blob: f4e9e341528340e90fc2d05a548bfc2df18aca02 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This library converts LLVM code to C code, compilable by GCC and other C
11// compilers.
12//
13//===----------------------------------------------------------------------===//
14
15#include "CTargetMachine.h"
16#include "llvm/CallingConv.h"
17#include "llvm/Constants.h"
18#include "llvm/DerivedTypes.h"
19#include "llvm/Module.h"
20#include "llvm/Instructions.h"
21#include "llvm/ParameterAttributes.h"
22#include "llvm/Pass.h"
23#include "llvm/PassManager.h"
24#include "llvm/TypeSymbolTable.h"
25#include "llvm/Intrinsics.h"
26#include "llvm/IntrinsicInst.h"
27#include "llvm/InlineAsm.h"
28#include "llvm/Analysis/ConstantsScanner.h"
29#include "llvm/Analysis/FindUsedTypes.h"
30#include "llvm/Analysis/LoopInfo.h"
Gordon Henriksendf87fdc2008-01-07 01:30:38 +000031#include "llvm/CodeGen/Passes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000032#include "llvm/CodeGen/IntrinsicLowering.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Target/TargetMachineRegistry.h"
35#include "llvm/Target/TargetAsmInfo.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/CallSite.h"
38#include "llvm/Support/CFG.h"
39#include "llvm/Support/GetElementPtrTypeIterator.h"
40#include "llvm/Support/InstVisitor.h"
41#include "llvm/Support/Mangler.h"
42#include "llvm/Support/MathExtras.h"
43#include "llvm/ADT/StringExtras.h"
44#include "llvm/ADT/STLExtras.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Config/config.h"
47#include <algorithm>
48#include <sstream>
49using namespace llvm;
50
51namespace {
52 // Register the target.
53 RegisterTarget<CTargetMachine> X("c", " C backend");
54
55 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
56 /// any unnamed structure types that are used by the program, and merges
57 /// external functions with the same name.
58 ///
59 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
60 public:
61 static char ID;
62 CBackendNameAllUsedStructsAndMergeFunctions()
63 : ModulePass((intptr_t)&ID) {}
64 void getAnalysisUsage(AnalysisUsage &AU) const {
65 AU.addRequired<FindUsedTypes>();
66 }
67
68 virtual const char *getPassName() const {
69 return "C backend type canonicalizer";
70 }
71
72 virtual bool runOnModule(Module &M);
73 };
74
75 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76
77 /// CWriter - This class is the main chunk of code that converts an LLVM
78 /// module to a C translation unit.
79 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 std::ostream &Out;
81 IntrinsicLowering *IL;
82 Mangler *Mang;
83 LoopInfo *LI;
84 const Module *TheModule;
85 const TargetAsmInfo* TAsm;
86 const TargetData* TD;
87 std::map<const Type *, std::string> TypeNames;
88 std::map<const ConstantFP *, unsigned> FPConstantMap;
89 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
90
91 public:
92 static char ID;
93 CWriter(std::ostream &o)
94 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
96
97 virtual const char *getPassName() const { return "C backend"; }
98
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
102 }
103
104 virtual bool doInitialization(Module &M);
105
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
108
109 // Get rid of intrinsics we can't handle.
110 lowerIntrinsics(F);
111
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
114
115 printFunction(F);
116 FPConstantMap.clear();
117 return false;
118 }
119
120 virtual bool doFinalization(Module &M) {
121 // Free memory...
122 delete Mang;
123 TypeNames.clear();
124 return false;
125 }
126
127 std::ostream &printType(std::ostream &Out, const Type *Ty,
128 bool isSigned = false,
129 const std::string &VariableName = "",
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000130 bool IgnoreName = false,
131 const ParamAttrsList *PAL = 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000132 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
133 bool isSigned,
134 const std::string &NameSoFar = "");
135
136 void printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000137 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000138 const PointerType *Ty);
139
140 void writeOperand(Value *Operand);
141 void writeOperandRaw(Value *Operand);
142 void writeOperandInternal(Value *Operand);
143 void writeOperandWithCast(Value* Operand, unsigned Opcode);
Chris Lattner389c9142007-09-15 06:51:03 +0000144 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145 bool writeInstructionCast(const Instruction &I);
146
147 private :
148 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
149
150 void lowerIntrinsics(Function &F);
151
152 void printModule(Module *M);
153 void printModuleTypes(const TypeSymbolTable &ST);
154 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
155 void printFloatingPointConstants(Function &F);
156 void printFunctionSignature(const Function *F, bool Prototype);
157
158 void printFunction(Function &);
159 void printBasicBlock(BasicBlock *BB);
160 void printLoop(Loop *L);
161
162 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
163 void printConstant(Constant *CPV);
164 void printConstantWithCast(Constant *CPV, unsigned Opcode);
165 bool printConstExprCast(const ConstantExpr *CE);
166 void printConstantArray(ConstantArray *CPA);
167 void printConstantVector(ConstantVector *CP);
168
169 // isInlinableInst - Attempt to inline instructions into their uses to build
170 // trees as much as possible. To do this, we have to consistently decide
171 // what is acceptable to inline, so that variable declarations don't get
172 // printed and an extra copy of the expr is not emitted.
173 //
174 static bool isInlinableInst(const Instruction &I) {
175 // Always inline cmp instructions, even if they are shared by multiple
176 // expressions. GCC generates horrible code if we don't.
177 if (isa<CmpInst>(I))
178 return true;
179
180 // Must be an expression, must be used exactly once. If it is dead, we
181 // emit it inline where it would go.
182 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
183 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
184 isa<LoadInst>(I) || isa<VAArgInst>(I))
185 // Don't inline a load across a store or other bad things!
186 return false;
187
188 // Must not be used in inline asm
189 if (I.hasOneUse() && isInlineAsm(*I.use_back())) return false;
190
191 // Only inline instruction it if it's use is in the same BB as the inst.
192 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
193 }
194
195 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
196 // variables which are accessed with the & operator. This causes GCC to
197 // generate significantly better code than to emit alloca calls directly.
198 //
199 static const AllocaInst *isDirectAlloca(const Value *V) {
200 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
201 if (!AI) return false;
202 if (AI->isArrayAllocation())
203 return 0; // FIXME: we can also inline fixed size array allocas!
204 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
205 return 0;
206 return AI;
207 }
208
209 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
210 static bool isInlineAsm(const Instruction& I) {
211 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
212 return true;
213 return false;
214 }
215
216 // Instruction visitation functions
217 friend class InstVisitor<CWriter>;
218
219 void visitReturnInst(ReturnInst &I);
220 void visitBranchInst(BranchInst &I);
221 void visitSwitchInst(SwitchInst &I);
222 void visitInvokeInst(InvokeInst &I) {
223 assert(0 && "Lowerinvoke pass didn't work!");
224 }
225
226 void visitUnwindInst(UnwindInst &I) {
227 assert(0 && "Lowerinvoke pass didn't work!");
228 }
229 void visitUnreachableInst(UnreachableInst &I);
230
231 void visitPHINode(PHINode &I);
232 void visitBinaryOperator(Instruction &I);
233 void visitICmpInst(ICmpInst &I);
234 void visitFCmpInst(FCmpInst &I);
235
236 void visitCastInst (CastInst &I);
237 void visitSelectInst(SelectInst &I);
238 void visitCallInst (CallInst &I);
239 void visitInlineAsm(CallInst &I);
240
241 void visitMallocInst(MallocInst &I);
242 void visitAllocaInst(AllocaInst &I);
243 void visitFreeInst (FreeInst &I);
244 void visitLoadInst (LoadInst &I);
245 void visitStoreInst (StoreInst &I);
246 void visitGetElementPtrInst(GetElementPtrInst &I);
247 void visitVAArgInst (VAArgInst &I);
248
249 void visitInstruction(Instruction &I) {
250 cerr << "C Writer does not know about " << I;
251 abort();
252 }
253
254 void outputLValue(Instruction *I) {
255 Out << " " << GetValueName(I) << " = ";
256 }
257
258 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
259 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
260 BasicBlock *Successor, unsigned Indent);
261 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
262 unsigned Indent);
263 void printIndexingExpression(Value *Ptr, gep_type_iterator I,
264 gep_type_iterator E);
265
266 std::string GetValueName(const Value *Operand);
267 };
268}
269
270char CWriter::ID = 0;
271
272/// This method inserts names for any unnamed structure types that are used by
273/// the program, and removes names from structure types that are not used by the
274/// program.
275///
276bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
277 // Get a set of types that are used by the program...
278 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
279
280 // Loop over the module symbol table, removing types from UT that are
281 // already named, and removing names for types that are not used.
282 //
283 TypeSymbolTable &TST = M.getTypeSymbolTable();
284 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
285 TI != TE; ) {
286 TypeSymbolTable::iterator I = TI++;
287
288 // If this isn't a struct type, remove it from our set of types to name.
289 // This simplifies emission later.
290 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
291 TST.remove(I);
292 } else {
293 // If this is not used, remove it from the symbol table.
294 std::set<const Type *>::iterator UTI = UT.find(I->second);
295 if (UTI == UT.end())
296 TST.remove(I);
297 else
298 UT.erase(UTI); // Only keep one name for this type.
299 }
300 }
301
302 // UT now contains types that are not named. Loop over it, naming
303 // structure types.
304 //
305 bool Changed = false;
306 unsigned RenameCounter = 0;
307 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
308 I != E; ++I)
309 if (const StructType *ST = dyn_cast<StructType>(*I)) {
310 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
311 ++RenameCounter;
312 Changed = true;
313 }
314
315
316 // Loop over all external functions and globals. If we have two with
317 // identical names, merge them.
318 // FIXME: This code should disappear when we don't allow values with the same
319 // names when they have different types!
320 std::map<std::string, GlobalValue*> ExtSymbols;
321 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
322 Function *GV = I++;
323 if (GV->isDeclaration() && GV->hasName()) {
324 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
325 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
326 if (!X.second) {
327 // Found a conflict, replace this global with the previous one.
328 GlobalValue *OldGV = X.first->second;
329 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
330 GV->eraseFromParent();
331 Changed = true;
332 }
333 }
334 }
335 // Do the same for globals.
336 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
337 I != E;) {
338 GlobalVariable *GV = I++;
339 if (GV->isDeclaration() && GV->hasName()) {
340 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
341 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
342 if (!X.second) {
343 // Found a conflict, replace this global with the previous one.
344 GlobalValue *OldGV = X.first->second;
345 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
346 GV->eraseFromParent();
347 Changed = true;
348 }
349 }
350 }
351
352 return Changed;
353}
354
355/// printStructReturnPointerFunctionType - This is like printType for a struct
356/// return type, except, instead of printing the type as void (*)(Struct*, ...)
357/// print it as "Struct (*)(...)", for struct return functions.
358void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000359 const ParamAttrsList *PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000360 const PointerType *TheTy) {
361 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
362 std::stringstream FunctionInnards;
363 FunctionInnards << " (*) (";
364 bool PrintedType = false;
365
366 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
367 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
368 unsigned Idx = 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000369 for (++I; I != E; ++I) {
370 if (PrintedType)
371 FunctionInnards << ", ";
372 printType(FunctionInnards, *I,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000373 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000374 PrintedType = true;
375 }
376 if (FTy->isVarArg()) {
377 if (PrintedType)
378 FunctionInnards << ", ...";
379 } else if (!PrintedType) {
380 FunctionInnards << "void";
381 }
382 FunctionInnards << ')';
383 std::string tstr = FunctionInnards.str();
384 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000385 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000386}
387
388std::ostream &
389CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
390 const std::string &NameSoFar) {
391 assert((Ty->isPrimitiveType() || Ty->isInteger()) &&
392 "Invalid type for printSimpleType");
393 switch (Ty->getTypeID()) {
394 case Type::VoidTyID: return Out << "void " << NameSoFar;
395 case Type::IntegerTyID: {
396 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
397 if (NumBits == 1)
398 return Out << "bool " << NameSoFar;
399 else if (NumBits <= 8)
400 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
401 else if (NumBits <= 16)
402 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
403 else if (NumBits <= 32)
404 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
405 else {
406 assert(NumBits <= 64 && "Bit widths > 64 not implemented yet");
407 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
408 }
409 }
410 case Type::FloatTyID: return Out << "float " << NameSoFar;
411 case Type::DoubleTyID: return Out << "double " << NameSoFar;
Dale Johannesen137cef62007-09-17 00:38:27 +0000412 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
413 // present matches host 'long double'.
414 case Type::X86_FP80TyID:
415 case Type::PPC_FP128TyID:
416 case Type::FP128TyID: return Out << "long double " << NameSoFar;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000417 default :
418 cerr << "Unknown primitive type: " << *Ty << "\n";
419 abort();
420 }
421}
422
423// Pass the Type* and the variable name and this prints out the variable
424// declaration.
425//
426std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
427 bool isSigned, const std::string &NameSoFar,
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000428 bool IgnoreName, const ParamAttrsList* PAL) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000429 if (Ty->isPrimitiveType() || Ty->isInteger()) {
430 printSimpleType(Out, Ty, isSigned, NameSoFar);
431 return Out;
432 }
433
434 // Check to see if the type is named.
435 if (!IgnoreName || isa<OpaqueType>(Ty)) {
436 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
437 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
438 }
439
440 switch (Ty->getTypeID()) {
441 case Type::FunctionTyID: {
442 const FunctionType *FTy = cast<FunctionType>(Ty);
443 std::stringstream FunctionInnards;
444 FunctionInnards << " (" << NameSoFar << ") (";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 unsigned Idx = 1;
446 for (FunctionType::param_iterator I = FTy->param_begin(),
447 E = FTy->param_end(); I != E; ++I) {
448 if (I != FTy->param_begin())
449 FunctionInnards << ", ";
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000450 printType(FunctionInnards, *I,
451 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000452 ++Idx;
453 }
454 if (FTy->isVarArg()) {
455 if (FTy->getNumParams())
456 FunctionInnards << ", ...";
457 } else if (!FTy->getNumParams()) {
458 FunctionInnards << "void";
459 }
460 FunctionInnards << ')';
461 std::string tstr = FunctionInnards.str();
462 printType(Out, FTy->getReturnType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +0000463 /*isSigned=*/PAL && PAL->paramHasAttr(0, ParamAttr::SExt), tstr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000464 return Out;
465 }
466 case Type::StructTyID: {
467 const StructType *STy = cast<StructType>(Ty);
468 Out << NameSoFar + " {\n";
469 unsigned Idx = 0;
470 for (StructType::element_iterator I = STy->element_begin(),
471 E = STy->element_end(); I != E; ++I) {
472 Out << " ";
473 printType(Out, *I, false, "field" + utostr(Idx++));
474 Out << ";\n";
475 }
476 Out << '}';
477 if (STy->isPacked())
478 Out << " __attribute__ ((packed))";
479 return Out;
480 }
481
482 case Type::PointerTyID: {
483 const PointerType *PTy = cast<PointerType>(Ty);
484 std::string ptrName = "*" + NameSoFar;
485
486 if (isa<ArrayType>(PTy->getElementType()) ||
487 isa<VectorType>(PTy->getElementType()))
488 ptrName = "(" + ptrName + ")";
489
490 return printType(Out, PTy->getElementType(), false, ptrName);
491 }
492
493 case Type::ArrayTyID: {
494 const ArrayType *ATy = cast<ArrayType>(Ty);
495 unsigned NumElements = ATy->getNumElements();
496 if (NumElements == 0) NumElements = 1;
497 return printType(Out, ATy->getElementType(), false,
498 NameSoFar + "[" + utostr(NumElements) + "]");
499 }
500
501 case Type::VectorTyID: {
502 const VectorType *PTy = cast<VectorType>(Ty);
503 unsigned NumElements = PTy->getNumElements();
504 if (NumElements == 0) NumElements = 1;
505 return printType(Out, PTy->getElementType(), false,
506 NameSoFar + "[" + utostr(NumElements) + "]");
507 }
508
509 case Type::OpaqueTyID: {
510 static int Count = 0;
511 std::string TyName = "struct opaque_" + itostr(Count++);
512 assert(TypeNames.find(Ty) == TypeNames.end());
513 TypeNames[Ty] = TyName;
514 return Out << TyName << ' ' << NameSoFar;
515 }
516 default:
517 assert(0 && "Unhandled case in getTypeProps!");
518 abort();
519 }
520
521 return Out;
522}
523
524void CWriter::printConstantArray(ConstantArray *CPA) {
525
526 // As a special case, print the array as a string if it is an array of
527 // ubytes or an array of sbytes with positive values.
528 //
529 const Type *ETy = CPA->getType()->getElementType();
530 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
531
532 // Make sure the last character is a null char, as automatically added by C
533 if (isString && (CPA->getNumOperands() == 0 ||
534 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
535 isString = false;
536
537 if (isString) {
538 Out << '\"';
539 // Keep track of whether the last number was a hexadecimal escape
540 bool LastWasHex = false;
541
542 // Do not include the last character, which we know is null
543 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
544 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
545
546 // Print it out literally if it is a printable character. The only thing
547 // to be careful about is when the last letter output was a hex escape
548 // code, in which case we have to be careful not to print out hex digits
549 // explicitly (the C compiler thinks it is a continuation of the previous
550 // character, sheesh...)
551 //
552 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
553 LastWasHex = false;
554 if (C == '"' || C == '\\')
555 Out << "\\" << C;
556 else
557 Out << C;
558 } else {
559 LastWasHex = false;
560 switch (C) {
561 case '\n': Out << "\\n"; break;
562 case '\t': Out << "\\t"; break;
563 case '\r': Out << "\\r"; break;
564 case '\v': Out << "\\v"; break;
565 case '\a': Out << "\\a"; break;
566 case '\"': Out << "\\\""; break;
567 case '\'': Out << "\\\'"; break;
568 default:
569 Out << "\\x";
570 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
571 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
572 LastWasHex = true;
573 break;
574 }
575 }
576 }
577 Out << '\"';
578 } else {
579 Out << '{';
580 if (CPA->getNumOperands()) {
581 Out << ' ';
582 printConstant(cast<Constant>(CPA->getOperand(0)));
583 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
584 Out << ", ";
585 printConstant(cast<Constant>(CPA->getOperand(i)));
586 }
587 }
588 Out << " }";
589 }
590}
591
592void CWriter::printConstantVector(ConstantVector *CP) {
593 Out << '{';
594 if (CP->getNumOperands()) {
595 Out << ' ';
596 printConstant(cast<Constant>(CP->getOperand(0)));
597 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
598 Out << ", ";
599 printConstant(cast<Constant>(CP->getOperand(i)));
600 }
601 }
602 Out << " }";
603}
604
605// isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
606// textually as a double (rather than as a reference to a stack-allocated
607// variable). We decide this by converting CFP to a string and back into a
608// double, and then checking whether the conversion results in a bit-equal
609// double to the original value of CFP. This depends on us and the target C
610// compiler agreeing on the conversion process (which is pretty likely since we
611// only deal in IEEE FP).
612//
613static bool isFPCSafeToPrint(const ConstantFP *CFP) {
Dale Johannesen137cef62007-09-17 00:38:27 +0000614 // Do long doubles in hex for now.
Dale Johannesen2fc20782007-09-14 22:26:36 +0000615 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
616 return false;
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000617 APFloat APF = APFloat(CFP->getValueAPF()); // copy
618 if (CFP->getType()==Type::FloatTy)
619 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000620#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
621 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000622 sprintf(Buffer, "%a", APF.convertToDouble());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000623 if (!strncmp(Buffer, "0x", 2) ||
624 !strncmp(Buffer, "-0x", 3) ||
625 !strncmp(Buffer, "+0x", 3))
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000626 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000627 return false;
628#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000629 std::string StrVal = ftostr(APF);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000630
631 while (StrVal[0] == ' ')
632 StrVal.erase(StrVal.begin());
633
634 // Check to make sure that the stringized number is not some string like "Inf"
635 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
636 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
637 ((StrVal[0] == '-' || StrVal[0] == '+') &&
638 (StrVal[1] >= '0' && StrVal[1] <= '9')))
639 // Reparse stringized version!
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000640 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000641 return false;
642#endif
643}
644
645/// Print out the casting for a cast operation. This does the double casting
646/// necessary for conversion to the destination type, if necessary.
647/// @brief Print a cast
648void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
649 // Print the destination type cast
650 switch (opc) {
651 case Instruction::UIToFP:
652 case Instruction::SIToFP:
653 case Instruction::IntToPtr:
654 case Instruction::Trunc:
655 case Instruction::BitCast:
656 case Instruction::FPExt:
657 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
658 Out << '(';
659 printType(Out, DstTy);
660 Out << ')';
661 break;
662 case Instruction::ZExt:
663 case Instruction::PtrToInt:
664 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
665 Out << '(';
666 printSimpleType(Out, DstTy, false);
667 Out << ')';
668 break;
669 case Instruction::SExt:
670 case Instruction::FPToSI: // For these, make sure we get a signed dest
671 Out << '(';
672 printSimpleType(Out, DstTy, true);
673 Out << ')';
674 break;
675 default:
676 assert(0 && "Invalid cast opcode");
677 }
678
679 // Print the source type cast
680 switch (opc) {
681 case Instruction::UIToFP:
682 case Instruction::ZExt:
683 Out << '(';
684 printSimpleType(Out, SrcTy, false);
685 Out << ')';
686 break;
687 case Instruction::SIToFP:
688 case Instruction::SExt:
689 Out << '(';
690 printSimpleType(Out, SrcTy, true);
691 Out << ')';
692 break;
693 case Instruction::IntToPtr:
694 case Instruction::PtrToInt:
695 // Avoid "cast to pointer from integer of different size" warnings
696 Out << "(unsigned long)";
697 break;
698 case Instruction::Trunc:
699 case Instruction::BitCast:
700 case Instruction::FPExt:
701 case Instruction::FPTrunc:
702 case Instruction::FPToSI:
703 case Instruction::FPToUI:
704 break; // These don't need a source cast.
705 default:
706 assert(0 && "Invalid cast opcode");
707 break;
708 }
709}
710
711// printConstant - The LLVM Constant to C Constant converter.
712void CWriter::printConstant(Constant *CPV) {
713 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
714 switch (CE->getOpcode()) {
715 case Instruction::Trunc:
716 case Instruction::ZExt:
717 case Instruction::SExt:
718 case Instruction::FPTrunc:
719 case Instruction::FPExt:
720 case Instruction::UIToFP:
721 case Instruction::SIToFP:
722 case Instruction::FPToUI:
723 case Instruction::FPToSI:
724 case Instruction::PtrToInt:
725 case Instruction::IntToPtr:
726 case Instruction::BitCast:
727 Out << "(";
728 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
729 if (CE->getOpcode() == Instruction::SExt &&
730 CE->getOperand(0)->getType() == Type::Int1Ty) {
731 // Make sure we really sext from bool here by subtracting from 0
732 Out << "0-";
733 }
734 printConstant(CE->getOperand(0));
735 if (CE->getType() == Type::Int1Ty &&
736 (CE->getOpcode() == Instruction::Trunc ||
737 CE->getOpcode() == Instruction::FPToUI ||
738 CE->getOpcode() == Instruction::FPToSI ||
739 CE->getOpcode() == Instruction::PtrToInt)) {
740 // Make sure we really truncate to bool here by anding with 1
741 Out << "&1u";
742 }
743 Out << ')';
744 return;
745
746 case Instruction::GetElementPtr:
747 Out << "(&(";
748 printIndexingExpression(CE->getOperand(0), gep_type_begin(CPV),
749 gep_type_end(CPV));
750 Out << "))";
751 return;
752 case Instruction::Select:
753 Out << '(';
754 printConstant(CE->getOperand(0));
755 Out << '?';
756 printConstant(CE->getOperand(1));
757 Out << ':';
758 printConstant(CE->getOperand(2));
759 Out << ')';
760 return;
761 case Instruction::Add:
762 case Instruction::Sub:
763 case Instruction::Mul:
764 case Instruction::SDiv:
765 case Instruction::UDiv:
766 case Instruction::FDiv:
767 case Instruction::URem:
768 case Instruction::SRem:
769 case Instruction::FRem:
770 case Instruction::And:
771 case Instruction::Or:
772 case Instruction::Xor:
773 case Instruction::ICmp:
774 case Instruction::Shl:
775 case Instruction::LShr:
776 case Instruction::AShr:
777 {
778 Out << '(';
779 bool NeedsClosingParens = printConstExprCast(CE);
780 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
781 switch (CE->getOpcode()) {
782 case Instruction::Add: Out << " + "; break;
783 case Instruction::Sub: Out << " - "; break;
784 case Instruction::Mul: Out << " * "; break;
785 case Instruction::URem:
786 case Instruction::SRem:
787 case Instruction::FRem: Out << " % "; break;
788 case Instruction::UDiv:
789 case Instruction::SDiv:
790 case Instruction::FDiv: Out << " / "; break;
791 case Instruction::And: Out << " & "; break;
792 case Instruction::Or: Out << " | "; break;
793 case Instruction::Xor: Out << " ^ "; break;
794 case Instruction::Shl: Out << " << "; break;
795 case Instruction::LShr:
796 case Instruction::AShr: Out << " >> "; break;
797 case Instruction::ICmp:
798 switch (CE->getPredicate()) {
799 case ICmpInst::ICMP_EQ: Out << " == "; break;
800 case ICmpInst::ICMP_NE: Out << " != "; break;
801 case ICmpInst::ICMP_SLT:
802 case ICmpInst::ICMP_ULT: Out << " < "; break;
803 case ICmpInst::ICMP_SLE:
804 case ICmpInst::ICMP_ULE: Out << " <= "; break;
805 case ICmpInst::ICMP_SGT:
806 case ICmpInst::ICMP_UGT: Out << " > "; break;
807 case ICmpInst::ICMP_SGE:
808 case ICmpInst::ICMP_UGE: Out << " >= "; break;
809 default: assert(0 && "Illegal ICmp predicate");
810 }
811 break;
812 default: assert(0 && "Illegal opcode here!");
813 }
814 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
815 if (NeedsClosingParens)
816 Out << "))";
817 Out << ')';
818 return;
819 }
820 case Instruction::FCmp: {
821 Out << '(';
822 bool NeedsClosingParens = printConstExprCast(CE);
823 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
824 Out << "0";
825 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
826 Out << "1";
827 else {
828 const char* op = 0;
829 switch (CE->getPredicate()) {
830 default: assert(0 && "Illegal FCmp predicate");
831 case FCmpInst::FCMP_ORD: op = "ord"; break;
832 case FCmpInst::FCMP_UNO: op = "uno"; break;
833 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
834 case FCmpInst::FCMP_UNE: op = "une"; break;
835 case FCmpInst::FCMP_ULT: op = "ult"; break;
836 case FCmpInst::FCMP_ULE: op = "ule"; break;
837 case FCmpInst::FCMP_UGT: op = "ugt"; break;
838 case FCmpInst::FCMP_UGE: op = "uge"; break;
839 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
840 case FCmpInst::FCMP_ONE: op = "one"; break;
841 case FCmpInst::FCMP_OLT: op = "olt"; break;
842 case FCmpInst::FCMP_OLE: op = "ole"; break;
843 case FCmpInst::FCMP_OGT: op = "ogt"; break;
844 case FCmpInst::FCMP_OGE: op = "oge"; break;
845 }
846 Out << "llvm_fcmp_" << op << "(";
847 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
848 Out << ", ";
849 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
850 Out << ")";
851 }
852 if (NeedsClosingParens)
853 Out << "))";
854 Out << ')';
Anton Korobeynikov44891ce2007-12-21 23:33:44 +0000855 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000856 }
857 default:
858 cerr << "CWriter Error: Unhandled constant expression: "
859 << *CE << "\n";
860 abort();
861 }
862 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
863 Out << "((";
864 printType(Out, CPV->getType()); // sign doesn't matter
865 Out << ")/*UNDEF*/0)";
866 return;
867 }
868
869 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
870 const Type* Ty = CI->getType();
871 if (Ty == Type::Int1Ty)
872 Out << (CI->getZExtValue() ? '1' : '0') ;
873 else {
874 Out << "((";
875 printSimpleType(Out, Ty, false) << ')';
876 if (CI->isMinValue(true))
877 Out << CI->getZExtValue() << 'u';
878 else
879 Out << CI->getSExtValue();
880 if (Ty->getPrimitiveSizeInBits() > 32)
881 Out << "ll";
882 Out << ')';
883 }
884 return;
885 }
886
887 switch (CPV->getType()->getTypeID()) {
888 case Type::FloatTyID:
Dale Johannesen137cef62007-09-17 00:38:27 +0000889 case Type::DoubleTyID:
890 case Type::X86_FP80TyID:
891 case Type::PPC_FP128TyID:
892 case Type::FP128TyID: {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000893 ConstantFP *FPC = cast<ConstantFP>(CPV);
894 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
895 if (I != FPConstantMap.end()) {
896 // Because of FP precision problems we must load from a stack allocated
897 // value that holds the value in hex.
Dale Johannesen137cef62007-09-17 00:38:27 +0000898 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
899 FPC->getType() == Type::DoubleTy ? "double" :
900 "long double")
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000901 << "*)&FPConstant" << I->second << ')';
902 } else {
Dale Johannesen137cef62007-09-17 00:38:27 +0000903 assert(FPC->getType() == Type::FloatTy ||
904 FPC->getType() == Type::DoubleTy);
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000905 double V = FPC->getType() == Type::FloatTy ?
906 FPC->getValueAPF().convertToFloat() :
907 FPC->getValueAPF().convertToDouble();
908 if (IsNAN(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000909 // The value is NaN
910
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000911 // FIXME the actual NaN bits should be emitted.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000912 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
913 // it's 0x7ff4.
914 const unsigned long QuietNaN = 0x7ff8UL;
915 //const unsigned long SignalNaN = 0x7ff4UL;
916
917 // We need to grab the first part of the FP #
918 char Buffer[100];
919
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000920 uint64_t ll = DoubleToBits(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000921 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
922
923 std::string Num(&Buffer[0], &Buffer[6]);
924 unsigned long Val = strtoul(Num.c_str(), 0, 16);
925
926 if (FPC->getType() == Type::FloatTy)
927 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
928 << Buffer << "\") /*nan*/ ";
929 else
930 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
931 << Buffer << "\") /*nan*/ ";
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000932 } else if (IsInf(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000933 // The value is Inf
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000934 if (V < 0) Out << '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000935 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
936 << " /*inf*/ ";
937 } else {
938 std::string Num;
939#if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
940 // Print out the constant as a floating point number.
941 char Buffer[100];
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000942 sprintf(Buffer, "%a", V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000943 Num = Buffer;
944#else
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000945 Num = ftostr(FPC->getValueAPF());
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000946#endif
Dale Johannesenb9de9f02007-09-06 18:13:44 +0000947 Out << Num;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000948 }
949 }
950 break;
951 }
952
953 case Type::ArrayTyID:
954 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
955 const ArrayType *AT = cast<ArrayType>(CPV->getType());
956 Out << '{';
957 if (AT->getNumElements()) {
958 Out << ' ';
959 Constant *CZ = Constant::getNullValue(AT->getElementType());
960 printConstant(CZ);
961 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
962 Out << ", ";
963 printConstant(CZ);
964 }
965 }
966 Out << " }";
967 } else {
968 printConstantArray(cast<ConstantArray>(CPV));
969 }
970 break;
971
972 case Type::VectorTyID:
973 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
974 const VectorType *AT = cast<VectorType>(CPV->getType());
975 Out << '{';
976 if (AT->getNumElements()) {
977 Out << ' ';
978 Constant *CZ = Constant::getNullValue(AT->getElementType());
979 printConstant(CZ);
980 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
981 Out << ", ";
982 printConstant(CZ);
983 }
984 }
985 Out << " }";
986 } else {
987 printConstantVector(cast<ConstantVector>(CPV));
988 }
989 break;
990
991 case Type::StructTyID:
992 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
993 const StructType *ST = cast<StructType>(CPV->getType());
994 Out << '{';
995 if (ST->getNumElements()) {
996 Out << ' ';
997 printConstant(Constant::getNullValue(ST->getElementType(0)));
998 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
999 Out << ", ";
1000 printConstant(Constant::getNullValue(ST->getElementType(i)));
1001 }
1002 }
1003 Out << " }";
1004 } else {
1005 Out << '{';
1006 if (CPV->getNumOperands()) {
1007 Out << ' ';
1008 printConstant(cast<Constant>(CPV->getOperand(0)));
1009 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1010 Out << ", ";
1011 printConstant(cast<Constant>(CPV->getOperand(i)));
1012 }
1013 }
1014 Out << " }";
1015 }
1016 break;
1017
1018 case Type::PointerTyID:
1019 if (isa<ConstantPointerNull>(CPV)) {
1020 Out << "((";
1021 printType(Out, CPV->getType()); // sign doesn't matter
1022 Out << ")/*NULL*/0)";
1023 break;
1024 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1025 writeOperand(GV);
1026 break;
1027 }
1028 // FALL THROUGH
1029 default:
1030 cerr << "Unknown constant type: " << *CPV << "\n";
1031 abort();
1032 }
1033}
1034
1035// Some constant expressions need to be casted back to the original types
1036// because their operands were casted to the expected type. This function takes
1037// care of detecting that case and printing the cast for the ConstantExpr.
1038bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1039 bool NeedsExplicitCast = false;
1040 const Type *Ty = CE->getOperand(0)->getType();
1041 bool TypeIsSigned = false;
1042 switch (CE->getOpcode()) {
1043 case Instruction::LShr:
1044 case Instruction::URem:
1045 case Instruction::UDiv: NeedsExplicitCast = true; break;
1046 case Instruction::AShr:
1047 case Instruction::SRem:
1048 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1049 case Instruction::SExt:
1050 Ty = CE->getType();
1051 NeedsExplicitCast = true;
1052 TypeIsSigned = true;
1053 break;
1054 case Instruction::ZExt:
1055 case Instruction::Trunc:
1056 case Instruction::FPTrunc:
1057 case Instruction::FPExt:
1058 case Instruction::UIToFP:
1059 case Instruction::SIToFP:
1060 case Instruction::FPToUI:
1061 case Instruction::FPToSI:
1062 case Instruction::PtrToInt:
1063 case Instruction::IntToPtr:
1064 case Instruction::BitCast:
1065 Ty = CE->getType();
1066 NeedsExplicitCast = true;
1067 break;
1068 default: break;
1069 }
1070 if (NeedsExplicitCast) {
1071 Out << "((";
1072 if (Ty->isInteger() && Ty != Type::Int1Ty)
1073 printSimpleType(Out, Ty, TypeIsSigned);
1074 else
1075 printType(Out, Ty); // not integer, sign doesn't matter
1076 Out << ")(";
1077 }
1078 return NeedsExplicitCast;
1079}
1080
1081// Print a constant assuming that it is the operand for a given Opcode. The
1082// opcodes that care about sign need to cast their operands to the expected
1083// type before the operation proceeds. This function does the casting.
1084void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1085
1086 // Extract the operand's type, we'll need it.
1087 const Type* OpTy = CPV->getType();
1088
1089 // Indicate whether to do the cast or not.
1090 bool shouldCast = false;
1091 bool typeIsSigned = false;
1092
1093 // Based on the Opcode for which this Constant is being written, determine
1094 // the new type to which the operand should be casted by setting the value
1095 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1096 // casted below.
1097 switch (Opcode) {
1098 default:
1099 // for most instructions, it doesn't matter
1100 break;
1101 case Instruction::LShr:
1102 case Instruction::UDiv:
1103 case Instruction::URem:
1104 shouldCast = true;
1105 break;
1106 case Instruction::AShr:
1107 case Instruction::SDiv:
1108 case Instruction::SRem:
1109 shouldCast = true;
1110 typeIsSigned = true;
1111 break;
1112 }
1113
1114 // Write out the casted constant if we should, otherwise just write the
1115 // operand.
1116 if (shouldCast) {
1117 Out << "((";
1118 printSimpleType(Out, OpTy, typeIsSigned);
1119 Out << ")";
1120 printConstant(CPV);
1121 Out << ")";
1122 } else
1123 printConstant(CPV);
1124}
1125
1126std::string CWriter::GetValueName(const Value *Operand) {
1127 std::string Name;
1128
1129 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1130 std::string VarName;
1131
1132 Name = Operand->getName();
1133 VarName.reserve(Name.capacity());
1134
1135 for (std::string::iterator I = Name.begin(), E = Name.end();
1136 I != E; ++I) {
1137 char ch = *I;
1138
1139 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1140 (ch >= '0' && ch <= '9') || ch == '_'))
1141 VarName += '_';
1142 else
1143 VarName += ch;
1144 }
1145
1146 Name = "llvm_cbe_" + VarName;
1147 } else {
1148 Name = Mang->getValueName(Operand);
1149 }
1150
1151 return Name;
1152}
1153
1154void CWriter::writeOperandInternal(Value *Operand) {
1155 if (Instruction *I = dyn_cast<Instruction>(Operand))
1156 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1157 // Should we inline this instruction to build a tree?
1158 Out << '(';
1159 visit(*I);
1160 Out << ')';
1161 return;
1162 }
1163
1164 Constant* CPV = dyn_cast<Constant>(Operand);
1165
1166 if (CPV && !isa<GlobalValue>(CPV))
1167 printConstant(CPV);
1168 else
1169 Out << GetValueName(Operand);
1170}
1171
1172void CWriter::writeOperandRaw(Value *Operand) {
1173 Constant* CPV = dyn_cast<Constant>(Operand);
1174 if (CPV && !isa<GlobalValue>(CPV)) {
1175 printConstant(CPV);
1176 } else {
1177 Out << GetValueName(Operand);
1178 }
1179}
1180
1181void CWriter::writeOperand(Value *Operand) {
1182 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1183 Out << "(&"; // Global variables are referenced as their addresses by llvm
1184
1185 writeOperandInternal(Operand);
1186
1187 if (isa<GlobalVariable>(Operand) || isDirectAlloca(Operand))
1188 Out << ')';
1189}
1190
1191// Some instructions need to have their result value casted back to the
1192// original types because their operands were casted to the expected type.
1193// This function takes care of detecting that case and printing the cast
1194// for the Instruction.
1195bool CWriter::writeInstructionCast(const Instruction &I) {
1196 const Type *Ty = I.getOperand(0)->getType();
1197 switch (I.getOpcode()) {
1198 case Instruction::LShr:
1199 case Instruction::URem:
1200 case Instruction::UDiv:
1201 Out << "((";
1202 printSimpleType(Out, Ty, false);
1203 Out << ")(";
1204 return true;
1205 case Instruction::AShr:
1206 case Instruction::SRem:
1207 case Instruction::SDiv:
1208 Out << "((";
1209 printSimpleType(Out, Ty, true);
1210 Out << ")(";
1211 return true;
1212 default: break;
1213 }
1214 return false;
1215}
1216
1217// Write the operand with a cast to another type based on the Opcode being used.
1218// This will be used in cases where an instruction has specific type
1219// requirements (usually signedness) for its operands.
1220void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1221
1222 // Extract the operand's type, we'll need it.
1223 const Type* OpTy = Operand->getType();
1224
1225 // Indicate whether to do the cast or not.
1226 bool shouldCast = false;
1227
1228 // Indicate whether the cast should be to a signed type or not.
1229 bool castIsSigned = false;
1230
1231 // Based on the Opcode for which this Operand is being written, determine
1232 // the new type to which the operand should be casted by setting the value
1233 // of OpTy. If we change OpTy, also set shouldCast to true.
1234 switch (Opcode) {
1235 default:
1236 // for most instructions, it doesn't matter
1237 break;
1238 case Instruction::LShr:
1239 case Instruction::UDiv:
1240 case Instruction::URem: // Cast to unsigned first
1241 shouldCast = true;
1242 castIsSigned = false;
1243 break;
Chris Lattner7ce1ee42007-09-22 20:16:48 +00001244 case Instruction::GetElementPtr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001245 case Instruction::AShr:
1246 case Instruction::SDiv:
1247 case Instruction::SRem: // Cast to signed first
1248 shouldCast = true;
1249 castIsSigned = true;
1250 break;
1251 }
1252
1253 // Write out the casted operand if we should, otherwise just write the
1254 // operand.
1255 if (shouldCast) {
1256 Out << "((";
1257 printSimpleType(Out, OpTy, castIsSigned);
1258 Out << ")";
1259 writeOperand(Operand);
1260 Out << ")";
1261 } else
1262 writeOperand(Operand);
1263}
1264
1265// Write the operand with a cast to another type based on the icmp predicate
1266// being used.
Chris Lattner389c9142007-09-15 06:51:03 +00001267void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1268 // This has to do a cast to ensure the operand has the right signedness.
1269 // Also, if the operand is a pointer, we make sure to cast to an integer when
1270 // doing the comparison both for signedness and so that the C compiler doesn't
1271 // optimize things like "p < NULL" to false (p may contain an integer value
1272 // f.e.).
1273 bool shouldCast = Cmp.isRelational();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001274
1275 // Write out the casted operand if we should, otherwise just write the
1276 // operand.
Chris Lattner389c9142007-09-15 06:51:03 +00001277 if (!shouldCast) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001278 writeOperand(Operand);
Chris Lattner389c9142007-09-15 06:51:03 +00001279 return;
1280 }
1281
1282 // Should this be a signed comparison? If so, convert to signed.
1283 bool castIsSigned = Cmp.isSignedPredicate();
1284
1285 // If the operand was a pointer, convert to a large integer type.
1286 const Type* OpTy = Operand->getType();
1287 if (isa<PointerType>(OpTy))
1288 OpTy = TD->getIntPtrType();
1289
1290 Out << "((";
1291 printSimpleType(Out, OpTy, castIsSigned);
1292 Out << ")";
1293 writeOperand(Operand);
1294 Out << ")";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001295}
1296
1297// generateCompilerSpecificCode - This is where we add conditional compilation
1298// directives to cater to specific compilers as need be.
1299//
1300static void generateCompilerSpecificCode(std::ostream& Out) {
1301 // Alloca is hard to get, and we don't want to include stdlib.h here.
1302 Out << "/* get a declaration for alloca */\n"
1303 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1304 << "#define alloca(x) __builtin_alloca((x))\n"
1305 << "#define _alloca(x) __builtin_alloca((x))\n"
1306 << "#elif defined(__APPLE__)\n"
1307 << "extern void *__builtin_alloca(unsigned long);\n"
1308 << "#define alloca(x) __builtin_alloca(x)\n"
1309 << "#define longjmp _longjmp\n"
1310 << "#define setjmp _setjmp\n"
1311 << "#elif defined(__sun__)\n"
1312 << "#if defined(__sparcv9)\n"
1313 << "extern void *__builtin_alloca(unsigned long);\n"
1314 << "#else\n"
1315 << "extern void *__builtin_alloca(unsigned int);\n"
1316 << "#endif\n"
1317 << "#define alloca(x) __builtin_alloca(x)\n"
1318 << "#elif defined(__FreeBSD__) || defined(__OpenBSD__)\n"
1319 << "#define alloca(x) __builtin_alloca(x)\n"
1320 << "#elif defined(_MSC_VER)\n"
1321 << "#define inline _inline\n"
1322 << "#define alloca(x) _alloca(x)\n"
1323 << "#else\n"
1324 << "#include <alloca.h>\n"
1325 << "#endif\n\n";
1326
1327 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1328 // If we aren't being compiled with GCC, just drop these attributes.
1329 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1330 << "#define __attribute__(X)\n"
1331 << "#endif\n\n";
1332
1333 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1334 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1335 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1336 << "#elif defined(__GNUC__)\n"
1337 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1338 << "#else\n"
1339 << "#define __EXTERNAL_WEAK__\n"
1340 << "#endif\n\n";
1341
1342 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1343 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1344 << "#define __ATTRIBUTE_WEAK__\n"
1345 << "#elif defined(__GNUC__)\n"
1346 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1347 << "#else\n"
1348 << "#define __ATTRIBUTE_WEAK__\n"
1349 << "#endif\n\n";
1350
1351 // Add hidden visibility support. FIXME: APPLE_CC?
1352 Out << "#if defined(__GNUC__)\n"
1353 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1354 << "#endif\n\n";
1355
1356 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1357 // From the GCC documentation:
1358 //
1359 // double __builtin_nan (const char *str)
1360 //
1361 // This is an implementation of the ISO C99 function nan.
1362 //
1363 // Since ISO C99 defines this function in terms of strtod, which we do
1364 // not implement, a description of the parsing is in order. The string is
1365 // parsed as by strtol; that is, the base is recognized by leading 0 or
1366 // 0x prefixes. The number parsed is placed in the significand such that
1367 // the least significant bit of the number is at the least significant
1368 // bit of the significand. The number is truncated to fit the significand
1369 // field provided. The significand is forced to be a quiet NaN.
1370 //
1371 // This function, if given a string literal, is evaluated early enough
1372 // that it is considered a compile-time constant.
1373 //
1374 // float __builtin_nanf (const char *str)
1375 //
1376 // Similar to __builtin_nan, except the return type is float.
1377 //
1378 // double __builtin_inf (void)
1379 //
1380 // Similar to __builtin_huge_val, except a warning is generated if the
1381 // target floating-point format does not support infinities. This
1382 // function is suitable for implementing the ISO C99 macro INFINITY.
1383 //
1384 // float __builtin_inff (void)
1385 //
1386 // Similar to __builtin_inf, except the return type is float.
1387 Out << "#ifdef __GNUC__\n"
1388 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1389 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1390 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1391 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1392 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1393 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1394 << "#define LLVM_PREFETCH(addr,rw,locality) "
1395 "__builtin_prefetch(addr,rw,locality)\n"
1396 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1397 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1398 << "#define LLVM_ASM __asm__\n"
1399 << "#else\n"
1400 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1401 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1402 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1403 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1404 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1405 << "#define LLVM_INFF 0.0F /* Float */\n"
1406 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1407 << "#define __ATTRIBUTE_CTOR__\n"
1408 << "#define __ATTRIBUTE_DTOR__\n"
1409 << "#define LLVM_ASM(X)\n"
1410 << "#endif\n\n";
1411
1412 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1413 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1414 << "#define __builtin_stack_restore(X) /* noop */\n"
1415 << "#endif\n\n";
1416
1417 // Output target-specific code that should be inserted into main.
1418 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001419}
1420
1421/// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1422/// the StaticTors set.
1423static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1424 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1425 if (!InitList) return;
1426
1427 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1428 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1429 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1430
1431 if (CS->getOperand(1)->isNullValue())
1432 return; // Found a null terminator, exit printing.
1433 Constant *FP = CS->getOperand(1);
1434 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1435 if (CE->isCast())
1436 FP = CE->getOperand(0);
1437 if (Function *F = dyn_cast<Function>(FP))
1438 StaticTors.insert(F);
1439 }
1440}
1441
1442enum SpecialGlobalClass {
1443 NotSpecial = 0,
1444 GlobalCtors, GlobalDtors,
1445 NotPrinted
1446};
1447
1448/// getGlobalVariableClass - If this is a global that is specially recognized
1449/// by LLVM, return a code that indicates how we should handle it.
1450static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1451 // If this is a global ctors/dtors list, handle it now.
1452 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1453 if (GV->getName() == "llvm.global_ctors")
1454 return GlobalCtors;
1455 else if (GV->getName() == "llvm.global_dtors")
1456 return GlobalDtors;
1457 }
1458
1459 // Otherwise, it it is other metadata, don't print it. This catches things
1460 // like debug information.
1461 if (GV->getSection() == "llvm.metadata")
1462 return NotPrinted;
1463
1464 return NotSpecial;
1465}
1466
1467
1468bool CWriter::doInitialization(Module &M) {
1469 // Initialize
1470 TheModule = &M;
1471
1472 TD = new TargetData(&M);
1473 IL = new IntrinsicLowering(*TD);
1474 IL->AddPrototypes(M);
1475
1476 // Ensure that all structure types have names...
1477 Mang = new Mangler(M);
1478 Mang->markCharUnacceptable('.');
1479
1480 // Keep track of which functions are static ctors/dtors so they can have
1481 // an attribute added to their prototypes.
1482 std::set<Function*> StaticCtors, StaticDtors;
1483 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1484 I != E; ++I) {
1485 switch (getGlobalVariableClass(I)) {
1486 default: break;
1487 case GlobalCtors:
1488 FindStaticTors(I, StaticCtors);
1489 break;
1490 case GlobalDtors:
1491 FindStaticTors(I, StaticDtors);
1492 break;
1493 }
1494 }
1495
1496 // get declaration for alloca
1497 Out << "/* Provide Declarations */\n";
1498 Out << "#include <stdarg.h>\n"; // Varargs support
1499 Out << "#include <setjmp.h>\n"; // Unwind support
1500 generateCompilerSpecificCode(Out);
1501
1502 // Provide a definition for `bool' if not compiling with a C++ compiler.
1503 Out << "\n"
1504 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1505
1506 << "\n\n/* Support for floating point constants */\n"
1507 << "typedef unsigned long long ConstantDoubleTy;\n"
1508 << "typedef unsigned int ConstantFloatTy;\n"
Dale Johannesen137cef62007-09-17 00:38:27 +00001509 << "typedef struct { unsigned long long f1; unsigned short f2; "
1510 "unsigned short pad[3]; } ConstantFP80Ty;\n"
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001511 // This is used for both kinds of 128-bit long double; meaning differs.
Dale Johannesen137cef62007-09-17 00:38:27 +00001512 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1513 " ConstantFP128Ty;\n"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001514 << "\n\n/* Global Declarations */\n";
1515
1516 // First output all the declarations for the program, because C requires
1517 // Functions & globals to be declared before they are used.
1518 //
1519
1520 // Loop over the symbol table, emitting all named constants...
1521 printModuleTypes(M.getTypeSymbolTable());
1522
1523 // Global variable declarations...
1524 if (!M.global_empty()) {
1525 Out << "\n/* External Global Variable Declarations */\n";
1526 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1527 I != E; ++I) {
1528
1529 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1530 Out << "extern ";
1531 else if (I->hasDLLImportLinkage())
1532 Out << "__declspec(dllimport) ";
1533 else
1534 continue; // Internal Global
1535
1536 // Thread Local Storage
1537 if (I->isThreadLocal())
1538 Out << "__thread ";
1539
1540 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1541
1542 if (I->hasExternalWeakLinkage())
1543 Out << " __EXTERNAL_WEAK__";
1544 Out << ";\n";
1545 }
1546 }
1547
1548 // Function declarations
1549 Out << "\n/* Function Declarations */\n";
1550 Out << "double fmod(double, double);\n"; // Support for FP rem
1551 Out << "float fmodf(float, float);\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001552 Out << "long double fmodl(long double, long double);\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001553
1554 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1555 // Don't print declarations for intrinsic functions.
Duncan Sands79d28872007-12-03 20:06:50 +00001556 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001557 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1558 if (I->hasExternalWeakLinkage())
1559 Out << "extern ";
1560 printFunctionSignature(I, true);
1561 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1562 Out << " __ATTRIBUTE_WEAK__";
1563 if (I->hasExternalWeakLinkage())
1564 Out << " __EXTERNAL_WEAK__";
1565 if (StaticCtors.count(I))
1566 Out << " __ATTRIBUTE_CTOR__";
1567 if (StaticDtors.count(I))
1568 Out << " __ATTRIBUTE_DTOR__";
1569 if (I->hasHiddenVisibility())
1570 Out << " __HIDDEN__";
1571
1572 if (I->hasName() && I->getName()[0] == 1)
1573 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1574
1575 Out << ";\n";
1576 }
1577 }
1578
1579 // Output the global variable declarations
1580 if (!M.global_empty()) {
1581 Out << "\n\n/* Global Variable Declarations */\n";
1582 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1583 I != E; ++I)
1584 if (!I->isDeclaration()) {
1585 // Ignore special globals, such as debug info.
1586 if (getGlobalVariableClass(I))
1587 continue;
1588
1589 if (I->hasInternalLinkage())
1590 Out << "static ";
1591 else
1592 Out << "extern ";
1593
1594 // Thread Local Storage
1595 if (I->isThreadLocal())
1596 Out << "__thread ";
1597
1598 printType(Out, I->getType()->getElementType(), false,
1599 GetValueName(I));
1600
1601 if (I->hasLinkOnceLinkage())
1602 Out << " __attribute__((common))";
1603 else if (I->hasWeakLinkage())
1604 Out << " __ATTRIBUTE_WEAK__";
1605 else if (I->hasExternalWeakLinkage())
1606 Out << " __EXTERNAL_WEAK__";
1607 if (I->hasHiddenVisibility())
1608 Out << " __HIDDEN__";
1609 Out << ";\n";
1610 }
1611 }
1612
1613 // Output the global variable definitions and contents...
1614 if (!M.global_empty()) {
1615 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1616 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1617 I != E; ++I)
1618 if (!I->isDeclaration()) {
1619 // Ignore special globals, such as debug info.
1620 if (getGlobalVariableClass(I))
1621 continue;
1622
1623 if (I->hasInternalLinkage())
1624 Out << "static ";
1625 else if (I->hasDLLImportLinkage())
1626 Out << "__declspec(dllimport) ";
1627 else if (I->hasDLLExportLinkage())
1628 Out << "__declspec(dllexport) ";
1629
1630 // Thread Local Storage
1631 if (I->isThreadLocal())
1632 Out << "__thread ";
1633
1634 printType(Out, I->getType()->getElementType(), false,
1635 GetValueName(I));
1636 if (I->hasLinkOnceLinkage())
1637 Out << " __attribute__((common))";
1638 else if (I->hasWeakLinkage())
1639 Out << " __ATTRIBUTE_WEAK__";
1640
1641 if (I->hasHiddenVisibility())
1642 Out << " __HIDDEN__";
1643
1644 // If the initializer is not null, emit the initializer. If it is null,
1645 // we try to avoid emitting large amounts of zeros. The problem with
1646 // this, however, occurs when the variable has weak linkage. In this
1647 // case, the assembler will complain about the variable being both weak
1648 // and common, so we disable this optimization.
1649 if (!I->getInitializer()->isNullValue()) {
1650 Out << " = " ;
1651 writeOperand(I->getInitializer());
1652 } else if (I->hasWeakLinkage()) {
1653 // We have to specify an initializer, but it doesn't have to be
1654 // complete. If the value is an aggregate, print out { 0 }, and let
1655 // the compiler figure out the rest of the zeros.
1656 Out << " = " ;
1657 if (isa<StructType>(I->getInitializer()->getType()) ||
1658 isa<ArrayType>(I->getInitializer()->getType()) ||
1659 isa<VectorType>(I->getInitializer()->getType())) {
1660 Out << "{ 0 }";
1661 } else {
1662 // Just print it out normally.
1663 writeOperand(I->getInitializer());
1664 }
1665 }
1666 Out << ";\n";
1667 }
1668 }
1669
1670 if (!M.empty())
1671 Out << "\n\n/* Function Bodies */\n";
1672
1673 // Emit some helper functions for dealing with FCMP instruction's
1674 // predicates
1675 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1676 Out << "return X == X && Y == Y; }\n";
1677 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1678 Out << "return X != X || Y != Y; }\n";
1679 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1680 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1681 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1682 Out << "return X != Y; }\n";
1683 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1684 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1685 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1686 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1687 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1688 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1689 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1690 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1691 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1692 Out << "return X == Y ; }\n";
1693 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1694 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1695 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1696 Out << "return X < Y ; }\n";
1697 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1698 Out << "return X > Y ; }\n";
1699 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1700 Out << "return X <= Y ; }\n";
1701 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1702 Out << "return X >= Y ; }\n";
1703 return false;
1704}
1705
1706
1707/// Output all floating point constants that cannot be printed accurately...
1708void CWriter::printFloatingPointConstants(Function &F) {
1709 // Scan the module for floating point constants. If any FP constant is used
1710 // in the function, we want to redirect it here so that we do not depend on
1711 // the precision of the printed form, unless the printed form preserves
1712 // precision.
1713 //
1714 static unsigned FPCounter = 0;
1715 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1716 I != E; ++I)
1717 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1718 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1719 !FPConstantMap.count(FPC)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001720 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1721
1722 if (FPC->getType() == Type::DoubleTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001723 double Val = FPC->getValueAPF().convertToDouble();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001724 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001725 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001726 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001727 << "ULL; /* " << Val << " */\n";
1728 } else if (FPC->getType() == Type::FloatTy) {
Dale Johannesenb9de9f02007-09-06 18:13:44 +00001729 float Val = FPC->getValueAPF().convertToFloat();
Dale Johannesenfbd9cda2007-09-12 03:30:33 +00001730 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1731 getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001732 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
Dale Johannesen1616e902007-09-11 18:32:33 +00001733 << " = 0x" << std::hex << i << std::dec
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001734 << "U; /* " << Val << " */\n";
Dale Johannesen137cef62007-09-17 00:38:27 +00001735 } else if (FPC->getType() == Type::X86_FP80Ty) {
Dale Johannesen693aa822007-09-26 23:20:33 +00001736 // api needed to prevent premature destruction
1737 APInt api = FPC->getValueAPF().convertToAPInt();
1738 const uint64_t *p = api.getRawData();
Dale Johannesen137cef62007-09-17 00:38:27 +00001739 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1740 << " = { 0x" << std::hex
1741 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1742 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1743 << "}; /* Long double constant */\n" << std::dec;
Dale Johannesen091dcfd2007-10-15 01:05:37 +00001744 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1745 APInt api = FPC->getValueAPF().convertToAPInt();
1746 const uint64_t *p = api.getRawData();
1747 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1748 << " = { 0x" << std::hex
1749 << p[0] << ", 0x" << p[1]
1750 << "}; /* Long double constant */\n" << std::dec;
1751
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001752 } else
1753 assert(0 && "Unknown float type!");
1754 }
1755
1756 Out << '\n';
1757}
1758
1759
1760/// printSymbolTable - Run through symbol table looking for type names. If a
1761/// type name is found, emit its declaration...
1762///
1763void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1764 Out << "/* Helper union for bitcasts */\n";
1765 Out << "typedef union {\n";
1766 Out << " unsigned int Int32;\n";
1767 Out << " unsigned long long Int64;\n";
1768 Out << " float Float;\n";
1769 Out << " double Double;\n";
1770 Out << "} llvmBitCastUnion;\n";
1771
1772 // We are only interested in the type plane of the symbol table.
1773 TypeSymbolTable::const_iterator I = TST.begin();
1774 TypeSymbolTable::const_iterator End = TST.end();
1775
1776 // If there are no type names, exit early.
1777 if (I == End) return;
1778
1779 // Print out forward declarations for structure types before anything else!
1780 Out << "/* Structure forward decls */\n";
1781 for (; I != End; ++I) {
1782 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1783 Out << Name << ";\n";
1784 TypeNames.insert(std::make_pair(I->second, Name));
1785 }
1786
1787 Out << '\n';
1788
1789 // Now we can print out typedefs. Above, we guaranteed that this can only be
1790 // for struct or opaque types.
1791 Out << "/* Typedefs */\n";
1792 for (I = TST.begin(); I != End; ++I) {
1793 std::string Name = "l_" + Mang->makeNameProper(I->first);
1794 Out << "typedef ";
1795 printType(Out, I->second, false, Name);
1796 Out << ";\n";
1797 }
1798
1799 Out << '\n';
1800
1801 // Keep track of which structures have been printed so far...
1802 std::set<const StructType *> StructPrinted;
1803
1804 // Loop over all structures then push them into the stack so they are
1805 // printed in the correct order.
1806 //
1807 Out << "/* Structure contents */\n";
1808 for (I = TST.begin(); I != End; ++I)
1809 if (const StructType *STy = dyn_cast<StructType>(I->second))
1810 // Only print out used types!
1811 printContainedStructs(STy, StructPrinted);
1812}
1813
1814// Push the struct onto the stack and recursively push all structs
1815// this one depends on.
1816//
1817// TODO: Make this work properly with vector types
1818//
1819void CWriter::printContainedStructs(const Type *Ty,
1820 std::set<const StructType*> &StructPrinted){
1821 // Don't walk through pointers.
1822 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1823
1824 // Print all contained types first.
1825 for (Type::subtype_iterator I = Ty->subtype_begin(),
1826 E = Ty->subtype_end(); I != E; ++I)
1827 printContainedStructs(*I, StructPrinted);
1828
1829 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1830 // Check to see if we have already printed this struct.
1831 if (StructPrinted.insert(STy).second) {
1832 // Print structure type out.
1833 std::string Name = TypeNames[STy];
1834 printType(Out, STy, false, Name, true);
1835 Out << ";\n\n";
1836 }
1837 }
1838}
1839
1840void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1841 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001842 bool isStructReturn = F->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001843
1844 if (F->hasInternalLinkage()) Out << "static ";
1845 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1846 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1847 switch (F->getCallingConv()) {
1848 case CallingConv::X86_StdCall:
1849 Out << "__stdcall ";
1850 break;
1851 case CallingConv::X86_FastCall:
1852 Out << "__fastcall ";
1853 break;
1854 }
1855
1856 // Loop over the arguments, printing them...
1857 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001858 const ParamAttrsList *PAL = F->getParamAttrs();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001859
1860 std::stringstream FunctionInnards;
1861
1862 // Print out the name...
1863 FunctionInnards << GetValueName(F) << '(';
1864
1865 bool PrintedArg = false;
1866 if (!F->isDeclaration()) {
1867 if (!F->arg_empty()) {
1868 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1869
1870 // If this is a struct-return function, don't print the hidden
1871 // struct-return argument.
1872 if (isStructReturn) {
1873 assert(I != E && "Invalid struct return function!");
1874 ++I;
1875 }
1876
1877 std::string ArgName;
1878 unsigned Idx = 1;
1879 for (; I != E; ++I) {
1880 if (PrintedArg) FunctionInnards << ", ";
1881 if (I->hasName() || !Prototype)
1882 ArgName = GetValueName(I);
1883 else
1884 ArgName = "";
1885 printType(FunctionInnards, I->getType(),
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001886 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001887 ArgName);
1888 PrintedArg = true;
1889 ++Idx;
1890 }
1891 }
1892 } else {
1893 // Loop over the arguments, printing them.
1894 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
1895
1896 // If this is a struct-return function, don't print the hidden
1897 // struct-return argument.
1898 if (isStructReturn) {
1899 assert(I != E && "Invalid struct return function!");
1900 ++I;
1901 }
1902
1903 unsigned Idx = 1;
1904 for (; I != E; ++I) {
1905 if (PrintedArg) FunctionInnards << ", ";
1906 printType(FunctionInnards, *I,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001907 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001908 PrintedArg = true;
1909 ++Idx;
1910 }
1911 }
1912
1913 // Finish printing arguments... if this is a vararg function, print the ...,
1914 // unless there are no known types, in which case, we just emit ().
1915 //
1916 if (FT->isVarArg() && PrintedArg) {
1917 if (PrintedArg) FunctionInnards << ", ";
1918 FunctionInnards << "..."; // Output varargs portion of signature!
1919 } else if (!FT->isVarArg() && !PrintedArg) {
1920 FunctionInnards << "void"; // ret() -> ret(void) in C.
1921 }
1922 FunctionInnards << ')';
1923
1924 // Get the return tpe for the function.
1925 const Type *RetTy;
1926 if (!isStructReturn)
1927 RetTy = F->getReturnType();
1928 else {
1929 // If this is a struct-return function, print the struct-return type.
1930 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
1931 }
1932
1933 // Print out the return type and the signature built above.
1934 printType(Out, RetTy,
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001935 /*isSigned=*/ PAL && PAL->paramHasAttr(0, ParamAttr::SExt),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001936 FunctionInnards.str());
1937}
1938
1939static inline bool isFPIntBitCast(const Instruction &I) {
1940 if (!isa<BitCastInst>(I))
1941 return false;
1942 const Type *SrcTy = I.getOperand(0)->getType();
1943 const Type *DstTy = I.getType();
1944 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
1945 (DstTy->isFloatingPoint() && SrcTy->isInteger());
1946}
1947
1948void CWriter::printFunction(Function &F) {
1949 /// isStructReturn - Should this function actually return a struct by-value?
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001950 bool isStructReturn = F.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001951
1952 printFunctionSignature(&F, false);
1953 Out << " {\n";
1954
1955 // If this is a struct return function, handle the result with magic.
1956 if (isStructReturn) {
1957 const Type *StructTy =
1958 cast<PointerType>(F.arg_begin()->getType())->getElementType();
1959 Out << " ";
1960 printType(Out, StructTy, false, "StructReturn");
1961 Out << "; /* Struct return temporary */\n";
1962
1963 Out << " ";
1964 printType(Out, F.arg_begin()->getType(), false,
1965 GetValueName(F.arg_begin()));
1966 Out << " = &StructReturn;\n";
1967 }
1968
1969 bool PrintedVar = false;
1970
1971 // print local variable information for the function
1972 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
1973 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
1974 Out << " ";
1975 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
1976 Out << "; /* Address-exposed local */\n";
1977 PrintedVar = true;
1978 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
1979 Out << " ";
1980 printType(Out, I->getType(), false, GetValueName(&*I));
1981 Out << ";\n";
1982
1983 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
1984 Out << " ";
1985 printType(Out, I->getType(), false,
1986 GetValueName(&*I)+"__PHI_TEMPORARY");
1987 Out << ";\n";
1988 }
1989 PrintedVar = true;
1990 }
1991 // We need a temporary for the BitCast to use so it can pluck a value out
1992 // of a union to do the BitCast. This is separate from the need for a
1993 // variable to hold the result of the BitCast.
1994 if (isFPIntBitCast(*I)) {
1995 Out << " llvmBitCastUnion " << GetValueName(&*I)
1996 << "__BITCAST_TEMPORARY;\n";
1997 PrintedVar = true;
1998 }
1999 }
2000
2001 if (PrintedVar)
2002 Out << '\n';
2003
2004 if (F.hasExternalLinkage() && F.getName() == "main")
2005 Out << " CODE_FOR_MAIN();\n";
2006
2007 // print the basic blocks
2008 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2009 if (Loop *L = LI->getLoopFor(BB)) {
2010 if (L->getHeader() == BB && L->getParentLoop() == 0)
2011 printLoop(L);
2012 } else {
2013 printBasicBlock(BB);
2014 }
2015 }
2016
2017 Out << "}\n\n";
2018}
2019
2020void CWriter::printLoop(Loop *L) {
2021 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2022 << "' to make GCC happy */\n";
2023 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2024 BasicBlock *BB = L->getBlocks()[i];
2025 Loop *BBLoop = LI->getLoopFor(BB);
2026 if (BBLoop == L)
2027 printBasicBlock(BB);
2028 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2029 printLoop(BBLoop);
2030 }
2031 Out << " } while (1); /* end of syntactic loop '"
2032 << L->getHeader()->getName() << "' */\n";
2033}
2034
2035void CWriter::printBasicBlock(BasicBlock *BB) {
2036
2037 // Don't print the label for the basic block if there are no uses, or if
2038 // the only terminator use is the predecessor basic block's terminator.
2039 // We have to scan the use list because PHI nodes use basic blocks too but
2040 // do not require a label to be generated.
2041 //
2042 bool NeedsLabel = false;
2043 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2044 if (isGotoCodeNecessary(*PI, BB)) {
2045 NeedsLabel = true;
2046 break;
2047 }
2048
2049 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2050
2051 // Output all of the instructions in the basic block...
2052 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2053 ++II) {
2054 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2055 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2056 outputLValue(II);
2057 else
2058 Out << " ";
2059 visit(*II);
2060 Out << ";\n";
2061 }
2062 }
2063
2064 // Don't emit prefix or suffix for the terminator...
2065 visit(*BB->getTerminator());
2066}
2067
2068
2069// Specific Instruction type classes... note that all of the casts are
2070// necessary because we use the instruction classes as opaque types...
2071//
2072void CWriter::visitReturnInst(ReturnInst &I) {
2073 // If this is a struct return function, return the temporary struct.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002074 bool isStructReturn = I.getParent()->getParent()->isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002075
2076 if (isStructReturn) {
2077 Out << " return StructReturn;\n";
2078 return;
2079 }
2080
2081 // Don't output a void return if this is the last basic block in the function
2082 if (I.getNumOperands() == 0 &&
2083 &*--I.getParent()->getParent()->end() == I.getParent() &&
2084 !I.getParent()->size() == 1) {
2085 return;
2086 }
2087
2088 Out << " return";
2089 if (I.getNumOperands()) {
2090 Out << ' ';
2091 writeOperand(I.getOperand(0));
2092 }
2093 Out << ";\n";
2094}
2095
2096void CWriter::visitSwitchInst(SwitchInst &SI) {
2097
2098 Out << " switch (";
2099 writeOperand(SI.getOperand(0));
2100 Out << ") {\n default:\n";
2101 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2102 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2103 Out << ";\n";
2104 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2105 Out << " case ";
2106 writeOperand(SI.getOperand(i));
2107 Out << ":\n";
2108 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2109 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2110 printBranchToBlock(SI.getParent(), Succ, 2);
2111 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2112 Out << " break;\n";
2113 }
2114 Out << " }\n";
2115}
2116
2117void CWriter::visitUnreachableInst(UnreachableInst &I) {
2118 Out << " /*UNREACHABLE*/;\n";
2119}
2120
2121bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2122 /// FIXME: This should be reenabled, but loop reordering safe!!
2123 return true;
2124
2125 if (next(Function::iterator(From)) != Function::iterator(To))
2126 return true; // Not the direct successor, we need a goto.
2127
2128 //isa<SwitchInst>(From->getTerminator())
2129
2130 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2131 return true;
2132 return false;
2133}
2134
2135void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2136 BasicBlock *Successor,
2137 unsigned Indent) {
2138 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2139 PHINode *PN = cast<PHINode>(I);
2140 // Now we have to do the printing.
2141 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2142 if (!isa<UndefValue>(IV)) {
2143 Out << std::string(Indent, ' ');
2144 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2145 writeOperand(IV);
2146 Out << "; /* for PHI node */\n";
2147 }
2148 }
2149}
2150
2151void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2152 unsigned Indent) {
2153 if (isGotoCodeNecessary(CurBB, Succ)) {
2154 Out << std::string(Indent, ' ') << " goto ";
2155 writeOperand(Succ);
2156 Out << ";\n";
2157 }
2158}
2159
2160// Branch instruction printing - Avoid printing out a branch to a basic block
2161// that immediately succeeds the current one.
2162//
2163void CWriter::visitBranchInst(BranchInst &I) {
2164
2165 if (I.isConditional()) {
2166 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2167 Out << " if (";
2168 writeOperand(I.getCondition());
2169 Out << ") {\n";
2170
2171 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2172 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2173
2174 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2175 Out << " } else {\n";
2176 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2177 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2178 }
2179 } else {
2180 // First goto not necessary, assume second one is...
2181 Out << " if (!";
2182 writeOperand(I.getCondition());
2183 Out << ") {\n";
2184
2185 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2186 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2187 }
2188
2189 Out << " }\n";
2190 } else {
2191 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2192 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2193 }
2194 Out << "\n";
2195}
2196
2197// PHI nodes get copied into temporary values at the end of predecessor basic
2198// blocks. We now need to copy these temporary values into the REAL value for
2199// the PHI.
2200void CWriter::visitPHINode(PHINode &I) {
2201 writeOperand(&I);
2202 Out << "__PHI_TEMPORARY";
2203}
2204
2205
2206void CWriter::visitBinaryOperator(Instruction &I) {
2207 // binary instructions, shift instructions, setCond instructions.
2208 assert(!isa<PointerType>(I.getType()));
2209
2210 // We must cast the results of binary operations which might be promoted.
2211 bool needsCast = false;
2212 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2213 || (I.getType() == Type::FloatTy)) {
2214 needsCast = true;
2215 Out << "((";
2216 printType(Out, I.getType(), false);
2217 Out << ")(";
2218 }
2219
2220 // If this is a negation operation, print it out as such. For FP, we don't
2221 // want to print "-0.0 - X".
2222 if (BinaryOperator::isNeg(&I)) {
2223 Out << "-(";
2224 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2225 Out << ")";
2226 } else if (I.getOpcode() == Instruction::FRem) {
2227 // Output a call to fmod/fmodf instead of emitting a%b
2228 if (I.getType() == Type::FloatTy)
2229 Out << "fmodf(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002230 else if (I.getType() == Type::DoubleTy)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002231 Out << "fmod(";
Dale Johannesen137cef62007-09-17 00:38:27 +00002232 else // all 3 flavors of long double
2233 Out << "fmodl(";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002234 writeOperand(I.getOperand(0));
2235 Out << ", ";
2236 writeOperand(I.getOperand(1));
2237 Out << ")";
2238 } else {
2239
2240 // Write out the cast of the instruction's value back to the proper type
2241 // if necessary.
2242 bool NeedsClosingParens = writeInstructionCast(I);
2243
2244 // Certain instructions require the operand to be forced to a specific type
2245 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2246 // below for operand 1
2247 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2248
2249 switch (I.getOpcode()) {
2250 case Instruction::Add: Out << " + "; break;
2251 case Instruction::Sub: Out << " - "; break;
2252 case Instruction::Mul: Out << " * "; break;
2253 case Instruction::URem:
2254 case Instruction::SRem:
2255 case Instruction::FRem: Out << " % "; break;
2256 case Instruction::UDiv:
2257 case Instruction::SDiv:
2258 case Instruction::FDiv: Out << " / "; break;
2259 case Instruction::And: Out << " & "; break;
2260 case Instruction::Or: Out << " | "; break;
2261 case Instruction::Xor: Out << " ^ "; break;
2262 case Instruction::Shl : Out << " << "; break;
2263 case Instruction::LShr:
2264 case Instruction::AShr: Out << " >> "; break;
2265 default: cerr << "Invalid operator type!" << I; abort();
2266 }
2267
2268 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2269 if (NeedsClosingParens)
2270 Out << "))";
2271 }
2272
2273 if (needsCast) {
2274 Out << "))";
2275 }
2276}
2277
2278void CWriter::visitICmpInst(ICmpInst &I) {
2279 // We must cast the results of icmp which might be promoted.
2280 bool needsCast = false;
2281
2282 // Write out the cast of the instruction's value back to the proper type
2283 // if necessary.
2284 bool NeedsClosingParens = writeInstructionCast(I);
2285
2286 // Certain icmp predicate require the operand to be forced to a specific type
2287 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2288 // below for operand 1
Chris Lattner389c9142007-09-15 06:51:03 +00002289 writeOperandWithCast(I.getOperand(0), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002290
2291 switch (I.getPredicate()) {
2292 case ICmpInst::ICMP_EQ: Out << " == "; break;
2293 case ICmpInst::ICMP_NE: Out << " != "; break;
2294 case ICmpInst::ICMP_ULE:
2295 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2296 case ICmpInst::ICMP_UGE:
2297 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2298 case ICmpInst::ICMP_ULT:
2299 case ICmpInst::ICMP_SLT: Out << " < "; break;
2300 case ICmpInst::ICMP_UGT:
2301 case ICmpInst::ICMP_SGT: Out << " > "; break;
2302 default: cerr << "Invalid icmp predicate!" << I; abort();
2303 }
2304
Chris Lattner389c9142007-09-15 06:51:03 +00002305 writeOperandWithCast(I.getOperand(1), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002306 if (NeedsClosingParens)
2307 Out << "))";
2308
2309 if (needsCast) {
2310 Out << "))";
2311 }
2312}
2313
2314void CWriter::visitFCmpInst(FCmpInst &I) {
2315 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2316 Out << "0";
2317 return;
2318 }
2319 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2320 Out << "1";
2321 return;
2322 }
2323
2324 const char* op = 0;
2325 switch (I.getPredicate()) {
2326 default: assert(0 && "Illegal FCmp predicate");
2327 case FCmpInst::FCMP_ORD: op = "ord"; break;
2328 case FCmpInst::FCMP_UNO: op = "uno"; break;
2329 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2330 case FCmpInst::FCMP_UNE: op = "une"; break;
2331 case FCmpInst::FCMP_ULT: op = "ult"; break;
2332 case FCmpInst::FCMP_ULE: op = "ule"; break;
2333 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2334 case FCmpInst::FCMP_UGE: op = "uge"; break;
2335 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2336 case FCmpInst::FCMP_ONE: op = "one"; break;
2337 case FCmpInst::FCMP_OLT: op = "olt"; break;
2338 case FCmpInst::FCMP_OLE: op = "ole"; break;
2339 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2340 case FCmpInst::FCMP_OGE: op = "oge"; break;
2341 }
2342
2343 Out << "llvm_fcmp_" << op << "(";
2344 // Write the first operand
2345 writeOperand(I.getOperand(0));
2346 Out << ", ";
2347 // Write the second operand
2348 writeOperand(I.getOperand(1));
2349 Out << ")";
2350}
2351
2352static const char * getFloatBitCastField(const Type *Ty) {
2353 switch (Ty->getTypeID()) {
2354 default: assert(0 && "Invalid Type");
2355 case Type::FloatTyID: return "Float";
2356 case Type::DoubleTyID: return "Double";
2357 case Type::IntegerTyID: {
2358 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2359 if (NumBits <= 32)
2360 return "Int32";
2361 else
2362 return "Int64";
2363 }
2364 }
2365}
2366
2367void CWriter::visitCastInst(CastInst &I) {
2368 const Type *DstTy = I.getType();
2369 const Type *SrcTy = I.getOperand(0)->getType();
2370 Out << '(';
2371 if (isFPIntBitCast(I)) {
2372 // These int<->float and long<->double casts need to be handled specially
2373 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2374 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2375 writeOperand(I.getOperand(0));
2376 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2377 << getFloatBitCastField(I.getType());
2378 } else {
2379 printCast(I.getOpcode(), SrcTy, DstTy);
2380 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2381 // Make sure we really get a sext from bool by subtracing the bool from 0
2382 Out << "0-";
2383 }
2384 writeOperand(I.getOperand(0));
2385 if (DstTy == Type::Int1Ty &&
2386 (I.getOpcode() == Instruction::Trunc ||
2387 I.getOpcode() == Instruction::FPToUI ||
2388 I.getOpcode() == Instruction::FPToSI ||
2389 I.getOpcode() == Instruction::PtrToInt)) {
2390 // Make sure we really get a trunc to bool by anding the operand with 1
2391 Out << "&1u";
2392 }
2393 }
2394 Out << ')';
2395}
2396
2397void CWriter::visitSelectInst(SelectInst &I) {
2398 Out << "((";
2399 writeOperand(I.getCondition());
2400 Out << ") ? (";
2401 writeOperand(I.getTrueValue());
2402 Out << ") : (";
2403 writeOperand(I.getFalseValue());
2404 Out << "))";
2405}
2406
2407
2408void CWriter::lowerIntrinsics(Function &F) {
2409 // This is used to keep track of intrinsics that get generated to a lowered
2410 // function. We must generate the prototypes before the function body which
2411 // will only be expanded on first use (by the loop below).
2412 std::vector<Function*> prototypesToGen;
2413
2414 // Examine all the instructions in this function to find the intrinsics that
2415 // need to be lowered.
2416 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2417 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2418 if (CallInst *CI = dyn_cast<CallInst>(I++))
2419 if (Function *F = CI->getCalledFunction())
2420 switch (F->getIntrinsicID()) {
2421 case Intrinsic::not_intrinsic:
2422 case Intrinsic::vastart:
2423 case Intrinsic::vacopy:
2424 case Intrinsic::vaend:
2425 case Intrinsic::returnaddress:
2426 case Intrinsic::frameaddress:
2427 case Intrinsic::setjmp:
2428 case Intrinsic::longjmp:
2429 case Intrinsic::prefetch:
2430 case Intrinsic::dbg_stoppoint:
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002431 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002432 // We directly implement these intrinsics
2433 break;
2434 default:
2435 // If this is an intrinsic that directly corresponds to a GCC
2436 // builtin, we handle it.
2437 const char *BuiltinName = "";
2438#define GET_GCC_BUILTIN_NAME
2439#include "llvm/Intrinsics.gen"
2440#undef GET_GCC_BUILTIN_NAME
2441 // If we handle it, don't lower it.
2442 if (BuiltinName[0]) break;
2443
2444 // All other intrinsic calls we must lower.
2445 Instruction *Before = 0;
2446 if (CI != &BB->front())
2447 Before = prior(BasicBlock::iterator(CI));
2448
2449 IL->LowerIntrinsicCall(CI);
2450 if (Before) { // Move iterator to instruction after call
2451 I = Before; ++I;
2452 } else {
2453 I = BB->begin();
2454 }
2455 // If the intrinsic got lowered to another call, and that call has
2456 // a definition then we need to make sure its prototype is emitted
2457 // before any calls to it.
2458 if (CallInst *Call = dyn_cast<CallInst>(I))
2459 if (Function *NewF = Call->getCalledFunction())
2460 if (!NewF->isDeclaration())
2461 prototypesToGen.push_back(NewF);
2462
2463 break;
2464 }
2465
2466 // We may have collected some prototypes to emit in the loop above.
2467 // Emit them now, before the function that uses them is emitted. But,
2468 // be careful not to emit them twice.
2469 std::vector<Function*>::iterator I = prototypesToGen.begin();
2470 std::vector<Function*>::iterator E = prototypesToGen.end();
2471 for ( ; I != E; ++I) {
2472 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2473 Out << '\n';
2474 printFunctionSignature(*I, true);
2475 Out << ";\n";
2476 }
2477 }
2478}
2479
2480
2481void CWriter::visitCallInst(CallInst &I) {
2482 //check if we have inline asm
2483 if (isInlineAsm(I)) {
2484 visitInlineAsm(I);
2485 return;
2486 }
2487
2488 bool WroteCallee = false;
2489
2490 // Handle intrinsic function calls first...
2491 if (Function *F = I.getCalledFunction())
2492 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
2493 switch (ID) {
2494 default: {
2495 // If this is an intrinsic that directly corresponds to a GCC
2496 // builtin, we emit it here.
2497 const char *BuiltinName = "";
2498#define GET_GCC_BUILTIN_NAME
2499#include "llvm/Intrinsics.gen"
2500#undef GET_GCC_BUILTIN_NAME
2501 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2502
2503 Out << BuiltinName;
2504 WroteCallee = true;
2505 break;
2506 }
2507 case Intrinsic::vastart:
2508 Out << "0; ";
2509
2510 Out << "va_start(*(va_list*)";
2511 writeOperand(I.getOperand(1));
2512 Out << ", ";
2513 // Output the last argument to the enclosing function...
2514 if (I.getParent()->getParent()->arg_empty()) {
2515 cerr << "The C backend does not currently support zero "
2516 << "argument varargs functions, such as '"
2517 << I.getParent()->getParent()->getName() << "'!\n";
2518 abort();
2519 }
2520 writeOperand(--I.getParent()->getParent()->arg_end());
2521 Out << ')';
2522 return;
2523 case Intrinsic::vaend:
2524 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2525 Out << "0; va_end(*(va_list*)";
2526 writeOperand(I.getOperand(1));
2527 Out << ')';
2528 } else {
2529 Out << "va_end(*(va_list*)0)";
2530 }
2531 return;
2532 case Intrinsic::vacopy:
2533 Out << "0; ";
2534 Out << "va_copy(*(va_list*)";
2535 writeOperand(I.getOperand(1));
2536 Out << ", *(va_list*)";
2537 writeOperand(I.getOperand(2));
2538 Out << ')';
2539 return;
2540 case Intrinsic::returnaddress:
2541 Out << "__builtin_return_address(";
2542 writeOperand(I.getOperand(1));
2543 Out << ')';
2544 return;
2545 case Intrinsic::frameaddress:
2546 Out << "__builtin_frame_address(";
2547 writeOperand(I.getOperand(1));
2548 Out << ')';
2549 return;
Dale Johannesenc339d8e2007-10-02 17:43:59 +00002550 case Intrinsic::powi:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002551 Out << "__builtin_powi(";
2552 writeOperand(I.getOperand(1));
2553 Out << ", ";
2554 writeOperand(I.getOperand(2));
2555 Out << ')';
2556 return;
2557 case Intrinsic::setjmp:
2558 Out << "setjmp(*(jmp_buf*)";
2559 writeOperand(I.getOperand(1));
2560 Out << ')';
2561 return;
2562 case Intrinsic::longjmp:
2563 Out << "longjmp(*(jmp_buf*)";
2564 writeOperand(I.getOperand(1));
2565 Out << ", ";
2566 writeOperand(I.getOperand(2));
2567 Out << ')';
2568 return;
2569 case Intrinsic::prefetch:
2570 Out << "LLVM_PREFETCH((const void *)";
2571 writeOperand(I.getOperand(1));
2572 Out << ", ";
2573 writeOperand(I.getOperand(2));
2574 Out << ", ";
2575 writeOperand(I.getOperand(3));
2576 Out << ")";
2577 return;
Chris Lattner7627df32007-11-28 21:26:17 +00002578 case Intrinsic::stacksave:
2579 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2580 // to work around GCC bugs (see PR1809).
2581 Out << "0; *((void**)&" << GetValueName(&I)
2582 << ") = __builtin_stack_save()";
2583 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002584 case Intrinsic::dbg_stoppoint: {
2585 // If we use writeOperand directly we get a "u" suffix which is rejected
2586 // by gcc.
2587 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2588
2589 Out << "\n#line "
2590 << SPI.getLine()
2591 << " \"" << SPI.getDirectory()
2592 << SPI.getFileName() << "\"\n";
2593 return;
2594 }
2595 }
2596 }
2597
2598 Value *Callee = I.getCalledValue();
2599
2600 const PointerType *PTy = cast<PointerType>(Callee->getType());
2601 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2602
2603 // If this is a call to a struct-return function, assign to the first
2604 // parameter instead of passing it to the call.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002605 const ParamAttrsList *PAL = I.getParamAttrs();
2606 bool isStructRet = I.isStructReturn();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002607 if (isStructRet) {
2608 Out << "*(";
2609 writeOperand(I.getOperand(1));
2610 Out << ") = ";
2611 }
2612
2613 if (I.isTailCall()) Out << " /*tail*/ ";
2614
2615 if (!WroteCallee) {
2616 // If this is an indirect call to a struct return function, we need to cast
2617 // the pointer.
2618 bool NeedsCast = isStructRet && !isa<Function>(Callee);
2619
2620 // GCC is a real PITA. It does not permit codegening casts of functions to
2621 // function pointers if they are in a call (it generates a trap instruction
2622 // instead!). We work around this by inserting a cast to void* in between
2623 // the function and the function pointer cast. Unfortunately, we can't just
2624 // form the constant expression here, because the folder will immediately
2625 // nuke it.
2626 //
2627 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2628 // that void* and function pointers have the same size. :( To deal with this
2629 // in the common case, we handle casts where the number of arguments passed
2630 // match exactly.
2631 //
2632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2633 if (CE->isCast())
2634 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2635 NeedsCast = true;
2636 Callee = RF;
2637 }
2638
2639 if (NeedsCast) {
2640 // Ok, just cast the pointer type.
2641 Out << "((";
2642 if (!isStructRet)
2643 printType(Out, I.getCalledValue()->getType());
2644 else
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002645 printStructReturnPointerFunctionType(Out, PAL,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002646 cast<PointerType>(I.getCalledValue()->getType()));
2647 Out << ")(void*)";
2648 }
2649 writeOperand(Callee);
2650 if (NeedsCast) Out << ')';
2651 }
2652
2653 Out << '(';
2654
2655 unsigned NumDeclaredParams = FTy->getNumParams();
2656
2657 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2658 unsigned ArgNo = 0;
2659 if (isStructRet) { // Skip struct return argument.
2660 ++AI;
2661 ++ArgNo;
2662 }
2663
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002664 bool PrintedArg = false;
2665 unsigned Idx = 1;
2666 for (; AI != AE; ++AI, ++ArgNo, ++Idx) {
2667 if (PrintedArg) Out << ", ";
2668 if (ArgNo < NumDeclaredParams &&
2669 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2670 Out << '(';
2671 printType(Out, FTy->getParamType(ArgNo),
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002672 /*isSigned=*/PAL && PAL->paramHasAttr(Idx, ParamAttr::SExt));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002673 Out << ')';
2674 }
2675 writeOperand(*AI);
2676 PrintedArg = true;
2677 }
2678 Out << ')';
2679}
2680
2681
2682//This converts the llvm constraint string to something gcc is expecting.
2683//TODO: work out platform independent constraints and factor those out
2684// of the per target tables
2685// handle multiple constraint codes
2686std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2687
2688 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2689
2690 const char** table = 0;
2691
2692 //Grab the translation table from TargetAsmInfo if it exists
2693 if (!TAsm) {
2694 std::string E;
Gordon Henriksen99e34ab2007-10-17 21:28:48 +00002695 const TargetMachineRegistry::entry* Match =
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002696 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2697 if (Match) {
2698 //Per platform Target Machines don't exist, so create it
2699 // this must be done only once
2700 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2701 TAsm = TM->getTargetAsmInfo();
2702 }
2703 }
2704 if (TAsm)
2705 table = TAsm->getAsmCBE();
2706
2707 //Search the translation table if it exists
2708 for (int i = 0; table && table[i]; i += 2)
2709 if (c.Codes[0] == table[i])
2710 return table[i+1];
2711
2712 //default is identity
2713 return c.Codes[0];
2714}
2715
2716//TODO: import logic from AsmPrinter.cpp
2717static std::string gccifyAsm(std::string asmstr) {
2718 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2719 if (asmstr[i] == '\n')
2720 asmstr.replace(i, 1, "\\n");
2721 else if (asmstr[i] == '\t')
2722 asmstr.replace(i, 1, "\\t");
2723 else if (asmstr[i] == '$') {
2724 if (asmstr[i + 1] == '{') {
2725 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2726 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2727 std::string n = "%" +
2728 asmstr.substr(a + 1, b - a - 1) +
2729 asmstr.substr(i + 2, a - i - 2);
2730 asmstr.replace(i, b - i + 1, n);
2731 i += n.size() - 1;
2732 } else
2733 asmstr.replace(i, 1, "%");
2734 }
2735 else if (asmstr[i] == '%')//grr
2736 { asmstr.replace(i, 1, "%%"); ++i;}
2737
2738 return asmstr;
2739}
2740
2741//TODO: assumptions about what consume arguments from the call are likely wrong
2742// handle communitivity
2743void CWriter::visitInlineAsm(CallInst &CI) {
2744 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2745 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2746 std::vector<std::pair<std::string, Value*> > Input;
2747 std::vector<std::pair<std::string, Value*> > Output;
2748 std::string Clobber;
2749 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2750 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2751 E = Constraints.end(); I != E; ++I) {
2752 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2753 std::string c =
2754 InterpretASMConstraint(*I);
2755 switch(I->Type) {
2756 default:
2757 assert(0 && "Unknown asm constraint");
2758 break;
2759 case InlineAsm::isInput: {
2760 if (c.size()) {
2761 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2762 ++count; //consume arg
2763 }
2764 break;
2765 }
2766 case InlineAsm::isOutput: {
2767 if (c.size()) {
2768 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2769 count ? CI.getOperand(count) : &CI));
2770 ++count; //consume arg
2771 }
2772 break;
2773 }
2774 case InlineAsm::isClobber: {
2775 if (c.size())
2776 Clobber += ",\"" + c + "\"";
2777 break;
2778 }
2779 }
2780 }
2781
2782 //fix up the asm string for gcc
2783 std::string asmstr = gccifyAsm(as->getAsmString());
2784
2785 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2786 Out << " :";
2787 for (std::vector<std::pair<std::string, Value*> >::iterator I = Output.begin(),
2788 E = Output.end(); I != E; ++I) {
2789 Out << "\"" << I->first << "\"(";
2790 writeOperandRaw(I->second);
2791 Out << ")";
2792 if (I + 1 != E)
2793 Out << ",";
2794 }
2795 Out << "\n :";
2796 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2797 E = Input.end(); I != E; ++I) {
2798 Out << "\"" << I->first << "\"(";
2799 writeOperandRaw(I->second);
2800 Out << ")";
2801 if (I + 1 != E)
2802 Out << ",";
2803 }
2804 if (Clobber.size())
2805 Out << "\n :" << Clobber.substr(1);
2806 Out << ")";
2807}
2808
2809void CWriter::visitMallocInst(MallocInst &I) {
2810 assert(0 && "lowerallocations pass didn't work!");
2811}
2812
2813void CWriter::visitAllocaInst(AllocaInst &I) {
2814 Out << '(';
2815 printType(Out, I.getType());
2816 Out << ") alloca(sizeof(";
2817 printType(Out, I.getType()->getElementType());
2818 Out << ')';
2819 if (I.isArrayAllocation()) {
2820 Out << " * " ;
2821 writeOperand(I.getOperand(0));
2822 }
2823 Out << ')';
2824}
2825
2826void CWriter::visitFreeInst(FreeInst &I) {
2827 assert(0 && "lowerallocations pass didn't work!");
2828}
2829
2830void CWriter::printIndexingExpression(Value *Ptr, gep_type_iterator I,
2831 gep_type_iterator E) {
2832 bool HasImplicitAddress = false;
2833 // If accessing a global value with no indexing, avoid *(&GV) syndrome
2834 if (isa<GlobalValue>(Ptr)) {
2835 HasImplicitAddress = true;
2836 } else if (isDirectAlloca(Ptr)) {
2837 HasImplicitAddress = true;
2838 }
2839
2840 if (I == E) {
2841 if (!HasImplicitAddress)
2842 Out << '*'; // Implicit zero first argument: '*x' is equivalent to 'x[0]'
2843
2844 writeOperandInternal(Ptr);
2845 return;
2846 }
2847
2848 const Constant *CI = dyn_cast<Constant>(I.getOperand());
2849 if (HasImplicitAddress && (!CI || !CI->isNullValue()))
2850 Out << "(&";
2851
2852 writeOperandInternal(Ptr);
2853
2854 if (HasImplicitAddress && (!CI || !CI->isNullValue())) {
2855 Out << ')';
2856 HasImplicitAddress = false; // HIA is only true if we haven't addressed yet
2857 }
2858
2859 assert(!HasImplicitAddress || (CI && CI->isNullValue()) &&
2860 "Can only have implicit address with direct accessing");
2861
2862 if (HasImplicitAddress) {
2863 ++I;
2864 } else if (CI && CI->isNullValue()) {
2865 gep_type_iterator TmpI = I; ++TmpI;
2866
2867 // Print out the -> operator if possible...
2868 if (TmpI != E && isa<StructType>(*TmpI)) {
2869 Out << (HasImplicitAddress ? "." : "->");
2870 Out << "field" << cast<ConstantInt>(TmpI.getOperand())->getZExtValue();
2871 I = ++TmpI;
2872 }
2873 }
2874
2875 for (; I != E; ++I)
2876 if (isa<StructType>(*I)) {
2877 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
2878 } else {
2879 Out << '[';
Chris Lattner7ce1ee42007-09-22 20:16:48 +00002880 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002881 Out << ']';
2882 }
2883}
2884
2885void CWriter::visitLoadInst(LoadInst &I) {
2886 Out << '*';
2887 if (I.isVolatile()) {
2888 Out << "((";
2889 printType(Out, I.getType(), false, "volatile*");
2890 Out << ")";
2891 }
2892
2893 writeOperand(I.getOperand(0));
2894
2895 if (I.isVolatile())
2896 Out << ')';
2897}
2898
2899void CWriter::visitStoreInst(StoreInst &I) {
2900 Out << '*';
2901 if (I.isVolatile()) {
2902 Out << "((";
2903 printType(Out, I.getOperand(0)->getType(), false, " volatile*");
2904 Out << ")";
2905 }
2906 writeOperand(I.getPointerOperand());
2907 if (I.isVolatile()) Out << ')';
2908 Out << " = ";
2909 Value *Operand = I.getOperand(0);
2910 Constant *BitMask = 0;
2911 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
2912 if (!ITy->isPowerOf2ByteWidth())
2913 // We have a bit width that doesn't match an even power-of-2 byte
2914 // size. Consequently we must & the value with the type's bit mask
2915 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
2916 if (BitMask)
2917 Out << "((";
2918 writeOperand(Operand);
2919 if (BitMask) {
2920 Out << ") & ";
2921 printConstant(BitMask);
2922 Out << ")";
2923 }
2924}
2925
2926void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
2927 Out << '&';
2928 printIndexingExpression(I.getPointerOperand(), gep_type_begin(I),
2929 gep_type_end(I));
2930}
2931
2932void CWriter::visitVAArgInst(VAArgInst &I) {
2933 Out << "va_arg(*(va_list*)";
2934 writeOperand(I.getOperand(0));
2935 Out << ", ";
2936 printType(Out, I.getType());
2937 Out << ");\n ";
2938}
2939
2940//===----------------------------------------------------------------------===//
2941// External Interface declaration
2942//===----------------------------------------------------------------------===//
2943
2944bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
2945 std::ostream &o,
2946 CodeGenFileType FileType,
2947 bool Fast) {
2948 if (FileType != TargetMachine::AssemblyFile) return true;
2949
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00002950 PM.add(createGCLoweringPass());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002951 PM.add(createLowerAllocationsPass(true));
2952 PM.add(createLowerInvokePass());
2953 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
2954 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
2955 PM.add(new CWriter(o));
Gordon Henriksendf87fdc2008-01-07 01:30:38 +00002956 PM.add(createCollectorMetadataDeleter());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002957 return false;
2958}