blob: 063001d60bf44758d98eb4b027b8d99e578280aa [file] [log] [blame]
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
Misha Brukman98649d12004-06-24 21:54:47 +000010#define DEBUG_TYPE "isel"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000011#include "PowerPC.h"
12#include "PowerPCInstrBuilder.h"
13#include "PowerPCInstrInfo.h"
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Function.h"
17#include "llvm/Instructions.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000018#include "llvm/Pass.h"
Misha Brukman8c9f5202004-06-21 18:30:31 +000019#include "llvm/CodeGen/IntrinsicLowering.h"
Misha Brukman5dfe3a92004-06-21 16:55:25 +000020#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/SSARegMap.h"
24#include "llvm/Target/MRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Support/GetElementPtrTypeIterator.h"
27#include "llvm/Support/InstVisitor.h"
Misha Brukman98649d12004-06-24 21:54:47 +000028#include "Support/Debug.h"
29#include <vector>
Misha Brukman5dfe3a92004-06-21 16:55:25 +000030using namespace llvm;
31
32namespace {
Misha Brukman422791f2004-06-21 17:41:12 +000033 /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic
34 /// PPC Representation.
Misha Brukman5dfe3a92004-06-21 16:55:25 +000035 ///
36 enum TypeClass {
37 cByte, cShort, cInt, cFP, cLong
38 };
39}
40
41/// getClass - Turn a primitive type into a "class" number which is based on the
42/// size of the type, and whether or not it is floating point.
43///
44static inline TypeClass getClass(const Type *Ty) {
Misha Brukman358829f2004-06-21 17:25:55 +000045 switch (Ty->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +000046 case Type::SByteTyID:
47 case Type::UByteTyID: return cByte; // Byte operands are class #0
48 case Type::ShortTyID:
49 case Type::UShortTyID: return cShort; // Short operands are class #1
50 case Type::IntTyID:
51 case Type::UIntTyID:
52 case Type::PointerTyID: return cInt; // Int's and pointers are class #2
53
54 case Type::FloatTyID:
55 case Type::DoubleTyID: return cFP; // Floating Point is #3
56
57 case Type::LongTyID:
58 case Type::ULongTyID: return cLong; // Longs are class #4
59 default:
60 assert(0 && "Invalid type to getClass!");
61 return cByte; // not reached
62 }
63}
64
65// getClassB - Just like getClass, but treat boolean values as ints.
66static inline TypeClass getClassB(const Type *Ty) {
67 if (Ty == Type::BoolTy) return cInt;
68 return getClass(Ty);
69}
70
71namespace {
72 struct ISel : public FunctionPass, InstVisitor<ISel> {
73 TargetMachine &TM;
74 MachineFunction *F; // The function we are compiling into
75 MachineBasicBlock *BB; // The current MBB we are compiling
76 int VarArgsFrameIndex; // FrameIndex for start of varargs area
77 int ReturnAddressIndex; // FrameIndex for the return address
78
79 std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
80
81 // MBBMap - Mapping between LLVM BB -> Machine BB
82 std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
83
84 // AllocaMap - Mapping from fixed sized alloca instructions to the
85 // FrameIndex for the alloca.
86 std::map<AllocaInst*, unsigned> AllocaMap;
87
88 ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
89
90 /// runOnFunction - Top level implementation of instruction selection for
91 /// the entire function.
92 ///
93 bool runOnFunction(Function &Fn) {
94 // First pass over the function, lower any unknown intrinsic functions
95 // with the IntrinsicLowering class.
96 LowerUnknownIntrinsicFunctionCalls(Fn);
97
98 F = &MachineFunction::construct(&Fn, TM);
99
100 // Create all of the machine basic blocks for the function...
101 for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
102 F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
103
104 BB = &F->front();
105
106 // Set up a frame object for the return address. This is used by the
107 // llvm.returnaddress & llvm.frameaddress intrinisics.
108 ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
109
110 // Copy incoming arguments off of the stack...
111 LoadArgumentsToVirtualRegs(Fn);
112
113 // Instruction select everything except PHI nodes
114 visit(Fn);
115
116 // Select the PHI nodes
117 SelectPHINodes();
118
119 RegMap.clear();
120 MBBMap.clear();
121 AllocaMap.clear();
122 F = 0;
123 // We always build a machine code representation for the function
124 return true;
125 }
126
127 virtual const char *getPassName() const {
128 return "PowerPC Simple Instruction Selection";
129 }
130
131 /// visitBasicBlock - This method is called when we are visiting a new basic
132 /// block. This simply creates a new MachineBasicBlock to emit code into
133 /// and adds it to the current MachineFunction. Subsequent visit* for
134 /// instructions will be invoked for all instructions in the basic block.
135 ///
136 void visitBasicBlock(BasicBlock &LLVM_BB) {
137 BB = MBBMap[&LLVM_BB];
138 }
139
140 /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
141 /// function, lowering any calls to unknown intrinsic functions into the
142 /// equivalent LLVM code.
143 ///
144 void LowerUnknownIntrinsicFunctionCalls(Function &F);
145
146 /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
147 /// from the stack into virtual registers.
148 ///
149 void LoadArgumentsToVirtualRegs(Function &F);
150
151 /// SelectPHINodes - Insert machine code to generate phis. This is tricky
152 /// because we have to generate our sources into the source basic blocks,
153 /// not the current one.
154 ///
155 void SelectPHINodes();
156
157 // Visitation methods for various instructions. These methods simply emit
158 // fixed PowerPC code for each instruction.
159
160 // Control flow operators
161 void visitReturnInst(ReturnInst &RI);
162 void visitBranchInst(BranchInst &BI);
163
164 struct ValueRecord {
165 Value *Val;
166 unsigned Reg;
167 const Type *Ty;
168 ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
169 ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
170 };
171 void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
172 const std::vector<ValueRecord> &Args);
173 void visitCallInst(CallInst &I);
174 void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
175
176 // Arithmetic operators
177 void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
178 void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
179 void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
180 void visitMul(BinaryOperator &B);
181
182 void visitDiv(BinaryOperator &B) { visitDivRem(B); }
183 void visitRem(BinaryOperator &B) { visitDivRem(B); }
184 void visitDivRem(BinaryOperator &B);
185
186 // Bitwise operators
187 void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
188 void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
189 void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
190
191 // Comparison operators...
192 void visitSetCondInst(SetCondInst &I);
193 unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
194 MachineBasicBlock *MBB,
195 MachineBasicBlock::iterator MBBI);
196 void visitSelectInst(SelectInst &SI);
197
198
199 // Memory Instructions
200 void visitLoadInst(LoadInst &I);
201 void visitStoreInst(StoreInst &I);
202 void visitGetElementPtrInst(GetElementPtrInst &I);
203 void visitAllocaInst(AllocaInst &I);
204 void visitMallocInst(MallocInst &I);
205 void visitFreeInst(FreeInst &I);
206
207 // Other operators
208 void visitShiftInst(ShiftInst &I);
209 void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
210 void visitCastInst(CastInst &I);
211 void visitVANextInst(VANextInst &I);
212 void visitVAArgInst(VAArgInst &I);
213
214 void visitInstruction(Instruction &I) {
215 std::cerr << "Cannot instruction select: " << I;
216 abort();
217 }
218
219 /// promote32 - Make a value 32-bits wide, and put it somewhere.
220 ///
221 void promote32(unsigned targetReg, const ValueRecord &VR);
222
223 /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
224 /// constant expression GEP support.
225 ///
226 void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
227 Value *Src, User::op_iterator IdxBegin,
228 User::op_iterator IdxEnd, unsigned TargetReg);
229
230 /// emitCastOperation - Common code shared between visitCastInst and
231 /// constant expression cast support.
232 ///
233 void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
234 Value *Src, const Type *DestTy, unsigned TargetReg);
235
236 /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
237 /// and constant expression support.
238 ///
239 void emitSimpleBinaryOperation(MachineBasicBlock *BB,
240 MachineBasicBlock::iterator IP,
241 Value *Op0, Value *Op1,
242 unsigned OperatorClass, unsigned TargetReg);
243
244 /// emitBinaryFPOperation - This method handles emission of floating point
245 /// Add (0), Sub (1), Mul (2), and Div (3) operations.
246 void emitBinaryFPOperation(MachineBasicBlock *BB,
247 MachineBasicBlock::iterator IP,
248 Value *Op0, Value *Op1,
249 unsigned OperatorClass, unsigned TargetReg);
250
251 void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
252 Value *Op0, Value *Op1, unsigned TargetReg);
253
254 void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
255 unsigned DestReg, const Type *DestTy,
256 unsigned Op0Reg, unsigned Op1Reg);
257 void doMultiplyConst(MachineBasicBlock *MBB,
258 MachineBasicBlock::iterator MBBI,
259 unsigned DestReg, const Type *DestTy,
260 unsigned Op0Reg, unsigned Op1Val);
261
262 void emitDivRemOperation(MachineBasicBlock *BB,
263 MachineBasicBlock::iterator IP,
264 Value *Op0, Value *Op1, bool isDiv,
265 unsigned TargetReg);
266
267 /// emitSetCCOperation - Common code shared between visitSetCondInst and
268 /// constant expression support.
269 ///
270 void emitSetCCOperation(MachineBasicBlock *BB,
271 MachineBasicBlock::iterator IP,
272 Value *Op0, Value *Op1, unsigned Opcode,
273 unsigned TargetReg);
274
275 /// emitShiftOperation - Common code shared between visitShiftInst and
276 /// constant expression support.
277 ///
278 void emitShiftOperation(MachineBasicBlock *MBB,
279 MachineBasicBlock::iterator IP,
280 Value *Op, Value *ShiftAmount, bool isLeftShift,
281 const Type *ResultTy, unsigned DestReg);
282
283 /// emitSelectOperation - Common code shared between visitSelectInst and the
284 /// constant expression support.
285 void emitSelectOperation(MachineBasicBlock *MBB,
286 MachineBasicBlock::iterator IP,
287 Value *Cond, Value *TrueVal, Value *FalseVal,
288 unsigned DestReg);
289
290 /// copyConstantToRegister - Output the instructions required to put the
291 /// specified constant into the specified register.
292 ///
293 void copyConstantToRegister(MachineBasicBlock *MBB,
294 MachineBasicBlock::iterator MBBI,
295 Constant *C, unsigned Reg);
296
297 void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
298 unsigned LHS, unsigned RHS);
299
300 /// makeAnotherReg - This method returns the next register number we haven't
301 /// yet used.
302 ///
303 /// Long values are handled somewhat specially. They are always allocated
304 /// as pairs of 32 bit integer values. The register number returned is the
305 /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
306 /// of the long value.
307 ///
308 unsigned makeAnotherReg(const Type *Ty) {
309 assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
310 "Current target doesn't have PPC reg info??");
311 const PowerPCRegisterInfo *MRI =
312 static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
313 if (Ty == Type::LongTy || Ty == Type::ULongTy) {
314 const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
315 // Create the lower part
316 F->getSSARegMap()->createVirtualRegister(RC);
317 // Create the upper part.
318 return F->getSSARegMap()->createVirtualRegister(RC)-1;
319 }
320
321 // Add the mapping of regnumber => reg class to MachineFunction
322 const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
323 return F->getSSARegMap()->createVirtualRegister(RC);
324 }
325
326 /// getReg - This method turns an LLVM value into a register number.
327 ///
328 unsigned getReg(Value &V) { return getReg(&V); } // Allow references
329 unsigned getReg(Value *V) {
330 // Just append to the end of the current bb.
331 MachineBasicBlock::iterator It = BB->end();
332 return getReg(V, BB, It);
333 }
334 unsigned getReg(Value *V, MachineBasicBlock *MBB,
335 MachineBasicBlock::iterator IPt);
336
337 /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
338 /// that is to be statically allocated with the initial stack frame
339 /// adjustment.
340 unsigned getFixedSizedAllocaFI(AllocaInst *AI);
341 };
342}
343
344/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
345/// instruction in the entry block, return it. Otherwise, return a null
346/// pointer.
347static AllocaInst *dyn_castFixedAlloca(Value *V) {
348 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
349 BasicBlock *BB = AI->getParent();
350 if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
351 return AI;
352 }
353 return 0;
354}
355
356/// getReg - This method turns an LLVM value into a register number.
357///
358unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
359 MachineBasicBlock::iterator IPt) {
360 // If this operand is a constant, emit the code to copy the constant into
361 // the register here...
362 //
363 if (Constant *C = dyn_cast<Constant>(V)) {
364 unsigned Reg = makeAnotherReg(V->getType());
365 copyConstantToRegister(MBB, IPt, C, Reg);
366 return Reg;
367 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
368 unsigned Reg1 = makeAnotherReg(V->getType());
Misha Brukman422791f2004-06-21 17:41:12 +0000369 unsigned Reg2 = makeAnotherReg(V->getType());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000370 // Move the address of the global into the register
371 BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0).addGlobalAddress(GV);
372 BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1).addGlobalAddress(GV);
373 return Reg2;
374 } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
375 // Do not emit noop casts at all.
376 if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
377 return getReg(CI->getOperand(0), MBB, IPt);
378 } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
379 unsigned Reg = makeAnotherReg(V->getType());
380 unsigned FI = getFixedSizedAllocaFI(AI);
381 addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
382 return Reg;
383 }
384
385 unsigned &Reg = RegMap[V];
386 if (Reg == 0) {
387 Reg = makeAnotherReg(V->getType());
388 RegMap[V] = Reg;
389 }
390
391 return Reg;
392}
393
394/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
395/// that is to be statically allocated with the initial stack frame
396/// adjustment.
397unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
398 // Already computed this?
399 std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
400 if (I != AllocaMap.end() && I->first == AI) return I->second;
401
402 const Type *Ty = AI->getAllocatedType();
403 ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
404 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
405 TySize *= CUI->getValue(); // Get total allocated size...
406 unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
407
408 // Create a new stack object using the frame manager...
409 int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
410 AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
411 return FrameIdx;
412}
413
414
415/// copyConstantToRegister - Output the instructions required to put the
416/// specified constant into the specified register.
417///
418void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
419 MachineBasicBlock::iterator IP,
420 Constant *C, unsigned R) {
421 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
422 unsigned Class = 0;
423 switch (CE->getOpcode()) {
424 case Instruction::GetElementPtr:
425 emitGEPOperation(MBB, IP, CE->getOperand(0),
426 CE->op_begin()+1, CE->op_end(), R);
427 return;
428 case Instruction::Cast:
429 emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
430 return;
431
432 case Instruction::Xor: ++Class; // FALL THROUGH
433 case Instruction::Or: ++Class; // FALL THROUGH
434 case Instruction::And: ++Class; // FALL THROUGH
435 case Instruction::Sub: ++Class; // FALL THROUGH
436 case Instruction::Add:
437 emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
438 Class, R);
439 return;
440
441 case Instruction::Mul:
442 emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
443 return;
444
445 case Instruction::Div:
446 case Instruction::Rem:
447 emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
448 CE->getOpcode() == Instruction::Div, R);
449 return;
450
451 case Instruction::SetNE:
452 case Instruction::SetEQ:
453 case Instruction::SetLT:
454 case Instruction::SetGT:
455 case Instruction::SetLE:
456 case Instruction::SetGE:
457 emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
458 CE->getOpcode(), R);
459 return;
460
461 case Instruction::Shl:
462 case Instruction::Shr:
463 emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
464 CE->getOpcode() == Instruction::Shl, CE->getType(), R);
465 return;
466
467 case Instruction::Select:
468 emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
469 CE->getOperand(2), R);
470 return;
471
472 default:
473 std::cerr << "Offending expr: " << C << "\n";
474 assert(0 && "Constant expression not yet handled!\n");
475 }
476 }
477
478 if (C->getType()->isIntegral()) {
479 unsigned Class = getClassB(C->getType());
480
481 if (Class == cLong) {
482 // Copy the value into the register pair.
483 uint64_t Val = cast<ConstantInt>(C)->getRawValue();
Misha Brukman422791f2004-06-21 17:41:12 +0000484 unsigned hiTmp = makeAnotherReg(Type::IntTy);
485 unsigned loTmp = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000486 BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0).addImm(Val >> 48);
487 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp).addImm((Val >> 32) & 0xFFFF);
488 BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0).addImm((Val >> 16) & 0xFFFF);
489 BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
490 return;
491 }
492
493 assert(Class <= cInt && "Type not handled yet!");
494
495 if (C->getType() == Type::BoolTy) {
496 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(C == ConstantBool::True);
497 } else if (Class == cByte || Class == cShort) {
498 ConstantInt *CI = cast<ConstantInt>(C);
499 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
500 } else {
501 ConstantInt *CI = cast<ConstantInt>(C);
502 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
503 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +0000504 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
505 } else {
506 unsigned TmpReg = makeAnotherReg(Type::IntTy);
507 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(CI->getRawValue() >> 16);
508 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg).addImm(CI->getRawValue() & 0xFFFF);
509 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000510 }
511 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
512 // We need to spill the constant to memory...
513 MachineConstantPool *CP = F->getConstantPool();
514 unsigned CPI = CP->getConstantPoolIndex(CFP);
515 const Type *Ty = CFP->getType();
516
517 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
518 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
519 addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
520 } else if (isa<ConstantPointerNull>(C)) {
521 // Copy zero (null pointer) to the register.
522 BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
523 } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000524 BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0)
525 .addGlobalAddress(CPR->getValue());
526 BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0)
527 .addGlobalAddress(CPR->getValue());
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000528 } else {
529 std::cerr << "Offending constant: " << C << "\n";
530 assert(0 && "Type not handled yet!");
531 }
532}
533
534/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
535/// the stack into virtual registers.
536///
537/// FIXME: When we can calculate which args are coming in via registers
538/// source them from there instead.
539void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
540 unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
541 unsigned GPR_remaining = 8;
542 unsigned FPR_remaining = 13;
543 unsigned GPR_idx = 3;
544 unsigned FPR_idx = 1;
Misha Brukman422791f2004-06-21 17:41:12 +0000545
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000546 MachineFrameInfo *MFI = F->getFrameInfo();
547
548 for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
549 bool ArgLive = !I->use_empty();
550 unsigned Reg = ArgLive ? getReg(*I) : 0;
551 int FI; // Frame object index
552
553 switch (getClassB(I->getType())) {
554 case cByte:
555 if (ArgLive) {
556 FI = MFI->CreateFixedObject(1, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000557 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000558 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
559 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000560 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000561 addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000562 }
563 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000564 break;
565 case cShort:
566 if (ArgLive) {
567 FI = MFI->CreateFixedObject(2, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000568 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000569 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
570 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000571 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000572 addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000573 }
574 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000575 break;
576 case cInt:
577 if (ArgLive) {
578 FI = MFI->CreateFixedObject(4, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000579 if (GPR_remaining > 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000580 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
581 .addReg(PPC32::R0+GPR_idx);
Misha Brukman422791f2004-06-21 17:41:12 +0000582 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000583 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +0000584 }
585 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000586 break;
587 case cLong:
588 if (ArgLive) {
589 FI = MFI->CreateFixedObject(8, ArgOffset);
Misha Brukman422791f2004-06-21 17:41:12 +0000590 if (GPR_remaining > 1) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000591 BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx)
592 .addReg(PPC32::R0+GPR_idx);
593 BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1)
594 .addReg(PPC32::R0+GPR_idx+1);
Misha Brukman422791f2004-06-21 17:41:12 +0000595 } else {
596 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
597 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
598 }
599 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000600 ArgOffset += 4; // longs require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000601 if (GPR_remaining > 1) {
602 GPR_remaining--; // uses up 2 GPRs
603 GPR_idx++;
604 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000605 break;
606 case cFP:
607 if (ArgLive) {
608 unsigned Opcode;
609 if (I->getType() == Type::FloatTy) {
610 Opcode = PPC32::LFS;
611 FI = MFI->CreateFixedObject(4, ArgOffset);
612 } else {
613 Opcode = PPC32::LFD;
614 FI = MFI->CreateFixedObject(8, ArgOffset);
615 }
Misha Brukman422791f2004-06-21 17:41:12 +0000616 if (FPR_remaining > 0) {
617 BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
618 FPR_remaining--;
619 FPR_idx++;
620 } else {
621 addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
622 }
623 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000624 if (I->getType() == Type::DoubleTy) {
625 ArgOffset += 4; // doubles require 4 additional bytes
Misha Brukman422791f2004-06-21 17:41:12 +0000626 if (GPR_remaining > 0) {
627 GPR_remaining--; // uses up 2 GPRs
628 GPR_idx++;
629 }
630 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000631 break;
632 default:
633 assert(0 && "Unhandled argument type!");
634 }
635 ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
Misha Brukman422791f2004-06-21 17:41:12 +0000636 if (GPR_remaining > 0) {
637 GPR_remaining--; // uses up 2 GPRs
638 GPR_idx++;
639 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000640 }
641
642 // If the function takes variable number of arguments, add a frame offset for
643 // the start of the first vararg value... this is used to expand
644 // llvm.va_start.
645 if (Fn.getFunctionType()->isVarArg())
646 VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
647}
648
649
650/// SelectPHINodes - Insert machine code to generate phis. This is tricky
651/// because we have to generate our sources into the source basic blocks, not
652/// the current one.
653///
654void ISel::SelectPHINodes() {
655 const TargetInstrInfo &TII = *TM.getInstrInfo();
656 const Function &LF = *F->getFunction(); // The LLVM function...
657 for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
658 const BasicBlock *BB = I;
659 MachineBasicBlock &MBB = *MBBMap[I];
660
661 // Loop over all of the PHI nodes in the LLVM basic block...
662 MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
663 for (BasicBlock::const_iterator I = BB->begin();
664 PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
665
666 // Create a new machine instr PHI node, and insert it.
667 unsigned PHIReg = getReg(*PN);
668 MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
669 PPC32::PHI, PN->getNumOperands(), PHIReg);
670
671 MachineInstr *LongPhiMI = 0;
672 if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
673 LongPhiMI = BuildMI(MBB, PHIInsertPoint,
674 PPC32::PHI, PN->getNumOperands(), PHIReg+1);
675
676 // PHIValues - Map of blocks to incoming virtual registers. We use this
677 // so that we only initialize one incoming value for a particular block,
678 // even if the block has multiple entries in the PHI node.
679 //
680 std::map<MachineBasicBlock*, unsigned> PHIValues;
681
682 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
683 MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
684 unsigned ValReg;
685 std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
686 PHIValues.lower_bound(PredMBB);
687
688 if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
689 // We already inserted an initialization of the register for this
690 // predecessor. Recycle it.
691 ValReg = EntryIt->second;
692
693 } else {
694 // Get the incoming value into a virtual register.
695 //
696 Value *Val = PN->getIncomingValue(i);
697
698 // If this is a constant or GlobalValue, we may have to insert code
699 // into the basic block to compute it into a virtual register.
700 if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
701 isa<GlobalValue>(Val)) {
702 // Simple constants get emitted at the end of the basic block,
703 // before any terminator instructions. We "know" that the code to
704 // move a constant into a register will never clobber any flags.
705 ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
706 } else {
707 // Because we don't want to clobber any values which might be in
708 // physical registers with the computation of this constant (which
709 // might be arbitrarily complex if it is a constant expression),
710 // just insert the computation at the top of the basic block.
711 MachineBasicBlock::iterator PI = PredMBB->begin();
712
713 // Skip over any PHI nodes though!
714 while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
715 ++PI;
716
717 ValReg = getReg(Val, PredMBB, PI);
718 }
719
720 // Remember that we inserted a value for this PHI for this predecessor
721 PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
722 }
723
724 PhiMI->addRegOperand(ValReg);
725 PhiMI->addMachineBasicBlockOperand(PredMBB);
726 if (LongPhiMI) {
727 LongPhiMI->addRegOperand(ValReg+1);
728 LongPhiMI->addMachineBasicBlockOperand(PredMBB);
729 }
730 }
731
732 // Now that we emitted all of the incoming values for the PHI node, make
733 // sure to reposition the InsertPoint after the PHI that we just added.
734 // This is needed because we might have inserted a constant into this
735 // block, right after the PHI's which is before the old insert point!
736 PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
737 ++PHIInsertPoint;
738 }
739 }
740}
741
742
743// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
744// it into the conditional branch or select instruction which is the only user
745// of the cc instruction. This is the case if the conditional branch is the
746// only user of the setcc, and if the setcc is in the same basic block as the
747// conditional branch. We also don't handle long arguments below, so we reject
748// them here as well.
749//
750static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
751 if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
752 if (SCI->hasOneUse()) {
753 Instruction *User = cast<Instruction>(SCI->use_back());
754 if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
755 SCI->getParent() == User->getParent() &&
756 (getClassB(SCI->getOperand(0)->getType()) != cLong ||
757 SCI->getOpcode() == Instruction::SetEQ ||
758 SCI->getOpcode() == Instruction::SetNE))
759 return SCI;
760 }
761 return 0;
762}
763
764// Return a fixed numbering for setcc instructions which does not depend on the
765// order of the opcodes.
766//
767static unsigned getSetCCNumber(unsigned Opcode) {
768 switch(Opcode) {
769 default: assert(0 && "Unknown setcc instruction!");
770 case Instruction::SetEQ: return 0;
771 case Instruction::SetNE: return 1;
772 case Instruction::SetLT: return 2;
773 case Instruction::SetGE: return 3;
774 case Instruction::SetGT: return 4;
775 case Instruction::SetLE: return 5;
776 }
777}
778
779/// emitUCOM - emits an unordered FP compare.
780void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
781 unsigned LHS, unsigned RHS) {
Misha Brukman422791f2004-06-21 17:41:12 +0000782 BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000783}
784
785// EmitComparison - This function emits a comparison of the two operands,
786// returning the extended setcc code to use.
787unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
788 MachineBasicBlock *MBB,
789 MachineBasicBlock::iterator IP) {
790 // The arguments are already supposed to be of the same type.
791 const Type *CompTy = Op0->getType();
792 unsigned Class = getClassB(CompTy);
793 unsigned Op0r = getReg(Op0, MBB, IP);
794
795 // Special case handling of: cmp R, i
796 if (isa<ConstantPointerNull>(Op1)) {
797 BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
798 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
799 if (Class == cByte || Class == cShort || Class == cInt) {
800 unsigned Op1v = CI->getRawValue();
801
802 // Mask off any upper bits of the constant, if there are any...
803 Op1v &= (1ULL << (8 << Class)) - 1;
804
Misha Brukman422791f2004-06-21 17:41:12 +0000805 // Compare immediate or promote to reg?
806 if (Op1v <= 32767) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000807 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3,
808 PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
Misha Brukman422791f2004-06-21 17:41:12 +0000809 } else {
810 unsigned Op1r = getReg(Op1, MBB, IP);
Misha Brukman2fec9902004-06-21 20:22:03 +0000811 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3,
812 PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
Misha Brukman422791f2004-06-21 17:41:12 +0000813 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000814 return OpNum;
815 } else {
816 assert(Class == cLong && "Unknown integer class!");
817 unsigned LowCst = CI->getRawValue();
818 unsigned HiCst = CI->getRawValue() >> 32;
819 if (OpNum < 2) { // seteq, setne
820 unsigned LoTmp = Op0r;
821 if (LowCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000822 unsigned LoLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000823 unsigned LoTmp = makeAnotherReg(Type::IntTy);
824 BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000825 BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow)
826 .addImm(LowCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000827 }
828 unsigned HiTmp = Op0r+1;
829 if (HiCst != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +0000830 unsigned HiLow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000831 unsigned HiTmp = makeAnotherReg(Type::IntTy);
832 BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
Misha Brukman2fec9902004-06-21 20:22:03 +0000833 BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow)
834 .addImm(HiCst >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000835 }
836 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
837 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
838 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
839 return OpNum;
840 } else {
841 // Emit a sequence of code which compares the high and low parts once
842 // each, then uses a conditional move to handle the overflow case. For
843 // example, a setlt for long would generate code like this:
844 //
845 // AL = lo(op1) < lo(op2) // Always unsigned comparison
846 // BL = hi(op1) < hi(op2) // Signedness depends on operands
847 // dest = hi(op1) == hi(op2) ? BL : AL;
848 //
849
850 // FIXME: Not Yet Implemented
Misha Brukman422791f2004-06-21 17:41:12 +0000851 return OpNum;
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000852 }
853 }
854 }
855
856 unsigned Op1r = getReg(Op1, MBB, IP);
857 switch (Class) {
858 default: assert(0 && "Unknown type class!");
859 case cByte:
860 case cShort:
861 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +0000862 BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2,
863 PPC32::CR0).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000864 break;
865 case cFP:
866 emitUCOM(MBB, IP, Op0r, Op1r);
867 break;
868
869 case cLong:
870 if (OpNum < 2) { // seteq, setne
871 unsigned LoTmp = makeAnotherReg(Type::IntTy);
872 unsigned HiTmp = makeAnotherReg(Type::IntTy);
873 unsigned FinalTmp = makeAnotherReg(Type::IntTy);
874 BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
875 BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
876 BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
877 //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
878 break; // Allow the sete or setne to be generated from flags set by OR
879 } else {
880 // Emit a sequence of code which compares the high and low parts once
881 // each, then uses a conditional move to handle the overflow case. For
882 // example, a setlt for long would generate code like this:
883 //
884 // AL = lo(op1) < lo(op2) // Signedness depends on operands
885 // BL = hi(op1) < hi(op2) // Always unsigned comparison
886 // dest = hi(op1) == hi(op2) ? BL : AL;
887 //
888
889 // FIXME: Not Yet Implemented
890 return OpNum;
891 }
892 }
893 return OpNum;
894}
895
896/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
897/// register, then move it to wherever the result should be.
898///
899void ISel::visitSetCondInst(SetCondInst &I) {
900 if (canFoldSetCCIntoBranchOrSelect(&I))
901 return; // Fold this into a branch or select.
902
903 unsigned DestReg = getReg(I);
904 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000905 emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
906 DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000907}
908
909/// emitSetCCOperation - Common code shared between visitSetCondInst and
910/// constant expression support.
911///
912/// FIXME: this is wrong. we should figure out a way to guarantee
913/// TargetReg is a CR and then make it a no-op
914void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
915 MachineBasicBlock::iterator IP,
916 Value *Op0, Value *Op1, unsigned Opcode,
917 unsigned TargetReg) {
918 unsigned OpNum = getSetCCNumber(Opcode);
919 OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
920
921 // The value is already in CR0 at this point, do nothing.
922}
923
924
925void ISel::visitSelectInst(SelectInst &SI) {
926 unsigned DestReg = getReg(SI);
927 MachineBasicBlock::iterator MII = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +0000928 emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
929 SI.getFalseValue(), DestReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000930}
931
932/// emitSelect - Common code shared between visitSelectInst and the constant
933/// expression support.
934/// FIXME: this is most likely broken in one or more ways. Namely, PowerPC has
935/// no select instruction. FSEL only works for comparisons against zero.
936void ISel::emitSelectOperation(MachineBasicBlock *MBB,
937 MachineBasicBlock::iterator IP,
938 Value *Cond, Value *TrueVal, Value *FalseVal,
939 unsigned DestReg) {
940 unsigned SelectClass = getClassB(TrueVal->getType());
941
942 unsigned TrueReg = getReg(TrueVal, MBB, IP);
943 unsigned FalseReg = getReg(FalseVal, MBB, IP);
944
945 if (TrueReg == FalseReg) {
Misha Brukman422791f2004-06-21 17:41:12 +0000946 if (SelectClass == cFP) {
Misha Brukman2fec9902004-06-21 20:22:03 +0000947 BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000948 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +0000949 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
Misha Brukman422791f2004-06-21 17:41:12 +0000950 }
951
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000952 if (SelectClass == cLong)
Misha Brukman2fec9902004-06-21 20:22:03 +0000953 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1)
954 .addReg(TrueReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000955 return;
956 }
957
958 unsigned CondReg = getReg(Cond, MBB, IP);
959 unsigned numZeros = makeAnotherReg(Type::IntTy);
960 unsigned falseHi = makeAnotherReg(Type::IntTy);
961 unsigned falseAll = makeAnotherReg(Type::IntTy);
962 unsigned trueAll = makeAnotherReg(Type::IntTy);
963 unsigned Temp1 = makeAnotherReg(Type::IntTy);
964 unsigned Temp2 = makeAnotherReg(Type::IntTy);
965
966 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
Misha Brukman2fec9902004-06-21 20:22:03 +0000967 BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26)
968 .addImm(0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000969 BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
970 BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
971 BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
972 BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
973 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
974
975 if (SelectClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +0000976 unsigned Temp3 = makeAnotherReg(Type::IntTy);
977 unsigned Temp4 = makeAnotherReg(Type::IntTy);
978 BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
979 BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
980 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +0000981 }
982
983 return;
984}
985
986
987
988/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
989/// operand, in the specified target register.
990///
991void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
992 bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
993
994 Value *Val = VR.Val;
995 const Type *Ty = VR.Ty;
996 if (Val) {
997 if (Constant *C = dyn_cast<Constant>(Val)) {
998 Val = ConstantExpr::getCast(C, Type::IntTy);
999 Ty = Type::IntTy;
1000 }
1001
Misha Brukman2fec9902004-06-21 20:22:03 +00001002 // If this is a simple constant, just emit a load directly to avoid the copy
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001003 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
1004 int TheVal = CI->getRawValue() & 0xFFFFFFFF;
1005
1006 if (TheVal < 32768 && TheVal >= -32768) {
Misha Brukman422791f2004-06-21 17:41:12 +00001007 BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
1008 } else {
1009 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001010 BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0)
1011 .addImm(TheVal >> 16);
1012 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg)
1013 .addImm(TheVal & 0xFFFF);
Misha Brukman422791f2004-06-21 17:41:12 +00001014 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001015 return;
1016 }
1017 }
1018
1019 // Make sure we have the register number for this value...
1020 unsigned Reg = Val ? getReg(Val) : VR.Reg;
1021
1022 switch (getClassB(Ty)) {
1023 case cByte:
1024 // Extend value into target register (8->32)
1025 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001026 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1027 .addZImm(24).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001028 else
1029 BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
1030 break;
1031 case cShort:
1032 // Extend value into target register (16->32)
1033 if (isUnsigned)
Misha Brukman2fec9902004-06-21 20:22:03 +00001034 BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0)
1035 .addZImm(16).addZImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001036 else
1037 BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
1038 break;
1039 case cInt:
1040 // Move value into target register (32->32)
1041 BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(Reg).addReg(Reg);
1042 break;
1043 default:
1044 assert(0 && "Unpromotable operand class in promote32");
1045 }
1046}
1047
Misha Brukman2fec9902004-06-21 20:22:03 +00001048/// visitReturnInst - implemented with BLR
1049///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001050void ISel::visitReturnInst(ReturnInst &I) {
1051 Value *RetVal = I.getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001052 switch (getClassB(RetVal->getType())) {
1053 case cByte: // integral return values: extend or move into r3 and return
1054 case cShort:
1055 case cInt:
1056 promote32(PPC32::R3, ValueRecord(RetVal));
1057 break;
1058 case cFP: { // Floats & Doubles: Return in f1
1059 unsigned RetReg = getReg(RetVal);
1060 BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
1061 break;
1062 }
1063 case cLong: {
1064 unsigned RetReg = getReg(RetVal);
1065 BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
1066 BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
1067 break;
1068 }
1069 default:
1070 visitInstruction(I);
1071 }
1072 BuildMI(BB, PPC32::BLR, 1).addImm(0);
1073}
1074
1075// getBlockAfter - Return the basic block which occurs lexically after the
1076// specified one.
1077static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
1078 Function::iterator I = BB; ++I; // Get iterator to next block
1079 return I != BB->getParent()->end() ? &*I : 0;
1080}
1081
1082/// visitBranchInst - Handle conditional and unconditional branches here. Note
1083/// that since code layout is frozen at this point, that if we are trying to
1084/// jump to a block that is the immediate successor of the current block, we can
1085/// just make a fall-through (but we don't currently).
1086///
1087void ISel::visitBranchInst(BranchInst &BI) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001088 // Update machine-CFG edges
1089 BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
1090 if (BI.isConditional())
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001091 BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
Misha Brukman2fec9902004-06-21 20:22:03 +00001092
1093 BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
1094
1095 if (!BI.isConditional()) { // Unconditional branch?
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001096 if (BI.getSuccessor(0) != NextBB)
1097 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1098 return;
Misha Brukman2fec9902004-06-21 20:22:03 +00001099 }
1100
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001101 // See if we can fold the setcc into the branch itself...
1102 SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
1103 if (SCI == 0) {
1104 // Nope, cannot fold setcc into this branch. Emit a branch on a condition
1105 // computed some other way...
1106 unsigned condReg = getReg(BI.getCondition());
Misha Brukman2fec9902004-06-21 20:22:03 +00001107 BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg)
1108 .addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001109 if (BI.getSuccessor(1) == NextBB) {
1110 if (BI.getSuccessor(0) != NextBB)
Misha Brukman2fec9902004-06-21 20:22:03 +00001111 BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2)
1112 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001113 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001114 BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2)
1115 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001116
1117 if (BI.getSuccessor(0) != NextBB)
1118 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
1119 }
1120 return;
1121 }
1122
1123
1124 unsigned OpNum = getSetCCNumber(SCI->getOpcode());
1125 MachineBasicBlock::iterator MII = BB->end();
1126 OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
1127
1128 const Type *CompTy = SCI->getOperand(0)->getType();
1129 bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
1130
1131 // LLVM -> X86 signed X86 unsigned
1132 // ----- ---------- ------------
1133 // seteq -> je je
1134 // setne -> jne jne
1135 // setlt -> jl jb
1136 // setge -> jge jae
1137 // setgt -> jg ja
1138 // setle -> jle jbe
1139
1140 static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
1141 unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
1142 unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
1143 unsigned BIval = BITab[0];
1144
1145 if (BI.getSuccessor(0) != NextBB) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001146 BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval)
1147 .addMBB(MBBMap[BI.getSuccessor(0)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001148 if (BI.getSuccessor(1) != NextBB)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001149 BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001150 } else {
1151 // Change to the inverse condition...
1152 if (BI.getSuccessor(1) != NextBB) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001153 BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval)
1154 .addMBB(MBBMap[BI.getSuccessor(1)]);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001155 }
1156 }
1157}
1158
1159
1160/// doCall - This emits an abstract call instruction, setting up the arguments
1161/// and the return value as appropriate. For the actual function call itself,
1162/// it inserts the specified CallMI instruction into the stream.
1163///
1164/// FIXME: See Documentation at the following URL for "correct" behavior
1165/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
1166void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
1167 const std::vector<ValueRecord> &Args) {
1168 // Count how many bytes are to be pushed on the stack...
1169 unsigned NumBytes = 0;
1170
1171 if (!Args.empty()) {
1172 for (unsigned i = 0, e = Args.size(); i != e; ++i)
1173 switch (getClassB(Args[i].Ty)) {
1174 case cByte: case cShort: case cInt:
1175 NumBytes += 4; break;
1176 case cLong:
1177 NumBytes += 8; break;
1178 case cFP:
1179 NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
1180 break;
1181 default: assert(0 && "Unknown class!");
1182 }
1183
1184 // Adjust the stack pointer for the new arguments...
1185 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
1186
1187 // Arguments go on the stack in reverse order, as specified by the ABI.
1188 unsigned ArgOffset = 0;
Misha Brukman422791f2004-06-21 17:41:12 +00001189 unsigned GPR_remaining = 8;
1190 unsigned FPR_remaining = 13;
1191 unsigned GPR_idx = 3;
1192 unsigned FPR_idx = 1;
1193
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001194 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1195 unsigned ArgReg;
1196 switch (getClassB(Args[i].Ty)) {
1197 case cByte:
1198 case cShort:
1199 // Promote arg to 32 bits wide into a temporary register...
1200 ArgReg = makeAnotherReg(Type::UIntTy);
1201 promote32(ArgReg, Args[i]);
Misha Brukman422791f2004-06-21 17:41:12 +00001202
1203 // Reg or stack?
1204 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001205 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1206 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001207 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001208 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1209 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001210 }
1211 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001212 case cInt:
1213 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1214
Misha Brukman422791f2004-06-21 17:41:12 +00001215 // Reg or stack?
1216 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001217 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1218 .addReg(ArgReg);
Misha Brukman422791f2004-06-21 17:41:12 +00001219 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001220 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1221 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001222 }
1223 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001224 case cLong:
Misha Brukman422791f2004-06-21 17:41:12 +00001225 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001226
Misha Brukman422791f2004-06-21 17:41:12 +00001227 // Reg or stack?
1228 if (GPR_remaining > 1) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001229 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg)
1230 .addReg(ArgReg);
1231 BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1)
1232 .addReg(ArgReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00001233 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001234 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset)
1235 .addReg(PPC32::R1);
1236 BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4)
1237 .addReg(PPC32::R1);
Misha Brukman422791f2004-06-21 17:41:12 +00001238 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001239
1240 ArgOffset += 4; // 8 byte entry, not 4.
Misha Brukman422791f2004-06-21 17:41:12 +00001241 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001242 GPR_remaining -= 1; // uses up 2 GPRs
1243 GPR_idx += 1;
Misha Brukman422791f2004-06-21 17:41:12 +00001244 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001245 break;
1246 case cFP:
1247 ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
1248 if (Args[i].Ty == Type::FloatTy) {
Misha Brukman1916bf92004-06-24 21:56:15 +00001249 // Reg or stack?
1250 if (FPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001251 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1252 FPR_remaining--;
1253 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001254 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001255 BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset)
1256 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001257 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001258 } else {
1259 assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman1916bf92004-06-24 21:56:15 +00001260 // Reg or stack?
1261 if (FPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001262 BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
1263 FPR_remaining--;
1264 FPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001265 } else {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001266 BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset)
1267 .addReg(PPC32::R1);
Misha Brukman1916bf92004-06-24 21:56:15 +00001268 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001269
Misha Brukman1916bf92004-06-24 21:56:15 +00001270 ArgOffset += 4; // 8 byte entry, not 4.
1271 if (GPR_remaining > 0) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001272 GPR_remaining--; // uses up 2 GPRs
1273 GPR_idx++;
Misha Brukman1916bf92004-06-24 21:56:15 +00001274 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001275 }
1276 break;
1277
1278 default: assert(0 && "Unknown class!");
1279 }
1280 ArgOffset += 4;
Misha Brukman422791f2004-06-21 17:41:12 +00001281 if (GPR_remaining > 0) {
1282 GPR_remaining--; // uses up 2 GPRs
1283 GPR_idx++;
1284 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001285 }
1286 } else {
1287 BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
1288 }
1289
1290 BB->push_back(CallMI);
1291
1292 BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
1293
1294 // If there is a return value, scavenge the result from the location the call
1295 // leaves it in...
1296 //
1297 if (Ret.Ty != Type::VoidTy) {
1298 unsigned DestClass = getClassB(Ret.Ty);
1299 switch (DestClass) {
1300 case cByte:
1301 case cShort:
1302 case cInt:
1303 // Integral results are in r3
Misha Brukman422791f2004-06-21 17:41:12 +00001304 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
Misha Brukmane327e492004-06-24 23:53:24 +00001305 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001306 case cFP: // Floating-point return values live in f1
1307 BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
1308 break;
1309 case cLong: // Long values are in r3:r4
Misha Brukman422791f2004-06-21 17:41:12 +00001310 BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
1311 BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001312 break;
1313 default: assert(0 && "Unknown class!");
1314 }
1315 }
1316}
1317
1318
1319/// visitCallInst - Push args on stack and do a procedure call instruction.
1320void ISel::visitCallInst(CallInst &CI) {
1321 MachineInstr *TheCall;
1322 if (Function *F = CI.getCalledFunction()) {
1323 // Is it an intrinsic function call?
1324 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
1325 visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
1326 return;
1327 }
1328
1329 // Emit a CALL instruction with PC-relative displacement.
1330 TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
1331 } else { // Emit an indirect call through the CTR
1332 unsigned Reg = getReg(CI.getCalledValue());
1333 BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
1334 TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
1335 }
1336
1337 std::vector<ValueRecord> Args;
1338 for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
1339 Args.push_back(ValueRecord(CI.getOperand(i)));
1340
1341 unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
1342 doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
1343}
1344
1345
1346/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
1347///
1348static Value *dyncastIsNan(Value *V) {
1349 if (CallInst *CI = dyn_cast<CallInst>(V))
1350 if (Function *F = CI->getCalledFunction())
Misha Brukmana2916ce2004-06-21 17:58:36 +00001351 if (F->getIntrinsicID() == Intrinsic::isunordered)
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001352 return CI->getOperand(1);
1353 return 0;
1354}
1355
1356/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
1357/// or's whos operands are all calls to the isnan predicate.
1358static bool isOnlyUsedByUnorderedComparisons(Value *V) {
1359 assert(dyncastIsNan(V) && "The value isn't an isnan call!");
1360
1361 // Check all uses, which will be or's of isnans if this predicate is true.
1362 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
1363 Instruction *I = cast<Instruction>(*UI);
1364 if (I->getOpcode() != Instruction::Or) return false;
1365 if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
1366 if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
1367 }
1368
1369 return true;
1370}
1371
1372/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
1373/// function, lowering any calls to unknown intrinsic functions into the
1374/// equivalent LLVM code.
1375///
1376void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
1377 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
1378 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
1379 if (CallInst *CI = dyn_cast<CallInst>(I++))
1380 if (Function *F = CI->getCalledFunction())
1381 switch (F->getIntrinsicID()) {
1382 case Intrinsic::not_intrinsic:
1383 case Intrinsic::vastart:
1384 case Intrinsic::vacopy:
1385 case Intrinsic::vaend:
1386 case Intrinsic::returnaddress:
1387 case Intrinsic::frameaddress:
Misha Brukmana2916ce2004-06-21 17:58:36 +00001388 // FIXME: should lower this ourselves
1389 // case Intrinsic::isunordered:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001390 // We directly implement these intrinsics
1391 break;
1392 case Intrinsic::readio: {
1393 // On PPC, memory operations are in-order. Lower this intrinsic
1394 // into a volatile load.
1395 Instruction *Before = CI->getPrev();
1396 LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
1397 CI->replaceAllUsesWith(LI);
1398 BB->getInstList().erase(CI);
1399 break;
1400 }
1401 case Intrinsic::writeio: {
1402 // On PPC, memory operations are in-order. Lower this intrinsic
1403 // into a volatile store.
1404 Instruction *Before = CI->getPrev();
1405 StoreInst *LI = new StoreInst(CI->getOperand(1),
1406 CI->getOperand(2), true, CI);
1407 CI->replaceAllUsesWith(LI);
1408 BB->getInstList().erase(CI);
1409 break;
1410 }
1411 default:
1412 // All other intrinsic calls we must lower.
1413 Instruction *Before = CI->getPrev();
1414 TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
1415 if (Before) { // Move iterator to instruction after call
1416 I = Before; ++I;
1417 } else {
1418 I = BB->begin();
1419 }
1420 }
1421}
1422
1423void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
1424 unsigned TmpReg1, TmpReg2, TmpReg3;
1425 switch (ID) {
1426 case Intrinsic::vastart:
1427 // Get the address of the first vararg value...
1428 TmpReg1 = getReg(CI);
1429 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
1430 return;
1431
1432 case Intrinsic::vacopy:
1433 TmpReg1 = getReg(CI);
1434 TmpReg2 = getReg(CI.getOperand(1));
1435 BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
1436 return;
1437 case Intrinsic::vaend: return;
1438
1439 case Intrinsic::returnaddress:
1440 case Intrinsic::frameaddress:
1441 TmpReg1 = getReg(CI);
1442 if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
1443 if (ID == Intrinsic::returnaddress) {
1444 // Just load the return address
1445 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
1446 ReturnAddressIndex);
1447 } else {
1448 addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
1449 ReturnAddressIndex, -4, false);
1450 }
1451 } else {
1452 // Values other than zero are not implemented yet.
1453 BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
1454 }
1455 return;
1456
Misha Brukmana2916ce2004-06-21 17:58:36 +00001457#if 0
1458 // This may be useful for supporting isunordered
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001459 case Intrinsic::isnan:
1460 // If this is only used by 'isunordered' style comparisons, don't emit it.
1461 if (isOnlyUsedByUnorderedComparisons(&CI)) return;
1462 TmpReg1 = getReg(CI.getOperand(1));
1463 emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
Misha Brukman422791f2004-06-21 17:41:12 +00001464 TmpReg2 = makeAnotherReg(Type::IntTy);
1465 BuildMI(BB, PPC32::MFCR, TmpReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001466 TmpReg3 = getReg(CI);
1467 BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
1468 return;
Misha Brukmana2916ce2004-06-21 17:58:36 +00001469#endif
1470
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001471 default: assert(0 && "Error: unknown intrinsics should have been lowered!");
1472 }
1473}
1474
1475/// visitSimpleBinary - Implement simple binary operators for integral types...
1476/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
1477/// Xor.
1478///
1479void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
1480 unsigned DestReg = getReg(B);
1481 MachineBasicBlock::iterator MI = BB->end();
1482 Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
1483 unsigned Class = getClassB(B.getType());
1484
1485 emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
1486}
1487
1488/// emitBinaryFPOperation - This method handles emission of floating point
1489/// Add (0), Sub (1), Mul (2), and Div (3) operations.
1490void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
1491 MachineBasicBlock::iterator IP,
1492 Value *Op0, Value *Op1,
1493 unsigned OperatorClass, unsigned DestReg) {
1494
1495 // Special case: op Reg, <const fp>
1496 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001497 // Create a constant pool entry for this constant.
1498 MachineConstantPool *CP = F->getConstantPool();
1499 unsigned CPI = CP->getConstantPoolIndex(Op1C);
1500 const Type *Ty = Op1->getType();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001501
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001502 static const unsigned OpcodeTab[][4] = {
1503 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1504 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1505 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001506
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001507 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
1508 unsigned TempReg = makeAnotherReg(Ty);
1509 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1510 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001511
Misha Brukmanfadb82f2004-06-24 22:00:15 +00001512 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1513 unsigned Op0r = getReg(Op0, BB, IP);
1514 BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
1515 return;
1516 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001517
1518 // Special case: R1 = op <const fp>, R2
1519 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
1520 if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
1521 // -0.0 - X === -X
1522 unsigned op1Reg = getReg(Op1, BB, IP);
1523 BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
1524 return;
1525 } else {
1526 // R1 = op CST, R2 --> R1 = opr R2, CST
1527
1528 // Create a constant pool entry for this constant.
1529 MachineConstantPool *CP = F->getConstantPool();
1530 unsigned CPI = CP->getConstantPoolIndex(CFP);
1531 const Type *Ty = CFP->getType();
1532
1533 static const unsigned OpcodeTab[][4] = {
1534 { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS }, // Float
1535 { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV }, // Double
1536 };
1537
1538 assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
Misha Brukman422791f2004-06-21 17:41:12 +00001539 unsigned TempReg = makeAnotherReg(Ty);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001540 unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
1541 addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
1542
1543 unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
1544 unsigned Op1r = getReg(Op1, BB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001545 BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001546 return;
1547 }
1548
1549 // General case.
1550 static const unsigned OpcodeTab[4] = {
1551 PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
1552 };
1553
1554 unsigned Opcode = OpcodeTab[OperatorClass];
1555 unsigned Op0r = getReg(Op0, BB, IP);
1556 unsigned Op1r = getReg(Op1, BB, IP);
1557 BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1558}
1559
1560/// emitSimpleBinaryOperation - Implement simple binary operators for integral
1561/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
1562/// Or, 4 for Xor.
1563///
1564/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
1565/// and constant expression support.
1566///
1567void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
1568 MachineBasicBlock::iterator IP,
1569 Value *Op0, Value *Op1,
1570 unsigned OperatorClass, unsigned DestReg) {
1571 unsigned Class = getClassB(Op0->getType());
1572
Misha Brukman422791f2004-06-21 17:41:12 +00001573 // Arithmetic and Bitwise operators
1574 static const unsigned OpcodeTab[5] = {
1575 PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
1576 };
1577 // Otherwise, code generate the full operation with a constant.
1578 static const unsigned BottomTab[] = {
1579 PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
1580 };
1581 static const unsigned TopTab[] = {
1582 PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
1583 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001584
1585 if (Class == cFP) {
1586 assert(OperatorClass < 2 && "No logical ops for FP!");
1587 emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
1588 return;
1589 }
1590
1591 if (Op0->getType() == Type::BoolTy) {
1592 if (OperatorClass == 3)
1593 // If this is an or of two isnan's, emit an FP comparison directly instead
1594 // of or'ing two isnan's together.
1595 if (Value *LHS = dyncastIsNan(Op0))
1596 if (Value *RHS = dyncastIsNan(Op1)) {
1597 unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
Misha Brukman422791f2004-06-21 17:41:12 +00001598 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001599 emitUCOM(MBB, IP, Op0Reg, Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00001600 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001601 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4)
1602 .addImm(31).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001603 return;
1604 }
1605 }
1606
1607 // sub 0, X -> neg X
1608 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
1609 if (OperatorClass == 1 && CI->isNullValue()) {
1610 unsigned op1Reg = getReg(Op1, MBB, IP);
1611 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
1612
1613 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001614 unsigned zeroes = makeAnotherReg(Type::IntTy);
1615 unsigned overflow = makeAnotherReg(Type::IntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001616 unsigned T = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00001617 BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
Misha Brukman2fec9902004-06-21 20:22:03 +00001618 BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27)
1619 .addImm(5).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00001620 BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
1621 BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001622 }
1623 return;
1624 }
1625
1626 // Special case: op Reg, <const int>
1627 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
1628 unsigned Op0r = getReg(Op0, MBB, IP);
1629
1630 // xor X, -1 -> not X
1631 if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
1632 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1633 if (Class == cLong) // Invert the top part too
Misha Brukman2fec9902004-06-21 20:22:03 +00001634 BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1)
1635 .addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001636 return;
1637 }
1638
1639 unsigned Opcode = OpcodeTab[OperatorClass];
1640 unsigned Op1r = getReg(Op1, MBB, IP);
1641
1642 if (Class != cLong) {
1643 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1644 return;
1645 }
1646
1647 // If the constant is zero in the low 32-bits, just copy the low part
1648 // across and apply the normal 32-bit operation to the high parts. There
1649 // will be no carry or borrow into the top.
1650 if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
1651 if (OperatorClass != 2) // All but and...
1652 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
1653 else
1654 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman422791f2004-06-21 17:41:12 +00001655 BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001656 return;
1657 }
1658
1659 // If this is a long value and the high or low bits have a special
1660 // property, emit some special cases.
1661 unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
1662
1663 // If this is a logical operation and the top 32-bits are zero, just
1664 // operate on the lower 32.
1665 if (Op1h == 0 && OperatorClass > 1) {
1666 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
1667 if (OperatorClass != 2) // All but and
Misha Brukman2fec9902004-06-21 20:22:03 +00001668 BuildMI(*MBB, IP, PPC32::OR, 2,DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001669 else
Misha Brukman2fec9902004-06-21 20:22:03 +00001670 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001671 return;
1672 }
1673
1674 // TODO: We could handle lots of other special cases here, such as AND'ing
1675 // with 0xFFFFFFFF00000000 -> noop, etc.
1676
Misha Brukman2fec9902004-06-21 20:22:03 +00001677 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1678 .addImm(Op1r);
1679 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1680 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001681 return;
1682 }
1683
1684 unsigned Op0r = getReg(Op0, MBB, IP);
1685 unsigned Op1r = getReg(Op1, MBB, IP);
1686
1687 if (Class != cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00001688 unsigned Opcode = OpcodeTab[OperatorClass];
1689 BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001690 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00001691 BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r)
1692 .addImm(Op1r);
1693 BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1)
1694 .addImm(Op1r+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001695 }
1696 return;
1697}
1698
1699/// doMultiply - Emit appropriate instructions to multiply together the
1700/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
1701/// result should be given as DestTy.
1702///
1703void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
1704 unsigned DestReg, const Type *DestTy,
1705 unsigned op0Reg, unsigned op1Reg) {
1706 unsigned Class = getClass(DestTy);
1707 switch (Class) {
1708 case cLong:
Misha Brukman2fec9902004-06-21 20:22:03 +00001709 BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1)
1710 .addReg(op1Reg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001711 case cInt:
1712 case cShort:
1713 case cByte:
1714 BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
1715 return;
1716 default:
Misha Brukman422791f2004-06-21 17:41:12 +00001717 assert(0 && "doMultiply cannot operate on unknown type!");
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001718 }
1719}
1720
1721// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
1722// returns zero when the input is not exactly a power of two.
1723static unsigned ExactLog2(unsigned Val) {
1724 if (Val == 0 || (Val & (Val-1))) return 0;
1725 unsigned Count = 0;
1726 while (Val != 1) {
1727 Val >>= 1;
1728 ++Count;
1729 }
1730 return Count+1;
1731}
1732
1733
1734/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
1735/// 16, or 32-bit integer multiply by a constant.
Misha Brukman2fec9902004-06-21 20:22:03 +00001736///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001737void ISel::doMultiplyConst(MachineBasicBlock *MBB,
1738 MachineBasicBlock::iterator IP,
1739 unsigned DestReg, const Type *DestTy,
1740 unsigned op0Reg, unsigned ConstRHS) {
1741 unsigned Class = getClass(DestTy);
1742 // Handle special cases here.
1743 switch (ConstRHS) {
1744 case 0:
1745 BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1746 return;
1747 case 1:
1748 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
1749 return;
1750 case 2:
1751 BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
1752 return;
1753 }
1754
1755 // If the element size is exactly a power of 2, use a shift to get it.
1756 if (unsigned Shift = ExactLog2(ConstRHS)) {
1757 switch (Class) {
1758 default: assert(0 && "Unknown class for this function!");
1759 case cByte:
1760 case cShort:
1761 case cInt:
Misha Brukman2fec9902004-06-21 20:22:03 +00001762 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg)
1763 .addImm(Shift-1).addImm(0).addImm(31-Shift-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001764 return;
1765 }
1766 }
1767
1768 // Most general case, emit a normal multiply...
1769 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
1770 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001771 BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0)
1772 .addImm(ConstRHS >> 16);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001773 BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
1774
1775 // Emit a MUL to multiply the register holding the index by
1776 // elementSize, putting the result in OffsetReg.
1777 doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
1778}
1779
1780void ISel::visitMul(BinaryOperator &I) {
1781 unsigned ResultReg = getReg(I);
1782
1783 Value *Op0 = I.getOperand(0);
1784 Value *Op1 = I.getOperand(1);
1785
1786 MachineBasicBlock::iterator IP = BB->end();
1787 emitMultiply(BB, IP, Op0, Op1, ResultReg);
1788}
1789
1790void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
1791 Value *Op0, Value *Op1, unsigned DestReg) {
1792 MachineBasicBlock &BB = *MBB;
1793 TypeClass Class = getClass(Op0->getType());
1794
1795 // Simple scalar multiply?
1796 unsigned Op0Reg = getReg(Op0, &BB, IP);
1797 switch (Class) {
1798 case cByte:
1799 case cShort:
1800 case cInt:
1801 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1802 unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
1803 doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
1804 } else {
1805 unsigned Op1Reg = getReg(Op1, &BB, IP);
1806 doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
1807 }
1808 return;
1809 case cFP:
1810 emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
1811 return;
1812 case cLong:
1813 break;
1814 }
1815
1816 // Long value. We have to do things the hard way...
1817 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1818 unsigned CLow = CI->getRawValue();
1819 unsigned CHi = CI->getRawValue() >> 32;
1820
1821 if (CLow == 0) {
1822 // If the low part of the constant is all zeros, things are simple.
1823 BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
1824 doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
1825 return;
1826 }
1827
1828 // Multiply the two low parts
1829 unsigned OverflowReg = 0;
1830 if (CLow == 1) {
1831 BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
1832 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00001833 unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001834 unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
1835 OverflowReg = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00001836 BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0)
1837 .addImm(CLow >> 16);
Misha Brukman422791f2004-06-21 17:41:12 +00001838 BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
1839 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
Misha Brukman2fec9902004-06-21 20:22:03 +00001840 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg)
1841 .addReg(Op1RegL);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001842 }
1843
1844 unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
1845 doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
1846
1847 unsigned AHBLplusOverflowReg;
1848 if (OverflowReg) {
1849 AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1850 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1851 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1852 } else {
1853 AHBLplusOverflowReg = AHBLReg;
1854 }
1855
1856 if (CHi == 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00001857 BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg)
1858 .addReg(AHBLplusOverflowReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001859 } else {
1860 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1861 doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
1862
1863 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1864 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1865 }
1866 return;
1867 }
1868
1869 // General 64x64 multiply
1870
1871 unsigned Op1Reg = getReg(Op1, &BB, IP);
1872
1873 // Multiply the two low parts... capturing carry into EDX
1874 BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL
1875
1876 unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
1877 BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
1878
1879 unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
1880 BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
1881
1882 unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
1883 BuildMI(BB, IP, PPC32::ADD, 2, // AH*BL+(AL*BL >> 32)
1884 AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
1885
1886 unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
1887 BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
1888
1889 BuildMI(BB, IP, PPC32::ADD, 2, // AL*BH + AH*BL + (AL*BL >> 32)
1890 DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
1891}
1892
1893
1894/// visitDivRem - Handle division and remainder instructions... these
1895/// instruction both require the same instructions to be generated, they just
1896/// select the result from a different register. Note that both of these
1897/// instructions work differently for signed and unsigned operands.
1898///
1899void ISel::visitDivRem(BinaryOperator &I) {
1900 unsigned ResultReg = getReg(I);
1901 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1902
1903 MachineBasicBlock::iterator IP = BB->end();
Misha Brukman2fec9902004-06-21 20:22:03 +00001904 emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div,
1905 ResultReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001906}
1907
1908void ISel::emitDivRemOperation(MachineBasicBlock *BB,
1909 MachineBasicBlock::iterator IP,
1910 Value *Op0, Value *Op1, bool isDiv,
1911 unsigned ResultReg) {
1912 const Type *Ty = Op0->getType();
1913 unsigned Class = getClass(Ty);
1914 switch (Class) {
1915 case cFP: // Floating point divide
1916 if (isDiv) {
1917 emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
1918 return;
1919 } else { // Floating point remainder...
1920 unsigned Op0Reg = getReg(Op0, BB, IP);
1921 unsigned Op1Reg = getReg(Op1, BB, IP);
1922 MachineInstr *TheCall =
1923 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
1924 std::vector<ValueRecord> Args;
1925 Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
1926 Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
1927 doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
1928 }
1929 return;
1930 case cLong: {
1931 static const char *FnName[] =
1932 { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
1933 unsigned Op0Reg = getReg(Op0, BB, IP);
1934 unsigned Op1Reg = getReg(Op1, BB, IP);
1935 unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
1936 MachineInstr *TheCall =
1937 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
1938
1939 std::vector<ValueRecord> Args;
1940 Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
1941 Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
1942 doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
1943 return;
1944 }
1945 case cByte: case cShort: case cInt:
1946 break; // Small integrals, handled below...
1947 default: assert(0 && "Unknown class!");
1948 }
1949
1950 // Special case signed division by power of 2.
1951 if (isDiv)
1952 if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
1953 assert(Class != cLong && "This doesn't handle 64-bit divides!");
1954 int V = CI->getValue();
1955
1956 if (V == 1) { // X /s 1 => X
1957 unsigned Op0Reg = getReg(Op0, BB, IP);
1958 BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
1959 return;
1960 }
1961
1962 if (V == -1) { // X /s -1 => -X
1963 unsigned Op0Reg = getReg(Op0, BB, IP);
1964 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
1965 return;
1966 }
1967
1968 bool isNeg = false;
1969 if (V < 0) { // Not a positive power of 2?
1970 V = -V;
1971 isNeg = true; // Maybe it's a negative power of 2.
1972 }
1973 if (unsigned Log = ExactLog2(V)) {
1974 --Log;
1975 unsigned Op0Reg = getReg(Op0, BB, IP);
1976 unsigned TmpReg = makeAnotherReg(Op0->getType());
1977 if (Log != 1)
Misha Brukman2fec9902004-06-21 20:22:03 +00001978 BuildMI(*BB, IP, PPC32::SRAWI,2, TmpReg).addReg(Op0Reg).addImm(Log-1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001979 else
1980 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
1981
1982 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
Misha Brukman2fec9902004-06-21 20:22:03 +00001983 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log)
1984 .addImm(32-Log).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00001985
1986 unsigned TmpReg3 = makeAnotherReg(Op0->getType());
1987 BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
1988
1989 unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
1990 BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
1991
1992 if (isNeg)
1993 BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
1994 return;
1995 }
1996 }
1997
1998 unsigned Op0Reg = getReg(Op0, BB, IP);
1999 unsigned Op1Reg = getReg(Op1, BB, IP);
2000
2001 if (isDiv) {
Misha Brukman422791f2004-06-21 17:41:12 +00002002 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002003 BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002004 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002005 BuildMI(*BB, IP,PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002006 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002007 } else { // Remainder
Misha Brukman422791f2004-06-21 17:41:12 +00002008 unsigned TmpReg1 = makeAnotherReg(Op0->getType());
2009 unsigned TmpReg2 = makeAnotherReg(Op0->getType());
2010
2011 if (Ty->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002012 BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002013 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002014 BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
Misha Brukman422791f2004-06-21 17:41:12 +00002015 }
2016 BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
2017 BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002018 }
2019}
2020
2021
2022/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
2023/// for constant immediate shift values, and for constant immediate
2024/// shift values equal to 1. Even the general case is sort of special,
2025/// because the shift amount has to be in CL, not just any old register.
2026///
2027void ISel::visitShiftInst(ShiftInst &I) {
2028 MachineBasicBlock::iterator IP = BB->end ();
Misha Brukman2fec9902004-06-21 20:22:03 +00002029 emitShiftOperation(BB, IP, I.getOperand (0), I.getOperand (1),
2030 I.getOpcode () == Instruction::Shl, I.getType (),
2031 getReg (I));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002032}
2033
2034/// emitShiftOperation - Common code shared between visitShiftInst and
2035/// constant expression support.
Misha Brukman2fec9902004-06-21 20:22:03 +00002036///
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002037void ISel::emitShiftOperation(MachineBasicBlock *MBB,
2038 MachineBasicBlock::iterator IP,
2039 Value *Op, Value *ShiftAmount, bool isLeftShift,
2040 const Type *ResultTy, unsigned DestReg) {
2041 unsigned SrcReg = getReg (Op, MBB, IP);
2042 bool isSigned = ResultTy->isSigned ();
2043 unsigned Class = getClass (ResultTy);
2044
2045 // Longs, as usual, are handled specially...
2046 if (Class == cLong) {
2047 // If we have a constant shift, we can generate much more efficient code
2048 // than otherwise...
2049 //
2050 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2051 unsigned Amount = CUI->getValue();
2052 if (Amount < 32) {
2053 if (isLeftShift) {
Misha Brukman422791f2004-06-21 17:41:12 +00002054 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002055 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2056 .addImm(Amount).addImm(0).addImm(31-Amount);
2057 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg)
2058 .addImm(Amount).addImm(32-Amount).addImm(31);
2059 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2060 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002061 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002062 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
Misha Brukman2fec9902004-06-21 20:22:03 +00002063 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2064 .addImm(32-Amount).addImm(Amount).addImm(31);
2065 BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1)
2066 .addImm(32-Amount).addImm(0).addImm(Amount-1);
2067 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1)
2068 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002069 }
2070 } else { // Shifting more than 32 bits
2071 Amount -= 32;
2072 if (isLeftShift) {
2073 if (Amount != 0) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002074 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg)
2075 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002076 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002077 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg)
2078 .addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002079 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002080 BuildMI(*MBB, IP, PPC32::ADDI, 2,DestReg).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002081 } else {
2082 if (Amount != 0) {
Misha Brukman422791f2004-06-21 17:41:12 +00002083 if (isSigned)
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002084 BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1)
2085 .addImm(Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002086 else
Misha Brukmanfadb82f2004-06-24 22:00:15 +00002087 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1)
2088 .addImm(32-Amount).addImm(Amount).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002089 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002090 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1)
2091 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002092 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002093 BuildMI(*MBB, IP,PPC32::ADDI,2,DestReg+1).addReg(PPC32::R0).addImm(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002094 }
2095 }
2096 } else {
2097 unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
2098 unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002099 unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
2100 unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
2101 unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
2102 unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
2103 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2104
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002105 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002106 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2107 .addImm(32);
2108 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1)
2109 .addReg(ShiftAmountReg);
2110 BuildMI(*MBB, IP, PPC32::SRW, 2,TmpReg3).addReg(SrcReg).addReg(TmpReg1);
2111 BuildMI(*MBB, IP, PPC32::OR, 2,TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
2112 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2113 .addImm(-32);
2114 BuildMI(*MBB, IP, PPC32::SLW, 2,TmpReg6).addReg(SrcReg).addReg(TmpReg5);
2115 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4)
2116 .addReg(TmpReg6);
2117 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2118 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002119 } else {
2120 if (isSigned) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002121 // FIXME: Unimplmented
2122 // Page C-3 of the PowerPC 32bit Programming Environments Manual
Misha Brukman422791f2004-06-21 17:41:12 +00002123 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002124 BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg)
2125 .addImm(32);
2126 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg)
2127 .addReg(ShiftAmountReg);
2128 BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1)
2129 .addReg(TmpReg1);
2130 BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2)
2131 .addReg(TmpReg3);
2132 BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg)
2133 .addImm(-32);
2134 BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1)
2135 .addReg(TmpReg5);
2136 BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4)
2137 .addReg(TmpReg6);
2138 BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1)
2139 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002140 }
2141 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002142 }
2143 return;
2144 }
2145
2146 if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
2147 // The shift amount is constant, guaranteed to be a ubyte. Get its value.
2148 assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
2149 unsigned Amount = CUI->getValue();
2150
Misha Brukman422791f2004-06-21 17:41:12 +00002151 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002152 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2153 .addImm(Amount).addImm(0).addImm(31-Amount);
Misha Brukman422791f2004-06-21 17:41:12 +00002154 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002155 if (isSigned) {
2156 BuildMI(*MBB, IP, PPC32::SRAWI,2,DestReg).addReg(SrcReg).addImm(Amount);
2157 } else {
2158 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg)
2159 .addImm(32-Amount).addImm(Amount).addImm(31);
2160 }
Misha Brukman422791f2004-06-21 17:41:12 +00002161 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002162 } else { // The shift amount is non-constant.
2163 unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
2164
Misha Brukman422791f2004-06-21 17:41:12 +00002165 if (isLeftShift) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002166 BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg)
2167 .addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002168 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002169 BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg)
2170 .addReg(SrcReg).addReg(ShiftAmountReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002171 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002172 }
2173}
2174
2175
2176/// visitLoadInst - Implement LLVM load instructions
2177///
2178void ISel::visitLoadInst(LoadInst &I) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002179 static const unsigned Opcodes[] = {
2180 PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS
2181 };
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002182 unsigned Class = getClassB(I.getType());
2183 unsigned Opcode = Opcodes[Class];
2184 if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
2185
2186 unsigned DestReg = getReg(I);
2187
2188 if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
Misha Brukman422791f2004-06-21 17:41:12 +00002189 unsigned FI = getFixedSizedAllocaFI(AI);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002190 if (Class == cLong) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002191 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
2192 addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002193 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002194 addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
Misha Brukman422791f2004-06-21 17:41:12 +00002195 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002196 } else {
Misha Brukman422791f2004-06-21 17:41:12 +00002197 unsigned SrcAddrReg = getReg(I.getOperand(0));
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002198
2199 if (Class == cLong) {
2200 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2201 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
2202 } else {
2203 BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
2204 }
2205 }
2206}
2207
2208/// visitStoreInst - Implement LLVM store instructions
2209///
2210void ISel::visitStoreInst(StoreInst &I) {
2211 unsigned ValReg = getReg(I.getOperand(0));
2212 unsigned AddressReg = getReg(I.getOperand(1));
2213
2214 const Type *ValTy = I.getOperand(0)->getType();
2215 unsigned Class = getClassB(ValTy);
2216
2217 if (Class == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002218 BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002219 BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002220 return;
2221 }
2222
2223 static const unsigned Opcodes[] = {
2224 PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
2225 };
2226 unsigned Opcode = Opcodes[Class];
2227 if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
2228 BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
2229}
2230
2231
2232/// visitCastInst - Here we have various kinds of copying with or without sign
2233/// extension going on.
2234///
2235void ISel::visitCastInst(CastInst &CI) {
2236 Value *Op = CI.getOperand(0);
2237
2238 unsigned SrcClass = getClassB(Op->getType());
2239 unsigned DestClass = getClassB(CI.getType());
2240 // Noop casts are not emitted: getReg will return the source operand as the
2241 // register to use for any uses of the noop cast.
2242 if (DestClass == SrcClass)
2243 return;
2244
2245 // If this is a cast from a 32-bit integer to a Long type, and the only uses
2246 // of the case are GEP instructions, then the cast does not need to be
2247 // generated explicitly, it will be folded into the GEP.
2248 if (DestClass == cLong && SrcClass == cInt) {
2249 bool AllUsesAreGEPs = true;
2250 for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
2251 if (!isa<GetElementPtrInst>(*I)) {
2252 AllUsesAreGEPs = false;
2253 break;
2254 }
2255
2256 // No need to codegen this cast if all users are getelementptr instrs...
2257 if (AllUsesAreGEPs) return;
2258 }
2259
2260 unsigned DestReg = getReg(CI);
2261 MachineBasicBlock::iterator MI = BB->end();
2262 emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
2263}
2264
2265/// emitCastOperation - Common code shared between visitCastInst and constant
2266/// expression cast support.
2267///
2268void ISel::emitCastOperation(MachineBasicBlock *BB,
2269 MachineBasicBlock::iterator IP,
2270 Value *Src, const Type *DestTy,
2271 unsigned DestReg) {
2272 const Type *SrcTy = Src->getType();
2273 unsigned SrcClass = getClassB(SrcTy);
2274 unsigned DestClass = getClassB(DestTy);
2275 unsigned SrcReg = getReg(Src, BB, IP);
2276
2277 // Implement casts to bool by using compare on the operand followed by set if
2278 // not zero on the result.
2279 if (DestTy == Type::BoolTy) {
2280 switch (SrcClass) {
2281 case cByte:
Misha Brukman422791f2004-06-21 17:41:12 +00002282 case cShort:
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002283 case cInt: {
2284 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman422791f2004-06-21 17:41:12 +00002285 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
2286 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002287 break;
2288 }
2289 case cLong: {
2290 unsigned TmpReg = makeAnotherReg(Type::IntTy);
2291 unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
2292 BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
Misha Brukman422791f2004-06-21 17:41:12 +00002293 BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
2294 BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002295 break;
2296 }
2297 case cFP:
2298 // FIXME
Misha Brukman422791f2004-06-21 17:41:12 +00002299 // Load -0.0
2300 // Compare
2301 // move to CR1
2302 // Negate -0.0
2303 // Compare
2304 // CROR
2305 // MFCR
2306 // Left-align
2307 // SRA ?
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002308 break;
2309 }
2310 return;
2311 }
2312
2313 // Implement casts between values of the same type class (as determined by
2314 // getClass) by using a register-to-register move.
2315 if (SrcClass == DestClass) {
Misha Brukman422791f2004-06-21 17:41:12 +00002316 if (SrcClass <= cInt) {
2317 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2318 } else if (SrcClass == cFP && SrcTy == DestTy) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002319 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2320 } else if (SrcClass == cFP) {
2321 if (SrcTy == Type::FloatTy) { // float -> double
2322 assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
2323 BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
2324 } else { // double -> float
2325 assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
2326 "Unknown cFP member!");
Misha Brukman422791f2004-06-21 17:41:12 +00002327 BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002328 }
2329 } else if (SrcClass == cLong) {
Misha Brukman422791f2004-06-21 17:41:12 +00002330 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002331 BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1)
2332 .addReg(SrcReg+1);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002333 } else {
2334 assert(0 && "Cannot handle this type of cast instruction!");
2335 abort();
2336 }
2337 return;
2338 }
2339
2340 // Handle cast of SMALLER int to LARGER int using a move with sign extension
2341 // or zero extension, depending on whether the source type was signed.
2342 if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
2343 SrcClass < DestClass) {
2344 bool isLong = DestClass == cLong;
2345 if (isLong) DestClass = cInt;
2346
2347 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
2348 if (SrcClass < cInt) {
2349 if (isUnsigned) {
Misha Brukman422791f2004-06-21 17:41:12 +00002350 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002351 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2352 .addImm(shift).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002353 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002354 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH,
2355 1, DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002356 }
2357 } else {
2358 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2359 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002360
2361 if (isLong) { // Handle upper 32 bits as appropriate...
2362 if (isUnsigned) // Zero out top bits...
2363 BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
2364 else // Sign extend bottom half...
2365 BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
2366 }
2367 return;
2368 }
2369
2370 // Special case long -> int ...
2371 if (SrcClass == cLong && DestClass == cInt) {
2372 BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
2373 return;
2374 }
2375
2376 // Handle cast of LARGER int to SMALLER int with a clear or sign extend
2377 if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
2378 && SrcClass > DestClass) {
2379 bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
Misha Brukman422791f2004-06-21 17:41:12 +00002380 if (isUnsigned) {
2381 unsigned shift = (SrcClass == cByte) ? 24 : 16;
Misha Brukman2fec9902004-06-21 20:22:03 +00002382 BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0)
2383 .addImm(shift).addImm(31);
Misha Brukman422791f2004-06-21 17:41:12 +00002384 } else {
Misha Brukman2fec9902004-06-21 20:22:03 +00002385 BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1,
2386 DestReg).addReg(SrcReg);
Misha Brukman422791f2004-06-21 17:41:12 +00002387 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002388 return;
2389 }
2390
2391 // Handle casts from integer to floating point now...
2392 if (DestClass == cFP) {
2393
Misha Brukman422791f2004-06-21 17:41:12 +00002394 // Emit a library call for long to float conversion
2395 if (SrcClass == cLong) {
2396 std::vector<ValueRecord> Args;
2397 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002398 MachineInstr *TheCall =
2399 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002400 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2401 return;
2402 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002403
2404 unsigned TmpReg = makeAnotherReg(Type::IntTy);
Misha Brukman358829f2004-06-21 17:25:55 +00002405 switch (SrcTy->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002406 case Type::BoolTyID:
2407 case Type::SByteTyID:
2408 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2409 break;
2410 case Type::UByteTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002411 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2412 .addImm(24).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002413 break;
2414 case Type::ShortTyID:
2415 BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
2416 break;
2417 case Type::UShortTyID:
Misha Brukman2fec9902004-06-21 20:22:03 +00002418 BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0)
2419 .addImm(16).addImm(31);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002420 break;
Misha Brukman422791f2004-06-21 17:41:12 +00002421 case Type::IntTyID:
2422 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2423 break;
2424 case Type::UIntTyID:
2425 BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
2426 break;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002427 default: // No promotion needed...
2428 break;
2429 }
2430
2431 SrcReg = TmpReg;
Misha Brukman422791f2004-06-21 17:41:12 +00002432
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002433 // Spill the integer to memory and reload it from there.
Misha Brukman422791f2004-06-21 17:41:12 +00002434 // Also spill room for a special conversion constant
2435 int ConstantFrameIndex =
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002436 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2437 int ValueFrameIdx =
2438 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2439
Misha Brukman422791f2004-06-21 17:41:12 +00002440 unsigned constantHi = makeAnotherReg(Type::IntTy);
2441 unsigned constantLo = makeAnotherReg(Type::IntTy);
2442 unsigned ConstF = makeAnotherReg(Type::DoubleTy);
2443 unsigned TempF = makeAnotherReg(Type::DoubleTy);
2444
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002445 if (!SrcTy->isSigned()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002446 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2447 .addImm(0x4330);
Misha Brukman422791f2004-06-21 17:41:12 +00002448 BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
Misha Brukman2fec9902004-06-21 20:22:03 +00002449 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2450 ConstantFrameIndex);
2451 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2452 ConstantFrameIndex, 4);
2453 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2454 ValueFrameIdx);
2455 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg),
2456 ValueFrameIdx, 4);
2457 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2458 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002459 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
2460 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
2461 } else {
2462 unsigned TempLo = makeAnotherReg(Type::IntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002463 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0)
2464 .addImm(0x4330);
2465 BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0)
2466 .addImm(0x8000);
2467 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2468 ConstantFrameIndex);
2469 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo),
2470 ConstantFrameIndex, 4);
2471 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi),
2472 ValueFrameIdx);
Misha Brukman422791f2004-06-21 17:41:12 +00002473 BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
Misha Brukman2fec9902004-06-21 20:22:03 +00002474 addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo),
2475 ValueFrameIdx, 4);
2476 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF),
2477 ConstantFrameIndex);
Misha Brukman422791f2004-06-21 17:41:12 +00002478 addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
Misha Brukman2fec9902004-06-21 20:22:03 +00002479 BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF ).addReg(ConstF);
Misha Brukman422791f2004-06-21 17:41:12 +00002480 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002481 return;
2482 }
2483
2484 // Handle casts from floating point to integer now...
2485 if (SrcClass == cFP) {
2486
Misha Brukman422791f2004-06-21 17:41:12 +00002487 // emit library call
2488 if (DestClass == cLong) {
2489 std::vector<ValueRecord> Args;
2490 Args.push_back(ValueRecord(SrcReg, SrcTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002491 MachineInstr *TheCall =
2492 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
Misha Brukman422791f2004-06-21 17:41:12 +00002493 doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
2494 return;
2495 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002496
2497 int ValueFrameIdx =
2498 F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
2499
Misha Brukman422791f2004-06-21 17:41:12 +00002500 // load into 32 bit value, and then truncate as necessary
2501 // FIXME: This is wrong for unsigned dest types
2502 //if (DestTy->isSigned()) {
2503 unsigned TempReg = makeAnotherReg(Type::DoubleTy);
2504 BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
Misha Brukman2fec9902004-06-21 20:22:03 +00002505 addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3)
2506 .addReg(TempReg), ValueFrameIdx);
2507 addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg),
2508 ValueFrameIdx+4);
Misha Brukman422791f2004-06-21 17:41:12 +00002509 //} else {
2510 //}
2511
2512 // FIXME: Truncate return value
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002513 return;
2514 }
2515
2516 // Anything we haven't handled already, we can't (yet) handle at all.
2517 assert(0 && "Unhandled cast instruction!");
2518 abort();
2519}
2520
2521/// visitVANextInst - Implement the va_next instruction...
2522///
2523void ISel::visitVANextInst(VANextInst &I) {
2524 unsigned VAList = getReg(I.getOperand(0));
2525 unsigned DestReg = getReg(I);
2526
2527 unsigned Size;
Misha Brukman358829f2004-06-21 17:25:55 +00002528 switch (I.getArgType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002529 default:
2530 std::cerr << I;
2531 assert(0 && "Error: bad type for va_next instruction!");
2532 return;
2533 case Type::PointerTyID:
2534 case Type::UIntTyID:
2535 case Type::IntTyID:
2536 Size = 4;
2537 break;
2538 case Type::ULongTyID:
2539 case Type::LongTyID:
2540 case Type::DoubleTyID:
2541 Size = 8;
2542 break;
2543 }
2544
2545 // Increment the VAList pointer...
2546 BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
2547}
2548
2549void ISel::visitVAArgInst(VAArgInst &I) {
2550 unsigned VAList = getReg(I.getOperand(0));
2551 unsigned DestReg = getReg(I);
2552
Misha Brukman358829f2004-06-21 17:25:55 +00002553 switch (I.getType()->getTypeID()) {
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002554 default:
2555 std::cerr << I;
2556 assert(0 && "Error: bad type for va_next instruction!");
2557 return;
2558 case Type::PointerTyID:
2559 case Type::UIntTyID:
2560 case Type::IntTyID:
2561 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2562 break;
2563 case Type::ULongTyID:
2564 case Type::LongTyID:
2565 BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
2566 BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
2567 break;
2568 case Type::DoubleTyID:
2569 BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
2570 break;
2571 }
2572}
2573
2574/// visitGetElementPtrInst - instruction-select GEP instructions
2575///
2576void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
2577 unsigned outputReg = getReg(I);
Misha Brukman2fec9902004-06-21 20:22:03 +00002578 emitGEPOperation(BB, BB->end(), I.getOperand(0), I.op_begin()+1, I.op_end(),
2579 outputReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002580}
2581
2582void ISel::emitGEPOperation(MachineBasicBlock *MBB,
2583 MachineBasicBlock::iterator IP,
2584 Value *Src, User::op_iterator IdxBegin,
2585 User::op_iterator IdxEnd, unsigned TargetReg) {
2586 const TargetData &TD = TM.getTargetData();
2587 if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
2588 Src = CPR->getValue();
2589
2590 std::vector<Value*> GEPOps;
2591 GEPOps.resize(IdxEnd-IdxBegin+1);
2592 GEPOps[0] = Src;
2593 std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
2594
2595 std::vector<const Type*> GEPTypes;
2596 GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
2597 gep_type_end(Src->getType(), IdxBegin, IdxEnd));
2598
2599 // Keep emitting instructions until we consume the entire GEP instruction.
Misha Brukman98649d12004-06-24 21:54:47 +00002600 while (!GEPTypes.empty()) {
Misha Brukman2fec9902004-06-21 20:22:03 +00002601 // It's an array or pointer access: [ArraySize x ElementType].
2602 const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
2603 Value *idx = GEPOps.back();
2604 GEPOps.pop_back(); // Consume a GEP operand
2605 GEPTypes.pop_back();
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002606
Misha Brukman2fec9902004-06-21 20:22:03 +00002607 // Many GEP instructions use a [cast (int/uint) to LongTy] as their
2608 // operand on X86. Handle this case directly now...
2609 if (CastInst *CI = dyn_cast<CastInst>(idx))
2610 if (CI->getOperand(0)->getType() == Type::IntTy ||
2611 CI->getOperand(0)->getType() == Type::UIntTy)
2612 idx = CI->getOperand(0);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002613
Misha Brukman2fec9902004-06-21 20:22:03 +00002614 // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
2615 // must find the size of the pointed-to type (Not coincidentally, the next
2616 // type is the type of the elements in the array).
2617 const Type *ElTy = SqTy->getElementType();
2618 unsigned elementSize = TD.getTypeSize(ElTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002619
Misha Brukman2fec9902004-06-21 20:22:03 +00002620 if (elementSize == 1) {
2621 // If the element size is 1, we don't have to multiply, just add
2622 unsigned idxReg = getReg(idx, MBB, IP);
2623 unsigned Reg = makeAnotherReg(Type::UIntTy);
2624 BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
2625 --IP; // Insert the next instruction before this one.
2626 TargetReg = Reg; // Codegen the rest of the GEP into this
2627 } else {
2628 unsigned idxReg = getReg(idx, MBB, IP);
2629 unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002630
Misha Brukman2fec9902004-06-21 20:22:03 +00002631 // Make sure we can back the iterator up to point to the first
2632 // instruction emitted.
2633 MachineBasicBlock::iterator BeforeIt = IP;
2634 if (IP == MBB->begin())
2635 BeforeIt = MBB->end();
2636 else
2637 --BeforeIt;
2638 doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002639
Misha Brukman2fec9902004-06-21 20:22:03 +00002640 // Emit an ADD to add OffsetReg to the basePtr.
2641 unsigned Reg = makeAnotherReg(Type::UIntTy);
2642 BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002643
Misha Brukman2fec9902004-06-21 20:22:03 +00002644 // Step to the first instruction of the multiply.
2645 if (BeforeIt == MBB->end())
2646 IP = MBB->begin();
2647 else
2648 IP = ++BeforeIt;
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002649
Misha Brukman2fec9902004-06-21 20:22:03 +00002650 TargetReg = Reg; // Codegen the rest of the GEP into this
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002651 }
Misha Brukman2fec9902004-06-21 20:22:03 +00002652 }
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002653}
2654
2655/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
2656/// frame manager, otherwise do it the hard way.
2657///
2658void ISel::visitAllocaInst(AllocaInst &I) {
2659 // If this is a fixed size alloca in the entry block for the function, we
2660 // statically stack allocate the space, so we don't need to do anything here.
2661 //
2662 if (dyn_castFixedAlloca(&I)) return;
2663
2664 // Find the data size of the alloca inst's getAllocatedType.
2665 const Type *Ty = I.getAllocatedType();
2666 unsigned TySize = TM.getTargetData().getTypeSize(Ty);
2667
2668 // Create a register to hold the temporary result of multiplying the type size
2669 // constant by the variable amount.
2670 unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
2671 unsigned SrcReg1 = getReg(I.getArraySize());
2672
2673 // TotalSizeReg = mul <numelements>, <TypeSize>
2674 MachineBasicBlock::iterator MBBI = BB->end();
2675 doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
2676
2677 // AddedSize = add <TotalSizeReg>, 15
2678 unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
2679 BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
2680
2681 // AlignedSize = and <AddedSize>, ~15
2682 unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
Misha Brukman2fec9902004-06-21 20:22:03 +00002683 BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0)
2684 .addImm(0).addImm(27);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002685
2686 // Subtract size from stack pointer, thereby allocating some space.
2687 BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
2688
2689 // Put a pointer to the space into the result register, by copying
2690 // the stack pointer.
2691 BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
2692
2693 // Inform the Frame Information that we have just allocated a variable-sized
2694 // object.
2695 F->getFrameInfo()->CreateVariableSizedObject();
2696}
2697
2698/// visitMallocInst - Malloc instructions are code generated into direct calls
2699/// to the library malloc.
2700///
2701void ISel::visitMallocInst(MallocInst &I) {
2702 unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
2703 unsigned Arg;
2704
2705 if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
2706 Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
2707 } else {
2708 Arg = makeAnotherReg(Type::UIntTy);
2709 unsigned Op0Reg = getReg(I.getOperand(0));
2710 MachineBasicBlock::iterator MBBI = BB->end();
2711 doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
2712 }
2713
2714 std::vector<ValueRecord> Args;
2715 Args.push_back(ValueRecord(Arg, Type::UIntTy));
Misha Brukman2fec9902004-06-21 20:22:03 +00002716 MachineInstr *TheCall =
2717 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002718 doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
2719}
2720
2721
2722/// visitFreeInst - Free instructions are code gen'd to call the free libc
2723/// function.
2724///
2725void ISel::visitFreeInst(FreeInst &I) {
2726 std::vector<ValueRecord> Args;
2727 Args.push_back(ValueRecord(I.getOperand(0)));
Misha Brukman2fec9902004-06-21 20:22:03 +00002728 MachineInstr *TheCall =
2729 BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
Misha Brukman5dfe3a92004-06-21 16:55:25 +00002730 doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
2731}
2732
2733/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
2734/// into a machine code representation is a very simple peep-hole fashion. The
2735/// generated code sucks but the implementation is nice and simple.
2736///
2737FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
2738 return new ISel(TM);
2739}