PBQP::PBQPNum spillCost) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000144
Lang Hames6699fb22009-08-06 23:32:48 +0000145 /// \brief Builds a PBQP interference matrix.
146 ///
147 /// @return Either a pointer to a non-zero PBQP matrix representing the
148 /// allocation option costs, or a null pointer for a zero matrix.
149 ///
150 /// Expects allowed sets for two interfering LiveIntervals. These allowed
151 /// sets should contain only allocable registers from the LiveInterval's
152 /// register class, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000153 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000154 PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
155 const RegContainer &allowed2) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000156
Lang Hames6699fb22009-08-06 23:32:48 +0000157 ///
158 /// Expects allowed sets for two potentially coalescable LiveIntervals,
159 /// and an estimated benefit due to coalescing. The allowed sets should
160 /// contain only allocable registers from the LiveInterval's register
161 /// classes, with any interfering pre-colored registers removed.
Lang Hames27601ef2008-11-16 12:12:54 +0000162 template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000163 PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
164 const RegContainer &allowed2,
165 PBQP::PBQPNum cBenefit) const;
Evan Chengb1290a62008-10-02 18:29:27 +0000166
Lang Hames6699fb22009-08-06 23:32:48 +0000167 /// \brief Finds coalescing opportunities and returns them as a map.
168 ///
169 /// Any entries in the map are guaranteed coalescable, even if their
170 /// corresponding live intervals overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000171 CoalesceMap findCoalesces();
Evan Chengb1290a62008-10-02 18:29:27 +0000172
Lang Hames6699fb22009-08-06 23:32:48 +0000173 /// \brief Finds the initial set of vreg intervals to allocate.
Lang Hames27601ef2008-11-16 12:12:54 +0000174 void findVRegIntervalsToAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000175
Lang Hames6699fb22009-08-06 23:32:48 +0000176 /// \brief Constructs a PBQP problem representation of the register
177 /// allocation problem for this function.
178 ///
179 /// @return a PBQP solver object for the register allocation problem.
Lang Hames030c4bf2010-01-26 04:49:58 +0000180 PBQP::Graph constructPBQPProblem();
Evan Chengb1290a62008-10-02 18:29:27 +0000181
Lang Hames6699fb22009-08-06 23:32:48 +0000182 /// \brief Adds a stack interval if the given live interval has been
183 /// spilled. Used to support stack slot coloring.
Evan Chengc781a242009-05-03 18:32:42 +0000184 void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
Lang Hames27601ef2008-11-16 12:12:54 +0000185
Lang Hames6699fb22009-08-06 23:32:48 +0000186 /// \brief Given a solved PBQP problem maps this solution back to a register
187 /// assignment.
188 bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
Evan Chengb1290a62008-10-02 18:29:27 +0000189
Lang Hames6699fb22009-08-06 23:32:48 +0000190 /// \brief Postprocessing before final spilling. Sets basic block "live in"
191 /// variables.
Lang Hames27601ef2008-11-16 12:12:54 +0000192 void finalizeAlloc() const;
193
Evan Chengb1290a62008-10-02 18:29:27 +0000194 };
195
196 char PBQPRegAlloc::ID = 0;
197}
198
199
Lang Hames27601ef2008-11-16 12:12:54 +0000200template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000201PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
202 const RegContainer &allowed,
203 const CoalesceMap &coalesces,
204 PBQP::PBQPNum spillCost) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000205
Lang Hames27601ef2008-11-16 12:12:54 +0000206 typedef typename RegContainer::const_iterator AllowedItr;
207
Evan Chengb1290a62008-10-02 18:29:27 +0000208 // Allocate vector. Additional element (0th) used for spill option
Lang Hames6699fb22009-08-06 23:32:48 +0000209 PBQP::Vector v(allowed.size() + 1, 0);
Evan Chengb1290a62008-10-02 18:29:27 +0000210
Lang Hames6699fb22009-08-06 23:32:48 +0000211 v[0] = spillCost;
Evan Chengb1290a62008-10-02 18:29:27 +0000212
Lang Hames27601ef2008-11-16 12:12:54 +0000213 // Iterate over the allowed registers inserting coalesce benefits if there
214 // are any.
215 unsigned ai = 0;
216 for (AllowedItr itr = allowed.begin(), end = allowed.end();
217 itr != end; ++itr, ++ai) {
218
219 unsigned pReg = *itr;
220
221 CoalesceMap::const_iterator cmItr =
222 coalesces.find(RegPair(vReg, pReg));
223
224 // No coalesce - on to the next preg.
225 if (cmItr == coalesces.end())
226 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000227
228 // We have a coalesce - insert the benefit.
Lang Hames6699fb22009-08-06 23:32:48 +0000229 v[ai + 1] = -cmItr->second;
Lang Hames27601ef2008-11-16 12:12:54 +0000230 }
231
Evan Chengb1290a62008-10-02 18:29:27 +0000232 return v;
233}
234
Lang Hames27601ef2008-11-16 12:12:54 +0000235template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000236PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000237 const RegContainer &allowed1, const RegContainer &allowed2) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000238
Lang Hames27601ef2008-11-16 12:12:54 +0000239 typedef typename RegContainer::const_iterator RegContainerIterator;
Evan Chengb1290a62008-10-02 18:29:27 +0000240
241 // Construct a PBQP matrix representing the cost of allocation options. The
242 // rows and columns correspond to the allocation options for the two live
243 // intervals. Elements will be infinite where corresponding registers alias,
244 // since we cannot allocate aliasing registers to interfering live intervals.
245 // All other elements (non-aliasing combinations) will have zero cost. Note
246 // that the spill option (element 0,0) has zero cost, since we can allocate
247 // both intervals to memory safely (the cost for each individual allocation
248 // to memory is accounted for by the cost vectors for each live interval).
Lang Hames6699fb22009-08-06 23:32:48 +0000249 PBQP::Matrix *m =
250 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
Misha Brukman2a835f92009-01-08 15:50:22 +0000251
Evan Chengb1290a62008-10-02 18:29:27 +0000252 // Assume this is a zero matrix until proven otherwise. Zero matrices occur
253 // between interfering live ranges with non-overlapping register sets (e.g.
254 // non-overlapping reg classes, or disjoint sets of allowed regs within the
255 // same class). The term "overlapping" is used advisedly: sets which do not
256 // intersect, but contain registers which alias, will have non-zero matrices.
257 // We optimize zero matrices away to improve solver speed.
258 bool isZeroMatrix = true;
259
260
261 // Row index. Starts at 1, since the 0th row is for the spill option, which
262 // is always zero.
Misha Brukman2a835f92009-01-08 15:50:22 +0000263 unsigned ri = 1;
Evan Chengb1290a62008-10-02 18:29:27 +0000264
Misha Brukman2a835f92009-01-08 15:50:22 +0000265 // Iterate over allowed sets, insert infinities where required.
Lang Hames27601ef2008-11-16 12:12:54 +0000266 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000267 a1Itr != a1End; ++a1Itr) {
268
269 // Column index, starts at 1 as for row index.
270 unsigned ci = 1;
271 unsigned reg1 = *a1Itr;
272
Lang Hames27601ef2008-11-16 12:12:54 +0000273 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
Evan Chengb1290a62008-10-02 18:29:27 +0000274 a2Itr != a2End; ++a2Itr) {
275
276 unsigned reg2 = *a2Itr;
277
278 // If the row/column regs are identical or alias insert an infinity.
Lang Hames3f2f3f52009-09-03 02:52:02 +0000279 if (tri->regsOverlap(reg1, reg2)) {
Lang Hames6699fb22009-08-06 23:32:48 +0000280 (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
Evan Chengb1290a62008-10-02 18:29:27 +0000281 isZeroMatrix = false;
282 }
283
284 ++ci;
285 }
286
287 ++ri;
288 }
289
290 // If this turns out to be a zero matrix...
291 if (isZeroMatrix) {
292 // free it and return null.
293 delete m;
294 return 0;
295 }
296
297 // ...otherwise return the cost matrix.
298 return m;
299}
300
Lang Hames27601ef2008-11-16 12:12:54 +0000301template <typename RegContainer>
Lang Hames6699fb22009-08-06 23:32:48 +0000302PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
Lang Hames27601ef2008-11-16 12:12:54 +0000303 const RegContainer &allowed1, const RegContainer &allowed2,
Lang Hames6699fb22009-08-06 23:32:48 +0000304 PBQP::PBQPNum cBenefit) const {
Evan Chengb1290a62008-10-02 18:29:27 +0000305
Lang Hames27601ef2008-11-16 12:12:54 +0000306 typedef typename RegContainer::const_iterator RegContainerIterator;
307
308 // Construct a PBQP Matrix representing the benefits of coalescing. As with
309 // interference matrices the rows and columns represent allowed registers
310 // for the LiveIntervals which are (potentially) to be coalesced. The amount
311 // -cBenefit will be placed in any element representing the same register
312 // for both intervals.
Lang Hames6699fb22009-08-06 23:32:48 +0000313 PBQP::Matrix *m =
314 new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
Lang Hames27601ef2008-11-16 12:12:54 +0000315
316 // Reset costs to zero.
317 m->reset(0);
318
319 // Assume the matrix is zero till proven otherwise. Zero matrices will be
320 // optimized away as in the interference case.
321 bool isZeroMatrix = true;
322
323 // Row index. Starts at 1, since the 0th row is for the spill option, which
324 // is always zero.
325 unsigned ri = 1;
326
327 // Iterate over the allowed sets, insert coalescing benefits where
328 // appropriate.
329 for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
330 a1Itr != a1End; ++a1Itr) {
331
332 // Column index, starts at 1 as for row index.
333 unsigned ci = 1;
334 unsigned reg1 = *a1Itr;
335
336 for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
337 a2Itr != a2End; ++a2Itr) {
338
339 // If the row and column represent the same register insert a beneficial
340 // cost to preference this allocation - it would allow us to eliminate a
Misha Brukman2a835f92009-01-08 15:50:22 +0000341 // move instruction.
Lang Hames27601ef2008-11-16 12:12:54 +0000342 if (reg1 == *a2Itr) {
343 (*m)[ri][ci] = -cBenefit;
344 isZeroMatrix = false;
345 }
346
347 ++ci;
348 }
349
350 ++ri;
351 }
352
353 // If this turns out to be a zero matrix...
354 if (isZeroMatrix) {
355 // ...free it and return null.
356 delete m;
357 return 0;
358 }
359
360 return m;
361}
362
363PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
364
365 typedef MachineFunction::const_iterator MFIterator;
366 typedef MachineBasicBlock::const_iterator MBBIterator;
367 typedef LiveInterval::const_vni_iterator VNIIterator;
Misha Brukman2a835f92009-01-08 15:50:22 +0000368
Lang Hames27601ef2008-11-16 12:12:54 +0000369 CoalesceMap coalescesFound;
370
371 // To find coalesces we need to iterate over the function looking for
372 // copy instructions.
373 for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000374 bbItr != bbEnd; ++bbItr) {
375
376 const MachineBasicBlock *mbb = &*bbItr;
Evan Chengb1290a62008-10-02 18:29:27 +0000377
Lang Hames27601ef2008-11-16 12:12:54 +0000378 for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
379 iItr != iEnd; ++iItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000380
381 const MachineInstr *instr = &*iItr;
Evan Cheng04ee5a12009-01-20 19:12:24 +0000382 unsigned srcReg, dstReg, srcSubReg, dstSubReg;
Evan Chengb1290a62008-10-02 18:29:27 +0000383
Lang Hames27601ef2008-11-16 12:12:54 +0000384 // If this isn't a copy then continue to the next instruction.
Evan Cheng04ee5a12009-01-20 19:12:24 +0000385 if (!tii->isMoveInstr(*instr, srcReg, dstReg, srcSubReg, dstSubReg))
Lang Hames27601ef2008-11-16 12:12:54 +0000386 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000387
Lang Hames27601ef2008-11-16 12:12:54 +0000388 // If the registers are already the same our job is nice and easy.
389 if (dstReg == srcReg)
390 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000391
Lang Hames27601ef2008-11-16 12:12:54 +0000392 bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
393 dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
394
395 // If both registers are physical then we can't coalesce.
396 if (srcRegIsPhysical && dstRegIsPhysical)
397 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000398
Rafael Espindolacbeb3db2010-07-12 01:45:38 +0000399 // If it's a copy that includes two virtual register but the source and
400 // destination classes differ then we can't coalesce.
401 if (!srcRegIsPhysical && !dstRegIsPhysical &&
402 mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
Lang Hames27601ef2008-11-16 12:12:54 +0000403 continue;
404
Rafael Espindolacbeb3db2010-07-12 01:45:38 +0000405 // If one is physical and one is virtual, check that the physical is
406 // allocatable in the class of the virtual.
407 if (srcRegIsPhysical && !dstRegIsPhysical) {
408 const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
Lang Hames0b23dc02010-02-09 00:50:27 +0000409 if (std::find(dstRegClass->allocation_order_begin(*mf),
410 dstRegClass->allocation_order_end(*mf), srcReg) ==
411 dstRegClass->allocation_order_end(*mf))
Evan Chengb1290a62008-10-02 18:29:27 +0000412 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000413 }
Rafael Espindolacbeb3db2010-07-12 01:45:38 +0000414 if (!srcRegIsPhysical && dstRegIsPhysical) {
415 const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
Lang Hames0b23dc02010-02-09 00:50:27 +0000416 if (std::find(srcRegClass->allocation_order_begin(*mf),
417 srcRegClass->allocation_order_end(*mf), dstReg) ==
418 srcRegClass->allocation_order_end(*mf))
Lang Hames27601ef2008-11-16 12:12:54 +0000419 continue;
420 }
421
422 // If we've made it here we have a copy with compatible register classes.
Misha Brukman2a835f92009-01-08 15:50:22 +0000423 // We can probably coalesce, but we need to consider overlap.
Lang Hames27601ef2008-11-16 12:12:54 +0000424 const LiveInterval *srcLI = &lis->getInterval(srcReg),
425 *dstLI = &lis->getInterval(dstReg);
426
427 if (srcLI->overlaps(*dstLI)) {
428 // Even in the case of an overlap we might still be able to coalesce,
429 // but we need to make sure that no definition of either range occurs
430 // while the other range is live.
431
432 // Otherwise start by assuming we're ok.
433 bool badDef = false;
434
435 // Test all defs of the source range.
Misha Brukman2a835f92009-01-08 15:50:22 +0000436 for (VNIIterator
Lang Hames27601ef2008-11-16 12:12:54 +0000437 vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
438 vniItr != vniEnd; ++vniItr) {
439
Lang Hames0b23dc02010-02-09 00:50:27 +0000440 // If we find a poorly defined def we err on the side of caution.
441 if (!(*vniItr)->def.isValid()) {
442 badDef = true;
443 break;
444 }
445
Lang Hames27601ef2008-11-16 12:12:54 +0000446 // If we find a def that kills the coalescing opportunity then
447 // record it and break from the loop.
448 if (dstLI->liveAt((*vniItr)->def)) {
449 badDef = true;
450 break;
451 }
452 }
453
454 // If we have a bad def give up, continue to the next instruction.
455 if (badDef)
456 continue;
Misha Brukman2a835f92009-01-08 15:50:22 +0000457
Lang Hames27601ef2008-11-16 12:12:54 +0000458 // Otherwise test definitions of the destination range.
459 for (VNIIterator
460 vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
461 vniItr != vniEnd; ++vniItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000462
Lang Hames27601ef2008-11-16 12:12:54 +0000463 // We want to make sure we skip the copy instruction itself.
Lang Hames52c1afc2009-08-10 23:43:28 +0000464 if ((*vniItr)->getCopy() == instr)
Lang Hames27601ef2008-11-16 12:12:54 +0000465 continue;
466
Lang Hames0b23dc02010-02-09 00:50:27 +0000467 if (!(*vniItr)->def.isValid()) {
468 badDef = true;
469 break;
470 }
471
Lang Hames27601ef2008-11-16 12:12:54 +0000472 if (srcLI->liveAt((*vniItr)->def)) {
473 badDef = true;
474 break;
475 }
476 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000477
Lang Hames27601ef2008-11-16 12:12:54 +0000478 // As before a bad def we give up and continue to the next instr.
479 if (badDef)
480 continue;
481 }
482
483 // If we make it to here then either the ranges didn't overlap, or they
484 // did, but none of their definitions would prevent us from coalescing.
485 // We're good to go with the coalesce.
486
Chris Lattner87565c12010-05-15 17:10:24 +0000487 float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000488
Lang Hames27601ef2008-11-16 12:12:54 +0000489 coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
490 coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
Evan Chengb1290a62008-10-02 18:29:27 +0000491 }
492
493 }
494
Lang Hames27601ef2008-11-16 12:12:54 +0000495 return coalescesFound;
496}
497
498void PBQPRegAlloc::findVRegIntervalsToAlloc() {
499
500 // Iterate over all live ranges.
501 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
502 itr != end; ++itr) {
503
504 // Ignore physical ones.
505 if (TargetRegisterInfo::isPhysicalRegister(itr->first))
506 continue;
507
508 LiveInterval *li = itr->second;
509
510 // If this live interval is non-empty we will use pbqp to allocate it.
511 // Empty intervals we allocate in a simple post-processing stage in
512 // finalizeAlloc.
513 if (!li->empty()) {
514 vregIntervalsToAlloc.insert(li);
515 }
516 else {
517 emptyVRegIntervals.insert(li);
518 }
519 }
Evan Chengb1290a62008-10-02 18:29:27 +0000520}
521
Lang Hames030c4bf2010-01-26 04:49:58 +0000522PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
Evan Chengb1290a62008-10-02 18:29:27 +0000523
524 typedef std::vector<const LiveInterval*> LIVector;
Lang Hames27601ef2008-11-16 12:12:54 +0000525 typedef std::vector<unsigned> RegVector;
Evan Chengb1290a62008-10-02 18:29:27 +0000526
Lang Hames27601ef2008-11-16 12:12:54 +0000527 // This will store the physical intervals for easy reference.
528 LIVector physIntervals;
Evan Chengb1290a62008-10-02 18:29:27 +0000529
530 // Start by clearing the old node <-> live interval mappings & allowed sets
531 li2Node.clear();
532 node2LI.clear();
533 allowedSets.clear();
534
Lang Hames27601ef2008-11-16 12:12:54 +0000535 // Populate physIntervals, update preg use:
536 for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
Evan Chengb1290a62008-10-02 18:29:27 +0000537 itr != end; ++itr) {
538
Evan Chengb1290a62008-10-02 18:29:27 +0000539 if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
540 physIntervals.push_back(itr->second);
541 mri->setPhysRegUsed(itr->second->reg);
542 }
Evan Chengb1290a62008-10-02 18:29:27 +0000543 }
544
Lang Hames27601ef2008-11-16 12:12:54 +0000545 // Iterate over vreg intervals, construct live interval <-> node number
546 // mappings.
Misha Brukman2a835f92009-01-08 15:50:22 +0000547 for (LiveIntervalSet::const_iterator
Lang Hames27601ef2008-11-16 12:12:54 +0000548 itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
549 itr != end; ++itr) {
550 const LiveInterval *li = *itr;
551
552 li2Node[li] = node2LI.size();
553 node2LI.push_back(li);
554 }
555
556 // Get the set of potential coalesces.
Lang Hames8481e3b2009-08-19 01:36:14 +0000557 CoalesceMap coalesces;
558
559 if (pbqpCoalescing) {
560 coalesces = findCoalesces();
561 }
Evan Chengb1290a62008-10-02 18:29:27 +0000562
563 // Construct a PBQP solver for this problem
Lang Hames030c4bf2010-01-26 04:49:58 +0000564 PBQP::Graph problem;
565 problemNodes.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000566
567 // Resize allowedSets container appropriately.
Lang Hames27601ef2008-11-16 12:12:54 +0000568 allowedSets.resize(vregIntervalsToAlloc.size());
Evan Chengb1290a62008-10-02 18:29:27 +0000569
570 // Iterate over virtual register intervals to compute allowed sets...
571 for (unsigned node = 0; node < node2LI.size(); ++node) {
572
573 // Grab pointers to the interval and its register class.
574 const LiveInterval *li = node2LI[node];
575 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000576
Evan Chengb1290a62008-10-02 18:29:27 +0000577 // Start by assuming all allocable registers in the class are allowed...
Lang Hames27601ef2008-11-16 12:12:54 +0000578 RegVector liAllowed(liRC->allocation_order_begin(*mf),
579 liRC->allocation_order_end(*mf));
Evan Chengb1290a62008-10-02 18:29:27 +0000580
Lang Hames27601ef2008-11-16 12:12:54 +0000581 // Eliminate the physical registers which overlap with this range, along
582 // with all their aliases.
583 for (LIVector::iterator pItr = physIntervals.begin(),
584 pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
Evan Chengb1290a62008-10-02 18:29:27 +0000585
Lang Hames27601ef2008-11-16 12:12:54 +0000586 if (!li->overlaps(**pItr))
587 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000588
Lang Hames27601ef2008-11-16 12:12:54 +0000589 unsigned pReg = (*pItr)->reg;
Evan Chengb1290a62008-10-02 18:29:27 +0000590
Lang Hames27601ef2008-11-16 12:12:54 +0000591 // If we get here then the live intervals overlap, but we're still ok
592 // if they're coalescable.
593 if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
594 continue;
Evan Chengb1290a62008-10-02 18:29:27 +0000595
Lang Hames27601ef2008-11-16 12:12:54 +0000596 // If we get here then we have a genuine exclusion.
Evan Chengb1290a62008-10-02 18:29:27 +0000597
Lang Hames27601ef2008-11-16 12:12:54 +0000598 // Remove the overlapping reg...
599 RegVector::iterator eraseItr =
600 std::find(liAllowed.begin(), liAllowed.end(), pReg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000601
Lang Hames27601ef2008-11-16 12:12:54 +0000602 if (eraseItr != liAllowed.end())
603 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000604
Lang Hames27601ef2008-11-16 12:12:54 +0000605 const unsigned *aliasItr = tri->getAliasSet(pReg);
606
607 if (aliasItr != 0) {
608 // ...and its aliases.
609 for (; *aliasItr != 0; ++aliasItr) {
610 RegVector::iterator eraseItr =
611 std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
Misha Brukman2a835f92009-01-08 15:50:22 +0000612
Lang Hames27601ef2008-11-16 12:12:54 +0000613 if (eraseItr != liAllowed.end()) {
614 liAllowed.erase(eraseItr);
Evan Chengb1290a62008-10-02 18:29:27 +0000615 }
Evan Chengb1290a62008-10-02 18:29:27 +0000616 }
Evan Chengb1290a62008-10-02 18:29:27 +0000617 }
Evan Chengb1290a62008-10-02 18:29:27 +0000618 }
619
620 // Copy the allowed set into a member vector for use when constructing cost
621 // vectors & matrices, and mapping PBQP solutions back to assignments.
622 allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
623
624 // Set the spill cost to the interval weight, or epsilon if the
625 // interval weight is zero
Lang Hames6699fb22009-08-06 23:32:48 +0000626 PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
627 li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
Evan Chengb1290a62008-10-02 18:29:27 +0000628
629 // Build a cost vector for this interval.
Lang Hames6699fb22009-08-06 23:32:48 +0000630 problemNodes[node] =
631 problem.addNode(
632 buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
Evan Chengb1290a62008-10-02 18:29:27 +0000633
634 }
635
Lang Hames27601ef2008-11-16 12:12:54 +0000636
Evan Chengb1290a62008-10-02 18:29:27 +0000637 // Now add the cost matrices...
638 for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
Evan Chengb1290a62008-10-02 18:29:27 +0000639 const LiveInterval *li = node2LI[node1];
640
Evan Chengb1290a62008-10-02 18:29:27 +0000641 // Test for live range overlaps and insert interference matrices.
642 for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
643 const LiveInterval *li2 = node2LI[node2];
644
Lang Hames27601ef2008-11-16 12:12:54 +0000645 CoalesceMap::const_iterator cmItr =
646 coalesces.find(RegPair(li->reg, li2->reg));
Evan Chengb1290a62008-10-02 18:29:27 +0000647
Lang Hames6699fb22009-08-06 23:32:48 +0000648 PBQP::Matrix *m = 0;
Evan Chengb1290a62008-10-02 18:29:27 +0000649
Lang Hames27601ef2008-11-16 12:12:54 +0000650 if (cmItr != coalesces.end()) {
651 m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
652 cmItr->second);
653 }
654 else if (li->overlaps(*li2)) {
655 m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
656 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000657
Lang Hames27601ef2008-11-16 12:12:54 +0000658 if (m != 0) {
Lang Hames6699fb22009-08-06 23:32:48 +0000659 problem.addEdge(problemNodes[node1],
660 problemNodes[node2],
661 *m);
662
Lang Hames27601ef2008-11-16 12:12:54 +0000663 delete m;
Evan Chengb1290a62008-10-02 18:29:27 +0000664 }
665 }
666 }
667
Lang Hames6699fb22009-08-06 23:32:48 +0000668 assert(problem.getNumNodes() == allowedSets.size());
Lang Hames6699fb22009-08-06 23:32:48 +0000669/*
670 std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
671 << problem.getNumEdges() << " edges.\n";
672
673 problem.printDot(std::cerr);
674*/
Evan Chengb1290a62008-10-02 18:29:27 +0000675 // We're done, PBQP problem constructed - return it.
Lang Hames6699fb22009-08-06 23:32:48 +0000676 return problem;
Evan Chengb1290a62008-10-02 18:29:27 +0000677}
678
Evan Chengc781a242009-05-03 18:32:42 +0000679void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
680 MachineRegisterInfo* mri) {
Lang Hames27601ef2008-11-16 12:12:54 +0000681 int stackSlot = vrm->getStackSlot(spilled->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000682
683 if (stackSlot == VirtRegMap::NO_STACK_SLOT)
Lang Hames27601ef2008-11-16 12:12:54 +0000684 return;
685
Evan Chengc781a242009-05-03 18:32:42 +0000686 const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
687 LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
Lang Hames27601ef2008-11-16 12:12:54 +0000688
689 VNInfo *vni;
690 if (stackInterval.getNumValNums() != 0)
691 vni = stackInterval.getValNumInfo(0);
692 else
Lang Hames86511252009-09-04 20:41:11 +0000693 vni = stackInterval.getNextValue(
Lang Hames233a60e2009-11-03 23:52:08 +0000694 SlotIndex(), 0, false, lss->getVNInfoAllocator());
Lang Hames27601ef2008-11-16 12:12:54 +0000695
696 LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
697 stackInterval.MergeRangesInAsValue(rhsInterval, vni);
698}
699
Lang Hames6699fb22009-08-06 23:32:48 +0000700bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
Lang Hamese98b4b02009-11-15 04:39:51 +0000701
Evan Chengb1290a62008-10-02 18:29:27 +0000702 // Set to true if we have any spills
703 bool anotherRoundNeeded = false;
704
705 // Clear the existing allocation.
706 vrm->clearAllVirt();
Daniel Dunbara279bc32009-09-20 02:20:51 +0000707
Evan Chengb1290a62008-10-02 18:29:27 +0000708 // Iterate over the nodes mapping the PBQP solution to a register assignment.
709 for (unsigned node = 0; node < node2LI.size(); ++node) {
Lang Hames27601ef2008-11-16 12:12:54 +0000710 unsigned virtReg = node2LI[node]->reg,
Lang Hames030c4bf2010-01-26 04:49:58 +0000711 allocSelection = solution.getSelection(problemNodes[node]);
Lang Hames6699fb22009-08-06 23:32:48 +0000712
Evan Chengb1290a62008-10-02 18:29:27 +0000713
714 // If the PBQP solution is non-zero it's a physical register...
715 if (allocSelection != 0) {
716 // Get the physical reg, subtracting 1 to account for the spill option.
717 unsigned physReg = allowedSets[node][allocSelection - 1];
718
David Greene30931542010-01-05 01:25:43 +0000719 DEBUG(dbgs() << "VREG " << virtReg << " -> "
Lang Hames233fd9c2009-08-18 23:34:50 +0000720 << tri->getName(physReg) << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000721
722 assert(physReg != 0);
723
Evan Chengb1290a62008-10-02 18:29:27 +0000724 // Add to the virt reg map and update the used phys regs.
Lang Hames27601ef2008-11-16 12:12:54 +0000725 vrm->assignVirt2Phys(virtReg, physReg);
Evan Chengb1290a62008-10-02 18:29:27 +0000726 }
727 // ...Otherwise it's a spill.
728 else {
729
730 // Make sure we ignore this virtual reg on the next round
731 // of allocation
Lang Hames27601ef2008-11-16 12:12:54 +0000732 vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
Evan Chengb1290a62008-10-02 18:29:27 +0000733
Evan Chengb1290a62008-10-02 18:29:27 +0000734 // Insert spill ranges for this live range
Lang Hames27601ef2008-11-16 12:12:54 +0000735 const LiveInterval *spillInterval = node2LI[node];
736 double oldSpillWeight = spillInterval->weight;
Evan Chengb1290a62008-10-02 18:29:27 +0000737 SmallVector<LiveInterval*, 8> spillIs;
738 std::vector<LiveInterval*> newSpills =
Evan Chengc781a242009-05-03 18:32:42 +0000739 lis->addIntervalsForSpills(*spillInterval, spillIs, loopInfo, *vrm);
740 addStackInterval(spillInterval, mri);
Lang Hames27601ef2008-11-16 12:12:54 +0000741
Daniel Dunbarbc84ad92009-08-20 20:01:34 +0000742 (void) oldSpillWeight;
David Greene30931542010-01-05 01:25:43 +0000743 DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
Lang Hames233fd9c2009-08-18 23:34:50 +0000744 << oldSpillWeight << ", New vregs: ");
Lang Hames27601ef2008-11-16 12:12:54 +0000745
746 // Copy any newly inserted live intervals into the list of regs to
747 // allocate.
748 for (std::vector<LiveInterval*>::const_iterator
749 itr = newSpills.begin(), end = newSpills.end();
750 itr != end; ++itr) {
751
752 assert(!(*itr)->empty() && "Empty spill range.");
753
David Greene30931542010-01-05 01:25:43 +0000754 DEBUG(dbgs() << (*itr)->reg << " ");
Lang Hames27601ef2008-11-16 12:12:54 +0000755
756 vregIntervalsToAlloc.insert(*itr);
757 }
758
David Greene30931542010-01-05 01:25:43 +0000759 DEBUG(dbgs() << ")\n");
Evan Chengb1290a62008-10-02 18:29:27 +0000760
761 // We need another round if spill intervals were added.
762 anotherRoundNeeded |= !newSpills.empty();
763 }
764 }
765
766 return !anotherRoundNeeded;
767}
768
Lang Hames27601ef2008-11-16 12:12:54 +0000769void PBQPRegAlloc::finalizeAlloc() const {
770 typedef LiveIntervals::iterator LIIterator;
771 typedef LiveInterval::Ranges::const_iterator LRIterator;
772
773 // First allocate registers for the empty intervals.
Argyrios Kyrtzidis3713c0b2008-11-19 12:56:21 +0000774 for (LiveIntervalSet::const_iterator
Daniel Dunbara279bc32009-09-20 02:20:51 +0000775 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
Lang Hames27601ef2008-11-16 12:12:54 +0000776 itr != end; ++itr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000777 LiveInterval *li = *itr;
Lang Hames27601ef2008-11-16 12:12:54 +0000778
Evan Cheng90f95f82009-06-14 20:22:55 +0000779 unsigned physReg = vrm->getRegAllocPref(li->reg);
Lang Hames6699fb22009-08-06 23:32:48 +0000780
Lang Hames27601ef2008-11-16 12:12:54 +0000781 if (physReg == 0) {
782 const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
Misha Brukman2a835f92009-01-08 15:50:22 +0000783 physReg = *liRC->allocation_order_begin(*mf);
Lang Hames27601ef2008-11-16 12:12:54 +0000784 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000785
786 vrm->assignVirt2Phys(li->reg, physReg);
Lang Hames27601ef2008-11-16 12:12:54 +0000787 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000788
Lang Hames27601ef2008-11-16 12:12:54 +0000789 // Finally iterate over the basic blocks to compute and set the live-in sets.
790 SmallVector<MachineBasicBlock*, 8> liveInMBBs;
791 MachineBasicBlock *entryMBB = &*mf->begin();
792
793 for (LIIterator liItr = lis->begin(), liEnd = lis->end();
794 liItr != liEnd; ++liItr) {
795
796 const LiveInterval *li = liItr->second;
797 unsigned reg = 0;
Misha Brukman2a835f92009-01-08 15:50:22 +0000798
Lang Hames27601ef2008-11-16 12:12:54 +0000799 // Get the physical register for this interval
800 if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
801 reg = li->reg;
802 }
803 else if (vrm->isAssignedReg(li->reg)) {
804 reg = vrm->getPhys(li->reg);
805 }
806 else {
807 // Ranges which are assigned a stack slot only are ignored.
808 continue;
809 }
810
Lang Hamesb0e519f2009-05-17 23:50:36 +0000811 if (reg == 0) {
Lang Hames6699fb22009-08-06 23:32:48 +0000812 // Filter out zero regs - they're for intervals that were spilled.
Lang Hamesb0e519f2009-05-17 23:50:36 +0000813 continue;
814 }
815
Lang Hames27601ef2008-11-16 12:12:54 +0000816 // Iterate over the ranges of the current interval...
817 for (LRIterator lrItr = li->begin(), lrEnd = li->end();
818 lrItr != lrEnd; ++lrItr) {
Misha Brukman2a835f92009-01-08 15:50:22 +0000819
Lang Hames27601ef2008-11-16 12:12:54 +0000820 // Find the set of basic blocks which this range is live into...
821 if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
822 // And add the physreg for this interval to their live-in sets.
823 for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
824 if (liveInMBBs[i] != entryMBB) {
825 if (!liveInMBBs[i]->isLiveIn(reg)) {
826 liveInMBBs[i]->addLiveIn(reg);
827 }
828 }
829 }
830 liveInMBBs.clear();
831 }
832 }
833 }
Misha Brukman2a835f92009-01-08 15:50:22 +0000834
Lang Hames27601ef2008-11-16 12:12:54 +0000835}
836
Evan Chengb1290a62008-10-02 18:29:27 +0000837bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
Lang Hames27601ef2008-11-16 12:12:54 +0000838
Evan Chengb1290a62008-10-02 18:29:27 +0000839 mf = &MF;
840 tm = &mf->getTarget();
841 tri = tm->getRegisterInfo();
Lang Hames27601ef2008-11-16 12:12:54 +0000842 tii = tm->getInstrInfo();
Lang Hames233a60e2009-11-03 23:52:08 +0000843 mri = &mf->getRegInfo();
Evan Chengb1290a62008-10-02 18:29:27 +0000844
Lang Hames27601ef2008-11-16 12:12:54 +0000845 lis = &getAnalysis<LiveIntervals>();
846 lss = &getAnalysis<LiveStacks>();
Evan Chengb1290a62008-10-02 18:29:27 +0000847 loopInfo = &getAnalysis<MachineLoopInfo>();
848
Owen Anderson49c8aa02009-03-13 05:55:11 +0000849 vrm = &getAnalysis<VirtRegMap>();
Evan Chengb1290a62008-10-02 18:29:27 +0000850
Lang Hames030c4bf2010-01-26 04:49:58 +0000851 DEBUG(dbgs() << "PBQP Register Allocating for " << mf->getFunction()->getName() << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000852
Evan Chengb1290a62008-10-02 18:29:27 +0000853 // Allocator main loop:
Misha Brukman2a835f92009-01-08 15:50:22 +0000854 //
Evan Chengb1290a62008-10-02 18:29:27 +0000855 // * Map current regalloc problem to a PBQP problem
856 // * Solve the PBQP problem
857 // * Map the solution back to a register allocation
858 // * Spill if necessary
Misha Brukman2a835f92009-01-08 15:50:22 +0000859 //
Evan Chengb1290a62008-10-02 18:29:27 +0000860 // This process is continued till no more spills are generated.
861
Lang Hames27601ef2008-11-16 12:12:54 +0000862 // Find the vreg intervals in need of allocation.
863 findVRegIntervalsToAlloc();
Misha Brukman2a835f92009-01-08 15:50:22 +0000864
Lang Hames27601ef2008-11-16 12:12:54 +0000865 // If there are non-empty intervals allocate them using pbqp.
866 if (!vregIntervalsToAlloc.empty()) {
Evan Chengb1290a62008-10-02 18:29:27 +0000867
Lang Hames27601ef2008-11-16 12:12:54 +0000868 bool pbqpAllocComplete = false;
869 unsigned round = 0;
870
871 while (!pbqpAllocComplete) {
David Greene30931542010-01-05 01:25:43 +0000872 DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000873
Lang Hames030c4bf2010-01-26 04:49:58 +0000874 PBQP::Graph problem = constructPBQPProblem();
875 PBQP::Solution solution =
876 PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
Lang Hames233fd9c2009-08-18 23:34:50 +0000877
Lang Hames6699fb22009-08-06 23:32:48 +0000878 pbqpAllocComplete = mapPBQPToRegAlloc(solution);
Lang Hames27601ef2008-11-16 12:12:54 +0000879
880 ++round;
881 }
Evan Chengb1290a62008-10-02 18:29:27 +0000882 }
883
Lang Hames27601ef2008-11-16 12:12:54 +0000884 // Finalise allocation, allocate empty ranges.
885 finalizeAlloc();
Evan Chengb1290a62008-10-02 18:29:27 +0000886
Lang Hames27601ef2008-11-16 12:12:54 +0000887 vregIntervalsToAlloc.clear();
888 emptyVRegIntervals.clear();
889 li2Node.clear();
890 node2LI.clear();
891 allowedSets.clear();
Lang Hames030c4bf2010-01-26 04:49:58 +0000892 problemNodes.clear();
Lang Hames27601ef2008-11-16 12:12:54 +0000893
David Greene30931542010-01-05 01:25:43 +0000894 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
Lang Hames27601ef2008-11-16 12:12:54 +0000895
Lang Hames87e3bca2009-05-06 02:36:21 +0000896 // Run rewriter
897 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
898
899 rewriter->runOnMachineFunction(*mf, *vrm, lis);
Lang Hames27601ef2008-11-16 12:12:54 +0000900
Misha Brukman2a835f92009-01-08 15:50:22 +0000901 return true;
Evan Chengb1290a62008-10-02 18:29:27 +0000902}
903
904FunctionPass* llvm::createPBQPRegisterAllocator() {
905 return new PBQPRegAlloc();
906}
907
908
909#undef DEBUG_TYPE