blob: 4d006f135c1c867d62648504e9b07d578206a29d [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
130#. Unnamed temporaries are numbered sequentially
131
132It also shows a convention that we follow in this document. When
133demonstrating instructions, we will follow an instruction with a comment
134that defines the type and name of value produced.
135
136High Level Structure
137====================
138
139Module Structure
140----------------
141
142LLVM programs are composed of ``Module``'s, each of which is a
143translation unit of the input programs. Each module consists of
144functions, global variables, and symbol table entries. Modules may be
145combined together with the LLVM linker, which merges function (and
146global variable) definitions, resolves forward declarations, and merges
147symbol table entries. Here is an example of the "hello world" module:
148
149.. code-block:: llvm
150
Michael Liao2faa0f32013-03-06 18:24:34 +0000151 ; Declare the string constant as a global constant.
152 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000153
Michael Liao2faa0f32013-03-06 18:24:34 +0000154 ; External declaration of the puts function
155 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000156
157 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000158 define i32 @main() { ; i32()*
159 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000160 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
161
Michael Liao2faa0f32013-03-06 18:24:34 +0000162 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000163 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000164 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000165 }
166
167 ; Named metadata
168 !1 = metadata !{i32 42}
169 !foo = !{!1, null}
170
171This example is made up of a :ref:`global variable <globalvars>` named
172"``.str``", an external declaration of the "``puts``" function, a
173:ref:`function definition <functionstructure>` for "``main``" and
174:ref:`named metadata <namedmetadatastructure>` "``foo``".
175
176In general, a module is made up of a list of global values (where both
177functions and global variables are global values). Global values are
178represented by a pointer to a memory location (in this case, a pointer
179to an array of char, and a pointer to a function), and have one of the
180following :ref:`linkage types <linkage>`.
181
182.. _linkage:
183
184Linkage Types
185-------------
186
187All Global Variables and Functions have one of the following types of
188linkage:
189
190``private``
191 Global values with "``private``" linkage are only directly
192 accessible by objects in the current module. In particular, linking
193 code into a module with an private global value may cause the
194 private to be renamed as necessary to avoid collisions. Because the
195 symbol is private to the module, all references can be updated. This
196 doesn't show up in any symbol table in the object file.
197``linker_private``
198 Similar to ``private``, but the symbol is passed through the
199 assembler and evaluated by the linker. Unlike normal strong symbols,
200 they are removed by the linker from the final linked image
201 (executable or dynamic library).
202``linker_private_weak``
203 Similar to "``linker_private``", but the symbol is weak. Note that
204 ``linker_private_weak`` symbols are subject to coalescing by the
205 linker. The symbols are removed by the linker from the final linked
206 image (executable or dynamic library).
207``internal``
208 Similar to private, but the value shows as a local symbol
209 (``STB_LOCAL`` in the case of ELF) in the object file. This
210 corresponds to the notion of the '``static``' keyword in C.
211``available_externally``
212 Globals with "``available_externally``" linkage are never emitted
213 into the object file corresponding to the LLVM module. They exist to
214 allow inlining and other optimizations to take place given knowledge
215 of the definition of the global, which is known to be somewhere
216 outside the module. Globals with ``available_externally`` linkage
217 are allowed to be discarded at will, and are otherwise the same as
218 ``linkonce_odr``. This linkage type is only allowed on definitions,
219 not declarations.
220``linkonce``
221 Globals with "``linkonce``" linkage are merged with other globals of
222 the same name when linkage occurs. This can be used to implement
223 some forms of inline functions, templates, or other code which must
224 be generated in each translation unit that uses it, but where the
225 body may be overridden with a more definitive definition later.
226 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
227 that ``linkonce`` linkage does not actually allow the optimizer to
228 inline the body of this function into callers because it doesn't
229 know if this definition of the function is the definitive definition
230 within the program or whether it will be overridden by a stronger
231 definition. To enable inlining and other optimizations, use
232 "``linkonce_odr``" linkage.
233``weak``
234 "``weak``" linkage has the same merging semantics as ``linkonce``
235 linkage, except that unreferenced globals with ``weak`` linkage may
236 not be discarded. This is used for globals that are declared "weak"
237 in C source code.
238``common``
239 "``common``" linkage is most similar to "``weak``" linkage, but they
240 are used for tentative definitions in C, such as "``int X;``" at
241 global scope. Symbols with "``common``" linkage are merged in the
242 same way as ``weak symbols``, and they may not be deleted if
243 unreferenced. ``common`` symbols may not have an explicit section,
244 must have a zero initializer, and may not be marked
245 ':ref:`constant <globalvars>`'. Functions and aliases may not have
246 common linkage.
247
248.. _linkage_appending:
249
250``appending``
251 "``appending``" linkage may only be applied to global variables of
252 pointer to array type. When two global variables with appending
253 linkage are linked together, the two global arrays are appended
254 together. This is the LLVM, typesafe, equivalent of having the
255 system linker append together "sections" with identical names when
256 .o files are linked.
257``extern_weak``
258 The semantics of this linkage follow the ELF object file model: the
259 symbol is weak until linked, if not linked, the symbol becomes null
260 instead of being an undefined reference.
261``linkonce_odr``, ``weak_odr``
262 Some languages allow differing globals to be merged, such as two
263 functions with different semantics. Other languages, such as
264 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000265 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000266 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
267 global will only be merged with equivalent globals. These linkage
268 types are otherwise the same as their non-``odr`` versions.
269``linkonce_odr_auto_hide``
270 Similar to "``linkonce_odr``", but nothing in the translation unit
271 takes the address of this definition. For instance, functions that
272 had an inline definition, but the compiler decided not to inline it.
273 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
274 symbols are removed by the linker from the final linked image
275 (executable or dynamic library).
276``external``
277 If none of the above identifiers are used, the global is externally
278 visible, meaning that it participates in linkage and can be used to
279 resolve external symbol references.
280
281The next two types of linkage are targeted for Microsoft Windows
282platform only. They are designed to support importing (exporting)
283symbols from (to) DLLs (Dynamic Link Libraries).
284
285``dllimport``
286 "``dllimport``" linkage causes the compiler to reference a function
287 or variable via a global pointer to a pointer that is set up by the
288 DLL exporting the symbol. On Microsoft Windows targets, the pointer
289 name is formed by combining ``__imp_`` and the function or variable
290 name.
291``dllexport``
292 "``dllexport``" linkage causes the compiler to provide a global
293 pointer to a pointer in a DLL, so that it can be referenced with the
294 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
295 name is formed by combining ``__imp_`` and the function or variable
296 name.
297
298For example, since the "``.LC0``" variable is defined to be internal, if
299another module defined a "``.LC0``" variable and was linked with this
300one, one of the two would be renamed, preventing a collision. Since
301"``main``" and "``puts``" are external (i.e., lacking any linkage
302declarations), they are accessible outside of the current module.
303
304It is illegal for a function *declaration* to have any linkage type
305other than ``external``, ``dllimport`` or ``extern_weak``.
306
307Aliases can have only ``external``, ``internal``, ``weak`` or
308``weak_odr`` linkages.
309
310.. _callingconv:
311
312Calling Conventions
313-------------------
314
315LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
316:ref:`invokes <i_invoke>` can all have an optional calling convention
317specified for the call. The calling convention of any pair of dynamic
318caller/callee must match, or the behavior of the program is undefined.
319The following calling conventions are supported by LLVM, and more may be
320added in the future:
321
322"``ccc``" - The C calling convention
323 This calling convention (the default if no other calling convention
324 is specified) matches the target C calling conventions. This calling
325 convention supports varargs function calls and tolerates some
326 mismatch in the declared prototype and implemented declaration of
327 the function (as does normal C).
328"``fastcc``" - The fast calling convention
329 This calling convention attempts to make calls as fast as possible
330 (e.g. by passing things in registers). This calling convention
331 allows the target to use whatever tricks it wants to produce fast
332 code for the target, without having to conform to an externally
333 specified ABI (Application Binary Interface). `Tail calls can only
334 be optimized when this, the GHC or the HiPE convention is
335 used. <CodeGenerator.html#id80>`_ This calling convention does not
336 support varargs and requires the prototype of all callees to exactly
337 match the prototype of the function definition.
338"``coldcc``" - The cold calling convention
339 This calling convention attempts to make code in the caller as
340 efficient as possible under the assumption that the call is not
341 commonly executed. As such, these calls often preserve all registers
342 so that the call does not break any live ranges in the caller side.
343 This calling convention does not support varargs and requires the
344 prototype of all callees to exactly match the prototype of the
345 function definition.
346"``cc 10``" - GHC convention
347 This calling convention has been implemented specifically for use by
348 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
349 It passes everything in registers, going to extremes to achieve this
350 by disabling callee save registers. This calling convention should
351 not be used lightly but only for specific situations such as an
352 alternative to the *register pinning* performance technique often
353 used when implementing functional programming languages. At the
354 moment only X86 supports this convention and it has the following
355 limitations:
356
357 - On *X86-32* only supports up to 4 bit type parameters. No
358 floating point types are supported.
359 - On *X86-64* only supports up to 10 bit type parameters and 6
360 floating point parameters.
361
362 This calling convention supports `tail call
363 optimization <CodeGenerator.html#id80>`_ but requires both the
364 caller and callee are using it.
365"``cc 11``" - The HiPE calling convention
366 This calling convention has been implemented specifically for use by
367 the `High-Performance Erlang
368 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
369 native code compiler of the `Ericsson's Open Source Erlang/OTP
370 system <http://www.erlang.org/download.shtml>`_. It uses more
371 registers for argument passing than the ordinary C calling
372 convention and defines no callee-saved registers. The calling
373 convention properly supports `tail call
374 optimization <CodeGenerator.html#id80>`_ but requires that both the
375 caller and the callee use it. It uses a *register pinning*
376 mechanism, similar to GHC's convention, for keeping frequently
377 accessed runtime components pinned to specific hardware registers.
378 At the moment only X86 supports this convention (both 32 and 64
379 bit).
380"``cc <n>``" - Numbered convention
381 Any calling convention may be specified by number, allowing
382 target-specific calling conventions to be used. Target specific
383 calling conventions start at 64.
384
385More calling conventions can be added/defined on an as-needed basis, to
386support Pascal conventions or any other well-known target-independent
387convention.
388
389Visibility Styles
390-----------------
391
392All Global Variables and Functions have one of the following visibility
393styles:
394
395"``default``" - Default style
396 On targets that use the ELF object file format, default visibility
397 means that the declaration is visible to other modules and, in
398 shared libraries, means that the declared entity may be overridden.
399 On Darwin, default visibility means that the declaration is visible
400 to other modules. Default visibility corresponds to "external
401 linkage" in the language.
402"``hidden``" - Hidden style
403 Two declarations of an object with hidden visibility refer to the
404 same object if they are in the same shared object. Usually, hidden
405 visibility indicates that the symbol will not be placed into the
406 dynamic symbol table, so no other module (executable or shared
407 library) can reference it directly.
408"``protected``" - Protected style
409 On ELF, protected visibility indicates that the symbol will be
410 placed in the dynamic symbol table, but that references within the
411 defining module will bind to the local symbol. That is, the symbol
412 cannot be overridden by another module.
413
414Named Types
415-----------
416
417LLVM IR allows you to specify name aliases for certain types. This can
418make it easier to read the IR and make the IR more condensed
419(particularly when recursive types are involved). An example of a name
420specification is:
421
422.. code-block:: llvm
423
424 %mytype = type { %mytype*, i32 }
425
426You may give a name to any :ref:`type <typesystem>` except
427":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
428expected with the syntax "%mytype".
429
430Note that type names are aliases for the structural type that they
431indicate, and that you can therefore specify multiple names for the same
432type. This often leads to confusing behavior when dumping out a .ll
433file. Since LLVM IR uses structural typing, the name is not part of the
434type. When printing out LLVM IR, the printer will pick *one name* to
435render all types of a particular shape. This means that if you have code
436where two different source types end up having the same LLVM type, that
437the dumper will sometimes print the "wrong" or unexpected type. This is
438an important design point and isn't going to change.
439
440.. _globalvars:
441
442Global Variables
443----------------
444
445Global variables define regions of memory allocated at compilation time
446instead of run-time. Global variables may optionally be initialized, may
447have an explicit section to be placed in, and may have an optional
448explicit alignment specified.
449
450A variable may be defined as ``thread_local``, which means that it will
451not be shared by threads (each thread will have a separated copy of the
452variable). Not all targets support thread-local variables. Optionally, a
453TLS model may be specified:
454
455``localdynamic``
456 For variables that are only used within the current shared library.
457``initialexec``
458 For variables in modules that will not be loaded dynamically.
459``localexec``
460 For variables defined in the executable and only used within it.
461
462The models correspond to the ELF TLS models; see `ELF Handling For
463Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
464more information on under which circumstances the different models may
465be used. The target may choose a different TLS model if the specified
466model is not supported, or if a better choice of model can be made.
467
Michael Gottesmanf5735882013-01-31 05:48:48 +0000468A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000469the contents of the variable will **never** be modified (enabling better
470optimization, allowing the global data to be placed in the read-only
471section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000472initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000473variable.
474
475LLVM explicitly allows *declarations* of global variables to be marked
476constant, even if the final definition of the global is not. This
477capability can be used to enable slightly better optimization of the
478program, but requires the language definition to guarantee that
479optimizations based on the 'constantness' are valid for the translation
480units that do not include the definition.
481
482As SSA values, global variables define pointer values that are in scope
483(i.e. they dominate) all basic blocks in the program. Global variables
484always define a pointer to their "content" type because they describe a
485region of memory, and all memory objects in LLVM are accessed through
486pointers.
487
488Global variables can be marked with ``unnamed_addr`` which indicates
489that the address is not significant, only the content. Constants marked
490like this can be merged with other constants if they have the same
491initializer. Note that a constant with significant address *can* be
492merged with a ``unnamed_addr`` constant, the result being a constant
493whose address is significant.
494
495A global variable may be declared to reside in a target-specific
496numbered address space. For targets that support them, address spaces
497may affect how optimizations are performed and/or what target
498instructions are used to access the variable. The default address space
499is zero. The address space qualifier must precede any other attributes.
500
501LLVM allows an explicit section to be specified for globals. If the
502target supports it, it will emit globals to the section specified.
503
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000504By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000505variables defined within the module are not modified from their
506initial values before the start of the global initializer. This is
507true even for variables potentially accessible from outside the
508module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000509``@llvm.used``. This assumption may be suppressed by marking the
510variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000511
Sean Silvaf722b002012-12-07 10:36:55 +0000512An explicit alignment may be specified for a global, which must be a
513power of 2. If not present, or if the alignment is set to zero, the
514alignment of the global is set by the target to whatever it feels
515convenient. If an explicit alignment is specified, the global is forced
516to have exactly that alignment. Targets and optimizers are not allowed
517to over-align the global if the global has an assigned section. In this
518case, the extra alignment could be observable: for example, code could
519assume that the globals are densely packed in their section and try to
520iterate over them as an array, alignment padding would break this
521iteration.
522
523For example, the following defines a global in a numbered address space
524with an initializer, section, and alignment:
525
526.. code-block:: llvm
527
528 @G = addrspace(5) constant float 1.0, section "foo", align 4
529
530The following example defines a thread-local global with the
531``initialexec`` TLS model:
532
533.. code-block:: llvm
534
535 @G = thread_local(initialexec) global i32 0, align 4
536
537.. _functionstructure:
538
539Functions
540---------
541
542LLVM function definitions consist of the "``define``" keyword, an
543optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
544style <visibility>`, an optional :ref:`calling convention <callingconv>`,
545an optional ``unnamed_addr`` attribute, a return type, an optional
546:ref:`parameter attribute <paramattrs>` for the return type, a function
547name, a (possibly empty) argument list (each with optional :ref:`parameter
548attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
549an optional section, an optional alignment, an optional :ref:`garbage
550collector name <gc>`, an opening curly brace, a list of basic blocks,
551and a closing curly brace.
552
553LLVM function declarations consist of the "``declare``" keyword, an
554optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
555style <visibility>`, an optional :ref:`calling convention <callingconv>`,
556an optional ``unnamed_addr`` attribute, a return type, an optional
557:ref:`parameter attribute <paramattrs>` for the return type, a function
558name, a possibly empty list of arguments, an optional alignment, and an
559optional :ref:`garbage collector name <gc>`.
560
561A function definition contains a list of basic blocks, forming the CFG
562(Control Flow Graph) for the function. Each basic block may optionally
563start with a label (giving the basic block a symbol table entry),
564contains a list of instructions, and ends with a
565:ref:`terminator <terminators>` instruction (such as a branch or function
566return).
567
568The first basic block in a function is special in two ways: it is
569immediately executed on entrance to the function, and it is not allowed
570to have predecessor basic blocks (i.e. there can not be any branches to
571the entry block of a function). Because the block can have no
572predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
573
574LLVM allows an explicit section to be specified for functions. If the
575target supports it, it will emit functions to the section specified.
576
577An explicit alignment may be specified for a function. If not present,
578or if the alignment is set to zero, the alignment of the function is set
579by the target to whatever it feels convenient. If an explicit alignment
580is specified, the function is forced to have at least that much
581alignment. All alignments must be a power of 2.
582
583If the ``unnamed_addr`` attribute is given, the address is know to not
584be significant and two identical functions can be merged.
585
586Syntax::
587
588 define [linkage] [visibility]
589 [cconv] [ret attrs]
590 <ResultType> @<FunctionName> ([argument list])
591 [fn Attrs] [section "name"] [align N]
592 [gc] { ... }
593
594Aliases
595-------
596
597Aliases act as "second name" for the aliasee value (which can be either
598function, global variable, another alias or bitcast of global value).
599Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
600:ref:`visibility style <visibility>`.
601
602Syntax::
603
604 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
605
606.. _namedmetadatastructure:
607
608Named Metadata
609--------------
610
611Named metadata is a collection of metadata. :ref:`Metadata
612nodes <metadata>` (but not metadata strings) are the only valid
613operands for a named metadata.
614
615Syntax::
616
617 ; Some unnamed metadata nodes, which are referenced by the named metadata.
618 !0 = metadata !{metadata !"zero"}
619 !1 = metadata !{metadata !"one"}
620 !2 = metadata !{metadata !"two"}
621 ; A named metadata.
622 !name = !{!0, !1, !2}
623
624.. _paramattrs:
625
626Parameter Attributes
627--------------------
628
629The return type and each parameter of a function type may have a set of
630*parameter attributes* associated with them. Parameter attributes are
631used to communicate additional information about the result or
632parameters of a function. Parameter attributes are considered to be part
633of the function, not of the function type, so functions with different
634parameter attributes can have the same function type.
635
636Parameter attributes are simple keywords that follow the type specified.
637If multiple parameter attributes are needed, they are space separated.
638For example:
639
640.. code-block:: llvm
641
642 declare i32 @printf(i8* noalias nocapture, ...)
643 declare i32 @atoi(i8 zeroext)
644 declare signext i8 @returns_signed_char()
645
646Note that any attributes for the function result (``nounwind``,
647``readonly``) come immediately after the argument list.
648
649Currently, only the following parameter attributes are defined:
650
651``zeroext``
652 This indicates to the code generator that the parameter or return
653 value should be zero-extended to the extent required by the target's
654 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
655 the caller (for a parameter) or the callee (for a return value).
656``signext``
657 This indicates to the code generator that the parameter or return
658 value should be sign-extended to the extent required by the target's
659 ABI (which is usually 32-bits) by the caller (for a parameter) or
660 the callee (for a return value).
661``inreg``
662 This indicates that this parameter or return value should be treated
663 in a special target-dependent fashion during while emitting code for
664 a function call or return (usually, by putting it in a register as
665 opposed to memory, though some targets use it to distinguish between
666 two different kinds of registers). Use of this attribute is
667 target-specific.
668``byval``
669 This indicates that the pointer parameter should really be passed by
670 value to the function. The attribute implies that a hidden copy of
671 the pointee is made between the caller and the callee, so the callee
672 is unable to modify the value in the caller. This attribute is only
673 valid on LLVM pointer arguments. It is generally used to pass
674 structs and arrays by value, but is also valid on pointers to
675 scalars. The copy is considered to belong to the caller not the
676 callee (for example, ``readonly`` functions should not write to
677 ``byval`` parameters). This is not a valid attribute for return
678 values.
679
680 The byval attribute also supports specifying an alignment with the
681 align attribute. It indicates the alignment of the stack slot to
682 form and the known alignment of the pointer specified to the call
683 site. If the alignment is not specified, then the code generator
684 makes a target-specific assumption.
685
686``sret``
687 This indicates that the pointer parameter specifies the address of a
688 structure that is the return value of the function in the source
689 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000690 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000691 not to trap and to be properly aligned. This may only be applied to
692 the first parameter. This is not a valid attribute for return
693 values.
694``noalias``
695 This indicates that pointer values `*based* <pointeraliasing>` on
696 the argument or return value do not alias pointer values which are
697 not *based* on it, ignoring certain "irrelevant" dependencies. For a
698 call to the parent function, dependencies between memory references
699 from before or after the call and from those during the call are
700 "irrelevant" to the ``noalias`` keyword for the arguments and return
701 value used in that call. The caller shares the responsibility with
702 the callee for ensuring that these requirements are met. For further
703 details, please see the discussion of the NoAlias response in `alias
704 analysis <AliasAnalysis.html#MustMayNo>`_.
705
706 Note that this definition of ``noalias`` is intentionally similar
707 to the definition of ``restrict`` in C99 for function arguments,
708 though it is slightly weaker.
709
710 For function return values, C99's ``restrict`` is not meaningful,
711 while LLVM's ``noalias`` is.
712``nocapture``
713 This indicates that the callee does not make any copies of the
714 pointer that outlive the callee itself. This is not a valid
715 attribute for return values.
716
717.. _nest:
718
719``nest``
720 This indicates that the pointer parameter can be excised using the
721 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000722 attribute for return values and can only be applied to one parameter.
723
724``returned``
725 This indicates that the value of the function always returns the value
726 of the parameter as its return value. This is an optimization hint to
727 the code generator when generating the caller, allowing tail call
728 optimization and omission of register saves and restores in some cases;
729 it is not checked or enforced when generating the callee. The parameter
730 and the function return type must be valid operands for the
731 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
732 return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000733
734.. _gc:
735
736Garbage Collector Names
737-----------------------
738
739Each function may specify a garbage collector name, which is simply a
740string:
741
742.. code-block:: llvm
743
744 define void @f() gc "name" { ... }
745
746The compiler declares the supported values of *name*. Specifying a
747collector which will cause the compiler to alter its output in order to
748support the named garbage collection algorithm.
749
Bill Wendling95ce4c22013-02-06 06:52:58 +0000750.. _attrgrp:
751
752Attribute Groups
753----------------
754
755Attribute groups are groups of attributes that are referenced by objects within
756the IR. They are important for keeping ``.ll`` files readable, because a lot of
757functions will use the same set of attributes. In the degenerative case of a
758``.ll`` file that corresponds to a single ``.c`` file, the single attribute
759group will capture the important command line flags used to build that file.
760
761An attribute group is a module-level object. To use an attribute group, an
762object references the attribute group's ID (e.g. ``#37``). An object may refer
763to more than one attribute group. In that situation, the attributes from the
764different groups are merged.
765
766Here is an example of attribute groups for a function that should always be
767inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
768
769.. code-block:: llvm
770
771 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000772 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000773
774 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000775 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000776
777 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
778 define void @f() #0 #1 { ... }
779
Sean Silvaf722b002012-12-07 10:36:55 +0000780.. _fnattrs:
781
782Function Attributes
783-------------------
784
785Function attributes are set to communicate additional information about
786a function. Function attributes are considered to be part of the
787function, not of the function type, so functions with different function
788attributes can have the same function type.
789
790Function attributes are simple keywords that follow the type specified.
791If multiple attributes are needed, they are space separated. For
792example:
793
794.. code-block:: llvm
795
796 define void @f() noinline { ... }
797 define void @f() alwaysinline { ... }
798 define void @f() alwaysinline optsize { ... }
799 define void @f() optsize { ... }
800
Sean Silvaf722b002012-12-07 10:36:55 +0000801``alignstack(<n>)``
802 This attribute indicates that, when emitting the prologue and
803 epilogue, the backend should forcibly align the stack pointer.
804 Specify the desired alignment, which must be a power of two, in
805 parentheses.
806``alwaysinline``
807 This attribute indicates that the inliner should attempt to inline
808 this function into callers whenever possible, ignoring any active
809 inlining size threshold for this caller.
810``nonlazybind``
811 This attribute suppresses lazy symbol binding for the function. This
812 may make calls to the function faster, at the cost of extra program
813 startup time if the function is not called during program startup.
814``inlinehint``
815 This attribute indicates that the source code contained a hint that
816 inlining this function is desirable (such as the "inline" keyword in
817 C/C++). It is just a hint; it imposes no requirements on the
818 inliner.
819``naked``
820 This attribute disables prologue / epilogue emission for the
821 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000822``nobuiltin``
823 This indicates that the callee function at a call site is not
824 recognized as a built-in function. LLVM will retain the original call
825 and not replace it with equivalent code based on the semantics of the
826 built-in function. This is only valid at call sites, not on function
827 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000828``noduplicate``
829 This attribute indicates that calls to the function cannot be
830 duplicated. A call to a ``noduplicate`` function may be moved
831 within its parent function, but may not be duplicated within
832 its parent function.
833
834 A function containing a ``noduplicate`` call may still
835 be an inlining candidate, provided that the call is not
836 duplicated by inlining. That implies that the function has
837 internal linkage and only has one call site, so the original
838 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000839``noimplicitfloat``
840 This attributes disables implicit floating point instructions.
841``noinline``
842 This attribute indicates that the inliner should never inline this
843 function in any situation. This attribute may not be used together
844 with the ``alwaysinline`` attribute.
845``noredzone``
846 This attribute indicates that the code generator should not use a
847 red zone, even if the target-specific ABI normally permits it.
848``noreturn``
849 This function attribute indicates that the function never returns
850 normally. This produces undefined behavior at runtime if the
851 function ever does dynamically return.
852``nounwind``
853 This function attribute indicates that the function never returns
854 with an unwind or exceptional control flow. If the function does
855 unwind, its runtime behavior is undefined.
856``optsize``
857 This attribute suggests that optimization passes and code generator
858 passes make choices that keep the code size of this function low,
859 and otherwise do optimizations specifically to reduce code size.
860``readnone``
861 This attribute indicates that the function computes its result (or
862 decides to unwind an exception) based strictly on its arguments,
863 without dereferencing any pointer arguments or otherwise accessing
864 any mutable state (e.g. memory, control registers, etc) visible to
865 caller functions. It does not write through any pointer arguments
866 (including ``byval`` arguments) and never changes any state visible
867 to callers. This means that it cannot unwind exceptions by calling
868 the ``C++`` exception throwing methods.
869``readonly``
870 This attribute indicates that the function does not write through
871 any pointer arguments (including ``byval`` arguments) or otherwise
872 modify any state (e.g. memory, control registers, etc) visible to
873 caller functions. It may dereference pointer arguments and read
874 state that may be set in the caller. A readonly function always
875 returns the same value (or unwinds an exception identically) when
876 called with the same set of arguments and global state. It cannot
877 unwind an exception by calling the ``C++`` exception throwing
878 methods.
879``returns_twice``
880 This attribute indicates that this function can return twice. The C
881 ``setjmp`` is an example of such a function. The compiler disables
882 some optimizations (like tail calls) in the caller of these
883 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000884``sanitize_address``
885 This attribute indicates that AddressSanitizer checks
886 (dynamic address safety analysis) are enabled for this function.
887``sanitize_memory``
888 This attribute indicates that MemorySanitizer checks (dynamic detection
889 of accesses to uninitialized memory) are enabled for this function.
890``sanitize_thread``
891 This attribute indicates that ThreadSanitizer checks
892 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000893``ssp``
894 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000895 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000896 placed on the stack before the local variables that's checked upon
897 return from the function to see if it has been overwritten. A
898 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000899 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000900
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000901 - Character arrays larger than ``ssp-buffer-size`` (default 8).
902 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
903 - Calls to alloca() with variable sizes or constant sizes greater than
904 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000905
906 If a function that has an ``ssp`` attribute is inlined into a
907 function that doesn't have an ``ssp`` attribute, then the resulting
908 function will have an ``ssp`` attribute.
909``sspreq``
910 This attribute indicates that the function should *always* emit a
911 stack smashing protector. This overrides the ``ssp`` function
912 attribute.
913
914 If a function that has an ``sspreq`` attribute is inlined into a
915 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000916 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
917 an ``sspreq`` attribute.
918``sspstrong``
919 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000920 protector. This attribute causes a strong heuristic to be used when
921 determining if a function needs stack protectors. The strong heuristic
922 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000923
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000924 - Arrays of any size and type
925 - Aggregates containing an array of any size and type.
926 - Calls to alloca().
927 - Local variables that have had their address taken.
928
929 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000930
931 If a function that has an ``sspstrong`` attribute is inlined into a
932 function that doesn't have an ``sspstrong`` attribute, then the
933 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000934``uwtable``
935 This attribute indicates that the ABI being targeted requires that
936 an unwind table entry be produce for this function even if we can
937 show that no exceptions passes by it. This is normally the case for
938 the ELF x86-64 abi, but it can be disabled for some compilation
939 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000940
941.. _moduleasm:
942
943Module-Level Inline Assembly
944----------------------------
945
946Modules may contain "module-level inline asm" blocks, which corresponds
947to the GCC "file scope inline asm" blocks. These blocks are internally
948concatenated by LLVM and treated as a single unit, but may be separated
949in the ``.ll`` file if desired. The syntax is very simple:
950
951.. code-block:: llvm
952
953 module asm "inline asm code goes here"
954 module asm "more can go here"
955
956The strings can contain any character by escaping non-printable
957characters. The escape sequence used is simply "\\xx" where "xx" is the
958two digit hex code for the number.
959
960The inline asm code is simply printed to the machine code .s file when
961assembly code is generated.
962
963Data Layout
964-----------
965
966A module may specify a target specific data layout string that specifies
967how data is to be laid out in memory. The syntax for the data layout is
968simply:
969
970.. code-block:: llvm
971
972 target datalayout = "layout specification"
973
974The *layout specification* consists of a list of specifications
975separated by the minus sign character ('-'). Each specification starts
976with a letter and may include other information after the letter to
977define some aspect of the data layout. The specifications accepted are
978as follows:
979
980``E``
981 Specifies that the target lays out data in big-endian form. That is,
982 the bits with the most significance have the lowest address
983 location.
984``e``
985 Specifies that the target lays out data in little-endian form. That
986 is, the bits with the least significance have the lowest address
987 location.
988``S<size>``
989 Specifies the natural alignment of the stack in bits. Alignment
990 promotion of stack variables is limited to the natural stack
991 alignment to avoid dynamic stack realignment. The stack alignment
992 must be a multiple of 8-bits. If omitted, the natural stack
993 alignment defaults to "unspecified", which does not prevent any
994 alignment promotions.
995``p[n]:<size>:<abi>:<pref>``
996 This specifies the *size* of a pointer and its ``<abi>`` and
997 ``<pref>``\erred alignments for address space ``n``. All sizes are in
998 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
999 preceding ``:`` should be omitted too. The address space, ``n`` is
1000 optional, and if not specified, denotes the default address space 0.
1001 The value of ``n`` must be in the range [1,2^23).
1002``i<size>:<abi>:<pref>``
1003 This specifies the alignment for an integer type of a given bit
1004 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1005``v<size>:<abi>:<pref>``
1006 This specifies the alignment for a vector type of a given bit
1007 ``<size>``.
1008``f<size>:<abi>:<pref>``
1009 This specifies the alignment for a floating point type of a given bit
1010 ``<size>``. Only values of ``<size>`` that are supported by the target
1011 will work. 32 (float) and 64 (double) are supported on all targets; 80
1012 or 128 (different flavors of long double) are also supported on some
1013 targets.
1014``a<size>:<abi>:<pref>``
1015 This specifies the alignment for an aggregate type of a given bit
1016 ``<size>``.
1017``s<size>:<abi>:<pref>``
1018 This specifies the alignment for a stack object of a given bit
1019 ``<size>``.
1020``n<size1>:<size2>:<size3>...``
1021 This specifies a set of native integer widths for the target CPU in
1022 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1023 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1024 this set are considered to support most general arithmetic operations
1025 efficiently.
1026
1027When constructing the data layout for a given target, LLVM starts with a
1028default set of specifications which are then (possibly) overridden by
1029the specifications in the ``datalayout`` keyword. The default
1030specifications are given in this list:
1031
1032- ``E`` - big endian
1033- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001034- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001035- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1036- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1037- ``i16:16:16`` - i16 is 16-bit aligned
1038- ``i32:32:32`` - i32 is 32-bit aligned
1039- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1040 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001041- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001042- ``f32:32:32`` - float is 32-bit aligned
1043- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001044- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001045- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1046- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001047- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001048
1049When LLVM is determining the alignment for a given type, it uses the
1050following rules:
1051
1052#. If the type sought is an exact match for one of the specifications,
1053 that specification is used.
1054#. If no match is found, and the type sought is an integer type, then
1055 the smallest integer type that is larger than the bitwidth of the
1056 sought type is used. If none of the specifications are larger than
1057 the bitwidth then the largest integer type is used. For example,
1058 given the default specifications above, the i7 type will use the
1059 alignment of i8 (next largest) while both i65 and i256 will use the
1060 alignment of i64 (largest specified).
1061#. If no match is found, and the type sought is a vector type, then the
1062 largest vector type that is smaller than the sought vector type will
1063 be used as a fall back. This happens because <128 x double> can be
1064 implemented in terms of 64 <2 x double>, for example.
1065
1066The function of the data layout string may not be what you expect.
1067Notably, this is not a specification from the frontend of what alignment
1068the code generator should use.
1069
1070Instead, if specified, the target data layout is required to match what
1071the ultimate *code generator* expects. This string is used by the
1072mid-level optimizers to improve code, and this only works if it matches
1073what the ultimate code generator uses. If you would like to generate IR
1074that does not embed this target-specific detail into the IR, then you
1075don't have to specify the string. This will disable some optimizations
1076that require precise layout information, but this also prevents those
1077optimizations from introducing target specificity into the IR.
1078
1079.. _pointeraliasing:
1080
1081Pointer Aliasing Rules
1082----------------------
1083
1084Any memory access must be done through a pointer value associated with
1085an address range of the memory access, otherwise the behavior is
1086undefined. Pointer values are associated with address ranges according
1087to the following rules:
1088
1089- A pointer value is associated with the addresses associated with any
1090 value it is *based* on.
1091- An address of a global variable is associated with the address range
1092 of the variable's storage.
1093- The result value of an allocation instruction is associated with the
1094 address range of the allocated storage.
1095- A null pointer in the default address-space is associated with no
1096 address.
1097- An integer constant other than zero or a pointer value returned from
1098 a function not defined within LLVM may be associated with address
1099 ranges allocated through mechanisms other than those provided by
1100 LLVM. Such ranges shall not overlap with any ranges of addresses
1101 allocated by mechanisms provided by LLVM.
1102
1103A pointer value is *based* on another pointer value according to the
1104following rules:
1105
1106- A pointer value formed from a ``getelementptr`` operation is *based*
1107 on the first operand of the ``getelementptr``.
1108- The result value of a ``bitcast`` is *based* on the operand of the
1109 ``bitcast``.
1110- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1111 values that contribute (directly or indirectly) to the computation of
1112 the pointer's value.
1113- The "*based* on" relationship is transitive.
1114
1115Note that this definition of *"based"* is intentionally similar to the
1116definition of *"based"* in C99, though it is slightly weaker.
1117
1118LLVM IR does not associate types with memory. The result type of a
1119``load`` merely indicates the size and alignment of the memory from
1120which to load, as well as the interpretation of the value. The first
1121operand type of a ``store`` similarly only indicates the size and
1122alignment of the store.
1123
1124Consequently, type-based alias analysis, aka TBAA, aka
1125``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1126:ref:`Metadata <metadata>` may be used to encode additional information
1127which specialized optimization passes may use to implement type-based
1128alias analysis.
1129
1130.. _volatile:
1131
1132Volatile Memory Accesses
1133------------------------
1134
1135Certain memory accesses, such as :ref:`load <i_load>`'s,
1136:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1137marked ``volatile``. The optimizers must not change the number of
1138volatile operations or change their order of execution relative to other
1139volatile operations. The optimizers *may* change the order of volatile
1140operations relative to non-volatile operations. This is not Java's
1141"volatile" and has no cross-thread synchronization behavior.
1142
Andrew Trick9a6dd022013-01-30 21:19:35 +00001143IR-level volatile loads and stores cannot safely be optimized into
1144llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1145flagged volatile. Likewise, the backend should never split or merge
1146target-legal volatile load/store instructions.
1147
Andrew Trick946317d2013-01-31 00:49:39 +00001148.. admonition:: Rationale
1149
1150 Platforms may rely on volatile loads and stores of natively supported
1151 data width to be executed as single instruction. For example, in C
1152 this holds for an l-value of volatile primitive type with native
1153 hardware support, but not necessarily for aggregate types. The
1154 frontend upholds these expectations, which are intentionally
1155 unspecified in the IR. The rules above ensure that IR transformation
1156 do not violate the frontend's contract with the language.
1157
Sean Silvaf722b002012-12-07 10:36:55 +00001158.. _memmodel:
1159
1160Memory Model for Concurrent Operations
1161--------------------------------------
1162
1163The LLVM IR does not define any way to start parallel threads of
1164execution or to register signal handlers. Nonetheless, there are
1165platform-specific ways to create them, and we define LLVM IR's behavior
1166in their presence. This model is inspired by the C++0x memory model.
1167
1168For a more informal introduction to this model, see the :doc:`Atomics`.
1169
1170We define a *happens-before* partial order as the least partial order
1171that
1172
1173- Is a superset of single-thread program order, and
1174- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1175 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1176 techniques, like pthread locks, thread creation, thread joining,
1177 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1178 Constraints <ordering>`).
1179
1180Note that program order does not introduce *happens-before* edges
1181between a thread and signals executing inside that thread.
1182
1183Every (defined) read operation (load instructions, memcpy, atomic
1184loads/read-modify-writes, etc.) R reads a series of bytes written by
1185(defined) write operations (store instructions, atomic
1186stores/read-modify-writes, memcpy, etc.). For the purposes of this
1187section, initialized globals are considered to have a write of the
1188initializer which is atomic and happens before any other read or write
1189of the memory in question. For each byte of a read R, R\ :sub:`byte`
1190may see any write to the same byte, except:
1191
1192- If write\ :sub:`1` happens before write\ :sub:`2`, and
1193 write\ :sub:`2` happens before R\ :sub:`byte`, then
1194 R\ :sub:`byte` does not see write\ :sub:`1`.
1195- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1196 R\ :sub:`byte` does not see write\ :sub:`3`.
1197
1198Given that definition, R\ :sub:`byte` is defined as follows:
1199
1200- If R is volatile, the result is target-dependent. (Volatile is
1201 supposed to give guarantees which can support ``sig_atomic_t`` in
1202 C/C++, and may be used for accesses to addresses which do not behave
1203 like normal memory. It does not generally provide cross-thread
1204 synchronization.)
1205- Otherwise, if there is no write to the same byte that happens before
1206 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1207- Otherwise, if R\ :sub:`byte` may see exactly one write,
1208 R\ :sub:`byte` returns the value written by that write.
1209- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1210 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1211 Memory Ordering Constraints <ordering>` section for additional
1212 constraints on how the choice is made.
1213- Otherwise R\ :sub:`byte` returns ``undef``.
1214
1215R returns the value composed of the series of bytes it read. This
1216implies that some bytes within the value may be ``undef`` **without**
1217the entire value being ``undef``. Note that this only defines the
1218semantics of the operation; it doesn't mean that targets will emit more
1219than one instruction to read the series of bytes.
1220
1221Note that in cases where none of the atomic intrinsics are used, this
1222model places only one restriction on IR transformations on top of what
1223is required for single-threaded execution: introducing a store to a byte
1224which might not otherwise be stored is not allowed in general.
1225(Specifically, in the case where another thread might write to and read
1226from an address, introducing a store can change a load that may see
1227exactly one write into a load that may see multiple writes.)
1228
1229.. _ordering:
1230
1231Atomic Memory Ordering Constraints
1232----------------------------------
1233
1234Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1235:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1236:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1237an ordering parameter that determines which other atomic instructions on
1238the same address they *synchronize with*. These semantics are borrowed
1239from Java and C++0x, but are somewhat more colloquial. If these
1240descriptions aren't precise enough, check those specs (see spec
1241references in the :doc:`atomics guide <Atomics>`).
1242:ref:`fence <i_fence>` instructions treat these orderings somewhat
1243differently since they don't take an address. See that instruction's
1244documentation for details.
1245
1246For a simpler introduction to the ordering constraints, see the
1247:doc:`Atomics`.
1248
1249``unordered``
1250 The set of values that can be read is governed by the happens-before
1251 partial order. A value cannot be read unless some operation wrote
1252 it. This is intended to provide a guarantee strong enough to model
1253 Java's non-volatile shared variables. This ordering cannot be
1254 specified for read-modify-write operations; it is not strong enough
1255 to make them atomic in any interesting way.
1256``monotonic``
1257 In addition to the guarantees of ``unordered``, there is a single
1258 total order for modifications by ``monotonic`` operations on each
1259 address. All modification orders must be compatible with the
1260 happens-before order. There is no guarantee that the modification
1261 orders can be combined to a global total order for the whole program
1262 (and this often will not be possible). The read in an atomic
1263 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1264 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1265 order immediately before the value it writes. If one atomic read
1266 happens before another atomic read of the same address, the later
1267 read must see the same value or a later value in the address's
1268 modification order. This disallows reordering of ``monotonic`` (or
1269 stronger) operations on the same address. If an address is written
1270 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1271 read that address repeatedly, the other threads must eventually see
1272 the write. This corresponds to the C++0x/C1x
1273 ``memory_order_relaxed``.
1274``acquire``
1275 In addition to the guarantees of ``monotonic``, a
1276 *synchronizes-with* edge may be formed with a ``release`` operation.
1277 This is intended to model C++'s ``memory_order_acquire``.
1278``release``
1279 In addition to the guarantees of ``monotonic``, if this operation
1280 writes a value which is subsequently read by an ``acquire``
1281 operation, it *synchronizes-with* that operation. (This isn't a
1282 complete description; see the C++0x definition of a release
1283 sequence.) This corresponds to the C++0x/C1x
1284 ``memory_order_release``.
1285``acq_rel`` (acquire+release)
1286 Acts as both an ``acquire`` and ``release`` operation on its
1287 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1288``seq_cst`` (sequentially consistent)
1289 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1290 operation which only reads, ``release`` for an operation which only
1291 writes), there is a global total order on all
1292 sequentially-consistent operations on all addresses, which is
1293 consistent with the *happens-before* partial order and with the
1294 modification orders of all the affected addresses. Each
1295 sequentially-consistent read sees the last preceding write to the
1296 same address in this global order. This corresponds to the C++0x/C1x
1297 ``memory_order_seq_cst`` and Java volatile.
1298
1299.. _singlethread:
1300
1301If an atomic operation is marked ``singlethread``, it only *synchronizes
1302with* or participates in modification and seq\_cst total orderings with
1303other operations running in the same thread (for example, in signal
1304handlers).
1305
1306.. _fastmath:
1307
1308Fast-Math Flags
1309---------------
1310
1311LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1312:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1313:ref:`frem <i_frem>`) have the following flags that can set to enable
1314otherwise unsafe floating point operations
1315
1316``nnan``
1317 No NaNs - Allow optimizations to assume the arguments and result are not
1318 NaN. Such optimizations are required to retain defined behavior over
1319 NaNs, but the value of the result is undefined.
1320
1321``ninf``
1322 No Infs - Allow optimizations to assume the arguments and result are not
1323 +/-Inf. Such optimizations are required to retain defined behavior over
1324 +/-Inf, but the value of the result is undefined.
1325
1326``nsz``
1327 No Signed Zeros - Allow optimizations to treat the sign of a zero
1328 argument or result as insignificant.
1329
1330``arcp``
1331 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1332 argument rather than perform division.
1333
1334``fast``
1335 Fast - Allow algebraically equivalent transformations that may
1336 dramatically change results in floating point (e.g. reassociate). This
1337 flag implies all the others.
1338
1339.. _typesystem:
1340
1341Type System
1342===========
1343
1344The LLVM type system is one of the most important features of the
1345intermediate representation. Being typed enables a number of
1346optimizations to be performed on the intermediate representation
1347directly, without having to do extra analyses on the side before the
1348transformation. A strong type system makes it easier to read the
1349generated code and enables novel analyses and transformations that are
1350not feasible to perform on normal three address code representations.
1351
1352Type Classifications
1353--------------------
1354
1355The types fall into a few useful classifications:
1356
1357
1358.. list-table::
1359 :header-rows: 1
1360
1361 * - Classification
1362 - Types
1363
1364 * - :ref:`integer <t_integer>`
1365 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1366 ``i64``, ...
1367
1368 * - :ref:`floating point <t_floating>`
1369 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1370 ``ppc_fp128``
1371
1372
1373 * - first class
1374
1375 .. _t_firstclass:
1376
1377 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1378 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1379 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1380 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1381
1382 * - :ref:`primitive <t_primitive>`
1383 - :ref:`label <t_label>`,
1384 :ref:`void <t_void>`,
1385 :ref:`integer <t_integer>`,
1386 :ref:`floating point <t_floating>`,
1387 :ref:`x86mmx <t_x86mmx>`,
1388 :ref:`metadata <t_metadata>`.
1389
1390 * - :ref:`derived <t_derived>`
1391 - :ref:`array <t_array>`,
1392 :ref:`function <t_function>`,
1393 :ref:`pointer <t_pointer>`,
1394 :ref:`structure <t_struct>`,
1395 :ref:`vector <t_vector>`,
1396 :ref:`opaque <t_opaque>`.
1397
1398The :ref:`first class <t_firstclass>` types are perhaps the most important.
1399Values of these types are the only ones which can be produced by
1400instructions.
1401
1402.. _t_primitive:
1403
1404Primitive Types
1405---------------
1406
1407The primitive types are the fundamental building blocks of the LLVM
1408system.
1409
1410.. _t_integer:
1411
1412Integer Type
1413^^^^^^^^^^^^
1414
1415Overview:
1416"""""""""
1417
1418The integer type is a very simple type that simply specifies an
1419arbitrary bit width for the integer type desired. Any bit width from 1
1420bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1421
1422Syntax:
1423"""""""
1424
1425::
1426
1427 iN
1428
1429The number of bits the integer will occupy is specified by the ``N``
1430value.
1431
1432Examples:
1433"""""""""
1434
1435+----------------+------------------------------------------------+
1436| ``i1`` | a single-bit integer. |
1437+----------------+------------------------------------------------+
1438| ``i32`` | a 32-bit integer. |
1439+----------------+------------------------------------------------+
1440| ``i1942652`` | a really big integer of over 1 million bits. |
1441+----------------+------------------------------------------------+
1442
1443.. _t_floating:
1444
1445Floating Point Types
1446^^^^^^^^^^^^^^^^^^^^
1447
1448.. list-table::
1449 :header-rows: 1
1450
1451 * - Type
1452 - Description
1453
1454 * - ``half``
1455 - 16-bit floating point value
1456
1457 * - ``float``
1458 - 32-bit floating point value
1459
1460 * - ``double``
1461 - 64-bit floating point value
1462
1463 * - ``fp128``
1464 - 128-bit floating point value (112-bit mantissa)
1465
1466 * - ``x86_fp80``
1467 - 80-bit floating point value (X87)
1468
1469 * - ``ppc_fp128``
1470 - 128-bit floating point value (two 64-bits)
1471
1472.. _t_x86mmx:
1473
1474X86mmx Type
1475^^^^^^^^^^^
1476
1477Overview:
1478"""""""""
1479
1480The x86mmx type represents a value held in an MMX register on an x86
1481machine. The operations allowed on it are quite limited: parameters and
1482return values, load and store, and bitcast. User-specified MMX
1483instructions are represented as intrinsic or asm calls with arguments
1484and/or results of this type. There are no arrays, vectors or constants
1485of this type.
1486
1487Syntax:
1488"""""""
1489
1490::
1491
1492 x86mmx
1493
1494.. _t_void:
1495
1496Void Type
1497^^^^^^^^^
1498
1499Overview:
1500"""""""""
1501
1502The void type does not represent any value and has no size.
1503
1504Syntax:
1505"""""""
1506
1507::
1508
1509 void
1510
1511.. _t_label:
1512
1513Label Type
1514^^^^^^^^^^
1515
1516Overview:
1517"""""""""
1518
1519The label type represents code labels.
1520
1521Syntax:
1522"""""""
1523
1524::
1525
1526 label
1527
1528.. _t_metadata:
1529
1530Metadata Type
1531^^^^^^^^^^^^^
1532
1533Overview:
1534"""""""""
1535
1536The metadata type represents embedded metadata. No derived types may be
1537created from metadata except for :ref:`function <t_function>` arguments.
1538
1539Syntax:
1540"""""""
1541
1542::
1543
1544 metadata
1545
1546.. _t_derived:
1547
1548Derived Types
1549-------------
1550
1551The real power in LLVM comes from the derived types in the system. This
1552is what allows a programmer to represent arrays, functions, pointers,
1553and other useful types. Each of these types contain one or more element
1554types which may be a primitive type, or another derived type. For
1555example, it is possible to have a two dimensional array, using an array
1556as the element type of another array.
1557
1558.. _t_aggregate:
1559
1560Aggregate Types
1561^^^^^^^^^^^^^^^
1562
1563Aggregate Types are a subset of derived types that can contain multiple
1564member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1565aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1566aggregate types.
1567
1568.. _t_array:
1569
1570Array Type
1571^^^^^^^^^^
1572
1573Overview:
1574"""""""""
1575
1576The array type is a very simple derived type that arranges elements
1577sequentially in memory. The array type requires a size (number of
1578elements) and an underlying data type.
1579
1580Syntax:
1581"""""""
1582
1583::
1584
1585 [<# elements> x <elementtype>]
1586
1587The number of elements is a constant integer value; ``elementtype`` may
1588be any type with a size.
1589
1590Examples:
1591"""""""""
1592
1593+------------------+--------------------------------------+
1594| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1595+------------------+--------------------------------------+
1596| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1597+------------------+--------------------------------------+
1598| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1599+------------------+--------------------------------------+
1600
1601Here are some examples of multidimensional arrays:
1602
1603+-----------------------------+----------------------------------------------------------+
1604| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1605+-----------------------------+----------------------------------------------------------+
1606| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1607+-----------------------------+----------------------------------------------------------+
1608| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1609+-----------------------------+----------------------------------------------------------+
1610
1611There is no restriction on indexing beyond the end of the array implied
1612by a static type (though there are restrictions on indexing beyond the
1613bounds of an allocated object in some cases). This means that
1614single-dimension 'variable sized array' addressing can be implemented in
1615LLVM with a zero length array type. An implementation of 'pascal style
1616arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1617example.
1618
1619.. _t_function:
1620
1621Function Type
1622^^^^^^^^^^^^^
1623
1624Overview:
1625"""""""""
1626
1627The function type can be thought of as a function signature. It consists
1628of a return type and a list of formal parameter types. The return type
1629of a function type is a first class type or a void type.
1630
1631Syntax:
1632"""""""
1633
1634::
1635
1636 <returntype> (<parameter list>)
1637
1638...where '``<parameter list>``' is a comma-separated list of type
1639specifiers. Optionally, the parameter list may include a type ``...``,
1640which indicates that the function takes a variable number of arguments.
1641Variable argument functions can access their arguments with the
1642:ref:`variable argument handling intrinsic <int_varargs>` functions.
1643'``<returntype>``' is any type except :ref:`label <t_label>`.
1644
1645Examples:
1646"""""""""
1647
1648+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1649| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1650+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001651| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001652+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1653| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1654+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1655| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1656+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1657
1658.. _t_struct:
1659
1660Structure Type
1661^^^^^^^^^^^^^^
1662
1663Overview:
1664"""""""""
1665
1666The structure type is used to represent a collection of data members
1667together in memory. The elements of a structure may be any type that has
1668a size.
1669
1670Structures in memory are accessed using '``load``' and '``store``' by
1671getting a pointer to a field with the '``getelementptr``' instruction.
1672Structures in registers are accessed using the '``extractvalue``' and
1673'``insertvalue``' instructions.
1674
1675Structures may optionally be "packed" structures, which indicate that
1676the alignment of the struct is one byte, and that there is no padding
1677between the elements. In non-packed structs, padding between field types
1678is inserted as defined by the DataLayout string in the module, which is
1679required to match what the underlying code generator expects.
1680
1681Structures can either be "literal" or "identified". A literal structure
1682is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1683identified types are always defined at the top level with a name.
1684Literal types are uniqued by their contents and can never be recursive
1685or opaque since there is no way to write one. Identified types can be
1686recursive, can be opaqued, and are never uniqued.
1687
1688Syntax:
1689"""""""
1690
1691::
1692
1693 %T1 = type { <type list> } ; Identified normal struct type
1694 %T2 = type <{ <type list> }> ; Identified packed struct type
1695
1696Examples:
1697"""""""""
1698
1699+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1700| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1701+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001702| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001703+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1704| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1705+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1706
1707.. _t_opaque:
1708
1709Opaque Structure Types
1710^^^^^^^^^^^^^^^^^^^^^^
1711
1712Overview:
1713"""""""""
1714
1715Opaque structure types are used to represent named structure types that
1716do not have a body specified. This corresponds (for example) to the C
1717notion of a forward declared structure.
1718
1719Syntax:
1720"""""""
1721
1722::
1723
1724 %X = type opaque
1725 %52 = type opaque
1726
1727Examples:
1728"""""""""
1729
1730+--------------+-------------------+
1731| ``opaque`` | An opaque type. |
1732+--------------+-------------------+
1733
1734.. _t_pointer:
1735
1736Pointer Type
1737^^^^^^^^^^^^
1738
1739Overview:
1740"""""""""
1741
1742The pointer type is used to specify memory locations. Pointers are
1743commonly used to reference objects in memory.
1744
1745Pointer types may have an optional address space attribute defining the
1746numbered address space where the pointed-to object resides. The default
1747address space is number zero. The semantics of non-zero address spaces
1748are target-specific.
1749
1750Note that LLVM does not permit pointers to void (``void*``) nor does it
1751permit pointers to labels (``label*``). Use ``i8*`` instead.
1752
1753Syntax:
1754"""""""
1755
1756::
1757
1758 <type> *
1759
1760Examples:
1761"""""""""
1762
1763+-------------------------+--------------------------------------------------------------------------------------------------------------+
1764| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1765+-------------------------+--------------------------------------------------------------------------------------------------------------+
1766| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1767+-------------------------+--------------------------------------------------------------------------------------------------------------+
1768| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1769+-------------------------+--------------------------------------------------------------------------------------------------------------+
1770
1771.. _t_vector:
1772
1773Vector Type
1774^^^^^^^^^^^
1775
1776Overview:
1777"""""""""
1778
1779A vector type is a simple derived type that represents a vector of
1780elements. Vector types are used when multiple primitive data are
1781operated in parallel using a single instruction (SIMD). A vector type
1782requires a size (number of elements) and an underlying primitive data
1783type. Vector types are considered :ref:`first class <t_firstclass>`.
1784
1785Syntax:
1786"""""""
1787
1788::
1789
1790 < <# elements> x <elementtype> >
1791
1792The number of elements is a constant integer value larger than 0;
1793elementtype may be any integer or floating point type, or a pointer to
1794these types. Vectors of size zero are not allowed.
1795
1796Examples:
1797"""""""""
1798
1799+-------------------+--------------------------------------------------+
1800| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1801+-------------------+--------------------------------------------------+
1802| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1803+-------------------+--------------------------------------------------+
1804| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1805+-------------------+--------------------------------------------------+
1806| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1807+-------------------+--------------------------------------------------+
1808
1809Constants
1810=========
1811
1812LLVM has several different basic types of constants. This section
1813describes them all and their syntax.
1814
1815Simple Constants
1816----------------
1817
1818**Boolean constants**
1819 The two strings '``true``' and '``false``' are both valid constants
1820 of the ``i1`` type.
1821**Integer constants**
1822 Standard integers (such as '4') are constants of the
1823 :ref:`integer <t_integer>` type. Negative numbers may be used with
1824 integer types.
1825**Floating point constants**
1826 Floating point constants use standard decimal notation (e.g.
1827 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1828 hexadecimal notation (see below). The assembler requires the exact
1829 decimal value of a floating-point constant. For example, the
1830 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1831 decimal in binary. Floating point constants must have a :ref:`floating
1832 point <t_floating>` type.
1833**Null pointer constants**
1834 The identifier '``null``' is recognized as a null pointer constant
1835 and must be of :ref:`pointer type <t_pointer>`.
1836
1837The one non-intuitive notation for constants is the hexadecimal form of
1838floating point constants. For example, the form
1839'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1840than) '``double 4.5e+15``'. The only time hexadecimal floating point
1841constants are required (and the only time that they are generated by the
1842disassembler) is when a floating point constant must be emitted but it
1843cannot be represented as a decimal floating point number in a reasonable
1844number of digits. For example, NaN's, infinities, and other special
1845values are represented in their IEEE hexadecimal format so that assembly
1846and disassembly do not cause any bits to change in the constants.
1847
1848When using the hexadecimal form, constants of types half, float, and
1849double are represented using the 16-digit form shown above (which
1850matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001851must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001852precision, respectively. Hexadecimal format is always used for long
1853double, and there are three forms of long double. The 80-bit format used
1854by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1855128-bit format used by PowerPC (two adjacent doubles) is represented by
1856``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001857represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1858will only work if they match the long double format on your target.
1859The IEEE 16-bit format (half precision) is represented by ``0xH``
1860followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1861(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001862
1863There are no constants of type x86mmx.
1864
1865Complex Constants
1866-----------------
1867
1868Complex constants are a (potentially recursive) combination of simple
1869constants and smaller complex constants.
1870
1871**Structure constants**
1872 Structure constants are represented with notation similar to
1873 structure type definitions (a comma separated list of elements,
1874 surrounded by braces (``{}``)). For example:
1875 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1876 "``@G = external global i32``". Structure constants must have
1877 :ref:`structure type <t_struct>`, and the number and types of elements
1878 must match those specified by the type.
1879**Array constants**
1880 Array constants are represented with notation similar to array type
1881 definitions (a comma separated list of elements, surrounded by
1882 square brackets (``[]``)). For example:
1883 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1884 :ref:`array type <t_array>`, and the number and types of elements must
1885 match those specified by the type.
1886**Vector constants**
1887 Vector constants are represented with notation similar to vector
1888 type definitions (a comma separated list of elements, surrounded by
1889 less-than/greater-than's (``<>``)). For example:
1890 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1891 must have :ref:`vector type <t_vector>`, and the number and types of
1892 elements must match those specified by the type.
1893**Zero initialization**
1894 The string '``zeroinitializer``' can be used to zero initialize a
1895 value to zero of *any* type, including scalar and
1896 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1897 having to print large zero initializers (e.g. for large arrays) and
1898 is always exactly equivalent to using explicit zero initializers.
1899**Metadata node**
1900 A metadata node is a structure-like constant with :ref:`metadata
1901 type <t_metadata>`. For example:
1902 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1903 constants that are meant to be interpreted as part of the
1904 instruction stream, metadata is a place to attach additional
1905 information such as debug info.
1906
1907Global Variable and Function Addresses
1908--------------------------------------
1909
1910The addresses of :ref:`global variables <globalvars>` and
1911:ref:`functions <functionstructure>` are always implicitly valid
1912(link-time) constants. These constants are explicitly referenced when
1913the :ref:`identifier for the global <identifiers>` is used and always have
1914:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1915file:
1916
1917.. code-block:: llvm
1918
1919 @X = global i32 17
1920 @Y = global i32 42
1921 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1922
1923.. _undefvalues:
1924
1925Undefined Values
1926----------------
1927
1928The string '``undef``' can be used anywhere a constant is expected, and
1929indicates that the user of the value may receive an unspecified
1930bit-pattern. Undefined values may be of any type (other than '``label``'
1931or '``void``') and be used anywhere a constant is permitted.
1932
1933Undefined values are useful because they indicate to the compiler that
1934the program is well defined no matter what value is used. This gives the
1935compiler more freedom to optimize. Here are some examples of
1936(potentially surprising) transformations that are valid (in pseudo IR):
1937
1938.. code-block:: llvm
1939
1940 %A = add %X, undef
1941 %B = sub %X, undef
1942 %C = xor %X, undef
1943 Safe:
1944 %A = undef
1945 %B = undef
1946 %C = undef
1947
1948This is safe because all of the output bits are affected by the undef
1949bits. Any output bit can have a zero or one depending on the input bits.
1950
1951.. code-block:: llvm
1952
1953 %A = or %X, undef
1954 %B = and %X, undef
1955 Safe:
1956 %A = -1
1957 %B = 0
1958 Unsafe:
1959 %A = undef
1960 %B = undef
1961
1962These logical operations have bits that are not always affected by the
1963input. For example, if ``%X`` has a zero bit, then the output of the
1964'``and``' operation will always be a zero for that bit, no matter what
1965the corresponding bit from the '``undef``' is. As such, it is unsafe to
1966optimize or assume that the result of the '``and``' is '``undef``'.
1967However, it is safe to assume that all bits of the '``undef``' could be
19680, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1969all the bits of the '``undef``' operand to the '``or``' could be set,
1970allowing the '``or``' to be folded to -1.
1971
1972.. code-block:: llvm
1973
1974 %A = select undef, %X, %Y
1975 %B = select undef, 42, %Y
1976 %C = select %X, %Y, undef
1977 Safe:
1978 %A = %X (or %Y)
1979 %B = 42 (or %Y)
1980 %C = %Y
1981 Unsafe:
1982 %A = undef
1983 %B = undef
1984 %C = undef
1985
1986This set of examples shows that undefined '``select``' (and conditional
1987branch) conditions can go *either way*, but they have to come from one
1988of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1989both known to have a clear low bit, then ``%A`` would have to have a
1990cleared low bit. However, in the ``%C`` example, the optimizer is
1991allowed to assume that the '``undef``' operand could be the same as
1992``%Y``, allowing the whole '``select``' to be eliminated.
1993
1994.. code-block:: llvm
1995
1996 %A = xor undef, undef
1997
1998 %B = undef
1999 %C = xor %B, %B
2000
2001 %D = undef
2002 %E = icmp lt %D, 4
2003 %F = icmp gte %D, 4
2004
2005 Safe:
2006 %A = undef
2007 %B = undef
2008 %C = undef
2009 %D = undef
2010 %E = undef
2011 %F = undef
2012
2013This example points out that two '``undef``' operands are not
2014necessarily the same. This can be surprising to people (and also matches
2015C semantics) where they assume that "``X^X``" is always zero, even if
2016``X`` is undefined. This isn't true for a number of reasons, but the
2017short answer is that an '``undef``' "variable" can arbitrarily change
2018its value over its "live range". This is true because the variable
2019doesn't actually *have a live range*. Instead, the value is logically
2020read from arbitrary registers that happen to be around when needed, so
2021the value is not necessarily consistent over time. In fact, ``%A`` and
2022``%C`` need to have the same semantics or the core LLVM "replace all
2023uses with" concept would not hold.
2024
2025.. code-block:: llvm
2026
2027 %A = fdiv undef, %X
2028 %B = fdiv %X, undef
2029 Safe:
2030 %A = undef
2031 b: unreachable
2032
2033These examples show the crucial difference between an *undefined value*
2034and *undefined behavior*. An undefined value (like '``undef``') is
2035allowed to have an arbitrary bit-pattern. This means that the ``%A``
2036operation can be constant folded to '``undef``', because the '``undef``'
2037could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2038However, in the second example, we can make a more aggressive
2039assumption: because the ``undef`` is allowed to be an arbitrary value,
2040we are allowed to assume that it could be zero. Since a divide by zero
2041has *undefined behavior*, we are allowed to assume that the operation
2042does not execute at all. This allows us to delete the divide and all
2043code after it. Because the undefined operation "can't happen", the
2044optimizer can assume that it occurs in dead code.
2045
2046.. code-block:: llvm
2047
2048 a: store undef -> %X
2049 b: store %X -> undef
2050 Safe:
2051 a: <deleted>
2052 b: unreachable
2053
2054These examples reiterate the ``fdiv`` example: a store *of* an undefined
2055value can be assumed to not have any effect; we can assume that the
2056value is overwritten with bits that happen to match what was already
2057there. However, a store *to* an undefined location could clobber
2058arbitrary memory, therefore, it has undefined behavior.
2059
2060.. _poisonvalues:
2061
2062Poison Values
2063-------------
2064
2065Poison values are similar to :ref:`undef values <undefvalues>`, however
2066they also represent the fact that an instruction or constant expression
2067which cannot evoke side effects has nevertheless detected a condition
2068which results in undefined behavior.
2069
2070There is currently no way of representing a poison value in the IR; they
2071only exist when produced by operations such as :ref:`add <i_add>` with
2072the ``nsw`` flag.
2073
2074Poison value behavior is defined in terms of value *dependence*:
2075
2076- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2077- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2078 their dynamic predecessor basic block.
2079- Function arguments depend on the corresponding actual argument values
2080 in the dynamic callers of their functions.
2081- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2082 instructions that dynamically transfer control back to them.
2083- :ref:`Invoke <i_invoke>` instructions depend on the
2084 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2085 call instructions that dynamically transfer control back to them.
2086- Non-volatile loads and stores depend on the most recent stores to all
2087 of the referenced memory addresses, following the order in the IR
2088 (including loads and stores implied by intrinsics such as
2089 :ref:`@llvm.memcpy <int_memcpy>`.)
2090- An instruction with externally visible side effects depends on the
2091 most recent preceding instruction with externally visible side
2092 effects, following the order in the IR. (This includes :ref:`volatile
2093 operations <volatile>`.)
2094- An instruction *control-depends* on a :ref:`terminator
2095 instruction <terminators>` if the terminator instruction has
2096 multiple successors and the instruction is always executed when
2097 control transfers to one of the successors, and may not be executed
2098 when control is transferred to another.
2099- Additionally, an instruction also *control-depends* on a terminator
2100 instruction if the set of instructions it otherwise depends on would
2101 be different if the terminator had transferred control to a different
2102 successor.
2103- Dependence is transitive.
2104
2105Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2106with the additional affect that any instruction which has a *dependence*
2107on a poison value has undefined behavior.
2108
2109Here are some examples:
2110
2111.. code-block:: llvm
2112
2113 entry:
2114 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2115 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2116 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2117 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2118
2119 store i32 %poison, i32* @g ; Poison value stored to memory.
2120 %poison2 = load i32* @g ; Poison value loaded back from memory.
2121
2122 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2123
2124 %narrowaddr = bitcast i32* @g to i16*
2125 %wideaddr = bitcast i32* @g to i64*
2126 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2127 %poison4 = load i64* %wideaddr ; Returns a poison value.
2128
2129 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2130 br i1 %cmp, label %true, label %end ; Branch to either destination.
2131
2132 true:
2133 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2134 ; it has undefined behavior.
2135 br label %end
2136
2137 end:
2138 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2139 ; Both edges into this PHI are
2140 ; control-dependent on %cmp, so this
2141 ; always results in a poison value.
2142
2143 store volatile i32 0, i32* @g ; This would depend on the store in %true
2144 ; if %cmp is true, or the store in %entry
2145 ; otherwise, so this is undefined behavior.
2146
2147 br i1 %cmp, label %second_true, label %second_end
2148 ; The same branch again, but this time the
2149 ; true block doesn't have side effects.
2150
2151 second_true:
2152 ; No side effects!
2153 ret void
2154
2155 second_end:
2156 store volatile i32 0, i32* @g ; This time, the instruction always depends
2157 ; on the store in %end. Also, it is
2158 ; control-equivalent to %end, so this is
2159 ; well-defined (ignoring earlier undefined
2160 ; behavior in this example).
2161
2162.. _blockaddress:
2163
2164Addresses of Basic Blocks
2165-------------------------
2166
2167``blockaddress(@function, %block)``
2168
2169The '``blockaddress``' constant computes the address of the specified
2170basic block in the specified function, and always has an ``i8*`` type.
2171Taking the address of the entry block is illegal.
2172
2173This value only has defined behavior when used as an operand to the
2174':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2175against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002176undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002177no label is equal to the null pointer. This may be passed around as an
2178opaque pointer sized value as long as the bits are not inspected. This
2179allows ``ptrtoint`` and arithmetic to be performed on these values so
2180long as the original value is reconstituted before the ``indirectbr``
2181instruction.
2182
2183Finally, some targets may provide defined semantics when using the value
2184as the operand to an inline assembly, but that is target specific.
2185
2186Constant Expressions
2187--------------------
2188
2189Constant expressions are used to allow expressions involving other
2190constants to be used as constants. Constant expressions may be of any
2191:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2192that does not have side effects (e.g. load and call are not supported).
2193The following is the syntax for constant expressions:
2194
2195``trunc (CST to TYPE)``
2196 Truncate a constant to another type. The bit size of CST must be
2197 larger than the bit size of TYPE. Both types must be integers.
2198``zext (CST to TYPE)``
2199 Zero extend a constant to another type. The bit size of CST must be
2200 smaller than the bit size of TYPE. Both types must be integers.
2201``sext (CST to TYPE)``
2202 Sign extend a constant to another type. The bit size of CST must be
2203 smaller than the bit size of TYPE. Both types must be integers.
2204``fptrunc (CST to TYPE)``
2205 Truncate a floating point constant to another floating point type.
2206 The size of CST must be larger than the size of TYPE. Both types
2207 must be floating point.
2208``fpext (CST to TYPE)``
2209 Floating point extend a constant to another type. The size of CST
2210 must be smaller or equal to the size of TYPE. Both types must be
2211 floating point.
2212``fptoui (CST to TYPE)``
2213 Convert a floating point constant to the corresponding unsigned
2214 integer constant. TYPE must be a scalar or vector integer type. CST
2215 must be of scalar or vector floating point type. Both CST and TYPE
2216 must be scalars, or vectors of the same number of elements. If the
2217 value won't fit in the integer type, the results are undefined.
2218``fptosi (CST to TYPE)``
2219 Convert a floating point constant to the corresponding signed
2220 integer constant. TYPE must be a scalar or vector integer type. CST
2221 must be of scalar or vector floating point type. Both CST and TYPE
2222 must be scalars, or vectors of the same number of elements. If the
2223 value won't fit in the integer type, the results are undefined.
2224``uitofp (CST to TYPE)``
2225 Convert an unsigned integer constant to the corresponding floating
2226 point constant. TYPE must be a scalar or vector floating point type.
2227 CST must be of scalar or vector integer type. Both CST and TYPE must
2228 be scalars, or vectors of the same number of elements. If the value
2229 won't fit in the floating point type, the results are undefined.
2230``sitofp (CST to TYPE)``
2231 Convert a signed integer constant to the corresponding floating
2232 point constant. TYPE must be a scalar or vector floating point type.
2233 CST must be of scalar or vector integer type. Both CST and TYPE must
2234 be scalars, or vectors of the same number of elements. If the value
2235 won't fit in the floating point type, the results are undefined.
2236``ptrtoint (CST to TYPE)``
2237 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002238 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002239 pointer type. The ``CST`` value is zero extended, truncated, or
2240 unchanged to make it fit in ``TYPE``.
2241``inttoptr (CST to TYPE)``
2242 Convert an integer constant to a pointer constant. TYPE must be a
2243 pointer type. CST must be of integer type. The CST value is zero
2244 extended, truncated, or unchanged to make it fit in a pointer size.
2245 This one is *really* dangerous!
2246``bitcast (CST to TYPE)``
2247 Convert a constant, CST, to another TYPE. The constraints of the
2248 operands are the same as those for the :ref:`bitcast
2249 instruction <i_bitcast>`.
2250``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2251 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2252 constants. As with the :ref:`getelementptr <i_getelementptr>`
2253 instruction, the index list may have zero or more indexes, which are
2254 required to make sense for the type of "CSTPTR".
2255``select (COND, VAL1, VAL2)``
2256 Perform the :ref:`select operation <i_select>` on constants.
2257``icmp COND (VAL1, VAL2)``
2258 Performs the :ref:`icmp operation <i_icmp>` on constants.
2259``fcmp COND (VAL1, VAL2)``
2260 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2261``extractelement (VAL, IDX)``
2262 Perform the :ref:`extractelement operation <i_extractelement>` on
2263 constants.
2264``insertelement (VAL, ELT, IDX)``
2265 Perform the :ref:`insertelement operation <i_insertelement>` on
2266 constants.
2267``shufflevector (VEC1, VEC2, IDXMASK)``
2268 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2269 constants.
2270``extractvalue (VAL, IDX0, IDX1, ...)``
2271 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2272 constants. The index list is interpreted in a similar manner as
2273 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2274 least one index value must be specified.
2275``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2276 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2277 The index list is interpreted in a similar manner as indices in a
2278 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2279 value must be specified.
2280``OPCODE (LHS, RHS)``
2281 Perform the specified operation of the LHS and RHS constants. OPCODE
2282 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2283 binary <bitwiseops>` operations. The constraints on operands are
2284 the same as those for the corresponding instruction (e.g. no bitwise
2285 operations on floating point values are allowed).
2286
2287Other Values
2288============
2289
2290Inline Assembler Expressions
2291----------------------------
2292
2293LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2294Inline Assembly <moduleasm>`) through the use of a special value. This
2295value represents the inline assembler as a string (containing the
2296instructions to emit), a list of operand constraints (stored as a
2297string), a flag that indicates whether or not the inline asm expression
2298has side effects, and a flag indicating whether the function containing
2299the asm needs to align its stack conservatively. An example inline
2300assembler expression is:
2301
2302.. code-block:: llvm
2303
2304 i32 (i32) asm "bswap $0", "=r,r"
2305
2306Inline assembler expressions may **only** be used as the callee operand
2307of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2308Thus, typically we have:
2309
2310.. code-block:: llvm
2311
2312 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2313
2314Inline asms with side effects not visible in the constraint list must be
2315marked as having side effects. This is done through the use of the
2316'``sideeffect``' keyword, like so:
2317
2318.. code-block:: llvm
2319
2320 call void asm sideeffect "eieio", ""()
2321
2322In some cases inline asms will contain code that will not work unless
2323the stack is aligned in some way, such as calls or SSE instructions on
2324x86, yet will not contain code that does that alignment within the asm.
2325The compiler should make conservative assumptions about what the asm
2326might contain and should generate its usual stack alignment code in the
2327prologue if the '``alignstack``' keyword is present:
2328
2329.. code-block:: llvm
2330
2331 call void asm alignstack "eieio", ""()
2332
2333Inline asms also support using non-standard assembly dialects. The
2334assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2335the inline asm is using the Intel dialect. Currently, ATT and Intel are
2336the only supported dialects. An example is:
2337
2338.. code-block:: llvm
2339
2340 call void asm inteldialect "eieio", ""()
2341
2342If multiple keywords appear the '``sideeffect``' keyword must come
2343first, the '``alignstack``' keyword second and the '``inteldialect``'
2344keyword last.
2345
2346Inline Asm Metadata
2347^^^^^^^^^^^^^^^^^^^
2348
2349The call instructions that wrap inline asm nodes may have a
2350"``!srcloc``" MDNode attached to it that contains a list of constant
2351integers. If present, the code generator will use the integer as the
2352location cookie value when report errors through the ``LLVMContext``
2353error reporting mechanisms. This allows a front-end to correlate backend
2354errors that occur with inline asm back to the source code that produced
2355it. For example:
2356
2357.. code-block:: llvm
2358
2359 call void asm sideeffect "something bad", ""(), !srcloc !42
2360 ...
2361 !42 = !{ i32 1234567 }
2362
2363It is up to the front-end to make sense of the magic numbers it places
2364in the IR. If the MDNode contains multiple constants, the code generator
2365will use the one that corresponds to the line of the asm that the error
2366occurs on.
2367
2368.. _metadata:
2369
2370Metadata Nodes and Metadata Strings
2371-----------------------------------
2372
2373LLVM IR allows metadata to be attached to instructions in the program
2374that can convey extra information about the code to the optimizers and
2375code generator. One example application of metadata is source-level
2376debug information. There are two metadata primitives: strings and nodes.
2377All metadata has the ``metadata`` type and is identified in syntax by a
2378preceding exclamation point ('``!``').
2379
2380A metadata string is a string surrounded by double quotes. It can
2381contain any character by escaping non-printable characters with
2382"``\xx``" where "``xx``" is the two digit hex code. For example:
2383"``!"test\00"``".
2384
2385Metadata nodes are represented with notation similar to structure
2386constants (a comma separated list of elements, surrounded by braces and
2387preceded by an exclamation point). Metadata nodes can have any values as
2388their operand. For example:
2389
2390.. code-block:: llvm
2391
2392 !{ metadata !"test\00", i32 10}
2393
2394A :ref:`named metadata <namedmetadatastructure>` is a collection of
2395metadata nodes, which can be looked up in the module symbol table. For
2396example:
2397
2398.. code-block:: llvm
2399
2400 !foo = metadata !{!4, !3}
2401
2402Metadata can be used as function arguments. Here ``llvm.dbg.value``
2403function is using two metadata arguments:
2404
2405.. code-block:: llvm
2406
2407 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2408
2409Metadata can be attached with an instruction. Here metadata ``!21`` is
2410attached to the ``add`` instruction using the ``!dbg`` identifier:
2411
2412.. code-block:: llvm
2413
2414 %indvar.next = add i64 %indvar, 1, !dbg !21
2415
2416More information about specific metadata nodes recognized by the
2417optimizers and code generator is found below.
2418
2419'``tbaa``' Metadata
2420^^^^^^^^^^^^^^^^^^^
2421
2422In LLVM IR, memory does not have types, so LLVM's own type system is not
2423suitable for doing TBAA. Instead, metadata is added to the IR to
2424describe a type system of a higher level language. This can be used to
2425implement typical C/C++ TBAA, but it can also be used to implement
2426custom alias analysis behavior for other languages.
2427
2428The current metadata format is very simple. TBAA metadata nodes have up
2429to three fields, e.g.:
2430
2431.. code-block:: llvm
2432
2433 !0 = metadata !{ metadata !"an example type tree" }
2434 !1 = metadata !{ metadata !"int", metadata !0 }
2435 !2 = metadata !{ metadata !"float", metadata !0 }
2436 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2437
2438The first field is an identity field. It can be any value, usually a
2439metadata string, which uniquely identifies the type. The most important
2440name in the tree is the name of the root node. Two trees with different
2441root node names are entirely disjoint, even if they have leaves with
2442common names.
2443
2444The second field identifies the type's parent node in the tree, or is
2445null or omitted for a root node. A type is considered to alias all of
2446its descendants and all of its ancestors in the tree. Also, a type is
2447considered to alias all types in other trees, so that bitcode produced
2448from multiple front-ends is handled conservatively.
2449
2450If the third field is present, it's an integer which if equal to 1
2451indicates that the type is "constant" (meaning
2452``pointsToConstantMemory`` should return true; see `other useful
2453AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2454
2455'``tbaa.struct``' Metadata
2456^^^^^^^^^^^^^^^^^^^^^^^^^^
2457
2458The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2459aggregate assignment operations in C and similar languages, however it
2460is defined to copy a contiguous region of memory, which is more than
2461strictly necessary for aggregate types which contain holes due to
2462padding. Also, it doesn't contain any TBAA information about the fields
2463of the aggregate.
2464
2465``!tbaa.struct`` metadata can describe which memory subregions in a
2466memcpy are padding and what the TBAA tags of the struct are.
2467
2468The current metadata format is very simple. ``!tbaa.struct`` metadata
2469nodes are a list of operands which are in conceptual groups of three.
2470For each group of three, the first operand gives the byte offset of a
2471field in bytes, the second gives its size in bytes, and the third gives
2472its tbaa tag. e.g.:
2473
2474.. code-block:: llvm
2475
2476 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2477
2478This describes a struct with two fields. The first is at offset 0 bytes
2479with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2480and has size 4 bytes and has tbaa tag !2.
2481
2482Note that the fields need not be contiguous. In this example, there is a
24834 byte gap between the two fields. This gap represents padding which
2484does not carry useful data and need not be preserved.
2485
2486'``fpmath``' Metadata
2487^^^^^^^^^^^^^^^^^^^^^
2488
2489``fpmath`` metadata may be attached to any instruction of floating point
2490type. It can be used to express the maximum acceptable error in the
2491result of that instruction, in ULPs, thus potentially allowing the
2492compiler to use a more efficient but less accurate method of computing
2493it. ULP is defined as follows:
2494
2495 If ``x`` is a real number that lies between two finite consecutive
2496 floating-point numbers ``a`` and ``b``, without being equal to one
2497 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2498 distance between the two non-equal finite floating-point numbers
2499 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2500
2501The metadata node shall consist of a single positive floating point
2502number representing the maximum relative error, for example:
2503
2504.. code-block:: llvm
2505
2506 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2507
2508'``range``' Metadata
2509^^^^^^^^^^^^^^^^^^^^
2510
2511``range`` metadata may be attached only to loads of integer types. It
2512expresses the possible ranges the loaded value is in. The ranges are
2513represented with a flattened list of integers. The loaded value is known
2514to be in the union of the ranges defined by each consecutive pair. Each
2515pair has the following properties:
2516
2517- The type must match the type loaded by the instruction.
2518- The pair ``a,b`` represents the range ``[a,b)``.
2519- Both ``a`` and ``b`` are constants.
2520- The range is allowed to wrap.
2521- The range should not represent the full or empty set. That is,
2522 ``a!=b``.
2523
2524In addition, the pairs must be in signed order of the lower bound and
2525they must be non-contiguous.
2526
2527Examples:
2528
2529.. code-block:: llvm
2530
2531 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2532 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2533 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2534 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2535 ...
2536 !0 = metadata !{ i8 0, i8 2 }
2537 !1 = metadata !{ i8 255, i8 2 }
2538 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2539 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2540
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002541'``llvm.loop``'
2542^^^^^^^^^^^^^^^
2543
2544It is sometimes useful to attach information to loop constructs. Currently,
2545loop metadata is implemented as metadata attached to the branch instruction
2546in the loop latch block. This type of metadata refer to a metadata node that is
2547guaranteed to be separate for each loop. The loop-level metadata is prefixed
2548with ``llvm.loop``.
2549
2550The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002551itself to avoid merging it with any other identifier metadata, e.g.,
2552during module linkage or function inlining. That is, each loop should refer
2553to their own identification metadata even if they reside in separate functions.
2554The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002555constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002556
2557.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002558
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002559 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002560 !1 = metadata !{ metadata !1 }
2561
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002562
2563'``llvm.loop.parallel``' Metadata
2564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2565
2566This loop metadata can be used to communicate that a loop should be considered
2567a parallel loop. The semantics of parallel loops in this case is the one
2568with the strongest cross-iteration instruction ordering freedom: the
2569iterations in the loop can be considered completely independent of each
2570other (also known as embarrassingly parallel loops).
2571
2572This metadata can originate from a programming language with parallel loop
2573constructs. In such a case it is completely the programmer's responsibility
2574to ensure the instructions from the different iterations of the loop can be
2575executed in an arbitrary order, in parallel, or intertwined. No loop-carried
2576dependency checking at all must be expected from the compiler.
2577
2578In order to fulfill the LLVM requirement for metadata to be safely ignored,
2579it is important to ensure that a parallel loop is converted to
2580a sequential loop in case an optimization (agnostic of the parallel loop
2581semantics) converts the loop back to such. This happens when new memory
2582accesses that do not fulfill the requirement of free ordering across iterations
2583are added to the loop. Therefore, this metadata is required, but not
2584sufficient, to consider the loop at hand a parallel loop. For a loop
2585to be parallel, all its memory accessing instructions need to be
2586marked with the ``llvm.mem.parallel_loop_access`` metadata that refer
2587to the same loop identifier metadata that identify the loop at hand.
2588
2589'``llvm.mem``'
2590^^^^^^^^^^^^^^^
2591
2592Metadata types used to annotate memory accesses with information helpful
2593for optimizations are prefixed with ``llvm.mem``.
2594
2595'``llvm.mem.parallel_loop_access``' Metadata
2596^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2597
2598For a loop to be parallel, in addition to using
2599the ``llvm.loop.parallel`` metadata to mark the loop latch branch instruction,
2600also all of the memory accessing instructions in the loop body need to be
2601marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2602is at least one memory accessing instruction not marked with the metadata,
2603the loop, despite it possibly using the ``llvm.loop.parallel`` metadata,
2604must be considered a sequential loop. This causes parallel loops to be
2605converted to sequential loops due to optimization passes that are unaware of
2606the parallel semantics and that insert new memory instructions to the loop
2607body.
2608
2609Example of a loop that is considered parallel due to its correct use of
2610both ``llvm.loop.parallel`` and ``llvm.mem.parallel_loop_access``
2611metadata types that refer to the same loop identifier metadata.
2612
2613.. code-block:: llvm
2614
2615 for.body:
2616 ...
2617 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2618 ...
2619 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2620 ...
2621 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop.parallel !0
2622
2623 for.end:
2624 ...
2625 !0 = metadata !{ metadata !0 }
2626
2627It is also possible to have nested parallel loops. In that case the
2628memory accesses refer to a list of loop identifier metadata nodes instead of
2629the loop identifier metadata node directly:
2630
2631.. code-block:: llvm
2632
2633 outer.for.body:
2634 ...
2635
2636 inner.for.body:
2637 ...
2638 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2639 ...
2640 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2641 ...
2642 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop.parallel !1
2643
2644 inner.for.end:
2645 ...
2646 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2647 ...
2648 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2649 ...
2650 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop.parallel !2
2651
2652 outer.for.end: ; preds = %for.body
2653 ...
2654 !0 = metadata !{ metadata !1, metadata !2 } ; a list of parallel loop identifiers
2655 !1 = metadata !{ metadata !1 } ; an identifier for the inner parallel loop
2656 !2 = metadata !{ metadata !2 } ; an identifier for the outer parallel loop
2657
2658
Sean Silvaf722b002012-12-07 10:36:55 +00002659Module Flags Metadata
2660=====================
2661
2662Information about the module as a whole is difficult to convey to LLVM's
2663subsystems. The LLVM IR isn't sufficient to transmit this information.
2664The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002665this. These flags are in the form of key / value pairs --- much like a
2666dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002667look it up.
2668
2669The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2670Each triplet has the following form:
2671
2672- The first element is a *behavior* flag, which specifies the behavior
2673 when two (or more) modules are merged together, and it encounters two
2674 (or more) metadata with the same ID. The supported behaviors are
2675 described below.
2676- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002677 metadata. Each module may only have one flag entry for each unique ID (not
2678 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002679- The third element is the value of the flag.
2680
2681When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002682``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2683each unique metadata ID string, there will be exactly one entry in the merged
2684modules ``llvm.module.flags`` metadata table, and the value for that entry will
2685be determined by the merge behavior flag, as described below. The only exception
2686is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002687
2688The following behaviors are supported:
2689
2690.. list-table::
2691 :header-rows: 1
2692 :widths: 10 90
2693
2694 * - Value
2695 - Behavior
2696
2697 * - 1
2698 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002699 Emits an error if two values disagree, otherwise the resulting value
2700 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002701
2702 * - 2
2703 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002704 Emits a warning if two values disagree. The result value will be the
2705 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002706
2707 * - 3
2708 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002709 Adds a requirement that another module flag be present and have a
2710 specified value after linking is performed. The value must be a
2711 metadata pair, where the first element of the pair is the ID of the
2712 module flag to be restricted, and the second element of the pair is
2713 the value the module flag should be restricted to. This behavior can
2714 be used to restrict the allowable results (via triggering of an
2715 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002716
2717 * - 4
2718 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002719 Uses the specified value, regardless of the behavior or value of the
2720 other module. If both modules specify **Override**, but the values
2721 differ, an error will be emitted.
2722
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002723 * - 5
2724 - **Append**
2725 Appends the two values, which are required to be metadata nodes.
2726
2727 * - 6
2728 - **AppendUnique**
2729 Appends the two values, which are required to be metadata
2730 nodes. However, duplicate entries in the second list are dropped
2731 during the append operation.
2732
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002733It is an error for a particular unique flag ID to have multiple behaviors,
2734except in the case of **Require** (which adds restrictions on another metadata
2735value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002736
2737An example of module flags:
2738
2739.. code-block:: llvm
2740
2741 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2742 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2743 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2744 !3 = metadata !{ i32 3, metadata !"qux",
2745 metadata !{
2746 metadata !"foo", i32 1
2747 }
2748 }
2749 !llvm.module.flags = !{ !0, !1, !2, !3 }
2750
2751- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2752 if two or more ``!"foo"`` flags are seen is to emit an error if their
2753 values are not equal.
2754
2755- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2756 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002757 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002758
2759- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2760 behavior if two or more ``!"qux"`` flags are seen is to emit a
2761 warning if their values are not equal.
2762
2763- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2764
2765 ::
2766
2767 metadata !{ metadata !"foo", i32 1 }
2768
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002769 The behavior is to emit an error if the ``llvm.module.flags`` does not
2770 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2771 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002772
2773Objective-C Garbage Collection Module Flags Metadata
2774----------------------------------------------------
2775
2776On the Mach-O platform, Objective-C stores metadata about garbage
2777collection in a special section called "image info". The metadata
2778consists of a version number and a bitmask specifying what types of
2779garbage collection are supported (if any) by the file. If two or more
2780modules are linked together their garbage collection metadata needs to
2781be merged rather than appended together.
2782
2783The Objective-C garbage collection module flags metadata consists of the
2784following key-value pairs:
2785
2786.. list-table::
2787 :header-rows: 1
2788 :widths: 30 70
2789
2790 * - Key
2791 - Value
2792
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002793 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002794 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002795
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002796 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002797 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002798 always 0.
2799
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002800 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002801 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002802 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2803 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2804 Objective-C ABI version 2.
2805
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002806 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002807 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002808 not. Valid values are 0, for no garbage collection, and 2, for garbage
2809 collection supported.
2810
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002811 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002812 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002813 If present, its value must be 6. This flag requires that the
2814 ``Objective-C Garbage Collection`` flag have the value 2.
2815
2816Some important flag interactions:
2817
2818- If a module with ``Objective-C Garbage Collection`` set to 0 is
2819 merged with a module with ``Objective-C Garbage Collection`` set to
2820 2, then the resulting module has the
2821 ``Objective-C Garbage Collection`` flag set to 0.
2822- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2823 merged with a module with ``Objective-C GC Only`` set to 6.
2824
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002825Automatic Linker Flags Module Flags Metadata
2826--------------------------------------------
2827
2828Some targets support embedding flags to the linker inside individual object
2829files. Typically this is used in conjunction with language extensions which
2830allow source files to explicitly declare the libraries they depend on, and have
2831these automatically be transmitted to the linker via object files.
2832
2833These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002834using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002835to be ``AppendUnique``, and the value for the key is expected to be a metadata
2836node which should be a list of other metadata nodes, each of which should be a
2837list of metadata strings defining linker options.
2838
2839For example, the following metadata section specifies two separate sets of
2840linker options, presumably to link against ``libz`` and the ``Cocoa``
2841framework::
2842
Michael Liao2faa0f32013-03-06 18:24:34 +00002843 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002844 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002845 metadata !{ metadata !"-lz" },
2846 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002847 !llvm.module.flags = !{ !0 }
2848
2849The metadata encoding as lists of lists of options, as opposed to a collapsed
2850list of options, is chosen so that the IR encoding can use multiple option
2851strings to specify e.g., a single library, while still having that specifier be
2852preserved as an atomic element that can be recognized by a target specific
2853assembly writer or object file emitter.
2854
2855Each individual option is required to be either a valid option for the target's
2856linker, or an option that is reserved by the target specific assembly writer or
2857object file emitter. No other aspect of these options is defined by the IR.
2858
Sean Silvaf722b002012-12-07 10:36:55 +00002859Intrinsic Global Variables
2860==========================
2861
2862LLVM has a number of "magic" global variables that contain data that
2863affect code generation or other IR semantics. These are documented here.
2864All globals of this sort should have a section specified as
2865"``llvm.metadata``". This section and all globals that start with
2866"``llvm.``" are reserved for use by LLVM.
2867
2868The '``llvm.used``' Global Variable
2869-----------------------------------
2870
Rafael Espindolacde25b42013-04-22 14:58:02 +00002871The ``@llvm.used`` global is an array which has
2872 :ref:`appending linkage <linkage_appending>`. This array contains a list of
2873pointers to global variables, functions and aliases which may optionally have a
Sean Silvaf722b002012-12-07 10:36:55 +00002874pointer cast formed of bitcast or getelementptr. For example, a legal
2875use of it is:
2876
2877.. code-block:: llvm
2878
2879 @X = global i8 4
2880 @Y = global i32 123
2881
2882 @llvm.used = appending global [2 x i8*] [
2883 i8* @X,
2884 i8* bitcast (i32* @Y to i8*)
2885 ], section "llvm.metadata"
2886
Rafael Espindolacde25b42013-04-22 14:58:02 +00002887If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2888and linker are required to treat the symbol as if there is a reference to the
2889symbol that it cannot see. For example, if a variable has internal linkage and
2890no references other than that from the ``@llvm.used`` list, it cannot be
2891deleted. This is commonly used to represent references from inline asms and
2892other things the compiler cannot "see", and corresponds to
2893"``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002894
2895On some targets, the code generator must emit a directive to the
2896assembler or object file to prevent the assembler and linker from
2897molesting the symbol.
2898
2899The '``llvm.compiler.used``' Global Variable
2900--------------------------------------------
2901
2902The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2903directive, except that it only prevents the compiler from touching the
2904symbol. On targets that support it, this allows an intelligent linker to
2905optimize references to the symbol without being impeded as it would be
2906by ``@llvm.used``.
2907
2908This is a rare construct that should only be used in rare circumstances,
2909and should not be exposed to source languages.
2910
2911The '``llvm.global_ctors``' Global Variable
2912-------------------------------------------
2913
2914.. code-block:: llvm
2915
2916 %0 = type { i32, void ()* }
2917 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2918
2919The ``@llvm.global_ctors`` array contains a list of constructor
2920functions and associated priorities. The functions referenced by this
2921array will be called in ascending order of priority (i.e. lowest first)
2922when the module is loaded. The order of functions with the same priority
2923is not defined.
2924
2925The '``llvm.global_dtors``' Global Variable
2926-------------------------------------------
2927
2928.. code-block:: llvm
2929
2930 %0 = type { i32, void ()* }
2931 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2932
2933The ``@llvm.global_dtors`` array contains a list of destructor functions
2934and associated priorities. The functions referenced by this array will
2935be called in descending order of priority (i.e. highest first) when the
2936module is loaded. The order of functions with the same priority is not
2937defined.
2938
2939Instruction Reference
2940=====================
2941
2942The LLVM instruction set consists of several different classifications
2943of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2944instructions <binaryops>`, :ref:`bitwise binary
2945instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2946:ref:`other instructions <otherops>`.
2947
2948.. _terminators:
2949
2950Terminator Instructions
2951-----------------------
2952
2953As mentioned :ref:`previously <functionstructure>`, every basic block in a
2954program ends with a "Terminator" instruction, which indicates which
2955block should be executed after the current block is finished. These
2956terminator instructions typically yield a '``void``' value: they produce
2957control flow, not values (the one exception being the
2958':ref:`invoke <i_invoke>`' instruction).
2959
2960The terminator instructions are: ':ref:`ret <i_ret>`',
2961':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2962':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2963':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2964
2965.. _i_ret:
2966
2967'``ret``' Instruction
2968^^^^^^^^^^^^^^^^^^^^^
2969
2970Syntax:
2971"""""""
2972
2973::
2974
2975 ret <type> <value> ; Return a value from a non-void function
2976 ret void ; Return from void function
2977
2978Overview:
2979"""""""""
2980
2981The '``ret``' instruction is used to return control flow (and optionally
2982a value) from a function back to the caller.
2983
2984There are two forms of the '``ret``' instruction: one that returns a
2985value and then causes control flow, and one that just causes control
2986flow to occur.
2987
2988Arguments:
2989""""""""""
2990
2991The '``ret``' instruction optionally accepts a single argument, the
2992return value. The type of the return value must be a ':ref:`first
2993class <t_firstclass>`' type.
2994
2995A function is not :ref:`well formed <wellformed>` if it it has a non-void
2996return type and contains a '``ret``' instruction with no return value or
2997a return value with a type that does not match its type, or if it has a
2998void return type and contains a '``ret``' instruction with a return
2999value.
3000
3001Semantics:
3002""""""""""
3003
3004When the '``ret``' instruction is executed, control flow returns back to
3005the calling function's context. If the caller is a
3006":ref:`call <i_call>`" instruction, execution continues at the
3007instruction after the call. If the caller was an
3008":ref:`invoke <i_invoke>`" instruction, execution continues at the
3009beginning of the "normal" destination block. If the instruction returns
3010a value, that value shall set the call or invoke instruction's return
3011value.
3012
3013Example:
3014""""""""
3015
3016.. code-block:: llvm
3017
3018 ret i32 5 ; Return an integer value of 5
3019 ret void ; Return from a void function
3020 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3021
3022.. _i_br:
3023
3024'``br``' Instruction
3025^^^^^^^^^^^^^^^^^^^^
3026
3027Syntax:
3028"""""""
3029
3030::
3031
3032 br i1 <cond>, label <iftrue>, label <iffalse>
3033 br label <dest> ; Unconditional branch
3034
3035Overview:
3036"""""""""
3037
3038The '``br``' instruction is used to cause control flow to transfer to a
3039different basic block in the current function. There are two forms of
3040this instruction, corresponding to a conditional branch and an
3041unconditional branch.
3042
3043Arguments:
3044""""""""""
3045
3046The conditional branch form of the '``br``' instruction takes a single
3047'``i1``' value and two '``label``' values. The unconditional form of the
3048'``br``' instruction takes a single '``label``' value as a target.
3049
3050Semantics:
3051""""""""""
3052
3053Upon execution of a conditional '``br``' instruction, the '``i1``'
3054argument is evaluated. If the value is ``true``, control flows to the
3055'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3056to the '``iffalse``' ``label`` argument.
3057
3058Example:
3059""""""""
3060
3061.. code-block:: llvm
3062
3063 Test:
3064 %cond = icmp eq i32 %a, %b
3065 br i1 %cond, label %IfEqual, label %IfUnequal
3066 IfEqual:
3067 ret i32 1
3068 IfUnequal:
3069 ret i32 0
3070
3071.. _i_switch:
3072
3073'``switch``' Instruction
3074^^^^^^^^^^^^^^^^^^^^^^^^
3075
3076Syntax:
3077"""""""
3078
3079::
3080
3081 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3082
3083Overview:
3084"""""""""
3085
3086The '``switch``' instruction is used to transfer control flow to one of
3087several different places. It is a generalization of the '``br``'
3088instruction, allowing a branch to occur to one of many possible
3089destinations.
3090
3091Arguments:
3092""""""""""
3093
3094The '``switch``' instruction uses three parameters: an integer
3095comparison value '``value``', a default '``label``' destination, and an
3096array of pairs of comparison value constants and '``label``'s. The table
3097is not allowed to contain duplicate constant entries.
3098
3099Semantics:
3100""""""""""
3101
3102The ``switch`` instruction specifies a table of values and destinations.
3103When the '``switch``' instruction is executed, this table is searched
3104for the given value. If the value is found, control flow is transferred
3105to the corresponding destination; otherwise, control flow is transferred
3106to the default destination.
3107
3108Implementation:
3109"""""""""""""""
3110
3111Depending on properties of the target machine and the particular
3112``switch`` instruction, this instruction may be code generated in
3113different ways. For example, it could be generated as a series of
3114chained conditional branches or with a lookup table.
3115
3116Example:
3117""""""""
3118
3119.. code-block:: llvm
3120
3121 ; Emulate a conditional br instruction
3122 %Val = zext i1 %value to i32
3123 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3124
3125 ; Emulate an unconditional br instruction
3126 switch i32 0, label %dest [ ]
3127
3128 ; Implement a jump table:
3129 switch i32 %val, label %otherwise [ i32 0, label %onzero
3130 i32 1, label %onone
3131 i32 2, label %ontwo ]
3132
3133.. _i_indirectbr:
3134
3135'``indirectbr``' Instruction
3136^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3137
3138Syntax:
3139"""""""
3140
3141::
3142
3143 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3144
3145Overview:
3146"""""""""
3147
3148The '``indirectbr``' instruction implements an indirect branch to a
3149label within the current function, whose address is specified by
3150"``address``". Address must be derived from a
3151:ref:`blockaddress <blockaddress>` constant.
3152
3153Arguments:
3154""""""""""
3155
3156The '``address``' argument is the address of the label to jump to. The
3157rest of the arguments indicate the full set of possible destinations
3158that the address may point to. Blocks are allowed to occur multiple
3159times in the destination list, though this isn't particularly useful.
3160
3161This destination list is required so that dataflow analysis has an
3162accurate understanding of the CFG.
3163
3164Semantics:
3165""""""""""
3166
3167Control transfers to the block specified in the address argument. All
3168possible destination blocks must be listed in the label list, otherwise
3169this instruction has undefined behavior. This implies that jumps to
3170labels defined in other functions have undefined behavior as well.
3171
3172Implementation:
3173"""""""""""""""
3174
3175This is typically implemented with a jump through a register.
3176
3177Example:
3178""""""""
3179
3180.. code-block:: llvm
3181
3182 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3183
3184.. _i_invoke:
3185
3186'``invoke``' Instruction
3187^^^^^^^^^^^^^^^^^^^^^^^^
3188
3189Syntax:
3190"""""""
3191
3192::
3193
3194 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3195 to label <normal label> unwind label <exception label>
3196
3197Overview:
3198"""""""""
3199
3200The '``invoke``' instruction causes control to transfer to a specified
3201function, with the possibility of control flow transfer to either the
3202'``normal``' label or the '``exception``' label. If the callee function
3203returns with the "``ret``" instruction, control flow will return to the
3204"normal" label. If the callee (or any indirect callees) returns via the
3205":ref:`resume <i_resume>`" instruction or other exception handling
3206mechanism, control is interrupted and continued at the dynamically
3207nearest "exception" label.
3208
3209The '``exception``' label is a `landing
3210pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3211'``exception``' label is required to have the
3212":ref:`landingpad <i_landingpad>`" instruction, which contains the
3213information about the behavior of the program after unwinding happens,
3214as its first non-PHI instruction. The restrictions on the
3215"``landingpad``" instruction's tightly couples it to the "``invoke``"
3216instruction, so that the important information contained within the
3217"``landingpad``" instruction can't be lost through normal code motion.
3218
3219Arguments:
3220""""""""""
3221
3222This instruction requires several arguments:
3223
3224#. The optional "cconv" marker indicates which :ref:`calling
3225 convention <callingconv>` the call should use. If none is
3226 specified, the call defaults to using C calling conventions.
3227#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3228 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3229 are valid here.
3230#. '``ptr to function ty``': shall be the signature of the pointer to
3231 function value being invoked. In most cases, this is a direct
3232 function invocation, but indirect ``invoke``'s are just as possible,
3233 branching off an arbitrary pointer to function value.
3234#. '``function ptr val``': An LLVM value containing a pointer to a
3235 function to be invoked.
3236#. '``function args``': argument list whose types match the function
3237 signature argument types and parameter attributes. All arguments must
3238 be of :ref:`first class <t_firstclass>` type. If the function signature
3239 indicates the function accepts a variable number of arguments, the
3240 extra arguments can be specified.
3241#. '``normal label``': the label reached when the called function
3242 executes a '``ret``' instruction.
3243#. '``exception label``': the label reached when a callee returns via
3244 the :ref:`resume <i_resume>` instruction or other exception handling
3245 mechanism.
3246#. The optional :ref:`function attributes <fnattrs>` list. Only
3247 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3248 attributes are valid here.
3249
3250Semantics:
3251""""""""""
3252
3253This instruction is designed to operate as a standard '``call``'
3254instruction in most regards. The primary difference is that it
3255establishes an association with a label, which is used by the runtime
3256library to unwind the stack.
3257
3258This instruction is used in languages with destructors to ensure that
3259proper cleanup is performed in the case of either a ``longjmp`` or a
3260thrown exception. Additionally, this is important for implementation of
3261'``catch``' clauses in high-level languages that support them.
3262
3263For the purposes of the SSA form, the definition of the value returned
3264by the '``invoke``' instruction is deemed to occur on the edge from the
3265current block to the "normal" label. If the callee unwinds then no
3266return value is available.
3267
3268Example:
3269""""""""
3270
3271.. code-block:: llvm
3272
3273 %retval = invoke i32 @Test(i32 15) to label %Continue
3274 unwind label %TestCleanup ; {i32}:retval set
3275 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3276 unwind label %TestCleanup ; {i32}:retval set
3277
3278.. _i_resume:
3279
3280'``resume``' Instruction
3281^^^^^^^^^^^^^^^^^^^^^^^^
3282
3283Syntax:
3284"""""""
3285
3286::
3287
3288 resume <type> <value>
3289
3290Overview:
3291"""""""""
3292
3293The '``resume``' instruction is a terminator instruction that has no
3294successors.
3295
3296Arguments:
3297""""""""""
3298
3299The '``resume``' instruction requires one argument, which must have the
3300same type as the result of any '``landingpad``' instruction in the same
3301function.
3302
3303Semantics:
3304""""""""""
3305
3306The '``resume``' instruction resumes propagation of an existing
3307(in-flight) exception whose unwinding was interrupted with a
3308:ref:`landingpad <i_landingpad>` instruction.
3309
3310Example:
3311""""""""
3312
3313.. code-block:: llvm
3314
3315 resume { i8*, i32 } %exn
3316
3317.. _i_unreachable:
3318
3319'``unreachable``' Instruction
3320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3321
3322Syntax:
3323"""""""
3324
3325::
3326
3327 unreachable
3328
3329Overview:
3330"""""""""
3331
3332The '``unreachable``' instruction has no defined semantics. This
3333instruction is used to inform the optimizer that a particular portion of
3334the code is not reachable. This can be used to indicate that the code
3335after a no-return function cannot be reached, and other facts.
3336
3337Semantics:
3338""""""""""
3339
3340The '``unreachable``' instruction has no defined semantics.
3341
3342.. _binaryops:
3343
3344Binary Operations
3345-----------------
3346
3347Binary operators are used to do most of the computation in a program.
3348They require two operands of the same type, execute an operation on
3349them, and produce a single value. The operands might represent multiple
3350data, as is the case with the :ref:`vector <t_vector>` data type. The
3351result value has the same type as its operands.
3352
3353There are several different binary operators:
3354
3355.. _i_add:
3356
3357'``add``' Instruction
3358^^^^^^^^^^^^^^^^^^^^^
3359
3360Syntax:
3361"""""""
3362
3363::
3364
3365 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3366 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3367 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3368 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3369
3370Overview:
3371"""""""""
3372
3373The '``add``' instruction returns the sum of its two operands.
3374
3375Arguments:
3376""""""""""
3377
3378The two arguments to the '``add``' instruction must be
3379:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3380arguments must have identical types.
3381
3382Semantics:
3383""""""""""
3384
3385The value produced is the integer sum of the two operands.
3386
3387If the sum has unsigned overflow, the result returned is the
3388mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3389the result.
3390
3391Because LLVM integers use a two's complement representation, this
3392instruction is appropriate for both signed and unsigned integers.
3393
3394``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3395respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3396result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3397unsigned and/or signed overflow, respectively, occurs.
3398
3399Example:
3400""""""""
3401
3402.. code-block:: llvm
3403
3404 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3405
3406.. _i_fadd:
3407
3408'``fadd``' Instruction
3409^^^^^^^^^^^^^^^^^^^^^^
3410
3411Syntax:
3412"""""""
3413
3414::
3415
3416 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3417
3418Overview:
3419"""""""""
3420
3421The '``fadd``' instruction returns the sum of its two operands.
3422
3423Arguments:
3424""""""""""
3425
3426The two arguments to the '``fadd``' instruction must be :ref:`floating
3427point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3428Both arguments must have identical types.
3429
3430Semantics:
3431""""""""""
3432
3433The value produced is the floating point sum of the two operands. This
3434instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3435which are optimization hints to enable otherwise unsafe floating point
3436optimizations:
3437
3438Example:
3439""""""""
3440
3441.. code-block:: llvm
3442
3443 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3444
3445'``sub``' Instruction
3446^^^^^^^^^^^^^^^^^^^^^
3447
3448Syntax:
3449"""""""
3450
3451::
3452
3453 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3454 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3455 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3456 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3457
3458Overview:
3459"""""""""
3460
3461The '``sub``' instruction returns the difference of its two operands.
3462
3463Note that the '``sub``' instruction is used to represent the '``neg``'
3464instruction present in most other intermediate representations.
3465
3466Arguments:
3467""""""""""
3468
3469The two arguments to the '``sub``' instruction must be
3470:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3471arguments must have identical types.
3472
3473Semantics:
3474""""""""""
3475
3476The value produced is the integer difference of the two operands.
3477
3478If the difference has unsigned overflow, the result returned is the
3479mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3480the result.
3481
3482Because LLVM integers use a two's complement representation, this
3483instruction is appropriate for both signed and unsigned integers.
3484
3485``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3486respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3487result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3488unsigned and/or signed overflow, respectively, occurs.
3489
3490Example:
3491""""""""
3492
3493.. code-block:: llvm
3494
3495 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3496 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3497
3498.. _i_fsub:
3499
3500'``fsub``' Instruction
3501^^^^^^^^^^^^^^^^^^^^^^
3502
3503Syntax:
3504"""""""
3505
3506::
3507
3508 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3509
3510Overview:
3511"""""""""
3512
3513The '``fsub``' instruction returns the difference of its two operands.
3514
3515Note that the '``fsub``' instruction is used to represent the '``fneg``'
3516instruction present in most other intermediate representations.
3517
3518Arguments:
3519""""""""""
3520
3521The two arguments to the '``fsub``' instruction must be :ref:`floating
3522point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3523Both arguments must have identical types.
3524
3525Semantics:
3526""""""""""
3527
3528The value produced is the floating point difference of the two operands.
3529This instruction can also take any number of :ref:`fast-math
3530flags <fastmath>`, which are optimization hints to enable otherwise
3531unsafe floating point optimizations:
3532
3533Example:
3534""""""""
3535
3536.. code-block:: llvm
3537
3538 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3539 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3540
3541'``mul``' Instruction
3542^^^^^^^^^^^^^^^^^^^^^
3543
3544Syntax:
3545"""""""
3546
3547::
3548
3549 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3550 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3551 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3552 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3553
3554Overview:
3555"""""""""
3556
3557The '``mul``' instruction returns the product of its two operands.
3558
3559Arguments:
3560""""""""""
3561
3562The two arguments to the '``mul``' instruction must be
3563:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3564arguments must have identical types.
3565
3566Semantics:
3567""""""""""
3568
3569The value produced is the integer product of the two operands.
3570
3571If the result of the multiplication has unsigned overflow, the result
3572returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3573bit width of the result.
3574
3575Because LLVM integers use a two's complement representation, and the
3576result is the same width as the operands, this instruction returns the
3577correct result for both signed and unsigned integers. If a full product
3578(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3579sign-extended or zero-extended as appropriate to the width of the full
3580product.
3581
3582``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3583respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3584result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3585unsigned and/or signed overflow, respectively, occurs.
3586
3587Example:
3588""""""""
3589
3590.. code-block:: llvm
3591
3592 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3593
3594.. _i_fmul:
3595
3596'``fmul``' Instruction
3597^^^^^^^^^^^^^^^^^^^^^^
3598
3599Syntax:
3600"""""""
3601
3602::
3603
3604 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3605
3606Overview:
3607"""""""""
3608
3609The '``fmul``' instruction returns the product of its two operands.
3610
3611Arguments:
3612""""""""""
3613
3614The two arguments to the '``fmul``' instruction must be :ref:`floating
3615point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3616Both arguments must have identical types.
3617
3618Semantics:
3619""""""""""
3620
3621The value produced is the floating point product of the two operands.
3622This instruction can also take any number of :ref:`fast-math
3623flags <fastmath>`, which are optimization hints to enable otherwise
3624unsafe floating point optimizations:
3625
3626Example:
3627""""""""
3628
3629.. code-block:: llvm
3630
3631 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3632
3633'``udiv``' Instruction
3634^^^^^^^^^^^^^^^^^^^^^^
3635
3636Syntax:
3637"""""""
3638
3639::
3640
3641 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3642 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3643
3644Overview:
3645"""""""""
3646
3647The '``udiv``' instruction returns the quotient of its two operands.
3648
3649Arguments:
3650""""""""""
3651
3652The two arguments to the '``udiv``' instruction must be
3653:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3654arguments must have identical types.
3655
3656Semantics:
3657""""""""""
3658
3659The value produced is the unsigned integer quotient of the two operands.
3660
3661Note that unsigned integer division and signed integer division are
3662distinct operations; for signed integer division, use '``sdiv``'.
3663
3664Division by zero leads to undefined behavior.
3665
3666If the ``exact`` keyword is present, the result value of the ``udiv`` is
3667a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3668such, "((a udiv exact b) mul b) == a").
3669
3670Example:
3671""""""""
3672
3673.. code-block:: llvm
3674
3675 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3676
3677'``sdiv``' Instruction
3678^^^^^^^^^^^^^^^^^^^^^^
3679
3680Syntax:
3681"""""""
3682
3683::
3684
3685 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3686 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3687
3688Overview:
3689"""""""""
3690
3691The '``sdiv``' instruction returns the quotient of its two operands.
3692
3693Arguments:
3694""""""""""
3695
3696The two arguments to the '``sdiv``' instruction must be
3697:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3698arguments must have identical types.
3699
3700Semantics:
3701""""""""""
3702
3703The value produced is the signed integer quotient of the two operands
3704rounded towards zero.
3705
3706Note that signed integer division and unsigned integer division are
3707distinct operations; for unsigned integer division, use '``udiv``'.
3708
3709Division by zero leads to undefined behavior. Overflow also leads to
3710undefined behavior; this is a rare case, but can occur, for example, by
3711doing a 32-bit division of -2147483648 by -1.
3712
3713If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3714a :ref:`poison value <poisonvalues>` if the result would be rounded.
3715
3716Example:
3717""""""""
3718
3719.. code-block:: llvm
3720
3721 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3722
3723.. _i_fdiv:
3724
3725'``fdiv``' Instruction
3726^^^^^^^^^^^^^^^^^^^^^^
3727
3728Syntax:
3729"""""""
3730
3731::
3732
3733 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3734
3735Overview:
3736"""""""""
3737
3738The '``fdiv``' instruction returns the quotient of its two operands.
3739
3740Arguments:
3741""""""""""
3742
3743The two arguments to the '``fdiv``' instruction must be :ref:`floating
3744point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3745Both arguments must have identical types.
3746
3747Semantics:
3748""""""""""
3749
3750The value produced is the floating point quotient of the two operands.
3751This instruction can also take any number of :ref:`fast-math
3752flags <fastmath>`, which are optimization hints to enable otherwise
3753unsafe floating point optimizations:
3754
3755Example:
3756""""""""
3757
3758.. code-block:: llvm
3759
3760 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3761
3762'``urem``' Instruction
3763^^^^^^^^^^^^^^^^^^^^^^
3764
3765Syntax:
3766"""""""
3767
3768::
3769
3770 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3771
3772Overview:
3773"""""""""
3774
3775The '``urem``' instruction returns the remainder from the unsigned
3776division of its two arguments.
3777
3778Arguments:
3779""""""""""
3780
3781The two arguments to the '``urem``' instruction must be
3782:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3783arguments must have identical types.
3784
3785Semantics:
3786""""""""""
3787
3788This instruction returns the unsigned integer *remainder* of a division.
3789This instruction always performs an unsigned division to get the
3790remainder.
3791
3792Note that unsigned integer remainder and signed integer remainder are
3793distinct operations; for signed integer remainder, use '``srem``'.
3794
3795Taking the remainder of a division by zero leads to undefined behavior.
3796
3797Example:
3798""""""""
3799
3800.. code-block:: llvm
3801
3802 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3803
3804'``srem``' Instruction
3805^^^^^^^^^^^^^^^^^^^^^^
3806
3807Syntax:
3808"""""""
3809
3810::
3811
3812 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3813
3814Overview:
3815"""""""""
3816
3817The '``srem``' instruction returns the remainder from the signed
3818division of its two operands. This instruction can also take
3819:ref:`vector <t_vector>` versions of the values in which case the elements
3820must be integers.
3821
3822Arguments:
3823""""""""""
3824
3825The two arguments to the '``srem``' instruction must be
3826:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3827arguments must have identical types.
3828
3829Semantics:
3830""""""""""
3831
3832This instruction returns the *remainder* of a division (where the result
3833is either zero or has the same sign as the dividend, ``op1``), not the
3834*modulo* operator (where the result is either zero or has the same sign
3835as the divisor, ``op2``) of a value. For more information about the
3836difference, see `The Math
3837Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3838table of how this is implemented in various languages, please see
3839`Wikipedia: modulo
3840operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3841
3842Note that signed integer remainder and unsigned integer remainder are
3843distinct operations; for unsigned integer remainder, use '``urem``'.
3844
3845Taking the remainder of a division by zero leads to undefined behavior.
3846Overflow also leads to undefined behavior; this is a rare case, but can
3847occur, for example, by taking the remainder of a 32-bit division of
3848-2147483648 by -1. (The remainder doesn't actually overflow, but this
3849rule lets srem be implemented using instructions that return both the
3850result of the division and the remainder.)
3851
3852Example:
3853""""""""
3854
3855.. code-block:: llvm
3856
3857 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3858
3859.. _i_frem:
3860
3861'``frem``' Instruction
3862^^^^^^^^^^^^^^^^^^^^^^
3863
3864Syntax:
3865"""""""
3866
3867::
3868
3869 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3870
3871Overview:
3872"""""""""
3873
3874The '``frem``' instruction returns the remainder from the division of
3875its two operands.
3876
3877Arguments:
3878""""""""""
3879
3880The two arguments to the '``frem``' instruction must be :ref:`floating
3881point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3882Both arguments must have identical types.
3883
3884Semantics:
3885""""""""""
3886
3887This instruction returns the *remainder* of a division. The remainder
3888has the same sign as the dividend. This instruction can also take any
3889number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3890to enable otherwise unsafe floating point optimizations:
3891
3892Example:
3893""""""""
3894
3895.. code-block:: llvm
3896
3897 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3898
3899.. _bitwiseops:
3900
3901Bitwise Binary Operations
3902-------------------------
3903
3904Bitwise binary operators are used to do various forms of bit-twiddling
3905in a program. They are generally very efficient instructions and can
3906commonly be strength reduced from other instructions. They require two
3907operands of the same type, execute an operation on them, and produce a
3908single value. The resulting value is the same type as its operands.
3909
3910'``shl``' Instruction
3911^^^^^^^^^^^^^^^^^^^^^
3912
3913Syntax:
3914"""""""
3915
3916::
3917
3918 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3919 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3920 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3921 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3922
3923Overview:
3924"""""""""
3925
3926The '``shl``' instruction returns the first operand shifted to the left
3927a specified number of bits.
3928
3929Arguments:
3930""""""""""
3931
3932Both arguments to the '``shl``' instruction must be the same
3933:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3934'``op2``' is treated as an unsigned value.
3935
3936Semantics:
3937""""""""""
3938
3939The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3940where ``n`` is the width of the result. If ``op2`` is (statically or
3941dynamically) negative or equal to or larger than the number of bits in
3942``op1``, the result is undefined. If the arguments are vectors, each
3943vector element of ``op1`` is shifted by the corresponding shift amount
3944in ``op2``.
3945
3946If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3947value <poisonvalues>` if it shifts out any non-zero bits. If the
3948``nsw`` keyword is present, then the shift produces a :ref:`poison
3949value <poisonvalues>` if it shifts out any bits that disagree with the
3950resultant sign bit. As such, NUW/NSW have the same semantics as they
3951would if the shift were expressed as a mul instruction with the same
3952nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3953
3954Example:
3955""""""""
3956
3957.. code-block:: llvm
3958
3959 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3960 <result> = shl i32 4, 2 ; yields {i32}: 16
3961 <result> = shl i32 1, 10 ; yields {i32}: 1024
3962 <result> = shl i32 1, 32 ; undefined
3963 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3964
3965'``lshr``' Instruction
3966^^^^^^^^^^^^^^^^^^^^^^
3967
3968Syntax:
3969"""""""
3970
3971::
3972
3973 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3974 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3975
3976Overview:
3977"""""""""
3978
3979The '``lshr``' instruction (logical shift right) returns the first
3980operand shifted to the right a specified number of bits with zero fill.
3981
3982Arguments:
3983""""""""""
3984
3985Both arguments to the '``lshr``' instruction must be the same
3986:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3987'``op2``' is treated as an unsigned value.
3988
3989Semantics:
3990""""""""""
3991
3992This instruction always performs a logical shift right operation. The
3993most significant bits of the result will be filled with zero bits after
3994the shift. If ``op2`` is (statically or dynamically) equal to or larger
3995than the number of bits in ``op1``, the result is undefined. If the
3996arguments are vectors, each vector element of ``op1`` is shifted by the
3997corresponding shift amount in ``op2``.
3998
3999If the ``exact`` keyword is present, the result value of the ``lshr`` is
4000a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4001non-zero.
4002
4003Example:
4004""""""""
4005
4006.. code-block:: llvm
4007
4008 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4009 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4010 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004011 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004012 <result> = lshr i32 1, 32 ; undefined
4013 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4014
4015'``ashr``' Instruction
4016^^^^^^^^^^^^^^^^^^^^^^
4017
4018Syntax:
4019"""""""
4020
4021::
4022
4023 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4024 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4025
4026Overview:
4027"""""""""
4028
4029The '``ashr``' instruction (arithmetic shift right) returns the first
4030operand shifted to the right a specified number of bits with sign
4031extension.
4032
4033Arguments:
4034""""""""""
4035
4036Both arguments to the '``ashr``' instruction must be the same
4037:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4038'``op2``' is treated as an unsigned value.
4039
4040Semantics:
4041""""""""""
4042
4043This instruction always performs an arithmetic shift right operation,
4044The most significant bits of the result will be filled with the sign bit
4045of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4046than the number of bits in ``op1``, the result is undefined. If the
4047arguments are vectors, each vector element of ``op1`` is shifted by the
4048corresponding shift amount in ``op2``.
4049
4050If the ``exact`` keyword is present, the result value of the ``ashr`` is
4051a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4052non-zero.
4053
4054Example:
4055""""""""
4056
4057.. code-block:: llvm
4058
4059 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4060 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4061 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4062 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4063 <result> = ashr i32 1, 32 ; undefined
4064 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4065
4066'``and``' Instruction
4067^^^^^^^^^^^^^^^^^^^^^
4068
4069Syntax:
4070"""""""
4071
4072::
4073
4074 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4075
4076Overview:
4077"""""""""
4078
4079The '``and``' instruction returns the bitwise logical and of its two
4080operands.
4081
4082Arguments:
4083""""""""""
4084
4085The two arguments to the '``and``' instruction must be
4086:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4087arguments must have identical types.
4088
4089Semantics:
4090""""""""""
4091
4092The truth table used for the '``and``' instruction is:
4093
4094+-----+-----+-----+
4095| In0 | In1 | Out |
4096+-----+-----+-----+
4097| 0 | 0 | 0 |
4098+-----+-----+-----+
4099| 0 | 1 | 0 |
4100+-----+-----+-----+
4101| 1 | 0 | 0 |
4102+-----+-----+-----+
4103| 1 | 1 | 1 |
4104+-----+-----+-----+
4105
4106Example:
4107""""""""
4108
4109.. code-block:: llvm
4110
4111 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4112 <result> = and i32 15, 40 ; yields {i32}:result = 8
4113 <result> = and i32 4, 8 ; yields {i32}:result = 0
4114
4115'``or``' Instruction
4116^^^^^^^^^^^^^^^^^^^^
4117
4118Syntax:
4119"""""""
4120
4121::
4122
4123 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4124
4125Overview:
4126"""""""""
4127
4128The '``or``' instruction returns the bitwise logical inclusive or of its
4129two operands.
4130
4131Arguments:
4132""""""""""
4133
4134The two arguments to the '``or``' instruction must be
4135:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4136arguments must have identical types.
4137
4138Semantics:
4139""""""""""
4140
4141The truth table used for the '``or``' instruction is:
4142
4143+-----+-----+-----+
4144| In0 | In1 | Out |
4145+-----+-----+-----+
4146| 0 | 0 | 0 |
4147+-----+-----+-----+
4148| 0 | 1 | 1 |
4149+-----+-----+-----+
4150| 1 | 0 | 1 |
4151+-----+-----+-----+
4152| 1 | 1 | 1 |
4153+-----+-----+-----+
4154
4155Example:
4156""""""""
4157
4158::
4159
4160 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4161 <result> = or i32 15, 40 ; yields {i32}:result = 47
4162 <result> = or i32 4, 8 ; yields {i32}:result = 12
4163
4164'``xor``' Instruction
4165^^^^^^^^^^^^^^^^^^^^^
4166
4167Syntax:
4168"""""""
4169
4170::
4171
4172 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4173
4174Overview:
4175"""""""""
4176
4177The '``xor``' instruction returns the bitwise logical exclusive or of
4178its two operands. The ``xor`` is used to implement the "one's
4179complement" operation, which is the "~" operator in C.
4180
4181Arguments:
4182""""""""""
4183
4184The two arguments to the '``xor``' instruction must be
4185:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4186arguments must have identical types.
4187
4188Semantics:
4189""""""""""
4190
4191The truth table used for the '``xor``' instruction is:
4192
4193+-----+-----+-----+
4194| In0 | In1 | Out |
4195+-----+-----+-----+
4196| 0 | 0 | 0 |
4197+-----+-----+-----+
4198| 0 | 1 | 1 |
4199+-----+-----+-----+
4200| 1 | 0 | 1 |
4201+-----+-----+-----+
4202| 1 | 1 | 0 |
4203+-----+-----+-----+
4204
4205Example:
4206""""""""
4207
4208.. code-block:: llvm
4209
4210 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4211 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4212 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4213 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4214
4215Vector Operations
4216-----------------
4217
4218LLVM supports several instructions to represent vector operations in a
4219target-independent manner. These instructions cover the element-access
4220and vector-specific operations needed to process vectors effectively.
4221While LLVM does directly support these vector operations, many
4222sophisticated algorithms will want to use target-specific intrinsics to
4223take full advantage of a specific target.
4224
4225.. _i_extractelement:
4226
4227'``extractelement``' Instruction
4228^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4229
4230Syntax:
4231"""""""
4232
4233::
4234
4235 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4236
4237Overview:
4238"""""""""
4239
4240The '``extractelement``' instruction extracts a single scalar element
4241from a vector at a specified index.
4242
4243Arguments:
4244""""""""""
4245
4246The first operand of an '``extractelement``' instruction is a value of
4247:ref:`vector <t_vector>` type. The second operand is an index indicating
4248the position from which to extract the element. The index may be a
4249variable.
4250
4251Semantics:
4252""""""""""
4253
4254The result is a scalar of the same type as the element type of ``val``.
4255Its value is the value at position ``idx`` of ``val``. If ``idx``
4256exceeds the length of ``val``, the results are undefined.
4257
4258Example:
4259""""""""
4260
4261.. code-block:: llvm
4262
4263 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4264
4265.. _i_insertelement:
4266
4267'``insertelement``' Instruction
4268^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4269
4270Syntax:
4271"""""""
4272
4273::
4274
4275 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4276
4277Overview:
4278"""""""""
4279
4280The '``insertelement``' instruction inserts a scalar element into a
4281vector at a specified index.
4282
4283Arguments:
4284""""""""""
4285
4286The first operand of an '``insertelement``' instruction is a value of
4287:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4288type must equal the element type of the first operand. The third operand
4289is an index indicating the position at which to insert the value. The
4290index may be a variable.
4291
4292Semantics:
4293""""""""""
4294
4295The result is a vector of the same type as ``val``. Its element values
4296are those of ``val`` except at position ``idx``, where it gets the value
4297``elt``. If ``idx`` exceeds the length of ``val``, the results are
4298undefined.
4299
4300Example:
4301""""""""
4302
4303.. code-block:: llvm
4304
4305 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4306
4307.. _i_shufflevector:
4308
4309'``shufflevector``' Instruction
4310^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4311
4312Syntax:
4313"""""""
4314
4315::
4316
4317 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4318
4319Overview:
4320"""""""""
4321
4322The '``shufflevector``' instruction constructs a permutation of elements
4323from two input vectors, returning a vector with the same element type as
4324the input and length that is the same as the shuffle mask.
4325
4326Arguments:
4327""""""""""
4328
4329The first two operands of a '``shufflevector``' instruction are vectors
4330with the same type. The third argument is a shuffle mask whose element
4331type is always 'i32'. The result of the instruction is a vector whose
4332length is the same as the shuffle mask and whose element type is the
4333same as the element type of the first two operands.
4334
4335The shuffle mask operand is required to be a constant vector with either
4336constant integer or undef values.
4337
4338Semantics:
4339""""""""""
4340
4341The elements of the two input vectors are numbered from left to right
4342across both of the vectors. The shuffle mask operand specifies, for each
4343element of the result vector, which element of the two input vectors the
4344result element gets. The element selector may be undef (meaning "don't
4345care") and the second operand may be undef if performing a shuffle from
4346only one vector.
4347
4348Example:
4349""""""""
4350
4351.. code-block:: llvm
4352
4353 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4354 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4355 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4356 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4357 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4358 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4359 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4360 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4361
4362Aggregate Operations
4363--------------------
4364
4365LLVM supports several instructions for working with
4366:ref:`aggregate <t_aggregate>` values.
4367
4368.. _i_extractvalue:
4369
4370'``extractvalue``' Instruction
4371^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4372
4373Syntax:
4374"""""""
4375
4376::
4377
4378 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4379
4380Overview:
4381"""""""""
4382
4383The '``extractvalue``' instruction extracts the value of a member field
4384from an :ref:`aggregate <t_aggregate>` value.
4385
4386Arguments:
4387""""""""""
4388
4389The first operand of an '``extractvalue``' instruction is a value of
4390:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4391constant indices to specify which value to extract in a similar manner
4392as indices in a '``getelementptr``' instruction.
4393
4394The major differences to ``getelementptr`` indexing are:
4395
4396- Since the value being indexed is not a pointer, the first index is
4397 omitted and assumed to be zero.
4398- At least one index must be specified.
4399- Not only struct indices but also array indices must be in bounds.
4400
4401Semantics:
4402""""""""""
4403
4404The result is the value at the position in the aggregate specified by
4405the index operands.
4406
4407Example:
4408""""""""
4409
4410.. code-block:: llvm
4411
4412 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4413
4414.. _i_insertvalue:
4415
4416'``insertvalue``' Instruction
4417^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4418
4419Syntax:
4420"""""""
4421
4422::
4423
4424 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4425
4426Overview:
4427"""""""""
4428
4429The '``insertvalue``' instruction inserts a value into a member field in
4430an :ref:`aggregate <t_aggregate>` value.
4431
4432Arguments:
4433""""""""""
4434
4435The first operand of an '``insertvalue``' instruction is a value of
4436:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4437a first-class value to insert. The following operands are constant
4438indices indicating the position at which to insert the value in a
4439similar manner as indices in a '``extractvalue``' instruction. The value
4440to insert must have the same type as the value identified by the
4441indices.
4442
4443Semantics:
4444""""""""""
4445
4446The result is an aggregate of the same type as ``val``. Its value is
4447that of ``val`` except that the value at the position specified by the
4448indices is that of ``elt``.
4449
4450Example:
4451""""""""
4452
4453.. code-block:: llvm
4454
4455 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4456 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4457 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4458
4459.. _memoryops:
4460
4461Memory Access and Addressing Operations
4462---------------------------------------
4463
4464A key design point of an SSA-based representation is how it represents
4465memory. In LLVM, no memory locations are in SSA form, which makes things
4466very simple. This section describes how to read, write, and allocate
4467memory in LLVM.
4468
4469.. _i_alloca:
4470
4471'``alloca``' Instruction
4472^^^^^^^^^^^^^^^^^^^^^^^^
4473
4474Syntax:
4475"""""""
4476
4477::
4478
4479 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4480
4481Overview:
4482"""""""""
4483
4484The '``alloca``' instruction allocates memory on the stack frame of the
4485currently executing function, to be automatically released when this
4486function returns to its caller. The object is always allocated in the
4487generic address space (address space zero).
4488
4489Arguments:
4490""""""""""
4491
4492The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4493bytes of memory on the runtime stack, returning a pointer of the
4494appropriate type to the program. If "NumElements" is specified, it is
4495the number of elements allocated, otherwise "NumElements" is defaulted
4496to be one. If a constant alignment is specified, the value result of the
4497allocation is guaranteed to be aligned to at least that boundary. If not
4498specified, or if zero, the target can choose to align the allocation on
4499any convenient boundary compatible with the type.
4500
4501'``type``' may be any sized type.
4502
4503Semantics:
4504""""""""""
4505
4506Memory is allocated; a pointer is returned. The operation is undefined
4507if there is insufficient stack space for the allocation. '``alloca``'d
4508memory is automatically released when the function returns. The
4509'``alloca``' instruction is commonly used to represent automatic
4510variables that must have an address available. When the function returns
4511(either with the ``ret`` or ``resume`` instructions), the memory is
4512reclaimed. Allocating zero bytes is legal, but the result is undefined.
4513The order in which memory is allocated (ie., which way the stack grows)
4514is not specified.
4515
4516Example:
4517""""""""
4518
4519.. code-block:: llvm
4520
4521 %ptr = alloca i32 ; yields {i32*}:ptr
4522 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4523 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4524 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4525
4526.. _i_load:
4527
4528'``load``' Instruction
4529^^^^^^^^^^^^^^^^^^^^^^
4530
4531Syntax:
4532"""""""
4533
4534::
4535
4536 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4537 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4538 !<index> = !{ i32 1 }
4539
4540Overview:
4541"""""""""
4542
4543The '``load``' instruction is used to read from memory.
4544
4545Arguments:
4546""""""""""
4547
Eli Bendersky8c493382013-04-17 20:17:08 +00004548The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004549from which to load. The pointer must point to a :ref:`first
4550class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4551then the optimizer is not allowed to modify the number or order of
4552execution of this ``load`` with other :ref:`volatile
4553operations <volatile>`.
4554
4555If the ``load`` is marked as ``atomic``, it takes an extra
4556:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4557``release`` and ``acq_rel`` orderings are not valid on ``load``
4558instructions. Atomic loads produce :ref:`defined <memmodel>` results
4559when they may see multiple atomic stores. The type of the pointee must
4560be an integer type whose bit width is a power of two greater than or
4561equal to eight and less than or equal to a target-specific size limit.
4562``align`` must be explicitly specified on atomic loads, and the load has
4563undefined behavior if the alignment is not set to a value which is at
4564least the size in bytes of the pointee. ``!nontemporal`` does not have
4565any defined semantics for atomic loads.
4566
4567The optional constant ``align`` argument specifies the alignment of the
4568operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004569or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004570alignment for the target. It is the responsibility of the code emitter
4571to ensure that the alignment information is correct. Overestimating the
4572alignment results in undefined behavior. Underestimating the alignment
4573may produce less efficient code. An alignment of 1 is always safe.
4574
4575The optional ``!nontemporal`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004576metatadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004577``i32`` entry of value 1. The existence of the ``!nontemporal``
4578metatadata on the instruction tells the optimizer and code generator
4579that this load is not expected to be reused in the cache. The code
4580generator may select special instructions to save cache bandwidth, such
4581as the ``MOVNT`` instruction on x86.
4582
4583The optional ``!invariant.load`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004584metatadata name ``<index>`` corresponding to a metadata node with no
Sean Silvaf722b002012-12-07 10:36:55 +00004585entries. The existence of the ``!invariant.load`` metatadata on the
4586instruction tells the optimizer and code generator that this load
4587address points to memory which does not change value during program
4588execution. The optimizer may then move this load around, for example, by
4589hoisting it out of loops using loop invariant code motion.
4590
4591Semantics:
4592""""""""""
4593
4594The location of memory pointed to is loaded. If the value being loaded
4595is of scalar type then the number of bytes read does not exceed the
4596minimum number of bytes needed to hold all bits of the type. For
4597example, loading an ``i24`` reads at most three bytes. When loading a
4598value of a type like ``i20`` with a size that is not an integral number
4599of bytes, the result is undefined if the value was not originally
4600written using a store of the same type.
4601
4602Examples:
4603"""""""""
4604
4605.. code-block:: llvm
4606
4607 %ptr = alloca i32 ; yields {i32*}:ptr
4608 store i32 3, i32* %ptr ; yields {void}
4609 %val = load i32* %ptr ; yields {i32}:val = i32 3
4610
4611.. _i_store:
4612
4613'``store``' Instruction
4614^^^^^^^^^^^^^^^^^^^^^^^
4615
4616Syntax:
4617"""""""
4618
4619::
4620
4621 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4622 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4623
4624Overview:
4625"""""""""
4626
4627The '``store``' instruction is used to write to memory.
4628
4629Arguments:
4630""""""""""
4631
Eli Bendersky8952d902013-04-17 17:17:20 +00004632There are two arguments to the ``store`` instruction: a value to store
4633and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004634operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004635the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004636then the optimizer is not allowed to modify the number or order of
4637execution of this ``store`` with other :ref:`volatile
4638operations <volatile>`.
4639
4640If the ``store`` is marked as ``atomic``, it takes an extra
4641:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4642``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4643instructions. Atomic loads produce :ref:`defined <memmodel>` results
4644when they may see multiple atomic stores. The type of the pointee must
4645be an integer type whose bit width is a power of two greater than or
4646equal to eight and less than or equal to a target-specific size limit.
4647``align`` must be explicitly specified on atomic stores, and the store
4648has undefined behavior if the alignment is not set to a value which is
4649at least the size in bytes of the pointee. ``!nontemporal`` does not
4650have any defined semantics for atomic stores.
4651
Eli Bendersky8952d902013-04-17 17:17:20 +00004652The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004653operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004654or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004655alignment for the target. It is the responsibility of the code emitter
4656to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004657alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004658alignment may produce less efficient code. An alignment of 1 is always
4659safe.
4660
Eli Bendersky8952d902013-04-17 17:17:20 +00004661The optional ``!nontemporal`` metadata must reference a single metatadata
4662name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
4663value 1. The existence of the ``!nontemporal`` metatadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004664tells the optimizer and code generator that this load is not expected to
4665be reused in the cache. The code generator may select special
4666instructions to save cache bandwidth, such as the MOVNT instruction on
4667x86.
4668
4669Semantics:
4670""""""""""
4671
Eli Bendersky8952d902013-04-17 17:17:20 +00004672The contents of memory are updated to contain ``<value>`` at the
4673location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004674of scalar type then the number of bytes written does not exceed the
4675minimum number of bytes needed to hold all bits of the type. For
4676example, storing an ``i24`` writes at most three bytes. When writing a
4677value of a type like ``i20`` with a size that is not an integral number
4678of bytes, it is unspecified what happens to the extra bits that do not
4679belong to the type, but they will typically be overwritten.
4680
4681Example:
4682""""""""
4683
4684.. code-block:: llvm
4685
4686 %ptr = alloca i32 ; yields {i32*}:ptr
4687 store i32 3, i32* %ptr ; yields {void}
4688 %val = load i32* %ptr ; yields {i32}:val = i32 3
4689
4690.. _i_fence:
4691
4692'``fence``' Instruction
4693^^^^^^^^^^^^^^^^^^^^^^^
4694
4695Syntax:
4696"""""""
4697
4698::
4699
4700 fence [singlethread] <ordering> ; yields {void}
4701
4702Overview:
4703"""""""""
4704
4705The '``fence``' instruction is used to introduce happens-before edges
4706between operations.
4707
4708Arguments:
4709""""""""""
4710
4711'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4712defines what *synchronizes-with* edges they add. They can only be given
4713``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4714
4715Semantics:
4716""""""""""
4717
4718A fence A which has (at least) ``release`` ordering semantics
4719*synchronizes with* a fence B with (at least) ``acquire`` ordering
4720semantics if and only if there exist atomic operations X and Y, both
4721operating on some atomic object M, such that A is sequenced before X, X
4722modifies M (either directly or through some side effect of a sequence
4723headed by X), Y is sequenced before B, and Y observes M. This provides a
4724*happens-before* dependency between A and B. Rather than an explicit
4725``fence``, one (but not both) of the atomic operations X or Y might
4726provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4727still *synchronize-with* the explicit ``fence`` and establish the
4728*happens-before* edge.
4729
4730A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4731``acquire`` and ``release`` semantics specified above, participates in
4732the global program order of other ``seq_cst`` operations and/or fences.
4733
4734The optional ":ref:`singlethread <singlethread>`" argument specifies
4735that the fence only synchronizes with other fences in the same thread.
4736(This is useful for interacting with signal handlers.)
4737
4738Example:
4739""""""""
4740
4741.. code-block:: llvm
4742
4743 fence acquire ; yields {void}
4744 fence singlethread seq_cst ; yields {void}
4745
4746.. _i_cmpxchg:
4747
4748'``cmpxchg``' Instruction
4749^^^^^^^^^^^^^^^^^^^^^^^^^
4750
4751Syntax:
4752"""""""
4753
4754::
4755
4756 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4757
4758Overview:
4759"""""""""
4760
4761The '``cmpxchg``' instruction is used to atomically modify memory. It
4762loads a value in memory and compares it to a given value. If they are
4763equal, it stores a new value into the memory.
4764
4765Arguments:
4766""""""""""
4767
4768There are three arguments to the '``cmpxchg``' instruction: an address
4769to operate on, a value to compare to the value currently be at that
4770address, and a new value to place at that address if the compared values
4771are equal. The type of '<cmp>' must be an integer type whose bit width
4772is a power of two greater than or equal to eight and less than or equal
4773to a target-specific size limit. '<cmp>' and '<new>' must have the same
4774type, and the type of '<pointer>' must be a pointer to that type. If the
4775``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4776to modify the number or order of execution of this ``cmpxchg`` with
4777other :ref:`volatile operations <volatile>`.
4778
4779The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4780synchronizes with other atomic operations.
4781
4782The optional "``singlethread``" argument declares that the ``cmpxchg``
4783is only atomic with respect to code (usually signal handlers) running in
4784the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4785respect to all other code in the system.
4786
4787The pointer passed into cmpxchg must have alignment greater than or
4788equal to the size in memory of the operand.
4789
4790Semantics:
4791""""""""""
4792
4793The contents of memory at the location specified by the '``<pointer>``'
4794operand is read and compared to '``<cmp>``'; if the read value is the
4795equal, '``<new>``' is written. The original value at the location is
4796returned.
4797
4798A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4799of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4800atomic load with an ordering parameter determined by dropping any
4801``release`` part of the ``cmpxchg``'s ordering.
4802
4803Example:
4804""""""""
4805
4806.. code-block:: llvm
4807
4808 entry:
4809 %orig = atomic load i32* %ptr unordered ; yields {i32}
4810 br label %loop
4811
4812 loop:
4813 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4814 %squared = mul i32 %cmp, %cmp
4815 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4816 %success = icmp eq i32 %cmp, %old
4817 br i1 %success, label %done, label %loop
4818
4819 done:
4820 ...
4821
4822.. _i_atomicrmw:
4823
4824'``atomicrmw``' Instruction
4825^^^^^^^^^^^^^^^^^^^^^^^^^^^
4826
4827Syntax:
4828"""""""
4829
4830::
4831
4832 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4833
4834Overview:
4835"""""""""
4836
4837The '``atomicrmw``' instruction is used to atomically modify memory.
4838
4839Arguments:
4840""""""""""
4841
4842There are three arguments to the '``atomicrmw``' instruction: an
4843operation to apply, an address whose value to modify, an argument to the
4844operation. The operation must be one of the following keywords:
4845
4846- xchg
4847- add
4848- sub
4849- and
4850- nand
4851- or
4852- xor
4853- max
4854- min
4855- umax
4856- umin
4857
4858The type of '<value>' must be an integer type whose bit width is a power
4859of two greater than or equal to eight and less than or equal to a
4860target-specific size limit. The type of the '``<pointer>``' operand must
4861be a pointer to that type. If the ``atomicrmw`` is marked as
4862``volatile``, then the optimizer is not allowed to modify the number or
4863order of execution of this ``atomicrmw`` with other :ref:`volatile
4864operations <volatile>`.
4865
4866Semantics:
4867""""""""""
4868
4869The contents of memory at the location specified by the '``<pointer>``'
4870operand are atomically read, modified, and written back. The original
4871value at the location is returned. The modification is specified by the
4872operation argument:
4873
4874- xchg: ``*ptr = val``
4875- add: ``*ptr = *ptr + val``
4876- sub: ``*ptr = *ptr - val``
4877- and: ``*ptr = *ptr & val``
4878- nand: ``*ptr = ~(*ptr & val)``
4879- or: ``*ptr = *ptr | val``
4880- xor: ``*ptr = *ptr ^ val``
4881- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4882- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4883- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4884 comparison)
4885- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4886 comparison)
4887
4888Example:
4889""""""""
4890
4891.. code-block:: llvm
4892
4893 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4894
4895.. _i_getelementptr:
4896
4897'``getelementptr``' Instruction
4898^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4899
4900Syntax:
4901"""""""
4902
4903::
4904
4905 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4906 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4907 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4908
4909Overview:
4910"""""""""
4911
4912The '``getelementptr``' instruction is used to get the address of a
4913subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4914address calculation only and does not access memory.
4915
4916Arguments:
4917""""""""""
4918
4919The first argument is always a pointer or a vector of pointers, and
4920forms the basis of the calculation. The remaining arguments are indices
4921that indicate which of the elements of the aggregate object are indexed.
4922The interpretation of each index is dependent on the type being indexed
4923into. The first index always indexes the pointer value given as the
4924first argument, the second index indexes a value of the type pointed to
4925(not necessarily the value directly pointed to, since the first index
4926can be non-zero), etc. The first type indexed into must be a pointer
4927value, subsequent types can be arrays, vectors, and structs. Note that
4928subsequent types being indexed into can never be pointers, since that
4929would require loading the pointer before continuing calculation.
4930
4931The type of each index argument depends on the type it is indexing into.
4932When indexing into a (optionally packed) structure, only ``i32`` integer
4933**constants** are allowed (when using a vector of indices they must all
4934be the **same** ``i32`` integer constant). When indexing into an array,
4935pointer or vector, integers of any width are allowed, and they are not
4936required to be constant. These integers are treated as signed values
4937where relevant.
4938
4939For example, let's consider a C code fragment and how it gets compiled
4940to LLVM:
4941
4942.. code-block:: c
4943
4944 struct RT {
4945 char A;
4946 int B[10][20];
4947 char C;
4948 };
4949 struct ST {
4950 int X;
4951 double Y;
4952 struct RT Z;
4953 };
4954
4955 int *foo(struct ST *s) {
4956 return &s[1].Z.B[5][13];
4957 }
4958
4959The LLVM code generated by Clang is:
4960
4961.. code-block:: llvm
4962
4963 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4964 %struct.ST = type { i32, double, %struct.RT }
4965
4966 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4967 entry:
4968 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4969 ret i32* %arrayidx
4970 }
4971
4972Semantics:
4973""""""""""
4974
4975In the example above, the first index is indexing into the
4976'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4977= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4978indexes into the third element of the structure, yielding a
4979'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4980structure. The third index indexes into the second element of the
4981structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4982dimensions of the array are subscripted into, yielding an '``i32``'
4983type. The '``getelementptr``' instruction returns a pointer to this
4984element, thus computing a value of '``i32*``' type.
4985
4986Note that it is perfectly legal to index partially through a structure,
4987returning a pointer to an inner element. Because of this, the LLVM code
4988for the given testcase is equivalent to:
4989
4990.. code-block:: llvm
4991
4992 define i32* @foo(%struct.ST* %s) {
4993 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
4994 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
4995 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
4996 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
4997 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
4998 ret i32* %t5
4999 }
5000
5001If the ``inbounds`` keyword is present, the result value of the
5002``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5003pointer is not an *in bounds* address of an allocated object, or if any
5004of the addresses that would be formed by successive addition of the
5005offsets implied by the indices to the base address with infinitely
5006precise signed arithmetic are not an *in bounds* address of that
5007allocated object. The *in bounds* addresses for an allocated object are
5008all the addresses that point into the object, plus the address one byte
5009past the end. In cases where the base is a vector of pointers the
5010``inbounds`` keyword applies to each of the computations element-wise.
5011
5012If the ``inbounds`` keyword is not present, the offsets are added to the
5013base address with silently-wrapping two's complement arithmetic. If the
5014offsets have a different width from the pointer, they are sign-extended
5015or truncated to the width of the pointer. The result value of the
5016``getelementptr`` may be outside the object pointed to by the base
5017pointer. The result value may not necessarily be used to access memory
5018though, even if it happens to point into allocated storage. See the
5019:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5020information.
5021
5022The getelementptr instruction is often confusing. For some more insight
5023into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5024
5025Example:
5026""""""""
5027
5028.. code-block:: llvm
5029
5030 ; yields [12 x i8]*:aptr
5031 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5032 ; yields i8*:vptr
5033 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5034 ; yields i8*:eptr
5035 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5036 ; yields i32*:iptr
5037 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5038
5039In cases where the pointer argument is a vector of pointers, each index
5040must be a vector with the same number of elements. For example:
5041
5042.. code-block:: llvm
5043
5044 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5045
5046Conversion Operations
5047---------------------
5048
5049The instructions in this category are the conversion instructions
5050(casting) which all take a single operand and a type. They perform
5051various bit conversions on the operand.
5052
5053'``trunc .. to``' Instruction
5054^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5055
5056Syntax:
5057"""""""
5058
5059::
5060
5061 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5062
5063Overview:
5064"""""""""
5065
5066The '``trunc``' instruction truncates its operand to the type ``ty2``.
5067
5068Arguments:
5069""""""""""
5070
5071The '``trunc``' instruction takes a value to trunc, and a type to trunc
5072it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5073of the same number of integers. The bit size of the ``value`` must be
5074larger than the bit size of the destination type, ``ty2``. Equal sized
5075types are not allowed.
5076
5077Semantics:
5078""""""""""
5079
5080The '``trunc``' instruction truncates the high order bits in ``value``
5081and converts the remaining bits to ``ty2``. Since the source size must
5082be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5083It will always truncate bits.
5084
5085Example:
5086""""""""
5087
5088.. code-block:: llvm
5089
5090 %X = trunc i32 257 to i8 ; yields i8:1
5091 %Y = trunc i32 123 to i1 ; yields i1:true
5092 %Z = trunc i32 122 to i1 ; yields i1:false
5093 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5094
5095'``zext .. to``' Instruction
5096^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5097
5098Syntax:
5099"""""""
5100
5101::
5102
5103 <result> = zext <ty> <value> to <ty2> ; yields ty2
5104
5105Overview:
5106"""""""""
5107
5108The '``zext``' instruction zero extends its operand to type ``ty2``.
5109
5110Arguments:
5111""""""""""
5112
5113The '``zext``' instruction takes a value to cast, and a type to cast it
5114to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5115the same number of integers. The bit size of the ``value`` must be
5116smaller than the bit size of the destination type, ``ty2``.
5117
5118Semantics:
5119""""""""""
5120
5121The ``zext`` fills the high order bits of the ``value`` with zero bits
5122until it reaches the size of the destination type, ``ty2``.
5123
5124When zero extending from i1, the result will always be either 0 or 1.
5125
5126Example:
5127""""""""
5128
5129.. code-block:: llvm
5130
5131 %X = zext i32 257 to i64 ; yields i64:257
5132 %Y = zext i1 true to i32 ; yields i32:1
5133 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5134
5135'``sext .. to``' Instruction
5136^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5137
5138Syntax:
5139"""""""
5140
5141::
5142
5143 <result> = sext <ty> <value> to <ty2> ; yields ty2
5144
5145Overview:
5146"""""""""
5147
5148The '``sext``' sign extends ``value`` to the type ``ty2``.
5149
5150Arguments:
5151""""""""""
5152
5153The '``sext``' instruction takes a value to cast, and a type to cast it
5154to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5155the same number of integers. The bit size of the ``value`` must be
5156smaller than the bit size of the destination type, ``ty2``.
5157
5158Semantics:
5159""""""""""
5160
5161The '``sext``' instruction performs a sign extension by copying the sign
5162bit (highest order bit) of the ``value`` until it reaches the bit size
5163of the type ``ty2``.
5164
5165When sign extending from i1, the extension always results in -1 or 0.
5166
5167Example:
5168""""""""
5169
5170.. code-block:: llvm
5171
5172 %X = sext i8 -1 to i16 ; yields i16 :65535
5173 %Y = sext i1 true to i32 ; yields i32:-1
5174 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5175
5176'``fptrunc .. to``' Instruction
5177^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5178
5179Syntax:
5180"""""""
5181
5182::
5183
5184 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5185
5186Overview:
5187"""""""""
5188
5189The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5190
5191Arguments:
5192""""""""""
5193
5194The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5195value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5196The size of ``value`` must be larger than the size of ``ty2``. This
5197implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5198
5199Semantics:
5200""""""""""
5201
5202The '``fptrunc``' instruction truncates a ``value`` from a larger
5203:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5204point <t_floating>` type. If the value cannot fit within the
5205destination type, ``ty2``, then the results are undefined.
5206
5207Example:
5208""""""""
5209
5210.. code-block:: llvm
5211
5212 %X = fptrunc double 123.0 to float ; yields float:123.0
5213 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5214
5215'``fpext .. to``' Instruction
5216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5217
5218Syntax:
5219"""""""
5220
5221::
5222
5223 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5224
5225Overview:
5226"""""""""
5227
5228The '``fpext``' extends a floating point ``value`` to a larger floating
5229point value.
5230
5231Arguments:
5232""""""""""
5233
5234The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5235``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5236to. The source type must be smaller than the destination type.
5237
5238Semantics:
5239""""""""""
5240
5241The '``fpext``' instruction extends the ``value`` from a smaller
5242:ref:`floating point <t_floating>` type to a larger :ref:`floating
5243point <t_floating>` type. The ``fpext`` cannot be used to make a
5244*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5245*no-op cast* for a floating point cast.
5246
5247Example:
5248""""""""
5249
5250.. code-block:: llvm
5251
5252 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5253 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5254
5255'``fptoui .. to``' Instruction
5256^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5257
5258Syntax:
5259"""""""
5260
5261::
5262
5263 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5264
5265Overview:
5266"""""""""
5267
5268The '``fptoui``' converts a floating point ``value`` to its unsigned
5269integer equivalent of type ``ty2``.
5270
5271Arguments:
5272""""""""""
5273
5274The '``fptoui``' instruction takes a value to cast, which must be a
5275scalar or vector :ref:`floating point <t_floating>` value, and a type to
5276cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5277``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5278type with the same number of elements as ``ty``
5279
5280Semantics:
5281""""""""""
5282
5283The '``fptoui``' instruction converts its :ref:`floating
5284point <t_floating>` operand into the nearest (rounding towards zero)
5285unsigned integer value. If the value cannot fit in ``ty2``, the results
5286are undefined.
5287
5288Example:
5289""""""""
5290
5291.. code-block:: llvm
5292
5293 %X = fptoui double 123.0 to i32 ; yields i32:123
5294 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5295 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5296
5297'``fptosi .. to``' Instruction
5298^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5299
5300Syntax:
5301"""""""
5302
5303::
5304
5305 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5306
5307Overview:
5308"""""""""
5309
5310The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5311``value`` to type ``ty2``.
5312
5313Arguments:
5314""""""""""
5315
5316The '``fptosi``' instruction takes a value to cast, which must be a
5317scalar or vector :ref:`floating point <t_floating>` value, and a type to
5318cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5319``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5320type with the same number of elements as ``ty``
5321
5322Semantics:
5323""""""""""
5324
5325The '``fptosi``' instruction converts its :ref:`floating
5326point <t_floating>` operand into the nearest (rounding towards zero)
5327signed integer value. If the value cannot fit in ``ty2``, the results
5328are undefined.
5329
5330Example:
5331""""""""
5332
5333.. code-block:: llvm
5334
5335 %X = fptosi double -123.0 to i32 ; yields i32:-123
5336 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5337 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5338
5339'``uitofp .. to``' Instruction
5340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5341
5342Syntax:
5343"""""""
5344
5345::
5346
5347 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5348
5349Overview:
5350"""""""""
5351
5352The '``uitofp``' instruction regards ``value`` as an unsigned integer
5353and converts that value to the ``ty2`` type.
5354
5355Arguments:
5356""""""""""
5357
5358The '``uitofp``' instruction takes a value to cast, which must be a
5359scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5360``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5361``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5362type with the same number of elements as ``ty``
5363
5364Semantics:
5365""""""""""
5366
5367The '``uitofp``' instruction interprets its operand as an unsigned
5368integer quantity and converts it to the corresponding floating point
5369value. If the value cannot fit in the floating point value, the results
5370are undefined.
5371
5372Example:
5373""""""""
5374
5375.. code-block:: llvm
5376
5377 %X = uitofp i32 257 to float ; yields float:257.0
5378 %Y = uitofp i8 -1 to double ; yields double:255.0
5379
5380'``sitofp .. to``' Instruction
5381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5382
5383Syntax:
5384"""""""
5385
5386::
5387
5388 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5389
5390Overview:
5391"""""""""
5392
5393The '``sitofp``' instruction regards ``value`` as a signed integer and
5394converts that value to the ``ty2`` type.
5395
5396Arguments:
5397""""""""""
5398
5399The '``sitofp``' instruction takes a value to cast, which must be a
5400scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5401``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5402``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5403type with the same number of elements as ``ty``
5404
5405Semantics:
5406""""""""""
5407
5408The '``sitofp``' instruction interprets its operand as a signed integer
5409quantity and converts it to the corresponding floating point value. If
5410the value cannot fit in the floating point value, the results are
5411undefined.
5412
5413Example:
5414""""""""
5415
5416.. code-block:: llvm
5417
5418 %X = sitofp i32 257 to float ; yields float:257.0
5419 %Y = sitofp i8 -1 to double ; yields double:-1.0
5420
5421.. _i_ptrtoint:
5422
5423'``ptrtoint .. to``' Instruction
5424^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5425
5426Syntax:
5427"""""""
5428
5429::
5430
5431 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5432
5433Overview:
5434"""""""""
5435
5436The '``ptrtoint``' instruction converts the pointer or a vector of
5437pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5438
5439Arguments:
5440""""""""""
5441
5442The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5443a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5444type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5445a vector of integers type.
5446
5447Semantics:
5448""""""""""
5449
5450The '``ptrtoint``' instruction converts ``value`` to integer type
5451``ty2`` by interpreting the pointer value as an integer and either
5452truncating or zero extending that value to the size of the integer type.
5453If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5454``value`` is larger than ``ty2`` then a truncation is done. If they are
5455the same size, then nothing is done (*no-op cast*) other than a type
5456change.
5457
5458Example:
5459""""""""
5460
5461.. code-block:: llvm
5462
5463 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5464 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5465 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5466
5467.. _i_inttoptr:
5468
5469'``inttoptr .. to``' Instruction
5470^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5471
5472Syntax:
5473"""""""
5474
5475::
5476
5477 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5478
5479Overview:
5480"""""""""
5481
5482The '``inttoptr``' instruction converts an integer ``value`` to a
5483pointer type, ``ty2``.
5484
5485Arguments:
5486""""""""""
5487
5488The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5489cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5490type.
5491
5492Semantics:
5493""""""""""
5494
5495The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5496applying either a zero extension or a truncation depending on the size
5497of the integer ``value``. If ``value`` is larger than the size of a
5498pointer then a truncation is done. If ``value`` is smaller than the size
5499of a pointer then a zero extension is done. If they are the same size,
5500nothing is done (*no-op cast*).
5501
5502Example:
5503""""""""
5504
5505.. code-block:: llvm
5506
5507 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5508 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5509 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5510 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5511
5512.. _i_bitcast:
5513
5514'``bitcast .. to``' Instruction
5515^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5516
5517Syntax:
5518"""""""
5519
5520::
5521
5522 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5523
5524Overview:
5525"""""""""
5526
5527The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5528changing any bits.
5529
5530Arguments:
5531""""""""""
5532
5533The '``bitcast``' instruction takes a value to cast, which must be a
5534non-aggregate first class value, and a type to cast it to, which must
5535also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5536sizes of ``value`` and the destination type, ``ty2``, must be identical.
5537If the source type is a pointer, the destination type must also be a
5538pointer. This instruction supports bitwise conversion of vectors to
5539integers and to vectors of other types (as long as they have the same
5540size).
5541
5542Semantics:
5543""""""""""
5544
5545The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5546always a *no-op cast* because no bits change with this conversion. The
5547conversion is done as if the ``value`` had been stored to memory and
5548read back as type ``ty2``. Pointer (or vector of pointers) types may
5549only be converted to other pointer (or vector of pointers) types with
5550this instruction. To convert pointers to other types, use the
5551:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5552first.
5553
5554Example:
5555""""""""
5556
5557.. code-block:: llvm
5558
5559 %X = bitcast i8 255 to i8 ; yields i8 :-1
5560 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5561 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5562 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5563
5564.. _otherops:
5565
5566Other Operations
5567----------------
5568
5569The instructions in this category are the "miscellaneous" instructions,
5570which defy better classification.
5571
5572.. _i_icmp:
5573
5574'``icmp``' Instruction
5575^^^^^^^^^^^^^^^^^^^^^^
5576
5577Syntax:
5578"""""""
5579
5580::
5581
5582 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5583
5584Overview:
5585"""""""""
5586
5587The '``icmp``' instruction returns a boolean value or a vector of
5588boolean values based on comparison of its two integer, integer vector,
5589pointer, or pointer vector operands.
5590
5591Arguments:
5592""""""""""
5593
5594The '``icmp``' instruction takes three operands. The first operand is
5595the condition code indicating the kind of comparison to perform. It is
5596not a value, just a keyword. The possible condition code are:
5597
5598#. ``eq``: equal
5599#. ``ne``: not equal
5600#. ``ugt``: unsigned greater than
5601#. ``uge``: unsigned greater or equal
5602#. ``ult``: unsigned less than
5603#. ``ule``: unsigned less or equal
5604#. ``sgt``: signed greater than
5605#. ``sge``: signed greater or equal
5606#. ``slt``: signed less than
5607#. ``sle``: signed less or equal
5608
5609The remaining two arguments must be :ref:`integer <t_integer>` or
5610:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5611must also be identical types.
5612
5613Semantics:
5614""""""""""
5615
5616The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5617code given as ``cond``. The comparison performed always yields either an
5618:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5619
5620#. ``eq``: yields ``true`` if the operands are equal, ``false``
5621 otherwise. No sign interpretation is necessary or performed.
5622#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5623 otherwise. No sign interpretation is necessary or performed.
5624#. ``ugt``: interprets the operands as unsigned values and yields
5625 ``true`` if ``op1`` is greater than ``op2``.
5626#. ``uge``: interprets the operands as unsigned values and yields
5627 ``true`` if ``op1`` is greater than or equal to ``op2``.
5628#. ``ult``: interprets the operands as unsigned values and yields
5629 ``true`` if ``op1`` is less than ``op2``.
5630#. ``ule``: interprets the operands as unsigned values and yields
5631 ``true`` if ``op1`` is less than or equal to ``op2``.
5632#. ``sgt``: interprets the operands as signed values and yields ``true``
5633 if ``op1`` is greater than ``op2``.
5634#. ``sge``: interprets the operands as signed values and yields ``true``
5635 if ``op1`` is greater than or equal to ``op2``.
5636#. ``slt``: interprets the operands as signed values and yields ``true``
5637 if ``op1`` is less than ``op2``.
5638#. ``sle``: interprets the operands as signed values and yields ``true``
5639 if ``op1`` is less than or equal to ``op2``.
5640
5641If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5642are compared as if they were integers.
5643
5644If the operands are integer vectors, then they are compared element by
5645element. The result is an ``i1`` vector with the same number of elements
5646as the values being compared. Otherwise, the result is an ``i1``.
5647
5648Example:
5649""""""""
5650
5651.. code-block:: llvm
5652
5653 <result> = icmp eq i32 4, 5 ; yields: result=false
5654 <result> = icmp ne float* %X, %X ; yields: result=false
5655 <result> = icmp ult i16 4, 5 ; yields: result=true
5656 <result> = icmp sgt i16 4, 5 ; yields: result=false
5657 <result> = icmp ule i16 -4, 5 ; yields: result=false
5658 <result> = icmp sge i16 4, 5 ; yields: result=false
5659
5660Note that the code generator does not yet support vector types with the
5661``icmp`` instruction.
5662
5663.. _i_fcmp:
5664
5665'``fcmp``' Instruction
5666^^^^^^^^^^^^^^^^^^^^^^
5667
5668Syntax:
5669"""""""
5670
5671::
5672
5673 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5674
5675Overview:
5676"""""""""
5677
5678The '``fcmp``' instruction returns a boolean value or vector of boolean
5679values based on comparison of its operands.
5680
5681If the operands are floating point scalars, then the result type is a
5682boolean (:ref:`i1 <t_integer>`).
5683
5684If the operands are floating point vectors, then the result type is a
5685vector of boolean with the same number of elements as the operands being
5686compared.
5687
5688Arguments:
5689""""""""""
5690
5691The '``fcmp``' instruction takes three operands. The first operand is
5692the condition code indicating the kind of comparison to perform. It is
5693not a value, just a keyword. The possible condition code are:
5694
5695#. ``false``: no comparison, always returns false
5696#. ``oeq``: ordered and equal
5697#. ``ogt``: ordered and greater than
5698#. ``oge``: ordered and greater than or equal
5699#. ``olt``: ordered and less than
5700#. ``ole``: ordered and less than or equal
5701#. ``one``: ordered and not equal
5702#. ``ord``: ordered (no nans)
5703#. ``ueq``: unordered or equal
5704#. ``ugt``: unordered or greater than
5705#. ``uge``: unordered or greater than or equal
5706#. ``ult``: unordered or less than
5707#. ``ule``: unordered or less than or equal
5708#. ``une``: unordered or not equal
5709#. ``uno``: unordered (either nans)
5710#. ``true``: no comparison, always returns true
5711
5712*Ordered* means that neither operand is a QNAN while *unordered* means
5713that either operand may be a QNAN.
5714
5715Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5716point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5717type. They must have identical types.
5718
5719Semantics:
5720""""""""""
5721
5722The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5723condition code given as ``cond``. If the operands are vectors, then the
5724vectors are compared element by element. Each comparison performed
5725always yields an :ref:`i1 <t_integer>` result, as follows:
5726
5727#. ``false``: always yields ``false``, regardless of operands.
5728#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5729 is equal to ``op2``.
5730#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5731 is greater than ``op2``.
5732#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5733 is greater than or equal to ``op2``.
5734#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5735 is less than ``op2``.
5736#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5737 is less than or equal to ``op2``.
5738#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5739 is not equal to ``op2``.
5740#. ``ord``: yields ``true`` if both operands are not a QNAN.
5741#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5742 equal to ``op2``.
5743#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5744 greater than ``op2``.
5745#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5746 greater than or equal to ``op2``.
5747#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5748 less than ``op2``.
5749#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5750 less than or equal to ``op2``.
5751#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5752 not equal to ``op2``.
5753#. ``uno``: yields ``true`` if either operand is a QNAN.
5754#. ``true``: always yields ``true``, regardless of operands.
5755
5756Example:
5757""""""""
5758
5759.. code-block:: llvm
5760
5761 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5762 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5763 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5764 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5765
5766Note that the code generator does not yet support vector types with the
5767``fcmp`` instruction.
5768
5769.. _i_phi:
5770
5771'``phi``' Instruction
5772^^^^^^^^^^^^^^^^^^^^^
5773
5774Syntax:
5775"""""""
5776
5777::
5778
5779 <result> = phi <ty> [ <val0>, <label0>], ...
5780
5781Overview:
5782"""""""""
5783
5784The '``phi``' instruction is used to implement the φ node in the SSA
5785graph representing the function.
5786
5787Arguments:
5788""""""""""
5789
5790The type of the incoming values is specified with the first type field.
5791After this, the '``phi``' instruction takes a list of pairs as
5792arguments, with one pair for each predecessor basic block of the current
5793block. Only values of :ref:`first class <t_firstclass>` type may be used as
5794the value arguments to the PHI node. Only labels may be used as the
5795label arguments.
5796
5797There must be no non-phi instructions between the start of a basic block
5798and the PHI instructions: i.e. PHI instructions must be first in a basic
5799block.
5800
5801For the purposes of the SSA form, the use of each incoming value is
5802deemed to occur on the edge from the corresponding predecessor block to
5803the current block (but after any definition of an '``invoke``'
5804instruction's return value on the same edge).
5805
5806Semantics:
5807""""""""""
5808
5809At runtime, the '``phi``' instruction logically takes on the value
5810specified by the pair corresponding to the predecessor basic block that
5811executed just prior to the current block.
5812
5813Example:
5814""""""""
5815
5816.. code-block:: llvm
5817
5818 Loop: ; Infinite loop that counts from 0 on up...
5819 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5820 %nextindvar = add i32 %indvar, 1
5821 br label %Loop
5822
5823.. _i_select:
5824
5825'``select``' Instruction
5826^^^^^^^^^^^^^^^^^^^^^^^^
5827
5828Syntax:
5829"""""""
5830
5831::
5832
5833 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5834
5835 selty is either i1 or {<N x i1>}
5836
5837Overview:
5838"""""""""
5839
5840The '``select``' instruction is used to choose one value based on a
5841condition, without branching.
5842
5843Arguments:
5844""""""""""
5845
5846The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5847values indicating the condition, and two values of the same :ref:`first
5848class <t_firstclass>` type. If the val1/val2 are vectors and the
5849condition is a scalar, then entire vectors are selected, not individual
5850elements.
5851
5852Semantics:
5853""""""""""
5854
5855If the condition is an i1 and it evaluates to 1, the instruction returns
5856the first value argument; otherwise, it returns the second value
5857argument.
5858
5859If the condition is a vector of i1, then the value arguments must be
5860vectors of the same size, and the selection is done element by element.
5861
5862Example:
5863""""""""
5864
5865.. code-block:: llvm
5866
5867 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5868
5869.. _i_call:
5870
5871'``call``' Instruction
5872^^^^^^^^^^^^^^^^^^^^^^
5873
5874Syntax:
5875"""""""
5876
5877::
5878
5879 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5880
5881Overview:
5882"""""""""
5883
5884The '``call``' instruction represents a simple function call.
5885
5886Arguments:
5887""""""""""
5888
5889This instruction requires several arguments:
5890
5891#. The optional "tail" marker indicates that the callee function does
5892 not access any allocas or varargs in the caller. Note that calls may
5893 be marked "tail" even if they do not occur before a
5894 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5895 function call is eligible for tail call optimization, but `might not
5896 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5897 The code generator may optimize calls marked "tail" with either 1)
5898 automatic `sibling call
5899 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5900 callee have matching signatures, or 2) forced tail call optimization
5901 when the following extra requirements are met:
5902
5903 - Caller and callee both have the calling convention ``fastcc``.
5904 - The call is in tail position (ret immediately follows call and ret
5905 uses value of call or is void).
5906 - Option ``-tailcallopt`` is enabled, or
5907 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5908 - `Platform specific constraints are
5909 met. <CodeGenerator.html#tailcallopt>`_
5910
5911#. The optional "cconv" marker indicates which :ref:`calling
5912 convention <callingconv>` the call should use. If none is
5913 specified, the call defaults to using C calling conventions. The
5914 calling convention of the call must match the calling convention of
5915 the target function, or else the behavior is undefined.
5916#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5917 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5918 are valid here.
5919#. '``ty``': the type of the call instruction itself which is also the
5920 type of the return value. Functions that return no value are marked
5921 ``void``.
5922#. '``fnty``': shall be the signature of the pointer to function value
5923 being invoked. The argument types must match the types implied by
5924 this signature. This type can be omitted if the function is not
5925 varargs and if the function type does not return a pointer to a
5926 function.
5927#. '``fnptrval``': An LLVM value containing a pointer to a function to
5928 be invoked. In most cases, this is a direct function invocation, but
5929 indirect ``call``'s are just as possible, calling an arbitrary pointer
5930 to function value.
5931#. '``function args``': argument list whose types match the function
5932 signature argument types and parameter attributes. All arguments must
5933 be of :ref:`first class <t_firstclass>` type. If the function signature
5934 indicates the function accepts a variable number of arguments, the
5935 extra arguments can be specified.
5936#. The optional :ref:`function attributes <fnattrs>` list. Only
5937 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5938 attributes are valid here.
5939
5940Semantics:
5941""""""""""
5942
5943The '``call``' instruction is used to cause control flow to transfer to
5944a specified function, with its incoming arguments bound to the specified
5945values. Upon a '``ret``' instruction in the called function, control
5946flow continues with the instruction after the function call, and the
5947return value of the function is bound to the result argument.
5948
5949Example:
5950""""""""
5951
5952.. code-block:: llvm
5953
5954 %retval = call i32 @test(i32 %argc)
5955 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5956 %X = tail call i32 @foo() ; yields i32
5957 %Y = tail call fastcc i32 @foo() ; yields i32
5958 call void %foo(i8 97 signext)
5959
5960 %struct.A = type { i32, i8 }
5961 %r = call %struct.A @foo() ; yields { 32, i8 }
5962 %gr = extractvalue %struct.A %r, 0 ; yields i32
5963 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5964 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5965 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5966
5967llvm treats calls to some functions with names and arguments that match
5968the standard C99 library as being the C99 library functions, and may
5969perform optimizations or generate code for them under that assumption.
5970This is something we'd like to change in the future to provide better
5971support for freestanding environments and non-C-based languages.
5972
5973.. _i_va_arg:
5974
5975'``va_arg``' Instruction
5976^^^^^^^^^^^^^^^^^^^^^^^^
5977
5978Syntax:
5979"""""""
5980
5981::
5982
5983 <resultval> = va_arg <va_list*> <arglist>, <argty>
5984
5985Overview:
5986"""""""""
5987
5988The '``va_arg``' instruction is used to access arguments passed through
5989the "variable argument" area of a function call. It is used to implement
5990the ``va_arg`` macro in C.
5991
5992Arguments:
5993""""""""""
5994
5995This instruction takes a ``va_list*`` value and the type of the
5996argument. It returns a value of the specified argument type and
5997increments the ``va_list`` to point to the next argument. The actual
5998type of ``va_list`` is target specific.
5999
6000Semantics:
6001""""""""""
6002
6003The '``va_arg``' instruction loads an argument of the specified type
6004from the specified ``va_list`` and causes the ``va_list`` to point to
6005the next argument. For more information, see the variable argument
6006handling :ref:`Intrinsic Functions <int_varargs>`.
6007
6008It is legal for this instruction to be called in a function which does
6009not take a variable number of arguments, for example, the ``vfprintf``
6010function.
6011
6012``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6013function <intrinsics>` because it takes a type as an argument.
6014
6015Example:
6016""""""""
6017
6018See the :ref:`variable argument processing <int_varargs>` section.
6019
6020Note that the code generator does not yet fully support va\_arg on many
6021targets. Also, it does not currently support va\_arg with aggregate
6022types on any target.
6023
6024.. _i_landingpad:
6025
6026'``landingpad``' Instruction
6027^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6028
6029Syntax:
6030"""""""
6031
6032::
6033
6034 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6035 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6036
6037 <clause> := catch <type> <value>
6038 <clause> := filter <array constant type> <array constant>
6039
6040Overview:
6041"""""""""
6042
6043The '``landingpad``' instruction is used by `LLVM's exception handling
6044system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006045is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006046code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6047defines values supplied by the personality function (``pers_fn``) upon
6048re-entry to the function. The ``resultval`` has the type ``resultty``.
6049
6050Arguments:
6051""""""""""
6052
6053This instruction takes a ``pers_fn`` value. This is the personality
6054function associated with the unwinding mechanism. The optional
6055``cleanup`` flag indicates that the landing pad block is a cleanup.
6056
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006057A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006058contains the global variable representing the "type" that may be caught
6059or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6060clause takes an array constant as its argument. Use
6061"``[0 x i8**] undef``" for a filter which cannot throw. The
6062'``landingpad``' instruction must contain *at least* one ``clause`` or
6063the ``cleanup`` flag.
6064
6065Semantics:
6066""""""""""
6067
6068The '``landingpad``' instruction defines the values which are set by the
6069personality function (``pers_fn``) upon re-entry to the function, and
6070therefore the "result type" of the ``landingpad`` instruction. As with
6071calling conventions, how the personality function results are
6072represented in LLVM IR is target specific.
6073
6074The clauses are applied in order from top to bottom. If two
6075``landingpad`` instructions are merged together through inlining, the
6076clauses from the calling function are appended to the list of clauses.
6077When the call stack is being unwound due to an exception being thrown,
6078the exception is compared against each ``clause`` in turn. If it doesn't
6079match any of the clauses, and the ``cleanup`` flag is not set, then
6080unwinding continues further up the call stack.
6081
6082The ``landingpad`` instruction has several restrictions:
6083
6084- A landing pad block is a basic block which is the unwind destination
6085 of an '``invoke``' instruction.
6086- A landing pad block must have a '``landingpad``' instruction as its
6087 first non-PHI instruction.
6088- There can be only one '``landingpad``' instruction within the landing
6089 pad block.
6090- A basic block that is not a landing pad block may not include a
6091 '``landingpad``' instruction.
6092- All '``landingpad``' instructions in a function must have the same
6093 personality function.
6094
6095Example:
6096""""""""
6097
6098.. code-block:: llvm
6099
6100 ;; A landing pad which can catch an integer.
6101 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6102 catch i8** @_ZTIi
6103 ;; A landing pad that is a cleanup.
6104 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6105 cleanup
6106 ;; A landing pad which can catch an integer and can only throw a double.
6107 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6108 catch i8** @_ZTIi
6109 filter [1 x i8**] [@_ZTId]
6110
6111.. _intrinsics:
6112
6113Intrinsic Functions
6114===================
6115
6116LLVM supports the notion of an "intrinsic function". These functions
6117have well known names and semantics and are required to follow certain
6118restrictions. Overall, these intrinsics represent an extension mechanism
6119for the LLVM language that does not require changing all of the
6120transformations in LLVM when adding to the language (or the bitcode
6121reader/writer, the parser, etc...).
6122
6123Intrinsic function names must all start with an "``llvm.``" prefix. This
6124prefix is reserved in LLVM for intrinsic names; thus, function names may
6125not begin with this prefix. Intrinsic functions must always be external
6126functions: you cannot define the body of intrinsic functions. Intrinsic
6127functions may only be used in call or invoke instructions: it is illegal
6128to take the address of an intrinsic function. Additionally, because
6129intrinsic functions are part of the LLVM language, it is required if any
6130are added that they be documented here.
6131
6132Some intrinsic functions can be overloaded, i.e., the intrinsic
6133represents a family of functions that perform the same operation but on
6134different data types. Because LLVM can represent over 8 million
6135different integer types, overloading is used commonly to allow an
6136intrinsic function to operate on any integer type. One or more of the
6137argument types or the result type can be overloaded to accept any
6138integer type. Argument types may also be defined as exactly matching a
6139previous argument's type or the result type. This allows an intrinsic
6140function which accepts multiple arguments, but needs all of them to be
6141of the same type, to only be overloaded with respect to a single
6142argument or the result.
6143
6144Overloaded intrinsics will have the names of its overloaded argument
6145types encoded into its function name, each preceded by a period. Only
6146those types which are overloaded result in a name suffix. Arguments
6147whose type is matched against another type do not. For example, the
6148``llvm.ctpop`` function can take an integer of any width and returns an
6149integer of exactly the same integer width. This leads to a family of
6150functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6151``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6152overloaded, and only one type suffix is required. Because the argument's
6153type is matched against the return type, it does not require its own
6154name suffix.
6155
6156To learn how to add an intrinsic function, please see the `Extending
6157LLVM Guide <ExtendingLLVM.html>`_.
6158
6159.. _int_varargs:
6160
6161Variable Argument Handling Intrinsics
6162-------------------------------------
6163
6164Variable argument support is defined in LLVM with the
6165:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6166functions. These functions are related to the similarly named macros
6167defined in the ``<stdarg.h>`` header file.
6168
6169All of these functions operate on arguments that use a target-specific
6170value type "``va_list``". The LLVM assembly language reference manual
6171does not define what this type is, so all transformations should be
6172prepared to handle these functions regardless of the type used.
6173
6174This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6175variable argument handling intrinsic functions are used.
6176
6177.. code-block:: llvm
6178
6179 define i32 @test(i32 %X, ...) {
6180 ; Initialize variable argument processing
6181 %ap = alloca i8*
6182 %ap2 = bitcast i8** %ap to i8*
6183 call void @llvm.va_start(i8* %ap2)
6184
6185 ; Read a single integer argument
6186 %tmp = va_arg i8** %ap, i32
6187
6188 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6189 %aq = alloca i8*
6190 %aq2 = bitcast i8** %aq to i8*
6191 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6192 call void @llvm.va_end(i8* %aq2)
6193
6194 ; Stop processing of arguments.
6195 call void @llvm.va_end(i8* %ap2)
6196 ret i32 %tmp
6197 }
6198
6199 declare void @llvm.va_start(i8*)
6200 declare void @llvm.va_copy(i8*, i8*)
6201 declare void @llvm.va_end(i8*)
6202
6203.. _int_va_start:
6204
6205'``llvm.va_start``' Intrinsic
6206^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6207
6208Syntax:
6209"""""""
6210
6211::
6212
6213 declare void %llvm.va_start(i8* <arglist>)
6214
6215Overview:
6216"""""""""
6217
6218The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6219subsequent use by ``va_arg``.
6220
6221Arguments:
6222""""""""""
6223
6224The argument is a pointer to a ``va_list`` element to initialize.
6225
6226Semantics:
6227""""""""""
6228
6229The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6230available in C. In a target-dependent way, it initializes the
6231``va_list`` element to which the argument points, so that the next call
6232to ``va_arg`` will produce the first variable argument passed to the
6233function. Unlike the C ``va_start`` macro, this intrinsic does not need
6234to know the last argument of the function as the compiler can figure
6235that out.
6236
6237'``llvm.va_end``' Intrinsic
6238^^^^^^^^^^^^^^^^^^^^^^^^^^^
6239
6240Syntax:
6241"""""""
6242
6243::
6244
6245 declare void @llvm.va_end(i8* <arglist>)
6246
6247Overview:
6248"""""""""
6249
6250The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6251initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6252
6253Arguments:
6254""""""""""
6255
6256The argument is a pointer to a ``va_list`` to destroy.
6257
6258Semantics:
6259""""""""""
6260
6261The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6262available in C. In a target-dependent way, it destroys the ``va_list``
6263element to which the argument points. Calls to
6264:ref:`llvm.va_start <int_va_start>` and
6265:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6266``llvm.va_end``.
6267
6268.. _int_va_copy:
6269
6270'``llvm.va_copy``' Intrinsic
6271^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6272
6273Syntax:
6274"""""""
6275
6276::
6277
6278 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6279
6280Overview:
6281"""""""""
6282
6283The '``llvm.va_copy``' intrinsic copies the current argument position
6284from the source argument list to the destination argument list.
6285
6286Arguments:
6287""""""""""
6288
6289The first argument is a pointer to a ``va_list`` element to initialize.
6290The second argument is a pointer to a ``va_list`` element to copy from.
6291
6292Semantics:
6293""""""""""
6294
6295The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6296available in C. In a target-dependent way, it copies the source
6297``va_list`` element into the destination ``va_list`` element. This
6298intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6299arbitrarily complex and require, for example, memory allocation.
6300
6301Accurate Garbage Collection Intrinsics
6302--------------------------------------
6303
6304LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6305(GC) requires the implementation and generation of these intrinsics.
6306These intrinsics allow identification of :ref:`GC roots on the
6307stack <int_gcroot>`, as well as garbage collector implementations that
6308require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6309Front-ends for type-safe garbage collected languages should generate
6310these intrinsics to make use of the LLVM garbage collectors. For more
6311details, see `Accurate Garbage Collection with
6312LLVM <GarbageCollection.html>`_.
6313
6314The garbage collection intrinsics only operate on objects in the generic
6315address space (address space zero).
6316
6317.. _int_gcroot:
6318
6319'``llvm.gcroot``' Intrinsic
6320^^^^^^^^^^^^^^^^^^^^^^^^^^^
6321
6322Syntax:
6323"""""""
6324
6325::
6326
6327 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6328
6329Overview:
6330"""""""""
6331
6332The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6333the code generator, and allows some metadata to be associated with it.
6334
6335Arguments:
6336""""""""""
6337
6338The first argument specifies the address of a stack object that contains
6339the root pointer. The second pointer (which must be either a constant or
6340a global value address) contains the meta-data to be associated with the
6341root.
6342
6343Semantics:
6344""""""""""
6345
6346At runtime, a call to this intrinsic stores a null pointer into the
6347"ptrloc" location. At compile-time, the code generator generates
6348information to allow the runtime to find the pointer at GC safe points.
6349The '``llvm.gcroot``' intrinsic may only be used in a function which
6350:ref:`specifies a GC algorithm <gc>`.
6351
6352.. _int_gcread:
6353
6354'``llvm.gcread``' Intrinsic
6355^^^^^^^^^^^^^^^^^^^^^^^^^^^
6356
6357Syntax:
6358"""""""
6359
6360::
6361
6362 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6363
6364Overview:
6365"""""""""
6366
6367The '``llvm.gcread``' intrinsic identifies reads of references from heap
6368locations, allowing garbage collector implementations that require read
6369barriers.
6370
6371Arguments:
6372""""""""""
6373
6374The second argument is the address to read from, which should be an
6375address allocated from the garbage collector. The first object is a
6376pointer to the start of the referenced object, if needed by the language
6377runtime (otherwise null).
6378
6379Semantics:
6380""""""""""
6381
6382The '``llvm.gcread``' intrinsic has the same semantics as a load
6383instruction, but may be replaced with substantially more complex code by
6384the garbage collector runtime, as needed. The '``llvm.gcread``'
6385intrinsic may only be used in a function which :ref:`specifies a GC
6386algorithm <gc>`.
6387
6388.. _int_gcwrite:
6389
6390'``llvm.gcwrite``' Intrinsic
6391^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6392
6393Syntax:
6394"""""""
6395
6396::
6397
6398 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6399
6400Overview:
6401"""""""""
6402
6403The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6404locations, allowing garbage collector implementations that require write
6405barriers (such as generational or reference counting collectors).
6406
6407Arguments:
6408""""""""""
6409
6410The first argument is the reference to store, the second is the start of
6411the object to store it to, and the third is the address of the field of
6412Obj to store to. If the runtime does not require a pointer to the
6413object, Obj may be null.
6414
6415Semantics:
6416""""""""""
6417
6418The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6419instruction, but may be replaced with substantially more complex code by
6420the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6421intrinsic may only be used in a function which :ref:`specifies a GC
6422algorithm <gc>`.
6423
6424Code Generator Intrinsics
6425-------------------------
6426
6427These intrinsics are provided by LLVM to expose special features that
6428may only be implemented with code generator support.
6429
6430'``llvm.returnaddress``' Intrinsic
6431^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6432
6433Syntax:
6434"""""""
6435
6436::
6437
6438 declare i8 *@llvm.returnaddress(i32 <level>)
6439
6440Overview:
6441"""""""""
6442
6443The '``llvm.returnaddress``' intrinsic attempts to compute a
6444target-specific value indicating the return address of the current
6445function or one of its callers.
6446
6447Arguments:
6448""""""""""
6449
6450The argument to this intrinsic indicates which function to return the
6451address for. Zero indicates the calling function, one indicates its
6452caller, etc. The argument is **required** to be a constant integer
6453value.
6454
6455Semantics:
6456""""""""""
6457
6458The '``llvm.returnaddress``' intrinsic either returns a pointer
6459indicating the return address of the specified call frame, or zero if it
6460cannot be identified. The value returned by this intrinsic is likely to
6461be incorrect or 0 for arguments other than zero, so it should only be
6462used for debugging purposes.
6463
6464Note that calling this intrinsic does not prevent function inlining or
6465other aggressive transformations, so the value returned may not be that
6466of the obvious source-language caller.
6467
6468'``llvm.frameaddress``' Intrinsic
6469^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6470
6471Syntax:
6472"""""""
6473
6474::
6475
6476 declare i8* @llvm.frameaddress(i32 <level>)
6477
6478Overview:
6479"""""""""
6480
6481The '``llvm.frameaddress``' intrinsic attempts to return the
6482target-specific frame pointer value for the specified stack frame.
6483
6484Arguments:
6485""""""""""
6486
6487The argument to this intrinsic indicates which function to return the
6488frame pointer for. Zero indicates the calling function, one indicates
6489its caller, etc. The argument is **required** to be a constant integer
6490value.
6491
6492Semantics:
6493""""""""""
6494
6495The '``llvm.frameaddress``' intrinsic either returns a pointer
6496indicating the frame address of the specified call frame, or zero if it
6497cannot be identified. The value returned by this intrinsic is likely to
6498be incorrect or 0 for arguments other than zero, so it should only be
6499used for debugging purposes.
6500
6501Note that calling this intrinsic does not prevent function inlining or
6502other aggressive transformations, so the value returned may not be that
6503of the obvious source-language caller.
6504
6505.. _int_stacksave:
6506
6507'``llvm.stacksave``' Intrinsic
6508^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6509
6510Syntax:
6511"""""""
6512
6513::
6514
6515 declare i8* @llvm.stacksave()
6516
6517Overview:
6518"""""""""
6519
6520The '``llvm.stacksave``' intrinsic is used to remember the current state
6521of the function stack, for use with
6522:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6523implementing language features like scoped automatic variable sized
6524arrays in C99.
6525
6526Semantics:
6527""""""""""
6528
6529This intrinsic returns a opaque pointer value that can be passed to
6530:ref:`llvm.stackrestore <int_stackrestore>`. When an
6531``llvm.stackrestore`` intrinsic is executed with a value saved from
6532``llvm.stacksave``, it effectively restores the state of the stack to
6533the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6534practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6535were allocated after the ``llvm.stacksave`` was executed.
6536
6537.. _int_stackrestore:
6538
6539'``llvm.stackrestore``' Intrinsic
6540^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6541
6542Syntax:
6543"""""""
6544
6545::
6546
6547 declare void @llvm.stackrestore(i8* %ptr)
6548
6549Overview:
6550"""""""""
6551
6552The '``llvm.stackrestore``' intrinsic is used to restore the state of
6553the function stack to the state it was in when the corresponding
6554:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6555useful for implementing language features like scoped automatic variable
6556sized arrays in C99.
6557
6558Semantics:
6559""""""""""
6560
6561See the description for :ref:`llvm.stacksave <int_stacksave>`.
6562
6563'``llvm.prefetch``' Intrinsic
6564^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6565
6566Syntax:
6567"""""""
6568
6569::
6570
6571 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6572
6573Overview:
6574"""""""""
6575
6576The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6577insert a prefetch instruction if supported; otherwise, it is a noop.
6578Prefetches have no effect on the behavior of the program but can change
6579its performance characteristics.
6580
6581Arguments:
6582""""""""""
6583
6584``address`` is the address to be prefetched, ``rw`` is the specifier
6585determining if the fetch should be for a read (0) or write (1), and
6586``locality`` is a temporal locality specifier ranging from (0) - no
6587locality, to (3) - extremely local keep in cache. The ``cache type``
6588specifies whether the prefetch is performed on the data (1) or
6589instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6590arguments must be constant integers.
6591
6592Semantics:
6593""""""""""
6594
6595This intrinsic does not modify the behavior of the program. In
6596particular, prefetches cannot trap and do not produce a value. On
6597targets that support this intrinsic, the prefetch can provide hints to
6598the processor cache for better performance.
6599
6600'``llvm.pcmarker``' Intrinsic
6601^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6602
6603Syntax:
6604"""""""
6605
6606::
6607
6608 declare void @llvm.pcmarker(i32 <id>)
6609
6610Overview:
6611"""""""""
6612
6613The '``llvm.pcmarker``' intrinsic is a method to export a Program
6614Counter (PC) in a region of code to simulators and other tools. The
6615method is target specific, but it is expected that the marker will use
6616exported symbols to transmit the PC of the marker. The marker makes no
6617guarantees that it will remain with any specific instruction after
6618optimizations. It is possible that the presence of a marker will inhibit
6619optimizations. The intended use is to be inserted after optimizations to
6620allow correlations of simulation runs.
6621
6622Arguments:
6623""""""""""
6624
6625``id`` is a numerical id identifying the marker.
6626
6627Semantics:
6628""""""""""
6629
6630This intrinsic does not modify the behavior of the program. Backends
6631that do not support this intrinsic may ignore it.
6632
6633'``llvm.readcyclecounter``' Intrinsic
6634^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6635
6636Syntax:
6637"""""""
6638
6639::
6640
6641 declare i64 @llvm.readcyclecounter()
6642
6643Overview:
6644"""""""""
6645
6646The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6647counter register (or similar low latency, high accuracy clocks) on those
6648targets that support it. On X86, it should map to RDTSC. On Alpha, it
6649should map to RPCC. As the backing counters overflow quickly (on the
6650order of 9 seconds on alpha), this should only be used for small
6651timings.
6652
6653Semantics:
6654""""""""""
6655
6656When directly supported, reading the cycle counter should not modify any
6657memory. Implementations are allowed to either return a application
6658specific value or a system wide value. On backends without support, this
6659is lowered to a constant 0.
6660
6661Standard C Library Intrinsics
6662-----------------------------
6663
6664LLVM provides intrinsics for a few important standard C library
6665functions. These intrinsics allow source-language front-ends to pass
6666information about the alignment of the pointer arguments to the code
6667generator, providing opportunity for more efficient code generation.
6668
6669.. _int_memcpy:
6670
6671'``llvm.memcpy``' Intrinsic
6672^^^^^^^^^^^^^^^^^^^^^^^^^^^
6673
6674Syntax:
6675"""""""
6676
6677This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6678integer bit width and for different address spaces. Not all targets
6679support all bit widths however.
6680
6681::
6682
6683 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6684 i32 <len>, i32 <align>, i1 <isvolatile>)
6685 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6686 i64 <len>, i32 <align>, i1 <isvolatile>)
6687
6688Overview:
6689"""""""""
6690
6691The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6692source location to the destination location.
6693
6694Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6695intrinsics do not return a value, takes extra alignment/isvolatile
6696arguments and the pointers can be in specified address spaces.
6697
6698Arguments:
6699""""""""""
6700
6701The first argument is a pointer to the destination, the second is a
6702pointer to the source. The third argument is an integer argument
6703specifying the number of bytes to copy, the fourth argument is the
6704alignment of the source and destination locations, and the fifth is a
6705boolean indicating a volatile access.
6706
6707If the call to this intrinsic has an alignment value that is not 0 or 1,
6708then the caller guarantees that both the source and destination pointers
6709are aligned to that boundary.
6710
6711If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6712a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6713very cleanly specified and it is unwise to depend on it.
6714
6715Semantics:
6716""""""""""
6717
6718The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6719source location to the destination location, which are not allowed to
6720overlap. It copies "len" bytes of memory over. If the argument is known
6721to be aligned to some boundary, this can be specified as the fourth
6722argument, otherwise it should be set to 0 or 1.
6723
6724'``llvm.memmove``' Intrinsic
6725^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6726
6727Syntax:
6728"""""""
6729
6730This is an overloaded intrinsic. You can use llvm.memmove on any integer
6731bit width and for different address space. Not all targets support all
6732bit widths however.
6733
6734::
6735
6736 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6737 i32 <len>, i32 <align>, i1 <isvolatile>)
6738 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6739 i64 <len>, i32 <align>, i1 <isvolatile>)
6740
6741Overview:
6742"""""""""
6743
6744The '``llvm.memmove.*``' intrinsics move a block of memory from the
6745source location to the destination location. It is similar to the
6746'``llvm.memcpy``' intrinsic but allows the two memory locations to
6747overlap.
6748
6749Note that, unlike the standard libc function, the ``llvm.memmove.*``
6750intrinsics do not return a value, takes extra alignment/isvolatile
6751arguments and the pointers can be in specified address spaces.
6752
6753Arguments:
6754""""""""""
6755
6756The first argument is a pointer to the destination, the second is a
6757pointer to the source. The third argument is an integer argument
6758specifying the number of bytes to copy, the fourth argument is the
6759alignment of the source and destination locations, and the fifth is a
6760boolean indicating a volatile access.
6761
6762If the call to this intrinsic has an alignment value that is not 0 or 1,
6763then the caller guarantees that the source and destination pointers are
6764aligned to that boundary.
6765
6766If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6767is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6768not very cleanly specified and it is unwise to depend on it.
6769
6770Semantics:
6771""""""""""
6772
6773The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6774source location to the destination location, which may overlap. It
6775copies "len" bytes of memory over. If the argument is known to be
6776aligned to some boundary, this can be specified as the fourth argument,
6777otherwise it should be set to 0 or 1.
6778
6779'``llvm.memset.*``' Intrinsics
6780^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6781
6782Syntax:
6783"""""""
6784
6785This is an overloaded intrinsic. You can use llvm.memset on any integer
6786bit width and for different address spaces. However, not all targets
6787support all bit widths.
6788
6789::
6790
6791 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6792 i32 <len>, i32 <align>, i1 <isvolatile>)
6793 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6794 i64 <len>, i32 <align>, i1 <isvolatile>)
6795
6796Overview:
6797"""""""""
6798
6799The '``llvm.memset.*``' intrinsics fill a block of memory with a
6800particular byte value.
6801
6802Note that, unlike the standard libc function, the ``llvm.memset``
6803intrinsic does not return a value and takes extra alignment/volatile
6804arguments. Also, the destination can be in an arbitrary address space.
6805
6806Arguments:
6807""""""""""
6808
6809The first argument is a pointer to the destination to fill, the second
6810is the byte value with which to fill it, the third argument is an
6811integer argument specifying the number of bytes to fill, and the fourth
6812argument is the known alignment of the destination location.
6813
6814If the call to this intrinsic has an alignment value that is not 0 or 1,
6815then the caller guarantees that the destination pointer is aligned to
6816that boundary.
6817
6818If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6819a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6820very cleanly specified and it is unwise to depend on it.
6821
6822Semantics:
6823""""""""""
6824
6825The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6826at the destination location. If the argument is known to be aligned to
6827some boundary, this can be specified as the fourth argument, otherwise
6828it should be set to 0 or 1.
6829
6830'``llvm.sqrt.*``' Intrinsic
6831^^^^^^^^^^^^^^^^^^^^^^^^^^^
6832
6833Syntax:
6834"""""""
6835
6836This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6837floating point or vector of floating point type. Not all targets support
6838all types however.
6839
6840::
6841
6842 declare float @llvm.sqrt.f32(float %Val)
6843 declare double @llvm.sqrt.f64(double %Val)
6844 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6845 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6846 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6847
6848Overview:
6849"""""""""
6850
6851The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6852returning the same value as the libm '``sqrt``' functions would. Unlike
6853``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6854negative numbers other than -0.0 (which allows for better optimization,
6855because there is no need to worry about errno being set).
6856``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6857
6858Arguments:
6859""""""""""
6860
6861The argument and return value are floating point numbers of the same
6862type.
6863
6864Semantics:
6865""""""""""
6866
6867This function returns the sqrt of the specified operand if it is a
6868nonnegative floating point number.
6869
6870'``llvm.powi.*``' Intrinsic
6871^^^^^^^^^^^^^^^^^^^^^^^^^^^
6872
6873Syntax:
6874"""""""
6875
6876This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6877floating point or vector of floating point type. Not all targets support
6878all types however.
6879
6880::
6881
6882 declare float @llvm.powi.f32(float %Val, i32 %power)
6883 declare double @llvm.powi.f64(double %Val, i32 %power)
6884 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6885 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6886 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6887
6888Overview:
6889"""""""""
6890
6891The '``llvm.powi.*``' intrinsics return the first operand raised to the
6892specified (positive or negative) power. The order of evaluation of
6893multiplications is not defined. When a vector of floating point type is
6894used, the second argument remains a scalar integer value.
6895
6896Arguments:
6897""""""""""
6898
6899The second argument is an integer power, and the first is a value to
6900raise to that power.
6901
6902Semantics:
6903""""""""""
6904
6905This function returns the first value raised to the second power with an
6906unspecified sequence of rounding operations.
6907
6908'``llvm.sin.*``' Intrinsic
6909^^^^^^^^^^^^^^^^^^^^^^^^^^
6910
6911Syntax:
6912"""""""
6913
6914This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6915floating point or vector of floating point type. Not all targets support
6916all types however.
6917
6918::
6919
6920 declare float @llvm.sin.f32(float %Val)
6921 declare double @llvm.sin.f64(double %Val)
6922 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6923 declare fp128 @llvm.sin.f128(fp128 %Val)
6924 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6925
6926Overview:
6927"""""""""
6928
6929The '``llvm.sin.*``' intrinsics return the sine of the operand.
6930
6931Arguments:
6932""""""""""
6933
6934The argument and return value are floating point numbers of the same
6935type.
6936
6937Semantics:
6938""""""""""
6939
6940This function returns the sine of the specified operand, returning the
6941same values as the libm ``sin`` functions would, and handles error
6942conditions in the same way.
6943
6944'``llvm.cos.*``' Intrinsic
6945^^^^^^^^^^^^^^^^^^^^^^^^^^
6946
6947Syntax:
6948"""""""
6949
6950This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6951floating point or vector of floating point type. Not all targets support
6952all types however.
6953
6954::
6955
6956 declare float @llvm.cos.f32(float %Val)
6957 declare double @llvm.cos.f64(double %Val)
6958 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6959 declare fp128 @llvm.cos.f128(fp128 %Val)
6960 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6961
6962Overview:
6963"""""""""
6964
6965The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6966
6967Arguments:
6968""""""""""
6969
6970The argument and return value are floating point numbers of the same
6971type.
6972
6973Semantics:
6974""""""""""
6975
6976This function returns the cosine of the specified operand, returning the
6977same values as the libm ``cos`` functions would, and handles error
6978conditions in the same way.
6979
6980'``llvm.pow.*``' Intrinsic
6981^^^^^^^^^^^^^^^^^^^^^^^^^^
6982
6983Syntax:
6984"""""""
6985
6986This is an overloaded intrinsic. You can use ``llvm.pow`` on any
6987floating point or vector of floating point type. Not all targets support
6988all types however.
6989
6990::
6991
6992 declare float @llvm.pow.f32(float %Val, float %Power)
6993 declare double @llvm.pow.f64(double %Val, double %Power)
6994 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
6995 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
6996 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
6997
6998Overview:
6999"""""""""
7000
7001The '``llvm.pow.*``' intrinsics return the first operand raised to the
7002specified (positive or negative) power.
7003
7004Arguments:
7005""""""""""
7006
7007The second argument is a floating point power, and the first is a value
7008to raise to that power.
7009
7010Semantics:
7011""""""""""
7012
7013This function returns the first value raised to the second power,
7014returning the same values as the libm ``pow`` functions would, and
7015handles error conditions in the same way.
7016
7017'``llvm.exp.*``' Intrinsic
7018^^^^^^^^^^^^^^^^^^^^^^^^^^
7019
7020Syntax:
7021"""""""
7022
7023This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7024floating point or vector of floating point type. Not all targets support
7025all types however.
7026
7027::
7028
7029 declare float @llvm.exp.f32(float %Val)
7030 declare double @llvm.exp.f64(double %Val)
7031 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7032 declare fp128 @llvm.exp.f128(fp128 %Val)
7033 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7034
7035Overview:
7036"""""""""
7037
7038The '``llvm.exp.*``' intrinsics perform the exp function.
7039
7040Arguments:
7041""""""""""
7042
7043The argument and return value are floating point numbers of the same
7044type.
7045
7046Semantics:
7047""""""""""
7048
7049This function returns the same values as the libm ``exp`` functions
7050would, and handles error conditions in the same way.
7051
7052'``llvm.exp2.*``' Intrinsic
7053^^^^^^^^^^^^^^^^^^^^^^^^^^^
7054
7055Syntax:
7056"""""""
7057
7058This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7059floating point or vector of floating point type. Not all targets support
7060all types however.
7061
7062::
7063
7064 declare float @llvm.exp2.f32(float %Val)
7065 declare double @llvm.exp2.f64(double %Val)
7066 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7067 declare fp128 @llvm.exp2.f128(fp128 %Val)
7068 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7069
7070Overview:
7071"""""""""
7072
7073The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7074
7075Arguments:
7076""""""""""
7077
7078The argument and return value are floating point numbers of the same
7079type.
7080
7081Semantics:
7082""""""""""
7083
7084This function returns the same values as the libm ``exp2`` functions
7085would, and handles error conditions in the same way.
7086
7087'``llvm.log.*``' Intrinsic
7088^^^^^^^^^^^^^^^^^^^^^^^^^^
7089
7090Syntax:
7091"""""""
7092
7093This is an overloaded intrinsic. You can use ``llvm.log`` on any
7094floating point or vector of floating point type. Not all targets support
7095all types however.
7096
7097::
7098
7099 declare float @llvm.log.f32(float %Val)
7100 declare double @llvm.log.f64(double %Val)
7101 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7102 declare fp128 @llvm.log.f128(fp128 %Val)
7103 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7104
7105Overview:
7106"""""""""
7107
7108The '``llvm.log.*``' intrinsics perform the log function.
7109
7110Arguments:
7111""""""""""
7112
7113The argument and return value are floating point numbers of the same
7114type.
7115
7116Semantics:
7117""""""""""
7118
7119This function returns the same values as the libm ``log`` functions
7120would, and handles error conditions in the same way.
7121
7122'``llvm.log10.*``' Intrinsic
7123^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7124
7125Syntax:
7126"""""""
7127
7128This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7129floating point or vector of floating point type. Not all targets support
7130all types however.
7131
7132::
7133
7134 declare float @llvm.log10.f32(float %Val)
7135 declare double @llvm.log10.f64(double %Val)
7136 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7137 declare fp128 @llvm.log10.f128(fp128 %Val)
7138 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7139
7140Overview:
7141"""""""""
7142
7143The '``llvm.log10.*``' intrinsics perform the log10 function.
7144
7145Arguments:
7146""""""""""
7147
7148The argument and return value are floating point numbers of the same
7149type.
7150
7151Semantics:
7152""""""""""
7153
7154This function returns the same values as the libm ``log10`` functions
7155would, and handles error conditions in the same way.
7156
7157'``llvm.log2.*``' Intrinsic
7158^^^^^^^^^^^^^^^^^^^^^^^^^^^
7159
7160Syntax:
7161"""""""
7162
7163This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7164floating point or vector of floating point type. Not all targets support
7165all types however.
7166
7167::
7168
7169 declare float @llvm.log2.f32(float %Val)
7170 declare double @llvm.log2.f64(double %Val)
7171 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7172 declare fp128 @llvm.log2.f128(fp128 %Val)
7173 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7174
7175Overview:
7176"""""""""
7177
7178The '``llvm.log2.*``' intrinsics perform the log2 function.
7179
7180Arguments:
7181""""""""""
7182
7183The argument and return value are floating point numbers of the same
7184type.
7185
7186Semantics:
7187""""""""""
7188
7189This function returns the same values as the libm ``log2`` functions
7190would, and handles error conditions in the same way.
7191
7192'``llvm.fma.*``' Intrinsic
7193^^^^^^^^^^^^^^^^^^^^^^^^^^
7194
7195Syntax:
7196"""""""
7197
7198This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7199floating point or vector of floating point type. Not all targets support
7200all types however.
7201
7202::
7203
7204 declare float @llvm.fma.f32(float %a, float %b, float %c)
7205 declare double @llvm.fma.f64(double %a, double %b, double %c)
7206 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7207 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7208 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7209
7210Overview:
7211"""""""""
7212
7213The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7214operation.
7215
7216Arguments:
7217""""""""""
7218
7219The argument and return value are floating point numbers of the same
7220type.
7221
7222Semantics:
7223""""""""""
7224
7225This function returns the same values as the libm ``fma`` functions
7226would.
7227
7228'``llvm.fabs.*``' Intrinsic
7229^^^^^^^^^^^^^^^^^^^^^^^^^^^
7230
7231Syntax:
7232"""""""
7233
7234This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7235floating point or vector of floating point type. Not all targets support
7236all types however.
7237
7238::
7239
7240 declare float @llvm.fabs.f32(float %Val)
7241 declare double @llvm.fabs.f64(double %Val)
7242 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7243 declare fp128 @llvm.fabs.f128(fp128 %Val)
7244 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7245
7246Overview:
7247"""""""""
7248
7249The '``llvm.fabs.*``' intrinsics return the absolute value of the
7250operand.
7251
7252Arguments:
7253""""""""""
7254
7255The argument and return value are floating point numbers of the same
7256type.
7257
7258Semantics:
7259""""""""""
7260
7261This function returns the same values as the libm ``fabs`` functions
7262would, and handles error conditions in the same way.
7263
7264'``llvm.floor.*``' Intrinsic
7265^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7266
7267Syntax:
7268"""""""
7269
7270This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7271floating point or vector of floating point type. Not all targets support
7272all types however.
7273
7274::
7275
7276 declare float @llvm.floor.f32(float %Val)
7277 declare double @llvm.floor.f64(double %Val)
7278 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7279 declare fp128 @llvm.floor.f128(fp128 %Val)
7280 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7281
7282Overview:
7283"""""""""
7284
7285The '``llvm.floor.*``' intrinsics return the floor of the operand.
7286
7287Arguments:
7288""""""""""
7289
7290The argument and return value are floating point numbers of the same
7291type.
7292
7293Semantics:
7294""""""""""
7295
7296This function returns the same values as the libm ``floor`` functions
7297would, and handles error conditions in the same way.
7298
7299'``llvm.ceil.*``' Intrinsic
7300^^^^^^^^^^^^^^^^^^^^^^^^^^^
7301
7302Syntax:
7303"""""""
7304
7305This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7306floating point or vector of floating point type. Not all targets support
7307all types however.
7308
7309::
7310
7311 declare float @llvm.ceil.f32(float %Val)
7312 declare double @llvm.ceil.f64(double %Val)
7313 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7314 declare fp128 @llvm.ceil.f128(fp128 %Val)
7315 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7316
7317Overview:
7318"""""""""
7319
7320The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7321
7322Arguments:
7323""""""""""
7324
7325The argument and return value are floating point numbers of the same
7326type.
7327
7328Semantics:
7329""""""""""
7330
7331This function returns the same values as the libm ``ceil`` functions
7332would, and handles error conditions in the same way.
7333
7334'``llvm.trunc.*``' Intrinsic
7335^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7336
7337Syntax:
7338"""""""
7339
7340This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7341floating point or vector of floating point type. Not all targets support
7342all types however.
7343
7344::
7345
7346 declare float @llvm.trunc.f32(float %Val)
7347 declare double @llvm.trunc.f64(double %Val)
7348 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7349 declare fp128 @llvm.trunc.f128(fp128 %Val)
7350 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7351
7352Overview:
7353"""""""""
7354
7355The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7356nearest integer not larger in magnitude than the operand.
7357
7358Arguments:
7359""""""""""
7360
7361The argument and return value are floating point numbers of the same
7362type.
7363
7364Semantics:
7365""""""""""
7366
7367This function returns the same values as the libm ``trunc`` functions
7368would, and handles error conditions in the same way.
7369
7370'``llvm.rint.*``' Intrinsic
7371^^^^^^^^^^^^^^^^^^^^^^^^^^^
7372
7373Syntax:
7374"""""""
7375
7376This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7377floating point or vector of floating point type. Not all targets support
7378all types however.
7379
7380::
7381
7382 declare float @llvm.rint.f32(float %Val)
7383 declare double @llvm.rint.f64(double %Val)
7384 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7385 declare fp128 @llvm.rint.f128(fp128 %Val)
7386 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7387
7388Overview:
7389"""""""""
7390
7391The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7392nearest integer. It may raise an inexact floating-point exception if the
7393operand isn't an integer.
7394
7395Arguments:
7396""""""""""
7397
7398The argument and return value are floating point numbers of the same
7399type.
7400
7401Semantics:
7402""""""""""
7403
7404This function returns the same values as the libm ``rint`` functions
7405would, and handles error conditions in the same way.
7406
7407'``llvm.nearbyint.*``' Intrinsic
7408^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7409
7410Syntax:
7411"""""""
7412
7413This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7414floating point or vector of floating point type. Not all targets support
7415all types however.
7416
7417::
7418
7419 declare float @llvm.nearbyint.f32(float %Val)
7420 declare double @llvm.nearbyint.f64(double %Val)
7421 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7422 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7423 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7424
7425Overview:
7426"""""""""
7427
7428The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7429nearest integer.
7430
7431Arguments:
7432""""""""""
7433
7434The argument and return value are floating point numbers of the same
7435type.
7436
7437Semantics:
7438""""""""""
7439
7440This function returns the same values as the libm ``nearbyint``
7441functions would, and handles error conditions in the same way.
7442
7443Bit Manipulation Intrinsics
7444---------------------------
7445
7446LLVM provides intrinsics for a few important bit manipulation
7447operations. These allow efficient code generation for some algorithms.
7448
7449'``llvm.bswap.*``' Intrinsics
7450^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7451
7452Syntax:
7453"""""""
7454
7455This is an overloaded intrinsic function. You can use bswap on any
7456integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7457
7458::
7459
7460 declare i16 @llvm.bswap.i16(i16 <id>)
7461 declare i32 @llvm.bswap.i32(i32 <id>)
7462 declare i64 @llvm.bswap.i64(i64 <id>)
7463
7464Overview:
7465"""""""""
7466
7467The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7468values with an even number of bytes (positive multiple of 16 bits).
7469These are useful for performing operations on data that is not in the
7470target's native byte order.
7471
7472Semantics:
7473""""""""""
7474
7475The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7476and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7477intrinsic returns an i32 value that has the four bytes of the input i32
7478swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7479returned i32 will have its bytes in 3, 2, 1, 0 order. The
7480``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7481concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7482respectively).
7483
7484'``llvm.ctpop.*``' Intrinsic
7485^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7486
7487Syntax:
7488"""""""
7489
7490This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7491bit width, or on any vector with integer elements. Not all targets
7492support all bit widths or vector types, however.
7493
7494::
7495
7496 declare i8 @llvm.ctpop.i8(i8 <src>)
7497 declare i16 @llvm.ctpop.i16(i16 <src>)
7498 declare i32 @llvm.ctpop.i32(i32 <src>)
7499 declare i64 @llvm.ctpop.i64(i64 <src>)
7500 declare i256 @llvm.ctpop.i256(i256 <src>)
7501 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7502
7503Overview:
7504"""""""""
7505
7506The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7507in a value.
7508
7509Arguments:
7510""""""""""
7511
7512The only argument is the value to be counted. The argument may be of any
7513integer type, or a vector with integer elements. The return type must
7514match the argument type.
7515
7516Semantics:
7517""""""""""
7518
7519The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7520each element of a vector.
7521
7522'``llvm.ctlz.*``' Intrinsic
7523^^^^^^^^^^^^^^^^^^^^^^^^^^^
7524
7525Syntax:
7526"""""""
7527
7528This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7529integer bit width, or any vector whose elements are integers. Not all
7530targets support all bit widths or vector types, however.
7531
7532::
7533
7534 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7535 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7536 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7537 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7538 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7539 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7540
7541Overview:
7542"""""""""
7543
7544The '``llvm.ctlz``' family of intrinsic functions counts the number of
7545leading zeros in a variable.
7546
7547Arguments:
7548""""""""""
7549
7550The first argument is the value to be counted. This argument may be of
7551any integer type, or a vectory with integer element type. The return
7552type must match the first argument type.
7553
7554The second argument must be a constant and is a flag to indicate whether
7555the intrinsic should ensure that a zero as the first argument produces a
7556defined result. Historically some architectures did not provide a
7557defined result for zero values as efficiently, and many algorithms are
7558now predicated on avoiding zero-value inputs.
7559
7560Semantics:
7561""""""""""
7562
7563The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7564zeros in a variable, or within each element of the vector. If
7565``src == 0`` then the result is the size in bits of the type of ``src``
7566if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7567``llvm.ctlz(i32 2) = 30``.
7568
7569'``llvm.cttz.*``' Intrinsic
7570^^^^^^^^^^^^^^^^^^^^^^^^^^^
7571
7572Syntax:
7573"""""""
7574
7575This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7576integer bit width, or any vector of integer elements. Not all targets
7577support all bit widths or vector types, however.
7578
7579::
7580
7581 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7582 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7583 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7584 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7585 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7586 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7587
7588Overview:
7589"""""""""
7590
7591The '``llvm.cttz``' family of intrinsic functions counts the number of
7592trailing zeros.
7593
7594Arguments:
7595""""""""""
7596
7597The first argument is the value to be counted. This argument may be of
7598any integer type, or a vectory with integer element type. The return
7599type must match the first argument type.
7600
7601The second argument must be a constant and is a flag to indicate whether
7602the intrinsic should ensure that a zero as the first argument produces a
7603defined result. Historically some architectures did not provide a
7604defined result for zero values as efficiently, and many algorithms are
7605now predicated on avoiding zero-value inputs.
7606
7607Semantics:
7608""""""""""
7609
7610The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7611zeros in a variable, or within each element of a vector. If ``src == 0``
7612then the result is the size in bits of the type of ``src`` if
7613``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7614``llvm.cttz(2) = 1``.
7615
7616Arithmetic with Overflow Intrinsics
7617-----------------------------------
7618
7619LLVM provides intrinsics for some arithmetic with overflow operations.
7620
7621'``llvm.sadd.with.overflow.*``' Intrinsics
7622^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7623
7624Syntax:
7625"""""""
7626
7627This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7628on any integer bit width.
7629
7630::
7631
7632 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7633 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7634 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7635
7636Overview:
7637"""""""""
7638
7639The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7640a signed addition of the two arguments, and indicate whether an overflow
7641occurred during the signed summation.
7642
7643Arguments:
7644""""""""""
7645
7646The arguments (%a and %b) and the first element of the result structure
7647may be of integer types of any bit width, but they must have the same
7648bit width. The second element of the result structure must be of type
7649``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7650addition.
7651
7652Semantics:
7653""""""""""
7654
7655The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007656a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007657first element of which is the signed summation, and the second element
7658of which is a bit specifying if the signed summation resulted in an
7659overflow.
7660
7661Examples:
7662"""""""""
7663
7664.. code-block:: llvm
7665
7666 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7667 %sum = extractvalue {i32, i1} %res, 0
7668 %obit = extractvalue {i32, i1} %res, 1
7669 br i1 %obit, label %overflow, label %normal
7670
7671'``llvm.uadd.with.overflow.*``' Intrinsics
7672^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7673
7674Syntax:
7675"""""""
7676
7677This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7678on any integer bit width.
7679
7680::
7681
7682 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7683 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7684 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7685
7686Overview:
7687"""""""""
7688
7689The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7690an unsigned addition of the two arguments, and indicate whether a carry
7691occurred during the unsigned summation.
7692
7693Arguments:
7694""""""""""
7695
7696The arguments (%a and %b) and the first element of the result structure
7697may be of integer types of any bit width, but they must have the same
7698bit width. The second element of the result structure must be of type
7699``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7700addition.
7701
7702Semantics:
7703""""""""""
7704
7705The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007706an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007707first element of which is the sum, and the second element of which is a
7708bit specifying if the unsigned summation resulted in a carry.
7709
7710Examples:
7711"""""""""
7712
7713.. code-block:: llvm
7714
7715 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7716 %sum = extractvalue {i32, i1} %res, 0
7717 %obit = extractvalue {i32, i1} %res, 1
7718 br i1 %obit, label %carry, label %normal
7719
7720'``llvm.ssub.with.overflow.*``' Intrinsics
7721^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7722
7723Syntax:
7724"""""""
7725
7726This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7727on any integer bit width.
7728
7729::
7730
7731 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7732 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7733 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7734
7735Overview:
7736"""""""""
7737
7738The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7739a signed subtraction of the two arguments, and indicate whether an
7740overflow occurred during the signed subtraction.
7741
7742Arguments:
7743""""""""""
7744
7745The arguments (%a and %b) and the first element of the result structure
7746may be of integer types of any bit width, but they must have the same
7747bit width. The second element of the result structure must be of type
7748``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7749subtraction.
7750
7751Semantics:
7752""""""""""
7753
7754The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007755a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007756first element of which is the subtraction, and the second element of
7757which is a bit specifying if the signed subtraction resulted in an
7758overflow.
7759
7760Examples:
7761"""""""""
7762
7763.. code-block:: llvm
7764
7765 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7766 %sum = extractvalue {i32, i1} %res, 0
7767 %obit = extractvalue {i32, i1} %res, 1
7768 br i1 %obit, label %overflow, label %normal
7769
7770'``llvm.usub.with.overflow.*``' Intrinsics
7771^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7772
7773Syntax:
7774"""""""
7775
7776This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7777on any integer bit width.
7778
7779::
7780
7781 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7782 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7783 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7784
7785Overview:
7786"""""""""
7787
7788The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7789an unsigned subtraction of the two arguments, and indicate whether an
7790overflow occurred during the unsigned subtraction.
7791
7792Arguments:
7793""""""""""
7794
7795The arguments (%a and %b) and the first element of the result structure
7796may be of integer types of any bit width, but they must have the same
7797bit width. The second element of the result structure must be of type
7798``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7799subtraction.
7800
7801Semantics:
7802""""""""""
7803
7804The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007805an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007806the first element of which is the subtraction, and the second element of
7807which is a bit specifying if the unsigned subtraction resulted in an
7808overflow.
7809
7810Examples:
7811"""""""""
7812
7813.. code-block:: llvm
7814
7815 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7816 %sum = extractvalue {i32, i1} %res, 0
7817 %obit = extractvalue {i32, i1} %res, 1
7818 br i1 %obit, label %overflow, label %normal
7819
7820'``llvm.smul.with.overflow.*``' Intrinsics
7821^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7822
7823Syntax:
7824"""""""
7825
7826This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7827on any integer bit width.
7828
7829::
7830
7831 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7832 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7833 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7834
7835Overview:
7836"""""""""
7837
7838The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7839a signed multiplication of the two arguments, and indicate whether an
7840overflow occurred during the signed multiplication.
7841
7842Arguments:
7843""""""""""
7844
7845The arguments (%a and %b) and the first element of the result structure
7846may be of integer types of any bit width, but they must have the same
7847bit width. The second element of the result structure must be of type
7848``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7849multiplication.
7850
7851Semantics:
7852""""""""""
7853
7854The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007855a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007856the first element of which is the multiplication, and the second element
7857of which is a bit specifying if the signed multiplication resulted in an
7858overflow.
7859
7860Examples:
7861"""""""""
7862
7863.. code-block:: llvm
7864
7865 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7866 %sum = extractvalue {i32, i1} %res, 0
7867 %obit = extractvalue {i32, i1} %res, 1
7868 br i1 %obit, label %overflow, label %normal
7869
7870'``llvm.umul.with.overflow.*``' Intrinsics
7871^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7872
7873Syntax:
7874"""""""
7875
7876This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7877on any integer bit width.
7878
7879::
7880
7881 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7882 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7883 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7884
7885Overview:
7886"""""""""
7887
7888The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7889a unsigned multiplication of the two arguments, and indicate whether an
7890overflow occurred during the unsigned multiplication.
7891
7892Arguments:
7893""""""""""
7894
7895The arguments (%a and %b) and the first element of the result structure
7896may be of integer types of any bit width, but they must have the same
7897bit width. The second element of the result structure must be of type
7898``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7899multiplication.
7900
7901Semantics:
7902""""""""""
7903
7904The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007905an unsigned multiplication of the two arguments. They return a structure ---
7906the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007907element of which is a bit specifying if the unsigned multiplication
7908resulted in an overflow.
7909
7910Examples:
7911"""""""""
7912
7913.. code-block:: llvm
7914
7915 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7916 %sum = extractvalue {i32, i1} %res, 0
7917 %obit = extractvalue {i32, i1} %res, 1
7918 br i1 %obit, label %overflow, label %normal
7919
7920Specialised Arithmetic Intrinsics
7921---------------------------------
7922
7923'``llvm.fmuladd.*``' Intrinsic
7924^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7925
7926Syntax:
7927"""""""
7928
7929::
7930
7931 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7932 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7933
7934Overview:
7935"""""""""
7936
7937The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007938expressions that can be fused if the code generator determines that (a) the
7939target instruction set has support for a fused operation, and (b) that the
7940fused operation is more efficient than the equivalent, separate pair of mul
7941and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007942
7943Arguments:
7944""""""""""
7945
7946The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7947multiplicands, a and b, and an addend c.
7948
7949Semantics:
7950""""""""""
7951
7952The expression:
7953
7954::
7955
7956 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7957
7958is equivalent to the expression a \* b + c, except that rounding will
7959not be performed between the multiplication and addition steps if the
7960code generator fuses the operations. Fusion is not guaranteed, even if
7961the target platform supports it. If a fused multiply-add is required the
7962corresponding llvm.fma.\* intrinsic function should be used instead.
7963
7964Examples:
7965"""""""""
7966
7967.. code-block:: llvm
7968
7969 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7970
7971Half Precision Floating Point Intrinsics
7972----------------------------------------
7973
7974For most target platforms, half precision floating point is a
7975storage-only format. This means that it is a dense encoding (in memory)
7976but does not support computation in the format.
7977
7978This means that code must first load the half-precision floating point
7979value as an i16, then convert it to float with
7980:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7981then be performed on the float value (including extending to double
7982etc). To store the value back to memory, it is first converted to float
7983if needed, then converted to i16 with
7984:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7985i16 value.
7986
7987.. _int_convert_to_fp16:
7988
7989'``llvm.convert.to.fp16``' Intrinsic
7990^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7991
7992Syntax:
7993"""""""
7994
7995::
7996
7997 declare i16 @llvm.convert.to.fp16(f32 %a)
7998
7999Overview:
8000"""""""""
8001
8002The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8003from single precision floating point format to half precision floating
8004point format.
8005
8006Arguments:
8007""""""""""
8008
8009The intrinsic function contains single argument - the value to be
8010converted.
8011
8012Semantics:
8013""""""""""
8014
8015The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8016from single precision floating point format to half precision floating
8017point format. The return value is an ``i16`` which contains the
8018converted number.
8019
8020Examples:
8021"""""""""
8022
8023.. code-block:: llvm
8024
8025 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8026 store i16 %res, i16* @x, align 2
8027
8028.. _int_convert_from_fp16:
8029
8030'``llvm.convert.from.fp16``' Intrinsic
8031^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8032
8033Syntax:
8034"""""""
8035
8036::
8037
8038 declare f32 @llvm.convert.from.fp16(i16 %a)
8039
8040Overview:
8041"""""""""
8042
8043The '``llvm.convert.from.fp16``' intrinsic function performs a
8044conversion from half precision floating point format to single precision
8045floating point format.
8046
8047Arguments:
8048""""""""""
8049
8050The intrinsic function contains single argument - the value to be
8051converted.
8052
8053Semantics:
8054""""""""""
8055
8056The '``llvm.convert.from.fp16``' intrinsic function performs a
8057conversion from half single precision floating point format to single
8058precision floating point format. The input half-float value is
8059represented by an ``i16`` value.
8060
8061Examples:
8062"""""""""
8063
8064.. code-block:: llvm
8065
8066 %a = load i16* @x, align 2
8067 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8068
8069Debugger Intrinsics
8070-------------------
8071
8072The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8073prefix), are described in the `LLVM Source Level
8074Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8075document.
8076
8077Exception Handling Intrinsics
8078-----------------------------
8079
8080The LLVM exception handling intrinsics (which all start with
8081``llvm.eh.`` prefix), are described in the `LLVM Exception
8082Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8083
8084.. _int_trampoline:
8085
8086Trampoline Intrinsics
8087---------------------
8088
8089These intrinsics make it possible to excise one parameter, marked with
8090the :ref:`nest <nest>` attribute, from a function. The result is a
8091callable function pointer lacking the nest parameter - the caller does
8092not need to provide a value for it. Instead, the value to use is stored
8093in advance in a "trampoline", a block of memory usually allocated on the
8094stack, which also contains code to splice the nest value into the
8095argument list. This is used to implement the GCC nested function address
8096extension.
8097
8098For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8099then the resulting function pointer has signature ``i32 (i32, i32)*``.
8100It can be created as follows:
8101
8102.. code-block:: llvm
8103
8104 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8105 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8106 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8107 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8108 %fp = bitcast i8* %p to i32 (i32, i32)*
8109
8110The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8111``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8112
8113.. _int_it:
8114
8115'``llvm.init.trampoline``' Intrinsic
8116^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8117
8118Syntax:
8119"""""""
8120
8121::
8122
8123 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8124
8125Overview:
8126"""""""""
8127
8128This fills the memory pointed to by ``tramp`` with executable code,
8129turning it into a trampoline.
8130
8131Arguments:
8132""""""""""
8133
8134The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8135pointers. The ``tramp`` argument must point to a sufficiently large and
8136sufficiently aligned block of memory; this memory is written to by the
8137intrinsic. Note that the size and the alignment are target-specific -
8138LLVM currently provides no portable way of determining them, so a
8139front-end that generates this intrinsic needs to have some
8140target-specific knowledge. The ``func`` argument must hold a function
8141bitcast to an ``i8*``.
8142
8143Semantics:
8144""""""""""
8145
8146The block of memory pointed to by ``tramp`` is filled with target
8147dependent code, turning it into a function. Then ``tramp`` needs to be
8148passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8149be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8150function's signature is the same as that of ``func`` with any arguments
8151marked with the ``nest`` attribute removed. At most one such ``nest``
8152argument is allowed, and it must be of pointer type. Calling the new
8153function is equivalent to calling ``func`` with the same argument list,
8154but with ``nval`` used for the missing ``nest`` argument. If, after
8155calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8156modified, then the effect of any later call to the returned function
8157pointer is undefined.
8158
8159.. _int_at:
8160
8161'``llvm.adjust.trampoline``' Intrinsic
8162^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8163
8164Syntax:
8165"""""""
8166
8167::
8168
8169 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8170
8171Overview:
8172"""""""""
8173
8174This performs any required machine-specific adjustment to the address of
8175a trampoline (passed as ``tramp``).
8176
8177Arguments:
8178""""""""""
8179
8180``tramp`` must point to a block of memory which already has trampoline
8181code filled in by a previous call to
8182:ref:`llvm.init.trampoline <int_it>`.
8183
8184Semantics:
8185""""""""""
8186
8187On some architectures the address of the code to be executed needs to be
8188different to the address where the trampoline is actually stored. This
8189intrinsic returns the executable address corresponding to ``tramp``
8190after performing the required machine specific adjustments. The pointer
8191returned can then be :ref:`bitcast and executed <int_trampoline>`.
8192
8193Memory Use Markers
8194------------------
8195
8196This class of intrinsics exists to information about the lifetime of
8197memory objects and ranges where variables are immutable.
8198
8199'``llvm.lifetime.start``' Intrinsic
8200^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8201
8202Syntax:
8203"""""""
8204
8205::
8206
8207 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8208
8209Overview:
8210"""""""""
8211
8212The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8213object's lifetime.
8214
8215Arguments:
8216""""""""""
8217
8218The first argument is a constant integer representing the size of the
8219object, or -1 if it is variable sized. The second argument is a pointer
8220to the object.
8221
8222Semantics:
8223""""""""""
8224
8225This intrinsic indicates that before this point in the code, the value
8226of the memory pointed to by ``ptr`` is dead. This means that it is known
8227to never be used and has an undefined value. A load from the pointer
8228that precedes this intrinsic can be replaced with ``'undef'``.
8229
8230'``llvm.lifetime.end``' Intrinsic
8231^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8232
8233Syntax:
8234"""""""
8235
8236::
8237
8238 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8239
8240Overview:
8241"""""""""
8242
8243The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8244object's lifetime.
8245
8246Arguments:
8247""""""""""
8248
8249The first argument is a constant integer representing the size of the
8250object, or -1 if it is variable sized. The second argument is a pointer
8251to the object.
8252
8253Semantics:
8254""""""""""
8255
8256This intrinsic indicates that after this point in the code, the value of
8257the memory pointed to by ``ptr`` is dead. This means that it is known to
8258never be used and has an undefined value. Any stores into the memory
8259object following this intrinsic may be removed as dead.
8260
8261'``llvm.invariant.start``' Intrinsic
8262^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8263
8264Syntax:
8265"""""""
8266
8267::
8268
8269 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8270
8271Overview:
8272"""""""""
8273
8274The '``llvm.invariant.start``' intrinsic specifies that the contents of
8275a memory object will not change.
8276
8277Arguments:
8278""""""""""
8279
8280The first argument is a constant integer representing the size of the
8281object, or -1 if it is variable sized. The second argument is a pointer
8282to the object.
8283
8284Semantics:
8285""""""""""
8286
8287This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8288the return value, the referenced memory location is constant and
8289unchanging.
8290
8291'``llvm.invariant.end``' Intrinsic
8292^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8293
8294Syntax:
8295"""""""
8296
8297::
8298
8299 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8300
8301Overview:
8302"""""""""
8303
8304The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8305memory object are mutable.
8306
8307Arguments:
8308""""""""""
8309
8310The first argument is the matching ``llvm.invariant.start`` intrinsic.
8311The second argument is a constant integer representing the size of the
8312object, or -1 if it is variable sized and the third argument is a
8313pointer to the object.
8314
8315Semantics:
8316""""""""""
8317
8318This intrinsic indicates that the memory is mutable again.
8319
8320General Intrinsics
8321------------------
8322
8323This class of intrinsics is designed to be generic and has no specific
8324purpose.
8325
8326'``llvm.var.annotation``' Intrinsic
8327^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8328
8329Syntax:
8330"""""""
8331
8332::
8333
8334 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8335
8336Overview:
8337"""""""""
8338
8339The '``llvm.var.annotation``' intrinsic.
8340
8341Arguments:
8342""""""""""
8343
8344The first argument is a pointer to a value, the second is a pointer to a
8345global string, the third is a pointer to a global string which is the
8346source file name, and the last argument is the line number.
8347
8348Semantics:
8349""""""""""
8350
8351This intrinsic allows annotation of local variables with arbitrary
8352strings. This can be useful for special purpose optimizations that want
8353to look for these annotations. These have no other defined use; they are
8354ignored by code generation and optimization.
8355
Michael Gottesman872b4e52013-03-26 00:34:27 +00008356'``llvm.ptr.annotation.*``' Intrinsic
8357^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8358
8359Syntax:
8360"""""""
8361
8362This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8363pointer to an integer of any width. *NOTE* you must specify an address space for
8364the pointer. The identifier for the default address space is the integer
8365'``0``'.
8366
8367::
8368
8369 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8370 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8371 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8372 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8373 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8374
8375Overview:
8376"""""""""
8377
8378The '``llvm.ptr.annotation``' intrinsic.
8379
8380Arguments:
8381""""""""""
8382
8383The first argument is a pointer to an integer value of arbitrary bitwidth
8384(result of some expression), the second is a pointer to a global string, the
8385third is a pointer to a global string which is the source file name, and the
8386last argument is the line number. It returns the value of the first argument.
8387
8388Semantics:
8389""""""""""
8390
8391This intrinsic allows annotation of a pointer to an integer with arbitrary
8392strings. This can be useful for special purpose optimizations that want to look
8393for these annotations. These have no other defined use; they are ignored by code
8394generation and optimization.
8395
Sean Silvaf722b002012-12-07 10:36:55 +00008396'``llvm.annotation.*``' Intrinsic
8397^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8398
8399Syntax:
8400"""""""
8401
8402This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8403any integer bit width.
8404
8405::
8406
8407 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8408 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8409 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8410 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8411 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8412
8413Overview:
8414"""""""""
8415
8416The '``llvm.annotation``' intrinsic.
8417
8418Arguments:
8419""""""""""
8420
8421The first argument is an integer value (result of some expression), the
8422second is a pointer to a global string, the third is a pointer to a
8423global string which is the source file name, and the last argument is
8424the line number. It returns the value of the first argument.
8425
8426Semantics:
8427""""""""""
8428
8429This intrinsic allows annotations to be put on arbitrary expressions
8430with arbitrary strings. This can be useful for special purpose
8431optimizations that want to look for these annotations. These have no
8432other defined use; they are ignored by code generation and optimization.
8433
8434'``llvm.trap``' Intrinsic
8435^^^^^^^^^^^^^^^^^^^^^^^^^
8436
8437Syntax:
8438"""""""
8439
8440::
8441
8442 declare void @llvm.trap() noreturn nounwind
8443
8444Overview:
8445"""""""""
8446
8447The '``llvm.trap``' intrinsic.
8448
8449Arguments:
8450""""""""""
8451
8452None.
8453
8454Semantics:
8455""""""""""
8456
8457This intrinsic is lowered to the target dependent trap instruction. If
8458the target does not have a trap instruction, this intrinsic will be
8459lowered to a call of the ``abort()`` function.
8460
8461'``llvm.debugtrap``' Intrinsic
8462^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8463
8464Syntax:
8465"""""""
8466
8467::
8468
8469 declare void @llvm.debugtrap() nounwind
8470
8471Overview:
8472"""""""""
8473
8474The '``llvm.debugtrap``' intrinsic.
8475
8476Arguments:
8477""""""""""
8478
8479None.
8480
8481Semantics:
8482""""""""""
8483
8484This intrinsic is lowered to code which is intended to cause an
8485execution trap with the intention of requesting the attention of a
8486debugger.
8487
8488'``llvm.stackprotector``' Intrinsic
8489^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8490
8491Syntax:
8492"""""""
8493
8494::
8495
8496 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8497
8498Overview:
8499"""""""""
8500
8501The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8502onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8503is placed on the stack before local variables.
8504
8505Arguments:
8506""""""""""
8507
8508The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8509The first argument is the value loaded from the stack guard
8510``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8511enough space to hold the value of the guard.
8512
8513Semantics:
8514""""""""""
8515
8516This intrinsic causes the prologue/epilogue inserter to force the
8517position of the ``AllocaInst`` stack slot to be before local variables
8518on the stack. This is to ensure that if a local variable on the stack is
8519overwritten, it will destroy the value of the guard. When the function
8520exits, the guard on the stack is checked against the original guard. If
8521they are different, then the program aborts by calling the
8522``__stack_chk_fail()`` function.
8523
8524'``llvm.objectsize``' Intrinsic
8525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8526
8527Syntax:
8528"""""""
8529
8530::
8531
8532 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8533 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8534
8535Overview:
8536"""""""""
8537
8538The ``llvm.objectsize`` intrinsic is designed to provide information to
8539the optimizers to determine at compile time whether a) an operation
8540(like memcpy) will overflow a buffer that corresponds to an object, or
8541b) that a runtime check for overflow isn't necessary. An object in this
8542context means an allocation of a specific class, structure, array, or
8543other object.
8544
8545Arguments:
8546""""""""""
8547
8548The ``llvm.objectsize`` intrinsic takes two arguments. The first
8549argument is a pointer to or into the ``object``. The second argument is
8550a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8551or -1 (if false) when the object size is unknown. The second argument
8552only accepts constants.
8553
8554Semantics:
8555""""""""""
8556
8557The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8558the size of the object concerned. If the size cannot be determined at
8559compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8560on the ``min`` argument).
8561
8562'``llvm.expect``' Intrinsic
8563^^^^^^^^^^^^^^^^^^^^^^^^^^^
8564
8565Syntax:
8566"""""""
8567
8568::
8569
8570 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8571 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8572
8573Overview:
8574"""""""""
8575
8576The ``llvm.expect`` intrinsic provides information about expected (the
8577most probable) value of ``val``, which can be used by optimizers.
8578
8579Arguments:
8580""""""""""
8581
8582The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8583a value. The second argument is an expected value, this needs to be a
8584constant value, variables are not allowed.
8585
8586Semantics:
8587""""""""""
8588
8589This intrinsic is lowered to the ``val``.
8590
8591'``llvm.donothing``' Intrinsic
8592^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8593
8594Syntax:
8595"""""""
8596
8597::
8598
8599 declare void @llvm.donothing() nounwind readnone
8600
8601Overview:
8602"""""""""
8603
8604The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8605only intrinsic that can be called with an invoke instruction.
8606
8607Arguments:
8608""""""""""
8609
8610None.
8611
8612Semantics:
8613""""""""""
8614
8615This intrinsic does nothing, and it's removed by optimizers and ignored
8616by codegen.