blob: c6cbe295465a920565d82c43e0285ba8646a9adf [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
5 <title>LLVM Assembly Language Reference Manual</title>
6 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
7 <meta name="author" content="Chris Lattner">
8 <meta name="description"
9 content="LLVM Assembly Language Reference Manual.">
10 <link rel="stylesheet" href="llvm.css" type="text/css">
11</head>
12
13<body>
14
15<div class="doc_title"> LLVM Language Reference Manual </div>
16<ol>
17 <li><a href="#abstract">Abstract</a></li>
18 <li><a href="#introduction">Introduction</a></li>
19 <li><a href="#identifiers">Identifiers</a></li>
20 <li><a href="#highlevel">High Level Structure</a>
21 <ol>
22 <li><a href="#modulestructure">Module Structure</a></li>
23 <li><a href="#linkage">Linkage Types</a></li>
24 <li><a href="#callingconv">Calling Conventions</a></li>
25 <li><a href="#globalvars">Global Variables</a></li>
26 <li><a href="#functionstructure">Functions</a></li>
27 <li><a href="#aliasstructure">Aliases</a>
28 <li><a href="#paramattrs">Parameter Attributes</a></li>
29 <li><a href="#moduleasm">Module-Level Inline Assembly</a></li>
30 <li><a href="#datalayout">Data Layout</a></li>
31 </ol>
32 </li>
33 <li><a href="#typesystem">Type System</a>
34 <ol>
35 <li><a href="#t_primitive">Primitive Types</a>
36 <ol>
37 <li><a href="#t_classifications">Type Classifications</a></li>
38 </ol>
39 </li>
40 <li><a href="#t_derived">Derived Types</a>
41 <ol>
42 <li><a href="#t_array">Array Type</a></li>
43 <li><a href="#t_function">Function Type</a></li>
44 <li><a href="#t_pointer">Pointer Type</a></li>
45 <li><a href="#t_struct">Structure Type</a></li>
46 <li><a href="#t_pstruct">Packed Structure Type</a></li>
47 <li><a href="#t_vector">Vector Type</a></li>
48 <li><a href="#t_opaque">Opaque Type</a></li>
49 </ol>
50 </li>
51 </ol>
52 </li>
53 <li><a href="#constants">Constants</a>
54 <ol>
55 <li><a href="#simpleconstants">Simple Constants</a>
56 <li><a href="#aggregateconstants">Aggregate Constants</a>
57 <li><a href="#globalconstants">Global Variable and Function Addresses</a>
58 <li><a href="#undefvalues">Undefined Values</a>
59 <li><a href="#constantexprs">Constant Expressions</a>
60 </ol>
61 </li>
62 <li><a href="#othervalues">Other Values</a>
63 <ol>
64 <li><a href="#inlineasm">Inline Assembler Expressions</a>
65 </ol>
66 </li>
67 <li><a href="#instref">Instruction Reference</a>
68 <ol>
69 <li><a href="#terminators">Terminator Instructions</a>
70 <ol>
71 <li><a href="#i_ret">'<tt>ret</tt>' Instruction</a></li>
72 <li><a href="#i_br">'<tt>br</tt>' Instruction</a></li>
73 <li><a href="#i_switch">'<tt>switch</tt>' Instruction</a></li>
74 <li><a href="#i_invoke">'<tt>invoke</tt>' Instruction</a></li>
75 <li><a href="#i_unwind">'<tt>unwind</tt>' Instruction</a></li>
76 <li><a href="#i_unreachable">'<tt>unreachable</tt>' Instruction</a></li>
77 </ol>
78 </li>
79 <li><a href="#binaryops">Binary Operations</a>
80 <ol>
81 <li><a href="#i_add">'<tt>add</tt>' Instruction</a></li>
82 <li><a href="#i_sub">'<tt>sub</tt>' Instruction</a></li>
83 <li><a href="#i_mul">'<tt>mul</tt>' Instruction</a></li>
84 <li><a href="#i_udiv">'<tt>udiv</tt>' Instruction</a></li>
85 <li><a href="#i_sdiv">'<tt>sdiv</tt>' Instruction</a></li>
86 <li><a href="#i_fdiv">'<tt>fdiv</tt>' Instruction</a></li>
87 <li><a href="#i_urem">'<tt>urem</tt>' Instruction</a></li>
88 <li><a href="#i_srem">'<tt>srem</tt>' Instruction</a></li>
89 <li><a href="#i_frem">'<tt>frem</tt>' Instruction</a></li>
90 </ol>
91 </li>
92 <li><a href="#bitwiseops">Bitwise Binary Operations</a>
93 <ol>
94 <li><a href="#i_shl">'<tt>shl</tt>' Instruction</a></li>
95 <li><a href="#i_lshr">'<tt>lshr</tt>' Instruction</a></li>
96 <li><a href="#i_ashr">'<tt>ashr</tt>' Instruction</a></li>
97 <li><a href="#i_and">'<tt>and</tt>' Instruction</a></li>
98 <li><a href="#i_or">'<tt>or</tt>' Instruction</a></li>
99 <li><a href="#i_xor">'<tt>xor</tt>' Instruction</a></li>
100 </ol>
101 </li>
102 <li><a href="#vectorops">Vector Operations</a>
103 <ol>
104 <li><a href="#i_extractelement">'<tt>extractelement</tt>' Instruction</a></li>
105 <li><a href="#i_insertelement">'<tt>insertelement</tt>' Instruction</a></li>
106 <li><a href="#i_shufflevector">'<tt>shufflevector</tt>' Instruction</a></li>
107 </ol>
108 </li>
109 <li><a href="#memoryops">Memory Access and Addressing Operations</a>
110 <ol>
111 <li><a href="#i_malloc">'<tt>malloc</tt>' Instruction</a></li>
112 <li><a href="#i_free">'<tt>free</tt>' Instruction</a></li>
113 <li><a href="#i_alloca">'<tt>alloca</tt>' Instruction</a></li>
114 <li><a href="#i_load">'<tt>load</tt>' Instruction</a></li>
115 <li><a href="#i_store">'<tt>store</tt>' Instruction</a></li>
116 <li><a href="#i_getelementptr">'<tt>getelementptr</tt>' Instruction</a></li>
117 </ol>
118 </li>
119 <li><a href="#convertops">Conversion Operations</a>
120 <ol>
121 <li><a href="#i_trunc">'<tt>trunc .. to</tt>' Instruction</a></li>
122 <li><a href="#i_zext">'<tt>zext .. to</tt>' Instruction</a></li>
123 <li><a href="#i_sext">'<tt>sext .. to</tt>' Instruction</a></li>
124 <li><a href="#i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a></li>
125 <li><a href="#i_fpext">'<tt>fpext .. to</tt>' Instruction</a></li>
126 <li><a href="#i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a></li>
127 <li><a href="#i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a></li>
128 <li><a href="#i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a></li>
129 <li><a href="#i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a></li>
130 <li><a href="#i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a></li>
131 <li><a href="#i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a></li>
132 <li><a href="#i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a></li>
133 </ol>
134 <li><a href="#otherops">Other Operations</a>
135 <ol>
136 <li><a href="#i_icmp">'<tt>icmp</tt>' Instruction</a></li>
137 <li><a href="#i_fcmp">'<tt>fcmp</tt>' Instruction</a></li>
138 <li><a href="#i_phi">'<tt>phi</tt>' Instruction</a></li>
139 <li><a href="#i_select">'<tt>select</tt>' Instruction</a></li>
140 <li><a href="#i_call">'<tt>call</tt>' Instruction</a></li>
141 <li><a href="#i_va_arg">'<tt>va_arg</tt>' Instruction</a></li>
142 </ol>
143 </li>
144 </ol>
145 </li>
146 <li><a href="#intrinsics">Intrinsic Functions</a>
147 <ol>
148 <li><a href="#int_varargs">Variable Argument Handling Intrinsics</a>
149 <ol>
150 <li><a href="#int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a></li>
151 <li><a href="#int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a></li>
152 <li><a href="#int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a></li>
153 </ol>
154 </li>
155 <li><a href="#int_gc">Accurate Garbage Collection Intrinsics</a>
156 <ol>
157 <li><a href="#int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a></li>
158 <li><a href="#int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a></li>
159 <li><a href="#int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a></li>
160 </ol>
161 </li>
162 <li><a href="#int_codegen">Code Generator Intrinsics</a>
163 <ol>
164 <li><a href="#int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a></li>
165 <li><a href="#int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a></li>
166 <li><a href="#int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a></li>
167 <li><a href="#int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a></li>
168 <li><a href="#int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a></li>
169 <li><a href="#int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a></li>
170 <li><a href="#int_readcyclecounter"><tt>llvm.readcyclecounter</tt>' Intrinsic</a></li>
171 </ol>
172 </li>
173 <li><a href="#int_libc">Standard C Library Intrinsics</a>
174 <ol>
175 <li><a href="#int_memcpy">'<tt>llvm.memcpy.*</tt>' Intrinsic</a></li>
176 <li><a href="#int_memmove">'<tt>llvm.memmove.*</tt>' Intrinsic</a></li>
177 <li><a href="#int_memset">'<tt>llvm.memset.*</tt>' Intrinsic</a></li>
178 <li><a href="#int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a></li>
179 <li><a href="#int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a></li>
Dan Gohman361079c2007-10-15 20:30:11 +0000180 <li><a href="#int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a></li>
181 <li><a href="#int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a></li>
182 <li><a href="#int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000183 </ol>
184 </li>
185 <li><a href="#int_manip">Bit Manipulation Intrinsics</a>
186 <ol>
187 <li><a href="#int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a></li>
188 <li><a href="#int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic </a></li>
189 <li><a href="#int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic </a></li>
190 <li><a href="#int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic </a></li>
191 <li><a href="#int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic </a></li>
192 <li><a href="#int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic </a></li>
193 </ol>
194 </li>
195 <li><a href="#int_debugger">Debugger intrinsics</a></li>
196 <li><a href="#int_eh">Exception Handling intrinsics</a></li>
Duncan Sands7407a9f2007-09-11 14:10:23 +0000197 <li><a href="#int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +0000198 <ol>
199 <li><a href="#int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a></li>
Duncan Sands38947cd2007-07-27 12:58:54 +0000200 </ol>
201 </li>
Reid Spencerb043f672007-07-20 19:59:11 +0000202 <li><a href="#int_general">General intrinsics</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000203 <ol>
Reid Spencerb043f672007-07-20 19:59:11 +0000204 <li><a href="#int_var_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000205 <tt>llvm.var.annotation</tt>' Intrinsic</a></li>
Reid Spencerb043f672007-07-20 19:59:11 +0000206 </ol>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000207 <ol>
208 <li><a href="#int_annotation">
Tanya Lattner51369f32007-09-22 00:01:26 +0000209 <tt>llvm.annotation.*</tt>' Intrinsic</a></li>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +0000210 </ol>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 </li>
212 </ol>
213 </li>
214</ol>
215
216<div class="doc_author">
217 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>
218 and <a href="mailto:vadve@cs.uiuc.edu">Vikram Adve</a></p>
219</div>
220
221<!-- *********************************************************************** -->
222<div class="doc_section"> <a name="abstract">Abstract </a></div>
223<!-- *********************************************************************** -->
224
225<div class="doc_text">
226<p>This document is a reference manual for the LLVM assembly language.
227LLVM is an SSA based representation that provides type safety,
228low-level operations, flexibility, and the capability of representing
229'all' high-level languages cleanly. It is the common code
230representation used throughout all phases of the LLVM compilation
231strategy.</p>
232</div>
233
234<!-- *********************************************************************** -->
235<div class="doc_section"> <a name="introduction">Introduction</a> </div>
236<!-- *********************************************************************** -->
237
238<div class="doc_text">
239
240<p>The LLVM code representation is designed to be used in three
241different forms: as an in-memory compiler IR, as an on-disk bitcode
242representation (suitable for fast loading by a Just-In-Time compiler),
243and as a human readable assembly language representation. This allows
244LLVM to provide a powerful intermediate representation for efficient
245compiler transformations and analysis, while providing a natural means
246to debug and visualize the transformations. The three different forms
247of LLVM are all equivalent. This document describes the human readable
248representation and notation.</p>
249
250<p>The LLVM representation aims to be light-weight and low-level
251while being expressive, typed, and extensible at the same time. It
252aims to be a "universal IR" of sorts, by being at a low enough level
253that high-level ideas may be cleanly mapped to it (similar to how
254microprocessors are "universal IR's", allowing many source languages to
255be mapped to them). By providing type information, LLVM can be used as
256the target of optimizations: for example, through pointer analysis, it
257can be proven that a C automatic variable is never accessed outside of
258the current function... allowing it to be promoted to a simple SSA
259value instead of a memory location.</p>
260
261</div>
262
263<!-- _______________________________________________________________________ -->
264<div class="doc_subsubsection"> <a name="wellformed">Well-Formedness</a> </div>
265
266<div class="doc_text">
267
268<p>It is important to note that this document describes 'well formed'
269LLVM assembly language. There is a difference between what the parser
270accepts and what is considered 'well formed'. For example, the
271following instruction is syntactically okay, but not well formed:</p>
272
273<div class="doc_code">
274<pre>
275%x = <a href="#i_add">add</a> i32 1, %x
276</pre>
277</div>
278
279<p>...because the definition of <tt>%x</tt> does not dominate all of
280its uses. The LLVM infrastructure provides a verification pass that may
281be used to verify that an LLVM module is well formed. This pass is
282automatically run by the parser after parsing input assembly and by
283the optimizer before it outputs bitcode. The violations pointed out
284by the verifier pass indicate bugs in transformation passes or input to
285the parser.</p>
286</div>
287
Chris Lattnera83fdc02007-10-03 17:34:29 +0000288<!-- Describe the typesetting conventions here. -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000289
290<!-- *********************************************************************** -->
291<div class="doc_section"> <a name="identifiers">Identifiers</a> </div>
292<!-- *********************************************************************** -->
293
294<div class="doc_text">
295
Reid Spencerc8245b02007-08-07 14:34:28 +0000296 <p>LLVM identifiers come in two basic types: global and local. Global
297 identifiers (functions, global variables) begin with the @ character. Local
298 identifiers (register names, types) begin with the % character. Additionally,
299 there are three different formats for identifiers, for different purposes:
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000300
301<ol>
Reid Spencerc8245b02007-08-07 14:34:28 +0000302 <li>Named values are represented as a string of characters with their prefix.
303 For example, %foo, @DivisionByZero, %a.really.long.identifier. The actual
304 regular expression used is '<tt>[%@][a-zA-Z$._][a-zA-Z$._0-9]*</tt>'.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000305 Identifiers which require other characters in their names can be surrounded
Reid Spencerc8245b02007-08-07 14:34:28 +0000306 with quotes. In this way, anything except a <tt>&quot;</tt> character can
307 be used in a named value.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000308
Reid Spencerc8245b02007-08-07 14:34:28 +0000309 <li>Unnamed values are represented as an unsigned numeric value with their
310 prefix. For example, %12, @2, %44.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000311
312 <li>Constants, which are described in a <a href="#constants">section about
313 constants</a>, below.</li>
314</ol>
315
Reid Spencerc8245b02007-08-07 14:34:28 +0000316<p>LLVM requires that values start with a prefix for two reasons: Compilers
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000317don't need to worry about name clashes with reserved words, and the set of
318reserved words may be expanded in the future without penalty. Additionally,
319unnamed identifiers allow a compiler to quickly come up with a temporary
320variable without having to avoid symbol table conflicts.</p>
321
322<p>Reserved words in LLVM are very similar to reserved words in other
323languages. There are keywords for different opcodes
324('<tt><a href="#i_add">add</a></tt>',
325 '<tt><a href="#i_bitcast">bitcast</a></tt>',
326 '<tt><a href="#i_ret">ret</a></tt>', etc...), for primitive type names ('<tt><a
327href="#t_void">void</a></tt>', '<tt><a href="#t_primitive">i32</a></tt>', etc...),
328and others. These reserved words cannot conflict with variable names, because
Reid Spencerc8245b02007-08-07 14:34:28 +0000329none of them start with a prefix character ('%' or '@').</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000330
331<p>Here is an example of LLVM code to multiply the integer variable
332'<tt>%X</tt>' by 8:</p>
333
334<p>The easy way:</p>
335
336<div class="doc_code">
337<pre>
338%result = <a href="#i_mul">mul</a> i32 %X, 8
339</pre>
340</div>
341
342<p>After strength reduction:</p>
343
344<div class="doc_code">
345<pre>
346%result = <a href="#i_shl">shl</a> i32 %X, i8 3
347</pre>
348</div>
349
350<p>And the hard way:</p>
351
352<div class="doc_code">
353<pre>
354<a href="#i_add">add</a> i32 %X, %X <i>; yields {i32}:%0</i>
355<a href="#i_add">add</a> i32 %0, %0 <i>; yields {i32}:%1</i>
356%result = <a href="#i_add">add</a> i32 %1, %1
357</pre>
358</div>
359
360<p>This last way of multiplying <tt>%X</tt> by 8 illustrates several
361important lexical features of LLVM:</p>
362
363<ol>
364
365 <li>Comments are delimited with a '<tt>;</tt>' and go until the end of
366 line.</li>
367
368 <li>Unnamed temporaries are created when the result of a computation is not
369 assigned to a named value.</li>
370
371 <li>Unnamed temporaries are numbered sequentially</li>
372
373</ol>
374
375<p>...and it also shows a convention that we follow in this document. When
376demonstrating instructions, we will follow an instruction with a comment that
377defines the type and name of value produced. Comments are shown in italic
378text.</p>
379
380</div>
381
382<!-- *********************************************************************** -->
383<div class="doc_section"> <a name="highlevel">High Level Structure</a> </div>
384<!-- *********************************************************************** -->
385
386<!-- ======================================================================= -->
387<div class="doc_subsection"> <a name="modulestructure">Module Structure</a>
388</div>
389
390<div class="doc_text">
391
392<p>LLVM programs are composed of "Module"s, each of which is a
393translation unit of the input programs. Each module consists of
394functions, global variables, and symbol table entries. Modules may be
395combined together with the LLVM linker, which merges function (and
396global variable) definitions, resolves forward declarations, and merges
397symbol table entries. Here is an example of the "hello world" module:</p>
398
399<div class="doc_code">
400<pre><i>; Declare the string constant as a global constant...</i>
401<a href="#identifiers">@.LC0</a> = <a href="#linkage_internal">internal</a> <a
402 href="#globalvars">constant</a> <a href="#t_array">[13 x i8]</a> c"hello world\0A\00" <i>; [13 x i8]*</i>
403
404<i>; External declaration of the puts function</i>
405<a href="#functionstructure">declare</a> i32 @puts(i8 *) <i>; i32(i8 *)* </i>
406
407<i>; Definition of main function</i>
408define i32 @main() { <i>; i32()* </i>
409 <i>; Convert [13x i8 ]* to i8 *...</i>
410 %cast210 = <a
411 href="#i_getelementptr">getelementptr</a> [13 x i8 ]* @.LC0, i64 0, i64 0 <i>; i8 *</i>
412
413 <i>; Call puts function to write out the string to stdout...</i>
414 <a
415 href="#i_call">call</a> i32 @puts(i8 * %cast210) <i>; i32</i>
416 <a
417 href="#i_ret">ret</a> i32 0<br>}<br>
418</pre>
419</div>
420
421<p>This example is made up of a <a href="#globalvars">global variable</a>
422named "<tt>.LC0</tt>", an external declaration of the "<tt>puts</tt>"
423function, and a <a href="#functionstructure">function definition</a>
424for "<tt>main</tt>".</p>
425
426<p>In general, a module is made up of a list of global values,
427where both functions and global variables are global values. Global values are
428represented by a pointer to a memory location (in this case, a pointer to an
429array of char, and a pointer to a function), and have one of the following <a
430href="#linkage">linkage types</a>.</p>
431
432</div>
433
434<!-- ======================================================================= -->
435<div class="doc_subsection">
436 <a name="linkage">Linkage Types</a>
437</div>
438
439<div class="doc_text">
440
441<p>
442All Global Variables and Functions have one of the following types of linkage:
443</p>
444
445<dl>
446
447 <dt><tt><b><a name="linkage_internal">internal</a></b></tt> </dt>
448
449 <dd>Global values with internal linkage are only directly accessible by
450 objects in the current module. In particular, linking code into a module with
451 an internal global value may cause the internal to be renamed as necessary to
452 avoid collisions. Because the symbol is internal to the module, all
453 references can be updated. This corresponds to the notion of the
454 '<tt>static</tt>' keyword in C.
455 </dd>
456
457 <dt><tt><b><a name="linkage_linkonce">linkonce</a></b></tt>: </dt>
458
459 <dd>Globals with "<tt>linkonce</tt>" linkage are merged with other globals of
460 the same name when linkage occurs. This is typically used to implement
461 inline functions, templates, or other code which must be generated in each
462 translation unit that uses it. Unreferenced <tt>linkonce</tt> globals are
463 allowed to be discarded.
464 </dd>
465
466 <dt><tt><b><a name="linkage_weak">weak</a></b></tt>: </dt>
467
468 <dd>"<tt>weak</tt>" linkage is exactly the same as <tt>linkonce</tt> linkage,
469 except that unreferenced <tt>weak</tt> globals may not be discarded. This is
470 used for globals that may be emitted in multiple translation units, but that
471 are not guaranteed to be emitted into every translation unit that uses them.
472 One example of this are common globals in C, such as "<tt>int X;</tt>" at
473 global scope.
474 </dd>
475
476 <dt><tt><b><a name="linkage_appending">appending</a></b></tt>: </dt>
477
478 <dd>"<tt>appending</tt>" linkage may only be applied to global variables of
479 pointer to array type. When two global variables with appending linkage are
480 linked together, the two global arrays are appended together. This is the
481 LLVM, typesafe, equivalent of having the system linker append together
482 "sections" with identical names when .o files are linked.
483 </dd>
484
485 <dt><tt><b><a name="linkage_externweak">extern_weak</a></b></tt>: </dt>
486 <dd>The semantics of this linkage follow the ELF model: the symbol is weak
487 until linked, if not linked, the symbol becomes null instead of being an
488 undefined reference.
489 </dd>
490
491 <dt><tt><b><a name="linkage_external">externally visible</a></b></tt>:</dt>
492
493 <dd>If none of the above identifiers are used, the global is externally
494 visible, meaning that it participates in linkage and can be used to resolve
495 external symbol references.
496 </dd>
497</dl>
498
499 <p>
500 The next two types of linkage are targeted for Microsoft Windows platform
501 only. They are designed to support importing (exporting) symbols from (to)
502 DLLs.
503 </p>
504
505 <dl>
506 <dt><tt><b><a name="linkage_dllimport">dllimport</a></b></tt>: </dt>
507
508 <dd>"<tt>dllimport</tt>" linkage causes the compiler to reference a function
509 or variable via a global pointer to a pointer that is set up by the DLL
510 exporting the symbol. On Microsoft Windows targets, the pointer name is
511 formed by combining <code>_imp__</code> and the function or variable name.
512 </dd>
513
514 <dt><tt><b><a name="linkage_dllexport">dllexport</a></b></tt>: </dt>
515
516 <dd>"<tt>dllexport</tt>" linkage causes the compiler to provide a global
517 pointer to a pointer in a DLL, so that it can be referenced with the
518 <tt>dllimport</tt> attribute. On Microsoft Windows targets, the pointer
519 name is formed by combining <code>_imp__</code> and the function or variable
520 name.
521 </dd>
522
523</dl>
524
525<p><a name="linkage_external"></a>For example, since the "<tt>.LC0</tt>"
526variable is defined to be internal, if another module defined a "<tt>.LC0</tt>"
527variable and was linked with this one, one of the two would be renamed,
528preventing a collision. Since "<tt>main</tt>" and "<tt>puts</tt>" are
529external (i.e., lacking any linkage declarations), they are accessible
530outside of the current module.</p>
531<p>It is illegal for a function <i>declaration</i>
532to have any linkage type other than "externally visible", <tt>dllimport</tt>,
533or <tt>extern_weak</tt>.</p>
534<p>Aliases can have only <tt>external</tt>, <tt>internal</tt> and <tt>weak</tt>
535linkages.
536</div>
537
538<!-- ======================================================================= -->
539<div class="doc_subsection">
540 <a name="callingconv">Calling Conventions</a>
541</div>
542
543<div class="doc_text">
544
545<p>LLVM <a href="#functionstructure">functions</a>, <a href="#i_call">calls</a>
546and <a href="#i_invoke">invokes</a> can all have an optional calling convention
547specified for the call. The calling convention of any pair of dynamic
548caller/callee must match, or the behavior of the program is undefined. The
549following calling conventions are supported by LLVM, and more may be added in
550the future:</p>
551
552<dl>
553 <dt><b>"<tt>ccc</tt>" - The C calling convention</b>:</dt>
554
555 <dd>This calling convention (the default if no other calling convention is
556 specified) matches the target C calling conventions. This calling convention
557 supports varargs function calls and tolerates some mismatch in the declared
558 prototype and implemented declaration of the function (as does normal C).
559 </dd>
560
561 <dt><b>"<tt>fastcc</tt>" - The fast calling convention</b>:</dt>
562
563 <dd>This calling convention attempts to make calls as fast as possible
564 (e.g. by passing things in registers). This calling convention allows the
565 target to use whatever tricks it wants to produce fast code for the target,
566 without having to conform to an externally specified ABI. Implementations of
567 this convention should allow arbitrary tail call optimization to be supported.
568 This calling convention does not support varargs and requires the prototype of
569 all callees to exactly match the prototype of the function definition.
570 </dd>
571
572 <dt><b>"<tt>coldcc</tt>" - The cold calling convention</b>:</dt>
573
574 <dd>This calling convention attempts to make code in the caller as efficient
575 as possible under the assumption that the call is not commonly executed. As
576 such, these calls often preserve all registers so that the call does not break
577 any live ranges in the caller side. This calling convention does not support
578 varargs and requires the prototype of all callees to exactly match the
579 prototype of the function definition.
580 </dd>
581
582 <dt><b>"<tt>cc &lt;<em>n</em>&gt;</tt>" - Numbered convention</b>:</dt>
583
584 <dd>Any calling convention may be specified by number, allowing
585 target-specific calling conventions to be used. Target specific calling
586 conventions start at 64.
587 </dd>
588</dl>
589
590<p>More calling conventions can be added/defined on an as-needed basis, to
591support pascal conventions or any other well-known target-independent
592convention.</p>
593
594</div>
595
596<!-- ======================================================================= -->
597<div class="doc_subsection">
598 <a name="visibility">Visibility Styles</a>
599</div>
600
601<div class="doc_text">
602
603<p>
604All Global Variables and Functions have one of the following visibility styles:
605</p>
606
607<dl>
608 <dt><b>"<tt>default</tt>" - Default style</b>:</dt>
609
610 <dd>On ELF, default visibility means that the declaration is visible to other
611 modules and, in shared libraries, means that the declared entity may be
612 overridden. On Darwin, default visibility means that the declaration is
613 visible to other modules. Default visibility corresponds to "external
614 linkage" in the language.
615 </dd>
616
617 <dt><b>"<tt>hidden</tt>" - Hidden style</b>:</dt>
618
619 <dd>Two declarations of an object with hidden visibility refer to the same
620 object if they are in the same shared object. Usually, hidden visibility
621 indicates that the symbol will not be placed into the dynamic symbol table,
622 so no other module (executable or shared library) can reference it
623 directly.
624 </dd>
625
626 <dt><b>"<tt>protected</tt>" - Protected style</b>:</dt>
627
628 <dd>On ELF, protected visibility indicates that the symbol will be placed in
629 the dynamic symbol table, but that references within the defining module will
630 bind to the local symbol. That is, the symbol cannot be overridden by another
631 module.
632 </dd>
633</dl>
634
635</div>
636
637<!-- ======================================================================= -->
638<div class="doc_subsection">
639 <a name="globalvars">Global Variables</a>
640</div>
641
642<div class="doc_text">
643
644<p>Global variables define regions of memory allocated at compilation time
645instead of run-time. Global variables may optionally be initialized, may have
646an explicit section to be placed in, and may have an optional explicit alignment
647specified. A variable may be defined as "thread_local", which means that it
648will not be shared by threads (each thread will have a separated copy of the
649variable). A variable may be defined as a global "constant," which indicates
650that the contents of the variable will <b>never</b> be modified (enabling better
651optimization, allowing the global data to be placed in the read-only section of
652an executable, etc). Note that variables that need runtime initialization
653cannot be marked "constant" as there is a store to the variable.</p>
654
655<p>
656LLVM explicitly allows <em>declarations</em> of global variables to be marked
657constant, even if the final definition of the global is not. This capability
658can be used to enable slightly better optimization of the program, but requires
659the language definition to guarantee that optimizations based on the
660'constantness' are valid for the translation units that do not include the
661definition.
662</p>
663
664<p>As SSA values, global variables define pointer values that are in
665scope (i.e. they dominate) all basic blocks in the program. Global
666variables always define a pointer to their "content" type because they
667describe a region of memory, and all memory objects in LLVM are
668accessed through pointers.</p>
669
670<p>LLVM allows an explicit section to be specified for globals. If the target
671supports it, it will emit globals to the section specified.</p>
672
673<p>An explicit alignment may be specified for a global. If not present, or if
674the alignment is set to zero, the alignment of the global is set by the target
675to whatever it feels convenient. If an explicit alignment is specified, the
676global is forced to have at least that much alignment. All alignments must be
677a power of 2.</p>
678
679<p>For example, the following defines a global with an initializer, section,
680 and alignment:</p>
681
682<div class="doc_code">
683<pre>
684@G = constant float 1.0, section "foo", align 4
685</pre>
686</div>
687
688</div>
689
690
691<!-- ======================================================================= -->
692<div class="doc_subsection">
693 <a name="functionstructure">Functions</a>
694</div>
695
696<div class="doc_text">
697
698<p>LLVM function definitions consist of the "<tt>define</tt>" keyord,
699an optional <a href="#linkage">linkage type</a>, an optional
700<a href="#visibility">visibility style</a>, an optional
701<a href="#callingconv">calling convention</a>, a return type, an optional
702<a href="#paramattrs">parameter attribute</a> for the return type, a function
703name, a (possibly empty) argument list (each with optional
704<a href="#paramattrs">parameter attributes</a>), an optional section, an
705optional alignment, an opening curly brace, a list of basic blocks, and a
706closing curly brace.
707
708LLVM function declarations consist of the "<tt>declare</tt>" keyword, an
709optional <a href="#linkage">linkage type</a>, an optional
710<a href="#visibility">visibility style</a>, an optional
711<a href="#callingconv">calling convention</a>, a return type, an optional
712<a href="#paramattrs">parameter attribute</a> for the return type, a function
713name, a possibly empty list of arguments, and an optional alignment.</p>
714
715<p>A function definition contains a list of basic blocks, forming the CFG for
716the function. Each basic block may optionally start with a label (giving the
717basic block a symbol table entry), contains a list of instructions, and ends
718with a <a href="#terminators">terminator</a> instruction (such as a branch or
719function return).</p>
720
721<p>The first basic block in a function is special in two ways: it is immediately
722executed on entrance to the function, and it is not allowed to have predecessor
723basic blocks (i.e. there can not be any branches to the entry block of a
724function). Because the block can have no predecessors, it also cannot have any
725<a href="#i_phi">PHI nodes</a>.</p>
726
727<p>LLVM allows an explicit section to be specified for functions. If the target
728supports it, it will emit functions to the section specified.</p>
729
730<p>An explicit alignment may be specified for a function. If not present, or if
731the alignment is set to zero, the alignment of the function is set by the target
732to whatever it feels convenient. If an explicit alignment is specified, the
733function is forced to have at least that much alignment. All alignments must be
734a power of 2.</p>
735
736</div>
737
738
739<!-- ======================================================================= -->
740<div class="doc_subsection">
741 <a name="aliasstructure">Aliases</a>
742</div>
743<div class="doc_text">
744 <p>Aliases act as "second name" for the aliasee value (which can be either
745 function or global variable or bitcast of global value). Aliases may have an
746 optional <a href="#linkage">linkage type</a>, and an
747 optional <a href="#visibility">visibility style</a>.</p>
748
749 <h5>Syntax:</h5>
750
751<div class="doc_code">
752<pre>
753@&lt;Name&gt; = [Linkage] [Visibility] alias &lt;AliaseeTy&gt; @&lt;Aliasee&gt;
754</pre>
755</div>
756
757</div>
758
759
760
761<!-- ======================================================================= -->
762<div class="doc_subsection"><a name="paramattrs">Parameter Attributes</a></div>
763<div class="doc_text">
764 <p>The return type and each parameter of a function type may have a set of
765 <i>parameter attributes</i> associated with them. Parameter attributes are
766 used to communicate additional information about the result or parameters of
767 a function. Parameter attributes are considered to be part of the function
768 type so two functions types that differ only by the parameter attributes
769 are different function types.</p>
770
771 <p>Parameter attributes are simple keywords that follow the type specified. If
772 multiple parameter attributes are needed, they are space separated. For
773 example:</p>
774
775<div class="doc_code">
776<pre>
Reid Spencerf234bed2007-07-19 23:13:04 +0000777%someFunc = i16 (i8 signext %someParam) zeroext
778%someFunc = i16 (i8 zeroext %someParam) zeroext
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000779</pre>
780</div>
781
782 <p>Note that the two function types above are unique because the parameter has
Reid Spencerf234bed2007-07-19 23:13:04 +0000783 a different attribute (<tt>signext</tt> in the first one, <tt>zeroext</tt> in
784 the second). Also note that the attribute for the function result
785 (<tt>zeroext</tt>) comes immediately after the argument list.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000786
787 <p>Currently, only the following parameter attributes are defined:</p>
788 <dl>
Reid Spencerf234bed2007-07-19 23:13:04 +0000789 <dt><tt>zeroext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 <dd>This indicates that the parameter should be zero extended just before
791 a call to this function.</dd>
Reid Spencerf234bed2007-07-19 23:13:04 +0000792 <dt><tt>signext</tt></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000793 <dd>This indicates that the parameter should be sign extended just before
794 a call to this function.</dd>
795 <dt><tt>inreg</tt></dt>
796 <dd>This indicates that the parameter should be placed in register (if
797 possible) during assembling function call. Support for this attribute is
798 target-specific</dd>
799 <dt><tt>sret</tt></dt>
800 <dd>This indicates that the parameter specifies the address of a structure
801 that is the return value of the function in the source program.</dd>
802 <dt><tt>noalias</tt></dt>
803 <dd>This indicates that the parameter not alias any other object or any
804 other "noalias" objects during the function call.
805 <dt><tt>noreturn</tt></dt>
806 <dd>This function attribute indicates that the function never returns. This
807 indicates to LLVM that every call to this function should be treated as if
808 an <tt>unreachable</tt> instruction immediately followed the call.</dd>
809 <dt><tt>nounwind</tt></dt>
810 <dd>This function attribute indicates that the function type does not use
811 the unwind instruction and does not allow stack unwinding to propagate
812 through it.</dd>
Duncan Sands4ee46812007-07-27 19:57:41 +0000813 <dt><tt>nest</tt></dt>
814 <dd>This indicates that the parameter can be excised using the
815 <a href="#int_trampoline">trampoline intrinsics</a>.</dd>
Anton Korobeynikov012eebf2007-11-14 10:30:13 +0000816 <dt><tt>pure</tt></dt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000817 <dd>This function attribute indicates that the function has no side-effects
818 except for producing a return value. The value returned must only depend on
819 the function arguments and/or global variables. It may use values obtained
820 by dereferencing pointers.</dd>
Anton Korobeynikov012eebf2007-11-14 10:30:13 +0000821 <dt><tt>const</tt></dt>
Duncan Sandsd69c0e62007-11-14 21:14:02 +0000822 <dd>A <tt>const</tt> function has the same restrictions as a <tt>pure</tt>
823 function, but in addition it is not allowed to dereference any pointer arguments
824 or global variables.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000825 </dl>
826
827</div>
828
829<!-- ======================================================================= -->
830<div class="doc_subsection">
831 <a name="moduleasm">Module-Level Inline Assembly</a>
832</div>
833
834<div class="doc_text">
835<p>
836Modules may contain "module-level inline asm" blocks, which corresponds to the
837GCC "file scope inline asm" blocks. These blocks are internally concatenated by
838LLVM and treated as a single unit, but may be separated in the .ll file if
839desired. The syntax is very simple:
840</p>
841
842<div class="doc_code">
843<pre>
844module asm "inline asm code goes here"
845module asm "more can go here"
846</pre>
847</div>
848
849<p>The strings can contain any character by escaping non-printable characters.
850 The escape sequence used is simply "\xx" where "xx" is the two digit hex code
851 for the number.
852</p>
853
854<p>
855 The inline asm code is simply printed to the machine code .s file when
856 assembly code is generated.
857</p>
858</div>
859
860<!-- ======================================================================= -->
861<div class="doc_subsection">
862 <a name="datalayout">Data Layout</a>
863</div>
864
865<div class="doc_text">
866<p>A module may specify a target specific data layout string that specifies how
867data is to be laid out in memory. The syntax for the data layout is simply:</p>
868<pre> target datalayout = "<i>layout specification</i>"</pre>
869<p>The <i>layout specification</i> consists of a list of specifications
870separated by the minus sign character ('-'). Each specification starts with a
871letter and may include other information after the letter to define some
872aspect of the data layout. The specifications accepted are as follows: </p>
873<dl>
874 <dt><tt>E</tt></dt>
875 <dd>Specifies that the target lays out data in big-endian form. That is, the
876 bits with the most significance have the lowest address location.</dd>
877 <dt><tt>e</tt></dt>
878 <dd>Specifies that hte target lays out data in little-endian form. That is,
879 the bits with the least significance have the lowest address location.</dd>
880 <dt><tt>p:<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
881 <dd>This specifies the <i>size</i> of a pointer and its <i>abi</i> and
882 <i>preferred</i> alignments. All sizes are in bits. Specifying the <i>pref</i>
883 alignment is optional. If omitted, the preceding <tt>:</tt> should be omitted
884 too.</dd>
885 <dt><tt>i<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
886 <dd>This specifies the alignment for an integer type of a given bit
887 <i>size</i>. The value of <i>size</i> must be in the range [1,2^23).</dd>
888 <dt><tt>v<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
889 <dd>This specifies the alignment for a vector type of a given bit
890 <i>size</i>.</dd>
891 <dt><tt>f<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
892 <dd>This specifies the alignment for a floating point type of a given bit
893 <i>size</i>. The value of <i>size</i> must be either 32 (float) or 64
894 (double).</dd>
895 <dt><tt>a<i>size</i>:<i>abi</i>:<i>pref</i></tt></dt>
896 <dd>This specifies the alignment for an aggregate type of a given bit
897 <i>size</i>.</dd>
898</dl>
899<p>When constructing the data layout for a given target, LLVM starts with a
900default set of specifications which are then (possibly) overriden by the
901specifications in the <tt>datalayout</tt> keyword. The default specifications
902are given in this list:</p>
903<ul>
904 <li><tt>E</tt> - big endian</li>
905 <li><tt>p:32:64:64</tt> - 32-bit pointers with 64-bit alignment</li>
906 <li><tt>i1:8:8</tt> - i1 is 8-bit (byte) aligned</li>
907 <li><tt>i8:8:8</tt> - i8 is 8-bit (byte) aligned</li>
908 <li><tt>i16:16:16</tt> - i16 is 16-bit aligned</li>
909 <li><tt>i32:32:32</tt> - i32 is 32-bit aligned</li>
910 <li><tt>i64:32:64</tt> - i64 has abi alignment of 32-bits but preferred
911 alignment of 64-bits</li>
912 <li><tt>f32:32:32</tt> - float is 32-bit aligned</li>
913 <li><tt>f64:64:64</tt> - double is 64-bit aligned</li>
914 <li><tt>v64:64:64</tt> - 64-bit vector is 64-bit aligned</li>
915 <li><tt>v128:128:128</tt> - 128-bit vector is 128-bit aligned</li>
916 <li><tt>a0:0:1</tt> - aggregates are 8-bit aligned</li>
917</ul>
918<p>When llvm is determining the alignment for a given type, it uses the
919following rules:
920<ol>
921 <li>If the type sought is an exact match for one of the specifications, that
922 specification is used.</li>
923 <li>If no match is found, and the type sought is an integer type, then the
924 smallest integer type that is larger than the bitwidth of the sought type is
925 used. If none of the specifications are larger than the bitwidth then the the
926 largest integer type is used. For example, given the default specifications
927 above, the i7 type will use the alignment of i8 (next largest) while both
928 i65 and i256 will use the alignment of i64 (largest specified).</li>
929 <li>If no match is found, and the type sought is a vector type, then the
930 largest vector type that is smaller than the sought vector type will be used
931 as a fall back. This happens because <128 x double> can be implemented in
932 terms of 64 <2 x double>, for example.</li>
933</ol>
934</div>
935
936<!-- *********************************************************************** -->
937<div class="doc_section"> <a name="typesystem">Type System</a> </div>
938<!-- *********************************************************************** -->
939
940<div class="doc_text">
941
942<p>The LLVM type system is one of the most important features of the
943intermediate representation. Being typed enables a number of
944optimizations to be performed on the IR directly, without having to do
945extra analyses on the side before the transformation. A strong type
946system makes it easier to read the generated code and enables novel
947analyses and transformations that are not feasible to perform on normal
948three address code representations.</p>
949
950</div>
951
952<!-- ======================================================================= -->
953<div class="doc_subsection"> <a name="t_primitive">Primitive Types</a> </div>
954<div class="doc_text">
955<p>The primitive types are the fundamental building blocks of the LLVM
956system. The current set of primitive types is as follows:</p>
957
958<table class="layout">
959 <tr class="layout">
960 <td class="left">
961 <table>
962 <tbody>
963 <tr><th>Type</th><th>Description</th></tr>
964 <tr><td><tt><a name="t_void">void</a></tt></td><td>No value</td></tr>
965 <tr><td><tt>label</tt></td><td>Branch destination</td></tr>
966 </tbody>
967 </table>
968 </td>
969 <td class="right">
970 <table>
971 <tbody>
972 <tr><th>Type</th><th>Description</th></tr>
973 <tr><td><tt>float</tt></td><td>32-bit floating point value</td></tr>
974 <tr><td><tt>double</tt></td><td>64-bit floating point value</td></tr>
975 </tbody>
976 </table>
977 </td>
978 </tr>
979</table>
980</div>
981
982<!-- _______________________________________________________________________ -->
983<div class="doc_subsubsection"> <a name="t_classifications">Type
984Classifications</a> </div>
985<div class="doc_text">
986<p>These different primitive types fall into a few useful
987classifications:</p>
988
989<table border="1" cellspacing="0" cellpadding="4">
990 <tbody>
991 <tr><th>Classification</th><th>Types</th></tr>
992 <tr>
993 <td><a name="t_integer">integer</a></td>
994 <td><tt>i1, i2, i3, ... i8, ... i16, ... i32, ... i64, ... </tt></td>
995 </tr>
996 <tr>
997 <td><a name="t_floating">floating point</a></td>
998 <td><tt>float, double</tt></td>
999 </tr>
1000 <tr>
1001 <td><a name="t_firstclass">first class</a></td>
1002 <td><tt>i1, ..., float, double, <br/>
1003 <a href="#t_pointer">pointer</a>,<a href="#t_vector">vector</a></tt>
1004 </td>
1005 </tr>
1006 </tbody>
1007</table>
1008
1009<p>The <a href="#t_firstclass">first class</a> types are perhaps the
1010most important. Values of these types are the only ones which can be
1011produced by instructions, passed as arguments, or used as operands to
1012instructions. This means that all structures and arrays must be
1013manipulated either by pointer or by component.</p>
1014</div>
1015
1016<!-- ======================================================================= -->
1017<div class="doc_subsection"> <a name="t_derived">Derived Types</a> </div>
1018
1019<div class="doc_text">
1020
1021<p>The real power in LLVM comes from the derived types in the system.
1022This is what allows a programmer to represent arrays, functions,
1023pointers, and other useful types. Note that these derived types may be
1024recursive: For example, it is possible to have a two dimensional array.</p>
1025
1026</div>
1027
1028<!-- _______________________________________________________________________ -->
1029<div class="doc_subsubsection"> <a name="t_integer">Integer Type</a> </div>
1030
1031<div class="doc_text">
1032
1033<h5>Overview:</h5>
1034<p>The integer type is a very simple derived type that simply specifies an
1035arbitrary bit width for the integer type desired. Any bit width from 1 bit to
10362^23-1 (about 8 million) can be specified.</p>
1037
1038<h5>Syntax:</h5>
1039
1040<pre>
1041 iN
1042</pre>
1043
1044<p>The number of bits the integer will occupy is specified by the <tt>N</tt>
1045value.</p>
1046
1047<h5>Examples:</h5>
1048<table class="layout">
1049 <tr class="layout">
1050 <td class="left">
1051 <tt>i1</tt><br/>
1052 <tt>i4</tt><br/>
1053 <tt>i8</tt><br/>
1054 <tt>i16</tt><br/>
1055 <tt>i32</tt><br/>
1056 <tt>i42</tt><br/>
1057 <tt>i64</tt><br/>
1058 <tt>i1942652</tt><br/>
1059 </td>
1060 <td class="left">
1061 A boolean integer of 1 bit<br/>
1062 A nibble sized integer of 4 bits.<br/>
1063 A byte sized integer of 8 bits.<br/>
1064 A half word sized integer of 16 bits.<br/>
1065 A word sized integer of 32 bits.<br/>
1066 An integer whose bit width is the answer. <br/>
1067 A double word sized integer of 64 bits.<br/>
1068 A really big integer of over 1 million bits.<br/>
1069 </td>
1070 </tr>
1071</table>
1072</div>
1073
1074<!-- _______________________________________________________________________ -->
1075<div class="doc_subsubsection"> <a name="t_array">Array Type</a> </div>
1076
1077<div class="doc_text">
1078
1079<h5>Overview:</h5>
1080
1081<p>The array type is a very simple derived type that arranges elements
1082sequentially in memory. The array type requires a size (number of
1083elements) and an underlying data type.</p>
1084
1085<h5>Syntax:</h5>
1086
1087<pre>
1088 [&lt;# elements&gt; x &lt;elementtype&gt;]
1089</pre>
1090
1091<p>The number of elements is a constant integer value; elementtype may
1092be any type with a size.</p>
1093
1094<h5>Examples:</h5>
1095<table class="layout">
1096 <tr class="layout">
1097 <td class="left">
1098 <tt>[40 x i32 ]</tt><br/>
1099 <tt>[41 x i32 ]</tt><br/>
1100 <tt>[40 x i8]</tt><br/>
1101 </td>
1102 <td class="left">
1103 Array of 40 32-bit integer values.<br/>
1104 Array of 41 32-bit integer values.<br/>
1105 Array of 40 8-bit integer values.<br/>
1106 </td>
1107 </tr>
1108</table>
1109<p>Here are some examples of multidimensional arrays:</p>
1110<table class="layout">
1111 <tr class="layout">
1112 <td class="left">
1113 <tt>[3 x [4 x i32]]</tt><br/>
1114 <tt>[12 x [10 x float]]</tt><br/>
1115 <tt>[2 x [3 x [4 x i16]]]</tt><br/>
1116 </td>
1117 <td class="left">
1118 3x4 array of 32-bit integer values.<br/>
1119 12x10 array of single precision floating point values.<br/>
1120 2x3x4 array of 16-bit integer values.<br/>
1121 </td>
1122 </tr>
1123</table>
1124
1125<p>Note that 'variable sized arrays' can be implemented in LLVM with a zero
1126length array. Normally, accesses past the end of an array are undefined in
1127LLVM (e.g. it is illegal to access the 5th element of a 3 element array).
1128As a special case, however, zero length arrays are recognized to be variable
1129length. This allows implementation of 'pascal style arrays' with the LLVM
1130type "{ i32, [0 x float]}", for example.</p>
1131
1132</div>
1133
1134<!-- _______________________________________________________________________ -->
1135<div class="doc_subsubsection"> <a name="t_function">Function Type</a> </div>
1136<div class="doc_text">
1137<h5>Overview:</h5>
1138<p>The function type can be thought of as a function signature. It
1139consists of a return type and a list of formal parameter types.
1140Function types are usually used to build virtual function tables
1141(which are structures of pointers to functions), for indirect function
1142calls, and when defining a function.</p>
1143<p>
1144The return type of a function type cannot be an aggregate type.
1145</p>
1146<h5>Syntax:</h5>
1147<pre> &lt;returntype&gt; (&lt;parameter list&gt;)<br></pre>
1148<p>...where '<tt>&lt;parameter list&gt;</tt>' is a comma-separated list of type
1149specifiers. Optionally, the parameter list may include a type <tt>...</tt>,
1150which indicates that the function takes a variable number of arguments.
1151Variable argument functions can access their arguments with the <a
1152 href="#int_varargs">variable argument handling intrinsic</a> functions.</p>
1153<h5>Examples:</h5>
1154<table class="layout">
1155 <tr class="layout">
1156 <td class="left"><tt>i32 (i32)</tt></td>
1157 <td class="left">function taking an <tt>i32</tt>, returning an <tt>i32</tt>
1158 </td>
1159 </tr><tr class="layout">
Reid Spencerf234bed2007-07-19 23:13:04 +00001160 <td class="left"><tt>float&nbsp;(i16&nbsp;signext,&nbsp;i32&nbsp;*)&nbsp;*
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001161 </tt></td>
1162 <td class="left"><a href="#t_pointer">Pointer</a> to a function that takes
1163 an <tt>i16</tt> that should be sign extended and a
1164 <a href="#t_pointer">pointer</a> to <tt>i32</tt>, returning
1165 <tt>float</tt>.
1166 </td>
1167 </tr><tr class="layout">
1168 <td class="left"><tt>i32 (i8*, ...)</tt></td>
1169 <td class="left">A vararg function that takes at least one
1170 <a href="#t_pointer">pointer</a> to <tt>i8 </tt> (char in C),
1171 which returns an integer. This is the signature for <tt>printf</tt> in
1172 LLVM.
1173 </td>
1174 </tr>
1175</table>
1176
1177</div>
1178<!-- _______________________________________________________________________ -->
1179<div class="doc_subsubsection"> <a name="t_struct">Structure Type</a> </div>
1180<div class="doc_text">
1181<h5>Overview:</h5>
1182<p>The structure type is used to represent a collection of data members
1183together in memory. The packing of the field types is defined to match
1184the ABI of the underlying processor. The elements of a structure may
1185be any type that has a size.</p>
1186<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1187and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1188field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1189instruction.</p>
1190<h5>Syntax:</h5>
1191<pre> { &lt;type list&gt; }<br></pre>
1192<h5>Examples:</h5>
1193<table class="layout">
1194 <tr class="layout">
1195 <td class="left"><tt>{ i32, i32, i32 }</tt></td>
1196 <td class="left">A triple of three <tt>i32</tt> values</td>
1197 </tr><tr class="layout">
1198 <td class="left"><tt>{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}</tt></td>
1199 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1200 second element is a <a href="#t_pointer">pointer</a> to a
1201 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1202 an <tt>i32</tt>.</td>
1203 </tr>
1204</table>
1205</div>
1206
1207<!-- _______________________________________________________________________ -->
1208<div class="doc_subsubsection"> <a name="t_pstruct">Packed Structure Type</a>
1209</div>
1210<div class="doc_text">
1211<h5>Overview:</h5>
1212<p>The packed structure type is used to represent a collection of data members
1213together in memory. There is no padding between fields. Further, the alignment
1214of a packed structure is 1 byte. The elements of a packed structure may
1215be any type that has a size.</p>
1216<p>Structures are accessed using '<tt><a href="#i_load">load</a></tt>
1217and '<tt><a href="#i_store">store</a></tt>' by getting a pointer to a
1218field with the '<tt><a href="#i_getelementptr">getelementptr</a></tt>'
1219instruction.</p>
1220<h5>Syntax:</h5>
1221<pre> &lt; { &lt;type list&gt; } &gt; <br></pre>
1222<h5>Examples:</h5>
1223<table class="layout">
1224 <tr class="layout">
1225 <td class="left"><tt>&lt; { i32, i32, i32 } &gt;</tt></td>
1226 <td class="left">A triple of three <tt>i32</tt> values</td>
1227 </tr><tr class="layout">
1228 <td class="left"><tt>&lt;&nbsp;{&nbsp;float,&nbsp;i32&nbsp;(i32)&nbsp;*&nbsp;}&nbsp;&gt;</tt></td>
1229 <td class="left">A pair, where the first element is a <tt>float</tt> and the
1230 second element is a <a href="#t_pointer">pointer</a> to a
1231 <a href="#t_function">function</a> that takes an <tt>i32</tt>, returning
1232 an <tt>i32</tt>.</td>
1233 </tr>
1234</table>
1235</div>
1236
1237<!-- _______________________________________________________________________ -->
1238<div class="doc_subsubsection"> <a name="t_pointer">Pointer Type</a> </div>
1239<div class="doc_text">
1240<h5>Overview:</h5>
1241<p>As in many languages, the pointer type represents a pointer or
1242reference to another object, which must live in memory.</p>
1243<h5>Syntax:</h5>
1244<pre> &lt;type&gt; *<br></pre>
1245<h5>Examples:</h5>
1246<table class="layout">
1247 <tr class="layout">
1248 <td class="left">
1249 <tt>[4x i32]*</tt><br/>
1250 <tt>i32 (i32 *) *</tt><br/>
1251 </td>
1252 <td class="left">
1253 A <a href="#t_pointer">pointer</a> to <a href="#t_array">array</a> of
1254 four <tt>i32</tt> values<br/>
1255 A <a href="#t_pointer">pointer</a> to a <a
1256 href="#t_function">function</a> that takes an <tt>i32*</tt>, returning an
1257 <tt>i32</tt>.<br/>
1258 </td>
1259 </tr>
1260</table>
1261</div>
1262
1263<!-- _______________________________________________________________________ -->
1264<div class="doc_subsubsection"> <a name="t_vector">Vector Type</a> </div>
1265<div class="doc_text">
1266
1267<h5>Overview:</h5>
1268
1269<p>A vector type is a simple derived type that represents a vector
1270of elements. Vector types are used when multiple primitive data
1271are operated in parallel using a single instruction (SIMD).
1272A vector type requires a size (number of
1273elements) and an underlying primitive data type. Vectors must have a power
1274of two length (1, 2, 4, 8, 16 ...). Vector types are
1275considered <a href="#t_firstclass">first class</a>.</p>
1276
1277<h5>Syntax:</h5>
1278
1279<pre>
1280 &lt; &lt;# elements&gt; x &lt;elementtype&gt; &gt;
1281</pre>
1282
1283<p>The number of elements is a constant integer value; elementtype may
1284be any integer or floating point type.</p>
1285
1286<h5>Examples:</h5>
1287
1288<table class="layout">
1289 <tr class="layout">
1290 <td class="left">
1291 <tt>&lt;4 x i32&gt;</tt><br/>
1292 <tt>&lt;8 x float&gt;</tt><br/>
1293 <tt>&lt;2 x i64&gt;</tt><br/>
1294 </td>
1295 <td class="left">
1296 Vector of 4 32-bit integer values.<br/>
1297 Vector of 8 floating-point values.<br/>
1298 Vector of 2 64-bit integer values.<br/>
1299 </td>
1300 </tr>
1301</table>
1302</div>
1303
1304<!-- _______________________________________________________________________ -->
1305<div class="doc_subsubsection"> <a name="t_opaque">Opaque Type</a> </div>
1306<div class="doc_text">
1307
1308<h5>Overview:</h5>
1309
1310<p>Opaque types are used to represent unknown types in the system. This
Gordon Henriksenda0706e2007-10-14 00:34:53 +00001311corresponds (for example) to the C notion of a forward declared structure type.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001312In LLVM, opaque types can eventually be resolved to any type (not just a
1313structure type).</p>
1314
1315<h5>Syntax:</h5>
1316
1317<pre>
1318 opaque
1319</pre>
1320
1321<h5>Examples:</h5>
1322
1323<table class="layout">
1324 <tr class="layout">
1325 <td class="left">
1326 <tt>opaque</tt>
1327 </td>
1328 <td class="left">
1329 An opaque type.<br/>
1330 </td>
1331 </tr>
1332</table>
1333</div>
1334
1335
1336<!-- *********************************************************************** -->
1337<div class="doc_section"> <a name="constants">Constants</a> </div>
1338<!-- *********************************************************************** -->
1339
1340<div class="doc_text">
1341
1342<p>LLVM has several different basic types of constants. This section describes
1343them all and their syntax.</p>
1344
1345</div>
1346
1347<!-- ======================================================================= -->
1348<div class="doc_subsection"><a name="simpleconstants">Simple Constants</a></div>
1349
1350<div class="doc_text">
1351
1352<dl>
1353 <dt><b>Boolean constants</b></dt>
1354
1355 <dd>The two strings '<tt>true</tt>' and '<tt>false</tt>' are both valid
1356 constants of the <tt><a href="#t_primitive">i1</a></tt> type.
1357 </dd>
1358
1359 <dt><b>Integer constants</b></dt>
1360
1361 <dd>Standard integers (such as '4') are constants of the <a
1362 href="#t_integer">integer</a> type. Negative numbers may be used with
1363 integer types.
1364 </dd>
1365
1366 <dt><b>Floating point constants</b></dt>
1367
1368 <dd>Floating point constants use standard decimal notation (e.g. 123.421),
1369 exponential notation (e.g. 1.23421e+2), or a more precise hexadecimal
1370 notation (see below). Floating point constants must have a <a
1371 href="#t_floating">floating point</a> type. </dd>
1372
1373 <dt><b>Null pointer constants</b></dt>
1374
1375 <dd>The identifier '<tt>null</tt>' is recognized as a null pointer constant
1376 and must be of <a href="#t_pointer">pointer type</a>.</dd>
1377
1378</dl>
1379
1380<p>The one non-intuitive notation for constants is the optional hexadecimal form
1381of floating point constants. For example, the form '<tt>double
13820x432ff973cafa8000</tt>' is equivalent to (but harder to read than) '<tt>double
13834.5e+15</tt>'. The only time hexadecimal floating point constants are required
1384(and the only time that they are generated by the disassembler) is when a
1385floating point constant must be emitted but it cannot be represented as a
1386decimal floating point number. For example, NaN's, infinities, and other
1387special values are represented in their IEEE hexadecimal format so that
1388assembly and disassembly do not cause any bits to change in the constants.</p>
1389
1390</div>
1391
1392<!-- ======================================================================= -->
1393<div class="doc_subsection"><a name="aggregateconstants">Aggregate Constants</a>
1394</div>
1395
1396<div class="doc_text">
1397<p>Aggregate constants arise from aggregation of simple constants
1398and smaller aggregate constants.</p>
1399
1400<dl>
1401 <dt><b>Structure constants</b></dt>
1402
1403 <dd>Structure constants are represented with notation similar to structure
1404 type definitions (a comma separated list of elements, surrounded by braces
1405 (<tt>{}</tt>)). For example: "<tt>{ i32 4, float 17.0, i32* %G }</tt>",
1406 where "<tt>%G</tt>" is declared as "<tt>@G = external global i32</tt>". Structure constants
1407 must have <a href="#t_struct">structure type</a>, and the number and
1408 types of elements must match those specified by the type.
1409 </dd>
1410
1411 <dt><b>Array constants</b></dt>
1412
1413 <dd>Array constants are represented with notation similar to array type
1414 definitions (a comma separated list of elements, surrounded by square brackets
1415 (<tt>[]</tt>)). For example: "<tt>[ i32 42, i32 11, i32 74 ]</tt>". Array
1416 constants must have <a href="#t_array">array type</a>, and the number and
1417 types of elements must match those specified by the type.
1418 </dd>
1419
1420 <dt><b>Vector constants</b></dt>
1421
1422 <dd>Vector constants are represented with notation similar to vector type
1423 definitions (a comma separated list of elements, surrounded by
1424 less-than/greater-than's (<tt>&lt;&gt;</tt>)). For example: "<tt>&lt; i32 42,
1425 i32 11, i32 74, i32 100 &gt;</tt>". Vector constants must have <a
1426 href="#t_vector">vector type</a>, and the number and types of elements must
1427 match those specified by the type.
1428 </dd>
1429
1430 <dt><b>Zero initialization</b></dt>
1431
1432 <dd>The string '<tt>zeroinitializer</tt>' can be used to zero initialize a
1433 value to zero of <em>any</em> type, including scalar and aggregate types.
1434 This is often used to avoid having to print large zero initializers (e.g. for
1435 large arrays) and is always exactly equivalent to using explicit zero
1436 initializers.
1437 </dd>
1438</dl>
1439
1440</div>
1441
1442<!-- ======================================================================= -->
1443<div class="doc_subsection">
1444 <a name="globalconstants">Global Variable and Function Addresses</a>
1445</div>
1446
1447<div class="doc_text">
1448
1449<p>The addresses of <a href="#globalvars">global variables</a> and <a
1450href="#functionstructure">functions</a> are always implicitly valid (link-time)
1451constants. These constants are explicitly referenced when the <a
1452href="#identifiers">identifier for the global</a> is used and always have <a
1453href="#t_pointer">pointer</a> type. For example, the following is a legal LLVM
1454file:</p>
1455
1456<div class="doc_code">
1457<pre>
1458@X = global i32 17
1459@Y = global i32 42
1460@Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1461</pre>
1462</div>
1463
1464</div>
1465
1466<!-- ======================================================================= -->
1467<div class="doc_subsection"><a name="undefvalues">Undefined Values</a></div>
1468<div class="doc_text">
1469 <p>The string '<tt>undef</tt>' is recognized as a type-less constant that has
1470 no specific value. Undefined values may be of any type and be used anywhere
1471 a constant is permitted.</p>
1472
1473 <p>Undefined values indicate to the compiler that the program is well defined
1474 no matter what value is used, giving the compiler more freedom to optimize.
1475 </p>
1476</div>
1477
1478<!-- ======================================================================= -->
1479<div class="doc_subsection"><a name="constantexprs">Constant Expressions</a>
1480</div>
1481
1482<div class="doc_text">
1483
1484<p>Constant expressions are used to allow expressions involving other constants
1485to be used as constants. Constant expressions may be of any <a
1486href="#t_firstclass">first class</a> type and may involve any LLVM operation
1487that does not have side effects (e.g. load and call are not supported). The
1488following is the syntax for constant expressions:</p>
1489
1490<dl>
1491 <dt><b><tt>trunc ( CST to TYPE )</tt></b></dt>
1492 <dd>Truncate a constant to another type. The bit size of CST must be larger
1493 than the bit size of TYPE. Both types must be integers.</dd>
1494
1495 <dt><b><tt>zext ( CST to TYPE )</tt></b></dt>
1496 <dd>Zero extend a constant to another type. The bit size of CST must be
1497 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1498
1499 <dt><b><tt>sext ( CST to TYPE )</tt></b></dt>
1500 <dd>Sign extend a constant to another type. The bit size of CST must be
1501 smaller or equal to the bit size of TYPE. Both types must be integers.</dd>
1502
1503 <dt><b><tt>fptrunc ( CST to TYPE )</tt></b></dt>
1504 <dd>Truncate a floating point constant to another floating point type. The
1505 size of CST must be larger than the size of TYPE. Both types must be
1506 floating point.</dd>
1507
1508 <dt><b><tt>fpext ( CST to TYPE )</tt></b></dt>
1509 <dd>Floating point extend a constant to another type. The size of CST must be
1510 smaller or equal to the size of TYPE. Both types must be floating point.</dd>
1511
Reid Spencere6adee82007-07-31 14:40:14 +00001512 <dt><b><tt>fptoui ( CST to TYPE )</tt></b></dt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001513 <dd>Convert a floating point constant to the corresponding unsigned integer
1514 constant. TYPE must be an integer type. CST must be floating point. If the
1515 value won't fit in the integer type, the results are undefined.</dd>
1516
1517 <dt><b><tt>fptosi ( CST to TYPE )</tt></b></dt>
1518 <dd>Convert a floating point constant to the corresponding signed integer
1519 constant. TYPE must be an integer type. CST must be floating point. If the
1520 value won't fit in the integer type, the results are undefined.</dd>
1521
1522 <dt><b><tt>uitofp ( CST to TYPE )</tt></b></dt>
1523 <dd>Convert an unsigned integer constant to the corresponding floating point
1524 constant. TYPE must be floating point. CST must be of integer type. If the
1525 value won't fit in the floating point type, the results are undefined.</dd>
1526
1527 <dt><b><tt>sitofp ( CST to TYPE )</tt></b></dt>
1528 <dd>Convert a signed integer constant to the corresponding floating point
1529 constant. TYPE must be floating point. CST must be of integer type. If the
1530 value won't fit in the floating point type, the results are undefined.</dd>
1531
1532 <dt><b><tt>ptrtoint ( CST to TYPE )</tt></b></dt>
1533 <dd>Convert a pointer typed constant to the corresponding integer constant
1534 TYPE must be an integer type. CST must be of pointer type. The CST value is
1535 zero extended, truncated, or unchanged to make it fit in TYPE.</dd>
1536
1537 <dt><b><tt>inttoptr ( CST to TYPE )</tt></b></dt>
1538 <dd>Convert a integer constant to a pointer constant. TYPE must be a
1539 pointer type. CST must be of integer type. The CST value is zero extended,
1540 truncated, or unchanged to make it fit in a pointer size. This one is
1541 <i>really</i> dangerous!</dd>
1542
1543 <dt><b><tt>bitcast ( CST to TYPE )</tt></b></dt>
1544 <dd>Convert a constant, CST, to another TYPE. The size of CST and TYPE must be
1545 identical (same number of bits). The conversion is done as if the CST value
1546 was stored to memory and read back as TYPE. In other words, no bits change
1547 with this operator, just the type. This can be used for conversion of
1548 vector types to any other type, as long as they have the same bit width. For
1549 pointers it is only valid to cast to another pointer type.
1550 </dd>
1551
1552 <dt><b><tt>getelementptr ( CSTPTR, IDX0, IDX1, ... )</tt></b></dt>
1553
1554 <dd>Perform the <a href="#i_getelementptr">getelementptr operation</a> on
1555 constants. As with the <a href="#i_getelementptr">getelementptr</a>
1556 instruction, the index list may have zero or more indexes, which are required
1557 to make sense for the type of "CSTPTR".</dd>
1558
1559 <dt><b><tt>select ( COND, VAL1, VAL2 )</tt></b></dt>
1560
1561 <dd>Perform the <a href="#i_select">select operation</a> on
1562 constants.</dd>
1563
1564 <dt><b><tt>icmp COND ( VAL1, VAL2 )</tt></b></dt>
1565 <dd>Performs the <a href="#i_icmp">icmp operation</a> on constants.</dd>
1566
1567 <dt><b><tt>fcmp COND ( VAL1, VAL2 )</tt></b></dt>
1568 <dd>Performs the <a href="#i_fcmp">fcmp operation</a> on constants.</dd>
1569
1570 <dt><b><tt>extractelement ( VAL, IDX )</tt></b></dt>
1571
1572 <dd>Perform the <a href="#i_extractelement">extractelement
1573 operation</a> on constants.
1574
1575 <dt><b><tt>insertelement ( VAL, ELT, IDX )</tt></b></dt>
1576
1577 <dd>Perform the <a href="#i_insertelement">insertelement
1578 operation</a> on constants.</dd>
1579
1580
1581 <dt><b><tt>shufflevector ( VEC1, VEC2, IDXMASK )</tt></b></dt>
1582
1583 <dd>Perform the <a href="#i_shufflevector">shufflevector
1584 operation</a> on constants.</dd>
1585
1586 <dt><b><tt>OPCODE ( LHS, RHS )</tt></b></dt>
1587
1588 <dd>Perform the specified operation of the LHS and RHS constants. OPCODE may
1589 be any of the <a href="#binaryops">binary</a> or <a href="#bitwiseops">bitwise
1590 binary</a> operations. The constraints on operands are the same as those for
1591 the corresponding instruction (e.g. no bitwise operations on floating point
1592 values are allowed).</dd>
1593</dl>
1594</div>
1595
1596<!-- *********************************************************************** -->
1597<div class="doc_section"> <a name="othervalues">Other Values</a> </div>
1598<!-- *********************************************************************** -->
1599
1600<!-- ======================================================================= -->
1601<div class="doc_subsection">
1602<a name="inlineasm">Inline Assembler Expressions</a>
1603</div>
1604
1605<div class="doc_text">
1606
1607<p>
1608LLVM supports inline assembler expressions (as opposed to <a href="#moduleasm">
1609Module-Level Inline Assembly</a>) through the use of a special value. This
1610value represents the inline assembler as a string (containing the instructions
1611to emit), a list of operand constraints (stored as a string), and a flag that
1612indicates whether or not the inline asm expression has side effects. An example
1613inline assembler expression is:
1614</p>
1615
1616<div class="doc_code">
1617<pre>
1618i32 (i32) asm "bswap $0", "=r,r"
1619</pre>
1620</div>
1621
1622<p>
1623Inline assembler expressions may <b>only</b> be used as the callee operand of
1624a <a href="#i_call"><tt>call</tt> instruction</a>. Thus, typically we have:
1625</p>
1626
1627<div class="doc_code">
1628<pre>
1629%X = call i32 asm "<a href="#int_bswap">bswap</a> $0", "=r,r"(i32 %Y)
1630</pre>
1631</div>
1632
1633<p>
1634Inline asms with side effects not visible in the constraint list must be marked
1635as having side effects. This is done through the use of the
1636'<tt>sideeffect</tt>' keyword, like so:
1637</p>
1638
1639<div class="doc_code">
1640<pre>
1641call void asm sideeffect "eieio", ""()
1642</pre>
1643</div>
1644
1645<p>TODO: The format of the asm and constraints string still need to be
1646documented here. Constraints on what can be done (e.g. duplication, moving, etc
1647need to be documented).
1648</p>
1649
1650</div>
1651
1652<!-- *********************************************************************** -->
1653<div class="doc_section"> <a name="instref">Instruction Reference</a> </div>
1654<!-- *********************************************************************** -->
1655
1656<div class="doc_text">
1657
1658<p>The LLVM instruction set consists of several different
1659classifications of instructions: <a href="#terminators">terminator
1660instructions</a>, <a href="#binaryops">binary instructions</a>,
1661<a href="#bitwiseops">bitwise binary instructions</a>, <a
1662 href="#memoryops">memory instructions</a>, and <a href="#otherops">other
1663instructions</a>.</p>
1664
1665</div>
1666
1667<!-- ======================================================================= -->
1668<div class="doc_subsection"> <a name="terminators">Terminator
1669Instructions</a> </div>
1670
1671<div class="doc_text">
1672
1673<p>As mentioned <a href="#functionstructure">previously</a>, every
1674basic block in a program ends with a "Terminator" instruction, which
1675indicates which block should be executed after the current block is
1676finished. These terminator instructions typically yield a '<tt>void</tt>'
1677value: they produce control flow, not values (the one exception being
1678the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction).</p>
1679<p>There are six different terminator instructions: the '<a
1680 href="#i_ret"><tt>ret</tt></a>' instruction, the '<a href="#i_br"><tt>br</tt></a>'
1681instruction, the '<a href="#i_switch"><tt>switch</tt></a>' instruction,
1682the '<a href="#i_invoke"><tt>invoke</tt></a>' instruction, the '<a
1683 href="#i_unwind"><tt>unwind</tt></a>' instruction, and the '<a
1684 href="#i_unreachable"><tt>unreachable</tt></a>' instruction.</p>
1685
1686</div>
1687
1688<!-- _______________________________________________________________________ -->
1689<div class="doc_subsubsection"> <a name="i_ret">'<tt>ret</tt>'
1690Instruction</a> </div>
1691<div class="doc_text">
1692<h5>Syntax:</h5>
1693<pre> ret &lt;type&gt; &lt;value&gt; <i>; Return a value from a non-void function</i>
1694 ret void <i>; Return from void function</i>
1695</pre>
1696<h5>Overview:</h5>
1697<p>The '<tt>ret</tt>' instruction is used to return control flow (and a
1698value) from a function back to the caller.</p>
1699<p>There are two forms of the '<tt>ret</tt>' instruction: one that
1700returns a value and then causes control flow, and one that just causes
1701control flow to occur.</p>
1702<h5>Arguments:</h5>
1703<p>The '<tt>ret</tt>' instruction may return any '<a
1704 href="#t_firstclass">first class</a>' type. Notice that a function is
1705not <a href="#wellformed">well formed</a> if there exists a '<tt>ret</tt>'
1706instruction inside of the function that returns a value that does not
1707match the return type of the function.</p>
1708<h5>Semantics:</h5>
1709<p>When the '<tt>ret</tt>' instruction is executed, control flow
1710returns back to the calling function's context. If the caller is a "<a
1711 href="#i_call"><tt>call</tt></a>" instruction, execution continues at
1712the instruction after the call. If the caller was an "<a
1713 href="#i_invoke"><tt>invoke</tt></a>" instruction, execution continues
1714at the beginning of the "normal" destination block. If the instruction
1715returns a value, that value shall set the call or invoke instruction's
1716return value.</p>
1717<h5>Example:</h5>
1718<pre> ret i32 5 <i>; Return an integer value of 5</i>
1719 ret void <i>; Return from a void function</i>
1720</pre>
1721</div>
1722<!-- _______________________________________________________________________ -->
1723<div class="doc_subsubsection"> <a name="i_br">'<tt>br</tt>' Instruction</a> </div>
1724<div class="doc_text">
1725<h5>Syntax:</h5>
1726<pre> br i1 &lt;cond&gt;, label &lt;iftrue&gt;, label &lt;iffalse&gt;<br> br label &lt;dest&gt; <i>; Unconditional branch</i>
1727</pre>
1728<h5>Overview:</h5>
1729<p>The '<tt>br</tt>' instruction is used to cause control flow to
1730transfer to a different basic block in the current function. There are
1731two forms of this instruction, corresponding to a conditional branch
1732and an unconditional branch.</p>
1733<h5>Arguments:</h5>
1734<p>The conditional branch form of the '<tt>br</tt>' instruction takes a
1735single '<tt>i1</tt>' value and two '<tt>label</tt>' values. The
1736unconditional form of the '<tt>br</tt>' instruction takes a single
1737'<tt>label</tt>' value as a target.</p>
1738<h5>Semantics:</h5>
1739<p>Upon execution of a conditional '<tt>br</tt>' instruction, the '<tt>i1</tt>'
1740argument is evaluated. If the value is <tt>true</tt>, control flows
1741to the '<tt>iftrue</tt>' <tt>label</tt> argument. If "cond" is <tt>false</tt>,
1742control flows to the '<tt>iffalse</tt>' <tt>label</tt> argument.</p>
1743<h5>Example:</h5>
1744<pre>Test:<br> %cond = <a href="#i_icmp">icmp</a> eq, i32 %a, %b<br> br i1 %cond, label %IfEqual, label %IfUnequal<br>IfEqual:<br> <a
1745 href="#i_ret">ret</a> i32 1<br>IfUnequal:<br> <a href="#i_ret">ret</a> i32 0<br></pre>
1746</div>
1747<!-- _______________________________________________________________________ -->
1748<div class="doc_subsubsection">
1749 <a name="i_switch">'<tt>switch</tt>' Instruction</a>
1750</div>
1751
1752<div class="doc_text">
1753<h5>Syntax:</h5>
1754
1755<pre>
1756 switch &lt;intty&gt; &lt;value&gt;, label &lt;defaultdest&gt; [ &lt;intty&gt; &lt;val&gt;, label &lt;dest&gt; ... ]
1757</pre>
1758
1759<h5>Overview:</h5>
1760
1761<p>The '<tt>switch</tt>' instruction is used to transfer control flow to one of
1762several different places. It is a generalization of the '<tt>br</tt>'
1763instruction, allowing a branch to occur to one of many possible
1764destinations.</p>
1765
1766
1767<h5>Arguments:</h5>
1768
1769<p>The '<tt>switch</tt>' instruction uses three parameters: an integer
1770comparison value '<tt>value</tt>', a default '<tt>label</tt>' destination, and
1771an array of pairs of comparison value constants and '<tt>label</tt>'s. The
1772table is not allowed to contain duplicate constant entries.</p>
1773
1774<h5>Semantics:</h5>
1775
1776<p>The <tt>switch</tt> instruction specifies a table of values and
1777destinations. When the '<tt>switch</tt>' instruction is executed, this
1778table is searched for the given value. If the value is found, control flow is
1779transfered to the corresponding destination; otherwise, control flow is
1780transfered to the default destination.</p>
1781
1782<h5>Implementation:</h5>
1783
1784<p>Depending on properties of the target machine and the particular
1785<tt>switch</tt> instruction, this instruction may be code generated in different
1786ways. For example, it could be generated as a series of chained conditional
1787branches or with a lookup table.</p>
1788
1789<h5>Example:</h5>
1790
1791<pre>
1792 <i>; Emulate a conditional br instruction</i>
1793 %Val = <a href="#i_zext">zext</a> i1 %value to i32
1794 switch i32 %Val, label %truedest [i32 0, label %falsedest ]
1795
1796 <i>; Emulate an unconditional br instruction</i>
1797 switch i32 0, label %dest [ ]
1798
1799 <i>; Implement a jump table:</i>
1800 switch i32 %val, label %otherwise [ i32 0, label %onzero
1801 i32 1, label %onone
1802 i32 2, label %ontwo ]
1803</pre>
1804</div>
1805
1806<!-- _______________________________________________________________________ -->
1807<div class="doc_subsubsection">
1808 <a name="i_invoke">'<tt>invoke</tt>' Instruction</a>
1809</div>
1810
1811<div class="doc_text">
1812
1813<h5>Syntax:</h5>
1814
1815<pre>
1816 &lt;result&gt; = invoke [<a href="#callingconv">cconv</a>] &lt;ptr to function ty&gt; %&lt;function ptr val&gt;(&lt;function args&gt;)
1817 to label &lt;normal label&gt; unwind label &lt;exception label&gt;
1818</pre>
1819
1820<h5>Overview:</h5>
1821
1822<p>The '<tt>invoke</tt>' instruction causes control to transfer to a specified
1823function, with the possibility of control flow transfer to either the
1824'<tt>normal</tt>' label or the
1825'<tt>exception</tt>' label. If the callee function returns with the
1826"<tt><a href="#i_ret">ret</a></tt>" instruction, control flow will return to the
1827"normal" label. If the callee (or any indirect callees) returns with the "<a
1828href="#i_unwind"><tt>unwind</tt></a>" instruction, control is interrupted and
1829continued at the dynamically nearest "exception" label.</p>
1830
1831<h5>Arguments:</h5>
1832
1833<p>This instruction requires several arguments:</p>
1834
1835<ol>
1836 <li>
1837 The optional "cconv" marker indicates which <a href="#callingconv">calling
1838 convention</a> the call should use. If none is specified, the call defaults
1839 to using C calling conventions.
1840 </li>
1841 <li>'<tt>ptr to function ty</tt>': shall be the signature of the pointer to
1842 function value being invoked. In most cases, this is a direct function
1843 invocation, but indirect <tt>invoke</tt>s are just as possible, branching off
1844 an arbitrary pointer to function value.
1845 </li>
1846
1847 <li>'<tt>function ptr val</tt>': An LLVM value containing a pointer to a
1848 function to be invoked. </li>
1849
1850 <li>'<tt>function args</tt>': argument list whose types match the function
1851 signature argument types. If the function signature indicates the function
1852 accepts a variable number of arguments, the extra arguments can be
1853 specified. </li>
1854
1855 <li>'<tt>normal label</tt>': the label reached when the called function
1856 executes a '<tt><a href="#i_ret">ret</a></tt>' instruction. </li>
1857
1858 <li>'<tt>exception label</tt>': the label reached when a callee returns with
1859 the <a href="#i_unwind"><tt>unwind</tt></a> instruction. </li>
1860
1861</ol>
1862
1863<h5>Semantics:</h5>
1864
1865<p>This instruction is designed to operate as a standard '<tt><a
1866href="#i_call">call</a></tt>' instruction in most regards. The primary
1867difference is that it establishes an association with a label, which is used by
1868the runtime library to unwind the stack.</p>
1869
1870<p>This instruction is used in languages with destructors to ensure that proper
1871cleanup is performed in the case of either a <tt>longjmp</tt> or a thrown
1872exception. Additionally, this is important for implementation of
1873'<tt>catch</tt>' clauses in high-level languages that support them.</p>
1874
1875<h5>Example:</h5>
1876<pre>
1877 %retval = invoke i32 %Test(i32 15) to label %Continue
1878 unwind label %TestCleanup <i>; {i32}:retval set</i>
1879 %retval = invoke <a href="#callingconv">coldcc</a> i32 %Test(i32 15) to label %Continue
1880 unwind label %TestCleanup <i>; {i32}:retval set</i>
1881</pre>
1882</div>
1883
1884
1885<!-- _______________________________________________________________________ -->
1886
1887<div class="doc_subsubsection"> <a name="i_unwind">'<tt>unwind</tt>'
1888Instruction</a> </div>
1889
1890<div class="doc_text">
1891
1892<h5>Syntax:</h5>
1893<pre>
1894 unwind
1895</pre>
1896
1897<h5>Overview:</h5>
1898
1899<p>The '<tt>unwind</tt>' instruction unwinds the stack, continuing control flow
1900at the first callee in the dynamic call stack which used an <a
1901href="#i_invoke"><tt>invoke</tt></a> instruction to perform the call. This is
1902primarily used to implement exception handling.</p>
1903
1904<h5>Semantics:</h5>
1905
1906<p>The '<tt>unwind</tt>' intrinsic causes execution of the current function to
1907immediately halt. The dynamic call stack is then searched for the first <a
1908href="#i_invoke"><tt>invoke</tt></a> instruction on the call stack. Once found,
1909execution continues at the "exceptional" destination block specified by the
1910<tt>invoke</tt> instruction. If there is no <tt>invoke</tt> instruction in the
1911dynamic call chain, undefined behavior results.</p>
1912</div>
1913
1914<!-- _______________________________________________________________________ -->
1915
1916<div class="doc_subsubsection"> <a name="i_unreachable">'<tt>unreachable</tt>'
1917Instruction</a> </div>
1918
1919<div class="doc_text">
1920
1921<h5>Syntax:</h5>
1922<pre>
1923 unreachable
1924</pre>
1925
1926<h5>Overview:</h5>
1927
1928<p>The '<tt>unreachable</tt>' instruction has no defined semantics. This
1929instruction is used to inform the optimizer that a particular portion of the
1930code is not reachable. This can be used to indicate that the code after a
1931no-return function cannot be reached, and other facts.</p>
1932
1933<h5>Semantics:</h5>
1934
1935<p>The '<tt>unreachable</tt>' instruction has no defined semantics.</p>
1936</div>
1937
1938
1939
1940<!-- ======================================================================= -->
1941<div class="doc_subsection"> <a name="binaryops">Binary Operations</a> </div>
1942<div class="doc_text">
1943<p>Binary operators are used to do most of the computation in a
1944program. They require two operands, execute an operation on them, and
1945produce a single value. The operands might represent
1946multiple data, as is the case with the <a href="#t_vector">vector</a> data type.
1947The result value of a binary operator is not
1948necessarily the same type as its operands.</p>
1949<p>There are several different binary operators:</p>
1950</div>
1951<!-- _______________________________________________________________________ -->
1952<div class="doc_subsubsection"> <a name="i_add">'<tt>add</tt>'
1953Instruction</a> </div>
1954<div class="doc_text">
1955<h5>Syntax:</h5>
1956<pre> &lt;result&gt; = add &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1957</pre>
1958<h5>Overview:</h5>
1959<p>The '<tt>add</tt>' instruction returns the sum of its two operands.</p>
1960<h5>Arguments:</h5>
1961<p>The two arguments to the '<tt>add</tt>' instruction must be either <a
1962 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a> values.
1963 This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1964Both arguments must have identical types.</p>
1965<h5>Semantics:</h5>
1966<p>The value produced is the integer or floating point sum of the two
1967operands.</p>
1968<h5>Example:</h5>
1969<pre> &lt;result&gt; = add i32 4, %var <i>; yields {i32}:result = 4 + %var</i>
1970</pre>
1971</div>
1972<!-- _______________________________________________________________________ -->
1973<div class="doc_subsubsection"> <a name="i_sub">'<tt>sub</tt>'
1974Instruction</a> </div>
1975<div class="doc_text">
1976<h5>Syntax:</h5>
1977<pre> &lt;result&gt; = sub &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
1978</pre>
1979<h5>Overview:</h5>
1980<p>The '<tt>sub</tt>' instruction returns the difference of its two
1981operands.</p>
1982<p>Note that the '<tt>sub</tt>' instruction is used to represent the '<tt>neg</tt>'
1983instruction present in most other intermediate representations.</p>
1984<h5>Arguments:</h5>
1985<p>The two arguments to the '<tt>sub</tt>' instruction must be either <a
1986 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
1987values.
1988This instruction can also take <a href="#t_vector">vector</a> versions of the values.
1989Both arguments must have identical types.</p>
1990<h5>Semantics:</h5>
1991<p>The value produced is the integer or floating point difference of
1992the two operands.</p>
1993<h5>Example:</h5>
1994<pre>
1995 &lt;result&gt; = sub i32 4, %var <i>; yields {i32}:result = 4 - %var</i>
1996 &lt;result&gt; = sub i32 0, %val <i>; yields {i32}:result = -%var</i>
1997</pre>
1998</div>
1999<!-- _______________________________________________________________________ -->
2000<div class="doc_subsubsection"> <a name="i_mul">'<tt>mul</tt>'
2001Instruction</a> </div>
2002<div class="doc_text">
2003<h5>Syntax:</h5>
2004<pre> &lt;result&gt; = mul &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2005</pre>
2006<h5>Overview:</h5>
2007<p>The '<tt>mul</tt>' instruction returns the product of its two
2008operands.</p>
2009<h5>Arguments:</h5>
2010<p>The two arguments to the '<tt>mul</tt>' instruction must be either <a
2011 href="#t_integer">integer</a> or <a href="#t_floating">floating point</a>
2012values.
2013This instruction can also take <a href="#t_vector">vector</a> versions of the values.
2014Both arguments must have identical types.</p>
2015<h5>Semantics:</h5>
2016<p>The value produced is the integer or floating point product of the
2017two operands.</p>
2018<p>Because the operands are the same width, the result of an integer
2019multiplication is the same whether the operands should be deemed unsigned or
2020signed.</p>
2021<h5>Example:</h5>
2022<pre> &lt;result&gt; = mul i32 4, %var <i>; yields {i32}:result = 4 * %var</i>
2023</pre>
2024</div>
2025<!-- _______________________________________________________________________ -->
2026<div class="doc_subsubsection"> <a name="i_udiv">'<tt>udiv</tt>' Instruction
2027</a></div>
2028<div class="doc_text">
2029<h5>Syntax:</h5>
2030<pre> &lt;result&gt; = udiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2031</pre>
2032<h5>Overview:</h5>
2033<p>The '<tt>udiv</tt>' instruction returns the quotient of its two
2034operands.</p>
2035<h5>Arguments:</h5>
2036<p>The two arguments to the '<tt>udiv</tt>' instruction must be
2037<a href="#t_integer">integer</a> values. Both arguments must have identical
2038types. This instruction can also take <a href="#t_vector">vector</a> versions
2039of the values in which case the elements must be integers.</p>
2040<h5>Semantics:</h5>
2041<p>The value produced is the unsigned integer quotient of the two operands. This
2042instruction always performs an unsigned division operation, regardless of
2043whether the arguments are unsigned or not.</p>
2044<h5>Example:</h5>
2045<pre> &lt;result&gt; = udiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2046</pre>
2047</div>
2048<!-- _______________________________________________________________________ -->
2049<div class="doc_subsubsection"> <a name="i_sdiv">'<tt>sdiv</tt>' Instruction
2050</a> </div>
2051<div class="doc_text">
2052<h5>Syntax:</h5>
2053<pre> &lt;result&gt; = sdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2054</pre>
2055<h5>Overview:</h5>
2056<p>The '<tt>sdiv</tt>' instruction returns the quotient of its two
2057operands.</p>
2058<h5>Arguments:</h5>
2059<p>The two arguments to the '<tt>sdiv</tt>' instruction must be
2060<a href="#t_integer">integer</a> values. Both arguments must have identical
2061types. This instruction can also take <a href="#t_vector">vector</a> versions
2062of the values in which case the elements must be integers.</p>
2063<h5>Semantics:</h5>
2064<p>The value produced is the signed integer quotient of the two operands. This
2065instruction always performs a signed division operation, regardless of whether
2066the arguments are signed or not.</p>
2067<h5>Example:</h5>
2068<pre> &lt;result&gt; = sdiv i32 4, %var <i>; yields {i32}:result = 4 / %var</i>
2069</pre>
2070</div>
2071<!-- _______________________________________________________________________ -->
2072<div class="doc_subsubsection"> <a name="i_fdiv">'<tt>fdiv</tt>'
2073Instruction</a> </div>
2074<div class="doc_text">
2075<h5>Syntax:</h5>
2076<pre> &lt;result&gt; = fdiv &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2077</pre>
2078<h5>Overview:</h5>
2079<p>The '<tt>fdiv</tt>' instruction returns the quotient of its two
2080operands.</p>
2081<h5>Arguments:</h5>
2082<p>The two arguments to the '<tt>fdiv</tt>' instruction must be
2083<a href="#t_floating">floating point</a> values. Both arguments must have
2084identical types. This instruction can also take <a href="#t_vector">vector</a>
2085versions of floating point values.</p>
2086<h5>Semantics:</h5>
2087<p>The value produced is the floating point quotient of the two operands.</p>
2088<h5>Example:</h5>
2089<pre> &lt;result&gt; = fdiv float 4.0, %var <i>; yields {float}:result = 4.0 / %var</i>
2090</pre>
2091</div>
2092<!-- _______________________________________________________________________ -->
2093<div class="doc_subsubsection"> <a name="i_urem">'<tt>urem</tt>' Instruction</a>
2094</div>
2095<div class="doc_text">
2096<h5>Syntax:</h5>
2097<pre> &lt;result&gt; = urem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2098</pre>
2099<h5>Overview:</h5>
2100<p>The '<tt>urem</tt>' instruction returns the remainder from the
2101unsigned division of its two arguments.</p>
2102<h5>Arguments:</h5>
2103<p>The two arguments to the '<tt>urem</tt>' instruction must be
2104<a href="#t_integer">integer</a> values. Both arguments must have identical
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002105types. This instruction can also take <a href="#t_vector">vector</a> versions
2106of the values in which case the elements must be integers.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002107<h5>Semantics:</h5>
2108<p>This instruction returns the unsigned integer <i>remainder</i> of a division.
2109This instruction always performs an unsigned division to get the remainder,
2110regardless of whether the arguments are unsigned or not.</p>
2111<h5>Example:</h5>
2112<pre> &lt;result&gt; = urem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2113</pre>
2114
2115</div>
2116<!-- _______________________________________________________________________ -->
2117<div class="doc_subsubsection"> <a name="i_srem">'<tt>srem</tt>'
2118Instruction</a> </div>
2119<div class="doc_text">
2120<h5>Syntax:</h5>
2121<pre> &lt;result&gt; = srem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2122</pre>
2123<h5>Overview:</h5>
2124<p>The '<tt>srem</tt>' instruction returns the remainder from the
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002125signed division of its two operands. This instruction can also take
2126<a href="#t_vector">vector</a> versions of the values in which case
2127the elements must be integers.</p>
2128</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002129<h5>Arguments:</h5>
2130<p>The two arguments to the '<tt>srem</tt>' instruction must be
2131<a href="#t_integer">integer</a> values. Both arguments must have identical
2132types.</p>
2133<h5>Semantics:</h5>
2134<p>This instruction returns the <i>remainder</i> of a division (where the result
2135has the same sign as the dividend, <tt>var1</tt>), not the <i>modulo</i>
2136operator (where the result has the same sign as the divisor, <tt>var2</tt>) of
2137a value. For more information about the difference, see <a
2138 href="http://mathforum.org/dr.math/problems/anne.4.28.99.html">The
2139Math Forum</a>. For a table of how this is implemented in various languages,
2140please see <a href="http://en.wikipedia.org/wiki/Modulo_operation">
2141Wikipedia: modulo operation</a>.</p>
2142<h5>Example:</h5>
2143<pre> &lt;result&gt; = srem i32 4, %var <i>; yields {i32}:result = 4 % %var</i>
2144</pre>
2145
2146</div>
2147<!-- _______________________________________________________________________ -->
2148<div class="doc_subsubsection"> <a name="i_frem">'<tt>frem</tt>'
2149Instruction</a> </div>
2150<div class="doc_text">
2151<h5>Syntax:</h5>
2152<pre> &lt;result&gt; = frem &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2153</pre>
2154<h5>Overview:</h5>
2155<p>The '<tt>frem</tt>' instruction returns the remainder from the
2156division of its two operands.</p>
2157<h5>Arguments:</h5>
2158<p>The two arguments to the '<tt>frem</tt>' instruction must be
2159<a href="#t_floating">floating point</a> values. Both arguments must have
Dan Gohman3e3fd8c2007-11-05 23:35:22 +00002160identical types. This instruction can also take <a href="#t_vector">vector</a>
2161versions of floating point values.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002162<h5>Semantics:</h5>
2163<p>This instruction returns the <i>remainder</i> of a division.</p>
2164<h5>Example:</h5>
2165<pre> &lt;result&gt; = frem float 4.0, %var <i>; yields {float}:result = 4.0 % %var</i>
2166</pre>
2167</div>
2168
2169<!-- ======================================================================= -->
2170<div class="doc_subsection"> <a name="bitwiseops">Bitwise Binary
2171Operations</a> </div>
2172<div class="doc_text">
2173<p>Bitwise binary operators are used to do various forms of
2174bit-twiddling in a program. They are generally very efficient
2175instructions and can commonly be strength reduced from other
2176instructions. They require two operands, execute an operation on them,
2177and produce a single value. The resulting value of the bitwise binary
2178operators is always the same type as its first operand.</p>
2179</div>
2180
2181<!-- _______________________________________________________________________ -->
2182<div class="doc_subsubsection"> <a name="i_shl">'<tt>shl</tt>'
2183Instruction</a> </div>
2184<div class="doc_text">
2185<h5>Syntax:</h5>
2186<pre> &lt;result&gt; = shl &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2187</pre>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002188
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002189<h5>Overview:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002190
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002191<p>The '<tt>shl</tt>' instruction returns the first operand shifted to
2192the left a specified number of bits.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002193
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002194<h5>Arguments:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002195
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002196<p>Both arguments to the '<tt>shl</tt>' instruction must be the same <a
2197 href="#t_integer">integer</a> type.</p>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002198
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002199<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002200
2201<p>The value produced is <tt>var1</tt> * 2<sup><tt>var2</tt></sup>. If
2202<tt>var2</tt> is (statically or dynamically) equal to or larger than the number
2203of bits in <tt>var1</tt>, the result is undefined.</p>
2204
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002205<h5>Example:</h5><pre>
2206 &lt;result&gt; = shl i32 4, %var <i>; yields {i32}: 4 &lt;&lt; %var</i>
2207 &lt;result&gt; = shl i32 4, 2 <i>; yields {i32}: 16</i>
2208 &lt;result&gt; = shl i32 1, 10 <i>; yields {i32}: 1024</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002209 &lt;result&gt; = shl i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002210</pre>
2211</div>
2212<!-- _______________________________________________________________________ -->
2213<div class="doc_subsubsection"> <a name="i_lshr">'<tt>lshr</tt>'
2214Instruction</a> </div>
2215<div class="doc_text">
2216<h5>Syntax:</h5>
2217<pre> &lt;result&gt; = lshr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2218</pre>
2219
2220<h5>Overview:</h5>
2221<p>The '<tt>lshr</tt>' instruction (logical shift right) returns the first
2222operand shifted to the right a specified number of bits with zero fill.</p>
2223
2224<h5>Arguments:</h5>
2225<p>Both arguments to the '<tt>lshr</tt>' instruction must be the same
2226<a href="#t_integer">integer</a> type.</p>
2227
2228<h5>Semantics:</h5>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002229
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002230<p>This instruction always performs a logical shift right operation. The most
2231significant bits of the result will be filled with zero bits after the
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002232shift. If <tt>var2</tt> is (statically or dynamically) equal to or larger than
2233the number of bits in <tt>var1</tt>, the result is undefined.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002234
2235<h5>Example:</h5>
2236<pre>
2237 &lt;result&gt; = lshr i32 4, 1 <i>; yields {i32}:result = 2</i>
2238 &lt;result&gt; = lshr i32 4, 2 <i>; yields {i32}:result = 1</i>
2239 &lt;result&gt; = lshr i8 4, 3 <i>; yields {i8}:result = 0</i>
2240 &lt;result&gt; = lshr i8 -2, 1 <i>; yields {i8}:result = 0x7FFFFFFF </i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002241 &lt;result&gt; = lshr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002242</pre>
2243</div>
2244
2245<!-- _______________________________________________________________________ -->
2246<div class="doc_subsubsection"> <a name="i_ashr">'<tt>ashr</tt>'
2247Instruction</a> </div>
2248<div class="doc_text">
2249
2250<h5>Syntax:</h5>
2251<pre> &lt;result&gt; = ashr &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2252</pre>
2253
2254<h5>Overview:</h5>
2255<p>The '<tt>ashr</tt>' instruction (arithmetic shift right) returns the first
2256operand shifted to the right a specified number of bits with sign extension.</p>
2257
2258<h5>Arguments:</h5>
2259<p>Both arguments to the '<tt>ashr</tt>' instruction must be the same
2260<a href="#t_integer">integer</a> type.</p>
2261
2262<h5>Semantics:</h5>
2263<p>This instruction always performs an arithmetic shift right operation,
2264The most significant bits of the result will be filled with the sign bit
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002265of <tt>var1</tt>. If <tt>var2</tt> is (statically or dynamically) equal to or
2266larger than the number of bits in <tt>var1</tt>, the result is undefined.
2267</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002268
2269<h5>Example:</h5>
2270<pre>
2271 &lt;result&gt; = ashr i32 4, 1 <i>; yields {i32}:result = 2</i>
2272 &lt;result&gt; = ashr i32 4, 2 <i>; yields {i32}:result = 1</i>
2273 &lt;result&gt; = ashr i8 4, 3 <i>; yields {i8}:result = 0</i>
2274 &lt;result&gt; = ashr i8 -2, 1 <i>; yields {i8}:result = -1</i>
Chris Lattnerd939d9f2007-10-03 21:01:14 +00002275 &lt;result&gt; = ashr i32 1, 32 <i>; undefined</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002276</pre>
2277</div>
2278
2279<!-- _______________________________________________________________________ -->
2280<div class="doc_subsubsection"> <a name="i_and">'<tt>and</tt>'
2281Instruction</a> </div>
2282<div class="doc_text">
2283<h5>Syntax:</h5>
2284<pre> &lt;result&gt; = and &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2285</pre>
2286<h5>Overview:</h5>
2287<p>The '<tt>and</tt>' instruction returns the bitwise logical and of
2288its two operands.</p>
2289<h5>Arguments:</h5>
2290<p>The two arguments to the '<tt>and</tt>' instruction must be <a
2291 href="#t_integer">integer</a> values. Both arguments must have
2292identical types.</p>
2293<h5>Semantics:</h5>
2294<p>The truth table used for the '<tt>and</tt>' instruction is:</p>
2295<p> </p>
2296<div style="align: center">
2297<table border="1" cellspacing="0" cellpadding="4">
2298 <tbody>
2299 <tr>
2300 <td>In0</td>
2301 <td>In1</td>
2302 <td>Out</td>
2303 </tr>
2304 <tr>
2305 <td>0</td>
2306 <td>0</td>
2307 <td>0</td>
2308 </tr>
2309 <tr>
2310 <td>0</td>
2311 <td>1</td>
2312 <td>0</td>
2313 </tr>
2314 <tr>
2315 <td>1</td>
2316 <td>0</td>
2317 <td>0</td>
2318 </tr>
2319 <tr>
2320 <td>1</td>
2321 <td>1</td>
2322 <td>1</td>
2323 </tr>
2324 </tbody>
2325</table>
2326</div>
2327<h5>Example:</h5>
2328<pre> &lt;result&gt; = and i32 4, %var <i>; yields {i32}:result = 4 &amp; %var</i>
2329 &lt;result&gt; = and i32 15, 40 <i>; yields {i32}:result = 8</i>
2330 &lt;result&gt; = and i32 4, 8 <i>; yields {i32}:result = 0</i>
2331</pre>
2332</div>
2333<!-- _______________________________________________________________________ -->
2334<div class="doc_subsubsection"> <a name="i_or">'<tt>or</tt>' Instruction</a> </div>
2335<div class="doc_text">
2336<h5>Syntax:</h5>
2337<pre> &lt;result&gt; = or &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2338</pre>
2339<h5>Overview:</h5>
2340<p>The '<tt>or</tt>' instruction returns the bitwise logical inclusive
2341or of its two operands.</p>
2342<h5>Arguments:</h5>
2343<p>The two arguments to the '<tt>or</tt>' instruction must be <a
2344 href="#t_integer">integer</a> values. Both arguments must have
2345identical types.</p>
2346<h5>Semantics:</h5>
2347<p>The truth table used for the '<tt>or</tt>' instruction is:</p>
2348<p> </p>
2349<div style="align: center">
2350<table border="1" cellspacing="0" cellpadding="4">
2351 <tbody>
2352 <tr>
2353 <td>In0</td>
2354 <td>In1</td>
2355 <td>Out</td>
2356 </tr>
2357 <tr>
2358 <td>0</td>
2359 <td>0</td>
2360 <td>0</td>
2361 </tr>
2362 <tr>
2363 <td>0</td>
2364 <td>1</td>
2365 <td>1</td>
2366 </tr>
2367 <tr>
2368 <td>1</td>
2369 <td>0</td>
2370 <td>1</td>
2371 </tr>
2372 <tr>
2373 <td>1</td>
2374 <td>1</td>
2375 <td>1</td>
2376 </tr>
2377 </tbody>
2378</table>
2379</div>
2380<h5>Example:</h5>
2381<pre> &lt;result&gt; = or i32 4, %var <i>; yields {i32}:result = 4 | %var</i>
2382 &lt;result&gt; = or i32 15, 40 <i>; yields {i32}:result = 47</i>
2383 &lt;result&gt; = or i32 4, 8 <i>; yields {i32}:result = 12</i>
2384</pre>
2385</div>
2386<!-- _______________________________________________________________________ -->
2387<div class="doc_subsubsection"> <a name="i_xor">'<tt>xor</tt>'
2388Instruction</a> </div>
2389<div class="doc_text">
2390<h5>Syntax:</h5>
2391<pre> &lt;result&gt; = xor &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {ty}:result</i>
2392</pre>
2393<h5>Overview:</h5>
2394<p>The '<tt>xor</tt>' instruction returns the bitwise logical exclusive
2395or of its two operands. The <tt>xor</tt> is used to implement the
2396"one's complement" operation, which is the "~" operator in C.</p>
2397<h5>Arguments:</h5>
2398<p>The two arguments to the '<tt>xor</tt>' instruction must be <a
2399 href="#t_integer">integer</a> values. Both arguments must have
2400identical types.</p>
2401<h5>Semantics:</h5>
2402<p>The truth table used for the '<tt>xor</tt>' instruction is:</p>
2403<p> </p>
2404<div style="align: center">
2405<table border="1" cellspacing="0" cellpadding="4">
2406 <tbody>
2407 <tr>
2408 <td>In0</td>
2409 <td>In1</td>
2410 <td>Out</td>
2411 </tr>
2412 <tr>
2413 <td>0</td>
2414 <td>0</td>
2415 <td>0</td>
2416 </tr>
2417 <tr>
2418 <td>0</td>
2419 <td>1</td>
2420 <td>1</td>
2421 </tr>
2422 <tr>
2423 <td>1</td>
2424 <td>0</td>
2425 <td>1</td>
2426 </tr>
2427 <tr>
2428 <td>1</td>
2429 <td>1</td>
2430 <td>0</td>
2431 </tr>
2432 </tbody>
2433</table>
2434</div>
2435<p> </p>
2436<h5>Example:</h5>
2437<pre> &lt;result&gt; = xor i32 4, %var <i>; yields {i32}:result = 4 ^ %var</i>
2438 &lt;result&gt; = xor i32 15, 40 <i>; yields {i32}:result = 39</i>
2439 &lt;result&gt; = xor i32 4, 8 <i>; yields {i32}:result = 12</i>
2440 &lt;result&gt; = xor i32 %V, -1 <i>; yields {i32}:result = ~%V</i>
2441</pre>
2442</div>
2443
2444<!-- ======================================================================= -->
2445<div class="doc_subsection">
2446 <a name="vectorops">Vector Operations</a>
2447</div>
2448
2449<div class="doc_text">
2450
2451<p>LLVM supports several instructions to represent vector operations in a
2452target-independent manner. These instructions cover the element-access and
2453vector-specific operations needed to process vectors effectively. While LLVM
2454does directly support these vector operations, many sophisticated algorithms
2455will want to use target-specific intrinsics to take full advantage of a specific
2456target.</p>
2457
2458</div>
2459
2460<!-- _______________________________________________________________________ -->
2461<div class="doc_subsubsection">
2462 <a name="i_extractelement">'<tt>extractelement</tt>' Instruction</a>
2463</div>
2464
2465<div class="doc_text">
2466
2467<h5>Syntax:</h5>
2468
2469<pre>
2470 &lt;result&gt; = extractelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, i32 &lt;idx&gt; <i>; yields &lt;ty&gt;</i>
2471</pre>
2472
2473<h5>Overview:</h5>
2474
2475<p>
2476The '<tt>extractelement</tt>' instruction extracts a single scalar
2477element from a vector at a specified index.
2478</p>
2479
2480
2481<h5>Arguments:</h5>
2482
2483<p>
2484The first operand of an '<tt>extractelement</tt>' instruction is a
2485value of <a href="#t_vector">vector</a> type. The second operand is
2486an index indicating the position from which to extract the element.
2487The index may be a variable.</p>
2488
2489<h5>Semantics:</h5>
2490
2491<p>
2492The result is a scalar of the same type as the element type of
2493<tt>val</tt>. Its value is the value at position <tt>idx</tt> of
2494<tt>val</tt>. If <tt>idx</tt> exceeds the length of <tt>val</tt>, the
2495results are undefined.
2496</p>
2497
2498<h5>Example:</h5>
2499
2500<pre>
2501 %result = extractelement &lt;4 x i32&gt; %vec, i32 0 <i>; yields i32</i>
2502</pre>
2503</div>
2504
2505
2506<!-- _______________________________________________________________________ -->
2507<div class="doc_subsubsection">
2508 <a name="i_insertelement">'<tt>insertelement</tt>' Instruction</a>
2509</div>
2510
2511<div class="doc_text">
2512
2513<h5>Syntax:</h5>
2514
2515<pre>
2516 &lt;result&gt; = insertelement &lt;n x &lt;ty&gt;&gt; &lt;val&gt;, &lt;ty&gt; &lt;elt&gt, i32 &lt;idx&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2517</pre>
2518
2519<h5>Overview:</h5>
2520
2521<p>
2522The '<tt>insertelement</tt>' instruction inserts a scalar
2523element into a vector at a specified index.
2524</p>
2525
2526
2527<h5>Arguments:</h5>
2528
2529<p>
2530The first operand of an '<tt>insertelement</tt>' instruction is a
2531value of <a href="#t_vector">vector</a> type. The second operand is a
2532scalar value whose type must equal the element type of the first
2533operand. The third operand is an index indicating the position at
2534which to insert the value. The index may be a variable.</p>
2535
2536<h5>Semantics:</h5>
2537
2538<p>
2539The result is a vector of the same type as <tt>val</tt>. Its
2540element values are those of <tt>val</tt> except at position
2541<tt>idx</tt>, where it gets the value <tt>elt</tt>. If <tt>idx</tt>
2542exceeds the length of <tt>val</tt>, the results are undefined.
2543</p>
2544
2545<h5>Example:</h5>
2546
2547<pre>
2548 %result = insertelement &lt;4 x i32&gt; %vec, i32 1, i32 0 <i>; yields &lt;4 x i32&gt;</i>
2549</pre>
2550</div>
2551
2552<!-- _______________________________________________________________________ -->
2553<div class="doc_subsubsection">
2554 <a name="i_shufflevector">'<tt>shufflevector</tt>' Instruction</a>
2555</div>
2556
2557<div class="doc_text">
2558
2559<h5>Syntax:</h5>
2560
2561<pre>
2562 &lt;result&gt; = shufflevector &lt;n x &lt;ty&gt;&gt; &lt;v1&gt;, &lt;n x &lt;ty&gt;&gt; &lt;v2&gt;, &lt;n x i32&gt; &lt;mask&gt; <i>; yields &lt;n x &lt;ty&gt;&gt;</i>
2563</pre>
2564
2565<h5>Overview:</h5>
2566
2567<p>
2568The '<tt>shufflevector</tt>' instruction constructs a permutation of elements
2569from two input vectors, returning a vector of the same type.
2570</p>
2571
2572<h5>Arguments:</h5>
2573
2574<p>
2575The first two operands of a '<tt>shufflevector</tt>' instruction are vectors
2576with types that match each other and types that match the result of the
2577instruction. The third argument is a shuffle mask, which has the same number
2578of elements as the other vector type, but whose element type is always 'i32'.
2579</p>
2580
2581<p>
2582The shuffle mask operand is required to be a constant vector with either
2583constant integer or undef values.
2584</p>
2585
2586<h5>Semantics:</h5>
2587
2588<p>
2589The elements of the two input vectors are numbered from left to right across
2590both of the vectors. The shuffle mask operand specifies, for each element of
2591the result vector, which element of the two input registers the result element
2592gets. The element selector may be undef (meaning "don't care") and the second
2593operand may be undef if performing a shuffle from only one vector.
2594</p>
2595
2596<h5>Example:</h5>
2597
2598<pre>
2599 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; %v2,
2600 &lt;4 x i32&gt; &lt;i32 0, i32 4, i32 1, i32 5&gt; <i>; yields &lt;4 x i32&gt;</i>
2601 %result = shufflevector &lt;4 x i32&gt; %v1, &lt;4 x i32&gt; undef,
2602 &lt;4 x i32&gt; &lt;i32 0, i32 1, i32 2, i32 3&gt; <i>; yields &lt;4 x i32&gt;</i> - Identity shuffle.
2603</pre>
2604</div>
2605
2606
2607<!-- ======================================================================= -->
2608<div class="doc_subsection">
2609 <a name="memoryops">Memory Access and Addressing Operations</a>
2610</div>
2611
2612<div class="doc_text">
2613
2614<p>A key design point of an SSA-based representation is how it
2615represents memory. In LLVM, no memory locations are in SSA form, which
2616makes things very simple. This section describes how to read, write,
2617allocate, and free memory in LLVM.</p>
2618
2619</div>
2620
2621<!-- _______________________________________________________________________ -->
2622<div class="doc_subsubsection">
2623 <a name="i_malloc">'<tt>malloc</tt>' Instruction</a>
2624</div>
2625
2626<div class="doc_text">
2627
2628<h5>Syntax:</h5>
2629
2630<pre>
2631 &lt;result&gt; = malloc &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2632</pre>
2633
2634<h5>Overview:</h5>
2635
2636<p>The '<tt>malloc</tt>' instruction allocates memory from the system
2637heap and returns a pointer to it.</p>
2638
2639<h5>Arguments:</h5>
2640
2641<p>The '<tt>malloc</tt>' instruction allocates
2642<tt>sizeof(&lt;type&gt;)*NumElements</tt>
2643bytes of memory from the operating system and returns a pointer of the
2644appropriate type to the program. If "NumElements" is specified, it is the
2645number of elements allocated. If an alignment is specified, the value result
2646of the allocation is guaranteed to be aligned to at least that boundary. If
2647not specified, or if zero, the target can choose to align the allocation on any
2648convenient boundary.</p>
2649
2650<p>'<tt>type</tt>' must be a sized type.</p>
2651
2652<h5>Semantics:</h5>
2653
2654<p>Memory is allocated using the system "<tt>malloc</tt>" function, and
2655a pointer is returned.</p>
2656
2657<h5>Example:</h5>
2658
2659<pre>
2660 %array = malloc [4 x i8 ] <i>; yields {[%4 x i8]*}:array</i>
2661
2662 %size = <a href="#i_add">add</a> i32 2, 2 <i>; yields {i32}:size = i32 4</i>
2663 %array1 = malloc i8, i32 4 <i>; yields {i8*}:array1</i>
2664 %array2 = malloc [12 x i8], i32 %size <i>; yields {[12 x i8]*}:array2</i>
2665 %array3 = malloc i32, i32 4, align 1024 <i>; yields {i32*}:array3</i>
2666 %array4 = malloc i32, align 1024 <i>; yields {i32*}:array4</i>
2667</pre>
2668</div>
2669
2670<!-- _______________________________________________________________________ -->
2671<div class="doc_subsubsection">
2672 <a name="i_free">'<tt>free</tt>' Instruction</a>
2673</div>
2674
2675<div class="doc_text">
2676
2677<h5>Syntax:</h5>
2678
2679<pre>
2680 free &lt;type&gt; &lt;value&gt; <i>; yields {void}</i>
2681</pre>
2682
2683<h5>Overview:</h5>
2684
2685<p>The '<tt>free</tt>' instruction returns memory back to the unused
2686memory heap to be reallocated in the future.</p>
2687
2688<h5>Arguments:</h5>
2689
2690<p>'<tt>value</tt>' shall be a pointer value that points to a value
2691that was allocated with the '<tt><a href="#i_malloc">malloc</a></tt>'
2692instruction.</p>
2693
2694<h5>Semantics:</h5>
2695
2696<p>Access to the memory pointed to by the pointer is no longer defined
2697after this instruction executes.</p>
2698
2699<h5>Example:</h5>
2700
2701<pre>
2702 %array = <a href="#i_malloc">malloc</a> [4 x i8] <i>; yields {[4 x i8]*}:array</i>
2703 free [4 x i8]* %array
2704</pre>
2705</div>
2706
2707<!-- _______________________________________________________________________ -->
2708<div class="doc_subsubsection">
2709 <a name="i_alloca">'<tt>alloca</tt>' Instruction</a>
2710</div>
2711
2712<div class="doc_text">
2713
2714<h5>Syntax:</h5>
2715
2716<pre>
2717 &lt;result&gt; = alloca &lt;type&gt;[, i32 &lt;NumElements&gt;][, align &lt;alignment&gt;] <i>; yields {type*}:result</i>
2718</pre>
2719
2720<h5>Overview:</h5>
2721
2722<p>The '<tt>alloca</tt>' instruction allocates memory on the stack frame of the
2723currently executing function, to be automatically released when this function
2724returns to its caller.</p>
2725
2726<h5>Arguments:</h5>
2727
2728<p>The '<tt>alloca</tt>' instruction allocates <tt>sizeof(&lt;type&gt;)*NumElements</tt>
2729bytes of memory on the runtime stack, returning a pointer of the
2730appropriate type to the program. If "NumElements" is specified, it is the
2731number of elements allocated. If an alignment is specified, the value result
2732of the allocation is guaranteed to be aligned to at least that boundary. If
2733not specified, or if zero, the target can choose to align the allocation on any
2734convenient boundary.</p>
2735
2736<p>'<tt>type</tt>' may be any sized type.</p>
2737
2738<h5>Semantics:</h5>
2739
2740<p>Memory is allocated; a pointer is returned. '<tt>alloca</tt>'d
2741memory is automatically released when the function returns. The '<tt>alloca</tt>'
2742instruction is commonly used to represent automatic variables that must
2743have an address available. When the function returns (either with the <tt><a
2744 href="#i_ret">ret</a></tt> or <tt><a href="#i_unwind">unwind</a></tt>
2745instructions), the memory is reclaimed.</p>
2746
2747<h5>Example:</h5>
2748
2749<pre>
2750 %ptr = alloca i32 <i>; yields {i32*}:ptr</i>
2751 %ptr = alloca i32, i32 4 <i>; yields {i32*}:ptr</i>
2752 %ptr = alloca i32, i32 4, align 1024 <i>; yields {i32*}:ptr</i>
2753 %ptr = alloca i32, align 1024 <i>; yields {i32*}:ptr</i>
2754</pre>
2755</div>
2756
2757<!-- _______________________________________________________________________ -->
2758<div class="doc_subsubsection"> <a name="i_load">'<tt>load</tt>'
2759Instruction</a> </div>
2760<div class="doc_text">
2761<h5>Syntax:</h5>
2762<pre> &lt;result&gt; = load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br> &lt;result&gt; = volatile load &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;]<br></pre>
2763<h5>Overview:</h5>
2764<p>The '<tt>load</tt>' instruction is used to read from memory.</p>
2765<h5>Arguments:</h5>
2766<p>The argument to the '<tt>load</tt>' instruction specifies the memory
2767address from which to load. The pointer must point to a <a
2768 href="#t_firstclass">first class</a> type. If the <tt>load</tt> is
2769marked as <tt>volatile</tt>, then the optimizer is not allowed to modify
2770the number or order of execution of this <tt>load</tt> with other
2771volatile <tt>load</tt> and <tt><a href="#i_store">store</a></tt>
2772instructions. </p>
2773<h5>Semantics:</h5>
2774<p>The location of memory pointed to is loaded.</p>
2775<h5>Examples:</h5>
2776<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
2777 <a
2778 href="#i_store">store</a> i32 3, i32* %ptr <i>; yields {void}</i>
2779 %val = load i32* %ptr <i>; yields {i32}:val = i32 3</i>
2780</pre>
2781</div>
2782<!-- _______________________________________________________________________ -->
2783<div class="doc_subsubsection"> <a name="i_store">'<tt>store</tt>'
2784Instruction</a> </div>
2785<div class="doc_text">
2786<h5>Syntax:</h5>
2787<pre> store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2788 volatile store &lt;ty&gt; &lt;value&gt;, &lt;ty&gt;* &lt;pointer&gt;[, align &lt;alignment&gt;] <i>; yields {void}</i>
2789</pre>
2790<h5>Overview:</h5>
2791<p>The '<tt>store</tt>' instruction is used to write to memory.</p>
2792<h5>Arguments:</h5>
2793<p>There are two arguments to the '<tt>store</tt>' instruction: a value
2794to store and an address at which to store it. The type of the '<tt>&lt;pointer&gt;</tt>'
2795operand must be a pointer to the type of the '<tt>&lt;value&gt;</tt>'
2796operand. If the <tt>store</tt> is marked as <tt>volatile</tt>, then the
2797optimizer is not allowed to modify the number or order of execution of
2798this <tt>store</tt> with other volatile <tt>load</tt> and <tt><a
2799 href="#i_store">store</a></tt> instructions.</p>
2800<h5>Semantics:</h5>
2801<p>The contents of memory are updated to contain '<tt>&lt;value&gt;</tt>'
2802at the location specified by the '<tt>&lt;pointer&gt;</tt>' operand.</p>
2803<h5>Example:</h5>
2804<pre> %ptr = <a href="#i_alloca">alloca</a> i32 <i>; yields {i32*}:ptr</i>
Bill Wendling63ffa142007-10-22 05:10:05 +00002805 store i32 3, i32* %ptr <i>; yields {void}</i>
2806 %val = <a href="#i_load">load</a> i32* %ptr <i>; yields {i32}:val = i32 3</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002807</pre>
2808</div>
2809
2810<!-- _______________________________________________________________________ -->
2811<div class="doc_subsubsection">
2812 <a name="i_getelementptr">'<tt>getelementptr</tt>' Instruction</a>
2813</div>
2814
2815<div class="doc_text">
2816<h5>Syntax:</h5>
2817<pre>
2818 &lt;result&gt; = getelementptr &lt;ty&gt;* &lt;ptrval&gt;{, &lt;ty&gt; &lt;idx&gt;}*
2819</pre>
2820
2821<h5>Overview:</h5>
2822
2823<p>
2824The '<tt>getelementptr</tt>' instruction is used to get the address of a
2825subelement of an aggregate data structure.</p>
2826
2827<h5>Arguments:</h5>
2828
2829<p>This instruction takes a list of integer operands that indicate what
2830elements of the aggregate object to index to. The actual types of the arguments
2831provided depend on the type of the first pointer argument. The
2832'<tt>getelementptr</tt>' instruction is used to index down through the type
2833levels of a structure or to a specific index in an array. When indexing into a
2834structure, only <tt>i32</tt> integer constants are allowed. When indexing
2835into an array or pointer, only integers of 32 or 64 bits are allowed, and will
2836be sign extended to 64-bit values.</p>
2837
2838<p>For example, let's consider a C code fragment and how it gets
2839compiled to LLVM:</p>
2840
2841<div class="doc_code">
2842<pre>
2843struct RT {
2844 char A;
2845 int B[10][20];
2846 char C;
2847};
2848struct ST {
2849 int X;
2850 double Y;
2851 struct RT Z;
2852};
2853
2854int *foo(struct ST *s) {
2855 return &amp;s[1].Z.B[5][13];
2856}
2857</pre>
2858</div>
2859
2860<p>The LLVM code generated by the GCC frontend is:</p>
2861
2862<div class="doc_code">
2863<pre>
2864%RT = type { i8 , [10 x [20 x i32]], i8 }
2865%ST = type { i32, double, %RT }
2866
2867define i32* %foo(%ST* %s) {
2868entry:
2869 %reg = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
2870 ret i32* %reg
2871}
2872</pre>
2873</div>
2874
2875<h5>Semantics:</h5>
2876
2877<p>The index types specified for the '<tt>getelementptr</tt>' instruction depend
2878on the pointer type that is being indexed into. <a href="#t_pointer">Pointer</a>
2879and <a href="#t_array">array</a> types can use a 32-bit or 64-bit
2880<a href="#t_integer">integer</a> type but the value will always be sign extended
2881to 64-bits. <a href="#t_struct">Structure</a> types require <tt>i32</tt>
2882<b>constants</b>.</p>
2883
2884<p>In the example above, the first index is indexing into the '<tt>%ST*</tt>'
2885type, which is a pointer, yielding a '<tt>%ST</tt>' = '<tt>{ i32, double, %RT
2886}</tt>' type, a structure. The second index indexes into the third element of
2887the structure, yielding a '<tt>%RT</tt>' = '<tt>{ i8 , [10 x [20 x i32]],
2888i8 }</tt>' type, another structure. The third index indexes into the second
2889element of the structure, yielding a '<tt>[10 x [20 x i32]]</tt>' type, an
2890array. The two dimensions of the array are subscripted into, yielding an
2891'<tt>i32</tt>' type. The '<tt>getelementptr</tt>' instruction returns a pointer
2892to this element, thus computing a value of '<tt>i32*</tt>' type.</p>
2893
2894<p>Note that it is perfectly legal to index partially through a
2895structure, returning a pointer to an inner element. Because of this,
2896the LLVM code for the given testcase is equivalent to:</p>
2897
2898<pre>
2899 define i32* %foo(%ST* %s) {
2900 %t1 = getelementptr %ST* %s, i32 1 <i>; yields %ST*:%t1</i>
2901 %t2 = getelementptr %ST* %t1, i32 0, i32 2 <i>; yields %RT*:%t2</i>
2902 %t3 = getelementptr %RT* %t2, i32 0, i32 1 <i>; yields [10 x [20 x i32]]*:%t3</i>
2903 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 <i>; yields [20 x i32]*:%t4</i>
2904 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 <i>; yields i32*:%t5</i>
2905 ret i32* %t5
2906 }
2907</pre>
2908
2909<p>Note that it is undefined to access an array out of bounds: array and
2910pointer indexes must always be within the defined bounds of the array type.
2911The one exception for this rules is zero length arrays. These arrays are
2912defined to be accessible as variable length arrays, which requires access
2913beyond the zero'th element.</p>
2914
2915<p>The getelementptr instruction is often confusing. For some more insight
2916into how it works, see <a href="GetElementPtr.html">the getelementptr
2917FAQ</a>.</p>
2918
2919<h5>Example:</h5>
2920
2921<pre>
2922 <i>; yields [12 x i8]*:aptr</i>
2923 %aptr = getelementptr {i32, [12 x i8]}* %sptr, i64 0, i32 1
2924</pre>
2925</div>
2926
2927<!-- ======================================================================= -->
2928<div class="doc_subsection"> <a name="convertops">Conversion Operations</a>
2929</div>
2930<div class="doc_text">
2931<p>The instructions in this category are the conversion instructions (casting)
2932which all take a single operand and a type. They perform various bit conversions
2933on the operand.</p>
2934</div>
2935
2936<!-- _______________________________________________________________________ -->
2937<div class="doc_subsubsection">
2938 <a name="i_trunc">'<tt>trunc .. to</tt>' Instruction</a>
2939</div>
2940<div class="doc_text">
2941
2942<h5>Syntax:</h5>
2943<pre>
2944 &lt;result&gt; = trunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2945</pre>
2946
2947<h5>Overview:</h5>
2948<p>
2949The '<tt>trunc</tt>' instruction truncates its operand to the type <tt>ty2</tt>.
2950</p>
2951
2952<h5>Arguments:</h5>
2953<p>
2954The '<tt>trunc</tt>' instruction takes a <tt>value</tt> to trunc, which must
2955be an <a href="#t_integer">integer</a> type, and a type that specifies the size
2956and type of the result, which must be an <a href="#t_integer">integer</a>
2957type. The bit size of <tt>value</tt> must be larger than the bit size of
2958<tt>ty2</tt>. Equal sized types are not allowed.</p>
2959
2960<h5>Semantics:</h5>
2961<p>
2962The '<tt>trunc</tt>' instruction truncates the high order bits in <tt>value</tt>
2963and converts the remaining bits to <tt>ty2</tt>. Since the source size must be
2964larger than the destination size, <tt>trunc</tt> cannot be a <i>no-op cast</i>.
2965It will always truncate bits.</p>
2966
2967<h5>Example:</h5>
2968<pre>
2969 %X = trunc i32 257 to i8 <i>; yields i8:1</i>
2970 %Y = trunc i32 123 to i1 <i>; yields i1:true</i>
2971 %Y = trunc i32 122 to i1 <i>; yields i1:false</i>
2972</pre>
2973</div>
2974
2975<!-- _______________________________________________________________________ -->
2976<div class="doc_subsubsection">
2977 <a name="i_zext">'<tt>zext .. to</tt>' Instruction</a>
2978</div>
2979<div class="doc_text">
2980
2981<h5>Syntax:</h5>
2982<pre>
2983 &lt;result&gt; = zext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
2984</pre>
2985
2986<h5>Overview:</h5>
2987<p>The '<tt>zext</tt>' instruction zero extends its operand to type
2988<tt>ty2</tt>.</p>
2989
2990
2991<h5>Arguments:</h5>
2992<p>The '<tt>zext</tt>' instruction takes a value to cast, which must be of
2993<a href="#t_integer">integer</a> type, and a type to cast it to, which must
2994also be of <a href="#t_integer">integer</a> type. The bit size of the
2995<tt>value</tt> must be smaller than the bit size of the destination type,
2996<tt>ty2</tt>.</p>
2997
2998<h5>Semantics:</h5>
2999<p>The <tt>zext</tt> fills the high order bits of the <tt>value</tt> with zero
3000bits until it reaches the size of the destination type, <tt>ty2</tt>.</p>
3001
3002<p>When zero extending from i1, the result will always be either 0 or 1.</p>
3003
3004<h5>Example:</h5>
3005<pre>
3006 %X = zext i32 257 to i64 <i>; yields i64:257</i>
3007 %Y = zext i1 true to i32 <i>; yields i32:1</i>
3008</pre>
3009</div>
3010
3011<!-- _______________________________________________________________________ -->
3012<div class="doc_subsubsection">
3013 <a name="i_sext">'<tt>sext .. to</tt>' Instruction</a>
3014</div>
3015<div class="doc_text">
3016
3017<h5>Syntax:</h5>
3018<pre>
3019 &lt;result&gt; = sext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3020</pre>
3021
3022<h5>Overview:</h5>
3023<p>The '<tt>sext</tt>' sign extends <tt>value</tt> to the type <tt>ty2</tt>.</p>
3024
3025<h5>Arguments:</h5>
3026<p>
3027The '<tt>sext</tt>' instruction takes a value to cast, which must be of
3028<a href="#t_integer">integer</a> type, and a type to cast it to, which must
3029also be of <a href="#t_integer">integer</a> type. The bit size of the
3030<tt>value</tt> must be smaller than the bit size of the destination type,
3031<tt>ty2</tt>.</p>
3032
3033<h5>Semantics:</h5>
3034<p>
3035The '<tt>sext</tt>' instruction performs a sign extension by copying the sign
3036bit (highest order bit) of the <tt>value</tt> until it reaches the bit size of
3037the type <tt>ty2</tt>.</p>
3038
3039<p>When sign extending from i1, the extension always results in -1 or 0.</p>
3040
3041<h5>Example:</h5>
3042<pre>
3043 %X = sext i8 -1 to i16 <i>; yields i16 :65535</i>
3044 %Y = sext i1 true to i32 <i>; yields i32:-1</i>
3045</pre>
3046</div>
3047
3048<!-- _______________________________________________________________________ -->
3049<div class="doc_subsubsection">
3050 <a name="i_fptrunc">'<tt>fptrunc .. to</tt>' Instruction</a>
3051</div>
3052
3053<div class="doc_text">
3054
3055<h5>Syntax:</h5>
3056
3057<pre>
3058 &lt;result&gt; = fptrunc &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3059</pre>
3060
3061<h5>Overview:</h5>
3062<p>The '<tt>fptrunc</tt>' instruction truncates <tt>value</tt> to type
3063<tt>ty2</tt>.</p>
3064
3065
3066<h5>Arguments:</h5>
3067<p>The '<tt>fptrunc</tt>' instruction takes a <a href="#t_floating">floating
3068 point</a> value to cast and a <a href="#t_floating">floating point</a> type to
3069cast it to. The size of <tt>value</tt> must be larger than the size of
3070<tt>ty2</tt>. This implies that <tt>fptrunc</tt> cannot be used to make a
3071<i>no-op cast</i>.</p>
3072
3073<h5>Semantics:</h5>
3074<p> The '<tt>fptrunc</tt>' instruction truncates a <tt>value</tt> from a larger
3075<a href="#t_floating">floating point</a> type to a smaller
3076<a href="#t_floating">floating point</a> type. If the value cannot fit within
3077the destination type, <tt>ty2</tt>, then the results are undefined.</p>
3078
3079<h5>Example:</h5>
3080<pre>
3081 %X = fptrunc double 123.0 to float <i>; yields float:123.0</i>
3082 %Y = fptrunc double 1.0E+300 to float <i>; yields undefined</i>
3083</pre>
3084</div>
3085
3086<!-- _______________________________________________________________________ -->
3087<div class="doc_subsubsection">
3088 <a name="i_fpext">'<tt>fpext .. to</tt>' Instruction</a>
3089</div>
3090<div class="doc_text">
3091
3092<h5>Syntax:</h5>
3093<pre>
3094 &lt;result&gt; = fpext &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3095</pre>
3096
3097<h5>Overview:</h5>
3098<p>The '<tt>fpext</tt>' extends a floating point <tt>value</tt> to a larger
3099floating point value.</p>
3100
3101<h5>Arguments:</h5>
3102<p>The '<tt>fpext</tt>' instruction takes a
3103<a href="#t_floating">floating point</a> <tt>value</tt> to cast,
3104and a <a href="#t_floating">floating point</a> type to cast it to. The source
3105type must be smaller than the destination type.</p>
3106
3107<h5>Semantics:</h5>
3108<p>The '<tt>fpext</tt>' instruction extends the <tt>value</tt> from a smaller
3109<a href="#t_floating">floating point</a> type to a larger
3110<a href="#t_floating">floating point</a> type. The <tt>fpext</tt> cannot be
3111used to make a <i>no-op cast</i> because it always changes bits. Use
3112<tt>bitcast</tt> to make a <i>no-op cast</i> for a floating point cast.</p>
3113
3114<h5>Example:</h5>
3115<pre>
3116 %X = fpext float 3.1415 to double <i>; yields double:3.1415</i>
3117 %Y = fpext float 1.0 to float <i>; yields float:1.0 (no-op)</i>
3118</pre>
3119</div>
3120
3121<!-- _______________________________________________________________________ -->
3122<div class="doc_subsubsection">
3123 <a name="i_fptoui">'<tt>fptoui .. to</tt>' Instruction</a>
3124</div>
3125<div class="doc_text">
3126
3127<h5>Syntax:</h5>
3128<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003129 &lt;result&gt; = fptoui &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003130</pre>
3131
3132<h5>Overview:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003133<p>The '<tt>fptoui</tt>' converts a floating point <tt>value</tt> to its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003134unsigned integer equivalent of type <tt>ty2</tt>.
3135</p>
3136
3137<h5>Arguments:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003138<p>The '<tt>fptoui</tt>' instruction takes a value to cast, which must be a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003139<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3140must be an <a href="#t_integer">integer</a> type.</p>
3141
3142<h5>Semantics:</h5>
Reid Spencere6adee82007-07-31 14:40:14 +00003143<p> The '<tt>fptoui</tt>' instruction converts its
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003144<a href="#t_floating">floating point</a> operand into the nearest (rounding
3145towards zero) unsigned integer value. If the value cannot fit in <tt>ty2</tt>,
3146the results are undefined.</p>
3147
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003148<h5>Example:</h5>
3149<pre>
Reid Spencere6adee82007-07-31 14:40:14 +00003150 %X = fptoui double 123.0 to i32 <i>; yields i32:123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003151 %Y = fptoui float 1.0E+300 to i1 <i>; yields undefined:1</i>
Reid Spencere6adee82007-07-31 14:40:14 +00003152 %X = fptoui float 1.04E+17 to i8 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003153</pre>
3154</div>
3155
3156<!-- _______________________________________________________________________ -->
3157<div class="doc_subsubsection">
3158 <a name="i_fptosi">'<tt>fptosi .. to</tt>' Instruction</a>
3159</div>
3160<div class="doc_text">
3161
3162<h5>Syntax:</h5>
3163<pre>
3164 &lt;result&gt; = fptosi &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3165</pre>
3166
3167<h5>Overview:</h5>
3168<p>The '<tt>fptosi</tt>' instruction converts
3169<a href="#t_floating">floating point</a> <tt>value</tt> to type <tt>ty2</tt>.
3170</p>
3171
3172
3173<h5>Arguments:</h5>
3174<p> The '<tt>fptosi</tt>' instruction takes a value to cast, which must be a
3175<a href="#t_floating">floating point</a> value, and a type to cast it to, which
3176must also be an <a href="#t_integer">integer</a> type.</p>
3177
3178<h5>Semantics:</h5>
3179<p>The '<tt>fptosi</tt>' instruction converts its
3180<a href="#t_floating">floating point</a> operand into the nearest (rounding
3181towards zero) signed integer value. If the value cannot fit in <tt>ty2</tt>,
3182the results are undefined.</p>
3183
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003184<h5>Example:</h5>
3185<pre>
3186 %X = fptosi double -123.0 to i32 <i>; yields i32:-123</i>
Chris Lattner681f1e82007-09-22 03:17:52 +00003187 %Y = fptosi float 1.0E-247 to i1 <i>; yields undefined:1</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003188 %X = fptosi float 1.04E+17 to i8 <i>; yields undefined:1</i>
3189</pre>
3190</div>
3191
3192<!-- _______________________________________________________________________ -->
3193<div class="doc_subsubsection">
3194 <a name="i_uitofp">'<tt>uitofp .. to</tt>' Instruction</a>
3195</div>
3196<div class="doc_text">
3197
3198<h5>Syntax:</h5>
3199<pre>
3200 &lt;result&gt; = uitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3201</pre>
3202
3203<h5>Overview:</h5>
3204<p>The '<tt>uitofp</tt>' instruction regards <tt>value</tt> as an unsigned
3205integer and converts that value to the <tt>ty2</tt> type.</p>
3206
3207
3208<h5>Arguments:</h5>
3209<p>The '<tt>uitofp</tt>' instruction takes a value to cast, which must be an
3210<a href="#t_integer">integer</a> value, and a type to cast it to, which must
3211be a <a href="#t_floating">floating point</a> type.</p>
3212
3213<h5>Semantics:</h5>
3214<p>The '<tt>uitofp</tt>' instruction interprets its operand as an unsigned
3215integer quantity and converts it to the corresponding floating point value. If
3216the value cannot fit in the floating point value, the results are undefined.</p>
3217
3218
3219<h5>Example:</h5>
3220<pre>
3221 %X = uitofp i32 257 to float <i>; yields float:257.0</i>
3222 %Y = uitofp i8 -1 to double <i>; yields double:255.0</i>
3223</pre>
3224</div>
3225
3226<!-- _______________________________________________________________________ -->
3227<div class="doc_subsubsection">
3228 <a name="i_sitofp">'<tt>sitofp .. to</tt>' Instruction</a>
3229</div>
3230<div class="doc_text">
3231
3232<h5>Syntax:</h5>
3233<pre>
3234 &lt;result&gt; = sitofp &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3235</pre>
3236
3237<h5>Overview:</h5>
3238<p>The '<tt>sitofp</tt>' instruction regards <tt>value</tt> as a signed
3239integer and converts that value to the <tt>ty2</tt> type.</p>
3240
3241<h5>Arguments:</h5>
3242<p>The '<tt>sitofp</tt>' instruction takes a value to cast, which must be an
3243<a href="#t_integer">integer</a> value, and a type to cast it to, which must be
3244a <a href="#t_floating">floating point</a> type.</p>
3245
3246<h5>Semantics:</h5>
3247<p>The '<tt>sitofp</tt>' instruction interprets its operand as a signed
3248integer quantity and converts it to the corresponding floating point value. If
3249the value cannot fit in the floating point value, the results are undefined.</p>
3250
3251<h5>Example:</h5>
3252<pre>
3253 %X = sitofp i32 257 to float <i>; yields float:257.0</i>
3254 %Y = sitofp i8 -1 to double <i>; yields double:-1.0</i>
3255</pre>
3256</div>
3257
3258<!-- _______________________________________________________________________ -->
3259<div class="doc_subsubsection">
3260 <a name="i_ptrtoint">'<tt>ptrtoint .. to</tt>' Instruction</a>
3261</div>
3262<div class="doc_text">
3263
3264<h5>Syntax:</h5>
3265<pre>
3266 &lt;result&gt; = ptrtoint &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3267</pre>
3268
3269<h5>Overview:</h5>
3270<p>The '<tt>ptrtoint</tt>' instruction converts the pointer <tt>value</tt> to
3271the integer type <tt>ty2</tt>.</p>
3272
3273<h5>Arguments:</h5>
3274<p>The '<tt>ptrtoint</tt>' instruction takes a <tt>value</tt> to cast, which
3275must be a <a href="#t_pointer">pointer</a> value, and a type to cast it to
3276<tt>ty2</tt>, which must be an <a href="#t_integer">integer</a> type.
3277
3278<h5>Semantics:</h5>
3279<p>The '<tt>ptrtoint</tt>' instruction converts <tt>value</tt> to integer type
3280<tt>ty2</tt> by interpreting the pointer value as an integer and either
3281truncating or zero extending that value to the size of the integer type. If
3282<tt>value</tt> is smaller than <tt>ty2</tt> then a zero extension is done. If
3283<tt>value</tt> is larger than <tt>ty2</tt> then a truncation is done. If they
3284are the same size, then nothing is done (<i>no-op cast</i>) other than a type
3285change.</p>
3286
3287<h5>Example:</h5>
3288<pre>
3289 %X = ptrtoint i32* %X to i8 <i>; yields truncation on 32-bit architecture</i>
3290 %Y = ptrtoint i32* %x to i64 <i>; yields zero extension on 32-bit architecture</i>
3291</pre>
3292</div>
3293
3294<!-- _______________________________________________________________________ -->
3295<div class="doc_subsubsection">
3296 <a name="i_inttoptr">'<tt>inttoptr .. to</tt>' Instruction</a>
3297</div>
3298<div class="doc_text">
3299
3300<h5>Syntax:</h5>
3301<pre>
3302 &lt;result&gt; = inttoptr &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3303</pre>
3304
3305<h5>Overview:</h5>
3306<p>The '<tt>inttoptr</tt>' instruction converts an integer <tt>value</tt> to
3307a pointer type, <tt>ty2</tt>.</p>
3308
3309<h5>Arguments:</h5>
3310<p>The '<tt>inttoptr</tt>' instruction takes an <a href="#t_integer">integer</a>
3311value to cast, and a type to cast it to, which must be a
3312<a href="#t_pointer">pointer</a> type.
3313
3314<h5>Semantics:</h5>
3315<p>The '<tt>inttoptr</tt>' instruction converts <tt>value</tt> to type
3316<tt>ty2</tt> by applying either a zero extension or a truncation depending on
3317the size of the integer <tt>value</tt>. If <tt>value</tt> is larger than the
3318size of a pointer then a truncation is done. If <tt>value</tt> is smaller than
3319the size of a pointer then a zero extension is done. If they are the same size,
3320nothing is done (<i>no-op cast</i>).</p>
3321
3322<h5>Example:</h5>
3323<pre>
3324 %X = inttoptr i32 255 to i32* <i>; yields zero extension on 64-bit architecture</i>
3325 %X = inttoptr i32 255 to i32* <i>; yields no-op on 32-bit architecture</i>
3326 %Y = inttoptr i64 0 to i32* <i>; yields truncation on 32-bit architecture</i>
3327</pre>
3328</div>
3329
3330<!-- _______________________________________________________________________ -->
3331<div class="doc_subsubsection">
3332 <a name="i_bitcast">'<tt>bitcast .. to</tt>' Instruction</a>
3333</div>
3334<div class="doc_text">
3335
3336<h5>Syntax:</h5>
3337<pre>
3338 &lt;result&gt; = bitcast &lt;ty&gt; &lt;value&gt; to &lt;ty2&gt; <i>; yields ty2</i>
3339</pre>
3340
3341<h5>Overview:</h5>
3342<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3343<tt>ty2</tt> without changing any bits.</p>
3344
3345<h5>Arguments:</h5>
3346<p>The '<tt>bitcast</tt>' instruction takes a value to cast, which must be
3347a first class value, and a type to cast it to, which must also be a <a
3348 href="#t_firstclass">first class</a> type. The bit sizes of <tt>value</tt>
3349and the destination type, <tt>ty2</tt>, must be identical. If the source
3350type is a pointer, the destination type must also be a pointer.</p>
3351
3352<h5>Semantics:</h5>
3353<p>The '<tt>bitcast</tt>' instruction converts <tt>value</tt> to type
3354<tt>ty2</tt>. It is always a <i>no-op cast</i> because no bits change with
3355this conversion. The conversion is done as if the <tt>value</tt> had been
3356stored to memory and read back as type <tt>ty2</tt>. Pointer types may only be
3357converted to other pointer types with this instruction. To convert pointers to
3358other types, use the <a href="#i_inttoptr">inttoptr</a> or
3359<a href="#i_ptrtoint">ptrtoint</a> instructions first.</p>
3360
3361<h5>Example:</h5>
3362<pre>
3363 %X = bitcast i8 255 to i8 <i>; yields i8 :-1</i>
3364 %Y = bitcast i32* %x to sint* <i>; yields sint*:%x</i>
3365 %Z = bitcast <2xint> %V to i64; <i>; yields i64: %V</i>
3366</pre>
3367</div>
3368
3369<!-- ======================================================================= -->
3370<div class="doc_subsection"> <a name="otherops">Other Operations</a> </div>
3371<div class="doc_text">
3372<p>The instructions in this category are the "miscellaneous"
3373instructions, which defy better classification.</p>
3374</div>
3375
3376<!-- _______________________________________________________________________ -->
3377<div class="doc_subsubsection"><a name="i_icmp">'<tt>icmp</tt>' Instruction</a>
3378</div>
3379<div class="doc_text">
3380<h5>Syntax:</h5>
3381<pre> &lt;result&gt; = icmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3382</pre>
3383<h5>Overview:</h5>
3384<p>The '<tt>icmp</tt>' instruction returns a boolean value based on comparison
3385of its two integer operands.</p>
3386<h5>Arguments:</h5>
3387<p>The '<tt>icmp</tt>' instruction takes three operands. The first operand is
3388the condition code indicating the kind of comparison to perform. It is not
3389a value, just a keyword. The possible condition code are:
3390<ol>
3391 <li><tt>eq</tt>: equal</li>
3392 <li><tt>ne</tt>: not equal </li>
3393 <li><tt>ugt</tt>: unsigned greater than</li>
3394 <li><tt>uge</tt>: unsigned greater or equal</li>
3395 <li><tt>ult</tt>: unsigned less than</li>
3396 <li><tt>ule</tt>: unsigned less or equal</li>
3397 <li><tt>sgt</tt>: signed greater than</li>
3398 <li><tt>sge</tt>: signed greater or equal</li>
3399 <li><tt>slt</tt>: signed less than</li>
3400 <li><tt>sle</tt>: signed less or equal</li>
3401</ol>
3402<p>The remaining two arguments must be <a href="#t_integer">integer</a> or
3403<a href="#t_pointer">pointer</a> typed. They must also be identical types.</p>
3404<h5>Semantics:</h5>
3405<p>The '<tt>icmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3406the condition code given as <tt>cond</tt>. The comparison performed always
3407yields a <a href="#t_primitive">i1</a> result, as follows:
3408<ol>
3409 <li><tt>eq</tt>: yields <tt>true</tt> if the operands are equal,
3410 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3411 </li>
3412 <li><tt>ne</tt>: yields <tt>true</tt> if the operands are unequal,
3413 <tt>false</tt> otherwise. No sign interpretation is necessary or performed.
3414 <li><tt>ugt</tt>: interprets the operands as unsigned values and yields
3415 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3416 <li><tt>uge</tt>: interprets the operands as unsigned values and yields
3417 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3418 <li><tt>ult</tt>: interprets the operands as unsigned values and yields
3419 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3420 <li><tt>ule</tt>: interprets the operands as unsigned values and yields
3421 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3422 <li><tt>sgt</tt>: interprets the operands as signed values and yields
3423 <tt>true</tt> if <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3424 <li><tt>sge</tt>: interprets the operands as signed values and yields
3425 <tt>true</tt> if <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3426 <li><tt>slt</tt>: interprets the operands as signed values and yields
3427 <tt>true</tt> if <tt>var1</tt> is less than <tt>var2</tt>.</li>
3428 <li><tt>sle</tt>: interprets the operands as signed values and yields
3429 <tt>true</tt> if <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3430</ol>
3431<p>If the operands are <a href="#t_pointer">pointer</a> typed, the pointer
3432values are compared as if they were integers.</p>
3433
3434<h5>Example:</h5>
3435<pre> &lt;result&gt; = icmp eq i32 4, 5 <i>; yields: result=false</i>
3436 &lt;result&gt; = icmp ne float* %X, %X <i>; yields: result=false</i>
3437 &lt;result&gt; = icmp ult i16 4, 5 <i>; yields: result=true</i>
3438 &lt;result&gt; = icmp sgt i16 4, 5 <i>; yields: result=false</i>
3439 &lt;result&gt; = icmp ule i16 -4, 5 <i>; yields: result=false</i>
3440 &lt;result&gt; = icmp sge i16 4, 5 <i>; yields: result=false</i>
3441</pre>
3442</div>
3443
3444<!-- _______________________________________________________________________ -->
3445<div class="doc_subsubsection"><a name="i_fcmp">'<tt>fcmp</tt>' Instruction</a>
3446</div>
3447<div class="doc_text">
3448<h5>Syntax:</h5>
3449<pre> &lt;result&gt; = fcmp &lt;cond&gt; &lt;ty&gt; &lt;var1&gt;, &lt;var2&gt; <i>; yields {i1}:result</i>
3450</pre>
3451<h5>Overview:</h5>
3452<p>The '<tt>fcmp</tt>' instruction returns a boolean value based on comparison
3453of its floating point operands.</p>
3454<h5>Arguments:</h5>
3455<p>The '<tt>fcmp</tt>' instruction takes three operands. The first operand is
3456the condition code indicating the kind of comparison to perform. It is not
3457a value, just a keyword. The possible condition code are:
3458<ol>
3459 <li><tt>false</tt>: no comparison, always returns false</li>
3460 <li><tt>oeq</tt>: ordered and equal</li>
3461 <li><tt>ogt</tt>: ordered and greater than </li>
3462 <li><tt>oge</tt>: ordered and greater than or equal</li>
3463 <li><tt>olt</tt>: ordered and less than </li>
3464 <li><tt>ole</tt>: ordered and less than or equal</li>
3465 <li><tt>one</tt>: ordered and not equal</li>
3466 <li><tt>ord</tt>: ordered (no nans)</li>
3467 <li><tt>ueq</tt>: unordered or equal</li>
3468 <li><tt>ugt</tt>: unordered or greater than </li>
3469 <li><tt>uge</tt>: unordered or greater than or equal</li>
3470 <li><tt>ult</tt>: unordered or less than </li>
3471 <li><tt>ule</tt>: unordered or less than or equal</li>
3472 <li><tt>une</tt>: unordered or not equal</li>
3473 <li><tt>uno</tt>: unordered (either nans)</li>
3474 <li><tt>true</tt>: no comparison, always returns true</li>
3475</ol>
3476<p><i>Ordered</i> means that neither operand is a QNAN while
3477<i>unordered</i> means that either operand may be a QNAN.</p>
3478<p>The <tt>val1</tt> and <tt>val2</tt> arguments must be
3479<a href="#t_floating">floating point</a> typed. They must have identical
3480types.</p>
3481<h5>Semantics:</h5>
3482<p>The '<tt>fcmp</tt>' compares <tt>var1</tt> and <tt>var2</tt> according to
3483the condition code given as <tt>cond</tt>. The comparison performed always
3484yields a <a href="#t_primitive">i1</a> result, as follows:
3485<ol>
3486 <li><tt>false</tt>: always yields <tt>false</tt>, regardless of operands.</li>
3487 <li><tt>oeq</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3488 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3489 <li><tt>ogt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3490 <tt>var1</tt> is greather than <tt>var2</tt>.</li>
3491 <li><tt>oge</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3492 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3493 <li><tt>olt</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3494 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3495 <li><tt>ole</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3496 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3497 <li><tt>one</tt>: yields <tt>true</tt> if both operands are not a QNAN and
3498 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3499 <li><tt>ord</tt>: yields <tt>true</tt> if both operands are not a QNAN.</li>
3500 <li><tt>ueq</tt>: yields <tt>true</tt> if either operand is a QNAN or
3501 <tt>var1</tt> is equal to <tt>var2</tt>.</li>
3502 <li><tt>ugt</tt>: yields <tt>true</tt> if either operand is a QNAN or
3503 <tt>var1</tt> is greater than <tt>var2</tt>.</li>
3504 <li><tt>uge</tt>: yields <tt>true</tt> if either operand is a QNAN or
3505 <tt>var1</tt> is greater than or equal to <tt>var2</tt>.</li>
3506 <li><tt>ult</tt>: yields <tt>true</tt> if either operand is a QNAN or
3507 <tt>var1</tt> is less than <tt>var2</tt>.</li>
3508 <li><tt>ule</tt>: yields <tt>true</tt> if either operand is a QNAN or
3509 <tt>var1</tt> is less than or equal to <tt>var2</tt>.</li>
3510 <li><tt>une</tt>: yields <tt>true</tt> if either operand is a QNAN or
3511 <tt>var1</tt> is not equal to <tt>var2</tt>.</li>
3512 <li><tt>uno</tt>: yields <tt>true</tt> if either operand is a QNAN.</li>
3513 <li><tt>true</tt>: always yields <tt>true</tt>, regardless of operands.</li>
3514</ol>
3515
3516<h5>Example:</h5>
3517<pre> &lt;result&gt; = fcmp oeq float 4.0, 5.0 <i>; yields: result=false</i>
3518 &lt;result&gt; = icmp one float 4.0, 5.0 <i>; yields: result=true</i>
3519 &lt;result&gt; = icmp olt float 4.0, 5.0 <i>; yields: result=true</i>
3520 &lt;result&gt; = icmp ueq double 1.0, 2.0 <i>; yields: result=false</i>
3521</pre>
3522</div>
3523
3524<!-- _______________________________________________________________________ -->
3525<div class="doc_subsubsection"> <a name="i_phi">'<tt>phi</tt>'
3526Instruction</a> </div>
3527<div class="doc_text">
3528<h5>Syntax:</h5>
3529<pre> &lt;result&gt; = phi &lt;ty&gt; [ &lt;val0&gt;, &lt;label0&gt;], ...<br></pre>
3530<h5>Overview:</h5>
3531<p>The '<tt>phi</tt>' instruction is used to implement the &#966; node in
3532the SSA graph representing the function.</p>
3533<h5>Arguments:</h5>
3534<p>The type of the incoming values is specified with the first type
3535field. After this, the '<tt>phi</tt>' instruction takes a list of pairs
3536as arguments, with one pair for each predecessor basic block of the
3537current block. Only values of <a href="#t_firstclass">first class</a>
3538type may be used as the value arguments to the PHI node. Only labels
3539may be used as the label arguments.</p>
3540<p>There must be no non-phi instructions between the start of a basic
3541block and the PHI instructions: i.e. PHI instructions must be first in
3542a basic block.</p>
3543<h5>Semantics:</h5>
3544<p>At runtime, the '<tt>phi</tt>' instruction logically takes on the value
3545specified by the pair corresponding to the predecessor basic block that executed
3546just prior to the current block.</p>
3547<h5>Example:</h5>
3548<pre>Loop: ; Infinite loop that counts from 0 on up...<br> %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]<br> %nextindvar = add i32 %indvar, 1<br> br label %Loop<br></pre>
3549</div>
3550
3551<!-- _______________________________________________________________________ -->
3552<div class="doc_subsubsection">
3553 <a name="i_select">'<tt>select</tt>' Instruction</a>
3554</div>
3555
3556<div class="doc_text">
3557
3558<h5>Syntax:</h5>
3559
3560<pre>
3561 &lt;result&gt; = select i1 &lt;cond&gt;, &lt;ty&gt; &lt;val1&gt;, &lt;ty&gt; &lt;val2&gt; <i>; yields ty</i>
3562</pre>
3563
3564<h5>Overview:</h5>
3565
3566<p>
3567The '<tt>select</tt>' instruction is used to choose one value based on a
3568condition, without branching.
3569</p>
3570
3571
3572<h5>Arguments:</h5>
3573
3574<p>
3575The '<tt>select</tt>' instruction requires a boolean value indicating the condition, and two values of the same <a href="#t_firstclass">first class</a> type.
3576</p>
3577
3578<h5>Semantics:</h5>
3579
3580<p>
3581If the boolean condition evaluates to true, the instruction returns the first
3582value argument; otherwise, it returns the second value argument.
3583</p>
3584
3585<h5>Example:</h5>
3586
3587<pre>
3588 %X = select i1 true, i8 17, i8 42 <i>; yields i8:17</i>
3589</pre>
3590</div>
3591
3592
3593<!-- _______________________________________________________________________ -->
3594<div class="doc_subsubsection">
3595 <a name="i_call">'<tt>call</tt>' Instruction</a>
3596</div>
3597
3598<div class="doc_text">
3599
3600<h5>Syntax:</h5>
3601<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003602 &lt;result&gt; = [tail] call [<a href="#callingconv">cconv</a>] &lt;ty&gt; [&lt;fnty&gt;*] &lt;fnptrval&gt;(&lt;param list&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003603</pre>
3604
3605<h5>Overview:</h5>
3606
3607<p>The '<tt>call</tt>' instruction represents a simple function call.</p>
3608
3609<h5>Arguments:</h5>
3610
3611<p>This instruction requires several arguments:</p>
3612
3613<ol>
3614 <li>
3615 <p>The optional "tail" marker indicates whether the callee function accesses
3616 any allocas or varargs in the caller. If the "tail" marker is present, the
3617 function call is eligible for tail call optimization. Note that calls may
3618 be marked "tail" even if they do not occur before a <a
3619 href="#i_ret"><tt>ret</tt></a> instruction.
3620 </li>
3621 <li>
3622 <p>The optional "cconv" marker indicates which <a href="#callingconv">calling
3623 convention</a> the call should use. If none is specified, the call defaults
3624 to using C calling conventions.
3625 </li>
3626 <li>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003627 <p>'<tt>ty</tt>': the type of the call instruction itself which is also
3628 the type of the return value. Functions that return no value are marked
3629 <tt><a href="#t_void">void</a></tt>.</p>
3630 </li>
3631 <li>
3632 <p>'<tt>fnty</tt>': shall be the signature of the pointer to function
3633 value being invoked. The argument types must match the types implied by
3634 this signature. This type can be omitted if the function is not varargs
3635 and if the function type does not return a pointer to a function.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003636 </li>
3637 <li>
3638 <p>'<tt>fnptrval</tt>': An LLVM value containing a pointer to a function to
3639 be invoked. In most cases, this is a direct function invocation, but
3640 indirect <tt>call</tt>s are just as possible, calling an arbitrary pointer
3641 to function value.</p>
3642 </li>
3643 <li>
3644 <p>'<tt>function args</tt>': argument list whose types match the
3645 function signature argument types. All arguments must be of
3646 <a href="#t_firstclass">first class</a> type. If the function signature
3647 indicates the function accepts a variable number of arguments, the extra
3648 arguments can be specified.</p>
3649 </li>
3650</ol>
3651
3652<h5>Semantics:</h5>
3653
3654<p>The '<tt>call</tt>' instruction is used to cause control flow to
3655transfer to a specified function, with its incoming arguments bound to
3656the specified values. Upon a '<tt><a href="#i_ret">ret</a></tt>'
3657instruction in the called function, control flow continues with the
3658instruction after the function call, and the return value of the
3659function is bound to the result argument. This is a simpler case of
3660the <a href="#i_invoke">invoke</a> instruction.</p>
3661
3662<h5>Example:</h5>
3663
3664<pre>
Nick Lewycky93082fc2007-09-08 13:57:50 +00003665 %retval = call i32 @test(i32 %argc)
3666 call i32 (i8 *, ...)* @printf(i8 * %msg, i32 12, i8 42);
3667 %X = tail call i32 @foo()
3668 %Y = tail call <a href="#callingconv">fastcc</a> i32 @foo()
3669 %Z = call void %foo(i8 97 signext)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003670</pre>
3671
3672</div>
3673
3674<!-- _______________________________________________________________________ -->
3675<div class="doc_subsubsection">
3676 <a name="i_va_arg">'<tt>va_arg</tt>' Instruction</a>
3677</div>
3678
3679<div class="doc_text">
3680
3681<h5>Syntax:</h5>
3682
3683<pre>
3684 &lt;resultval&gt; = va_arg &lt;va_list*&gt; &lt;arglist&gt;, &lt;argty&gt;
3685</pre>
3686
3687<h5>Overview:</h5>
3688
3689<p>The '<tt>va_arg</tt>' instruction is used to access arguments passed through
3690the "variable argument" area of a function call. It is used to implement the
3691<tt>va_arg</tt> macro in C.</p>
3692
3693<h5>Arguments:</h5>
3694
3695<p>This instruction takes a <tt>va_list*</tt> value and the type of
3696the argument. It returns a value of the specified argument type and
3697increments the <tt>va_list</tt> to point to the next argument. The
3698actual type of <tt>va_list</tt> is target specific.</p>
3699
3700<h5>Semantics:</h5>
3701
3702<p>The '<tt>va_arg</tt>' instruction loads an argument of the specified
3703type from the specified <tt>va_list</tt> and causes the
3704<tt>va_list</tt> to point to the next argument. For more information,
3705see the variable argument handling <a href="#int_varargs">Intrinsic
3706Functions</a>.</p>
3707
3708<p>It is legal for this instruction to be called in a function which does not
3709take a variable number of arguments, for example, the <tt>vfprintf</tt>
3710function.</p>
3711
3712<p><tt>va_arg</tt> is an LLVM instruction instead of an <a
3713href="#intrinsics">intrinsic function</a> because it takes a type as an
3714argument.</p>
3715
3716<h5>Example:</h5>
3717
3718<p>See the <a href="#int_varargs">variable argument processing</a> section.</p>
3719
3720</div>
3721
3722<!-- *********************************************************************** -->
3723<div class="doc_section"> <a name="intrinsics">Intrinsic Functions</a> </div>
3724<!-- *********************************************************************** -->
3725
3726<div class="doc_text">
3727
3728<p>LLVM supports the notion of an "intrinsic function". These functions have
3729well known names and semantics and are required to follow certain restrictions.
3730Overall, these intrinsics represent an extension mechanism for the LLVM
3731language that does not require changing all of the transformations in LLVM when
3732adding to the language (or the bitcode reader/writer, the parser, etc...).</p>
3733
3734<p>Intrinsic function names must all start with an "<tt>llvm.</tt>" prefix. This
3735prefix is reserved in LLVM for intrinsic names; thus, function names may not
3736begin with this prefix. Intrinsic functions must always be external functions:
3737you cannot define the body of intrinsic functions. Intrinsic functions may
3738only be used in call or invoke instructions: it is illegal to take the address
3739of an intrinsic function. Additionally, because intrinsic functions are part
3740of the LLVM language, it is required if any are added that they be documented
3741here.</p>
3742
Chandler Carrutha228e392007-08-04 01:51:18 +00003743<p>Some intrinsic functions can be overloaded, i.e., the intrinsic represents
3744a family of functions that perform the same operation but on different data
3745types. Because LLVM can represent over 8 million different integer types,
3746overloading is used commonly to allow an intrinsic function to operate on any
3747integer type. One or more of the argument types or the result type can be
3748overloaded to accept any integer type. Argument types may also be defined as
3749exactly matching a previous argument's type or the result type. This allows an
3750intrinsic function which accepts multiple arguments, but needs all of them to
3751be of the same type, to only be overloaded with respect to a single argument or
3752the result.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003753
Chandler Carrutha228e392007-08-04 01:51:18 +00003754<p>Overloaded intrinsics will have the names of its overloaded argument types
3755encoded into its function name, each preceded by a period. Only those types
3756which are overloaded result in a name suffix. Arguments whose type is matched
3757against another type do not. For example, the <tt>llvm.ctpop</tt> function can
3758take an integer of any width and returns an integer of exactly the same integer
3759width. This leads to a family of functions such as
3760<tt>i8 @llvm.ctpop.i8(i8 %val)</tt> and <tt>i29 @llvm.ctpop.i29(i29 %val)</tt>.
3761Only one type, the return type, is overloaded, and only one type suffix is
3762required. Because the argument's type is matched against the return type, it
3763does not require its own name suffix.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003764
3765<p>To learn how to add an intrinsic function, please see the
3766<a href="ExtendingLLVM.html">Extending LLVM Guide</a>.
3767</p>
3768
3769</div>
3770
3771<!-- ======================================================================= -->
3772<div class="doc_subsection">
3773 <a name="int_varargs">Variable Argument Handling Intrinsics</a>
3774</div>
3775
3776<div class="doc_text">
3777
3778<p>Variable argument support is defined in LLVM with the <a
3779 href="#i_va_arg"><tt>va_arg</tt></a> instruction and these three
3780intrinsic functions. These functions are related to the similarly
3781named macros defined in the <tt>&lt;stdarg.h&gt;</tt> header file.</p>
3782
3783<p>All of these functions operate on arguments that use a
3784target-specific value type "<tt>va_list</tt>". The LLVM assembly
3785language reference manual does not define what this type is, so all
3786transformations should be prepared to handle these functions regardless of
3787the type used.</p>
3788
3789<p>This example shows how the <a href="#i_va_arg"><tt>va_arg</tt></a>
3790instruction and the variable argument handling intrinsic functions are
3791used.</p>
3792
3793<div class="doc_code">
3794<pre>
3795define i32 @test(i32 %X, ...) {
3796 ; Initialize variable argument processing
3797 %ap = alloca i8*
3798 %ap2 = bitcast i8** %ap to i8*
3799 call void @llvm.va_start(i8* %ap2)
3800
3801 ; Read a single integer argument
3802 %tmp = va_arg i8** %ap, i32
3803
3804 ; Demonstrate usage of llvm.va_copy and llvm.va_end
3805 %aq = alloca i8*
3806 %aq2 = bitcast i8** %aq to i8*
3807 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
3808 call void @llvm.va_end(i8* %aq2)
3809
3810 ; Stop processing of arguments.
3811 call void @llvm.va_end(i8* %ap2)
3812 ret i32 %tmp
3813}
3814
3815declare void @llvm.va_start(i8*)
3816declare void @llvm.va_copy(i8*, i8*)
3817declare void @llvm.va_end(i8*)
3818</pre>
3819</div>
3820
3821</div>
3822
3823<!-- _______________________________________________________________________ -->
3824<div class="doc_subsubsection">
3825 <a name="int_va_start">'<tt>llvm.va_start</tt>' Intrinsic</a>
3826</div>
3827
3828
3829<div class="doc_text">
3830<h5>Syntax:</h5>
3831<pre> declare void %llvm.va_start(i8* &lt;arglist&gt;)<br></pre>
3832<h5>Overview:</h5>
3833<P>The '<tt>llvm.va_start</tt>' intrinsic initializes
3834<tt>*&lt;arglist&gt;</tt> for subsequent use by <tt><a
3835href="#i_va_arg">va_arg</a></tt>.</p>
3836
3837<h5>Arguments:</h5>
3838
3839<P>The argument is a pointer to a <tt>va_list</tt> element to initialize.</p>
3840
3841<h5>Semantics:</h5>
3842
3843<P>The '<tt>llvm.va_start</tt>' intrinsic works just like the <tt>va_start</tt>
3844macro available in C. In a target-dependent way, it initializes the
3845<tt>va_list</tt> element to which the argument points, so that the next call to
3846<tt>va_arg</tt> will produce the first variable argument passed to the function.
3847Unlike the C <tt>va_start</tt> macro, this intrinsic does not need to know the
3848last argument of the function as the compiler can figure that out.</p>
3849
3850</div>
3851
3852<!-- _______________________________________________________________________ -->
3853<div class="doc_subsubsection">
3854 <a name="int_va_end">'<tt>llvm.va_end</tt>' Intrinsic</a>
3855</div>
3856
3857<div class="doc_text">
3858<h5>Syntax:</h5>
3859<pre> declare void @llvm.va_end(i8* &lt;arglist&gt;)<br></pre>
3860<h5>Overview:</h5>
3861
3862<p>The '<tt>llvm.va_end</tt>' intrinsic destroys <tt>*&lt;arglist&gt;</tt>,
3863which has been initialized previously with <tt><a href="#int_va_start">llvm.va_start</a></tt>
3864or <tt><a href="#i_va_copy">llvm.va_copy</a></tt>.</p>
3865
3866<h5>Arguments:</h5>
3867
3868<p>The argument is a pointer to a <tt>va_list</tt> to destroy.</p>
3869
3870<h5>Semantics:</h5>
3871
3872<p>The '<tt>llvm.va_end</tt>' intrinsic works just like the <tt>va_end</tt>
3873macro available in C. In a target-dependent way, it destroys the
3874<tt>va_list</tt> element to which the argument points. Calls to <a
3875href="#int_va_start"><tt>llvm.va_start</tt></a> and <a href="#int_va_copy">
3876<tt>llvm.va_copy</tt></a> must be matched exactly with calls to
3877<tt>llvm.va_end</tt>.</p>
3878
3879</div>
3880
3881<!-- _______________________________________________________________________ -->
3882<div class="doc_subsubsection">
3883 <a name="int_va_copy">'<tt>llvm.va_copy</tt>' Intrinsic</a>
3884</div>
3885
3886<div class="doc_text">
3887
3888<h5>Syntax:</h5>
3889
3890<pre>
3891 declare void @llvm.va_copy(i8* &lt;destarglist&gt;, i8* &lt;srcarglist&gt;)
3892</pre>
3893
3894<h5>Overview:</h5>
3895
3896<p>The '<tt>llvm.va_copy</tt>' intrinsic copies the current argument position
3897from the source argument list to the destination argument list.</p>
3898
3899<h5>Arguments:</h5>
3900
3901<p>The first argument is a pointer to a <tt>va_list</tt> element to initialize.
3902The second argument is a pointer to a <tt>va_list</tt> element to copy from.</p>
3903
3904
3905<h5>Semantics:</h5>
3906
3907<p>The '<tt>llvm.va_copy</tt>' intrinsic works just like the <tt>va_copy</tt>
3908macro available in C. In a target-dependent way, it copies the source
3909<tt>va_list</tt> element into the destination <tt>va_list</tt> element. This
3910intrinsic is necessary because the <tt><a href="#int_va_start">
3911llvm.va_start</a></tt> intrinsic may be arbitrarily complex and require, for
3912example, memory allocation.</p>
3913
3914</div>
3915
3916<!-- ======================================================================= -->
3917<div class="doc_subsection">
3918 <a name="int_gc">Accurate Garbage Collection Intrinsics</a>
3919</div>
3920
3921<div class="doc_text">
3922
3923<p>
3924LLVM support for <a href="GarbageCollection.html">Accurate Garbage
3925Collection</a> requires the implementation and generation of these intrinsics.
3926These intrinsics allow identification of <a href="#int_gcroot">GC roots on the
3927stack</a>, as well as garbage collector implementations that require <a
3928href="#int_gcread">read</a> and <a href="#int_gcwrite">write</a> barriers.
3929Front-ends for type-safe garbage collected languages should generate these
3930intrinsics to make use of the LLVM garbage collectors. For more details, see <a
3931href="GarbageCollection.html">Accurate Garbage Collection with LLVM</a>.
3932</p>
3933</div>
3934
3935<!-- _______________________________________________________________________ -->
3936<div class="doc_subsubsection">
3937 <a name="int_gcroot">'<tt>llvm.gcroot</tt>' Intrinsic</a>
3938</div>
3939
3940<div class="doc_text">
3941
3942<h5>Syntax:</h5>
3943
3944<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003945 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003946</pre>
3947
3948<h5>Overview:</h5>
3949
3950<p>The '<tt>llvm.gcroot</tt>' intrinsic declares the existence of a GC root to
3951the code generator, and allows some metadata to be associated with it.</p>
3952
3953<h5>Arguments:</h5>
3954
3955<p>The first argument specifies the address of a stack object that contains the
3956root pointer. The second pointer (which must be either a constant or a global
3957value address) contains the meta-data to be associated with the root.</p>
3958
3959<h5>Semantics:</h5>
3960
3961<p>At runtime, a call to this intrinsics stores a null pointer into the "ptrloc"
3962location. At compile-time, the code generator generates information to allow
3963the runtime to find the pointer at GC safe points.
3964</p>
3965
3966</div>
3967
3968
3969<!-- _______________________________________________________________________ -->
3970<div class="doc_subsubsection">
3971 <a name="int_gcread">'<tt>llvm.gcread</tt>' Intrinsic</a>
3972</div>
3973
3974<div class="doc_text">
3975
3976<h5>Syntax:</h5>
3977
3978<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00003979 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003980</pre>
3981
3982<h5>Overview:</h5>
3983
3984<p>The '<tt>llvm.gcread</tt>' intrinsic identifies reads of references from heap
3985locations, allowing garbage collector implementations that require read
3986barriers.</p>
3987
3988<h5>Arguments:</h5>
3989
3990<p>The second argument is the address to read from, which should be an address
3991allocated from the garbage collector. The first object is a pointer to the
3992start of the referenced object, if needed by the language runtime (otherwise
3993null).</p>
3994
3995<h5>Semantics:</h5>
3996
3997<p>The '<tt>llvm.gcread</tt>' intrinsic has the same semantics as a load
3998instruction, but may be replaced with substantially more complex code by the
3999garbage collector runtime, as needed.</p>
4000
4001</div>
4002
4003
4004<!-- _______________________________________________________________________ -->
4005<div class="doc_subsubsection">
4006 <a name="int_gcwrite">'<tt>llvm.gcwrite</tt>' Intrinsic</a>
4007</div>
4008
4009<div class="doc_text">
4010
4011<h5>Syntax:</h5>
4012
4013<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004014 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004015</pre>
4016
4017<h5>Overview:</h5>
4018
4019<p>The '<tt>llvm.gcwrite</tt>' intrinsic identifies writes of references to heap
4020locations, allowing garbage collector implementations that require write
4021barriers (such as generational or reference counting collectors).</p>
4022
4023<h5>Arguments:</h5>
4024
4025<p>The first argument is the reference to store, the second is the start of the
4026object to store it to, and the third is the address of the field of Obj to
4027store to. If the runtime does not require a pointer to the object, Obj may be
4028null.</p>
4029
4030<h5>Semantics:</h5>
4031
4032<p>The '<tt>llvm.gcwrite</tt>' intrinsic has the same semantics as a store
4033instruction, but may be replaced with substantially more complex code by the
4034garbage collector runtime, as needed.</p>
4035
4036</div>
4037
4038
4039
4040<!-- ======================================================================= -->
4041<div class="doc_subsection">
4042 <a name="int_codegen">Code Generator Intrinsics</a>
4043</div>
4044
4045<div class="doc_text">
4046<p>
4047These intrinsics are provided by LLVM to expose special features that may only
4048be implemented with code generator support.
4049</p>
4050
4051</div>
4052
4053<!-- _______________________________________________________________________ -->
4054<div class="doc_subsubsection">
4055 <a name="int_returnaddress">'<tt>llvm.returnaddress</tt>' Intrinsic</a>
4056</div>
4057
4058<div class="doc_text">
4059
4060<h5>Syntax:</h5>
4061<pre>
4062 declare i8 *@llvm.returnaddress(i32 &lt;level&gt;)
4063</pre>
4064
4065<h5>Overview:</h5>
4066
4067<p>
4068The '<tt>llvm.returnaddress</tt>' intrinsic attempts to compute a
4069target-specific value indicating the return address of the current function
4070or one of its callers.
4071</p>
4072
4073<h5>Arguments:</h5>
4074
4075<p>
4076The argument to this intrinsic indicates which function to return the address
4077for. Zero indicates the calling function, one indicates its caller, etc. The
4078argument is <b>required</b> to be a constant integer value.
4079</p>
4080
4081<h5>Semantics:</h5>
4082
4083<p>
4084The '<tt>llvm.returnaddress</tt>' intrinsic either returns a pointer indicating
4085the return address of the specified call frame, or zero if it cannot be
4086identified. The value returned by this intrinsic is likely to be incorrect or 0
4087for arguments other than zero, so it should only be used for debugging purposes.
4088</p>
4089
4090<p>
4091Note that calling this intrinsic does not prevent function inlining or other
4092aggressive transformations, so the value returned may not be that of the obvious
4093source-language caller.
4094</p>
4095</div>
4096
4097
4098<!-- _______________________________________________________________________ -->
4099<div class="doc_subsubsection">
4100 <a name="int_frameaddress">'<tt>llvm.frameaddress</tt>' Intrinsic</a>
4101</div>
4102
4103<div class="doc_text">
4104
4105<h5>Syntax:</h5>
4106<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004107 declare i8 *@llvm.frameaddress(i32 &lt;level&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004108</pre>
4109
4110<h5>Overview:</h5>
4111
4112<p>
4113The '<tt>llvm.frameaddress</tt>' intrinsic attempts to return the
4114target-specific frame pointer value for the specified stack frame.
4115</p>
4116
4117<h5>Arguments:</h5>
4118
4119<p>
4120The argument to this intrinsic indicates which function to return the frame
4121pointer for. Zero indicates the calling function, one indicates its caller,
4122etc. The argument is <b>required</b> to be a constant integer value.
4123</p>
4124
4125<h5>Semantics:</h5>
4126
4127<p>
4128The '<tt>llvm.frameaddress</tt>' intrinsic either returns a pointer indicating
4129the frame address of the specified call frame, or zero if it cannot be
4130identified. The value returned by this intrinsic is likely to be incorrect or 0
4131for arguments other than zero, so it should only be used for debugging purposes.
4132</p>
4133
4134<p>
4135Note that calling this intrinsic does not prevent function inlining or other
4136aggressive transformations, so the value returned may not be that of the obvious
4137source-language caller.
4138</p>
4139</div>
4140
4141<!-- _______________________________________________________________________ -->
4142<div class="doc_subsubsection">
4143 <a name="int_stacksave">'<tt>llvm.stacksave</tt>' Intrinsic</a>
4144</div>
4145
4146<div class="doc_text">
4147
4148<h5>Syntax:</h5>
4149<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004150 declare i8 *@llvm.stacksave()
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004151</pre>
4152
4153<h5>Overview:</h5>
4154
4155<p>
4156The '<tt>llvm.stacksave</tt>' intrinsic is used to remember the current state of
4157the function stack, for use with <a href="#int_stackrestore">
4158<tt>llvm.stackrestore</tt></a>. This is useful for implementing language
4159features like scoped automatic variable sized arrays in C99.
4160</p>
4161
4162<h5>Semantics:</h5>
4163
4164<p>
4165This intrinsic returns a opaque pointer value that can be passed to <a
4166href="#int_stackrestore"><tt>llvm.stackrestore</tt></a>. When an
4167<tt>llvm.stackrestore</tt> intrinsic is executed with a value saved from
4168<tt>llvm.stacksave</tt>, it effectively restores the state of the stack to the
4169state it was in when the <tt>llvm.stacksave</tt> intrinsic executed. In
4170practice, this pops any <a href="#i_alloca">alloca</a> blocks from the stack
4171that were allocated after the <tt>llvm.stacksave</tt> was executed.
4172</p>
4173
4174</div>
4175
4176<!-- _______________________________________________________________________ -->
4177<div class="doc_subsubsection">
4178 <a name="int_stackrestore">'<tt>llvm.stackrestore</tt>' Intrinsic</a>
4179</div>
4180
4181<div class="doc_text">
4182
4183<h5>Syntax:</h5>
4184<pre>
4185 declare void @llvm.stackrestore(i8 * %ptr)
4186</pre>
4187
4188<h5>Overview:</h5>
4189
4190<p>
4191The '<tt>llvm.stackrestore</tt>' intrinsic is used to restore the state of
4192the function stack to the state it was in when the corresponding <a
4193href="#int_stacksave"><tt>llvm.stacksave</tt></a> intrinsic executed. This is
4194useful for implementing language features like scoped automatic variable sized
4195arrays in C99.
4196</p>
4197
4198<h5>Semantics:</h5>
4199
4200<p>
4201See the description for <a href="#int_stacksave"><tt>llvm.stacksave</tt></a>.
4202</p>
4203
4204</div>
4205
4206
4207<!-- _______________________________________________________________________ -->
4208<div class="doc_subsubsection">
4209 <a name="int_prefetch">'<tt>llvm.prefetch</tt>' Intrinsic</a>
4210</div>
4211
4212<div class="doc_text">
4213
4214<h5>Syntax:</h5>
4215<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004216 declare void @llvm.prefetch(i8* &lt;address&gt;, i32 &lt;rw&gt;, i32 &lt;locality&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004217</pre>
4218
4219<h5>Overview:</h5>
4220
4221
4222<p>
4223The '<tt>llvm.prefetch</tt>' intrinsic is a hint to the code generator to insert
4224a prefetch instruction if supported; otherwise, it is a noop. Prefetches have
4225no
4226effect on the behavior of the program but can change its performance
4227characteristics.
4228</p>
4229
4230<h5>Arguments:</h5>
4231
4232<p>
4233<tt>address</tt> is the address to be prefetched, <tt>rw</tt> is the specifier
4234determining if the fetch should be for a read (0) or write (1), and
4235<tt>locality</tt> is a temporal locality specifier ranging from (0) - no
4236locality, to (3) - extremely local keep in cache. The <tt>rw</tt> and
4237<tt>locality</tt> arguments must be constant integers.
4238</p>
4239
4240<h5>Semantics:</h5>
4241
4242<p>
4243This intrinsic does not modify the behavior of the program. In particular,
4244prefetches cannot trap and do not produce a value. On targets that support this
4245intrinsic, the prefetch can provide hints to the processor cache for better
4246performance.
4247</p>
4248
4249</div>
4250
4251<!-- _______________________________________________________________________ -->
4252<div class="doc_subsubsection">
4253 <a name="int_pcmarker">'<tt>llvm.pcmarker</tt>' Intrinsic</a>
4254</div>
4255
4256<div class="doc_text">
4257
4258<h5>Syntax:</h5>
4259<pre>
Chris Lattner38bd5dd2007-09-21 17:30:40 +00004260 declare void @llvm.pcmarker(i32 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004261</pre>
4262
4263<h5>Overview:</h5>
4264
4265
4266<p>
4267The '<tt>llvm.pcmarker</tt>' intrinsic is a method to export a Program Counter
4268(PC) in a region of
4269code to simulators and other tools. The method is target specific, but it is
4270expected that the marker will use exported symbols to transmit the PC of the marker.
4271The marker makes no guarantees that it will remain with any specific instruction
4272after optimizations. It is possible that the presence of a marker will inhibit
4273optimizations. The intended use is to be inserted after optimizations to allow
4274correlations of simulation runs.
4275</p>
4276
4277<h5>Arguments:</h5>
4278
4279<p>
4280<tt>id</tt> is a numerical id identifying the marker.
4281</p>
4282
4283<h5>Semantics:</h5>
4284
4285<p>
4286This intrinsic does not modify the behavior of the program. Backends that do not
4287support this intrinisic may ignore it.
4288</p>
4289
4290</div>
4291
4292<!-- _______________________________________________________________________ -->
4293<div class="doc_subsubsection">
4294 <a name="int_readcyclecounter">'<tt>llvm.readcyclecounter</tt>' Intrinsic</a>
4295</div>
4296
4297<div class="doc_text">
4298
4299<h5>Syntax:</h5>
4300<pre>
4301 declare i64 @llvm.readcyclecounter( )
4302</pre>
4303
4304<h5>Overview:</h5>
4305
4306
4307<p>
4308The '<tt>llvm.readcyclecounter</tt>' intrinsic provides access to the cycle
4309counter register (or similar low latency, high accuracy clocks) on those targets
4310that support it. On X86, it should map to RDTSC. On Alpha, it should map to RPCC.
4311As the backing counters overflow quickly (on the order of 9 seconds on alpha), this
4312should only be used for small timings.
4313</p>
4314
4315<h5>Semantics:</h5>
4316
4317<p>
4318When directly supported, reading the cycle counter should not modify any memory.
4319Implementations are allowed to either return a application specific value or a
4320system wide value. On backends without support, this is lowered to a constant 0.
4321</p>
4322
4323</div>
4324
4325<!-- ======================================================================= -->
4326<div class="doc_subsection">
4327 <a name="int_libc">Standard C Library Intrinsics</a>
4328</div>
4329
4330<div class="doc_text">
4331<p>
4332LLVM provides intrinsics for a few important standard C library functions.
4333These intrinsics allow source-language front-ends to pass information about the
4334alignment of the pointer arguments to the code generator, providing opportunity
4335for more efficient code generation.
4336</p>
4337
4338</div>
4339
4340<!-- _______________________________________________________________________ -->
4341<div class="doc_subsubsection">
4342 <a name="int_memcpy">'<tt>llvm.memcpy</tt>' Intrinsic</a>
4343</div>
4344
4345<div class="doc_text">
4346
4347<h5>Syntax:</h5>
4348<pre>
4349 declare void @llvm.memcpy.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4350 i32 &lt;len&gt;, i32 &lt;align&gt;)
4351 declare void @llvm.memcpy.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4352 i64 &lt;len&gt;, i32 &lt;align&gt;)
4353</pre>
4354
4355<h5>Overview:</h5>
4356
4357<p>
4358The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4359location to the destination location.
4360</p>
4361
4362<p>
4363Note that, unlike the standard libc function, the <tt>llvm.memcpy.*</tt>
4364intrinsics do not return a value, and takes an extra alignment argument.
4365</p>
4366
4367<h5>Arguments:</h5>
4368
4369<p>
4370The first argument is a pointer to the destination, the second is a pointer to
4371the source. The third argument is an integer argument
4372specifying the number of bytes to copy, and the fourth argument is the alignment
4373of the source and destination locations.
4374</p>
4375
4376<p>
4377If the call to this intrinisic has an alignment value that is not 0 or 1, then
4378the caller guarantees that both the source and destination pointers are aligned
4379to that boundary.
4380</p>
4381
4382<h5>Semantics:</h5>
4383
4384<p>
4385The '<tt>llvm.memcpy.*</tt>' intrinsics copy a block of memory from the source
4386location to the destination location, which are not allowed to overlap. It
4387copies "len" bytes of memory over. If the argument is known to be aligned to
4388some boundary, this can be specified as the fourth argument, otherwise it should
4389be set to 0 or 1.
4390</p>
4391</div>
4392
4393
4394<!-- _______________________________________________________________________ -->
4395<div class="doc_subsubsection">
4396 <a name="int_memmove">'<tt>llvm.memmove</tt>' Intrinsic</a>
4397</div>
4398
4399<div class="doc_text">
4400
4401<h5>Syntax:</h5>
4402<pre>
4403 declare void @llvm.memmove.i32(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4404 i32 &lt;len&gt;, i32 &lt;align&gt;)
4405 declare void @llvm.memmove.i64(i8 * &lt;dest&gt;, i8 * &lt;src&gt;,
4406 i64 &lt;len&gt;, i32 &lt;align&gt;)
4407</pre>
4408
4409<h5>Overview:</h5>
4410
4411<p>
4412The '<tt>llvm.memmove.*</tt>' intrinsics move a block of memory from the source
4413location to the destination location. It is similar to the
4414'<tt>llvm.memcmp</tt>' intrinsic but allows the two memory locations to overlap.
4415</p>
4416
4417<p>
4418Note that, unlike the standard libc function, the <tt>llvm.memmove.*</tt>
4419intrinsics do not return a value, and takes an extra alignment argument.
4420</p>
4421
4422<h5>Arguments:</h5>
4423
4424<p>
4425The first argument is a pointer to the destination, the second is a pointer to
4426the source. The third argument is an integer argument
4427specifying the number of bytes to copy, and the fourth argument is the alignment
4428of the source and destination locations.
4429</p>
4430
4431<p>
4432If the call to this intrinisic has an alignment value that is not 0 or 1, then
4433the caller guarantees that the source and destination pointers are aligned to
4434that boundary.
4435</p>
4436
4437<h5>Semantics:</h5>
4438
4439<p>
4440The '<tt>llvm.memmove.*</tt>' intrinsics copy a block of memory from the source
4441location to the destination location, which may overlap. It
4442copies "len" bytes of memory over. If the argument is known to be aligned to
4443some boundary, this can be specified as the fourth argument, otherwise it should
4444be set to 0 or 1.
4445</p>
4446</div>
4447
4448
4449<!-- _______________________________________________________________________ -->
4450<div class="doc_subsubsection">
4451 <a name="int_memset">'<tt>llvm.memset.*</tt>' Intrinsics</a>
4452</div>
4453
4454<div class="doc_text">
4455
4456<h5>Syntax:</h5>
4457<pre>
4458 declare void @llvm.memset.i32(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4459 i32 &lt;len&gt;, i32 &lt;align&gt;)
4460 declare void @llvm.memset.i64(i8 * &lt;dest&gt;, i8 &lt;val&gt;,
4461 i64 &lt;len&gt;, i32 &lt;align&gt;)
4462</pre>
4463
4464<h5>Overview:</h5>
4465
4466<p>
4467The '<tt>llvm.memset.*</tt>' intrinsics fill a block of memory with a particular
4468byte value.
4469</p>
4470
4471<p>
4472Note that, unlike the standard libc function, the <tt>llvm.memset</tt> intrinsic
4473does not return a value, and takes an extra alignment argument.
4474</p>
4475
4476<h5>Arguments:</h5>
4477
4478<p>
4479The first argument is a pointer to the destination to fill, the second is the
4480byte value to fill it with, the third argument is an integer
4481argument specifying the number of bytes to fill, and the fourth argument is the
4482known alignment of destination location.
4483</p>
4484
4485<p>
4486If the call to this intrinisic has an alignment value that is not 0 or 1, then
4487the caller guarantees that the destination pointer is aligned to that boundary.
4488</p>
4489
4490<h5>Semantics:</h5>
4491
4492<p>
4493The '<tt>llvm.memset.*</tt>' intrinsics fill "len" bytes of memory starting at
4494the
4495destination location. If the argument is known to be aligned to some boundary,
4496this can be specified as the fourth argument, otherwise it should be set to 0 or
44971.
4498</p>
4499</div>
4500
4501
4502<!-- _______________________________________________________________________ -->
4503<div class="doc_subsubsection">
4504 <a name="int_sqrt">'<tt>llvm.sqrt.*</tt>' Intrinsic</a>
4505</div>
4506
4507<div class="doc_text">
4508
4509<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004510<p>This is an overloaded intrinsic. You can use <tt>llvm.sqrt</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00004511floating point or vector of floating point type. Not all targets support all
4512types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004513<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004514 declare float @llvm.sqrt.f32(float %Val)
4515 declare double @llvm.sqrt.f64(double %Val)
4516 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
4517 declare fp128 @llvm.sqrt.f128(fp128 %Val)
4518 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004519</pre>
4520
4521<h5>Overview:</h5>
4522
4523<p>
4524The '<tt>llvm.sqrt</tt>' intrinsics return the sqrt of the specified operand,
Dan Gohman361079c2007-10-15 20:30:11 +00004525returning the same value as the libm '<tt>sqrt</tt>' functions would. Unlike
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004526<tt>sqrt</tt> in libm, however, <tt>llvm.sqrt</tt> has undefined behavior for
4527negative numbers (which allows for better optimization).
4528</p>
4529
4530<h5>Arguments:</h5>
4531
4532<p>
4533The argument and return value are floating point numbers of the same type.
4534</p>
4535
4536<h5>Semantics:</h5>
4537
4538<p>
4539This function returns the sqrt of the specified operand if it is a nonnegative
4540floating point number.
4541</p>
4542</div>
4543
4544<!-- _______________________________________________________________________ -->
4545<div class="doc_subsubsection">
4546 <a name="int_powi">'<tt>llvm.powi.*</tt>' Intrinsic</a>
4547</div>
4548
4549<div class="doc_text">
4550
4551<h5>Syntax:</h5>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004552<p>This is an overloaded intrinsic. You can use <tt>llvm.powi</tt> on any
Dan Gohman361079c2007-10-15 20:30:11 +00004553floating point or vector of floating point type. Not all targets support all
4554types however.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004555<pre>
Dale Johannesenf9adbb62007-10-02 17:47:38 +00004556 declare float @llvm.powi.f32(float %Val, i32 %power)
4557 declare double @llvm.powi.f64(double %Val, i32 %power)
4558 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
4559 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
4560 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004561</pre>
4562
4563<h5>Overview:</h5>
4564
4565<p>
4566The '<tt>llvm.powi.*</tt>' intrinsics return the first operand raised to the
4567specified (positive or negative) power. The order of evaluation of
Dan Gohman361079c2007-10-15 20:30:11 +00004568multiplications is not defined. When a vector of floating point type is
4569used, the second argument remains a scalar integer value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004570</p>
4571
4572<h5>Arguments:</h5>
4573
4574<p>
4575The second argument is an integer power, and the first is a value to raise to
4576that power.
4577</p>
4578
4579<h5>Semantics:</h5>
4580
4581<p>
4582This function returns the first value raised to the second power with an
4583unspecified sequence of rounding operations.</p>
4584</div>
4585
Dan Gohman361079c2007-10-15 20:30:11 +00004586<!-- _______________________________________________________________________ -->
4587<div class="doc_subsubsection">
4588 <a name="int_sin">'<tt>llvm.sin.*</tt>' Intrinsic</a>
4589</div>
4590
4591<div class="doc_text">
4592
4593<h5>Syntax:</h5>
4594<p>This is an overloaded intrinsic. You can use <tt>llvm.sin</tt> on any
4595floating point or vector of floating point type. Not all targets support all
4596types however.
4597<pre>
4598 declare float @llvm.sin.f32(float %Val)
4599 declare double @llvm.sin.f64(double %Val)
4600 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
4601 declare fp128 @llvm.sin.f128(fp128 %Val)
4602 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
4603</pre>
4604
4605<h5>Overview:</h5>
4606
4607<p>
4608The '<tt>llvm.sin.*</tt>' intrinsics return the sine of the operand.
4609</p>
4610
4611<h5>Arguments:</h5>
4612
4613<p>
4614The argument and return value are floating point numbers of the same type.
4615</p>
4616
4617<h5>Semantics:</h5>
4618
4619<p>
4620This function returns the sine of the specified operand, returning the
4621same values as the libm <tt>sin</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004622conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004623</div>
4624
4625<!-- _______________________________________________________________________ -->
4626<div class="doc_subsubsection">
4627 <a name="int_cos">'<tt>llvm.cos.*</tt>' Intrinsic</a>
4628</div>
4629
4630<div class="doc_text">
4631
4632<h5>Syntax:</h5>
4633<p>This is an overloaded intrinsic. You can use <tt>llvm.cos</tt> on any
4634floating point or vector of floating point type. Not all targets support all
4635types however.
4636<pre>
4637 declare float @llvm.cos.f32(float %Val)
4638 declare double @llvm.cos.f64(double %Val)
4639 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
4640 declare fp128 @llvm.cos.f128(fp128 %Val)
4641 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
4642</pre>
4643
4644<h5>Overview:</h5>
4645
4646<p>
4647The '<tt>llvm.cos.*</tt>' intrinsics return the cosine of the operand.
4648</p>
4649
4650<h5>Arguments:</h5>
4651
4652<p>
4653The argument and return value are floating point numbers of the same type.
4654</p>
4655
4656<h5>Semantics:</h5>
4657
4658<p>
4659This function returns the cosine of the specified operand, returning the
4660same values as the libm <tt>cos</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004661conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004662</div>
4663
4664<!-- _______________________________________________________________________ -->
4665<div class="doc_subsubsection">
4666 <a name="int_pow">'<tt>llvm.pow.*</tt>' Intrinsic</a>
4667</div>
4668
4669<div class="doc_text">
4670
4671<h5>Syntax:</h5>
4672<p>This is an overloaded intrinsic. You can use <tt>llvm.pow</tt> on any
4673floating point or vector of floating point type. Not all targets support all
4674types however.
4675<pre>
4676 declare float @llvm.pow.f32(float %Val, float %Power)
4677 declare double @llvm.pow.f64(double %Val, double %Power)
4678 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
4679 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
4680 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
4681</pre>
4682
4683<h5>Overview:</h5>
4684
4685<p>
4686The '<tt>llvm.pow.*</tt>' intrinsics return the first operand raised to the
4687specified (positive or negative) power.
4688</p>
4689
4690<h5>Arguments:</h5>
4691
4692<p>
4693The second argument is a floating point power, and the first is a value to
4694raise to that power.
4695</p>
4696
4697<h5>Semantics:</h5>
4698
4699<p>
4700This function returns the first value raised to the second power,
4701returning the
4702same values as the libm <tt>pow</tt> functions would, and handles error
Dan Gohmaneaba92e2007-10-17 18:05:13 +00004703conditions in the same way.</p>
Dan Gohman361079c2007-10-15 20:30:11 +00004704</div>
4705
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004706
4707<!-- ======================================================================= -->
4708<div class="doc_subsection">
4709 <a name="int_manip">Bit Manipulation Intrinsics</a>
4710</div>
4711
4712<div class="doc_text">
4713<p>
4714LLVM provides intrinsics for a few important bit manipulation operations.
4715These allow efficient code generation for some algorithms.
4716</p>
4717
4718</div>
4719
4720<!-- _______________________________________________________________________ -->
4721<div class="doc_subsubsection">
4722 <a name="int_bswap">'<tt>llvm.bswap.*</tt>' Intrinsics</a>
4723</div>
4724
4725<div class="doc_text">
4726
4727<h5>Syntax:</h5>
4728<p>This is an overloaded intrinsic function. You can use bswap on any integer
Chandler Carrutha228e392007-08-04 01:51:18 +00004729type that is an even number of bytes (i.e. BitWidth % 16 == 0).
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004730<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004731 declare i16 @llvm.bswap.i16(i16 &lt;id&gt;)
4732 declare i32 @llvm.bswap.i32(i32 &lt;id&gt;)
4733 declare i64 @llvm.bswap.i64(i64 &lt;id&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004734</pre>
4735
4736<h5>Overview:</h5>
4737
4738<p>
4739The '<tt>llvm.bswap</tt>' family of intrinsics is used to byte swap integer
4740values with an even number of bytes (positive multiple of 16 bits). These are
4741useful for performing operations on data that is not in the target's native
4742byte order.
4743</p>
4744
4745<h5>Semantics:</h5>
4746
4747<p>
Chandler Carrutha228e392007-08-04 01:51:18 +00004748The <tt>llvm.bswap.i16</tt> intrinsic returns an i16 value that has the high
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004749and low byte of the input i16 swapped. Similarly, the <tt>llvm.bswap.i32</tt>
4750intrinsic returns an i32 value that has the four bytes of the input i32
4751swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the returned
Chandler Carrutha228e392007-08-04 01:51:18 +00004752i32 will have its bytes in 3, 2, 1, 0 order. The <tt>llvm.bswap.i48</tt>,
4753<tt>llvm.bswap.i64</tt> and other intrinsics extend this concept to
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004754additional even-byte lengths (6 bytes, 8 bytes and more, respectively).
4755</p>
4756
4757</div>
4758
4759<!-- _______________________________________________________________________ -->
4760<div class="doc_subsubsection">
4761 <a name="int_ctpop">'<tt>llvm.ctpop.*</tt>' Intrinsic</a>
4762</div>
4763
4764<div class="doc_text">
4765
4766<h5>Syntax:</h5>
4767<p>This is an overloaded intrinsic. You can use llvm.ctpop on any integer bit
4768width. Not all targets support all bit widths however.
4769<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004770 declare i8 @llvm.ctpop.i8 (i8 &lt;src&gt;)
4771 declare i16 @llvm.ctpop.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004772 declare i32 @llvm.ctpop.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004773 declare i64 @llvm.ctpop.i64(i64 &lt;src&gt;)
4774 declare i256 @llvm.ctpop.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004775</pre>
4776
4777<h5>Overview:</h5>
4778
4779<p>
4780The '<tt>llvm.ctpop</tt>' family of intrinsics counts the number of bits set in a
4781value.
4782</p>
4783
4784<h5>Arguments:</h5>
4785
4786<p>
4787The only argument is the value to be counted. The argument may be of any
4788integer type. The return type must match the argument type.
4789</p>
4790
4791<h5>Semantics:</h5>
4792
4793<p>
4794The '<tt>llvm.ctpop</tt>' intrinsic counts the 1's in a variable.
4795</p>
4796</div>
4797
4798<!-- _______________________________________________________________________ -->
4799<div class="doc_subsubsection">
4800 <a name="int_ctlz">'<tt>llvm.ctlz.*</tt>' Intrinsic</a>
4801</div>
4802
4803<div class="doc_text">
4804
4805<h5>Syntax:</h5>
4806<p>This is an overloaded intrinsic. You can use <tt>llvm.ctlz</tt> on any
4807integer bit width. Not all targets support all bit widths however.
4808<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004809 declare i8 @llvm.ctlz.i8 (i8 &lt;src&gt;)
4810 declare i16 @llvm.ctlz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004811 declare i32 @llvm.ctlz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004812 declare i64 @llvm.ctlz.i64(i64 &lt;src&gt;)
4813 declare i256 @llvm.ctlz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004814</pre>
4815
4816<h5>Overview:</h5>
4817
4818<p>
4819The '<tt>llvm.ctlz</tt>' family of intrinsic functions counts the number of
4820leading zeros in a variable.
4821</p>
4822
4823<h5>Arguments:</h5>
4824
4825<p>
4826The only argument is the value to be counted. The argument may be of any
4827integer type. The return type must match the argument type.
4828</p>
4829
4830<h5>Semantics:</h5>
4831
4832<p>
4833The '<tt>llvm.ctlz</tt>' intrinsic counts the leading (most significant) zeros
4834in a variable. If the src == 0 then the result is the size in bits of the type
4835of src. For example, <tt>llvm.ctlz(i32 2) = 30</tt>.
4836</p>
4837</div>
4838
4839
4840
4841<!-- _______________________________________________________________________ -->
4842<div class="doc_subsubsection">
4843 <a name="int_cttz">'<tt>llvm.cttz.*</tt>' Intrinsic</a>
4844</div>
4845
4846<div class="doc_text">
4847
4848<h5>Syntax:</h5>
4849<p>This is an overloaded intrinsic. You can use <tt>llvm.cttz</tt> on any
4850integer bit width. Not all targets support all bit widths however.
4851<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004852 declare i8 @llvm.cttz.i8 (i8 &lt;src&gt;)
4853 declare i16 @llvm.cttz.i16(i16 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004854 declare i32 @llvm.cttz.i32(i32 &lt;src&gt;)
Chandler Carrutha228e392007-08-04 01:51:18 +00004855 declare i64 @llvm.cttz.i64(i64 &lt;src&gt;)
4856 declare i256 @llvm.cttz.i256(i256 &lt;src&gt;)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004857</pre>
4858
4859<h5>Overview:</h5>
4860
4861<p>
4862The '<tt>llvm.cttz</tt>' family of intrinsic functions counts the number of
4863trailing zeros.
4864</p>
4865
4866<h5>Arguments:</h5>
4867
4868<p>
4869The only argument is the value to be counted. The argument may be of any
4870integer type. The return type must match the argument type.
4871</p>
4872
4873<h5>Semantics:</h5>
4874
4875<p>
4876The '<tt>llvm.cttz</tt>' intrinsic counts the trailing (least significant) zeros
4877in a variable. If the src == 0 then the result is the size in bits of the type
4878of src. For example, <tt>llvm.cttz(2) = 1</tt>.
4879</p>
4880</div>
4881
4882<!-- _______________________________________________________________________ -->
4883<div class="doc_subsubsection">
4884 <a name="int_part_select">'<tt>llvm.part.select.*</tt>' Intrinsic</a>
4885</div>
4886
4887<div class="doc_text">
4888
4889<h5>Syntax:</h5>
4890<p>This is an overloaded intrinsic. You can use <tt>llvm.part.select</tt>
4891on any integer bit width.
4892<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004893 declare i17 @llvm.part.select.i17 (i17 %val, i32 %loBit, i32 %hiBit)
4894 declare i29 @llvm.part.select.i29 (i29 %val, i32 %loBit, i32 %hiBit)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004895</pre>
4896
4897<h5>Overview:</h5>
4898<p>The '<tt>llvm.part.select</tt>' family of intrinsic functions selects a
4899range of bits from an integer value and returns them in the same bit width as
4900the original value.</p>
4901
4902<h5>Arguments:</h5>
4903<p>The first argument, <tt>%val</tt> and the result may be integer types of
4904any bit width but they must have the same bit width. The second and third
4905arguments must be <tt>i32</tt> type since they specify only a bit index.</p>
4906
4907<h5>Semantics:</h5>
4908<p>The operation of the '<tt>llvm.part.select</tt>' intrinsic has two modes
4909of operation: forwards and reverse. If <tt>%loBit</tt> is greater than
4910<tt>%hiBits</tt> then the intrinsic operates in reverse mode. Otherwise it
4911operates in forward mode.</p>
4912<p>In forward mode, this intrinsic is the equivalent of shifting <tt>%val</tt>
4913right by <tt>%loBit</tt> bits and then ANDing it with a mask with
4914only the <tt>%hiBit - %loBit</tt> bits set, as follows:</p>
4915<ol>
4916 <li>The <tt>%val</tt> is shifted right (LSHR) by the number of bits specified
4917 by <tt>%loBits</tt>. This normalizes the value to the low order bits.</li>
4918 <li>The <tt>%loBits</tt> value is subtracted from the <tt>%hiBits</tt> value
4919 to determine the number of bits to retain.</li>
4920 <li>A mask of the retained bits is created by shifting a -1 value.</li>
4921 <li>The mask is ANDed with <tt>%val</tt> to produce the result.
4922</ol>
4923<p>In reverse mode, a similar computation is made except that the bits are
4924returned in the reverse order. So, for example, if <tt>X</tt> has the value
4925<tt>i16 0x0ACF (101011001111)</tt> and we apply
4926<tt>part.select(i16 X, 8, 3)</tt> to it, we get back the value
4927<tt>i16 0x0026 (000000100110)</tt>.</p>
4928</div>
4929
4930<div class="doc_subsubsection">
4931 <a name="int_part_set">'<tt>llvm.part.set.*</tt>' Intrinsic</a>
4932</div>
4933
4934<div class="doc_text">
4935
4936<h5>Syntax:</h5>
4937<p>This is an overloaded intrinsic. You can use <tt>llvm.part.set</tt>
4938on any integer bit width.
4939<pre>
Chandler Carrutha228e392007-08-04 01:51:18 +00004940 declare i17 @llvm.part.set.i17.i9 (i17 %val, i9 %repl, i32 %lo, i32 %hi)
4941 declare i29 @llvm.part.set.i29.i9 (i29 %val, i9 %repl, i32 %lo, i32 %hi)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004942</pre>
4943
4944<h5>Overview:</h5>
4945<p>The '<tt>llvm.part.set</tt>' family of intrinsic functions replaces a range
4946of bits in an integer value with another integer value. It returns the integer
4947with the replaced bits.</p>
4948
4949<h5>Arguments:</h5>
4950<p>The first argument, <tt>%val</tt> and the result may be integer types of
4951any bit width but they must have the same bit width. <tt>%val</tt> is the value
4952whose bits will be replaced. The second argument, <tt>%repl</tt> may be an
4953integer of any bit width. The third and fourth arguments must be <tt>i32</tt>
4954type since they specify only a bit index.</p>
4955
4956<h5>Semantics:</h5>
4957<p>The operation of the '<tt>llvm.part.set</tt>' intrinsic has two modes
4958of operation: forwards and reverse. If <tt>%lo</tt> is greater than
4959<tt>%hi</tt> then the intrinsic operates in reverse mode. Otherwise it
4960operates in forward mode.</p>
4961<p>For both modes, the <tt>%repl</tt> value is prepared for use by either
4962truncating it down to the size of the replacement area or zero extending it
4963up to that size.</p>
4964<p>In forward mode, the bits between <tt>%lo</tt> and <tt>%hi</tt> (inclusive)
4965are replaced with corresponding bits from <tt>%repl</tt>. That is the 0th bit
4966in <tt>%repl</tt> replaces the <tt>%lo</tt>th bit in <tt>%val</tt> and etc. up
4967to the <tt>%hi</tt>th bit.
4968<p>In reverse mode, a similar computation is made except that the bits are
4969reversed. That is, the <tt>0</tt>th bit in <tt>%repl</tt> replaces the
4970<tt>%hi</tt> bit in <tt>%val</tt> and etc. down to the <tt>%lo</tt>th bit.
4971<h5>Examples:</h5>
4972<pre>
4973 llvm.part.set(0xFFFF, 0, 4, 7) -&gt; 0xFF0F
4974 llvm.part.set(0xFFFF, 0, 7, 4) -&gt; 0xFF0F
4975 llvm.part.set(0xFFFF, 1, 7, 4) -&gt; 0xFF8F
4976 llvm.part.set(0xFFFF, F, 8, 3) -&gt; 0xFFE7
4977 llvm.part.set(0xFFFF, 0, 3, 8) -&gt; 0xFE07
4978</pre>
4979</div>
4980
4981<!-- ======================================================================= -->
4982<div class="doc_subsection">
4983 <a name="int_debugger">Debugger Intrinsics</a>
4984</div>
4985
4986<div class="doc_text">
4987<p>
4988The LLVM debugger intrinsics (which all start with <tt>llvm.dbg.</tt> prefix),
4989are described in the <a
4990href="SourceLevelDebugging.html#format_common_intrinsics">LLVM Source Level
4991Debugging</a> document.
4992</p>
4993</div>
4994
4995
4996<!-- ======================================================================= -->
4997<div class="doc_subsection">
4998 <a name="int_eh">Exception Handling Intrinsics</a>
4999</div>
5000
5001<div class="doc_text">
5002<p> The LLVM exception handling intrinsics (which all start with
5003<tt>llvm.eh.</tt> prefix), are described in the <a
5004href="ExceptionHandling.html#format_common_intrinsics">LLVM Exception
5005Handling</a> document. </p>
5006</div>
5007
5008<!-- ======================================================================= -->
5009<div class="doc_subsection">
Duncan Sands7407a9f2007-09-11 14:10:23 +00005010 <a name="int_trampoline">Trampoline Intrinsic</a>
Duncan Sands38947cd2007-07-27 12:58:54 +00005011</div>
5012
5013<div class="doc_text">
5014<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005015 This intrinsic makes it possible to excise one parameter, marked with
Duncan Sands38947cd2007-07-27 12:58:54 +00005016 the <tt>nest</tt> attribute, from a function. The result is a callable
5017 function pointer lacking the nest parameter - the caller does not need
5018 to provide a value for it. Instead, the value to use is stored in
5019 advance in a "trampoline", a block of memory usually allocated
5020 on the stack, which also contains code to splice the nest value into the
5021 argument list. This is used to implement the GCC nested function address
5022 extension.
5023</p>
5024<p>
5025 For example, if the function is
5026 <tt>i32 f(i8* nest %c, i32 %x, i32 %y)</tt> then the resulting function
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005027 pointer has signature <tt>i32 (i32, i32)*</tt>. It can be created as follows:</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005028<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005029 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
5030 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
5031 %p = call i8* @llvm.init.trampoline( i8* %tramp1, i8* bitcast (i32 (i8* nest , i32, i32)* @f to i8*), i8* %nval )
5032 %fp = bitcast i8* %p to i32 (i32, i32)*
Duncan Sands38947cd2007-07-27 12:58:54 +00005033</pre>
Bill Wendlinge262b4c2007-09-22 09:23:55 +00005034 <p>The call <tt>%val = call i32 %fp( i32 %x, i32 %y )</tt> is then equivalent
5035 to <tt>%val = call i32 %f( i8* %nval, i32 %x, i32 %y )</tt>.</p>
Duncan Sands38947cd2007-07-27 12:58:54 +00005036</div>
5037
5038<!-- _______________________________________________________________________ -->
5039<div class="doc_subsubsection">
5040 <a name="int_it">'<tt>llvm.init.trampoline</tt>' Intrinsic</a>
5041</div>
5042<div class="doc_text">
5043<h5>Syntax:</h5>
5044<pre>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005045declare i8* @llvm.init.trampoline(i8* &lt;tramp&gt;, i8* &lt;func&gt;, i8* &lt;nval&gt;)
Duncan Sands38947cd2007-07-27 12:58:54 +00005046</pre>
5047<h5>Overview:</h5>
5048<p>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005049 This fills the memory pointed to by <tt>tramp</tt> with code
5050 and returns a function pointer suitable for executing it.
Duncan Sands38947cd2007-07-27 12:58:54 +00005051</p>
5052<h5>Arguments:</h5>
5053<p>
5054 The <tt>llvm.init.trampoline</tt> intrinsic takes three arguments, all
5055 pointers. The <tt>tramp</tt> argument must point to a sufficiently large
5056 and sufficiently aligned block of memory; this memory is written to by the
Duncan Sands35012212007-08-22 23:39:54 +00005057 intrinsic. Note that the size and the alignment are target-specific - LLVM
5058 currently provides no portable way of determining them, so a front-end that
5059 generates this intrinsic needs to have some target-specific knowledge.
5060 The <tt>func</tt> argument must hold a function bitcast to an <tt>i8*</tt>.
Duncan Sands38947cd2007-07-27 12:58:54 +00005061</p>
5062<h5>Semantics:</h5>
5063<p>
5064 The block of memory pointed to by <tt>tramp</tt> is filled with target
Duncan Sands7407a9f2007-09-11 14:10:23 +00005065 dependent code, turning it into a function. A pointer to this function is
5066 returned, but needs to be bitcast to an
Duncan Sands38947cd2007-07-27 12:58:54 +00005067 <a href="#int_trampoline">appropriate function pointer type</a>
Duncan Sands7407a9f2007-09-11 14:10:23 +00005068 before being called. The new function's signature is the same as that of
5069 <tt>func</tt> with any arguments marked with the <tt>nest</tt> attribute
5070 removed. At most one such <tt>nest</tt> argument is allowed, and it must be
5071 of pointer type. Calling the new function is equivalent to calling
5072 <tt>func</tt> with the same argument list, but with <tt>nval</tt> used for the
5073 missing <tt>nest</tt> argument. If, after calling
5074 <tt>llvm.init.trampoline</tt>, the memory pointed to by <tt>tramp</tt> is
5075 modified, then the effect of any later call to the returned function pointer is
5076 undefined.
Duncan Sands38947cd2007-07-27 12:58:54 +00005077</p>
5078</div>
5079
5080<!-- ======================================================================= -->
5081<div class="doc_subsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005082 <a name="int_general">General Intrinsics</a>
5083</div>
5084
5085<div class="doc_text">
5086<p> This class of intrinsics is designed to be generic and has
5087no specific purpose. </p>
5088</div>
5089
5090<!-- _______________________________________________________________________ -->
5091<div class="doc_subsubsection">
5092 <a name="int_var_annotation">'<tt>llvm.var.annotation</tt>' Intrinsic</a>
5093</div>
5094
5095<div class="doc_text">
5096
5097<h5>Syntax:</h5>
5098<pre>
5099 declare void @llvm.var.annotation(i8* &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5100</pre>
5101
5102<h5>Overview:</h5>
5103
5104<p>
5105The '<tt>llvm.var.annotation</tt>' intrinsic
5106</p>
5107
5108<h5>Arguments:</h5>
5109
5110<p>
5111The first argument is a pointer to a value, the second is a pointer to a
5112global string, the third is a pointer to a global string which is the source
5113file name, and the last argument is the line number.
5114</p>
5115
5116<h5>Semantics:</h5>
5117
5118<p>
5119This intrinsic allows annotation of local variables with arbitrary strings.
5120This can be useful for special purpose optimizations that want to look for these
5121 annotations. These have no other defined use, they are ignored by code
5122 generation and optimization.
5123</div>
5124
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005125<!-- _______________________________________________________________________ -->
5126<div class="doc_subsubsection">
Tanya Lattnerc9869b12007-09-21 23:57:59 +00005127 <a name="int_annotation">'<tt>llvm.annotation.*</tt>' Intrinsic</a>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005128</div>
5129
5130<div class="doc_text">
5131
5132<h5>Syntax:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00005133<p>This is an overloaded intrinsic. You can use '<tt>llvm.annotation</tt>' on
5134any integer bit width.
5135</p>
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005136<pre>
Tanya Lattner09161fe2007-09-22 00:03:01 +00005137 declare i8 @llvm.annotation.i8(i8 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5138 declare i16 @llvm.annotation.i16(i16 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5139 declare i32 @llvm.annotation.i32(i32 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5140 declare i64 @llvm.annotation.i64(i64 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
5141 declare i256 @llvm.annotation.i256(i256 &lt;val&gt;, i8* &lt;str&gt;, i8* &lt;str&gt;, i32 &lt;int&gt; )
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005142</pre>
5143
5144<h5>Overview:</h5>
Tanya Lattnere545be72007-09-21 23:56:27 +00005145
5146<p>
5147The '<tt>llvm.annotation</tt>' intrinsic.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005148</p>
5149
5150<h5>Arguments:</h5>
5151
5152<p>
5153The first argument is an integer value (result of some expression),
5154the second is a pointer to a global string, the third is a pointer to a global
5155string which is the source file name, and the last argument is the line number.
Tanya Lattnere545be72007-09-21 23:56:27 +00005156It returns the value of the first argument.
Tanya Lattnerb306a9e2007-09-21 22:59:12 +00005157</p>
5158
5159<h5>Semantics:</h5>
5160
5161<p>
5162This intrinsic allows annotations to be put on arbitrary expressions
5163with arbitrary strings. This can be useful for special purpose optimizations
5164that want to look for these annotations. These have no other defined use, they
5165are ignored by code generation and optimization.
5166</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005167
5168<!-- *********************************************************************** -->
5169<hr>
5170<address>
5171 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
5172 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
5173 <a href="http://validator.w3.org/check/referer"><img
5174 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!" /></a>
5175
5176 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
5177 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
5178 Last modified: $Date$
5179</address>
5180</body>
5181</html>