blob: e902159bf08b6a8acff26c17ffba0754aa9b7e9d [file] [log] [blame]
Sean Silvaf722b002012-12-07 10:36:55 +00001==============================
2LLVM Language Reference Manual
3==============================
4
5.. contents::
6 :local:
7 :depth: 3
8
Sean Silvaf722b002012-12-07 10:36:55 +00009Abstract
10========
11
12This document is a reference manual for the LLVM assembly language. LLVM
13is a Static Single Assignment (SSA) based representation that provides
14type safety, low-level operations, flexibility, and the capability of
15representing 'all' high-level languages cleanly. It is the common code
16representation used throughout all phases of the LLVM compilation
17strategy.
18
19Introduction
20============
21
22The LLVM code representation is designed to be used in three different
23forms: as an in-memory compiler IR, as an on-disk bitcode representation
24(suitable for fast loading by a Just-In-Time compiler), and as a human
25readable assembly language representation. This allows LLVM to provide a
26powerful intermediate representation for efficient compiler
27transformations and analysis, while providing a natural means to debug
28and visualize the transformations. The three different forms of LLVM are
29all equivalent. This document describes the human readable
30representation and notation.
31
32The LLVM representation aims to be light-weight and low-level while
33being expressive, typed, and extensible at the same time. It aims to be
34a "universal IR" of sorts, by being at a low enough level that
35high-level ideas may be cleanly mapped to it (similar to how
36microprocessors are "universal IR's", allowing many source languages to
37be mapped to them). By providing type information, LLVM can be used as
38the target of optimizations: for example, through pointer analysis, it
39can be proven that a C automatic variable is never accessed outside of
40the current function, allowing it to be promoted to a simple SSA value
41instead of a memory location.
42
43.. _wellformed:
44
45Well-Formedness
46---------------
47
48It is important to note that this document describes 'well formed' LLVM
49assembly language. There is a difference between what the parser accepts
50and what is considered 'well formed'. For example, the following
51instruction is syntactically okay, but not well formed:
52
53.. code-block:: llvm
54
55 %x = add i32 1, %x
56
57because the definition of ``%x`` does not dominate all of its uses. The
58LLVM infrastructure provides a verification pass that may be used to
59verify that an LLVM module is well formed. This pass is automatically
60run by the parser after parsing input assembly and by the optimizer
61before it outputs bitcode. The violations pointed out by the verifier
62pass indicate bugs in transformation passes or input to the parser.
63
64.. _identifiers:
65
66Identifiers
67===========
68
69LLVM identifiers come in two basic types: global and local. Global
70identifiers (functions, global variables) begin with the ``'@'``
71character. Local identifiers (register names, types) begin with the
72``'%'`` character. Additionally, there are three different formats for
73identifiers, for different purposes:
74
75#. Named values are represented as a string of characters with their
76 prefix. For example, ``%foo``, ``@DivisionByZero``,
77 ``%a.really.long.identifier``. The actual regular expression used is
78 '``[%@][a-zA-Z$._][a-zA-Z$._0-9]*``'. Identifiers which require other
79 characters in their names can be surrounded with quotes. Special
80 characters may be escaped using ``"\xx"`` where ``xx`` is the ASCII
81 code for the character in hexadecimal. In this way, any character can
82 be used in a name value, even quotes themselves.
83#. Unnamed values are represented as an unsigned numeric value with
84 their prefix. For example, ``%12``, ``@2``, ``%44``.
85#. Constants, which are described in the section Constants_ below.
86
87LLVM requires that values start with a prefix for two reasons: Compilers
88don't need to worry about name clashes with reserved words, and the set
89of reserved words may be expanded in the future without penalty.
90Additionally, unnamed identifiers allow a compiler to quickly come up
91with a temporary variable without having to avoid symbol table
92conflicts.
93
94Reserved words in LLVM are very similar to reserved words in other
95languages. There are keywords for different opcodes ('``add``',
96'``bitcast``', '``ret``', etc...), for primitive type names ('``void``',
97'``i32``', etc...), and others. These reserved words cannot conflict
98with variable names, because none of them start with a prefix character
99(``'%'`` or ``'@'``).
100
101Here is an example of LLVM code to multiply the integer variable
102'``%X``' by 8:
103
104The easy way:
105
106.. code-block:: llvm
107
108 %result = mul i32 %X, 8
109
110After strength reduction:
111
112.. code-block:: llvm
113
Dmitri Gribenko126fde52013-01-26 13:30:13 +0000114 %result = shl i32 %X, 3
Sean Silvaf722b002012-12-07 10:36:55 +0000115
116And the hard way:
117
118.. code-block:: llvm
119
120 %0 = add i32 %X, %X ; yields {i32}:%0
121 %1 = add i32 %0, %0 ; yields {i32}:%1
122 %result = add i32 %1, %1
123
124This last way of multiplying ``%X`` by 8 illustrates several important
125lexical features of LLVM:
126
127#. Comments are delimited with a '``;``' and go until the end of line.
128#. Unnamed temporaries are created when the result of a computation is
129 not assigned to a named value.
Sean Silva57f429f2013-05-20 23:31:12 +0000130#. Unnamed temporaries are numbered sequentially (using a per-function
131 incrementing counter, starting with 0).
Sean Silvaf722b002012-12-07 10:36:55 +0000132
133It also shows a convention that we follow in this document. When
134demonstrating instructions, we will follow an instruction with a comment
135that defines the type and name of value produced.
136
137High Level Structure
138====================
139
140Module Structure
141----------------
142
143LLVM programs are composed of ``Module``'s, each of which is a
144translation unit of the input programs. Each module consists of
145functions, global variables, and symbol table entries. Modules may be
146combined together with the LLVM linker, which merges function (and
147global variable) definitions, resolves forward declarations, and merges
148symbol table entries. Here is an example of the "hello world" module:
149
150.. code-block:: llvm
151
Michael Liao2faa0f32013-03-06 18:24:34 +0000152 ; Declare the string constant as a global constant.
153 @.str = private unnamed_addr constant [13 x i8] c"hello world\0A\00"
Sean Silvaf722b002012-12-07 10:36:55 +0000154
Michael Liao2faa0f32013-03-06 18:24:34 +0000155 ; External declaration of the puts function
156 declare i32 @puts(i8* nocapture) nounwind
Sean Silvaf722b002012-12-07 10:36:55 +0000157
158 ; Definition of main function
Michael Liao2faa0f32013-03-06 18:24:34 +0000159 define i32 @main() { ; i32()*
160 ; Convert [13 x i8]* to i8 *...
Sean Silvaf722b002012-12-07 10:36:55 +0000161 %cast210 = getelementptr [13 x i8]* @.str, i64 0, i64 0
162
Michael Liao2faa0f32013-03-06 18:24:34 +0000163 ; Call puts function to write out the string to stdout.
Sean Silvaf722b002012-12-07 10:36:55 +0000164 call i32 @puts(i8* %cast210)
Michael Liao2faa0f32013-03-06 18:24:34 +0000165 ret i32 0
Sean Silvaf722b002012-12-07 10:36:55 +0000166 }
167
168 ; Named metadata
169 !1 = metadata !{i32 42}
170 !foo = !{!1, null}
171
172This example is made up of a :ref:`global variable <globalvars>` named
173"``.str``", an external declaration of the "``puts``" function, a
174:ref:`function definition <functionstructure>` for "``main``" and
175:ref:`named metadata <namedmetadatastructure>` "``foo``".
176
177In general, a module is made up of a list of global values (where both
178functions and global variables are global values). Global values are
179represented by a pointer to a memory location (in this case, a pointer
180to an array of char, and a pointer to a function), and have one of the
181following :ref:`linkage types <linkage>`.
182
183.. _linkage:
184
185Linkage Types
186-------------
187
188All Global Variables and Functions have one of the following types of
189linkage:
190
191``private``
192 Global values with "``private``" linkage are only directly
193 accessible by objects in the current module. In particular, linking
194 code into a module with an private global value may cause the
195 private to be renamed as necessary to avoid collisions. Because the
196 symbol is private to the module, all references can be updated. This
197 doesn't show up in any symbol table in the object file.
198``linker_private``
199 Similar to ``private``, but the symbol is passed through the
200 assembler and evaluated by the linker. Unlike normal strong symbols,
201 they are removed by the linker from the final linked image
202 (executable or dynamic library).
203``linker_private_weak``
204 Similar to "``linker_private``", but the symbol is weak. Note that
205 ``linker_private_weak`` symbols are subject to coalescing by the
206 linker. The symbols are removed by the linker from the final linked
207 image (executable or dynamic library).
208``internal``
209 Similar to private, but the value shows as a local symbol
210 (``STB_LOCAL`` in the case of ELF) in the object file. This
211 corresponds to the notion of the '``static``' keyword in C.
212``available_externally``
213 Globals with "``available_externally``" linkage are never emitted
214 into the object file corresponding to the LLVM module. They exist to
215 allow inlining and other optimizations to take place given knowledge
216 of the definition of the global, which is known to be somewhere
217 outside the module. Globals with ``available_externally`` linkage
218 are allowed to be discarded at will, and are otherwise the same as
219 ``linkonce_odr``. This linkage type is only allowed on definitions,
220 not declarations.
221``linkonce``
222 Globals with "``linkonce``" linkage are merged with other globals of
223 the same name when linkage occurs. This can be used to implement
224 some forms of inline functions, templates, or other code which must
225 be generated in each translation unit that uses it, but where the
226 body may be overridden with a more definitive definition later.
227 Unreferenced ``linkonce`` globals are allowed to be discarded. Note
228 that ``linkonce`` linkage does not actually allow the optimizer to
229 inline the body of this function into callers because it doesn't
230 know if this definition of the function is the definitive definition
231 within the program or whether it will be overridden by a stronger
232 definition. To enable inlining and other optimizations, use
233 "``linkonce_odr``" linkage.
234``weak``
235 "``weak``" linkage has the same merging semantics as ``linkonce``
236 linkage, except that unreferenced globals with ``weak`` linkage may
237 not be discarded. This is used for globals that are declared "weak"
238 in C source code.
239``common``
240 "``common``" linkage is most similar to "``weak``" linkage, but they
241 are used for tentative definitions in C, such as "``int X;``" at
242 global scope. Symbols with "``common``" linkage are merged in the
243 same way as ``weak symbols``, and they may not be deleted if
244 unreferenced. ``common`` symbols may not have an explicit section,
245 must have a zero initializer, and may not be marked
246 ':ref:`constant <globalvars>`'. Functions and aliases may not have
247 common linkage.
248
249.. _linkage_appending:
250
251``appending``
252 "``appending``" linkage may only be applied to global variables of
253 pointer to array type. When two global variables with appending
254 linkage are linked together, the two global arrays are appended
255 together. This is the LLVM, typesafe, equivalent of having the
256 system linker append together "sections" with identical names when
257 .o files are linked.
258``extern_weak``
259 The semantics of this linkage follow the ELF object file model: the
260 symbol is weak until linked, if not linked, the symbol becomes null
261 instead of being an undefined reference.
262``linkonce_odr``, ``weak_odr``
263 Some languages allow differing globals to be merged, such as two
264 functions with different semantics. Other languages, such as
265 ``C++``, ensure that only equivalent globals are ever merged (the
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000266 "one definition rule" --- "ODR"). Such languages can use the
Sean Silvaf722b002012-12-07 10:36:55 +0000267 ``linkonce_odr`` and ``weak_odr`` linkage types to indicate that the
268 global will only be merged with equivalent globals. These linkage
269 types are otherwise the same as their non-``odr`` versions.
270``linkonce_odr_auto_hide``
271 Similar to "``linkonce_odr``", but nothing in the translation unit
272 takes the address of this definition. For instance, functions that
273 had an inline definition, but the compiler decided not to inline it.
274 ``linkonce_odr_auto_hide`` may have only ``default`` visibility. The
275 symbols are removed by the linker from the final linked image
276 (executable or dynamic library).
277``external``
278 If none of the above identifiers are used, the global is externally
279 visible, meaning that it participates in linkage and can be used to
280 resolve external symbol references.
281
282The next two types of linkage are targeted for Microsoft Windows
283platform only. They are designed to support importing (exporting)
284symbols from (to) DLLs (Dynamic Link Libraries).
285
286``dllimport``
287 "``dllimport``" linkage causes the compiler to reference a function
288 or variable via a global pointer to a pointer that is set up by the
289 DLL exporting the symbol. On Microsoft Windows targets, the pointer
290 name is formed by combining ``__imp_`` and the function or variable
291 name.
292``dllexport``
293 "``dllexport``" linkage causes the compiler to provide a global
294 pointer to a pointer in a DLL, so that it can be referenced with the
295 ``dllimport`` attribute. On Microsoft Windows targets, the pointer
296 name is formed by combining ``__imp_`` and the function or variable
297 name.
298
299For example, since the "``.LC0``" variable is defined to be internal, if
300another module defined a "``.LC0``" variable and was linked with this
301one, one of the two would be renamed, preventing a collision. Since
302"``main``" and "``puts``" are external (i.e., lacking any linkage
303declarations), they are accessible outside of the current module.
304
305It is illegal for a function *declaration* to have any linkage type
306other than ``external``, ``dllimport`` or ``extern_weak``.
307
308Aliases can have only ``external``, ``internal``, ``weak`` or
309``weak_odr`` linkages.
310
311.. _callingconv:
312
313Calling Conventions
314-------------------
315
316LLVM :ref:`functions <functionstructure>`, :ref:`calls <i_call>` and
317:ref:`invokes <i_invoke>` can all have an optional calling convention
318specified for the call. The calling convention of any pair of dynamic
319caller/callee must match, or the behavior of the program is undefined.
320The following calling conventions are supported by LLVM, and more may be
321added in the future:
322
323"``ccc``" - The C calling convention
324 This calling convention (the default if no other calling convention
325 is specified) matches the target C calling conventions. This calling
326 convention supports varargs function calls and tolerates some
327 mismatch in the declared prototype and implemented declaration of
328 the function (as does normal C).
329"``fastcc``" - The fast calling convention
330 This calling convention attempts to make calls as fast as possible
331 (e.g. by passing things in registers). This calling convention
332 allows the target to use whatever tricks it wants to produce fast
333 code for the target, without having to conform to an externally
334 specified ABI (Application Binary Interface). `Tail calls can only
335 be optimized when this, the GHC or the HiPE convention is
336 used. <CodeGenerator.html#id80>`_ This calling convention does not
337 support varargs and requires the prototype of all callees to exactly
338 match the prototype of the function definition.
339"``coldcc``" - The cold calling convention
340 This calling convention attempts to make code in the caller as
341 efficient as possible under the assumption that the call is not
342 commonly executed. As such, these calls often preserve all registers
343 so that the call does not break any live ranges in the caller side.
344 This calling convention does not support varargs and requires the
345 prototype of all callees to exactly match the prototype of the
346 function definition.
347"``cc 10``" - GHC convention
348 This calling convention has been implemented specifically for use by
349 the `Glasgow Haskell Compiler (GHC) <http://www.haskell.org/ghc>`_.
350 It passes everything in registers, going to extremes to achieve this
351 by disabling callee save registers. This calling convention should
352 not be used lightly but only for specific situations such as an
353 alternative to the *register pinning* performance technique often
354 used when implementing functional programming languages. At the
355 moment only X86 supports this convention and it has the following
356 limitations:
357
358 - On *X86-32* only supports up to 4 bit type parameters. No
359 floating point types are supported.
360 - On *X86-64* only supports up to 10 bit type parameters and 6
361 floating point parameters.
362
363 This calling convention supports `tail call
364 optimization <CodeGenerator.html#id80>`_ but requires both the
365 caller and callee are using it.
366"``cc 11``" - The HiPE calling convention
367 This calling convention has been implemented specifically for use by
368 the `High-Performance Erlang
369 (HiPE) <http://www.it.uu.se/research/group/hipe/>`_ compiler, *the*
370 native code compiler of the `Ericsson's Open Source Erlang/OTP
371 system <http://www.erlang.org/download.shtml>`_. It uses more
372 registers for argument passing than the ordinary C calling
373 convention and defines no callee-saved registers. The calling
374 convention properly supports `tail call
375 optimization <CodeGenerator.html#id80>`_ but requires that both the
376 caller and the callee use it. It uses a *register pinning*
377 mechanism, similar to GHC's convention, for keeping frequently
378 accessed runtime components pinned to specific hardware registers.
379 At the moment only X86 supports this convention (both 32 and 64
380 bit).
381"``cc <n>``" - Numbered convention
382 Any calling convention may be specified by number, allowing
383 target-specific calling conventions to be used. Target specific
384 calling conventions start at 64.
385
386More calling conventions can be added/defined on an as-needed basis, to
387support Pascal conventions or any other well-known target-independent
388convention.
389
390Visibility Styles
391-----------------
392
393All Global Variables and Functions have one of the following visibility
394styles:
395
396"``default``" - Default style
397 On targets that use the ELF object file format, default visibility
398 means that the declaration is visible to other modules and, in
399 shared libraries, means that the declared entity may be overridden.
400 On Darwin, default visibility means that the declaration is visible
401 to other modules. Default visibility corresponds to "external
402 linkage" in the language.
403"``hidden``" - Hidden style
404 Two declarations of an object with hidden visibility refer to the
405 same object if they are in the same shared object. Usually, hidden
406 visibility indicates that the symbol will not be placed into the
407 dynamic symbol table, so no other module (executable or shared
408 library) can reference it directly.
409"``protected``" - Protected style
410 On ELF, protected visibility indicates that the symbol will be
411 placed in the dynamic symbol table, but that references within the
412 defining module will bind to the local symbol. That is, the symbol
413 cannot be overridden by another module.
414
415Named Types
416-----------
417
418LLVM IR allows you to specify name aliases for certain types. This can
419make it easier to read the IR and make the IR more condensed
420(particularly when recursive types are involved). An example of a name
421specification is:
422
423.. code-block:: llvm
424
425 %mytype = type { %mytype*, i32 }
426
427You may give a name to any :ref:`type <typesystem>` except
428":ref:`void <t_void>`". Type name aliases may be used anywhere a type is
429expected with the syntax "%mytype".
430
431Note that type names are aliases for the structural type that they
432indicate, and that you can therefore specify multiple names for the same
433type. This often leads to confusing behavior when dumping out a .ll
434file. Since LLVM IR uses structural typing, the name is not part of the
435type. When printing out LLVM IR, the printer will pick *one name* to
436render all types of a particular shape. This means that if you have code
437where two different source types end up having the same LLVM type, that
438the dumper will sometimes print the "wrong" or unexpected type. This is
439an important design point and isn't going to change.
440
441.. _globalvars:
442
443Global Variables
444----------------
445
446Global variables define regions of memory allocated at compilation time
447instead of run-time. Global variables may optionally be initialized, may
448have an explicit section to be placed in, and may have an optional
449explicit alignment specified.
450
451A variable may be defined as ``thread_local``, which means that it will
452not be shared by threads (each thread will have a separated copy of the
453variable). Not all targets support thread-local variables. Optionally, a
454TLS model may be specified:
455
456``localdynamic``
457 For variables that are only used within the current shared library.
458``initialexec``
459 For variables in modules that will not be loaded dynamically.
460``localexec``
461 For variables defined in the executable and only used within it.
462
463The models correspond to the ELF TLS models; see `ELF Handling For
464Thread-Local Storage <http://people.redhat.com/drepper/tls.pdf>`_ for
465more information on under which circumstances the different models may
466be used. The target may choose a different TLS model if the specified
467model is not supported, or if a better choice of model can be made.
468
Michael Gottesmanf5735882013-01-31 05:48:48 +0000469A variable may be defined as a global ``constant``, which indicates that
Sean Silvaf722b002012-12-07 10:36:55 +0000470the contents of the variable will **never** be modified (enabling better
471optimization, allowing the global data to be placed in the read-only
472section of an executable, etc). Note that variables that need runtime
Michael Gottesman34804872013-01-31 05:44:04 +0000473initialization cannot be marked ``constant`` as there is a store to the
Sean Silvaf722b002012-12-07 10:36:55 +0000474variable.
475
476LLVM explicitly allows *declarations* of global variables to be marked
477constant, even if the final definition of the global is not. This
478capability can be used to enable slightly better optimization of the
479program, but requires the language definition to guarantee that
480optimizations based on the 'constantness' are valid for the translation
481units that do not include the definition.
482
483As SSA values, global variables define pointer values that are in scope
484(i.e. they dominate) all basic blocks in the program. Global variables
485always define a pointer to their "content" type because they describe a
486region of memory, and all memory objects in LLVM are accessed through
487pointers.
488
489Global variables can be marked with ``unnamed_addr`` which indicates
490that the address is not significant, only the content. Constants marked
491like this can be merged with other constants if they have the same
492initializer. Note that a constant with significant address *can* be
493merged with a ``unnamed_addr`` constant, the result being a constant
494whose address is significant.
495
496A global variable may be declared to reside in a target-specific
497numbered address space. For targets that support them, address spaces
498may affect how optimizations are performed and/or what target
499instructions are used to access the variable. The default address space
500is zero. The address space qualifier must precede any other attributes.
501
502LLVM allows an explicit section to be specified for globals. If the
503target supports it, it will emit globals to the section specified.
504
Michael Gottesman6c355ee2013-02-04 03:22:00 +0000505By default, global initializers are optimized by assuming that global
Michael Gottesman42834992013-02-03 09:57:15 +0000506variables defined within the module are not modified from their
507initial values before the start of the global initializer. This is
508true even for variables potentially accessible from outside the
509module, including those with external linkage or appearing in
Michael Gottesmanfa987f02013-02-03 09:57:18 +0000510``@llvm.used``. This assumption may be suppressed by marking the
511variable with ``externally_initialized``.
Michael Gottesman42834992013-02-03 09:57:15 +0000512
Sean Silvaf722b002012-12-07 10:36:55 +0000513An explicit alignment may be specified for a global, which must be a
514power of 2. If not present, or if the alignment is set to zero, the
515alignment of the global is set by the target to whatever it feels
516convenient. If an explicit alignment is specified, the global is forced
517to have exactly that alignment. Targets and optimizers are not allowed
518to over-align the global if the global has an assigned section. In this
519case, the extra alignment could be observable: for example, code could
520assume that the globals are densely packed in their section and try to
521iterate over them as an array, alignment padding would break this
522iteration.
523
524For example, the following defines a global in a numbered address space
525with an initializer, section, and alignment:
526
527.. code-block:: llvm
528
529 @G = addrspace(5) constant float 1.0, section "foo", align 4
530
531The following example defines a thread-local global with the
532``initialexec`` TLS model:
533
534.. code-block:: llvm
535
536 @G = thread_local(initialexec) global i32 0, align 4
537
538.. _functionstructure:
539
540Functions
541---------
542
543LLVM function definitions consist of the "``define``" keyword, an
544optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
545style <visibility>`, an optional :ref:`calling convention <callingconv>`,
546an optional ``unnamed_addr`` attribute, a return type, an optional
547:ref:`parameter attribute <paramattrs>` for the return type, a function
548name, a (possibly empty) argument list (each with optional :ref:`parameter
549attributes <paramattrs>`), optional :ref:`function attributes <fnattrs>`,
550an optional section, an optional alignment, an optional :ref:`garbage
551collector name <gc>`, an opening curly brace, a list of basic blocks,
552and a closing curly brace.
553
554LLVM function declarations consist of the "``declare``" keyword, an
555optional :ref:`linkage type <linkage>`, an optional :ref:`visibility
556style <visibility>`, an optional :ref:`calling convention <callingconv>`,
557an optional ``unnamed_addr`` attribute, a return type, an optional
558:ref:`parameter attribute <paramattrs>` for the return type, a function
559name, a possibly empty list of arguments, an optional alignment, and an
560optional :ref:`garbage collector name <gc>`.
561
562A function definition contains a list of basic blocks, forming the CFG
563(Control Flow Graph) for the function. Each basic block may optionally
564start with a label (giving the basic block a symbol table entry),
565contains a list of instructions, and ends with a
566:ref:`terminator <terminators>` instruction (such as a branch or function
Sean Silva57f429f2013-05-20 23:31:12 +0000567return). If explicit label is not provided, a block is assigned an
568implicit numbered label, using a next value from the same counter as used
569for unnamed temporaries (:ref:`see above<identifiers>`). For example, if a
570function entry block does not have explicit label, it will be assigned
571label "%0", then first unnamed temporary in that block will be "%1", etc.
Sean Silvaf722b002012-12-07 10:36:55 +0000572
573The first basic block in a function is special in two ways: it is
574immediately executed on entrance to the function, and it is not allowed
575to have predecessor basic blocks (i.e. there can not be any branches to
576the entry block of a function). Because the block can have no
577predecessors, it also cannot have any :ref:`PHI nodes <i_phi>`.
578
579LLVM allows an explicit section to be specified for functions. If the
580target supports it, it will emit functions to the section specified.
581
582An explicit alignment may be specified for a function. If not present,
583or if the alignment is set to zero, the alignment of the function is set
584by the target to whatever it feels convenient. If an explicit alignment
585is specified, the function is forced to have at least that much
586alignment. All alignments must be a power of 2.
587
588If the ``unnamed_addr`` attribute is given, the address is know to not
589be significant and two identical functions can be merged.
590
591Syntax::
592
593 define [linkage] [visibility]
594 [cconv] [ret attrs]
595 <ResultType> @<FunctionName> ([argument list])
596 [fn Attrs] [section "name"] [align N]
597 [gc] { ... }
598
599Aliases
600-------
601
602Aliases act as "second name" for the aliasee value (which can be either
603function, global variable, another alias or bitcast of global value).
604Aliases may have an optional :ref:`linkage type <linkage>`, and an optional
605:ref:`visibility style <visibility>`.
606
607Syntax::
608
609 @<Name> = alias [Linkage] [Visibility] <AliaseeTy> @<Aliasee>
610
611.. _namedmetadatastructure:
612
613Named Metadata
614--------------
615
616Named metadata is a collection of metadata. :ref:`Metadata
617nodes <metadata>` (but not metadata strings) are the only valid
618operands for a named metadata.
619
620Syntax::
621
622 ; Some unnamed metadata nodes, which are referenced by the named metadata.
623 !0 = metadata !{metadata !"zero"}
624 !1 = metadata !{metadata !"one"}
625 !2 = metadata !{metadata !"two"}
626 ; A named metadata.
627 !name = !{!0, !1, !2}
628
629.. _paramattrs:
630
631Parameter Attributes
632--------------------
633
634The return type and each parameter of a function type may have a set of
635*parameter attributes* associated with them. Parameter attributes are
636used to communicate additional information about the result or
637parameters of a function. Parameter attributes are considered to be part
638of the function, not of the function type, so functions with different
639parameter attributes can have the same function type.
640
641Parameter attributes are simple keywords that follow the type specified.
642If multiple parameter attributes are needed, they are space separated.
643For example:
644
645.. code-block:: llvm
646
647 declare i32 @printf(i8* noalias nocapture, ...)
648 declare i32 @atoi(i8 zeroext)
649 declare signext i8 @returns_signed_char()
650
651Note that any attributes for the function result (``nounwind``,
652``readonly``) come immediately after the argument list.
653
654Currently, only the following parameter attributes are defined:
655
656``zeroext``
657 This indicates to the code generator that the parameter or return
658 value should be zero-extended to the extent required by the target's
659 ABI (which is usually 32-bits, but is 8-bits for a i1 on x86-64) by
660 the caller (for a parameter) or the callee (for a return value).
661``signext``
662 This indicates to the code generator that the parameter or return
663 value should be sign-extended to the extent required by the target's
664 ABI (which is usually 32-bits) by the caller (for a parameter) or
665 the callee (for a return value).
666``inreg``
667 This indicates that this parameter or return value should be treated
668 in a special target-dependent fashion during while emitting code for
669 a function call or return (usually, by putting it in a register as
670 opposed to memory, though some targets use it to distinguish between
671 two different kinds of registers). Use of this attribute is
672 target-specific.
673``byval``
674 This indicates that the pointer parameter should really be passed by
675 value to the function. The attribute implies that a hidden copy of
676 the pointee is made between the caller and the callee, so the callee
677 is unable to modify the value in the caller. This attribute is only
678 valid on LLVM pointer arguments. It is generally used to pass
679 structs and arrays by value, but is also valid on pointers to
680 scalars. The copy is considered to belong to the caller not the
681 callee (for example, ``readonly`` functions should not write to
682 ``byval`` parameters). This is not a valid attribute for return
683 values.
684
685 The byval attribute also supports specifying an alignment with the
686 align attribute. It indicates the alignment of the stack slot to
687 form and the known alignment of the pointer specified to the call
688 site. If the alignment is not specified, then the code generator
689 makes a target-specific assumption.
690
691``sret``
692 This indicates that the pointer parameter specifies the address of a
693 structure that is the return value of the function in the source
694 program. This pointer must be guaranteed by the caller to be valid:
Eli Bendersky98202c02013-01-23 22:05:19 +0000695 loads and stores to the structure may be assumed by the callee
Sean Silvaf722b002012-12-07 10:36:55 +0000696 not to trap and to be properly aligned. This may only be applied to
697 the first parameter. This is not a valid attribute for return
698 values.
699``noalias``
700 This indicates that pointer values `*based* <pointeraliasing>` on
701 the argument or return value do not alias pointer values which are
702 not *based* on it, ignoring certain "irrelevant" dependencies. For a
703 call to the parent function, dependencies between memory references
704 from before or after the call and from those during the call are
705 "irrelevant" to the ``noalias`` keyword for the arguments and return
706 value used in that call. The caller shares the responsibility with
707 the callee for ensuring that these requirements are met. For further
708 details, please see the discussion of the NoAlias response in `alias
709 analysis <AliasAnalysis.html#MustMayNo>`_.
710
711 Note that this definition of ``noalias`` is intentionally similar
712 to the definition of ``restrict`` in C99 for function arguments,
713 though it is slightly weaker.
714
715 For function return values, C99's ``restrict`` is not meaningful,
716 while LLVM's ``noalias`` is.
717``nocapture``
718 This indicates that the callee does not make any copies of the
719 pointer that outlive the callee itself. This is not a valid
720 attribute for return values.
721
722.. _nest:
723
724``nest``
725 This indicates that the pointer parameter can be excised using the
726 :ref:`trampoline intrinsics <int_trampoline>`. This is not a valid
Stephen Lin456ca042013-04-20 05:14:40 +0000727 attribute for return values and can only be applied to one parameter.
728
729``returned``
730 This indicates that the value of the function always returns the value
731 of the parameter as its return value. This is an optimization hint to
732 the code generator when generating the caller, allowing tail call
733 optimization and omission of register saves and restores in some cases;
734 it is not checked or enforced when generating the callee. The parameter
735 and the function return type must be valid operands for the
736 :ref:`bitcast instruction <i_bitcast>`. This is not a valid attribute for
737 return values and can only be applied to one parameter.
Sean Silvaf722b002012-12-07 10:36:55 +0000738
739.. _gc:
740
741Garbage Collector Names
742-----------------------
743
744Each function may specify a garbage collector name, which is simply a
745string:
746
747.. code-block:: llvm
748
749 define void @f() gc "name" { ... }
750
751The compiler declares the supported values of *name*. Specifying a
752collector which will cause the compiler to alter its output in order to
753support the named garbage collection algorithm.
754
Bill Wendling95ce4c22013-02-06 06:52:58 +0000755.. _attrgrp:
756
757Attribute Groups
758----------------
759
760Attribute groups are groups of attributes that are referenced by objects within
761the IR. They are important for keeping ``.ll`` files readable, because a lot of
762functions will use the same set of attributes. In the degenerative case of a
763``.ll`` file that corresponds to a single ``.c`` file, the single attribute
764group will capture the important command line flags used to build that file.
765
766An attribute group is a module-level object. To use an attribute group, an
767object references the attribute group's ID (e.g. ``#37``). An object may refer
768to more than one attribute group. In that situation, the attributes from the
769different groups are merged.
770
771Here is an example of attribute groups for a function that should always be
772inlined, has a stack alignment of 4, and which shouldn't use SSE instructions:
773
774.. code-block:: llvm
775
776 ; Target-independent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000777 attributes #0 = { alwaysinline alignstack=4 }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000778
779 ; Target-dependent attributes:
Eli Benderskyf8416092013-04-18 16:11:44 +0000780 attributes #1 = { "no-sse" }
Bill Wendling95ce4c22013-02-06 06:52:58 +0000781
782 ; Function @f has attributes: alwaysinline, alignstack=4, and "no-sse".
783 define void @f() #0 #1 { ... }
784
Sean Silvaf722b002012-12-07 10:36:55 +0000785.. _fnattrs:
786
787Function Attributes
788-------------------
789
790Function attributes are set to communicate additional information about
791a function. Function attributes are considered to be part of the
792function, not of the function type, so functions with different function
793attributes can have the same function type.
794
795Function attributes are simple keywords that follow the type specified.
796If multiple attributes are needed, they are space separated. For
797example:
798
799.. code-block:: llvm
800
801 define void @f() noinline { ... }
802 define void @f() alwaysinline { ... }
803 define void @f() alwaysinline optsize { ... }
804 define void @f() optsize { ... }
805
Sean Silvaf722b002012-12-07 10:36:55 +0000806``alignstack(<n>)``
807 This attribute indicates that, when emitting the prologue and
808 epilogue, the backend should forcibly align the stack pointer.
809 Specify the desired alignment, which must be a power of two, in
810 parentheses.
811``alwaysinline``
812 This attribute indicates that the inliner should attempt to inline
813 this function into callers whenever possible, ignoring any active
814 inlining size threshold for this caller.
Diego Novillo77226a02013-05-24 12:26:52 +0000815``cold``
816 This attribute indicates that this function is rarely called. When
817 computing edge weights, basic blocks post-dominated by a cold
818 function call are also considered to be cold; and, thus, given low
819 weight.
Sean Silvaf722b002012-12-07 10:36:55 +0000820``nonlazybind``
821 This attribute suppresses lazy symbol binding for the function. This
822 may make calls to the function faster, at the cost of extra program
823 startup time if the function is not called during program startup.
824``inlinehint``
825 This attribute indicates that the source code contained a hint that
826 inlining this function is desirable (such as the "inline" keyword in
827 C/C++). It is just a hint; it imposes no requirements on the
828 inliner.
829``naked``
830 This attribute disables prologue / epilogue emission for the
831 function. This can have very system-specific consequences.
Eli Benderskyf8416092013-04-18 16:11:44 +0000832``nobuiltin``
833 This indicates that the callee function at a call site is not
834 recognized as a built-in function. LLVM will retain the original call
835 and not replace it with equivalent code based on the semantics of the
836 built-in function. This is only valid at call sites, not on function
837 declarations or definitions.
Bill Wendlingbe5d7472013-02-06 06:22:58 +0000838``noduplicate``
839 This attribute indicates that calls to the function cannot be
840 duplicated. A call to a ``noduplicate`` function may be moved
841 within its parent function, but may not be duplicated within
842 its parent function.
843
844 A function containing a ``noduplicate`` call may still
845 be an inlining candidate, provided that the call is not
846 duplicated by inlining. That implies that the function has
847 internal linkage and only has one call site, so the original
848 call is dead after inlining.
Sean Silvaf722b002012-12-07 10:36:55 +0000849``noimplicitfloat``
850 This attributes disables implicit floating point instructions.
851``noinline``
852 This attribute indicates that the inliner should never inline this
853 function in any situation. This attribute may not be used together
854 with the ``alwaysinline`` attribute.
855``noredzone``
856 This attribute indicates that the code generator should not use a
857 red zone, even if the target-specific ABI normally permits it.
858``noreturn``
859 This function attribute indicates that the function never returns
860 normally. This produces undefined behavior at runtime if the
861 function ever does dynamically return.
862``nounwind``
863 This function attribute indicates that the function never returns
864 with an unwind or exceptional control flow. If the function does
865 unwind, its runtime behavior is undefined.
866``optsize``
867 This attribute suggests that optimization passes and code generator
868 passes make choices that keep the code size of this function low,
869 and otherwise do optimizations specifically to reduce code size.
870``readnone``
871 This attribute indicates that the function computes its result (or
872 decides to unwind an exception) based strictly on its arguments,
873 without dereferencing any pointer arguments or otherwise accessing
874 any mutable state (e.g. memory, control registers, etc) visible to
875 caller functions. It does not write through any pointer arguments
876 (including ``byval`` arguments) and never changes any state visible
877 to callers. This means that it cannot unwind exceptions by calling
878 the ``C++`` exception throwing methods.
879``readonly``
880 This attribute indicates that the function does not write through
881 any pointer arguments (including ``byval`` arguments) or otherwise
882 modify any state (e.g. memory, control registers, etc) visible to
883 caller functions. It may dereference pointer arguments and read
884 state that may be set in the caller. A readonly function always
885 returns the same value (or unwinds an exception identically) when
886 called with the same set of arguments and global state. It cannot
887 unwind an exception by calling the ``C++`` exception throwing
888 methods.
889``returns_twice``
890 This attribute indicates that this function can return twice. The C
891 ``setjmp`` is an example of such a function. The compiler disables
892 some optimizations (like tail calls) in the caller of these
893 functions.
Kostya Serebryany8eec41f2013-02-26 06:58:09 +0000894``sanitize_address``
895 This attribute indicates that AddressSanitizer checks
896 (dynamic address safety analysis) are enabled for this function.
897``sanitize_memory``
898 This attribute indicates that MemorySanitizer checks (dynamic detection
899 of accesses to uninitialized memory) are enabled for this function.
900``sanitize_thread``
901 This attribute indicates that ThreadSanitizer checks
902 (dynamic thread safety analysis) are enabled for this function.
Sean Silvaf722b002012-12-07 10:36:55 +0000903``ssp``
904 This attribute indicates that the function should emit a stack
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +0000905 smashing protector. It is in the form of a "canary" --- a random value
Sean Silvaf722b002012-12-07 10:36:55 +0000906 placed on the stack before the local variables that's checked upon
907 return from the function to see if it has been overwritten. A
908 heuristic is used to determine if a function needs stack protectors
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000909 or not. The heuristic used will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000910
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000911 - Character arrays larger than ``ssp-buffer-size`` (default 8).
912 - Aggregates containing character arrays larger than ``ssp-buffer-size``.
913 - Calls to alloca() with variable sizes or constant sizes greater than
914 ``ssp-buffer-size``.
Sean Silvaf722b002012-12-07 10:36:55 +0000915
916 If a function that has an ``ssp`` attribute is inlined into a
917 function that doesn't have an ``ssp`` attribute, then the resulting
918 function will have an ``ssp`` attribute.
919``sspreq``
920 This attribute indicates that the function should *always* emit a
921 stack smashing protector. This overrides the ``ssp`` function
922 attribute.
923
924 If a function that has an ``sspreq`` attribute is inlined into a
925 function that doesn't have an ``sspreq`` attribute or which has an
Bill Wendling114baee2013-01-23 06:41:41 +0000926 ``ssp`` or ``sspstrong`` attribute, then the resulting function will have
927 an ``sspreq`` attribute.
928``sspstrong``
929 This attribute indicates that the function should emit a stack smashing
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000930 protector. This attribute causes a strong heuristic to be used when
931 determining if a function needs stack protectors. The strong heuristic
932 will enable protectors for functions with:
Dmitri Gribenkod8acb282013-01-29 23:14:41 +0000933
Bill Wendlinge4957fb2013-01-23 06:43:53 +0000934 - Arrays of any size and type
935 - Aggregates containing an array of any size and type.
936 - Calls to alloca().
937 - Local variables that have had their address taken.
938
939 This overrides the ``ssp`` function attribute.
Bill Wendling114baee2013-01-23 06:41:41 +0000940
941 If a function that has an ``sspstrong`` attribute is inlined into a
942 function that doesn't have an ``sspstrong`` attribute, then the
943 resulting function will have an ``sspstrong`` attribute.
Sean Silvaf722b002012-12-07 10:36:55 +0000944``uwtable``
945 This attribute indicates that the ABI being targeted requires that
946 an unwind table entry be produce for this function even if we can
947 show that no exceptions passes by it. This is normally the case for
948 the ELF x86-64 abi, but it can be disabled for some compilation
949 units.
Sean Silvaf722b002012-12-07 10:36:55 +0000950
951.. _moduleasm:
952
953Module-Level Inline Assembly
954----------------------------
955
956Modules may contain "module-level inline asm" blocks, which corresponds
957to the GCC "file scope inline asm" blocks. These blocks are internally
958concatenated by LLVM and treated as a single unit, but may be separated
959in the ``.ll`` file if desired. The syntax is very simple:
960
961.. code-block:: llvm
962
963 module asm "inline asm code goes here"
964 module asm "more can go here"
965
966The strings can contain any character by escaping non-printable
967characters. The escape sequence used is simply "\\xx" where "xx" is the
968two digit hex code for the number.
969
970The inline asm code is simply printed to the machine code .s file when
971assembly code is generated.
972
973Data Layout
974-----------
975
976A module may specify a target specific data layout string that specifies
977how data is to be laid out in memory. The syntax for the data layout is
978simply:
979
980.. code-block:: llvm
981
982 target datalayout = "layout specification"
983
984The *layout specification* consists of a list of specifications
985separated by the minus sign character ('-'). Each specification starts
986with a letter and may include other information after the letter to
987define some aspect of the data layout. The specifications accepted are
988as follows:
989
990``E``
991 Specifies that the target lays out data in big-endian form. That is,
992 the bits with the most significance have the lowest address
993 location.
994``e``
995 Specifies that the target lays out data in little-endian form. That
996 is, the bits with the least significance have the lowest address
997 location.
998``S<size>``
999 Specifies the natural alignment of the stack in bits. Alignment
1000 promotion of stack variables is limited to the natural stack
1001 alignment to avoid dynamic stack realignment. The stack alignment
1002 must be a multiple of 8-bits. If omitted, the natural stack
1003 alignment defaults to "unspecified", which does not prevent any
1004 alignment promotions.
1005``p[n]:<size>:<abi>:<pref>``
1006 This specifies the *size* of a pointer and its ``<abi>`` and
1007 ``<pref>``\erred alignments for address space ``n``. All sizes are in
1008 bits. Specifying the ``<pref>`` alignment is optional. If omitted, the
1009 preceding ``:`` should be omitted too. The address space, ``n`` is
1010 optional, and if not specified, denotes the default address space 0.
1011 The value of ``n`` must be in the range [1,2^23).
1012``i<size>:<abi>:<pref>``
1013 This specifies the alignment for an integer type of a given bit
1014 ``<size>``. The value of ``<size>`` must be in the range [1,2^23).
1015``v<size>:<abi>:<pref>``
1016 This specifies the alignment for a vector type of a given bit
1017 ``<size>``.
1018``f<size>:<abi>:<pref>``
1019 This specifies the alignment for a floating point type of a given bit
1020 ``<size>``. Only values of ``<size>`` that are supported by the target
1021 will work. 32 (float) and 64 (double) are supported on all targets; 80
1022 or 128 (different flavors of long double) are also supported on some
1023 targets.
1024``a<size>:<abi>:<pref>``
1025 This specifies the alignment for an aggregate type of a given bit
1026 ``<size>``.
1027``s<size>:<abi>:<pref>``
1028 This specifies the alignment for a stack object of a given bit
1029 ``<size>``.
1030``n<size1>:<size2>:<size3>...``
1031 This specifies a set of native integer widths for the target CPU in
1032 bits. For example, it might contain ``n32`` for 32-bit PowerPC,
1033 ``n32:64`` for PowerPC 64, or ``n8:16:32:64`` for X86-64. Elements of
1034 this set are considered to support most general arithmetic operations
1035 efficiently.
1036
1037When constructing the data layout for a given target, LLVM starts with a
1038default set of specifications which are then (possibly) overridden by
1039the specifications in the ``datalayout`` keyword. The default
1040specifications are given in this list:
1041
1042- ``E`` - big endian
1043- ``p:64:64:64`` - 64-bit pointers with 64-bit alignment
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001044- ``S0`` - natural stack alignment is unspecified
Sean Silvaf722b002012-12-07 10:36:55 +00001045- ``i1:8:8`` - i1 is 8-bit (byte) aligned
1046- ``i8:8:8`` - i8 is 8-bit (byte) aligned
1047- ``i16:16:16`` - i16 is 16-bit aligned
1048- ``i32:32:32`` - i32 is 32-bit aligned
1049- ``i64:32:64`` - i64 has ABI alignment of 32-bits but preferred
1050 alignment of 64-bits
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001051- ``f16:16:16`` - half is 16-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001052- ``f32:32:32`` - float is 32-bit aligned
1053- ``f64:64:64`` - double is 64-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001054- ``f128:128:128`` - quad is 128-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001055- ``v64:64:64`` - 64-bit vector is 64-bit aligned
1056- ``v128:128:128`` - 128-bit vector is 128-bit aligned
Patrik Hagglund3b5f0b02013-01-30 09:02:06 +00001057- ``a0:0:64`` - aggregates are 64-bit aligned
Sean Silvaf722b002012-12-07 10:36:55 +00001058
1059When LLVM is determining the alignment for a given type, it uses the
1060following rules:
1061
1062#. If the type sought is an exact match for one of the specifications,
1063 that specification is used.
1064#. If no match is found, and the type sought is an integer type, then
1065 the smallest integer type that is larger than the bitwidth of the
1066 sought type is used. If none of the specifications are larger than
1067 the bitwidth then the largest integer type is used. For example,
1068 given the default specifications above, the i7 type will use the
1069 alignment of i8 (next largest) while both i65 and i256 will use the
1070 alignment of i64 (largest specified).
1071#. If no match is found, and the type sought is a vector type, then the
1072 largest vector type that is smaller than the sought vector type will
1073 be used as a fall back. This happens because <128 x double> can be
1074 implemented in terms of 64 <2 x double>, for example.
1075
1076The function of the data layout string may not be what you expect.
1077Notably, this is not a specification from the frontend of what alignment
1078the code generator should use.
1079
1080Instead, if specified, the target data layout is required to match what
1081the ultimate *code generator* expects. This string is used by the
1082mid-level optimizers to improve code, and this only works if it matches
1083what the ultimate code generator uses. If you would like to generate IR
1084that does not embed this target-specific detail into the IR, then you
1085don't have to specify the string. This will disable some optimizations
1086that require precise layout information, but this also prevents those
1087optimizations from introducing target specificity into the IR.
1088
1089.. _pointeraliasing:
1090
1091Pointer Aliasing Rules
1092----------------------
1093
1094Any memory access must be done through a pointer value associated with
1095an address range of the memory access, otherwise the behavior is
1096undefined. Pointer values are associated with address ranges according
1097to the following rules:
1098
1099- A pointer value is associated with the addresses associated with any
1100 value it is *based* on.
1101- An address of a global variable is associated with the address range
1102 of the variable's storage.
1103- The result value of an allocation instruction is associated with the
1104 address range of the allocated storage.
1105- A null pointer in the default address-space is associated with no
1106 address.
1107- An integer constant other than zero or a pointer value returned from
1108 a function not defined within LLVM may be associated with address
1109 ranges allocated through mechanisms other than those provided by
1110 LLVM. Such ranges shall not overlap with any ranges of addresses
1111 allocated by mechanisms provided by LLVM.
1112
1113A pointer value is *based* on another pointer value according to the
1114following rules:
1115
1116- A pointer value formed from a ``getelementptr`` operation is *based*
1117 on the first operand of the ``getelementptr``.
1118- The result value of a ``bitcast`` is *based* on the operand of the
1119 ``bitcast``.
1120- A pointer value formed by an ``inttoptr`` is *based* on all pointer
1121 values that contribute (directly or indirectly) to the computation of
1122 the pointer's value.
1123- The "*based* on" relationship is transitive.
1124
1125Note that this definition of *"based"* is intentionally similar to the
1126definition of *"based"* in C99, though it is slightly weaker.
1127
1128LLVM IR does not associate types with memory. The result type of a
1129``load`` merely indicates the size and alignment of the memory from
1130which to load, as well as the interpretation of the value. The first
1131operand type of a ``store`` similarly only indicates the size and
1132alignment of the store.
1133
1134Consequently, type-based alias analysis, aka TBAA, aka
1135``-fstrict-aliasing``, is not applicable to general unadorned LLVM IR.
1136:ref:`Metadata <metadata>` may be used to encode additional information
1137which specialized optimization passes may use to implement type-based
1138alias analysis.
1139
1140.. _volatile:
1141
1142Volatile Memory Accesses
1143------------------------
1144
1145Certain memory accesses, such as :ref:`load <i_load>`'s,
1146:ref:`store <i_store>`'s, and :ref:`llvm.memcpy <int_memcpy>`'s may be
1147marked ``volatile``. The optimizers must not change the number of
1148volatile operations or change their order of execution relative to other
1149volatile operations. The optimizers *may* change the order of volatile
1150operations relative to non-volatile operations. This is not Java's
1151"volatile" and has no cross-thread synchronization behavior.
1152
Andrew Trick9a6dd022013-01-30 21:19:35 +00001153IR-level volatile loads and stores cannot safely be optimized into
1154llvm.memcpy or llvm.memmove intrinsics even when those intrinsics are
1155flagged volatile. Likewise, the backend should never split or merge
1156target-legal volatile load/store instructions.
1157
Andrew Trick946317d2013-01-31 00:49:39 +00001158.. admonition:: Rationale
1159
1160 Platforms may rely on volatile loads and stores of natively supported
1161 data width to be executed as single instruction. For example, in C
1162 this holds for an l-value of volatile primitive type with native
1163 hardware support, but not necessarily for aggregate types. The
1164 frontend upholds these expectations, which are intentionally
1165 unspecified in the IR. The rules above ensure that IR transformation
1166 do not violate the frontend's contract with the language.
1167
Sean Silvaf722b002012-12-07 10:36:55 +00001168.. _memmodel:
1169
1170Memory Model for Concurrent Operations
1171--------------------------------------
1172
1173The LLVM IR does not define any way to start parallel threads of
1174execution or to register signal handlers. Nonetheless, there are
1175platform-specific ways to create them, and we define LLVM IR's behavior
1176in their presence. This model is inspired by the C++0x memory model.
1177
1178For a more informal introduction to this model, see the :doc:`Atomics`.
1179
1180We define a *happens-before* partial order as the least partial order
1181that
1182
1183- Is a superset of single-thread program order, and
1184- When a *synchronizes-with* ``b``, includes an edge from ``a`` to
1185 ``b``. *Synchronizes-with* pairs are introduced by platform-specific
1186 techniques, like pthread locks, thread creation, thread joining,
1187 etc., and by atomic instructions. (See also :ref:`Atomic Memory Ordering
1188 Constraints <ordering>`).
1189
1190Note that program order does not introduce *happens-before* edges
1191between a thread and signals executing inside that thread.
1192
1193Every (defined) read operation (load instructions, memcpy, atomic
1194loads/read-modify-writes, etc.) R reads a series of bytes written by
1195(defined) write operations (store instructions, atomic
1196stores/read-modify-writes, memcpy, etc.). For the purposes of this
1197section, initialized globals are considered to have a write of the
1198initializer which is atomic and happens before any other read or write
1199of the memory in question. For each byte of a read R, R\ :sub:`byte`
1200may see any write to the same byte, except:
1201
1202- If write\ :sub:`1` happens before write\ :sub:`2`, and
1203 write\ :sub:`2` happens before R\ :sub:`byte`, then
1204 R\ :sub:`byte` does not see write\ :sub:`1`.
1205- If R\ :sub:`byte` happens before write\ :sub:`3`, then
1206 R\ :sub:`byte` does not see write\ :sub:`3`.
1207
1208Given that definition, R\ :sub:`byte` is defined as follows:
1209
1210- If R is volatile, the result is target-dependent. (Volatile is
1211 supposed to give guarantees which can support ``sig_atomic_t`` in
1212 C/C++, and may be used for accesses to addresses which do not behave
1213 like normal memory. It does not generally provide cross-thread
1214 synchronization.)
1215- Otherwise, if there is no write to the same byte that happens before
1216 R\ :sub:`byte`, R\ :sub:`byte` returns ``undef`` for that byte.
1217- Otherwise, if R\ :sub:`byte` may see exactly one write,
1218 R\ :sub:`byte` returns the value written by that write.
1219- Otherwise, if R is atomic, and all the writes R\ :sub:`byte` may
1220 see are atomic, it chooses one of the values written. See the :ref:`Atomic
1221 Memory Ordering Constraints <ordering>` section for additional
1222 constraints on how the choice is made.
1223- Otherwise R\ :sub:`byte` returns ``undef``.
1224
1225R returns the value composed of the series of bytes it read. This
1226implies that some bytes within the value may be ``undef`` **without**
1227the entire value being ``undef``. Note that this only defines the
1228semantics of the operation; it doesn't mean that targets will emit more
1229than one instruction to read the series of bytes.
1230
1231Note that in cases where none of the atomic intrinsics are used, this
1232model places only one restriction on IR transformations on top of what
1233is required for single-threaded execution: introducing a store to a byte
1234which might not otherwise be stored is not allowed in general.
1235(Specifically, in the case where another thread might write to and read
1236from an address, introducing a store can change a load that may see
1237exactly one write into a load that may see multiple writes.)
1238
1239.. _ordering:
1240
1241Atomic Memory Ordering Constraints
1242----------------------------------
1243
1244Atomic instructions (:ref:`cmpxchg <i_cmpxchg>`,
1245:ref:`atomicrmw <i_atomicrmw>`, :ref:`fence <i_fence>`,
1246:ref:`atomic load <i_load>`, and :ref:`atomic store <i_store>`) take
1247an ordering parameter that determines which other atomic instructions on
1248the same address they *synchronize with*. These semantics are borrowed
1249from Java and C++0x, but are somewhat more colloquial. If these
1250descriptions aren't precise enough, check those specs (see spec
1251references in the :doc:`atomics guide <Atomics>`).
1252:ref:`fence <i_fence>` instructions treat these orderings somewhat
1253differently since they don't take an address. See that instruction's
1254documentation for details.
1255
1256For a simpler introduction to the ordering constraints, see the
1257:doc:`Atomics`.
1258
1259``unordered``
1260 The set of values that can be read is governed by the happens-before
1261 partial order. A value cannot be read unless some operation wrote
1262 it. This is intended to provide a guarantee strong enough to model
1263 Java's non-volatile shared variables. This ordering cannot be
1264 specified for read-modify-write operations; it is not strong enough
1265 to make them atomic in any interesting way.
1266``monotonic``
1267 In addition to the guarantees of ``unordered``, there is a single
1268 total order for modifications by ``monotonic`` operations on each
1269 address. All modification orders must be compatible with the
1270 happens-before order. There is no guarantee that the modification
1271 orders can be combined to a global total order for the whole program
1272 (and this often will not be possible). The read in an atomic
1273 read-modify-write operation (:ref:`cmpxchg <i_cmpxchg>` and
1274 :ref:`atomicrmw <i_atomicrmw>`) reads the value in the modification
1275 order immediately before the value it writes. If one atomic read
1276 happens before another atomic read of the same address, the later
1277 read must see the same value or a later value in the address's
1278 modification order. This disallows reordering of ``monotonic`` (or
1279 stronger) operations on the same address. If an address is written
1280 ``monotonic``-ally by one thread, and other threads ``monotonic``-ally
1281 read that address repeatedly, the other threads must eventually see
1282 the write. This corresponds to the C++0x/C1x
1283 ``memory_order_relaxed``.
1284``acquire``
1285 In addition to the guarantees of ``monotonic``, a
1286 *synchronizes-with* edge may be formed with a ``release`` operation.
1287 This is intended to model C++'s ``memory_order_acquire``.
1288``release``
1289 In addition to the guarantees of ``monotonic``, if this operation
1290 writes a value which is subsequently read by an ``acquire``
1291 operation, it *synchronizes-with* that operation. (This isn't a
1292 complete description; see the C++0x definition of a release
1293 sequence.) This corresponds to the C++0x/C1x
1294 ``memory_order_release``.
1295``acq_rel`` (acquire+release)
1296 Acts as both an ``acquire`` and ``release`` operation on its
1297 address. This corresponds to the C++0x/C1x ``memory_order_acq_rel``.
1298``seq_cst`` (sequentially consistent)
1299 In addition to the guarantees of ``acq_rel`` (``acquire`` for an
1300 operation which only reads, ``release`` for an operation which only
1301 writes), there is a global total order on all
1302 sequentially-consistent operations on all addresses, which is
1303 consistent with the *happens-before* partial order and with the
1304 modification orders of all the affected addresses. Each
1305 sequentially-consistent read sees the last preceding write to the
1306 same address in this global order. This corresponds to the C++0x/C1x
1307 ``memory_order_seq_cst`` and Java volatile.
1308
1309.. _singlethread:
1310
1311If an atomic operation is marked ``singlethread``, it only *synchronizes
1312with* or participates in modification and seq\_cst total orderings with
1313other operations running in the same thread (for example, in signal
1314handlers).
1315
1316.. _fastmath:
1317
1318Fast-Math Flags
1319---------------
1320
1321LLVM IR floating-point binary ops (:ref:`fadd <i_fadd>`,
1322:ref:`fsub <i_fsub>`, :ref:`fmul <i_fmul>`, :ref:`fdiv <i_fdiv>`,
1323:ref:`frem <i_frem>`) have the following flags that can set to enable
1324otherwise unsafe floating point operations
1325
1326``nnan``
1327 No NaNs - Allow optimizations to assume the arguments and result are not
1328 NaN. Such optimizations are required to retain defined behavior over
1329 NaNs, but the value of the result is undefined.
1330
1331``ninf``
1332 No Infs - Allow optimizations to assume the arguments and result are not
1333 +/-Inf. Such optimizations are required to retain defined behavior over
1334 +/-Inf, but the value of the result is undefined.
1335
1336``nsz``
1337 No Signed Zeros - Allow optimizations to treat the sign of a zero
1338 argument or result as insignificant.
1339
1340``arcp``
1341 Allow Reciprocal - Allow optimizations to use the reciprocal of an
1342 argument rather than perform division.
1343
1344``fast``
1345 Fast - Allow algebraically equivalent transformations that may
1346 dramatically change results in floating point (e.g. reassociate). This
1347 flag implies all the others.
1348
1349.. _typesystem:
1350
1351Type System
1352===========
1353
1354The LLVM type system is one of the most important features of the
1355intermediate representation. Being typed enables a number of
1356optimizations to be performed on the intermediate representation
1357directly, without having to do extra analyses on the side before the
1358transformation. A strong type system makes it easier to read the
1359generated code and enables novel analyses and transformations that are
1360not feasible to perform on normal three address code representations.
1361
1362Type Classifications
1363--------------------
1364
1365The types fall into a few useful classifications:
1366
1367
1368.. list-table::
1369 :header-rows: 1
1370
1371 * - Classification
1372 - Types
1373
1374 * - :ref:`integer <t_integer>`
1375 - ``i1``, ``i2``, ``i3``, ... ``i8``, ... ``i16``, ... ``i32``, ...
1376 ``i64``, ...
1377
1378 * - :ref:`floating point <t_floating>`
1379 - ``half``, ``float``, ``double``, ``x86_fp80``, ``fp128``,
1380 ``ppc_fp128``
1381
1382
1383 * - first class
1384
1385 .. _t_firstclass:
1386
1387 - :ref:`integer <t_integer>`, :ref:`floating point <t_floating>`,
1388 :ref:`pointer <t_pointer>`, :ref:`vector <t_vector>`,
1389 :ref:`structure <t_struct>`, :ref:`array <t_array>`,
1390 :ref:`label <t_label>`, :ref:`metadata <t_metadata>`.
1391
1392 * - :ref:`primitive <t_primitive>`
1393 - :ref:`label <t_label>`,
1394 :ref:`void <t_void>`,
1395 :ref:`integer <t_integer>`,
1396 :ref:`floating point <t_floating>`,
1397 :ref:`x86mmx <t_x86mmx>`,
1398 :ref:`metadata <t_metadata>`.
1399
1400 * - :ref:`derived <t_derived>`
1401 - :ref:`array <t_array>`,
1402 :ref:`function <t_function>`,
1403 :ref:`pointer <t_pointer>`,
1404 :ref:`structure <t_struct>`,
1405 :ref:`vector <t_vector>`,
1406 :ref:`opaque <t_opaque>`.
1407
1408The :ref:`first class <t_firstclass>` types are perhaps the most important.
1409Values of these types are the only ones which can be produced by
1410instructions.
1411
1412.. _t_primitive:
1413
1414Primitive Types
1415---------------
1416
1417The primitive types are the fundamental building blocks of the LLVM
1418system.
1419
1420.. _t_integer:
1421
1422Integer Type
1423^^^^^^^^^^^^
1424
1425Overview:
1426"""""""""
1427
1428The integer type is a very simple type that simply specifies an
1429arbitrary bit width for the integer type desired. Any bit width from 1
1430bit to 2\ :sup:`23`\ -1 (about 8 million) can be specified.
1431
1432Syntax:
1433"""""""
1434
1435::
1436
1437 iN
1438
1439The number of bits the integer will occupy is specified by the ``N``
1440value.
1441
1442Examples:
1443"""""""""
1444
1445+----------------+------------------------------------------------+
1446| ``i1`` | a single-bit integer. |
1447+----------------+------------------------------------------------+
1448| ``i32`` | a 32-bit integer. |
1449+----------------+------------------------------------------------+
1450| ``i1942652`` | a really big integer of over 1 million bits. |
1451+----------------+------------------------------------------------+
1452
1453.. _t_floating:
1454
1455Floating Point Types
1456^^^^^^^^^^^^^^^^^^^^
1457
1458.. list-table::
1459 :header-rows: 1
1460
1461 * - Type
1462 - Description
1463
1464 * - ``half``
1465 - 16-bit floating point value
1466
1467 * - ``float``
1468 - 32-bit floating point value
1469
1470 * - ``double``
1471 - 64-bit floating point value
1472
1473 * - ``fp128``
1474 - 128-bit floating point value (112-bit mantissa)
1475
1476 * - ``x86_fp80``
1477 - 80-bit floating point value (X87)
1478
1479 * - ``ppc_fp128``
1480 - 128-bit floating point value (two 64-bits)
1481
1482.. _t_x86mmx:
1483
1484X86mmx Type
1485^^^^^^^^^^^
1486
1487Overview:
1488"""""""""
1489
1490The x86mmx type represents a value held in an MMX register on an x86
1491machine. The operations allowed on it are quite limited: parameters and
1492return values, load and store, and bitcast. User-specified MMX
1493instructions are represented as intrinsic or asm calls with arguments
1494and/or results of this type. There are no arrays, vectors or constants
1495of this type.
1496
1497Syntax:
1498"""""""
1499
1500::
1501
1502 x86mmx
1503
1504.. _t_void:
1505
1506Void Type
1507^^^^^^^^^
1508
1509Overview:
1510"""""""""
1511
1512The void type does not represent any value and has no size.
1513
1514Syntax:
1515"""""""
1516
1517::
1518
1519 void
1520
1521.. _t_label:
1522
1523Label Type
1524^^^^^^^^^^
1525
1526Overview:
1527"""""""""
1528
1529The label type represents code labels.
1530
1531Syntax:
1532"""""""
1533
1534::
1535
1536 label
1537
1538.. _t_metadata:
1539
1540Metadata Type
1541^^^^^^^^^^^^^
1542
1543Overview:
1544"""""""""
1545
1546The metadata type represents embedded metadata. No derived types may be
1547created from metadata except for :ref:`function <t_function>` arguments.
1548
1549Syntax:
1550"""""""
1551
1552::
1553
1554 metadata
1555
1556.. _t_derived:
1557
1558Derived Types
1559-------------
1560
1561The real power in LLVM comes from the derived types in the system. This
1562is what allows a programmer to represent arrays, functions, pointers,
1563and other useful types. Each of these types contain one or more element
1564types which may be a primitive type, or another derived type. For
1565example, it is possible to have a two dimensional array, using an array
1566as the element type of another array.
1567
1568.. _t_aggregate:
1569
1570Aggregate Types
1571^^^^^^^^^^^^^^^
1572
1573Aggregate Types are a subset of derived types that can contain multiple
1574member types. :ref:`Arrays <t_array>` and :ref:`structs <t_struct>` are
1575aggregate types. :ref:`Vectors <t_vector>` are not considered to be
1576aggregate types.
1577
1578.. _t_array:
1579
1580Array Type
1581^^^^^^^^^^
1582
1583Overview:
1584"""""""""
1585
1586The array type is a very simple derived type that arranges elements
1587sequentially in memory. The array type requires a size (number of
1588elements) and an underlying data type.
1589
1590Syntax:
1591"""""""
1592
1593::
1594
1595 [<# elements> x <elementtype>]
1596
1597The number of elements is a constant integer value; ``elementtype`` may
1598be any type with a size.
1599
1600Examples:
1601"""""""""
1602
1603+------------------+--------------------------------------+
1604| ``[40 x i32]`` | Array of 40 32-bit integer values. |
1605+------------------+--------------------------------------+
1606| ``[41 x i32]`` | Array of 41 32-bit integer values. |
1607+------------------+--------------------------------------+
1608| ``[4 x i8]`` | Array of 4 8-bit integer values. |
1609+------------------+--------------------------------------+
1610
1611Here are some examples of multidimensional arrays:
1612
1613+-----------------------------+----------------------------------------------------------+
1614| ``[3 x [4 x i32]]`` | 3x4 array of 32-bit integer values. |
1615+-----------------------------+----------------------------------------------------------+
1616| ``[12 x [10 x float]]`` | 12x10 array of single precision floating point values. |
1617+-----------------------------+----------------------------------------------------------+
1618| ``[2 x [3 x [4 x i16]]]`` | 2x3x4 array of 16-bit integer values. |
1619+-----------------------------+----------------------------------------------------------+
1620
1621There is no restriction on indexing beyond the end of the array implied
1622by a static type (though there are restrictions on indexing beyond the
1623bounds of an allocated object in some cases). This means that
1624single-dimension 'variable sized array' addressing can be implemented in
1625LLVM with a zero length array type. An implementation of 'pascal style
1626arrays' in LLVM could use the type "``{ i32, [0 x float]}``", for
1627example.
1628
1629.. _t_function:
1630
1631Function Type
1632^^^^^^^^^^^^^
1633
1634Overview:
1635"""""""""
1636
1637The function type can be thought of as a function signature. It consists
1638of a return type and a list of formal parameter types. The return type
1639of a function type is a first class type or a void type.
1640
1641Syntax:
1642"""""""
1643
1644::
1645
1646 <returntype> (<parameter list>)
1647
1648...where '``<parameter list>``' is a comma-separated list of type
1649specifiers. Optionally, the parameter list may include a type ``...``,
1650which indicates that the function takes a variable number of arguments.
1651Variable argument functions can access their arguments with the
1652:ref:`variable argument handling intrinsic <int_varargs>` functions.
1653'``<returntype>``' is any type except :ref:`label <t_label>`.
1654
1655Examples:
1656"""""""""
1657
1658+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1659| ``i32 (i32)`` | function taking an ``i32``, returning an ``i32`` |
1660+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001661| ``float (i16, i32 *) *`` | :ref:`Pointer <t_pointer>` to a function that takes an ``i16`` and a :ref:`pointer <t_pointer>` to ``i32``, returning ``float``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001662+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1663| ``i32 (i8*, ...)`` | A vararg function that takes at least one :ref:`pointer <t_pointer>` to ``i8`` (char in C), which returns an integer. This is the signature for ``printf`` in LLVM. |
1664+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1665| ``{i32, i32} (i32)`` | A function taking an ``i32``, returning a :ref:`structure <t_struct>` containing two ``i32`` values |
1666+---------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1667
1668.. _t_struct:
1669
1670Structure Type
1671^^^^^^^^^^^^^^
1672
1673Overview:
1674"""""""""
1675
1676The structure type is used to represent a collection of data members
1677together in memory. The elements of a structure may be any type that has
1678a size.
1679
1680Structures in memory are accessed using '``load``' and '``store``' by
1681getting a pointer to a field with the '``getelementptr``' instruction.
1682Structures in registers are accessed using the '``extractvalue``' and
1683'``insertvalue``' instructions.
1684
1685Structures may optionally be "packed" structures, which indicate that
1686the alignment of the struct is one byte, and that there is no padding
1687between the elements. In non-packed structs, padding between field types
1688is inserted as defined by the DataLayout string in the module, which is
1689required to match what the underlying code generator expects.
1690
1691Structures can either be "literal" or "identified". A literal structure
1692is defined inline with other types (e.g. ``{i32, i32}*``) whereas
1693identified types are always defined at the top level with a name.
1694Literal types are uniqued by their contents and can never be recursive
1695or opaque since there is no way to write one. Identified types can be
1696recursive, can be opaqued, and are never uniqued.
1697
1698Syntax:
1699"""""""
1700
1701::
1702
1703 %T1 = type { <type list> } ; Identified normal struct type
1704 %T2 = type <{ <type list> }> ; Identified packed struct type
1705
1706Examples:
1707"""""""""
1708
1709+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1710| ``{ i32, i32, i32 }`` | A triple of three ``i32`` values |
1711+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00001712| ``{ float, i32 (i32) * }`` | A pair, where the first element is a ``float`` and the second element is a :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32``, returning an ``i32``. |
Sean Silvaf722b002012-12-07 10:36:55 +00001713+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1714| ``<{ i8, i32 }>`` | A packed struct known to be 5 bytes in size. |
1715+------------------------------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
1716
1717.. _t_opaque:
1718
1719Opaque Structure Types
1720^^^^^^^^^^^^^^^^^^^^^^
1721
1722Overview:
1723"""""""""
1724
1725Opaque structure types are used to represent named structure types that
1726do not have a body specified. This corresponds (for example) to the C
1727notion of a forward declared structure.
1728
1729Syntax:
1730"""""""
1731
1732::
1733
1734 %X = type opaque
1735 %52 = type opaque
1736
1737Examples:
1738"""""""""
1739
1740+--------------+-------------------+
1741| ``opaque`` | An opaque type. |
1742+--------------+-------------------+
1743
1744.. _t_pointer:
1745
1746Pointer Type
1747^^^^^^^^^^^^
1748
1749Overview:
1750"""""""""
1751
1752The pointer type is used to specify memory locations. Pointers are
1753commonly used to reference objects in memory.
1754
1755Pointer types may have an optional address space attribute defining the
1756numbered address space where the pointed-to object resides. The default
1757address space is number zero. The semantics of non-zero address spaces
1758are target-specific.
1759
1760Note that LLVM does not permit pointers to void (``void*``) nor does it
1761permit pointers to labels (``label*``). Use ``i8*`` instead.
1762
1763Syntax:
1764"""""""
1765
1766::
1767
1768 <type> *
1769
1770Examples:
1771"""""""""
1772
1773+-------------------------+--------------------------------------------------------------------------------------------------------------+
1774| ``[4 x i32]*`` | A :ref:`pointer <t_pointer>` to :ref:`array <t_array>` of four ``i32`` values. |
1775+-------------------------+--------------------------------------------------------------------------------------------------------------+
1776| ``i32 (i32*) *`` | A :ref:`pointer <t_pointer>` to a :ref:`function <t_function>` that takes an ``i32*``, returning an ``i32``. |
1777+-------------------------+--------------------------------------------------------------------------------------------------------------+
1778| ``i32 addrspace(5)*`` | A :ref:`pointer <t_pointer>` to an ``i32`` value that resides in address space #5. |
1779+-------------------------+--------------------------------------------------------------------------------------------------------------+
1780
1781.. _t_vector:
1782
1783Vector Type
1784^^^^^^^^^^^
1785
1786Overview:
1787"""""""""
1788
1789A vector type is a simple derived type that represents a vector of
1790elements. Vector types are used when multiple primitive data are
1791operated in parallel using a single instruction (SIMD). A vector type
1792requires a size (number of elements) and an underlying primitive data
1793type. Vector types are considered :ref:`first class <t_firstclass>`.
1794
1795Syntax:
1796"""""""
1797
1798::
1799
1800 < <# elements> x <elementtype> >
1801
1802The number of elements is a constant integer value larger than 0;
1803elementtype may be any integer or floating point type, or a pointer to
1804these types. Vectors of size zero are not allowed.
1805
1806Examples:
1807"""""""""
1808
1809+-------------------+--------------------------------------------------+
1810| ``<4 x i32>`` | Vector of 4 32-bit integer values. |
1811+-------------------+--------------------------------------------------+
1812| ``<8 x float>`` | Vector of 8 32-bit floating-point values. |
1813+-------------------+--------------------------------------------------+
1814| ``<2 x i64>`` | Vector of 2 64-bit integer values. |
1815+-------------------+--------------------------------------------------+
1816| ``<4 x i64*>`` | Vector of 4 pointers to 64-bit integer values. |
1817+-------------------+--------------------------------------------------+
1818
1819Constants
1820=========
1821
1822LLVM has several different basic types of constants. This section
1823describes them all and their syntax.
1824
1825Simple Constants
1826----------------
1827
1828**Boolean constants**
1829 The two strings '``true``' and '``false``' are both valid constants
1830 of the ``i1`` type.
1831**Integer constants**
1832 Standard integers (such as '4') are constants of the
1833 :ref:`integer <t_integer>` type. Negative numbers may be used with
1834 integer types.
1835**Floating point constants**
1836 Floating point constants use standard decimal notation (e.g.
1837 123.421), exponential notation (e.g. 1.23421e+2), or a more precise
1838 hexadecimal notation (see below). The assembler requires the exact
1839 decimal value of a floating-point constant. For example, the
1840 assembler accepts 1.25 but rejects 1.3 because 1.3 is a repeating
1841 decimal in binary. Floating point constants must have a :ref:`floating
1842 point <t_floating>` type.
1843**Null pointer constants**
1844 The identifier '``null``' is recognized as a null pointer constant
1845 and must be of :ref:`pointer type <t_pointer>`.
1846
1847The one non-intuitive notation for constants is the hexadecimal form of
1848floating point constants. For example, the form
1849'``double 0x432ff973cafa8000``' is equivalent to (but harder to read
1850than) '``double 4.5e+15``'. The only time hexadecimal floating point
1851constants are required (and the only time that they are generated by the
1852disassembler) is when a floating point constant must be emitted but it
1853cannot be represented as a decimal floating point number in a reasonable
1854number of digits. For example, NaN's, infinities, and other special
1855values are represented in their IEEE hexadecimal format so that assembly
1856and disassembly do not cause any bits to change in the constants.
1857
1858When using the hexadecimal form, constants of types half, float, and
1859double are represented using the 16-digit form shown above (which
1860matches the IEEE754 representation for double); half and float values
Dmitri Gribenkoc3c8d2a2013-01-16 23:40:37 +00001861must, however, be exactly representable as IEEE 754 half and single
Sean Silvaf722b002012-12-07 10:36:55 +00001862precision, respectively. Hexadecimal format is always used for long
1863double, and there are three forms of long double. The 80-bit format used
1864by x86 is represented as ``0xK`` followed by 20 hexadecimal digits. The
1865128-bit format used by PowerPC (two adjacent doubles) is represented by
1866``0xM`` followed by 32 hexadecimal digits. The IEEE 128-bit format is
Richard Sandifordd07d2922013-05-03 14:32:27 +00001867represented by ``0xL`` followed by 32 hexadecimal digits. Long doubles
1868will only work if they match the long double format on your target.
1869The IEEE 16-bit format (half precision) is represented by ``0xH``
1870followed by 4 hexadecimal digits. All hexadecimal formats are big-endian
1871(sign bit at the left).
Sean Silvaf722b002012-12-07 10:36:55 +00001872
1873There are no constants of type x86mmx.
1874
1875Complex Constants
1876-----------------
1877
1878Complex constants are a (potentially recursive) combination of simple
1879constants and smaller complex constants.
1880
1881**Structure constants**
1882 Structure constants are represented with notation similar to
1883 structure type definitions (a comma separated list of elements,
1884 surrounded by braces (``{}``)). For example:
1885 "``{ i32 4, float 17.0, i32* @G }``", where "``@G``" is declared as
1886 "``@G = external global i32``". Structure constants must have
1887 :ref:`structure type <t_struct>`, and the number and types of elements
1888 must match those specified by the type.
1889**Array constants**
1890 Array constants are represented with notation similar to array type
1891 definitions (a comma separated list of elements, surrounded by
1892 square brackets (``[]``)). For example:
1893 "``[ i32 42, i32 11, i32 74 ]``". Array constants must have
1894 :ref:`array type <t_array>`, and the number and types of elements must
1895 match those specified by the type.
1896**Vector constants**
1897 Vector constants are represented with notation similar to vector
1898 type definitions (a comma separated list of elements, surrounded by
1899 less-than/greater-than's (``<>``)). For example:
1900 "``< i32 42, i32 11, i32 74, i32 100 >``". Vector constants
1901 must have :ref:`vector type <t_vector>`, and the number and types of
1902 elements must match those specified by the type.
1903**Zero initialization**
1904 The string '``zeroinitializer``' can be used to zero initialize a
1905 value to zero of *any* type, including scalar and
1906 :ref:`aggregate <t_aggregate>` types. This is often used to avoid
1907 having to print large zero initializers (e.g. for large arrays) and
1908 is always exactly equivalent to using explicit zero initializers.
1909**Metadata node**
1910 A metadata node is a structure-like constant with :ref:`metadata
1911 type <t_metadata>`. For example:
1912 "``metadata !{ i32 0, metadata !"test" }``". Unlike other
1913 constants that are meant to be interpreted as part of the
1914 instruction stream, metadata is a place to attach additional
1915 information such as debug info.
1916
1917Global Variable and Function Addresses
1918--------------------------------------
1919
1920The addresses of :ref:`global variables <globalvars>` and
1921:ref:`functions <functionstructure>` are always implicitly valid
1922(link-time) constants. These constants are explicitly referenced when
1923the :ref:`identifier for the global <identifiers>` is used and always have
1924:ref:`pointer <t_pointer>` type. For example, the following is a legal LLVM
1925file:
1926
1927.. code-block:: llvm
1928
1929 @X = global i32 17
1930 @Y = global i32 42
1931 @Z = global [2 x i32*] [ i32* @X, i32* @Y ]
1932
1933.. _undefvalues:
1934
1935Undefined Values
1936----------------
1937
1938The string '``undef``' can be used anywhere a constant is expected, and
1939indicates that the user of the value may receive an unspecified
1940bit-pattern. Undefined values may be of any type (other than '``label``'
1941or '``void``') and be used anywhere a constant is permitted.
1942
1943Undefined values are useful because they indicate to the compiler that
1944the program is well defined no matter what value is used. This gives the
1945compiler more freedom to optimize. Here are some examples of
1946(potentially surprising) transformations that are valid (in pseudo IR):
1947
1948.. code-block:: llvm
1949
1950 %A = add %X, undef
1951 %B = sub %X, undef
1952 %C = xor %X, undef
1953 Safe:
1954 %A = undef
1955 %B = undef
1956 %C = undef
1957
1958This is safe because all of the output bits are affected by the undef
1959bits. Any output bit can have a zero or one depending on the input bits.
1960
1961.. code-block:: llvm
1962
1963 %A = or %X, undef
1964 %B = and %X, undef
1965 Safe:
1966 %A = -1
1967 %B = 0
1968 Unsafe:
1969 %A = undef
1970 %B = undef
1971
1972These logical operations have bits that are not always affected by the
1973input. For example, if ``%X`` has a zero bit, then the output of the
1974'``and``' operation will always be a zero for that bit, no matter what
1975the corresponding bit from the '``undef``' is. As such, it is unsafe to
1976optimize or assume that the result of the '``and``' is '``undef``'.
1977However, it is safe to assume that all bits of the '``undef``' could be
19780, and optimize the '``and``' to 0. Likewise, it is safe to assume that
1979all the bits of the '``undef``' operand to the '``or``' could be set,
1980allowing the '``or``' to be folded to -1.
1981
1982.. code-block:: llvm
1983
1984 %A = select undef, %X, %Y
1985 %B = select undef, 42, %Y
1986 %C = select %X, %Y, undef
1987 Safe:
1988 %A = %X (or %Y)
1989 %B = 42 (or %Y)
1990 %C = %Y
1991 Unsafe:
1992 %A = undef
1993 %B = undef
1994 %C = undef
1995
1996This set of examples shows that undefined '``select``' (and conditional
1997branch) conditions can go *either way*, but they have to come from one
1998of the two operands. In the ``%A`` example, if ``%X`` and ``%Y`` were
1999both known to have a clear low bit, then ``%A`` would have to have a
2000cleared low bit. However, in the ``%C`` example, the optimizer is
2001allowed to assume that the '``undef``' operand could be the same as
2002``%Y``, allowing the whole '``select``' to be eliminated.
2003
2004.. code-block:: llvm
2005
2006 %A = xor undef, undef
2007
2008 %B = undef
2009 %C = xor %B, %B
2010
2011 %D = undef
2012 %E = icmp lt %D, 4
2013 %F = icmp gte %D, 4
2014
2015 Safe:
2016 %A = undef
2017 %B = undef
2018 %C = undef
2019 %D = undef
2020 %E = undef
2021 %F = undef
2022
2023This example points out that two '``undef``' operands are not
2024necessarily the same. This can be surprising to people (and also matches
2025C semantics) where they assume that "``X^X``" is always zero, even if
2026``X`` is undefined. This isn't true for a number of reasons, but the
2027short answer is that an '``undef``' "variable" can arbitrarily change
2028its value over its "live range". This is true because the variable
2029doesn't actually *have a live range*. Instead, the value is logically
2030read from arbitrary registers that happen to be around when needed, so
2031the value is not necessarily consistent over time. In fact, ``%A`` and
2032``%C`` need to have the same semantics or the core LLVM "replace all
2033uses with" concept would not hold.
2034
2035.. code-block:: llvm
2036
2037 %A = fdiv undef, %X
2038 %B = fdiv %X, undef
2039 Safe:
2040 %A = undef
2041 b: unreachable
2042
2043These examples show the crucial difference between an *undefined value*
2044and *undefined behavior*. An undefined value (like '``undef``') is
2045allowed to have an arbitrary bit-pattern. This means that the ``%A``
2046operation can be constant folded to '``undef``', because the '``undef``'
2047could be an SNaN, and ``fdiv`` is not (currently) defined on SNaN's.
2048However, in the second example, we can make a more aggressive
2049assumption: because the ``undef`` is allowed to be an arbitrary value,
2050we are allowed to assume that it could be zero. Since a divide by zero
2051has *undefined behavior*, we are allowed to assume that the operation
2052does not execute at all. This allows us to delete the divide and all
2053code after it. Because the undefined operation "can't happen", the
2054optimizer can assume that it occurs in dead code.
2055
2056.. code-block:: llvm
2057
2058 a: store undef -> %X
2059 b: store %X -> undef
2060 Safe:
2061 a: <deleted>
2062 b: unreachable
2063
2064These examples reiterate the ``fdiv`` example: a store *of* an undefined
2065value can be assumed to not have any effect; we can assume that the
2066value is overwritten with bits that happen to match what was already
2067there. However, a store *to* an undefined location could clobber
2068arbitrary memory, therefore, it has undefined behavior.
2069
2070.. _poisonvalues:
2071
2072Poison Values
2073-------------
2074
2075Poison values are similar to :ref:`undef values <undefvalues>`, however
2076they also represent the fact that an instruction or constant expression
2077which cannot evoke side effects has nevertheless detected a condition
2078which results in undefined behavior.
2079
2080There is currently no way of representing a poison value in the IR; they
2081only exist when produced by operations such as :ref:`add <i_add>` with
2082the ``nsw`` flag.
2083
2084Poison value behavior is defined in terms of value *dependence*:
2085
2086- Values other than :ref:`phi <i_phi>` nodes depend on their operands.
2087- :ref:`Phi <i_phi>` nodes depend on the operand corresponding to
2088 their dynamic predecessor basic block.
2089- Function arguments depend on the corresponding actual argument values
2090 in the dynamic callers of their functions.
2091- :ref:`Call <i_call>` instructions depend on the :ref:`ret <i_ret>`
2092 instructions that dynamically transfer control back to them.
2093- :ref:`Invoke <i_invoke>` instructions depend on the
2094 :ref:`ret <i_ret>`, :ref:`resume <i_resume>`, or exception-throwing
2095 call instructions that dynamically transfer control back to them.
2096- Non-volatile loads and stores depend on the most recent stores to all
2097 of the referenced memory addresses, following the order in the IR
2098 (including loads and stores implied by intrinsics such as
2099 :ref:`@llvm.memcpy <int_memcpy>`.)
2100- An instruction with externally visible side effects depends on the
2101 most recent preceding instruction with externally visible side
2102 effects, following the order in the IR. (This includes :ref:`volatile
2103 operations <volatile>`.)
2104- An instruction *control-depends* on a :ref:`terminator
2105 instruction <terminators>` if the terminator instruction has
2106 multiple successors and the instruction is always executed when
2107 control transfers to one of the successors, and may not be executed
2108 when control is transferred to another.
2109- Additionally, an instruction also *control-depends* on a terminator
2110 instruction if the set of instructions it otherwise depends on would
2111 be different if the terminator had transferred control to a different
2112 successor.
2113- Dependence is transitive.
2114
2115Poison Values have the same behavior as :ref:`undef values <undefvalues>`,
2116with the additional affect that any instruction which has a *dependence*
2117on a poison value has undefined behavior.
2118
2119Here are some examples:
2120
2121.. code-block:: llvm
2122
2123 entry:
2124 %poison = sub nuw i32 0, 1 ; Results in a poison value.
2125 %still_poison = and i32 %poison, 0 ; 0, but also poison.
2126 %poison_yet_again = getelementptr i32* @h, i32 %still_poison
2127 store i32 0, i32* %poison_yet_again ; memory at @h[0] is poisoned
2128
2129 store i32 %poison, i32* @g ; Poison value stored to memory.
2130 %poison2 = load i32* @g ; Poison value loaded back from memory.
2131
2132 store volatile i32 %poison, i32* @g ; External observation; undefined behavior.
2133
2134 %narrowaddr = bitcast i32* @g to i16*
2135 %wideaddr = bitcast i32* @g to i64*
2136 %poison3 = load i16* %narrowaddr ; Returns a poison value.
2137 %poison4 = load i64* %wideaddr ; Returns a poison value.
2138
2139 %cmp = icmp slt i32 %poison, 0 ; Returns a poison value.
2140 br i1 %cmp, label %true, label %end ; Branch to either destination.
2141
2142 true:
2143 store volatile i32 0, i32* @g ; This is control-dependent on %cmp, so
2144 ; it has undefined behavior.
2145 br label %end
2146
2147 end:
2148 %p = phi i32 [ 0, %entry ], [ 1, %true ]
2149 ; Both edges into this PHI are
2150 ; control-dependent on %cmp, so this
2151 ; always results in a poison value.
2152
2153 store volatile i32 0, i32* @g ; This would depend on the store in %true
2154 ; if %cmp is true, or the store in %entry
2155 ; otherwise, so this is undefined behavior.
2156
2157 br i1 %cmp, label %second_true, label %second_end
2158 ; The same branch again, but this time the
2159 ; true block doesn't have side effects.
2160
2161 second_true:
2162 ; No side effects!
2163 ret void
2164
2165 second_end:
2166 store volatile i32 0, i32* @g ; This time, the instruction always depends
2167 ; on the store in %end. Also, it is
2168 ; control-equivalent to %end, so this is
2169 ; well-defined (ignoring earlier undefined
2170 ; behavior in this example).
2171
2172.. _blockaddress:
2173
2174Addresses of Basic Blocks
2175-------------------------
2176
2177``blockaddress(@function, %block)``
2178
2179The '``blockaddress``' constant computes the address of the specified
2180basic block in the specified function, and always has an ``i8*`` type.
2181Taking the address of the entry block is illegal.
2182
2183This value only has defined behavior when used as an operand to the
2184':ref:`indirectbr <i_indirectbr>`' instruction, or for comparisons
2185against null. Pointer equality tests between labels addresses results in
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002186undefined behavior --- though, again, comparison against null is ok, and
Sean Silvaf722b002012-12-07 10:36:55 +00002187no label is equal to the null pointer. This may be passed around as an
2188opaque pointer sized value as long as the bits are not inspected. This
2189allows ``ptrtoint`` and arithmetic to be performed on these values so
2190long as the original value is reconstituted before the ``indirectbr``
2191instruction.
2192
2193Finally, some targets may provide defined semantics when using the value
2194as the operand to an inline assembly, but that is target specific.
2195
2196Constant Expressions
2197--------------------
2198
2199Constant expressions are used to allow expressions involving other
2200constants to be used as constants. Constant expressions may be of any
2201:ref:`first class <t_firstclass>` type and may involve any LLVM operation
2202that does not have side effects (e.g. load and call are not supported).
2203The following is the syntax for constant expressions:
2204
2205``trunc (CST to TYPE)``
2206 Truncate a constant to another type. The bit size of CST must be
2207 larger than the bit size of TYPE. Both types must be integers.
2208``zext (CST to TYPE)``
2209 Zero extend a constant to another type. The bit size of CST must be
2210 smaller than the bit size of TYPE. Both types must be integers.
2211``sext (CST to TYPE)``
2212 Sign extend a constant to another type. The bit size of CST must be
2213 smaller than the bit size of TYPE. Both types must be integers.
2214``fptrunc (CST to TYPE)``
2215 Truncate a floating point constant to another floating point type.
2216 The size of CST must be larger than the size of TYPE. Both types
2217 must be floating point.
2218``fpext (CST to TYPE)``
2219 Floating point extend a constant to another type. The size of CST
2220 must be smaller or equal to the size of TYPE. Both types must be
2221 floating point.
2222``fptoui (CST to TYPE)``
2223 Convert a floating point constant to the corresponding unsigned
2224 integer constant. TYPE must be a scalar or vector integer type. CST
2225 must be of scalar or vector floating point type. Both CST and TYPE
2226 must be scalars, or vectors of the same number of elements. If the
2227 value won't fit in the integer type, the results are undefined.
2228``fptosi (CST to TYPE)``
2229 Convert a floating point constant to the corresponding signed
2230 integer constant. TYPE must be a scalar or vector integer type. CST
2231 must be of scalar or vector floating point type. Both CST and TYPE
2232 must be scalars, or vectors of the same number of elements. If the
2233 value won't fit in the integer type, the results are undefined.
2234``uitofp (CST to TYPE)``
2235 Convert an unsigned integer constant to the corresponding floating
2236 point constant. TYPE must be a scalar or vector floating point type.
2237 CST must be of scalar or vector integer type. Both CST and TYPE must
2238 be scalars, or vectors of the same number of elements. If the value
2239 won't fit in the floating point type, the results are undefined.
2240``sitofp (CST to TYPE)``
2241 Convert a signed integer constant to the corresponding floating
2242 point constant. TYPE must be a scalar or vector floating point type.
2243 CST must be of scalar or vector integer type. Both CST and TYPE must
2244 be scalars, or vectors of the same number of elements. If the value
2245 won't fit in the floating point type, the results are undefined.
2246``ptrtoint (CST to TYPE)``
2247 Convert a pointer typed constant to the corresponding integer
Eli Bendersky48f80152013-03-11 16:51:15 +00002248 constant. ``TYPE`` must be an integer type. ``CST`` must be of
Sean Silvaf722b002012-12-07 10:36:55 +00002249 pointer type. The ``CST`` value is zero extended, truncated, or
2250 unchanged to make it fit in ``TYPE``.
2251``inttoptr (CST to TYPE)``
2252 Convert an integer constant to a pointer constant. TYPE must be a
2253 pointer type. CST must be of integer type. The CST value is zero
2254 extended, truncated, or unchanged to make it fit in a pointer size.
2255 This one is *really* dangerous!
2256``bitcast (CST to TYPE)``
2257 Convert a constant, CST, to another TYPE. The constraints of the
2258 operands are the same as those for the :ref:`bitcast
2259 instruction <i_bitcast>`.
2260``getelementptr (CSTPTR, IDX0, IDX1, ...)``, ``getelementptr inbounds (CSTPTR, IDX0, IDX1, ...)``
2261 Perform the :ref:`getelementptr operation <i_getelementptr>` on
2262 constants. As with the :ref:`getelementptr <i_getelementptr>`
2263 instruction, the index list may have zero or more indexes, which are
2264 required to make sense for the type of "CSTPTR".
2265``select (COND, VAL1, VAL2)``
2266 Perform the :ref:`select operation <i_select>` on constants.
2267``icmp COND (VAL1, VAL2)``
2268 Performs the :ref:`icmp operation <i_icmp>` on constants.
2269``fcmp COND (VAL1, VAL2)``
2270 Performs the :ref:`fcmp operation <i_fcmp>` on constants.
2271``extractelement (VAL, IDX)``
2272 Perform the :ref:`extractelement operation <i_extractelement>` on
2273 constants.
2274``insertelement (VAL, ELT, IDX)``
2275 Perform the :ref:`insertelement operation <i_insertelement>` on
2276 constants.
2277``shufflevector (VEC1, VEC2, IDXMASK)``
2278 Perform the :ref:`shufflevector operation <i_shufflevector>` on
2279 constants.
2280``extractvalue (VAL, IDX0, IDX1, ...)``
2281 Perform the :ref:`extractvalue operation <i_extractvalue>` on
2282 constants. The index list is interpreted in a similar manner as
2283 indices in a ':ref:`getelementptr <i_getelementptr>`' operation. At
2284 least one index value must be specified.
2285``insertvalue (VAL, ELT, IDX0, IDX1, ...)``
2286 Perform the :ref:`insertvalue operation <i_insertvalue>` on constants.
2287 The index list is interpreted in a similar manner as indices in a
2288 ':ref:`getelementptr <i_getelementptr>`' operation. At least one index
2289 value must be specified.
2290``OPCODE (LHS, RHS)``
2291 Perform the specified operation of the LHS and RHS constants. OPCODE
2292 may be any of the :ref:`binary <binaryops>` or :ref:`bitwise
2293 binary <bitwiseops>` operations. The constraints on operands are
2294 the same as those for the corresponding instruction (e.g. no bitwise
2295 operations on floating point values are allowed).
2296
2297Other Values
2298============
2299
2300Inline Assembler Expressions
2301----------------------------
2302
2303LLVM supports inline assembler expressions (as opposed to :ref:`Module-Level
2304Inline Assembly <moduleasm>`) through the use of a special value. This
2305value represents the inline assembler as a string (containing the
2306instructions to emit), a list of operand constraints (stored as a
2307string), a flag that indicates whether or not the inline asm expression
2308has side effects, and a flag indicating whether the function containing
2309the asm needs to align its stack conservatively. An example inline
2310assembler expression is:
2311
2312.. code-block:: llvm
2313
2314 i32 (i32) asm "bswap $0", "=r,r"
2315
2316Inline assembler expressions may **only** be used as the callee operand
2317of a :ref:`call <i_call>` or an :ref:`invoke <i_invoke>` instruction.
2318Thus, typically we have:
2319
2320.. code-block:: llvm
2321
2322 %X = call i32 asm "bswap $0", "=r,r"(i32 %Y)
2323
2324Inline asms with side effects not visible in the constraint list must be
2325marked as having side effects. This is done through the use of the
2326'``sideeffect``' keyword, like so:
2327
2328.. code-block:: llvm
2329
2330 call void asm sideeffect "eieio", ""()
2331
2332In some cases inline asms will contain code that will not work unless
2333the stack is aligned in some way, such as calls or SSE instructions on
2334x86, yet will not contain code that does that alignment within the asm.
2335The compiler should make conservative assumptions about what the asm
2336might contain and should generate its usual stack alignment code in the
2337prologue if the '``alignstack``' keyword is present:
2338
2339.. code-block:: llvm
2340
2341 call void asm alignstack "eieio", ""()
2342
2343Inline asms also support using non-standard assembly dialects. The
2344assumed dialect is ATT. When the '``inteldialect``' keyword is present,
2345the inline asm is using the Intel dialect. Currently, ATT and Intel are
2346the only supported dialects. An example is:
2347
2348.. code-block:: llvm
2349
2350 call void asm inteldialect "eieio", ""()
2351
2352If multiple keywords appear the '``sideeffect``' keyword must come
2353first, the '``alignstack``' keyword second and the '``inteldialect``'
2354keyword last.
2355
2356Inline Asm Metadata
2357^^^^^^^^^^^^^^^^^^^
2358
2359The call instructions that wrap inline asm nodes may have a
2360"``!srcloc``" MDNode attached to it that contains a list of constant
2361integers. If present, the code generator will use the integer as the
2362location cookie value when report errors through the ``LLVMContext``
2363error reporting mechanisms. This allows a front-end to correlate backend
2364errors that occur with inline asm back to the source code that produced
2365it. For example:
2366
2367.. code-block:: llvm
2368
2369 call void asm sideeffect "something bad", ""(), !srcloc !42
2370 ...
2371 !42 = !{ i32 1234567 }
2372
2373It is up to the front-end to make sense of the magic numbers it places
2374in the IR. If the MDNode contains multiple constants, the code generator
2375will use the one that corresponds to the line of the asm that the error
2376occurs on.
2377
2378.. _metadata:
2379
2380Metadata Nodes and Metadata Strings
2381-----------------------------------
2382
2383LLVM IR allows metadata to be attached to instructions in the program
2384that can convey extra information about the code to the optimizers and
2385code generator. One example application of metadata is source-level
2386debug information. There are two metadata primitives: strings and nodes.
2387All metadata has the ``metadata`` type and is identified in syntax by a
2388preceding exclamation point ('``!``').
2389
2390A metadata string is a string surrounded by double quotes. It can
2391contain any character by escaping non-printable characters with
2392"``\xx``" where "``xx``" is the two digit hex code. For example:
2393"``!"test\00"``".
2394
2395Metadata nodes are represented with notation similar to structure
2396constants (a comma separated list of elements, surrounded by braces and
2397preceded by an exclamation point). Metadata nodes can have any values as
2398their operand. For example:
2399
2400.. code-block:: llvm
2401
2402 !{ metadata !"test\00", i32 10}
2403
2404A :ref:`named metadata <namedmetadatastructure>` is a collection of
2405metadata nodes, which can be looked up in the module symbol table. For
2406example:
2407
2408.. code-block:: llvm
2409
2410 !foo = metadata !{!4, !3}
2411
2412Metadata can be used as function arguments. Here ``llvm.dbg.value``
2413function is using two metadata arguments:
2414
2415.. code-block:: llvm
2416
2417 call void @llvm.dbg.value(metadata !24, i64 0, metadata !25)
2418
2419Metadata can be attached with an instruction. Here metadata ``!21`` is
2420attached to the ``add`` instruction using the ``!dbg`` identifier:
2421
2422.. code-block:: llvm
2423
2424 %indvar.next = add i64 %indvar, 1, !dbg !21
2425
2426More information about specific metadata nodes recognized by the
2427optimizers and code generator is found below.
2428
2429'``tbaa``' Metadata
2430^^^^^^^^^^^^^^^^^^^
2431
2432In LLVM IR, memory does not have types, so LLVM's own type system is not
2433suitable for doing TBAA. Instead, metadata is added to the IR to
2434describe a type system of a higher level language. This can be used to
2435implement typical C/C++ TBAA, but it can also be used to implement
2436custom alias analysis behavior for other languages.
2437
2438The current metadata format is very simple. TBAA metadata nodes have up
2439to three fields, e.g.:
2440
2441.. code-block:: llvm
2442
2443 !0 = metadata !{ metadata !"an example type tree" }
2444 !1 = metadata !{ metadata !"int", metadata !0 }
2445 !2 = metadata !{ metadata !"float", metadata !0 }
2446 !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
2447
2448The first field is an identity field. It can be any value, usually a
2449metadata string, which uniquely identifies the type. The most important
2450name in the tree is the name of the root node. Two trees with different
2451root node names are entirely disjoint, even if they have leaves with
2452common names.
2453
2454The second field identifies the type's parent node in the tree, or is
2455null or omitted for a root node. A type is considered to alias all of
2456its descendants and all of its ancestors in the tree. Also, a type is
2457considered to alias all types in other trees, so that bitcode produced
2458from multiple front-ends is handled conservatively.
2459
2460If the third field is present, it's an integer which if equal to 1
2461indicates that the type is "constant" (meaning
2462``pointsToConstantMemory`` should return true; see `other useful
2463AliasAnalysis methods <AliasAnalysis.html#OtherItfs>`_).
2464
2465'``tbaa.struct``' Metadata
2466^^^^^^^^^^^^^^^^^^^^^^^^^^
2467
2468The :ref:`llvm.memcpy <int_memcpy>` is often used to implement
2469aggregate assignment operations in C and similar languages, however it
2470is defined to copy a contiguous region of memory, which is more than
2471strictly necessary for aggregate types which contain holes due to
2472padding. Also, it doesn't contain any TBAA information about the fields
2473of the aggregate.
2474
2475``!tbaa.struct`` metadata can describe which memory subregions in a
2476memcpy are padding and what the TBAA tags of the struct are.
2477
2478The current metadata format is very simple. ``!tbaa.struct`` metadata
2479nodes are a list of operands which are in conceptual groups of three.
2480For each group of three, the first operand gives the byte offset of a
2481field in bytes, the second gives its size in bytes, and the third gives
2482its tbaa tag. e.g.:
2483
2484.. code-block:: llvm
2485
2486 !4 = metadata !{ i64 0, i64 4, metadata !1, i64 8, i64 4, metadata !2 }
2487
2488This describes a struct with two fields. The first is at offset 0 bytes
2489with size 4 bytes, and has tbaa tag !1. The second is at offset 8 bytes
2490and has size 4 bytes and has tbaa tag !2.
2491
2492Note that the fields need not be contiguous. In this example, there is a
24934 byte gap between the two fields. This gap represents padding which
2494does not carry useful data and need not be preserved.
2495
2496'``fpmath``' Metadata
2497^^^^^^^^^^^^^^^^^^^^^
2498
2499``fpmath`` metadata may be attached to any instruction of floating point
2500type. It can be used to express the maximum acceptable error in the
2501result of that instruction, in ULPs, thus potentially allowing the
2502compiler to use a more efficient but less accurate method of computing
2503it. ULP is defined as follows:
2504
2505 If ``x`` is a real number that lies between two finite consecutive
2506 floating-point numbers ``a`` and ``b``, without being equal to one
2507 of them, then ``ulp(x) = |b - a|``, otherwise ``ulp(x)`` is the
2508 distance between the two non-equal finite floating-point numbers
2509 nearest ``x``. Moreover, ``ulp(NaN)`` is ``NaN``.
2510
2511The metadata node shall consist of a single positive floating point
2512number representing the maximum relative error, for example:
2513
2514.. code-block:: llvm
2515
2516 !0 = metadata !{ float 2.5 } ; maximum acceptable inaccuracy is 2.5 ULPs
2517
2518'``range``' Metadata
2519^^^^^^^^^^^^^^^^^^^^
2520
2521``range`` metadata may be attached only to loads of integer types. It
2522expresses the possible ranges the loaded value is in. The ranges are
2523represented with a flattened list of integers. The loaded value is known
2524to be in the union of the ranges defined by each consecutive pair. Each
2525pair has the following properties:
2526
2527- The type must match the type loaded by the instruction.
2528- The pair ``a,b`` represents the range ``[a,b)``.
2529- Both ``a`` and ``b`` are constants.
2530- The range is allowed to wrap.
2531- The range should not represent the full or empty set. That is,
2532 ``a!=b``.
2533
2534In addition, the pairs must be in signed order of the lower bound and
2535they must be non-contiguous.
2536
2537Examples:
2538
2539.. code-block:: llvm
2540
2541 %a = load i8* %x, align 1, !range !0 ; Can only be 0 or 1
2542 %b = load i8* %y, align 1, !range !1 ; Can only be 255 (-1), 0 or 1
2543 %c = load i8* %z, align 1, !range !2 ; Can only be 0, 1, 3, 4 or 5
2544 %d = load i8* %z, align 1, !range !3 ; Can only be -2, -1, 3, 4 or 5
2545 ...
2546 !0 = metadata !{ i8 0, i8 2 }
2547 !1 = metadata !{ i8 255, i8 2 }
2548 !2 = metadata !{ i8 0, i8 2, i8 3, i8 6 }
2549 !3 = metadata !{ i8 -2, i8 0, i8 3, i8 6 }
2550
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002551'``llvm.loop``'
2552^^^^^^^^^^^^^^^
2553
2554It is sometimes useful to attach information to loop constructs. Currently,
2555loop metadata is implemented as metadata attached to the branch instruction
2556in the loop latch block. This type of metadata refer to a metadata node that is
2557guaranteed to be separate for each loop. The loop-level metadata is prefixed
2558with ``llvm.loop``.
2559
2560The loop identifier metadata is implemented using a metadata that refers to
Michael Liao2faa0f32013-03-06 18:24:34 +00002561itself to avoid merging it with any other identifier metadata, e.g.,
2562during module linkage or function inlining. That is, each loop should refer
2563to their own identification metadata even if they reside in separate functions.
2564The following example contains loop identifier metadata for two separate loop
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002565constructs:
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002566
2567.. code-block:: llvm
Paul Redmond8f0696c2013-02-21 17:20:45 +00002568
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002569 !0 = metadata !{ metadata !0 }
Pekka Jaaskelainen45b2c252013-02-22 12:03:07 +00002570 !1 = metadata !{ metadata !1 }
2571
Pekka Jaaskelainen5d0ce792013-02-13 18:08:57 +00002572
2573'``llvm.loop.parallel``' Metadata
2574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2575
2576This loop metadata can be used to communicate that a loop should be considered
2577a parallel loop. The semantics of parallel loops in this case is the one
2578with the strongest cross-iteration instruction ordering freedom: the
2579iterations in the loop can be considered completely independent of each
2580other (also known as embarrassingly parallel loops).
2581
2582This metadata can originate from a programming language with parallel loop
2583constructs. In such a case it is completely the programmer's responsibility
2584to ensure the instructions from the different iterations of the loop can be
2585executed in an arbitrary order, in parallel, or intertwined. No loop-carried
2586dependency checking at all must be expected from the compiler.
2587
2588In order to fulfill the LLVM requirement for metadata to be safely ignored,
2589it is important to ensure that a parallel loop is converted to
2590a sequential loop in case an optimization (agnostic of the parallel loop
2591semantics) converts the loop back to such. This happens when new memory
2592accesses that do not fulfill the requirement of free ordering across iterations
2593are added to the loop. Therefore, this metadata is required, but not
2594sufficient, to consider the loop at hand a parallel loop. For a loop
2595to be parallel, all its memory accessing instructions need to be
2596marked with the ``llvm.mem.parallel_loop_access`` metadata that refer
2597to the same loop identifier metadata that identify the loop at hand.
2598
2599'``llvm.mem``'
2600^^^^^^^^^^^^^^^
2601
2602Metadata types used to annotate memory accesses with information helpful
2603for optimizations are prefixed with ``llvm.mem``.
2604
2605'``llvm.mem.parallel_loop_access``' Metadata
2606^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2607
2608For a loop to be parallel, in addition to using
2609the ``llvm.loop.parallel`` metadata to mark the loop latch branch instruction,
2610also all of the memory accessing instructions in the loop body need to be
2611marked with the ``llvm.mem.parallel_loop_access`` metadata. If there
2612is at least one memory accessing instruction not marked with the metadata,
2613the loop, despite it possibly using the ``llvm.loop.parallel`` metadata,
2614must be considered a sequential loop. This causes parallel loops to be
2615converted to sequential loops due to optimization passes that are unaware of
2616the parallel semantics and that insert new memory instructions to the loop
2617body.
2618
2619Example of a loop that is considered parallel due to its correct use of
2620both ``llvm.loop.parallel`` and ``llvm.mem.parallel_loop_access``
2621metadata types that refer to the same loop identifier metadata.
2622
2623.. code-block:: llvm
2624
2625 for.body:
2626 ...
2627 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2628 ...
2629 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2630 ...
2631 br i1 %exitcond, label %for.end, label %for.body, !llvm.loop.parallel !0
2632
2633 for.end:
2634 ...
2635 !0 = metadata !{ metadata !0 }
2636
2637It is also possible to have nested parallel loops. In that case the
2638memory accesses refer to a list of loop identifier metadata nodes instead of
2639the loop identifier metadata node directly:
2640
2641.. code-block:: llvm
2642
2643 outer.for.body:
2644 ...
2645
2646 inner.for.body:
2647 ...
2648 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2649 ...
2650 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2651 ...
2652 br i1 %exitcond, label %inner.for.end, label %inner.for.body, !llvm.loop.parallel !1
2653
2654 inner.for.end:
2655 ...
2656 %0 = load i32* %arrayidx, align 4, !llvm.mem.parallel_loop_access !0
2657 ...
2658 store i32 %0, i32* %arrayidx4, align 4, !llvm.mem.parallel_loop_access !0
2659 ...
2660 br i1 %exitcond, label %outer.for.end, label %outer.for.body, !llvm.loop.parallel !2
2661
2662 outer.for.end: ; preds = %for.body
2663 ...
2664 !0 = metadata !{ metadata !1, metadata !2 } ; a list of parallel loop identifiers
2665 !1 = metadata !{ metadata !1 } ; an identifier for the inner parallel loop
2666 !2 = metadata !{ metadata !2 } ; an identifier for the outer parallel loop
2667
2668
Sean Silvaf722b002012-12-07 10:36:55 +00002669Module Flags Metadata
2670=====================
2671
2672Information about the module as a whole is difficult to convey to LLVM's
2673subsystems. The LLVM IR isn't sufficient to transmit this information.
2674The ``llvm.module.flags`` named metadata exists in order to facilitate
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002675this. These flags are in the form of key / value pairs --- much like a
2676dictionary --- making it easy for any subsystem who cares about a flag to
Sean Silvaf722b002012-12-07 10:36:55 +00002677look it up.
2678
2679The ``llvm.module.flags`` metadata contains a list of metadata triplets.
2680Each triplet has the following form:
2681
2682- The first element is a *behavior* flag, which specifies the behavior
2683 when two (or more) modules are merged together, and it encounters two
2684 (or more) metadata with the same ID. The supported behaviors are
2685 described below.
2686- The second element is a metadata string that is a unique ID for the
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002687 metadata. Each module may only have one flag entry for each unique ID (not
2688 including entries with the **Require** behavior).
Sean Silvaf722b002012-12-07 10:36:55 +00002689- The third element is the value of the flag.
2690
2691When two (or more) modules are merged together, the resulting
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002692``llvm.module.flags`` metadata is the union of the modules' flags. That is, for
2693each unique metadata ID string, there will be exactly one entry in the merged
2694modules ``llvm.module.flags`` metadata table, and the value for that entry will
2695be determined by the merge behavior flag, as described below. The only exception
2696is that entries with the *Require* behavior are always preserved.
Sean Silvaf722b002012-12-07 10:36:55 +00002697
2698The following behaviors are supported:
2699
2700.. list-table::
2701 :header-rows: 1
2702 :widths: 10 90
2703
2704 * - Value
2705 - Behavior
2706
2707 * - 1
2708 - **Error**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002709 Emits an error if two values disagree, otherwise the resulting value
2710 is that of the operands.
Sean Silvaf722b002012-12-07 10:36:55 +00002711
2712 * - 2
2713 - **Warning**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002714 Emits a warning if two values disagree. The result value will be the
2715 operand for the flag from the first module being linked.
Sean Silvaf722b002012-12-07 10:36:55 +00002716
2717 * - 3
2718 - **Require**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002719 Adds a requirement that another module flag be present and have a
2720 specified value after linking is performed. The value must be a
2721 metadata pair, where the first element of the pair is the ID of the
2722 module flag to be restricted, and the second element of the pair is
2723 the value the module flag should be restricted to. This behavior can
2724 be used to restrict the allowable results (via triggering of an
2725 error) of linking IDs with the **Override** behavior.
Sean Silvaf722b002012-12-07 10:36:55 +00002726
2727 * - 4
2728 - **Override**
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002729 Uses the specified value, regardless of the behavior or value of the
2730 other module. If both modules specify **Override**, but the values
2731 differ, an error will be emitted.
2732
Daniel Dunbar5db391c2013-01-16 21:38:56 +00002733 * - 5
2734 - **Append**
2735 Appends the two values, which are required to be metadata nodes.
2736
2737 * - 6
2738 - **AppendUnique**
2739 Appends the two values, which are required to be metadata
2740 nodes. However, duplicate entries in the second list are dropped
2741 during the append operation.
2742
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002743It is an error for a particular unique flag ID to have multiple behaviors,
2744except in the case of **Require** (which adds restrictions on another metadata
2745value) or **Override**.
Sean Silvaf722b002012-12-07 10:36:55 +00002746
2747An example of module flags:
2748
2749.. code-block:: llvm
2750
2751 !0 = metadata !{ i32 1, metadata !"foo", i32 1 }
2752 !1 = metadata !{ i32 4, metadata !"bar", i32 37 }
2753 !2 = metadata !{ i32 2, metadata !"qux", i32 42 }
2754 !3 = metadata !{ i32 3, metadata !"qux",
2755 metadata !{
2756 metadata !"foo", i32 1
2757 }
2758 }
2759 !llvm.module.flags = !{ !0, !1, !2, !3 }
2760
2761- Metadata ``!0`` has the ID ``!"foo"`` and the value '1'. The behavior
2762 if two or more ``!"foo"`` flags are seen is to emit an error if their
2763 values are not equal.
2764
2765- Metadata ``!1`` has the ID ``!"bar"`` and the value '37'. The
2766 behavior if two or more ``!"bar"`` flags are seen is to use the value
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002767 '37'.
Sean Silvaf722b002012-12-07 10:36:55 +00002768
2769- Metadata ``!2`` has the ID ``!"qux"`` and the value '42'. The
2770 behavior if two or more ``!"qux"`` flags are seen is to emit a
2771 warning if their values are not equal.
2772
2773- Metadata ``!3`` has the ID ``!"qux"`` and the value:
2774
2775 ::
2776
2777 metadata !{ metadata !"foo", i32 1 }
2778
Daniel Dunbar8dd938e2013-01-15 01:22:53 +00002779 The behavior is to emit an error if the ``llvm.module.flags`` does not
2780 contain a flag with the ID ``!"foo"`` that has the value '1' after linking is
2781 performed.
Sean Silvaf722b002012-12-07 10:36:55 +00002782
2783Objective-C Garbage Collection Module Flags Metadata
2784----------------------------------------------------
2785
2786On the Mach-O platform, Objective-C stores metadata about garbage
2787collection in a special section called "image info". The metadata
2788consists of a version number and a bitmask specifying what types of
2789garbage collection are supported (if any) by the file. If two or more
2790modules are linked together their garbage collection metadata needs to
2791be merged rather than appended together.
2792
2793The Objective-C garbage collection module flags metadata consists of the
2794following key-value pairs:
2795
2796.. list-table::
2797 :header-rows: 1
2798 :widths: 30 70
2799
2800 * - Key
2801 - Value
2802
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002803 * - ``Objective-C Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002804 - **[Required]** --- The Objective-C ABI version. Valid values are 1 and 2.
Sean Silvaf722b002012-12-07 10:36:55 +00002805
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002806 * - ``Objective-C Image Info Version``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002807 - **[Required]** --- The version of the image info section. Currently
Sean Silvaf722b002012-12-07 10:36:55 +00002808 always 0.
2809
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002810 * - ``Objective-C Image Info Section``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002811 - **[Required]** --- The section to place the metadata. Valid values are
Sean Silvaf722b002012-12-07 10:36:55 +00002812 ``"__OBJC, __image_info, regular"`` for Objective-C ABI version 1, and
2813 ``"__DATA,__objc_imageinfo, regular, no_dead_strip"`` for
2814 Objective-C ABI version 2.
2815
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002816 * - ``Objective-C Garbage Collection``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002817 - **[Required]** --- Specifies whether garbage collection is supported or
Sean Silvaf722b002012-12-07 10:36:55 +00002818 not. Valid values are 0, for no garbage collection, and 2, for garbage
2819 collection supported.
2820
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002821 * - ``Objective-C GC Only``
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00002822 - **[Optional]** --- Specifies that only garbage collection is supported.
Sean Silvaf722b002012-12-07 10:36:55 +00002823 If present, its value must be 6. This flag requires that the
2824 ``Objective-C Garbage Collection`` flag have the value 2.
2825
2826Some important flag interactions:
2827
2828- If a module with ``Objective-C Garbage Collection`` set to 0 is
2829 merged with a module with ``Objective-C Garbage Collection`` set to
2830 2, then the resulting module has the
2831 ``Objective-C Garbage Collection`` flag set to 0.
2832- A module with ``Objective-C Garbage Collection`` set to 0 cannot be
2833 merged with a module with ``Objective-C GC Only`` set to 6.
2834
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002835Automatic Linker Flags Module Flags Metadata
2836--------------------------------------------
2837
2838Some targets support embedding flags to the linker inside individual object
2839files. Typically this is used in conjunction with language extensions which
2840allow source files to explicitly declare the libraries they depend on, and have
2841these automatically be transmitted to the linker via object files.
2842
2843These flags are encoded in the IR using metadata in the module flags section,
Daniel Dunbar3389dbc2013-01-17 18:57:32 +00002844using the ``Linker Options`` key. The merge behavior for this flag is required
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002845to be ``AppendUnique``, and the value for the key is expected to be a metadata
2846node which should be a list of other metadata nodes, each of which should be a
2847list of metadata strings defining linker options.
2848
2849For example, the following metadata section specifies two separate sets of
2850linker options, presumably to link against ``libz`` and the ``Cocoa``
2851framework::
2852
Michael Liao2faa0f32013-03-06 18:24:34 +00002853 !0 = metadata !{ i32 6, metadata !"Linker Options",
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002854 metadata !{
Daniel Dunbar6d49b682013-01-18 19:37:00 +00002855 metadata !{ metadata !"-lz" },
2856 metadata !{ metadata !"-framework", metadata !"Cocoa" } } }
Daniel Dunbare06bfe82013-01-17 00:16:27 +00002857 !llvm.module.flags = !{ !0 }
2858
2859The metadata encoding as lists of lists of options, as opposed to a collapsed
2860list of options, is chosen so that the IR encoding can use multiple option
2861strings to specify e.g., a single library, while still having that specifier be
2862preserved as an atomic element that can be recognized by a target specific
2863assembly writer or object file emitter.
2864
2865Each individual option is required to be either a valid option for the target's
2866linker, or an option that is reserved by the target specific assembly writer or
2867object file emitter. No other aspect of these options is defined by the IR.
2868
Sean Silvaf722b002012-12-07 10:36:55 +00002869Intrinsic Global Variables
2870==========================
2871
2872LLVM has a number of "magic" global variables that contain data that
2873affect code generation or other IR semantics. These are documented here.
2874All globals of this sort should have a section specified as
2875"``llvm.metadata``". This section and all globals that start with
2876"``llvm.``" are reserved for use by LLVM.
2877
2878The '``llvm.used``' Global Variable
2879-----------------------------------
2880
Rafael Espindolacde25b42013-04-22 14:58:02 +00002881The ``@llvm.used`` global is an array which has
2882 :ref:`appending linkage <linkage_appending>`. This array contains a list of
2883pointers to global variables, functions and aliases which may optionally have a
Sean Silvaf722b002012-12-07 10:36:55 +00002884pointer cast formed of bitcast or getelementptr. For example, a legal
2885use of it is:
2886
2887.. code-block:: llvm
2888
2889 @X = global i8 4
2890 @Y = global i32 123
2891
2892 @llvm.used = appending global [2 x i8*] [
2893 i8* @X,
2894 i8* bitcast (i32* @Y to i8*)
2895 ], section "llvm.metadata"
2896
Rafael Espindolacde25b42013-04-22 14:58:02 +00002897If a symbol appears in the ``@llvm.used`` list, then the compiler, assembler,
2898and linker are required to treat the symbol as if there is a reference to the
2899symbol that it cannot see. For example, if a variable has internal linkage and
2900no references other than that from the ``@llvm.used`` list, it cannot be
2901deleted. This is commonly used to represent references from inline asms and
2902other things the compiler cannot "see", and corresponds to
2903"``attribute((used))``" in GNU C.
Sean Silvaf722b002012-12-07 10:36:55 +00002904
2905On some targets, the code generator must emit a directive to the
2906assembler or object file to prevent the assembler and linker from
2907molesting the symbol.
2908
2909The '``llvm.compiler.used``' Global Variable
2910--------------------------------------------
2911
2912The ``@llvm.compiler.used`` directive is the same as the ``@llvm.used``
2913directive, except that it only prevents the compiler from touching the
2914symbol. On targets that support it, this allows an intelligent linker to
2915optimize references to the symbol without being impeded as it would be
2916by ``@llvm.used``.
2917
2918This is a rare construct that should only be used in rare circumstances,
2919and should not be exposed to source languages.
2920
2921The '``llvm.global_ctors``' Global Variable
2922-------------------------------------------
2923
2924.. code-block:: llvm
2925
2926 %0 = type { i32, void ()* }
2927 @llvm.global_ctors = appending global [1 x %0] [%0 { i32 65535, void ()* @ctor }]
2928
2929The ``@llvm.global_ctors`` array contains a list of constructor
2930functions and associated priorities. The functions referenced by this
2931array will be called in ascending order of priority (i.e. lowest first)
2932when the module is loaded. The order of functions with the same priority
2933is not defined.
2934
2935The '``llvm.global_dtors``' Global Variable
2936-------------------------------------------
2937
2938.. code-block:: llvm
2939
2940 %0 = type { i32, void ()* }
2941 @llvm.global_dtors = appending global [1 x %0] [%0 { i32 65535, void ()* @dtor }]
2942
2943The ``@llvm.global_dtors`` array contains a list of destructor functions
2944and associated priorities. The functions referenced by this array will
2945be called in descending order of priority (i.e. highest first) when the
2946module is loaded. The order of functions with the same priority is not
2947defined.
2948
2949Instruction Reference
2950=====================
2951
2952The LLVM instruction set consists of several different classifications
2953of instructions: :ref:`terminator instructions <terminators>`, :ref:`binary
2954instructions <binaryops>`, :ref:`bitwise binary
2955instructions <bitwiseops>`, :ref:`memory instructions <memoryops>`, and
2956:ref:`other instructions <otherops>`.
2957
2958.. _terminators:
2959
2960Terminator Instructions
2961-----------------------
2962
2963As mentioned :ref:`previously <functionstructure>`, every basic block in a
2964program ends with a "Terminator" instruction, which indicates which
2965block should be executed after the current block is finished. These
2966terminator instructions typically yield a '``void``' value: they produce
2967control flow, not values (the one exception being the
2968':ref:`invoke <i_invoke>`' instruction).
2969
2970The terminator instructions are: ':ref:`ret <i_ret>`',
2971':ref:`br <i_br>`', ':ref:`switch <i_switch>`',
2972':ref:`indirectbr <i_indirectbr>`', ':ref:`invoke <i_invoke>`',
2973':ref:`resume <i_resume>`', and ':ref:`unreachable <i_unreachable>`'.
2974
2975.. _i_ret:
2976
2977'``ret``' Instruction
2978^^^^^^^^^^^^^^^^^^^^^
2979
2980Syntax:
2981"""""""
2982
2983::
2984
2985 ret <type> <value> ; Return a value from a non-void function
2986 ret void ; Return from void function
2987
2988Overview:
2989"""""""""
2990
2991The '``ret``' instruction is used to return control flow (and optionally
2992a value) from a function back to the caller.
2993
2994There are two forms of the '``ret``' instruction: one that returns a
2995value and then causes control flow, and one that just causes control
2996flow to occur.
2997
2998Arguments:
2999""""""""""
3000
3001The '``ret``' instruction optionally accepts a single argument, the
3002return value. The type of the return value must be a ':ref:`first
3003class <t_firstclass>`' type.
3004
3005A function is not :ref:`well formed <wellformed>` if it it has a non-void
3006return type and contains a '``ret``' instruction with no return value or
3007a return value with a type that does not match its type, or if it has a
3008void return type and contains a '``ret``' instruction with a return
3009value.
3010
3011Semantics:
3012""""""""""
3013
3014When the '``ret``' instruction is executed, control flow returns back to
3015the calling function's context. If the caller is a
3016":ref:`call <i_call>`" instruction, execution continues at the
3017instruction after the call. If the caller was an
3018":ref:`invoke <i_invoke>`" instruction, execution continues at the
3019beginning of the "normal" destination block. If the instruction returns
3020a value, that value shall set the call or invoke instruction's return
3021value.
3022
3023Example:
3024""""""""
3025
3026.. code-block:: llvm
3027
3028 ret i32 5 ; Return an integer value of 5
3029 ret void ; Return from a void function
3030 ret { i32, i8 } { i32 4, i8 2 } ; Return a struct of values 4 and 2
3031
3032.. _i_br:
3033
3034'``br``' Instruction
3035^^^^^^^^^^^^^^^^^^^^
3036
3037Syntax:
3038"""""""
3039
3040::
3041
3042 br i1 <cond>, label <iftrue>, label <iffalse>
3043 br label <dest> ; Unconditional branch
3044
3045Overview:
3046"""""""""
3047
3048The '``br``' instruction is used to cause control flow to transfer to a
3049different basic block in the current function. There are two forms of
3050this instruction, corresponding to a conditional branch and an
3051unconditional branch.
3052
3053Arguments:
3054""""""""""
3055
3056The conditional branch form of the '``br``' instruction takes a single
3057'``i1``' value and two '``label``' values. The unconditional form of the
3058'``br``' instruction takes a single '``label``' value as a target.
3059
3060Semantics:
3061""""""""""
3062
3063Upon execution of a conditional '``br``' instruction, the '``i1``'
3064argument is evaluated. If the value is ``true``, control flows to the
3065'``iftrue``' ``label`` argument. If "cond" is ``false``, control flows
3066to the '``iffalse``' ``label`` argument.
3067
3068Example:
3069""""""""
3070
3071.. code-block:: llvm
3072
3073 Test:
3074 %cond = icmp eq i32 %a, %b
3075 br i1 %cond, label %IfEqual, label %IfUnequal
3076 IfEqual:
3077 ret i32 1
3078 IfUnequal:
3079 ret i32 0
3080
3081.. _i_switch:
3082
3083'``switch``' Instruction
3084^^^^^^^^^^^^^^^^^^^^^^^^
3085
3086Syntax:
3087"""""""
3088
3089::
3090
3091 switch <intty> <value>, label <defaultdest> [ <intty> <val>, label <dest> ... ]
3092
3093Overview:
3094"""""""""
3095
3096The '``switch``' instruction is used to transfer control flow to one of
3097several different places. It is a generalization of the '``br``'
3098instruction, allowing a branch to occur to one of many possible
3099destinations.
3100
3101Arguments:
3102""""""""""
3103
3104The '``switch``' instruction uses three parameters: an integer
3105comparison value '``value``', a default '``label``' destination, and an
3106array of pairs of comparison value constants and '``label``'s. The table
3107is not allowed to contain duplicate constant entries.
3108
3109Semantics:
3110""""""""""
3111
3112The ``switch`` instruction specifies a table of values and destinations.
3113When the '``switch``' instruction is executed, this table is searched
3114for the given value. If the value is found, control flow is transferred
3115to the corresponding destination; otherwise, control flow is transferred
3116to the default destination.
3117
3118Implementation:
3119"""""""""""""""
3120
3121Depending on properties of the target machine and the particular
3122``switch`` instruction, this instruction may be code generated in
3123different ways. For example, it could be generated as a series of
3124chained conditional branches or with a lookup table.
3125
3126Example:
3127""""""""
3128
3129.. code-block:: llvm
3130
3131 ; Emulate a conditional br instruction
3132 %Val = zext i1 %value to i32
3133 switch i32 %Val, label %truedest [ i32 0, label %falsedest ]
3134
3135 ; Emulate an unconditional br instruction
3136 switch i32 0, label %dest [ ]
3137
3138 ; Implement a jump table:
3139 switch i32 %val, label %otherwise [ i32 0, label %onzero
3140 i32 1, label %onone
3141 i32 2, label %ontwo ]
3142
3143.. _i_indirectbr:
3144
3145'``indirectbr``' Instruction
3146^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3147
3148Syntax:
3149"""""""
3150
3151::
3152
3153 indirectbr <somety>* <address>, [ label <dest1>, label <dest2>, ... ]
3154
3155Overview:
3156"""""""""
3157
3158The '``indirectbr``' instruction implements an indirect branch to a
3159label within the current function, whose address is specified by
3160"``address``". Address must be derived from a
3161:ref:`blockaddress <blockaddress>` constant.
3162
3163Arguments:
3164""""""""""
3165
3166The '``address``' argument is the address of the label to jump to. The
3167rest of the arguments indicate the full set of possible destinations
3168that the address may point to. Blocks are allowed to occur multiple
3169times in the destination list, though this isn't particularly useful.
3170
3171This destination list is required so that dataflow analysis has an
3172accurate understanding of the CFG.
3173
3174Semantics:
3175""""""""""
3176
3177Control transfers to the block specified in the address argument. All
3178possible destination blocks must be listed in the label list, otherwise
3179this instruction has undefined behavior. This implies that jumps to
3180labels defined in other functions have undefined behavior as well.
3181
3182Implementation:
3183"""""""""""""""
3184
3185This is typically implemented with a jump through a register.
3186
3187Example:
3188""""""""
3189
3190.. code-block:: llvm
3191
3192 indirectbr i8* %Addr, [ label %bb1, label %bb2, label %bb3 ]
3193
3194.. _i_invoke:
3195
3196'``invoke``' Instruction
3197^^^^^^^^^^^^^^^^^^^^^^^^
3198
3199Syntax:
3200"""""""
3201
3202::
3203
3204 <result> = invoke [cconv] [ret attrs] <ptr to function ty> <function ptr val>(<function args>) [fn attrs]
3205 to label <normal label> unwind label <exception label>
3206
3207Overview:
3208"""""""""
3209
3210The '``invoke``' instruction causes control to transfer to a specified
3211function, with the possibility of control flow transfer to either the
3212'``normal``' label or the '``exception``' label. If the callee function
3213returns with the "``ret``" instruction, control flow will return to the
3214"normal" label. If the callee (or any indirect callees) returns via the
3215":ref:`resume <i_resume>`" instruction or other exception handling
3216mechanism, control is interrupted and continued at the dynamically
3217nearest "exception" label.
3218
3219The '``exception``' label is a `landing
3220pad <ExceptionHandling.html#overview>`_ for the exception. As such,
3221'``exception``' label is required to have the
3222":ref:`landingpad <i_landingpad>`" instruction, which contains the
3223information about the behavior of the program after unwinding happens,
3224as its first non-PHI instruction. The restrictions on the
3225"``landingpad``" instruction's tightly couples it to the "``invoke``"
3226instruction, so that the important information contained within the
3227"``landingpad``" instruction can't be lost through normal code motion.
3228
3229Arguments:
3230""""""""""
3231
3232This instruction requires several arguments:
3233
3234#. The optional "cconv" marker indicates which :ref:`calling
3235 convention <callingconv>` the call should use. If none is
3236 specified, the call defaults to using C calling conventions.
3237#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
3238 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
3239 are valid here.
3240#. '``ptr to function ty``': shall be the signature of the pointer to
3241 function value being invoked. In most cases, this is a direct
3242 function invocation, but indirect ``invoke``'s are just as possible,
3243 branching off an arbitrary pointer to function value.
3244#. '``function ptr val``': An LLVM value containing a pointer to a
3245 function to be invoked.
3246#. '``function args``': argument list whose types match the function
3247 signature argument types and parameter attributes. All arguments must
3248 be of :ref:`first class <t_firstclass>` type. If the function signature
3249 indicates the function accepts a variable number of arguments, the
3250 extra arguments can be specified.
3251#. '``normal label``': the label reached when the called function
3252 executes a '``ret``' instruction.
3253#. '``exception label``': the label reached when a callee returns via
3254 the :ref:`resume <i_resume>` instruction or other exception handling
3255 mechanism.
3256#. The optional :ref:`function attributes <fnattrs>` list. Only
3257 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
3258 attributes are valid here.
3259
3260Semantics:
3261""""""""""
3262
3263This instruction is designed to operate as a standard '``call``'
3264instruction in most regards. The primary difference is that it
3265establishes an association with a label, which is used by the runtime
3266library to unwind the stack.
3267
3268This instruction is used in languages with destructors to ensure that
3269proper cleanup is performed in the case of either a ``longjmp`` or a
3270thrown exception. Additionally, this is important for implementation of
3271'``catch``' clauses in high-level languages that support them.
3272
3273For the purposes of the SSA form, the definition of the value returned
3274by the '``invoke``' instruction is deemed to occur on the edge from the
3275current block to the "normal" label. If the callee unwinds then no
3276return value is available.
3277
3278Example:
3279""""""""
3280
3281.. code-block:: llvm
3282
3283 %retval = invoke i32 @Test(i32 15) to label %Continue
3284 unwind label %TestCleanup ; {i32}:retval set
3285 %retval = invoke coldcc i32 %Testfnptr(i32 15) to label %Continue
3286 unwind label %TestCleanup ; {i32}:retval set
3287
3288.. _i_resume:
3289
3290'``resume``' Instruction
3291^^^^^^^^^^^^^^^^^^^^^^^^
3292
3293Syntax:
3294"""""""
3295
3296::
3297
3298 resume <type> <value>
3299
3300Overview:
3301"""""""""
3302
3303The '``resume``' instruction is a terminator instruction that has no
3304successors.
3305
3306Arguments:
3307""""""""""
3308
3309The '``resume``' instruction requires one argument, which must have the
3310same type as the result of any '``landingpad``' instruction in the same
3311function.
3312
3313Semantics:
3314""""""""""
3315
3316The '``resume``' instruction resumes propagation of an existing
3317(in-flight) exception whose unwinding was interrupted with a
3318:ref:`landingpad <i_landingpad>` instruction.
3319
3320Example:
3321""""""""
3322
3323.. code-block:: llvm
3324
3325 resume { i8*, i32 } %exn
3326
3327.. _i_unreachable:
3328
3329'``unreachable``' Instruction
3330^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3331
3332Syntax:
3333"""""""
3334
3335::
3336
3337 unreachable
3338
3339Overview:
3340"""""""""
3341
3342The '``unreachable``' instruction has no defined semantics. This
3343instruction is used to inform the optimizer that a particular portion of
3344the code is not reachable. This can be used to indicate that the code
3345after a no-return function cannot be reached, and other facts.
3346
3347Semantics:
3348""""""""""
3349
3350The '``unreachable``' instruction has no defined semantics.
3351
3352.. _binaryops:
3353
3354Binary Operations
3355-----------------
3356
3357Binary operators are used to do most of the computation in a program.
3358They require two operands of the same type, execute an operation on
3359them, and produce a single value. The operands might represent multiple
3360data, as is the case with the :ref:`vector <t_vector>` data type. The
3361result value has the same type as its operands.
3362
3363There are several different binary operators:
3364
3365.. _i_add:
3366
3367'``add``' Instruction
3368^^^^^^^^^^^^^^^^^^^^^
3369
3370Syntax:
3371"""""""
3372
3373::
3374
3375 <result> = add <ty> <op1>, <op2> ; yields {ty}:result
3376 <result> = add nuw <ty> <op1>, <op2> ; yields {ty}:result
3377 <result> = add nsw <ty> <op1>, <op2> ; yields {ty}:result
3378 <result> = add nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3379
3380Overview:
3381"""""""""
3382
3383The '``add``' instruction returns the sum of its two operands.
3384
3385Arguments:
3386""""""""""
3387
3388The two arguments to the '``add``' instruction must be
3389:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3390arguments must have identical types.
3391
3392Semantics:
3393""""""""""
3394
3395The value produced is the integer sum of the two operands.
3396
3397If the sum has unsigned overflow, the result returned is the
3398mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3399the result.
3400
3401Because LLVM integers use a two's complement representation, this
3402instruction is appropriate for both signed and unsigned integers.
3403
3404``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3405respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3406result value of the ``add`` is a :ref:`poison value <poisonvalues>` if
3407unsigned and/or signed overflow, respectively, occurs.
3408
3409Example:
3410""""""""
3411
3412.. code-block:: llvm
3413
3414 <result> = add i32 4, %var ; yields {i32}:result = 4 + %var
3415
3416.. _i_fadd:
3417
3418'``fadd``' Instruction
3419^^^^^^^^^^^^^^^^^^^^^^
3420
3421Syntax:
3422"""""""
3423
3424::
3425
3426 <result> = fadd [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3427
3428Overview:
3429"""""""""
3430
3431The '``fadd``' instruction returns the sum of its two operands.
3432
3433Arguments:
3434""""""""""
3435
3436The two arguments to the '``fadd``' instruction must be :ref:`floating
3437point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3438Both arguments must have identical types.
3439
3440Semantics:
3441""""""""""
3442
3443The value produced is the floating point sum of the two operands. This
3444instruction can also take any number of :ref:`fast-math flags <fastmath>`,
3445which are optimization hints to enable otherwise unsafe floating point
3446optimizations:
3447
3448Example:
3449""""""""
3450
3451.. code-block:: llvm
3452
3453 <result> = fadd float 4.0, %var ; yields {float}:result = 4.0 + %var
3454
3455'``sub``' Instruction
3456^^^^^^^^^^^^^^^^^^^^^
3457
3458Syntax:
3459"""""""
3460
3461::
3462
3463 <result> = sub <ty> <op1>, <op2> ; yields {ty}:result
3464 <result> = sub nuw <ty> <op1>, <op2> ; yields {ty}:result
3465 <result> = sub nsw <ty> <op1>, <op2> ; yields {ty}:result
3466 <result> = sub nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3467
3468Overview:
3469"""""""""
3470
3471The '``sub``' instruction returns the difference of its two operands.
3472
3473Note that the '``sub``' instruction is used to represent the '``neg``'
3474instruction present in most other intermediate representations.
3475
3476Arguments:
3477""""""""""
3478
3479The two arguments to the '``sub``' instruction must be
3480:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3481arguments must have identical types.
3482
3483Semantics:
3484""""""""""
3485
3486The value produced is the integer difference of the two operands.
3487
3488If the difference has unsigned overflow, the result returned is the
3489mathematical result modulo 2\ :sup:`n`\ , where n is the bit width of
3490the result.
3491
3492Because LLVM integers use a two's complement representation, this
3493instruction is appropriate for both signed and unsigned integers.
3494
3495``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3496respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3497result value of the ``sub`` is a :ref:`poison value <poisonvalues>` if
3498unsigned and/or signed overflow, respectively, occurs.
3499
3500Example:
3501""""""""
3502
3503.. code-block:: llvm
3504
3505 <result> = sub i32 4, %var ; yields {i32}:result = 4 - %var
3506 <result> = sub i32 0, %val ; yields {i32}:result = -%var
3507
3508.. _i_fsub:
3509
3510'``fsub``' Instruction
3511^^^^^^^^^^^^^^^^^^^^^^
3512
3513Syntax:
3514"""""""
3515
3516::
3517
3518 <result> = fsub [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3519
3520Overview:
3521"""""""""
3522
3523The '``fsub``' instruction returns the difference of its two operands.
3524
3525Note that the '``fsub``' instruction is used to represent the '``fneg``'
3526instruction present in most other intermediate representations.
3527
3528Arguments:
3529""""""""""
3530
3531The two arguments to the '``fsub``' instruction must be :ref:`floating
3532point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3533Both arguments must have identical types.
3534
3535Semantics:
3536""""""""""
3537
3538The value produced is the floating point difference of the two operands.
3539This instruction can also take any number of :ref:`fast-math
3540flags <fastmath>`, which are optimization hints to enable otherwise
3541unsafe floating point optimizations:
3542
3543Example:
3544""""""""
3545
3546.. code-block:: llvm
3547
3548 <result> = fsub float 4.0, %var ; yields {float}:result = 4.0 - %var
3549 <result> = fsub float -0.0, %val ; yields {float}:result = -%var
3550
3551'``mul``' Instruction
3552^^^^^^^^^^^^^^^^^^^^^
3553
3554Syntax:
3555"""""""
3556
3557::
3558
3559 <result> = mul <ty> <op1>, <op2> ; yields {ty}:result
3560 <result> = mul nuw <ty> <op1>, <op2> ; yields {ty}:result
3561 <result> = mul nsw <ty> <op1>, <op2> ; yields {ty}:result
3562 <result> = mul nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3563
3564Overview:
3565"""""""""
3566
3567The '``mul``' instruction returns the product of its two operands.
3568
3569Arguments:
3570""""""""""
3571
3572The two arguments to the '``mul``' instruction must be
3573:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3574arguments must have identical types.
3575
3576Semantics:
3577""""""""""
3578
3579The value produced is the integer product of the two operands.
3580
3581If the result of the multiplication has unsigned overflow, the result
3582returned is the mathematical result modulo 2\ :sup:`n`\ , where n is the
3583bit width of the result.
3584
3585Because LLVM integers use a two's complement representation, and the
3586result is the same width as the operands, this instruction returns the
3587correct result for both signed and unsigned integers. If a full product
3588(e.g. ``i32`` * ``i32`` -> ``i64``) is needed, the operands should be
3589sign-extended or zero-extended as appropriate to the width of the full
3590product.
3591
3592``nuw`` and ``nsw`` stand for "No Unsigned Wrap" and "No Signed Wrap",
3593respectively. If the ``nuw`` and/or ``nsw`` keywords are present, the
3594result value of the ``mul`` is a :ref:`poison value <poisonvalues>` if
3595unsigned and/or signed overflow, respectively, occurs.
3596
3597Example:
3598""""""""
3599
3600.. code-block:: llvm
3601
3602 <result> = mul i32 4, %var ; yields {i32}:result = 4 * %var
3603
3604.. _i_fmul:
3605
3606'``fmul``' Instruction
3607^^^^^^^^^^^^^^^^^^^^^^
3608
3609Syntax:
3610"""""""
3611
3612::
3613
3614 <result> = fmul [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3615
3616Overview:
3617"""""""""
3618
3619The '``fmul``' instruction returns the product of its two operands.
3620
3621Arguments:
3622""""""""""
3623
3624The two arguments to the '``fmul``' instruction must be :ref:`floating
3625point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3626Both arguments must have identical types.
3627
3628Semantics:
3629""""""""""
3630
3631The value produced is the floating point product of the two operands.
3632This instruction can also take any number of :ref:`fast-math
3633flags <fastmath>`, which are optimization hints to enable otherwise
3634unsafe floating point optimizations:
3635
3636Example:
3637""""""""
3638
3639.. code-block:: llvm
3640
3641 <result> = fmul float 4.0, %var ; yields {float}:result = 4.0 * %var
3642
3643'``udiv``' Instruction
3644^^^^^^^^^^^^^^^^^^^^^^
3645
3646Syntax:
3647"""""""
3648
3649::
3650
3651 <result> = udiv <ty> <op1>, <op2> ; yields {ty}:result
3652 <result> = udiv exact <ty> <op1>, <op2> ; yields {ty}:result
3653
3654Overview:
3655"""""""""
3656
3657The '``udiv``' instruction returns the quotient of its two operands.
3658
3659Arguments:
3660""""""""""
3661
3662The two arguments to the '``udiv``' instruction must be
3663:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3664arguments must have identical types.
3665
3666Semantics:
3667""""""""""
3668
3669The value produced is the unsigned integer quotient of the two operands.
3670
3671Note that unsigned integer division and signed integer division are
3672distinct operations; for signed integer division, use '``sdiv``'.
3673
3674Division by zero leads to undefined behavior.
3675
3676If the ``exact`` keyword is present, the result value of the ``udiv`` is
3677a :ref:`poison value <poisonvalues>` if %op1 is not a multiple of %op2 (as
3678such, "((a udiv exact b) mul b) == a").
3679
3680Example:
3681""""""""
3682
3683.. code-block:: llvm
3684
3685 <result> = udiv i32 4, %var ; yields {i32}:result = 4 / %var
3686
3687'``sdiv``' Instruction
3688^^^^^^^^^^^^^^^^^^^^^^
3689
3690Syntax:
3691"""""""
3692
3693::
3694
3695 <result> = sdiv <ty> <op1>, <op2> ; yields {ty}:result
3696 <result> = sdiv exact <ty> <op1>, <op2> ; yields {ty}:result
3697
3698Overview:
3699"""""""""
3700
3701The '``sdiv``' instruction returns the quotient of its two operands.
3702
3703Arguments:
3704""""""""""
3705
3706The two arguments to the '``sdiv``' instruction must be
3707:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3708arguments must have identical types.
3709
3710Semantics:
3711""""""""""
3712
3713The value produced is the signed integer quotient of the two operands
3714rounded towards zero.
3715
3716Note that signed integer division and unsigned integer division are
3717distinct operations; for unsigned integer division, use '``udiv``'.
3718
3719Division by zero leads to undefined behavior. Overflow also leads to
3720undefined behavior; this is a rare case, but can occur, for example, by
3721doing a 32-bit division of -2147483648 by -1.
3722
3723If the ``exact`` keyword is present, the result value of the ``sdiv`` is
3724a :ref:`poison value <poisonvalues>` if the result would be rounded.
3725
3726Example:
3727""""""""
3728
3729.. code-block:: llvm
3730
3731 <result> = sdiv i32 4, %var ; yields {i32}:result = 4 / %var
3732
3733.. _i_fdiv:
3734
3735'``fdiv``' Instruction
3736^^^^^^^^^^^^^^^^^^^^^^
3737
3738Syntax:
3739"""""""
3740
3741::
3742
3743 <result> = fdiv [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3744
3745Overview:
3746"""""""""
3747
3748The '``fdiv``' instruction returns the quotient of its two operands.
3749
3750Arguments:
3751""""""""""
3752
3753The two arguments to the '``fdiv``' instruction must be :ref:`floating
3754point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3755Both arguments must have identical types.
3756
3757Semantics:
3758""""""""""
3759
3760The value produced is the floating point quotient of the two operands.
3761This instruction can also take any number of :ref:`fast-math
3762flags <fastmath>`, which are optimization hints to enable otherwise
3763unsafe floating point optimizations:
3764
3765Example:
3766""""""""
3767
3768.. code-block:: llvm
3769
3770 <result> = fdiv float 4.0, %var ; yields {float}:result = 4.0 / %var
3771
3772'``urem``' Instruction
3773^^^^^^^^^^^^^^^^^^^^^^
3774
3775Syntax:
3776"""""""
3777
3778::
3779
3780 <result> = urem <ty> <op1>, <op2> ; yields {ty}:result
3781
3782Overview:
3783"""""""""
3784
3785The '``urem``' instruction returns the remainder from the unsigned
3786division of its two arguments.
3787
3788Arguments:
3789""""""""""
3790
3791The two arguments to the '``urem``' instruction must be
3792:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3793arguments must have identical types.
3794
3795Semantics:
3796""""""""""
3797
3798This instruction returns the unsigned integer *remainder* of a division.
3799This instruction always performs an unsigned division to get the
3800remainder.
3801
3802Note that unsigned integer remainder and signed integer remainder are
3803distinct operations; for signed integer remainder, use '``srem``'.
3804
3805Taking the remainder of a division by zero leads to undefined behavior.
3806
3807Example:
3808""""""""
3809
3810.. code-block:: llvm
3811
3812 <result> = urem i32 4, %var ; yields {i32}:result = 4 % %var
3813
3814'``srem``' Instruction
3815^^^^^^^^^^^^^^^^^^^^^^
3816
3817Syntax:
3818"""""""
3819
3820::
3821
3822 <result> = srem <ty> <op1>, <op2> ; yields {ty}:result
3823
3824Overview:
3825"""""""""
3826
3827The '``srem``' instruction returns the remainder from the signed
3828division of its two operands. This instruction can also take
3829:ref:`vector <t_vector>` versions of the values in which case the elements
3830must be integers.
3831
3832Arguments:
3833""""""""""
3834
3835The two arguments to the '``srem``' instruction must be
3836:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
3837arguments must have identical types.
3838
3839Semantics:
3840""""""""""
3841
3842This instruction returns the *remainder* of a division (where the result
3843is either zero or has the same sign as the dividend, ``op1``), not the
3844*modulo* operator (where the result is either zero or has the same sign
3845as the divisor, ``op2``) of a value. For more information about the
3846difference, see `The Math
3847Forum <http://mathforum.org/dr.math/problems/anne.4.28.99.html>`_. For a
3848table of how this is implemented in various languages, please see
3849`Wikipedia: modulo
3850operation <http://en.wikipedia.org/wiki/Modulo_operation>`_.
3851
3852Note that signed integer remainder and unsigned integer remainder are
3853distinct operations; for unsigned integer remainder, use '``urem``'.
3854
3855Taking the remainder of a division by zero leads to undefined behavior.
3856Overflow also leads to undefined behavior; this is a rare case, but can
3857occur, for example, by taking the remainder of a 32-bit division of
3858-2147483648 by -1. (The remainder doesn't actually overflow, but this
3859rule lets srem be implemented using instructions that return both the
3860result of the division and the remainder.)
3861
3862Example:
3863""""""""
3864
3865.. code-block:: llvm
3866
3867 <result> = srem i32 4, %var ; yields {i32}:result = 4 % %var
3868
3869.. _i_frem:
3870
3871'``frem``' Instruction
3872^^^^^^^^^^^^^^^^^^^^^^
3873
3874Syntax:
3875"""""""
3876
3877::
3878
3879 <result> = frem [fast-math flags]* <ty> <op1>, <op2> ; yields {ty}:result
3880
3881Overview:
3882"""""""""
3883
3884The '``frem``' instruction returns the remainder from the division of
3885its two operands.
3886
3887Arguments:
3888""""""""""
3889
3890The two arguments to the '``frem``' instruction must be :ref:`floating
3891point <t_floating>` or :ref:`vector <t_vector>` of floating point values.
3892Both arguments must have identical types.
3893
3894Semantics:
3895""""""""""
3896
3897This instruction returns the *remainder* of a division. The remainder
3898has the same sign as the dividend. This instruction can also take any
3899number of :ref:`fast-math flags <fastmath>`, which are optimization hints
3900to enable otherwise unsafe floating point optimizations:
3901
3902Example:
3903""""""""
3904
3905.. code-block:: llvm
3906
3907 <result> = frem float 4.0, %var ; yields {float}:result = 4.0 % %var
3908
3909.. _bitwiseops:
3910
3911Bitwise Binary Operations
3912-------------------------
3913
3914Bitwise binary operators are used to do various forms of bit-twiddling
3915in a program. They are generally very efficient instructions and can
3916commonly be strength reduced from other instructions. They require two
3917operands of the same type, execute an operation on them, and produce a
3918single value. The resulting value is the same type as its operands.
3919
3920'``shl``' Instruction
3921^^^^^^^^^^^^^^^^^^^^^
3922
3923Syntax:
3924"""""""
3925
3926::
3927
3928 <result> = shl <ty> <op1>, <op2> ; yields {ty}:result
3929 <result> = shl nuw <ty> <op1>, <op2> ; yields {ty}:result
3930 <result> = shl nsw <ty> <op1>, <op2> ; yields {ty}:result
3931 <result> = shl nuw nsw <ty> <op1>, <op2> ; yields {ty}:result
3932
3933Overview:
3934"""""""""
3935
3936The '``shl``' instruction returns the first operand shifted to the left
3937a specified number of bits.
3938
3939Arguments:
3940""""""""""
3941
3942Both arguments to the '``shl``' instruction must be the same
3943:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3944'``op2``' is treated as an unsigned value.
3945
3946Semantics:
3947""""""""""
3948
3949The value produced is ``op1`` \* 2\ :sup:`op2` mod 2\ :sup:`n`,
3950where ``n`` is the width of the result. If ``op2`` is (statically or
3951dynamically) negative or equal to or larger than the number of bits in
3952``op1``, the result is undefined. If the arguments are vectors, each
3953vector element of ``op1`` is shifted by the corresponding shift amount
3954in ``op2``.
3955
3956If the ``nuw`` keyword is present, then the shift produces a :ref:`poison
3957value <poisonvalues>` if it shifts out any non-zero bits. If the
3958``nsw`` keyword is present, then the shift produces a :ref:`poison
3959value <poisonvalues>` if it shifts out any bits that disagree with the
3960resultant sign bit. As such, NUW/NSW have the same semantics as they
3961would if the shift were expressed as a mul instruction with the same
3962nsw/nuw bits in (mul %op1, (shl 1, %op2)).
3963
3964Example:
3965""""""""
3966
3967.. code-block:: llvm
3968
3969 <result> = shl i32 4, %var ; yields {i32}: 4 << %var
3970 <result> = shl i32 4, 2 ; yields {i32}: 16
3971 <result> = shl i32 1, 10 ; yields {i32}: 1024
3972 <result> = shl i32 1, 32 ; undefined
3973 <result> = shl <2 x i32> < i32 1, i32 1>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 2, i32 4>
3974
3975'``lshr``' Instruction
3976^^^^^^^^^^^^^^^^^^^^^^
3977
3978Syntax:
3979"""""""
3980
3981::
3982
3983 <result> = lshr <ty> <op1>, <op2> ; yields {ty}:result
3984 <result> = lshr exact <ty> <op1>, <op2> ; yields {ty}:result
3985
3986Overview:
3987"""""""""
3988
3989The '``lshr``' instruction (logical shift right) returns the first
3990operand shifted to the right a specified number of bits with zero fill.
3991
3992Arguments:
3993""""""""""
3994
3995Both arguments to the '``lshr``' instruction must be the same
3996:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
3997'``op2``' is treated as an unsigned value.
3998
3999Semantics:
4000""""""""""
4001
4002This instruction always performs a logical shift right operation. The
4003most significant bits of the result will be filled with zero bits after
4004the shift. If ``op2`` is (statically or dynamically) equal to or larger
4005than the number of bits in ``op1``, the result is undefined. If the
4006arguments are vectors, each vector element of ``op1`` is shifted by the
4007corresponding shift amount in ``op2``.
4008
4009If the ``exact`` keyword is present, the result value of the ``lshr`` is
4010a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4011non-zero.
4012
4013Example:
4014""""""""
4015
4016.. code-block:: llvm
4017
4018 <result> = lshr i32 4, 1 ; yields {i32}:result = 2
4019 <result> = lshr i32 4, 2 ; yields {i32}:result = 1
4020 <result> = lshr i8 4, 3 ; yields {i8}:result = 0
Tim Northover338eba72013-05-07 06:17:14 +00004021 <result> = lshr i8 -2, 1 ; yields {i8}:result = 0x7F
Sean Silvaf722b002012-12-07 10:36:55 +00004022 <result> = lshr i32 1, 32 ; undefined
4023 <result> = lshr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 2> ; yields: result=<2 x i32> < i32 0x7FFFFFFF, i32 1>
4024
4025'``ashr``' Instruction
4026^^^^^^^^^^^^^^^^^^^^^^
4027
4028Syntax:
4029"""""""
4030
4031::
4032
4033 <result> = ashr <ty> <op1>, <op2> ; yields {ty}:result
4034 <result> = ashr exact <ty> <op1>, <op2> ; yields {ty}:result
4035
4036Overview:
4037"""""""""
4038
4039The '``ashr``' instruction (arithmetic shift right) returns the first
4040operand shifted to the right a specified number of bits with sign
4041extension.
4042
4043Arguments:
4044""""""""""
4045
4046Both arguments to the '``ashr``' instruction must be the same
4047:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer type.
4048'``op2``' is treated as an unsigned value.
4049
4050Semantics:
4051""""""""""
4052
4053This instruction always performs an arithmetic shift right operation,
4054The most significant bits of the result will be filled with the sign bit
4055of ``op1``. If ``op2`` is (statically or dynamically) equal to or larger
4056than the number of bits in ``op1``, the result is undefined. If the
4057arguments are vectors, each vector element of ``op1`` is shifted by the
4058corresponding shift amount in ``op2``.
4059
4060If the ``exact`` keyword is present, the result value of the ``ashr`` is
4061a :ref:`poison value <poisonvalues>` if any of the bits shifted out are
4062non-zero.
4063
4064Example:
4065""""""""
4066
4067.. code-block:: llvm
4068
4069 <result> = ashr i32 4, 1 ; yields {i32}:result = 2
4070 <result> = ashr i32 4, 2 ; yields {i32}:result = 1
4071 <result> = ashr i8 4, 3 ; yields {i8}:result = 0
4072 <result> = ashr i8 -2, 1 ; yields {i8}:result = -1
4073 <result> = ashr i32 1, 32 ; undefined
4074 <result> = ashr <2 x i32> < i32 -2, i32 4>, < i32 1, i32 3> ; yields: result=<2 x i32> < i32 -1, i32 0>
4075
4076'``and``' Instruction
4077^^^^^^^^^^^^^^^^^^^^^
4078
4079Syntax:
4080"""""""
4081
4082::
4083
4084 <result> = and <ty> <op1>, <op2> ; yields {ty}:result
4085
4086Overview:
4087"""""""""
4088
4089The '``and``' instruction returns the bitwise logical and of its two
4090operands.
4091
4092Arguments:
4093""""""""""
4094
4095The two arguments to the '``and``' instruction must be
4096:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4097arguments must have identical types.
4098
4099Semantics:
4100""""""""""
4101
4102The truth table used for the '``and``' instruction is:
4103
4104+-----+-----+-----+
4105| In0 | In1 | Out |
4106+-----+-----+-----+
4107| 0 | 0 | 0 |
4108+-----+-----+-----+
4109| 0 | 1 | 0 |
4110+-----+-----+-----+
4111| 1 | 0 | 0 |
4112+-----+-----+-----+
4113| 1 | 1 | 1 |
4114+-----+-----+-----+
4115
4116Example:
4117""""""""
4118
4119.. code-block:: llvm
4120
4121 <result> = and i32 4, %var ; yields {i32}:result = 4 & %var
4122 <result> = and i32 15, 40 ; yields {i32}:result = 8
4123 <result> = and i32 4, 8 ; yields {i32}:result = 0
4124
4125'``or``' Instruction
4126^^^^^^^^^^^^^^^^^^^^
4127
4128Syntax:
4129"""""""
4130
4131::
4132
4133 <result> = or <ty> <op1>, <op2> ; yields {ty}:result
4134
4135Overview:
4136"""""""""
4137
4138The '``or``' instruction returns the bitwise logical inclusive or of its
4139two operands.
4140
4141Arguments:
4142""""""""""
4143
4144The two arguments to the '``or``' instruction must be
4145:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4146arguments must have identical types.
4147
4148Semantics:
4149""""""""""
4150
4151The truth table used for the '``or``' instruction is:
4152
4153+-----+-----+-----+
4154| In0 | In1 | Out |
4155+-----+-----+-----+
4156| 0 | 0 | 0 |
4157+-----+-----+-----+
4158| 0 | 1 | 1 |
4159+-----+-----+-----+
4160| 1 | 0 | 1 |
4161+-----+-----+-----+
4162| 1 | 1 | 1 |
4163+-----+-----+-----+
4164
4165Example:
4166""""""""
4167
4168::
4169
4170 <result> = or i32 4, %var ; yields {i32}:result = 4 | %var
4171 <result> = or i32 15, 40 ; yields {i32}:result = 47
4172 <result> = or i32 4, 8 ; yields {i32}:result = 12
4173
4174'``xor``' Instruction
4175^^^^^^^^^^^^^^^^^^^^^
4176
4177Syntax:
4178"""""""
4179
4180::
4181
4182 <result> = xor <ty> <op1>, <op2> ; yields {ty}:result
4183
4184Overview:
4185"""""""""
4186
4187The '``xor``' instruction returns the bitwise logical exclusive or of
4188its two operands. The ``xor`` is used to implement the "one's
4189complement" operation, which is the "~" operator in C.
4190
4191Arguments:
4192""""""""""
4193
4194The two arguments to the '``xor``' instruction must be
4195:ref:`integer <t_integer>` or :ref:`vector <t_vector>` of integer values. Both
4196arguments must have identical types.
4197
4198Semantics:
4199""""""""""
4200
4201The truth table used for the '``xor``' instruction is:
4202
4203+-----+-----+-----+
4204| In0 | In1 | Out |
4205+-----+-----+-----+
4206| 0 | 0 | 0 |
4207+-----+-----+-----+
4208| 0 | 1 | 1 |
4209+-----+-----+-----+
4210| 1 | 0 | 1 |
4211+-----+-----+-----+
4212| 1 | 1 | 0 |
4213+-----+-----+-----+
4214
4215Example:
4216""""""""
4217
4218.. code-block:: llvm
4219
4220 <result> = xor i32 4, %var ; yields {i32}:result = 4 ^ %var
4221 <result> = xor i32 15, 40 ; yields {i32}:result = 39
4222 <result> = xor i32 4, 8 ; yields {i32}:result = 12
4223 <result> = xor i32 %V, -1 ; yields {i32}:result = ~%V
4224
4225Vector Operations
4226-----------------
4227
4228LLVM supports several instructions to represent vector operations in a
4229target-independent manner. These instructions cover the element-access
4230and vector-specific operations needed to process vectors effectively.
4231While LLVM does directly support these vector operations, many
4232sophisticated algorithms will want to use target-specific intrinsics to
4233take full advantage of a specific target.
4234
4235.. _i_extractelement:
4236
4237'``extractelement``' Instruction
4238^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4239
4240Syntax:
4241"""""""
4242
4243::
4244
4245 <result> = extractelement <n x <ty>> <val>, i32 <idx> ; yields <ty>
4246
4247Overview:
4248"""""""""
4249
4250The '``extractelement``' instruction extracts a single scalar element
4251from a vector at a specified index.
4252
4253Arguments:
4254""""""""""
4255
4256The first operand of an '``extractelement``' instruction is a value of
4257:ref:`vector <t_vector>` type. The second operand is an index indicating
4258the position from which to extract the element. The index may be a
4259variable.
4260
4261Semantics:
4262""""""""""
4263
4264The result is a scalar of the same type as the element type of ``val``.
4265Its value is the value at position ``idx`` of ``val``. If ``idx``
4266exceeds the length of ``val``, the results are undefined.
4267
4268Example:
4269""""""""
4270
4271.. code-block:: llvm
4272
4273 <result> = extractelement <4 x i32> %vec, i32 0 ; yields i32
4274
4275.. _i_insertelement:
4276
4277'``insertelement``' Instruction
4278^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4279
4280Syntax:
4281"""""""
4282
4283::
4284
4285 <result> = insertelement <n x <ty>> <val>, <ty> <elt>, i32 <idx> ; yields <n x <ty>>
4286
4287Overview:
4288"""""""""
4289
4290The '``insertelement``' instruction inserts a scalar element into a
4291vector at a specified index.
4292
4293Arguments:
4294""""""""""
4295
4296The first operand of an '``insertelement``' instruction is a value of
4297:ref:`vector <t_vector>` type. The second operand is a scalar value whose
4298type must equal the element type of the first operand. The third operand
4299is an index indicating the position at which to insert the value. The
4300index may be a variable.
4301
4302Semantics:
4303""""""""""
4304
4305The result is a vector of the same type as ``val``. Its element values
4306are those of ``val`` except at position ``idx``, where it gets the value
4307``elt``. If ``idx`` exceeds the length of ``val``, the results are
4308undefined.
4309
4310Example:
4311""""""""
4312
4313.. code-block:: llvm
4314
4315 <result> = insertelement <4 x i32> %vec, i32 1, i32 0 ; yields <4 x i32>
4316
4317.. _i_shufflevector:
4318
4319'``shufflevector``' Instruction
4320^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4321
4322Syntax:
4323"""""""
4324
4325::
4326
4327 <result> = shufflevector <n x <ty>> <v1>, <n x <ty>> <v2>, <m x i32> <mask> ; yields <m x <ty>>
4328
4329Overview:
4330"""""""""
4331
4332The '``shufflevector``' instruction constructs a permutation of elements
4333from two input vectors, returning a vector with the same element type as
4334the input and length that is the same as the shuffle mask.
4335
4336Arguments:
4337""""""""""
4338
4339The first two operands of a '``shufflevector``' instruction are vectors
4340with the same type. The third argument is a shuffle mask whose element
4341type is always 'i32'. The result of the instruction is a vector whose
4342length is the same as the shuffle mask and whose element type is the
4343same as the element type of the first two operands.
4344
4345The shuffle mask operand is required to be a constant vector with either
4346constant integer or undef values.
4347
4348Semantics:
4349""""""""""
4350
4351The elements of the two input vectors are numbered from left to right
4352across both of the vectors. The shuffle mask operand specifies, for each
4353element of the result vector, which element of the two input vectors the
4354result element gets. The element selector may be undef (meaning "don't
4355care") and the second operand may be undef if performing a shuffle from
4356only one vector.
4357
4358Example:
4359""""""""
4360
4361.. code-block:: llvm
4362
4363 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4364 <4 x i32> <i32 0, i32 4, i32 1, i32 5> ; yields <4 x i32>
4365 <result> = shufflevector <4 x i32> %v1, <4 x i32> undef,
4366 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32> - Identity shuffle.
4367 <result> = shufflevector <8 x i32> %v1, <8 x i32> undef,
4368 <4 x i32> <i32 0, i32 1, i32 2, i32 3> ; yields <4 x i32>
4369 <result> = shufflevector <4 x i32> %v1, <4 x i32> %v2,
4370 <8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7 > ; yields <8 x i32>
4371
4372Aggregate Operations
4373--------------------
4374
4375LLVM supports several instructions for working with
4376:ref:`aggregate <t_aggregate>` values.
4377
4378.. _i_extractvalue:
4379
4380'``extractvalue``' Instruction
4381^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4382
4383Syntax:
4384"""""""
4385
4386::
4387
4388 <result> = extractvalue <aggregate type> <val>, <idx>{, <idx>}*
4389
4390Overview:
4391"""""""""
4392
4393The '``extractvalue``' instruction extracts the value of a member field
4394from an :ref:`aggregate <t_aggregate>` value.
4395
4396Arguments:
4397""""""""""
4398
4399The first operand of an '``extractvalue``' instruction is a value of
4400:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The operands are
4401constant indices to specify which value to extract in a similar manner
4402as indices in a '``getelementptr``' instruction.
4403
4404The major differences to ``getelementptr`` indexing are:
4405
4406- Since the value being indexed is not a pointer, the first index is
4407 omitted and assumed to be zero.
4408- At least one index must be specified.
4409- Not only struct indices but also array indices must be in bounds.
4410
4411Semantics:
4412""""""""""
4413
4414The result is the value at the position in the aggregate specified by
4415the index operands.
4416
4417Example:
4418""""""""
4419
4420.. code-block:: llvm
4421
4422 <result> = extractvalue {i32, float} %agg, 0 ; yields i32
4423
4424.. _i_insertvalue:
4425
4426'``insertvalue``' Instruction
4427^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4428
4429Syntax:
4430"""""""
4431
4432::
4433
4434 <result> = insertvalue <aggregate type> <val>, <ty> <elt>, <idx>{, <idx>}* ; yields <aggregate type>
4435
4436Overview:
4437"""""""""
4438
4439The '``insertvalue``' instruction inserts a value into a member field in
4440an :ref:`aggregate <t_aggregate>` value.
4441
4442Arguments:
4443""""""""""
4444
4445The first operand of an '``insertvalue``' instruction is a value of
4446:ref:`struct <t_struct>` or :ref:`array <t_array>` type. The second operand is
4447a first-class value to insert. The following operands are constant
4448indices indicating the position at which to insert the value in a
4449similar manner as indices in a '``extractvalue``' instruction. The value
4450to insert must have the same type as the value identified by the
4451indices.
4452
4453Semantics:
4454""""""""""
4455
4456The result is an aggregate of the same type as ``val``. Its value is
4457that of ``val`` except that the value at the position specified by the
4458indices is that of ``elt``.
4459
4460Example:
4461""""""""
4462
4463.. code-block:: llvm
4464
4465 %agg1 = insertvalue {i32, float} undef, i32 1, 0 ; yields {i32 1, float undef}
4466 %agg2 = insertvalue {i32, float} %agg1, float %val, 1 ; yields {i32 1, float %val}
4467 %agg3 = insertvalue {i32, {float}} %agg1, float %val, 1, 0 ; yields {i32 1, float %val}
4468
4469.. _memoryops:
4470
4471Memory Access and Addressing Operations
4472---------------------------------------
4473
4474A key design point of an SSA-based representation is how it represents
4475memory. In LLVM, no memory locations are in SSA form, which makes things
4476very simple. This section describes how to read, write, and allocate
4477memory in LLVM.
4478
4479.. _i_alloca:
4480
4481'``alloca``' Instruction
4482^^^^^^^^^^^^^^^^^^^^^^^^
4483
4484Syntax:
4485"""""""
4486
4487::
4488
4489 <result> = alloca <type>[, <ty> <NumElements>][, align <alignment>] ; yields {type*}:result
4490
4491Overview:
4492"""""""""
4493
4494The '``alloca``' instruction allocates memory on the stack frame of the
4495currently executing function, to be automatically released when this
4496function returns to its caller. The object is always allocated in the
4497generic address space (address space zero).
4498
4499Arguments:
4500""""""""""
4501
4502The '``alloca``' instruction allocates ``sizeof(<type>)*NumElements``
4503bytes of memory on the runtime stack, returning a pointer of the
4504appropriate type to the program. If "NumElements" is specified, it is
4505the number of elements allocated, otherwise "NumElements" is defaulted
4506to be one. If a constant alignment is specified, the value result of the
4507allocation is guaranteed to be aligned to at least that boundary. If not
4508specified, or if zero, the target can choose to align the allocation on
4509any convenient boundary compatible with the type.
4510
4511'``type``' may be any sized type.
4512
4513Semantics:
4514""""""""""
4515
4516Memory is allocated; a pointer is returned. The operation is undefined
4517if there is insufficient stack space for the allocation. '``alloca``'d
4518memory is automatically released when the function returns. The
4519'``alloca``' instruction is commonly used to represent automatic
4520variables that must have an address available. When the function returns
4521(either with the ``ret`` or ``resume`` instructions), the memory is
4522reclaimed. Allocating zero bytes is legal, but the result is undefined.
4523The order in which memory is allocated (ie., which way the stack grows)
4524is not specified.
4525
4526Example:
4527""""""""
4528
4529.. code-block:: llvm
4530
4531 %ptr = alloca i32 ; yields {i32*}:ptr
4532 %ptr = alloca i32, i32 4 ; yields {i32*}:ptr
4533 %ptr = alloca i32, i32 4, align 1024 ; yields {i32*}:ptr
4534 %ptr = alloca i32, align 1024 ; yields {i32*}:ptr
4535
4536.. _i_load:
4537
4538'``load``' Instruction
4539^^^^^^^^^^^^^^^^^^^^^^
4540
4541Syntax:
4542"""""""
4543
4544::
4545
4546 <result> = load [volatile] <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>][, !invariant.load !<index>]
4547 <result> = load atomic [volatile] <ty>* <pointer> [singlethread] <ordering>, align <alignment>
4548 !<index> = !{ i32 1 }
4549
4550Overview:
4551"""""""""
4552
4553The '``load``' instruction is used to read from memory.
4554
4555Arguments:
4556""""""""""
4557
Eli Bendersky8c493382013-04-17 20:17:08 +00004558The argument to the ``load`` instruction specifies the memory address
Sean Silvaf722b002012-12-07 10:36:55 +00004559from which to load. The pointer must point to a :ref:`first
4560class <t_firstclass>` type. If the ``load`` is marked as ``volatile``,
4561then the optimizer is not allowed to modify the number or order of
4562execution of this ``load`` with other :ref:`volatile
4563operations <volatile>`.
4564
4565If the ``load`` is marked as ``atomic``, it takes an extra
4566:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4567``release`` and ``acq_rel`` orderings are not valid on ``load``
4568instructions. Atomic loads produce :ref:`defined <memmodel>` results
4569when they may see multiple atomic stores. The type of the pointee must
4570be an integer type whose bit width is a power of two greater than or
4571equal to eight and less than or equal to a target-specific size limit.
4572``align`` must be explicitly specified on atomic loads, and the load has
4573undefined behavior if the alignment is not set to a value which is at
4574least the size in bytes of the pointee. ``!nontemporal`` does not have
4575any defined semantics for atomic loads.
4576
4577The optional constant ``align`` argument specifies the alignment of the
4578operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8c493382013-04-17 20:17:08 +00004579or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004580alignment for the target. It is the responsibility of the code emitter
4581to ensure that the alignment information is correct. Overestimating the
4582alignment results in undefined behavior. Underestimating the alignment
4583may produce less efficient code. An alignment of 1 is always safe.
4584
4585The optional ``!nontemporal`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004586metatadata name ``<index>`` corresponding to a metadata node with one
Sean Silvaf722b002012-12-07 10:36:55 +00004587``i32`` entry of value 1. The existence of the ``!nontemporal``
4588metatadata on the instruction tells the optimizer and code generator
4589that this load is not expected to be reused in the cache. The code
4590generator may select special instructions to save cache bandwidth, such
4591as the ``MOVNT`` instruction on x86.
4592
4593The optional ``!invariant.load`` metadata must reference a single
Eli Bendersky8c493382013-04-17 20:17:08 +00004594metatadata name ``<index>`` corresponding to a metadata node with no
Sean Silvaf722b002012-12-07 10:36:55 +00004595entries. The existence of the ``!invariant.load`` metatadata on the
4596instruction tells the optimizer and code generator that this load
4597address points to memory which does not change value during program
4598execution. The optimizer may then move this load around, for example, by
4599hoisting it out of loops using loop invariant code motion.
4600
4601Semantics:
4602""""""""""
4603
4604The location of memory pointed to is loaded. If the value being loaded
4605is of scalar type then the number of bytes read does not exceed the
4606minimum number of bytes needed to hold all bits of the type. For
4607example, loading an ``i24`` reads at most three bytes. When loading a
4608value of a type like ``i20`` with a size that is not an integral number
4609of bytes, the result is undefined if the value was not originally
4610written using a store of the same type.
4611
4612Examples:
4613"""""""""
4614
4615.. code-block:: llvm
4616
4617 %ptr = alloca i32 ; yields {i32*}:ptr
4618 store i32 3, i32* %ptr ; yields {void}
4619 %val = load i32* %ptr ; yields {i32}:val = i32 3
4620
4621.. _i_store:
4622
4623'``store``' Instruction
4624^^^^^^^^^^^^^^^^^^^^^^^
4625
4626Syntax:
4627"""""""
4628
4629::
4630
4631 store [volatile] <ty> <value>, <ty>* <pointer>[, align <alignment>][, !nontemporal !<index>] ; yields {void}
4632 store atomic [volatile] <ty> <value>, <ty>* <pointer> [singlethread] <ordering>, align <alignment> ; yields {void}
4633
4634Overview:
4635"""""""""
4636
4637The '``store``' instruction is used to write to memory.
4638
4639Arguments:
4640""""""""""
4641
Eli Bendersky8952d902013-04-17 17:17:20 +00004642There are two arguments to the ``store`` instruction: a value to store
4643and an address at which to store it. The type of the ``<pointer>``
Sean Silvaf722b002012-12-07 10:36:55 +00004644operand must be a pointer to the :ref:`first class <t_firstclass>` type of
Eli Bendersky8952d902013-04-17 17:17:20 +00004645the ``<value>`` operand. If the ``store`` is marked as ``volatile``,
Sean Silvaf722b002012-12-07 10:36:55 +00004646then the optimizer is not allowed to modify the number or order of
4647execution of this ``store`` with other :ref:`volatile
4648operations <volatile>`.
4649
4650If the ``store`` is marked as ``atomic``, it takes an extra
4651:ref:`ordering <ordering>` and optional ``singlethread`` argument. The
4652``acquire`` and ``acq_rel`` orderings aren't valid on ``store``
4653instructions. Atomic loads produce :ref:`defined <memmodel>` results
4654when they may see multiple atomic stores. The type of the pointee must
4655be an integer type whose bit width is a power of two greater than or
4656equal to eight and less than or equal to a target-specific size limit.
4657``align`` must be explicitly specified on atomic stores, and the store
4658has undefined behavior if the alignment is not set to a value which is
4659at least the size in bytes of the pointee. ``!nontemporal`` does not
4660have any defined semantics for atomic stores.
4661
Eli Bendersky8952d902013-04-17 17:17:20 +00004662The optional constant ``align`` argument specifies the alignment of the
Sean Silvaf722b002012-12-07 10:36:55 +00004663operation (that is, the alignment of the memory address). A value of 0
Eli Bendersky8952d902013-04-17 17:17:20 +00004664or an omitted ``align`` argument means that the operation has the ABI
Sean Silvaf722b002012-12-07 10:36:55 +00004665alignment for the target. It is the responsibility of the code emitter
4666to ensure that the alignment information is correct. Overestimating the
Eli Bendersky8952d902013-04-17 17:17:20 +00004667alignment results in undefined behavior. Underestimating the
Sean Silvaf722b002012-12-07 10:36:55 +00004668alignment may produce less efficient code. An alignment of 1 is always
4669safe.
4670
Eli Bendersky8952d902013-04-17 17:17:20 +00004671The optional ``!nontemporal`` metadata must reference a single metatadata
4672name ``<index>`` corresponding to a metadata node with one ``i32`` entry of
4673value 1. The existence of the ``!nontemporal`` metatadata on the instruction
Sean Silvaf722b002012-12-07 10:36:55 +00004674tells the optimizer and code generator that this load is not expected to
4675be reused in the cache. The code generator may select special
4676instructions to save cache bandwidth, such as the MOVNT instruction on
4677x86.
4678
4679Semantics:
4680""""""""""
4681
Eli Bendersky8952d902013-04-17 17:17:20 +00004682The contents of memory are updated to contain ``<value>`` at the
4683location specified by the ``<pointer>`` operand. If ``<value>`` is
Sean Silvaf722b002012-12-07 10:36:55 +00004684of scalar type then the number of bytes written does not exceed the
4685minimum number of bytes needed to hold all bits of the type. For
4686example, storing an ``i24`` writes at most three bytes. When writing a
4687value of a type like ``i20`` with a size that is not an integral number
4688of bytes, it is unspecified what happens to the extra bits that do not
4689belong to the type, but they will typically be overwritten.
4690
4691Example:
4692""""""""
4693
4694.. code-block:: llvm
4695
4696 %ptr = alloca i32 ; yields {i32*}:ptr
4697 store i32 3, i32* %ptr ; yields {void}
4698 %val = load i32* %ptr ; yields {i32}:val = i32 3
4699
4700.. _i_fence:
4701
4702'``fence``' Instruction
4703^^^^^^^^^^^^^^^^^^^^^^^
4704
4705Syntax:
4706"""""""
4707
4708::
4709
4710 fence [singlethread] <ordering> ; yields {void}
4711
4712Overview:
4713"""""""""
4714
4715The '``fence``' instruction is used to introduce happens-before edges
4716between operations.
4717
4718Arguments:
4719""""""""""
4720
4721'``fence``' instructions take an :ref:`ordering <ordering>` argument which
4722defines what *synchronizes-with* edges they add. They can only be given
4723``acquire``, ``release``, ``acq_rel``, and ``seq_cst`` orderings.
4724
4725Semantics:
4726""""""""""
4727
4728A fence A which has (at least) ``release`` ordering semantics
4729*synchronizes with* a fence B with (at least) ``acquire`` ordering
4730semantics if and only if there exist atomic operations X and Y, both
4731operating on some atomic object M, such that A is sequenced before X, X
4732modifies M (either directly or through some side effect of a sequence
4733headed by X), Y is sequenced before B, and Y observes M. This provides a
4734*happens-before* dependency between A and B. Rather than an explicit
4735``fence``, one (but not both) of the atomic operations X or Y might
4736provide a ``release`` or ``acquire`` (resp.) ordering constraint and
4737still *synchronize-with* the explicit ``fence`` and establish the
4738*happens-before* edge.
4739
4740A ``fence`` which has ``seq_cst`` ordering, in addition to having both
4741``acquire`` and ``release`` semantics specified above, participates in
4742the global program order of other ``seq_cst`` operations and/or fences.
4743
4744The optional ":ref:`singlethread <singlethread>`" argument specifies
4745that the fence only synchronizes with other fences in the same thread.
4746(This is useful for interacting with signal handlers.)
4747
4748Example:
4749""""""""
4750
4751.. code-block:: llvm
4752
4753 fence acquire ; yields {void}
4754 fence singlethread seq_cst ; yields {void}
4755
4756.. _i_cmpxchg:
4757
4758'``cmpxchg``' Instruction
4759^^^^^^^^^^^^^^^^^^^^^^^^^
4760
4761Syntax:
4762"""""""
4763
4764::
4765
4766 cmpxchg [volatile] <ty>* <pointer>, <ty> <cmp>, <ty> <new> [singlethread] <ordering> ; yields {ty}
4767
4768Overview:
4769"""""""""
4770
4771The '``cmpxchg``' instruction is used to atomically modify memory. It
4772loads a value in memory and compares it to a given value. If they are
4773equal, it stores a new value into the memory.
4774
4775Arguments:
4776""""""""""
4777
4778There are three arguments to the '``cmpxchg``' instruction: an address
4779to operate on, a value to compare to the value currently be at that
4780address, and a new value to place at that address if the compared values
4781are equal. The type of '<cmp>' must be an integer type whose bit width
4782is a power of two greater than or equal to eight and less than or equal
4783to a target-specific size limit. '<cmp>' and '<new>' must have the same
4784type, and the type of '<pointer>' must be a pointer to that type. If the
4785``cmpxchg`` is marked as ``volatile``, then the optimizer is not allowed
4786to modify the number or order of execution of this ``cmpxchg`` with
4787other :ref:`volatile operations <volatile>`.
4788
4789The :ref:`ordering <ordering>` argument specifies how this ``cmpxchg``
4790synchronizes with other atomic operations.
4791
4792The optional "``singlethread``" argument declares that the ``cmpxchg``
4793is only atomic with respect to code (usually signal handlers) running in
4794the same thread as the ``cmpxchg``. Otherwise the cmpxchg is atomic with
4795respect to all other code in the system.
4796
4797The pointer passed into cmpxchg must have alignment greater than or
4798equal to the size in memory of the operand.
4799
4800Semantics:
4801""""""""""
4802
4803The contents of memory at the location specified by the '``<pointer>``'
4804operand is read and compared to '``<cmp>``'; if the read value is the
4805equal, '``<new>``' is written. The original value at the location is
4806returned.
4807
4808A successful ``cmpxchg`` is a read-modify-write instruction for the purpose
4809of identifying release sequences. A failed ``cmpxchg`` is equivalent to an
4810atomic load with an ordering parameter determined by dropping any
4811``release`` part of the ``cmpxchg``'s ordering.
4812
4813Example:
4814""""""""
4815
4816.. code-block:: llvm
4817
4818 entry:
4819 %orig = atomic load i32* %ptr unordered ; yields {i32}
4820 br label %loop
4821
4822 loop:
4823 %cmp = phi i32 [ %orig, %entry ], [%old, %loop]
4824 %squared = mul i32 %cmp, %cmp
4825 %old = cmpxchg i32* %ptr, i32 %cmp, i32 %squared ; yields {i32}
4826 %success = icmp eq i32 %cmp, %old
4827 br i1 %success, label %done, label %loop
4828
4829 done:
4830 ...
4831
4832.. _i_atomicrmw:
4833
4834'``atomicrmw``' Instruction
4835^^^^^^^^^^^^^^^^^^^^^^^^^^^
4836
4837Syntax:
4838"""""""
4839
4840::
4841
4842 atomicrmw [volatile] <operation> <ty>* <pointer>, <ty> <value> [singlethread] <ordering> ; yields {ty}
4843
4844Overview:
4845"""""""""
4846
4847The '``atomicrmw``' instruction is used to atomically modify memory.
4848
4849Arguments:
4850""""""""""
4851
4852There are three arguments to the '``atomicrmw``' instruction: an
4853operation to apply, an address whose value to modify, an argument to the
4854operation. The operation must be one of the following keywords:
4855
4856- xchg
4857- add
4858- sub
4859- and
4860- nand
4861- or
4862- xor
4863- max
4864- min
4865- umax
4866- umin
4867
4868The type of '<value>' must be an integer type whose bit width is a power
4869of two greater than or equal to eight and less than or equal to a
4870target-specific size limit. The type of the '``<pointer>``' operand must
4871be a pointer to that type. If the ``atomicrmw`` is marked as
4872``volatile``, then the optimizer is not allowed to modify the number or
4873order of execution of this ``atomicrmw`` with other :ref:`volatile
4874operations <volatile>`.
4875
4876Semantics:
4877""""""""""
4878
4879The contents of memory at the location specified by the '``<pointer>``'
4880operand are atomically read, modified, and written back. The original
4881value at the location is returned. The modification is specified by the
4882operation argument:
4883
4884- xchg: ``*ptr = val``
4885- add: ``*ptr = *ptr + val``
4886- sub: ``*ptr = *ptr - val``
4887- and: ``*ptr = *ptr & val``
4888- nand: ``*ptr = ~(*ptr & val)``
4889- or: ``*ptr = *ptr | val``
4890- xor: ``*ptr = *ptr ^ val``
4891- max: ``*ptr = *ptr > val ? *ptr : val`` (using a signed comparison)
4892- min: ``*ptr = *ptr < val ? *ptr : val`` (using a signed comparison)
4893- umax: ``*ptr = *ptr > val ? *ptr : val`` (using an unsigned
4894 comparison)
4895- umin: ``*ptr = *ptr < val ? *ptr : val`` (using an unsigned
4896 comparison)
4897
4898Example:
4899""""""""
4900
4901.. code-block:: llvm
4902
4903 %old = atomicrmw add i32* %ptr, i32 1 acquire ; yields {i32}
4904
4905.. _i_getelementptr:
4906
4907'``getelementptr``' Instruction
4908^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
4909
4910Syntax:
4911"""""""
4912
4913::
4914
4915 <result> = getelementptr <pty>* <ptrval>{, <ty> <idx>}*
4916 <result> = getelementptr inbounds <pty>* <ptrval>{, <ty> <idx>}*
4917 <result> = getelementptr <ptr vector> ptrval, <vector index type> idx
4918
4919Overview:
4920"""""""""
4921
4922The '``getelementptr``' instruction is used to get the address of a
4923subelement of an :ref:`aggregate <t_aggregate>` data structure. It performs
4924address calculation only and does not access memory.
4925
4926Arguments:
4927""""""""""
4928
4929The first argument is always a pointer or a vector of pointers, and
4930forms the basis of the calculation. The remaining arguments are indices
4931that indicate which of the elements of the aggregate object are indexed.
4932The interpretation of each index is dependent on the type being indexed
4933into. The first index always indexes the pointer value given as the
4934first argument, the second index indexes a value of the type pointed to
4935(not necessarily the value directly pointed to, since the first index
4936can be non-zero), etc. The first type indexed into must be a pointer
4937value, subsequent types can be arrays, vectors, and structs. Note that
4938subsequent types being indexed into can never be pointers, since that
4939would require loading the pointer before continuing calculation.
4940
4941The type of each index argument depends on the type it is indexing into.
4942When indexing into a (optionally packed) structure, only ``i32`` integer
4943**constants** are allowed (when using a vector of indices they must all
4944be the **same** ``i32`` integer constant). When indexing into an array,
4945pointer or vector, integers of any width are allowed, and they are not
4946required to be constant. These integers are treated as signed values
4947where relevant.
4948
4949For example, let's consider a C code fragment and how it gets compiled
4950to LLVM:
4951
4952.. code-block:: c
4953
4954 struct RT {
4955 char A;
4956 int B[10][20];
4957 char C;
4958 };
4959 struct ST {
4960 int X;
4961 double Y;
4962 struct RT Z;
4963 };
4964
4965 int *foo(struct ST *s) {
4966 return &s[1].Z.B[5][13];
4967 }
4968
4969The LLVM code generated by Clang is:
4970
4971.. code-block:: llvm
4972
4973 %struct.RT = type { i8, [10 x [20 x i32]], i8 }
4974 %struct.ST = type { i32, double, %struct.RT }
4975
4976 define i32* @foo(%struct.ST* %s) nounwind uwtable readnone optsize ssp {
4977 entry:
4978 %arrayidx = getelementptr inbounds %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13
4979 ret i32* %arrayidx
4980 }
4981
4982Semantics:
4983""""""""""
4984
4985In the example above, the first index is indexing into the
4986'``%struct.ST*``' type, which is a pointer, yielding a '``%struct.ST``'
4987= '``{ i32, double, %struct.RT }``' type, a structure. The second index
4988indexes into the third element of the structure, yielding a
4989'``%struct.RT``' = '``{ i8 , [10 x [20 x i32]], i8 }``' type, another
4990structure. The third index indexes into the second element of the
4991structure, yielding a '``[10 x [20 x i32]]``' type, an array. The two
4992dimensions of the array are subscripted into, yielding an '``i32``'
4993type. The '``getelementptr``' instruction returns a pointer to this
4994element, thus computing a value of '``i32*``' type.
4995
4996Note that it is perfectly legal to index partially through a structure,
4997returning a pointer to an inner element. Because of this, the LLVM code
4998for the given testcase is equivalent to:
4999
5000.. code-block:: llvm
5001
5002 define i32* @foo(%struct.ST* %s) {
5003 %t1 = getelementptr %struct.ST* %s, i32 1 ; yields %struct.ST*:%t1
5004 %t2 = getelementptr %struct.ST* %t1, i32 0, i32 2 ; yields %struct.RT*:%t2
5005 %t3 = getelementptr %struct.RT* %t2, i32 0, i32 1 ; yields [10 x [20 x i32]]*:%t3
5006 %t4 = getelementptr [10 x [20 x i32]]* %t3, i32 0, i32 5 ; yields [20 x i32]*:%t4
5007 %t5 = getelementptr [20 x i32]* %t4, i32 0, i32 13 ; yields i32*:%t5
5008 ret i32* %t5
5009 }
5010
5011If the ``inbounds`` keyword is present, the result value of the
5012``getelementptr`` is a :ref:`poison value <poisonvalues>` if the base
5013pointer is not an *in bounds* address of an allocated object, or if any
5014of the addresses that would be formed by successive addition of the
5015offsets implied by the indices to the base address with infinitely
5016precise signed arithmetic are not an *in bounds* address of that
5017allocated object. The *in bounds* addresses for an allocated object are
5018all the addresses that point into the object, plus the address one byte
5019past the end. In cases where the base is a vector of pointers the
5020``inbounds`` keyword applies to each of the computations element-wise.
5021
5022If the ``inbounds`` keyword is not present, the offsets are added to the
5023base address with silently-wrapping two's complement arithmetic. If the
5024offsets have a different width from the pointer, they are sign-extended
5025or truncated to the width of the pointer. The result value of the
5026``getelementptr`` may be outside the object pointed to by the base
5027pointer. The result value may not necessarily be used to access memory
5028though, even if it happens to point into allocated storage. See the
5029:ref:`Pointer Aliasing Rules <pointeraliasing>` section for more
5030information.
5031
5032The getelementptr instruction is often confusing. For some more insight
5033into how it works, see :doc:`the getelementptr FAQ <GetElementPtr>`.
5034
5035Example:
5036""""""""
5037
5038.. code-block:: llvm
5039
5040 ; yields [12 x i8]*:aptr
5041 %aptr = getelementptr {i32, [12 x i8]}* %saptr, i64 0, i32 1
5042 ; yields i8*:vptr
5043 %vptr = getelementptr {i32, <2 x i8>}* %svptr, i64 0, i32 1, i32 1
5044 ; yields i8*:eptr
5045 %eptr = getelementptr [12 x i8]* %aptr, i64 0, i32 1
5046 ; yields i32*:iptr
5047 %iptr = getelementptr [10 x i32]* @arr, i16 0, i16 0
5048
5049In cases where the pointer argument is a vector of pointers, each index
5050must be a vector with the same number of elements. For example:
5051
5052.. code-block:: llvm
5053
5054 %A = getelementptr <4 x i8*> %ptrs, <4 x i64> %offsets,
5055
5056Conversion Operations
5057---------------------
5058
5059The instructions in this category are the conversion instructions
5060(casting) which all take a single operand and a type. They perform
5061various bit conversions on the operand.
5062
5063'``trunc .. to``' Instruction
5064^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5065
5066Syntax:
5067"""""""
5068
5069::
5070
5071 <result> = trunc <ty> <value> to <ty2> ; yields ty2
5072
5073Overview:
5074"""""""""
5075
5076The '``trunc``' instruction truncates its operand to the type ``ty2``.
5077
5078Arguments:
5079""""""""""
5080
5081The '``trunc``' instruction takes a value to trunc, and a type to trunc
5082it to. Both types must be of :ref:`integer <t_integer>` types, or vectors
5083of the same number of integers. The bit size of the ``value`` must be
5084larger than the bit size of the destination type, ``ty2``. Equal sized
5085types are not allowed.
5086
5087Semantics:
5088""""""""""
5089
5090The '``trunc``' instruction truncates the high order bits in ``value``
5091and converts the remaining bits to ``ty2``. Since the source size must
5092be larger than the destination size, ``trunc`` cannot be a *no-op cast*.
5093It will always truncate bits.
5094
5095Example:
5096""""""""
5097
5098.. code-block:: llvm
5099
5100 %X = trunc i32 257 to i8 ; yields i8:1
5101 %Y = trunc i32 123 to i1 ; yields i1:true
5102 %Z = trunc i32 122 to i1 ; yields i1:false
5103 %W = trunc <2 x i16> <i16 8, i16 7> to <2 x i8> ; yields <i8 8, i8 7>
5104
5105'``zext .. to``' Instruction
5106^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5107
5108Syntax:
5109"""""""
5110
5111::
5112
5113 <result> = zext <ty> <value> to <ty2> ; yields ty2
5114
5115Overview:
5116"""""""""
5117
5118The '``zext``' instruction zero extends its operand to type ``ty2``.
5119
5120Arguments:
5121""""""""""
5122
5123The '``zext``' instruction takes a value to cast, and a type to cast it
5124to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5125the same number of integers. The bit size of the ``value`` must be
5126smaller than the bit size of the destination type, ``ty2``.
5127
5128Semantics:
5129""""""""""
5130
5131The ``zext`` fills the high order bits of the ``value`` with zero bits
5132until it reaches the size of the destination type, ``ty2``.
5133
5134When zero extending from i1, the result will always be either 0 or 1.
5135
5136Example:
5137""""""""
5138
5139.. code-block:: llvm
5140
5141 %X = zext i32 257 to i64 ; yields i64:257
5142 %Y = zext i1 true to i32 ; yields i32:1
5143 %Z = zext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5144
5145'``sext .. to``' Instruction
5146^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5147
5148Syntax:
5149"""""""
5150
5151::
5152
5153 <result> = sext <ty> <value> to <ty2> ; yields ty2
5154
5155Overview:
5156"""""""""
5157
5158The '``sext``' sign extends ``value`` to the type ``ty2``.
5159
5160Arguments:
5161""""""""""
5162
5163The '``sext``' instruction takes a value to cast, and a type to cast it
5164to. Both types must be of :ref:`integer <t_integer>` types, or vectors of
5165the same number of integers. The bit size of the ``value`` must be
5166smaller than the bit size of the destination type, ``ty2``.
5167
5168Semantics:
5169""""""""""
5170
5171The '``sext``' instruction performs a sign extension by copying the sign
5172bit (highest order bit) of the ``value`` until it reaches the bit size
5173of the type ``ty2``.
5174
5175When sign extending from i1, the extension always results in -1 or 0.
5176
5177Example:
5178""""""""
5179
5180.. code-block:: llvm
5181
5182 %X = sext i8 -1 to i16 ; yields i16 :65535
5183 %Y = sext i1 true to i32 ; yields i32:-1
5184 %Z = sext <2 x i16> <i16 8, i16 7> to <2 x i32> ; yields <i32 8, i32 7>
5185
5186'``fptrunc .. to``' Instruction
5187^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5188
5189Syntax:
5190"""""""
5191
5192::
5193
5194 <result> = fptrunc <ty> <value> to <ty2> ; yields ty2
5195
5196Overview:
5197"""""""""
5198
5199The '``fptrunc``' instruction truncates ``value`` to type ``ty2``.
5200
5201Arguments:
5202""""""""""
5203
5204The '``fptrunc``' instruction takes a :ref:`floating point <t_floating>`
5205value to cast and a :ref:`floating point <t_floating>` type to cast it to.
5206The size of ``value`` must be larger than the size of ``ty2``. This
5207implies that ``fptrunc`` cannot be used to make a *no-op cast*.
5208
5209Semantics:
5210""""""""""
5211
5212The '``fptrunc``' instruction truncates a ``value`` from a larger
5213:ref:`floating point <t_floating>` type to a smaller :ref:`floating
5214point <t_floating>` type. If the value cannot fit within the
5215destination type, ``ty2``, then the results are undefined.
5216
5217Example:
5218""""""""
5219
5220.. code-block:: llvm
5221
5222 %X = fptrunc double 123.0 to float ; yields float:123.0
5223 %Y = fptrunc double 1.0E+300 to float ; yields undefined
5224
5225'``fpext .. to``' Instruction
5226^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5227
5228Syntax:
5229"""""""
5230
5231::
5232
5233 <result> = fpext <ty> <value> to <ty2> ; yields ty2
5234
5235Overview:
5236"""""""""
5237
5238The '``fpext``' extends a floating point ``value`` to a larger floating
5239point value.
5240
5241Arguments:
5242""""""""""
5243
5244The '``fpext``' instruction takes a :ref:`floating point <t_floating>`
5245``value`` to cast, and a :ref:`floating point <t_floating>` type to cast it
5246to. The source type must be smaller than the destination type.
5247
5248Semantics:
5249""""""""""
5250
5251The '``fpext``' instruction extends the ``value`` from a smaller
5252:ref:`floating point <t_floating>` type to a larger :ref:`floating
5253point <t_floating>` type. The ``fpext`` cannot be used to make a
5254*no-op cast* because it always changes bits. Use ``bitcast`` to make a
5255*no-op cast* for a floating point cast.
5256
5257Example:
5258""""""""
5259
5260.. code-block:: llvm
5261
5262 %X = fpext float 3.125 to double ; yields double:3.125000e+00
5263 %Y = fpext double %X to fp128 ; yields fp128:0xL00000000000000004000900000000000
5264
5265'``fptoui .. to``' Instruction
5266^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5267
5268Syntax:
5269"""""""
5270
5271::
5272
5273 <result> = fptoui <ty> <value> to <ty2> ; yields ty2
5274
5275Overview:
5276"""""""""
5277
5278The '``fptoui``' converts a floating point ``value`` to its unsigned
5279integer equivalent of type ``ty2``.
5280
5281Arguments:
5282""""""""""
5283
5284The '``fptoui``' instruction takes a value to cast, which must be a
5285scalar or vector :ref:`floating point <t_floating>` value, and a type to
5286cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5287``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5288type with the same number of elements as ``ty``
5289
5290Semantics:
5291""""""""""
5292
5293The '``fptoui``' instruction converts its :ref:`floating
5294point <t_floating>` operand into the nearest (rounding towards zero)
5295unsigned integer value. If the value cannot fit in ``ty2``, the results
5296are undefined.
5297
5298Example:
5299""""""""
5300
5301.. code-block:: llvm
5302
5303 %X = fptoui double 123.0 to i32 ; yields i32:123
5304 %Y = fptoui float 1.0E+300 to i1 ; yields undefined:1
5305 %Z = fptoui float 1.04E+17 to i8 ; yields undefined:1
5306
5307'``fptosi .. to``' Instruction
5308^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5309
5310Syntax:
5311"""""""
5312
5313::
5314
5315 <result> = fptosi <ty> <value> to <ty2> ; yields ty2
5316
5317Overview:
5318"""""""""
5319
5320The '``fptosi``' instruction converts :ref:`floating point <t_floating>`
5321``value`` to type ``ty2``.
5322
5323Arguments:
5324""""""""""
5325
5326The '``fptosi``' instruction takes a value to cast, which must be a
5327scalar or vector :ref:`floating point <t_floating>` value, and a type to
5328cast it to ``ty2``, which must be an :ref:`integer <t_integer>` type. If
5329``ty`` is a vector floating point type, ``ty2`` must be a vector integer
5330type with the same number of elements as ``ty``
5331
5332Semantics:
5333""""""""""
5334
5335The '``fptosi``' instruction converts its :ref:`floating
5336point <t_floating>` operand into the nearest (rounding towards zero)
5337signed integer value. If the value cannot fit in ``ty2``, the results
5338are undefined.
5339
5340Example:
5341""""""""
5342
5343.. code-block:: llvm
5344
5345 %X = fptosi double -123.0 to i32 ; yields i32:-123
5346 %Y = fptosi float 1.0E-247 to i1 ; yields undefined:1
5347 %Z = fptosi float 1.04E+17 to i8 ; yields undefined:1
5348
5349'``uitofp .. to``' Instruction
5350^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5351
5352Syntax:
5353"""""""
5354
5355::
5356
5357 <result> = uitofp <ty> <value> to <ty2> ; yields ty2
5358
5359Overview:
5360"""""""""
5361
5362The '``uitofp``' instruction regards ``value`` as an unsigned integer
5363and converts that value to the ``ty2`` type.
5364
5365Arguments:
5366""""""""""
5367
5368The '``uitofp``' instruction takes a value to cast, which must be a
5369scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5370``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5371``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5372type with the same number of elements as ``ty``
5373
5374Semantics:
5375""""""""""
5376
5377The '``uitofp``' instruction interprets its operand as an unsigned
5378integer quantity and converts it to the corresponding floating point
5379value. If the value cannot fit in the floating point value, the results
5380are undefined.
5381
5382Example:
5383""""""""
5384
5385.. code-block:: llvm
5386
5387 %X = uitofp i32 257 to float ; yields float:257.0
5388 %Y = uitofp i8 -1 to double ; yields double:255.0
5389
5390'``sitofp .. to``' Instruction
5391^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5392
5393Syntax:
5394"""""""
5395
5396::
5397
5398 <result> = sitofp <ty> <value> to <ty2> ; yields ty2
5399
5400Overview:
5401"""""""""
5402
5403The '``sitofp``' instruction regards ``value`` as a signed integer and
5404converts that value to the ``ty2`` type.
5405
5406Arguments:
5407""""""""""
5408
5409The '``sitofp``' instruction takes a value to cast, which must be a
5410scalar or vector :ref:`integer <t_integer>` value, and a type to cast it to
5411``ty2``, which must be an :ref:`floating point <t_floating>` type. If
5412``ty`` is a vector integer type, ``ty2`` must be a vector floating point
5413type with the same number of elements as ``ty``
5414
5415Semantics:
5416""""""""""
5417
5418The '``sitofp``' instruction interprets its operand as a signed integer
5419quantity and converts it to the corresponding floating point value. If
5420the value cannot fit in the floating point value, the results are
5421undefined.
5422
5423Example:
5424""""""""
5425
5426.. code-block:: llvm
5427
5428 %X = sitofp i32 257 to float ; yields float:257.0
5429 %Y = sitofp i8 -1 to double ; yields double:-1.0
5430
5431.. _i_ptrtoint:
5432
5433'``ptrtoint .. to``' Instruction
5434^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5435
5436Syntax:
5437"""""""
5438
5439::
5440
5441 <result> = ptrtoint <ty> <value> to <ty2> ; yields ty2
5442
5443Overview:
5444"""""""""
5445
5446The '``ptrtoint``' instruction converts the pointer or a vector of
5447pointers ``value`` to the integer (or vector of integers) type ``ty2``.
5448
5449Arguments:
5450""""""""""
5451
5452The '``ptrtoint``' instruction takes a ``value`` to cast, which must be
5453a a value of type :ref:`pointer <t_pointer>` or a vector of pointers, and a
5454type to cast it to ``ty2``, which must be an :ref:`integer <t_integer>` or
5455a vector of integers type.
5456
5457Semantics:
5458""""""""""
5459
5460The '``ptrtoint``' instruction converts ``value`` to integer type
5461``ty2`` by interpreting the pointer value as an integer and either
5462truncating or zero extending that value to the size of the integer type.
5463If ``value`` is smaller than ``ty2`` then a zero extension is done. If
5464``value`` is larger than ``ty2`` then a truncation is done. If they are
5465the same size, then nothing is done (*no-op cast*) other than a type
5466change.
5467
5468Example:
5469""""""""
5470
5471.. code-block:: llvm
5472
5473 %X = ptrtoint i32* %P to i8 ; yields truncation on 32-bit architecture
5474 %Y = ptrtoint i32* %P to i64 ; yields zero extension on 32-bit architecture
5475 %Z = ptrtoint <4 x i32*> %P to <4 x i64>; yields vector zero extension for a vector of addresses on 32-bit architecture
5476
5477.. _i_inttoptr:
5478
5479'``inttoptr .. to``' Instruction
5480^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5481
5482Syntax:
5483"""""""
5484
5485::
5486
5487 <result> = inttoptr <ty> <value> to <ty2> ; yields ty2
5488
5489Overview:
5490"""""""""
5491
5492The '``inttoptr``' instruction converts an integer ``value`` to a
5493pointer type, ``ty2``.
5494
5495Arguments:
5496""""""""""
5497
5498The '``inttoptr``' instruction takes an :ref:`integer <t_integer>` value to
5499cast, and a type to cast it to, which must be a :ref:`pointer <t_pointer>`
5500type.
5501
5502Semantics:
5503""""""""""
5504
5505The '``inttoptr``' instruction converts ``value`` to type ``ty2`` by
5506applying either a zero extension or a truncation depending on the size
5507of the integer ``value``. If ``value`` is larger than the size of a
5508pointer then a truncation is done. If ``value`` is smaller than the size
5509of a pointer then a zero extension is done. If they are the same size,
5510nothing is done (*no-op cast*).
5511
5512Example:
5513""""""""
5514
5515.. code-block:: llvm
5516
5517 %X = inttoptr i32 255 to i32* ; yields zero extension on 64-bit architecture
5518 %Y = inttoptr i32 255 to i32* ; yields no-op on 32-bit architecture
5519 %Z = inttoptr i64 0 to i32* ; yields truncation on 32-bit architecture
5520 %Z = inttoptr <4 x i32> %G to <4 x i8*>; yields truncation of vector G to four pointers
5521
5522.. _i_bitcast:
5523
5524'``bitcast .. to``' Instruction
5525^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
5526
5527Syntax:
5528"""""""
5529
5530::
5531
5532 <result> = bitcast <ty> <value> to <ty2> ; yields ty2
5533
5534Overview:
5535"""""""""
5536
5537The '``bitcast``' instruction converts ``value`` to type ``ty2`` without
5538changing any bits.
5539
5540Arguments:
5541""""""""""
5542
5543The '``bitcast``' instruction takes a value to cast, which must be a
5544non-aggregate first class value, and a type to cast it to, which must
5545also be a non-aggregate :ref:`first class <t_firstclass>` type. The bit
5546sizes of ``value`` and the destination type, ``ty2``, must be identical.
5547If the source type is a pointer, the destination type must also be a
5548pointer. This instruction supports bitwise conversion of vectors to
5549integers and to vectors of other types (as long as they have the same
5550size).
5551
5552Semantics:
5553""""""""""
5554
5555The '``bitcast``' instruction converts ``value`` to type ``ty2``. It is
5556always a *no-op cast* because no bits change with this conversion. The
5557conversion is done as if the ``value`` had been stored to memory and
5558read back as type ``ty2``. Pointer (or vector of pointers) types may
5559only be converted to other pointer (or vector of pointers) types with
5560this instruction. To convert pointers to other types, use the
5561:ref:`inttoptr <i_inttoptr>` or :ref:`ptrtoint <i_ptrtoint>` instructions
5562first.
5563
5564Example:
5565""""""""
5566
5567.. code-block:: llvm
5568
5569 %X = bitcast i8 255 to i8 ; yields i8 :-1
5570 %Y = bitcast i32* %x to sint* ; yields sint*:%x
5571 %Z = bitcast <2 x int> %V to i64; ; yields i64: %V
5572 %Z = bitcast <2 x i32*> %V to <2 x i64*> ; yields <2 x i64*>
5573
5574.. _otherops:
5575
5576Other Operations
5577----------------
5578
5579The instructions in this category are the "miscellaneous" instructions,
5580which defy better classification.
5581
5582.. _i_icmp:
5583
5584'``icmp``' Instruction
5585^^^^^^^^^^^^^^^^^^^^^^
5586
5587Syntax:
5588"""""""
5589
5590::
5591
5592 <result> = icmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5593
5594Overview:
5595"""""""""
5596
5597The '``icmp``' instruction returns a boolean value or a vector of
5598boolean values based on comparison of its two integer, integer vector,
5599pointer, or pointer vector operands.
5600
5601Arguments:
5602""""""""""
5603
5604The '``icmp``' instruction takes three operands. The first operand is
5605the condition code indicating the kind of comparison to perform. It is
5606not a value, just a keyword. The possible condition code are:
5607
5608#. ``eq``: equal
5609#. ``ne``: not equal
5610#. ``ugt``: unsigned greater than
5611#. ``uge``: unsigned greater or equal
5612#. ``ult``: unsigned less than
5613#. ``ule``: unsigned less or equal
5614#. ``sgt``: signed greater than
5615#. ``sge``: signed greater or equal
5616#. ``slt``: signed less than
5617#. ``sle``: signed less or equal
5618
5619The remaining two arguments must be :ref:`integer <t_integer>` or
5620:ref:`pointer <t_pointer>` or integer :ref:`vector <t_vector>` typed. They
5621must also be identical types.
5622
5623Semantics:
5624""""""""""
5625
5626The '``icmp``' compares ``op1`` and ``op2`` according to the condition
5627code given as ``cond``. The comparison performed always yields either an
5628:ref:`i1 <t_integer>` or vector of ``i1`` result, as follows:
5629
5630#. ``eq``: yields ``true`` if the operands are equal, ``false``
5631 otherwise. No sign interpretation is necessary or performed.
5632#. ``ne``: yields ``true`` if the operands are unequal, ``false``
5633 otherwise. No sign interpretation is necessary or performed.
5634#. ``ugt``: interprets the operands as unsigned values and yields
5635 ``true`` if ``op1`` is greater than ``op2``.
5636#. ``uge``: interprets the operands as unsigned values and yields
5637 ``true`` if ``op1`` is greater than or equal to ``op2``.
5638#. ``ult``: interprets the operands as unsigned values and yields
5639 ``true`` if ``op1`` is less than ``op2``.
5640#. ``ule``: interprets the operands as unsigned values and yields
5641 ``true`` if ``op1`` is less than or equal to ``op2``.
5642#. ``sgt``: interprets the operands as signed values and yields ``true``
5643 if ``op1`` is greater than ``op2``.
5644#. ``sge``: interprets the operands as signed values and yields ``true``
5645 if ``op1`` is greater than or equal to ``op2``.
5646#. ``slt``: interprets the operands as signed values and yields ``true``
5647 if ``op1`` is less than ``op2``.
5648#. ``sle``: interprets the operands as signed values and yields ``true``
5649 if ``op1`` is less than or equal to ``op2``.
5650
5651If the operands are :ref:`pointer <t_pointer>` typed, the pointer values
5652are compared as if they were integers.
5653
5654If the operands are integer vectors, then they are compared element by
5655element. The result is an ``i1`` vector with the same number of elements
5656as the values being compared. Otherwise, the result is an ``i1``.
5657
5658Example:
5659""""""""
5660
5661.. code-block:: llvm
5662
5663 <result> = icmp eq i32 4, 5 ; yields: result=false
5664 <result> = icmp ne float* %X, %X ; yields: result=false
5665 <result> = icmp ult i16 4, 5 ; yields: result=true
5666 <result> = icmp sgt i16 4, 5 ; yields: result=false
5667 <result> = icmp ule i16 -4, 5 ; yields: result=false
5668 <result> = icmp sge i16 4, 5 ; yields: result=false
5669
5670Note that the code generator does not yet support vector types with the
5671``icmp`` instruction.
5672
5673.. _i_fcmp:
5674
5675'``fcmp``' Instruction
5676^^^^^^^^^^^^^^^^^^^^^^
5677
5678Syntax:
5679"""""""
5680
5681::
5682
5683 <result> = fcmp <cond> <ty> <op1>, <op2> ; yields {i1} or {<N x i1>}:result
5684
5685Overview:
5686"""""""""
5687
5688The '``fcmp``' instruction returns a boolean value or vector of boolean
5689values based on comparison of its operands.
5690
5691If the operands are floating point scalars, then the result type is a
5692boolean (:ref:`i1 <t_integer>`).
5693
5694If the operands are floating point vectors, then the result type is a
5695vector of boolean with the same number of elements as the operands being
5696compared.
5697
5698Arguments:
5699""""""""""
5700
5701The '``fcmp``' instruction takes three operands. The first operand is
5702the condition code indicating the kind of comparison to perform. It is
5703not a value, just a keyword. The possible condition code are:
5704
5705#. ``false``: no comparison, always returns false
5706#. ``oeq``: ordered and equal
5707#. ``ogt``: ordered and greater than
5708#. ``oge``: ordered and greater than or equal
5709#. ``olt``: ordered and less than
5710#. ``ole``: ordered and less than or equal
5711#. ``one``: ordered and not equal
5712#. ``ord``: ordered (no nans)
5713#. ``ueq``: unordered or equal
5714#. ``ugt``: unordered or greater than
5715#. ``uge``: unordered or greater than or equal
5716#. ``ult``: unordered or less than
5717#. ``ule``: unordered or less than or equal
5718#. ``une``: unordered or not equal
5719#. ``uno``: unordered (either nans)
5720#. ``true``: no comparison, always returns true
5721
5722*Ordered* means that neither operand is a QNAN while *unordered* means
5723that either operand may be a QNAN.
5724
5725Each of ``val1`` and ``val2`` arguments must be either a :ref:`floating
5726point <t_floating>` type or a :ref:`vector <t_vector>` of floating point
5727type. They must have identical types.
5728
5729Semantics:
5730""""""""""
5731
5732The '``fcmp``' instruction compares ``op1`` and ``op2`` according to the
5733condition code given as ``cond``. If the operands are vectors, then the
5734vectors are compared element by element. Each comparison performed
5735always yields an :ref:`i1 <t_integer>` result, as follows:
5736
5737#. ``false``: always yields ``false``, regardless of operands.
5738#. ``oeq``: yields ``true`` if both operands are not a QNAN and ``op1``
5739 is equal to ``op2``.
5740#. ``ogt``: yields ``true`` if both operands are not a QNAN and ``op1``
5741 is greater than ``op2``.
5742#. ``oge``: yields ``true`` if both operands are not a QNAN and ``op1``
5743 is greater than or equal to ``op2``.
5744#. ``olt``: yields ``true`` if both operands are not a QNAN and ``op1``
5745 is less than ``op2``.
5746#. ``ole``: yields ``true`` if both operands are not a QNAN and ``op1``
5747 is less than or equal to ``op2``.
5748#. ``one``: yields ``true`` if both operands are not a QNAN and ``op1``
5749 is not equal to ``op2``.
5750#. ``ord``: yields ``true`` if both operands are not a QNAN.
5751#. ``ueq``: yields ``true`` if either operand is a QNAN or ``op1`` is
5752 equal to ``op2``.
5753#. ``ugt``: yields ``true`` if either operand is a QNAN or ``op1`` is
5754 greater than ``op2``.
5755#. ``uge``: yields ``true`` if either operand is a QNAN or ``op1`` is
5756 greater than or equal to ``op2``.
5757#. ``ult``: yields ``true`` if either operand is a QNAN or ``op1`` is
5758 less than ``op2``.
5759#. ``ule``: yields ``true`` if either operand is a QNAN or ``op1`` is
5760 less than or equal to ``op2``.
5761#. ``une``: yields ``true`` if either operand is a QNAN or ``op1`` is
5762 not equal to ``op2``.
5763#. ``uno``: yields ``true`` if either operand is a QNAN.
5764#. ``true``: always yields ``true``, regardless of operands.
5765
5766Example:
5767""""""""
5768
5769.. code-block:: llvm
5770
5771 <result> = fcmp oeq float 4.0, 5.0 ; yields: result=false
5772 <result> = fcmp one float 4.0, 5.0 ; yields: result=true
5773 <result> = fcmp olt float 4.0, 5.0 ; yields: result=true
5774 <result> = fcmp ueq double 1.0, 2.0 ; yields: result=false
5775
5776Note that the code generator does not yet support vector types with the
5777``fcmp`` instruction.
5778
5779.. _i_phi:
5780
5781'``phi``' Instruction
5782^^^^^^^^^^^^^^^^^^^^^
5783
5784Syntax:
5785"""""""
5786
5787::
5788
5789 <result> = phi <ty> [ <val0>, <label0>], ...
5790
5791Overview:
5792"""""""""
5793
5794The '``phi``' instruction is used to implement the φ node in the SSA
5795graph representing the function.
5796
5797Arguments:
5798""""""""""
5799
5800The type of the incoming values is specified with the first type field.
5801After this, the '``phi``' instruction takes a list of pairs as
5802arguments, with one pair for each predecessor basic block of the current
5803block. Only values of :ref:`first class <t_firstclass>` type may be used as
5804the value arguments to the PHI node. Only labels may be used as the
5805label arguments.
5806
5807There must be no non-phi instructions between the start of a basic block
5808and the PHI instructions: i.e. PHI instructions must be first in a basic
5809block.
5810
5811For the purposes of the SSA form, the use of each incoming value is
5812deemed to occur on the edge from the corresponding predecessor block to
5813the current block (but after any definition of an '``invoke``'
5814instruction's return value on the same edge).
5815
5816Semantics:
5817""""""""""
5818
5819At runtime, the '``phi``' instruction logically takes on the value
5820specified by the pair corresponding to the predecessor basic block that
5821executed just prior to the current block.
5822
5823Example:
5824""""""""
5825
5826.. code-block:: llvm
5827
5828 Loop: ; Infinite loop that counts from 0 on up...
5829 %indvar = phi i32 [ 0, %LoopHeader ], [ %nextindvar, %Loop ]
5830 %nextindvar = add i32 %indvar, 1
5831 br label %Loop
5832
5833.. _i_select:
5834
5835'``select``' Instruction
5836^^^^^^^^^^^^^^^^^^^^^^^^
5837
5838Syntax:
5839"""""""
5840
5841::
5842
5843 <result> = select selty <cond>, <ty> <val1>, <ty> <val2> ; yields ty
5844
5845 selty is either i1 or {<N x i1>}
5846
5847Overview:
5848"""""""""
5849
5850The '``select``' instruction is used to choose one value based on a
5851condition, without branching.
5852
5853Arguments:
5854""""""""""
5855
5856The '``select``' instruction requires an 'i1' value or a vector of 'i1'
5857values indicating the condition, and two values of the same :ref:`first
5858class <t_firstclass>` type. If the val1/val2 are vectors and the
5859condition is a scalar, then entire vectors are selected, not individual
5860elements.
5861
5862Semantics:
5863""""""""""
5864
5865If the condition is an i1 and it evaluates to 1, the instruction returns
5866the first value argument; otherwise, it returns the second value
5867argument.
5868
5869If the condition is a vector of i1, then the value arguments must be
5870vectors of the same size, and the selection is done element by element.
5871
5872Example:
5873""""""""
5874
5875.. code-block:: llvm
5876
5877 %X = select i1 true, i8 17, i8 42 ; yields i8:17
5878
5879.. _i_call:
5880
5881'``call``' Instruction
5882^^^^^^^^^^^^^^^^^^^^^^
5883
5884Syntax:
5885"""""""
5886
5887::
5888
5889 <result> = [tail] call [cconv] [ret attrs] <ty> [<fnty>*] <fnptrval>(<function args>) [fn attrs]
5890
5891Overview:
5892"""""""""
5893
5894The '``call``' instruction represents a simple function call.
5895
5896Arguments:
5897""""""""""
5898
5899This instruction requires several arguments:
5900
5901#. The optional "tail" marker indicates that the callee function does
5902 not access any allocas or varargs in the caller. Note that calls may
5903 be marked "tail" even if they do not occur before a
5904 :ref:`ret <i_ret>` instruction. If the "tail" marker is present, the
5905 function call is eligible for tail call optimization, but `might not
5906 in fact be optimized into a jump <CodeGenerator.html#tailcallopt>`_.
5907 The code generator may optimize calls marked "tail" with either 1)
5908 automatic `sibling call
5909 optimization <CodeGenerator.html#sibcallopt>`_ when the caller and
5910 callee have matching signatures, or 2) forced tail call optimization
5911 when the following extra requirements are met:
5912
5913 - Caller and callee both have the calling convention ``fastcc``.
5914 - The call is in tail position (ret immediately follows call and ret
5915 uses value of call or is void).
5916 - Option ``-tailcallopt`` is enabled, or
5917 ``llvm::GuaranteedTailCallOpt`` is ``true``.
5918 - `Platform specific constraints are
5919 met. <CodeGenerator.html#tailcallopt>`_
5920
5921#. The optional "cconv" marker indicates which :ref:`calling
5922 convention <callingconv>` the call should use. If none is
5923 specified, the call defaults to using C calling conventions. The
5924 calling convention of the call must match the calling convention of
5925 the target function, or else the behavior is undefined.
5926#. The optional :ref:`Parameter Attributes <paramattrs>` list for return
5927 values. Only '``zeroext``', '``signext``', and '``inreg``' attributes
5928 are valid here.
5929#. '``ty``': the type of the call instruction itself which is also the
5930 type of the return value. Functions that return no value are marked
5931 ``void``.
5932#. '``fnty``': shall be the signature of the pointer to function value
5933 being invoked. The argument types must match the types implied by
5934 this signature. This type can be omitted if the function is not
5935 varargs and if the function type does not return a pointer to a
5936 function.
5937#. '``fnptrval``': An LLVM value containing a pointer to a function to
5938 be invoked. In most cases, this is a direct function invocation, but
5939 indirect ``call``'s are just as possible, calling an arbitrary pointer
5940 to function value.
5941#. '``function args``': argument list whose types match the function
5942 signature argument types and parameter attributes. All arguments must
5943 be of :ref:`first class <t_firstclass>` type. If the function signature
5944 indicates the function accepts a variable number of arguments, the
5945 extra arguments can be specified.
5946#. The optional :ref:`function attributes <fnattrs>` list. Only
5947 '``noreturn``', '``nounwind``', '``readonly``' and '``readnone``'
5948 attributes are valid here.
5949
5950Semantics:
5951""""""""""
5952
5953The '``call``' instruction is used to cause control flow to transfer to
5954a specified function, with its incoming arguments bound to the specified
5955values. Upon a '``ret``' instruction in the called function, control
5956flow continues with the instruction after the function call, and the
5957return value of the function is bound to the result argument.
5958
5959Example:
5960""""""""
5961
5962.. code-block:: llvm
5963
5964 %retval = call i32 @test(i32 %argc)
5965 call i32 (i8*, ...)* @printf(i8* %msg, i32 12, i8 42) ; yields i32
5966 %X = tail call i32 @foo() ; yields i32
5967 %Y = tail call fastcc i32 @foo() ; yields i32
5968 call void %foo(i8 97 signext)
5969
5970 %struct.A = type { i32, i8 }
5971 %r = call %struct.A @foo() ; yields { 32, i8 }
5972 %gr = extractvalue %struct.A %r, 0 ; yields i32
5973 %gr1 = extractvalue %struct.A %r, 1 ; yields i8
5974 %Z = call void @foo() noreturn ; indicates that %foo never returns normally
5975 %ZZ = call zeroext i32 @bar() ; Return value is %zero extended
5976
5977llvm treats calls to some functions with names and arguments that match
5978the standard C99 library as being the C99 library functions, and may
5979perform optimizations or generate code for them under that assumption.
5980This is something we'd like to change in the future to provide better
5981support for freestanding environments and non-C-based languages.
5982
5983.. _i_va_arg:
5984
5985'``va_arg``' Instruction
5986^^^^^^^^^^^^^^^^^^^^^^^^
5987
5988Syntax:
5989"""""""
5990
5991::
5992
5993 <resultval> = va_arg <va_list*> <arglist>, <argty>
5994
5995Overview:
5996"""""""""
5997
5998The '``va_arg``' instruction is used to access arguments passed through
5999the "variable argument" area of a function call. It is used to implement
6000the ``va_arg`` macro in C.
6001
6002Arguments:
6003""""""""""
6004
6005This instruction takes a ``va_list*`` value and the type of the
6006argument. It returns a value of the specified argument type and
6007increments the ``va_list`` to point to the next argument. The actual
6008type of ``va_list`` is target specific.
6009
6010Semantics:
6011""""""""""
6012
6013The '``va_arg``' instruction loads an argument of the specified type
6014from the specified ``va_list`` and causes the ``va_list`` to point to
6015the next argument. For more information, see the variable argument
6016handling :ref:`Intrinsic Functions <int_varargs>`.
6017
6018It is legal for this instruction to be called in a function which does
6019not take a variable number of arguments, for example, the ``vfprintf``
6020function.
6021
6022``va_arg`` is an LLVM instruction instead of an :ref:`intrinsic
6023function <intrinsics>` because it takes a type as an argument.
6024
6025Example:
6026""""""""
6027
6028See the :ref:`variable argument processing <int_varargs>` section.
6029
6030Note that the code generator does not yet fully support va\_arg on many
6031targets. Also, it does not currently support va\_arg with aggregate
6032types on any target.
6033
6034.. _i_landingpad:
6035
6036'``landingpad``' Instruction
6037^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6038
6039Syntax:
6040"""""""
6041
6042::
6043
6044 <resultval> = landingpad <resultty> personality <type> <pers_fn> <clause>+
6045 <resultval> = landingpad <resultty> personality <type> <pers_fn> cleanup <clause>*
6046
6047 <clause> := catch <type> <value>
6048 <clause> := filter <array constant type> <array constant>
6049
6050Overview:
6051"""""""""
6052
6053The '``landingpad``' instruction is used by `LLVM's exception handling
6054system <ExceptionHandling.html#overview>`_ to specify that a basic block
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006055is a landing pad --- one where the exception lands, and corresponds to the
Sean Silvaf722b002012-12-07 10:36:55 +00006056code found in the ``catch`` portion of a ``try``/``catch`` sequence. It
6057defines values supplied by the personality function (``pers_fn``) upon
6058re-entry to the function. The ``resultval`` has the type ``resultty``.
6059
6060Arguments:
6061""""""""""
6062
6063This instruction takes a ``pers_fn`` value. This is the personality
6064function associated with the unwinding mechanism. The optional
6065``cleanup`` flag indicates that the landing pad block is a cleanup.
6066
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00006067A ``clause`` begins with the clause type --- ``catch`` or ``filter`` --- and
Sean Silvaf722b002012-12-07 10:36:55 +00006068contains the global variable representing the "type" that may be caught
6069or filtered respectively. Unlike the ``catch`` clause, the ``filter``
6070clause takes an array constant as its argument. Use
6071"``[0 x i8**] undef``" for a filter which cannot throw. The
6072'``landingpad``' instruction must contain *at least* one ``clause`` or
6073the ``cleanup`` flag.
6074
6075Semantics:
6076""""""""""
6077
6078The '``landingpad``' instruction defines the values which are set by the
6079personality function (``pers_fn``) upon re-entry to the function, and
6080therefore the "result type" of the ``landingpad`` instruction. As with
6081calling conventions, how the personality function results are
6082represented in LLVM IR is target specific.
6083
6084The clauses are applied in order from top to bottom. If two
6085``landingpad`` instructions are merged together through inlining, the
6086clauses from the calling function are appended to the list of clauses.
6087When the call stack is being unwound due to an exception being thrown,
6088the exception is compared against each ``clause`` in turn. If it doesn't
6089match any of the clauses, and the ``cleanup`` flag is not set, then
6090unwinding continues further up the call stack.
6091
6092The ``landingpad`` instruction has several restrictions:
6093
6094- A landing pad block is a basic block which is the unwind destination
6095 of an '``invoke``' instruction.
6096- A landing pad block must have a '``landingpad``' instruction as its
6097 first non-PHI instruction.
6098- There can be only one '``landingpad``' instruction within the landing
6099 pad block.
6100- A basic block that is not a landing pad block may not include a
6101 '``landingpad``' instruction.
6102- All '``landingpad``' instructions in a function must have the same
6103 personality function.
6104
6105Example:
6106""""""""
6107
6108.. code-block:: llvm
6109
6110 ;; A landing pad which can catch an integer.
6111 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6112 catch i8** @_ZTIi
6113 ;; A landing pad that is a cleanup.
6114 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6115 cleanup
6116 ;; A landing pad which can catch an integer and can only throw a double.
6117 %res = landingpad { i8*, i32 } personality i32 (...)* @__gxx_personality_v0
6118 catch i8** @_ZTIi
6119 filter [1 x i8**] [@_ZTId]
6120
6121.. _intrinsics:
6122
6123Intrinsic Functions
6124===================
6125
6126LLVM supports the notion of an "intrinsic function". These functions
6127have well known names and semantics and are required to follow certain
6128restrictions. Overall, these intrinsics represent an extension mechanism
6129for the LLVM language that does not require changing all of the
6130transformations in LLVM when adding to the language (or the bitcode
6131reader/writer, the parser, etc...).
6132
6133Intrinsic function names must all start with an "``llvm.``" prefix. This
6134prefix is reserved in LLVM for intrinsic names; thus, function names may
6135not begin with this prefix. Intrinsic functions must always be external
6136functions: you cannot define the body of intrinsic functions. Intrinsic
6137functions may only be used in call or invoke instructions: it is illegal
6138to take the address of an intrinsic function. Additionally, because
6139intrinsic functions are part of the LLVM language, it is required if any
6140are added that they be documented here.
6141
6142Some intrinsic functions can be overloaded, i.e., the intrinsic
6143represents a family of functions that perform the same operation but on
6144different data types. Because LLVM can represent over 8 million
6145different integer types, overloading is used commonly to allow an
6146intrinsic function to operate on any integer type. One or more of the
6147argument types or the result type can be overloaded to accept any
6148integer type. Argument types may also be defined as exactly matching a
6149previous argument's type or the result type. This allows an intrinsic
6150function which accepts multiple arguments, but needs all of them to be
6151of the same type, to only be overloaded with respect to a single
6152argument or the result.
6153
6154Overloaded intrinsics will have the names of its overloaded argument
6155types encoded into its function name, each preceded by a period. Only
6156those types which are overloaded result in a name suffix. Arguments
6157whose type is matched against another type do not. For example, the
6158``llvm.ctpop`` function can take an integer of any width and returns an
6159integer of exactly the same integer width. This leads to a family of
6160functions such as ``i8 @llvm.ctpop.i8(i8 %val)`` and
6161``i29 @llvm.ctpop.i29(i29 %val)``. Only one type, the return type, is
6162overloaded, and only one type suffix is required. Because the argument's
6163type is matched against the return type, it does not require its own
6164name suffix.
6165
6166To learn how to add an intrinsic function, please see the `Extending
6167LLVM Guide <ExtendingLLVM.html>`_.
6168
6169.. _int_varargs:
6170
6171Variable Argument Handling Intrinsics
6172-------------------------------------
6173
6174Variable argument support is defined in LLVM with the
6175:ref:`va_arg <i_va_arg>` instruction and these three intrinsic
6176functions. These functions are related to the similarly named macros
6177defined in the ``<stdarg.h>`` header file.
6178
6179All of these functions operate on arguments that use a target-specific
6180value type "``va_list``". The LLVM assembly language reference manual
6181does not define what this type is, so all transformations should be
6182prepared to handle these functions regardless of the type used.
6183
6184This example shows how the :ref:`va_arg <i_va_arg>` instruction and the
6185variable argument handling intrinsic functions are used.
6186
6187.. code-block:: llvm
6188
6189 define i32 @test(i32 %X, ...) {
6190 ; Initialize variable argument processing
6191 %ap = alloca i8*
6192 %ap2 = bitcast i8** %ap to i8*
6193 call void @llvm.va_start(i8* %ap2)
6194
6195 ; Read a single integer argument
6196 %tmp = va_arg i8** %ap, i32
6197
6198 ; Demonstrate usage of llvm.va_copy and llvm.va_end
6199 %aq = alloca i8*
6200 %aq2 = bitcast i8** %aq to i8*
6201 call void @llvm.va_copy(i8* %aq2, i8* %ap2)
6202 call void @llvm.va_end(i8* %aq2)
6203
6204 ; Stop processing of arguments.
6205 call void @llvm.va_end(i8* %ap2)
6206 ret i32 %tmp
6207 }
6208
6209 declare void @llvm.va_start(i8*)
6210 declare void @llvm.va_copy(i8*, i8*)
6211 declare void @llvm.va_end(i8*)
6212
6213.. _int_va_start:
6214
6215'``llvm.va_start``' Intrinsic
6216^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6217
6218Syntax:
6219"""""""
6220
6221::
6222
6223 declare void %llvm.va_start(i8* <arglist>)
6224
6225Overview:
6226"""""""""
6227
6228The '``llvm.va_start``' intrinsic initializes ``*<arglist>`` for
6229subsequent use by ``va_arg``.
6230
6231Arguments:
6232""""""""""
6233
6234The argument is a pointer to a ``va_list`` element to initialize.
6235
6236Semantics:
6237""""""""""
6238
6239The '``llvm.va_start``' intrinsic works just like the ``va_start`` macro
6240available in C. In a target-dependent way, it initializes the
6241``va_list`` element to which the argument points, so that the next call
6242to ``va_arg`` will produce the first variable argument passed to the
6243function. Unlike the C ``va_start`` macro, this intrinsic does not need
6244to know the last argument of the function as the compiler can figure
6245that out.
6246
6247'``llvm.va_end``' Intrinsic
6248^^^^^^^^^^^^^^^^^^^^^^^^^^^
6249
6250Syntax:
6251"""""""
6252
6253::
6254
6255 declare void @llvm.va_end(i8* <arglist>)
6256
6257Overview:
6258"""""""""
6259
6260The '``llvm.va_end``' intrinsic destroys ``*<arglist>``, which has been
6261initialized previously with ``llvm.va_start`` or ``llvm.va_copy``.
6262
6263Arguments:
6264""""""""""
6265
6266The argument is a pointer to a ``va_list`` to destroy.
6267
6268Semantics:
6269""""""""""
6270
6271The '``llvm.va_end``' intrinsic works just like the ``va_end`` macro
6272available in C. In a target-dependent way, it destroys the ``va_list``
6273element to which the argument points. Calls to
6274:ref:`llvm.va_start <int_va_start>` and
6275:ref:`llvm.va_copy <int_va_copy>` must be matched exactly with calls to
6276``llvm.va_end``.
6277
6278.. _int_va_copy:
6279
6280'``llvm.va_copy``' Intrinsic
6281^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6282
6283Syntax:
6284"""""""
6285
6286::
6287
6288 declare void @llvm.va_copy(i8* <destarglist>, i8* <srcarglist>)
6289
6290Overview:
6291"""""""""
6292
6293The '``llvm.va_copy``' intrinsic copies the current argument position
6294from the source argument list to the destination argument list.
6295
6296Arguments:
6297""""""""""
6298
6299The first argument is a pointer to a ``va_list`` element to initialize.
6300The second argument is a pointer to a ``va_list`` element to copy from.
6301
6302Semantics:
6303""""""""""
6304
6305The '``llvm.va_copy``' intrinsic works just like the ``va_copy`` macro
6306available in C. In a target-dependent way, it copies the source
6307``va_list`` element into the destination ``va_list`` element. This
6308intrinsic is necessary because the `` llvm.va_start`` intrinsic may be
6309arbitrarily complex and require, for example, memory allocation.
6310
6311Accurate Garbage Collection Intrinsics
6312--------------------------------------
6313
6314LLVM support for `Accurate Garbage Collection <GarbageCollection.html>`_
6315(GC) requires the implementation and generation of these intrinsics.
6316These intrinsics allow identification of :ref:`GC roots on the
6317stack <int_gcroot>`, as well as garbage collector implementations that
6318require :ref:`read <int_gcread>` and :ref:`write <int_gcwrite>` barriers.
6319Front-ends for type-safe garbage collected languages should generate
6320these intrinsics to make use of the LLVM garbage collectors. For more
6321details, see `Accurate Garbage Collection with
6322LLVM <GarbageCollection.html>`_.
6323
6324The garbage collection intrinsics only operate on objects in the generic
6325address space (address space zero).
6326
6327.. _int_gcroot:
6328
6329'``llvm.gcroot``' Intrinsic
6330^^^^^^^^^^^^^^^^^^^^^^^^^^^
6331
6332Syntax:
6333"""""""
6334
6335::
6336
6337 declare void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
6338
6339Overview:
6340"""""""""
6341
6342The '``llvm.gcroot``' intrinsic declares the existence of a GC root to
6343the code generator, and allows some metadata to be associated with it.
6344
6345Arguments:
6346""""""""""
6347
6348The first argument specifies the address of a stack object that contains
6349the root pointer. The second pointer (which must be either a constant or
6350a global value address) contains the meta-data to be associated with the
6351root.
6352
6353Semantics:
6354""""""""""
6355
6356At runtime, a call to this intrinsic stores a null pointer into the
6357"ptrloc" location. At compile-time, the code generator generates
6358information to allow the runtime to find the pointer at GC safe points.
6359The '``llvm.gcroot``' intrinsic may only be used in a function which
6360:ref:`specifies a GC algorithm <gc>`.
6361
6362.. _int_gcread:
6363
6364'``llvm.gcread``' Intrinsic
6365^^^^^^^^^^^^^^^^^^^^^^^^^^^
6366
6367Syntax:
6368"""""""
6369
6370::
6371
6372 declare i8* @llvm.gcread(i8* %ObjPtr, i8** %Ptr)
6373
6374Overview:
6375"""""""""
6376
6377The '``llvm.gcread``' intrinsic identifies reads of references from heap
6378locations, allowing garbage collector implementations that require read
6379barriers.
6380
6381Arguments:
6382""""""""""
6383
6384The second argument is the address to read from, which should be an
6385address allocated from the garbage collector. The first object is a
6386pointer to the start of the referenced object, if needed by the language
6387runtime (otherwise null).
6388
6389Semantics:
6390""""""""""
6391
6392The '``llvm.gcread``' intrinsic has the same semantics as a load
6393instruction, but may be replaced with substantially more complex code by
6394the garbage collector runtime, as needed. The '``llvm.gcread``'
6395intrinsic may only be used in a function which :ref:`specifies a GC
6396algorithm <gc>`.
6397
6398.. _int_gcwrite:
6399
6400'``llvm.gcwrite``' Intrinsic
6401^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6402
6403Syntax:
6404"""""""
6405
6406::
6407
6408 declare void @llvm.gcwrite(i8* %P1, i8* %Obj, i8** %P2)
6409
6410Overview:
6411"""""""""
6412
6413The '``llvm.gcwrite``' intrinsic identifies writes of references to heap
6414locations, allowing garbage collector implementations that require write
6415barriers (such as generational or reference counting collectors).
6416
6417Arguments:
6418""""""""""
6419
6420The first argument is the reference to store, the second is the start of
6421the object to store it to, and the third is the address of the field of
6422Obj to store to. If the runtime does not require a pointer to the
6423object, Obj may be null.
6424
6425Semantics:
6426""""""""""
6427
6428The '``llvm.gcwrite``' intrinsic has the same semantics as a store
6429instruction, but may be replaced with substantially more complex code by
6430the garbage collector runtime, as needed. The '``llvm.gcwrite``'
6431intrinsic may only be used in a function which :ref:`specifies a GC
6432algorithm <gc>`.
6433
6434Code Generator Intrinsics
6435-------------------------
6436
6437These intrinsics are provided by LLVM to expose special features that
6438may only be implemented with code generator support.
6439
6440'``llvm.returnaddress``' Intrinsic
6441^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6442
6443Syntax:
6444"""""""
6445
6446::
6447
6448 declare i8 *@llvm.returnaddress(i32 <level>)
6449
6450Overview:
6451"""""""""
6452
6453The '``llvm.returnaddress``' intrinsic attempts to compute a
6454target-specific value indicating the return address of the current
6455function or one of its callers.
6456
6457Arguments:
6458""""""""""
6459
6460The argument to this intrinsic indicates which function to return the
6461address for. Zero indicates the calling function, one indicates its
6462caller, etc. The argument is **required** to be a constant integer
6463value.
6464
6465Semantics:
6466""""""""""
6467
6468The '``llvm.returnaddress``' intrinsic either returns a pointer
6469indicating the return address of the specified call frame, or zero if it
6470cannot be identified. The value returned by this intrinsic is likely to
6471be incorrect or 0 for arguments other than zero, so it should only be
6472used for debugging purposes.
6473
6474Note that calling this intrinsic does not prevent function inlining or
6475other aggressive transformations, so the value returned may not be that
6476of the obvious source-language caller.
6477
6478'``llvm.frameaddress``' Intrinsic
6479^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6480
6481Syntax:
6482"""""""
6483
6484::
6485
6486 declare i8* @llvm.frameaddress(i32 <level>)
6487
6488Overview:
6489"""""""""
6490
6491The '``llvm.frameaddress``' intrinsic attempts to return the
6492target-specific frame pointer value for the specified stack frame.
6493
6494Arguments:
6495""""""""""
6496
6497The argument to this intrinsic indicates which function to return the
6498frame pointer for. Zero indicates the calling function, one indicates
6499its caller, etc. The argument is **required** to be a constant integer
6500value.
6501
6502Semantics:
6503""""""""""
6504
6505The '``llvm.frameaddress``' intrinsic either returns a pointer
6506indicating the frame address of the specified call frame, or zero if it
6507cannot be identified. The value returned by this intrinsic is likely to
6508be incorrect or 0 for arguments other than zero, so it should only be
6509used for debugging purposes.
6510
6511Note that calling this intrinsic does not prevent function inlining or
6512other aggressive transformations, so the value returned may not be that
6513of the obvious source-language caller.
6514
6515.. _int_stacksave:
6516
6517'``llvm.stacksave``' Intrinsic
6518^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6519
6520Syntax:
6521"""""""
6522
6523::
6524
6525 declare i8* @llvm.stacksave()
6526
6527Overview:
6528"""""""""
6529
6530The '``llvm.stacksave``' intrinsic is used to remember the current state
6531of the function stack, for use with
6532:ref:`llvm.stackrestore <int_stackrestore>`. This is useful for
6533implementing language features like scoped automatic variable sized
6534arrays in C99.
6535
6536Semantics:
6537""""""""""
6538
6539This intrinsic returns a opaque pointer value that can be passed to
6540:ref:`llvm.stackrestore <int_stackrestore>`. When an
6541``llvm.stackrestore`` intrinsic is executed with a value saved from
6542``llvm.stacksave``, it effectively restores the state of the stack to
6543the state it was in when the ``llvm.stacksave`` intrinsic executed. In
6544practice, this pops any :ref:`alloca <i_alloca>` blocks from the stack that
6545were allocated after the ``llvm.stacksave`` was executed.
6546
6547.. _int_stackrestore:
6548
6549'``llvm.stackrestore``' Intrinsic
6550^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6551
6552Syntax:
6553"""""""
6554
6555::
6556
6557 declare void @llvm.stackrestore(i8* %ptr)
6558
6559Overview:
6560"""""""""
6561
6562The '``llvm.stackrestore``' intrinsic is used to restore the state of
6563the function stack to the state it was in when the corresponding
6564:ref:`llvm.stacksave <int_stacksave>` intrinsic executed. This is
6565useful for implementing language features like scoped automatic variable
6566sized arrays in C99.
6567
6568Semantics:
6569""""""""""
6570
6571See the description for :ref:`llvm.stacksave <int_stacksave>`.
6572
6573'``llvm.prefetch``' Intrinsic
6574^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6575
6576Syntax:
6577"""""""
6578
6579::
6580
6581 declare void @llvm.prefetch(i8* <address>, i32 <rw>, i32 <locality>, i32 <cache type>)
6582
6583Overview:
6584"""""""""
6585
6586The '``llvm.prefetch``' intrinsic is a hint to the code generator to
6587insert a prefetch instruction if supported; otherwise, it is a noop.
6588Prefetches have no effect on the behavior of the program but can change
6589its performance characteristics.
6590
6591Arguments:
6592""""""""""
6593
6594``address`` is the address to be prefetched, ``rw`` is the specifier
6595determining if the fetch should be for a read (0) or write (1), and
6596``locality`` is a temporal locality specifier ranging from (0) - no
6597locality, to (3) - extremely local keep in cache. The ``cache type``
6598specifies whether the prefetch is performed on the data (1) or
6599instruction (0) cache. The ``rw``, ``locality`` and ``cache type``
6600arguments must be constant integers.
6601
6602Semantics:
6603""""""""""
6604
6605This intrinsic does not modify the behavior of the program. In
6606particular, prefetches cannot trap and do not produce a value. On
6607targets that support this intrinsic, the prefetch can provide hints to
6608the processor cache for better performance.
6609
6610'``llvm.pcmarker``' Intrinsic
6611^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6612
6613Syntax:
6614"""""""
6615
6616::
6617
6618 declare void @llvm.pcmarker(i32 <id>)
6619
6620Overview:
6621"""""""""
6622
6623The '``llvm.pcmarker``' intrinsic is a method to export a Program
6624Counter (PC) in a region of code to simulators and other tools. The
6625method is target specific, but it is expected that the marker will use
6626exported symbols to transmit the PC of the marker. The marker makes no
6627guarantees that it will remain with any specific instruction after
6628optimizations. It is possible that the presence of a marker will inhibit
6629optimizations. The intended use is to be inserted after optimizations to
6630allow correlations of simulation runs.
6631
6632Arguments:
6633""""""""""
6634
6635``id`` is a numerical id identifying the marker.
6636
6637Semantics:
6638""""""""""
6639
6640This intrinsic does not modify the behavior of the program. Backends
6641that do not support this intrinsic may ignore it.
6642
6643'``llvm.readcyclecounter``' Intrinsic
6644^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6645
6646Syntax:
6647"""""""
6648
6649::
6650
6651 declare i64 @llvm.readcyclecounter()
6652
6653Overview:
6654"""""""""
6655
6656The '``llvm.readcyclecounter``' intrinsic provides access to the cycle
6657counter register (or similar low latency, high accuracy clocks) on those
6658targets that support it. On X86, it should map to RDTSC. On Alpha, it
6659should map to RPCC. As the backing counters overflow quickly (on the
6660order of 9 seconds on alpha), this should only be used for small
6661timings.
6662
6663Semantics:
6664""""""""""
6665
6666When directly supported, reading the cycle counter should not modify any
6667memory. Implementations are allowed to either return a application
6668specific value or a system wide value. On backends without support, this
6669is lowered to a constant 0.
6670
Tim Northover5a02fc42013-05-23 19:11:20 +00006671Note that runtime support may be conditional on the privilege-level code is
6672running at and the host platform.
6673
Sean Silvaf722b002012-12-07 10:36:55 +00006674Standard C Library Intrinsics
6675-----------------------------
6676
6677LLVM provides intrinsics for a few important standard C library
6678functions. These intrinsics allow source-language front-ends to pass
6679information about the alignment of the pointer arguments to the code
6680generator, providing opportunity for more efficient code generation.
6681
6682.. _int_memcpy:
6683
6684'``llvm.memcpy``' Intrinsic
6685^^^^^^^^^^^^^^^^^^^^^^^^^^^
6686
6687Syntax:
6688"""""""
6689
6690This is an overloaded intrinsic. You can use ``llvm.memcpy`` on any
6691integer bit width and for different address spaces. Not all targets
6692support all bit widths however.
6693
6694::
6695
6696 declare void @llvm.memcpy.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6697 i32 <len>, i32 <align>, i1 <isvolatile>)
6698 declare void @llvm.memcpy.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6699 i64 <len>, i32 <align>, i1 <isvolatile>)
6700
6701Overview:
6702"""""""""
6703
6704The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6705source location to the destination location.
6706
6707Note that, unlike the standard libc function, the ``llvm.memcpy.*``
6708intrinsics do not return a value, takes extra alignment/isvolatile
6709arguments and the pointers can be in specified address spaces.
6710
6711Arguments:
6712""""""""""
6713
6714The first argument is a pointer to the destination, the second is a
6715pointer to the source. The third argument is an integer argument
6716specifying the number of bytes to copy, the fourth argument is the
6717alignment of the source and destination locations, and the fifth is a
6718boolean indicating a volatile access.
6719
6720If the call to this intrinsic has an alignment value that is not 0 or 1,
6721then the caller guarantees that both the source and destination pointers
6722are aligned to that boundary.
6723
6724If the ``isvolatile`` parameter is ``true``, the ``llvm.memcpy`` call is
6725a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6726very cleanly specified and it is unwise to depend on it.
6727
6728Semantics:
6729""""""""""
6730
6731The '``llvm.memcpy.*``' intrinsics copy a block of memory from the
6732source location to the destination location, which are not allowed to
6733overlap. It copies "len" bytes of memory over. If the argument is known
6734to be aligned to some boundary, this can be specified as the fourth
6735argument, otherwise it should be set to 0 or 1.
6736
6737'``llvm.memmove``' Intrinsic
6738^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6739
6740Syntax:
6741"""""""
6742
6743This is an overloaded intrinsic. You can use llvm.memmove on any integer
6744bit width and for different address space. Not all targets support all
6745bit widths however.
6746
6747::
6748
6749 declare void @llvm.memmove.p0i8.p0i8.i32(i8* <dest>, i8* <src>,
6750 i32 <len>, i32 <align>, i1 <isvolatile>)
6751 declare void @llvm.memmove.p0i8.p0i8.i64(i8* <dest>, i8* <src>,
6752 i64 <len>, i32 <align>, i1 <isvolatile>)
6753
6754Overview:
6755"""""""""
6756
6757The '``llvm.memmove.*``' intrinsics move a block of memory from the
6758source location to the destination location. It is similar to the
6759'``llvm.memcpy``' intrinsic but allows the two memory locations to
6760overlap.
6761
6762Note that, unlike the standard libc function, the ``llvm.memmove.*``
6763intrinsics do not return a value, takes extra alignment/isvolatile
6764arguments and the pointers can be in specified address spaces.
6765
6766Arguments:
6767""""""""""
6768
6769The first argument is a pointer to the destination, the second is a
6770pointer to the source. The third argument is an integer argument
6771specifying the number of bytes to copy, the fourth argument is the
6772alignment of the source and destination locations, and the fifth is a
6773boolean indicating a volatile access.
6774
6775If the call to this intrinsic has an alignment value that is not 0 or 1,
6776then the caller guarantees that the source and destination pointers are
6777aligned to that boundary.
6778
6779If the ``isvolatile`` parameter is ``true``, the ``llvm.memmove`` call
6780is a :ref:`volatile operation <volatile>`. The detailed access behavior is
6781not very cleanly specified and it is unwise to depend on it.
6782
6783Semantics:
6784""""""""""
6785
6786The '``llvm.memmove.*``' intrinsics copy a block of memory from the
6787source location to the destination location, which may overlap. It
6788copies "len" bytes of memory over. If the argument is known to be
6789aligned to some boundary, this can be specified as the fourth argument,
6790otherwise it should be set to 0 or 1.
6791
6792'``llvm.memset.*``' Intrinsics
6793^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6794
6795Syntax:
6796"""""""
6797
6798This is an overloaded intrinsic. You can use llvm.memset on any integer
6799bit width and for different address spaces. However, not all targets
6800support all bit widths.
6801
6802::
6803
6804 declare void @llvm.memset.p0i8.i32(i8* <dest>, i8 <val>,
6805 i32 <len>, i32 <align>, i1 <isvolatile>)
6806 declare void @llvm.memset.p0i8.i64(i8* <dest>, i8 <val>,
6807 i64 <len>, i32 <align>, i1 <isvolatile>)
6808
6809Overview:
6810"""""""""
6811
6812The '``llvm.memset.*``' intrinsics fill a block of memory with a
6813particular byte value.
6814
6815Note that, unlike the standard libc function, the ``llvm.memset``
6816intrinsic does not return a value and takes extra alignment/volatile
6817arguments. Also, the destination can be in an arbitrary address space.
6818
6819Arguments:
6820""""""""""
6821
6822The first argument is a pointer to the destination to fill, the second
6823is the byte value with which to fill it, the third argument is an
6824integer argument specifying the number of bytes to fill, and the fourth
6825argument is the known alignment of the destination location.
6826
6827If the call to this intrinsic has an alignment value that is not 0 or 1,
6828then the caller guarantees that the destination pointer is aligned to
6829that boundary.
6830
6831If the ``isvolatile`` parameter is ``true``, the ``llvm.memset`` call is
6832a :ref:`volatile operation <volatile>`. The detailed access behavior is not
6833very cleanly specified and it is unwise to depend on it.
6834
6835Semantics:
6836""""""""""
6837
6838The '``llvm.memset.*``' intrinsics fill "len" bytes of memory starting
6839at the destination location. If the argument is known to be aligned to
6840some boundary, this can be specified as the fourth argument, otherwise
6841it should be set to 0 or 1.
6842
6843'``llvm.sqrt.*``' Intrinsic
6844^^^^^^^^^^^^^^^^^^^^^^^^^^^
6845
6846Syntax:
6847"""""""
6848
6849This is an overloaded intrinsic. You can use ``llvm.sqrt`` on any
6850floating point or vector of floating point type. Not all targets support
6851all types however.
6852
6853::
6854
6855 declare float @llvm.sqrt.f32(float %Val)
6856 declare double @llvm.sqrt.f64(double %Val)
6857 declare x86_fp80 @llvm.sqrt.f80(x86_fp80 %Val)
6858 declare fp128 @llvm.sqrt.f128(fp128 %Val)
6859 declare ppc_fp128 @llvm.sqrt.ppcf128(ppc_fp128 %Val)
6860
6861Overview:
6862"""""""""
6863
6864The '``llvm.sqrt``' intrinsics return the sqrt of the specified operand,
6865returning the same value as the libm '``sqrt``' functions would. Unlike
6866``sqrt`` in libm, however, ``llvm.sqrt`` has undefined behavior for
6867negative numbers other than -0.0 (which allows for better optimization,
6868because there is no need to worry about errno being set).
6869``llvm.sqrt(-0.0)`` is defined to return -0.0 like IEEE sqrt.
6870
6871Arguments:
6872""""""""""
6873
6874The argument and return value are floating point numbers of the same
6875type.
6876
6877Semantics:
6878""""""""""
6879
6880This function returns the sqrt of the specified operand if it is a
6881nonnegative floating point number.
6882
6883'``llvm.powi.*``' Intrinsic
6884^^^^^^^^^^^^^^^^^^^^^^^^^^^
6885
6886Syntax:
6887"""""""
6888
6889This is an overloaded intrinsic. You can use ``llvm.powi`` on any
6890floating point or vector of floating point type. Not all targets support
6891all types however.
6892
6893::
6894
6895 declare float @llvm.powi.f32(float %Val, i32 %power)
6896 declare double @llvm.powi.f64(double %Val, i32 %power)
6897 declare x86_fp80 @llvm.powi.f80(x86_fp80 %Val, i32 %power)
6898 declare fp128 @llvm.powi.f128(fp128 %Val, i32 %power)
6899 declare ppc_fp128 @llvm.powi.ppcf128(ppc_fp128 %Val, i32 %power)
6900
6901Overview:
6902"""""""""
6903
6904The '``llvm.powi.*``' intrinsics return the first operand raised to the
6905specified (positive or negative) power. The order of evaluation of
6906multiplications is not defined. When a vector of floating point type is
6907used, the second argument remains a scalar integer value.
6908
6909Arguments:
6910""""""""""
6911
6912The second argument is an integer power, and the first is a value to
6913raise to that power.
6914
6915Semantics:
6916""""""""""
6917
6918This function returns the first value raised to the second power with an
6919unspecified sequence of rounding operations.
6920
6921'``llvm.sin.*``' Intrinsic
6922^^^^^^^^^^^^^^^^^^^^^^^^^^
6923
6924Syntax:
6925"""""""
6926
6927This is an overloaded intrinsic. You can use ``llvm.sin`` on any
6928floating point or vector of floating point type. Not all targets support
6929all types however.
6930
6931::
6932
6933 declare float @llvm.sin.f32(float %Val)
6934 declare double @llvm.sin.f64(double %Val)
6935 declare x86_fp80 @llvm.sin.f80(x86_fp80 %Val)
6936 declare fp128 @llvm.sin.f128(fp128 %Val)
6937 declare ppc_fp128 @llvm.sin.ppcf128(ppc_fp128 %Val)
6938
6939Overview:
6940"""""""""
6941
6942The '``llvm.sin.*``' intrinsics return the sine of the operand.
6943
6944Arguments:
6945""""""""""
6946
6947The argument and return value are floating point numbers of the same
6948type.
6949
6950Semantics:
6951""""""""""
6952
6953This function returns the sine of the specified operand, returning the
6954same values as the libm ``sin`` functions would, and handles error
6955conditions in the same way.
6956
6957'``llvm.cos.*``' Intrinsic
6958^^^^^^^^^^^^^^^^^^^^^^^^^^
6959
6960Syntax:
6961"""""""
6962
6963This is an overloaded intrinsic. You can use ``llvm.cos`` on any
6964floating point or vector of floating point type. Not all targets support
6965all types however.
6966
6967::
6968
6969 declare float @llvm.cos.f32(float %Val)
6970 declare double @llvm.cos.f64(double %Val)
6971 declare x86_fp80 @llvm.cos.f80(x86_fp80 %Val)
6972 declare fp128 @llvm.cos.f128(fp128 %Val)
6973 declare ppc_fp128 @llvm.cos.ppcf128(ppc_fp128 %Val)
6974
6975Overview:
6976"""""""""
6977
6978The '``llvm.cos.*``' intrinsics return the cosine of the operand.
6979
6980Arguments:
6981""""""""""
6982
6983The argument and return value are floating point numbers of the same
6984type.
6985
6986Semantics:
6987""""""""""
6988
6989This function returns the cosine of the specified operand, returning the
6990same values as the libm ``cos`` functions would, and handles error
6991conditions in the same way.
6992
6993'``llvm.pow.*``' Intrinsic
6994^^^^^^^^^^^^^^^^^^^^^^^^^^
6995
6996Syntax:
6997"""""""
6998
6999This is an overloaded intrinsic. You can use ``llvm.pow`` on any
7000floating point or vector of floating point type. Not all targets support
7001all types however.
7002
7003::
7004
7005 declare float @llvm.pow.f32(float %Val, float %Power)
7006 declare double @llvm.pow.f64(double %Val, double %Power)
7007 declare x86_fp80 @llvm.pow.f80(x86_fp80 %Val, x86_fp80 %Power)
7008 declare fp128 @llvm.pow.f128(fp128 %Val, fp128 %Power)
7009 declare ppc_fp128 @llvm.pow.ppcf128(ppc_fp128 %Val, ppc_fp128 Power)
7010
7011Overview:
7012"""""""""
7013
7014The '``llvm.pow.*``' intrinsics return the first operand raised to the
7015specified (positive or negative) power.
7016
7017Arguments:
7018""""""""""
7019
7020The second argument is a floating point power, and the first is a value
7021to raise to that power.
7022
7023Semantics:
7024""""""""""
7025
7026This function returns the first value raised to the second power,
7027returning the same values as the libm ``pow`` functions would, and
7028handles error conditions in the same way.
7029
7030'``llvm.exp.*``' Intrinsic
7031^^^^^^^^^^^^^^^^^^^^^^^^^^
7032
7033Syntax:
7034"""""""
7035
7036This is an overloaded intrinsic. You can use ``llvm.exp`` on any
7037floating point or vector of floating point type. Not all targets support
7038all types however.
7039
7040::
7041
7042 declare float @llvm.exp.f32(float %Val)
7043 declare double @llvm.exp.f64(double %Val)
7044 declare x86_fp80 @llvm.exp.f80(x86_fp80 %Val)
7045 declare fp128 @llvm.exp.f128(fp128 %Val)
7046 declare ppc_fp128 @llvm.exp.ppcf128(ppc_fp128 %Val)
7047
7048Overview:
7049"""""""""
7050
7051The '``llvm.exp.*``' intrinsics perform the exp function.
7052
7053Arguments:
7054""""""""""
7055
7056The argument and return value are floating point numbers of the same
7057type.
7058
7059Semantics:
7060""""""""""
7061
7062This function returns the same values as the libm ``exp`` functions
7063would, and handles error conditions in the same way.
7064
7065'``llvm.exp2.*``' Intrinsic
7066^^^^^^^^^^^^^^^^^^^^^^^^^^^
7067
7068Syntax:
7069"""""""
7070
7071This is an overloaded intrinsic. You can use ``llvm.exp2`` on any
7072floating point or vector of floating point type. Not all targets support
7073all types however.
7074
7075::
7076
7077 declare float @llvm.exp2.f32(float %Val)
7078 declare double @llvm.exp2.f64(double %Val)
7079 declare x86_fp80 @llvm.exp2.f80(x86_fp80 %Val)
7080 declare fp128 @llvm.exp2.f128(fp128 %Val)
7081 declare ppc_fp128 @llvm.exp2.ppcf128(ppc_fp128 %Val)
7082
7083Overview:
7084"""""""""
7085
7086The '``llvm.exp2.*``' intrinsics perform the exp2 function.
7087
7088Arguments:
7089""""""""""
7090
7091The argument and return value are floating point numbers of the same
7092type.
7093
7094Semantics:
7095""""""""""
7096
7097This function returns the same values as the libm ``exp2`` functions
7098would, and handles error conditions in the same way.
7099
7100'``llvm.log.*``' Intrinsic
7101^^^^^^^^^^^^^^^^^^^^^^^^^^
7102
7103Syntax:
7104"""""""
7105
7106This is an overloaded intrinsic. You can use ``llvm.log`` on any
7107floating point or vector of floating point type. Not all targets support
7108all types however.
7109
7110::
7111
7112 declare float @llvm.log.f32(float %Val)
7113 declare double @llvm.log.f64(double %Val)
7114 declare x86_fp80 @llvm.log.f80(x86_fp80 %Val)
7115 declare fp128 @llvm.log.f128(fp128 %Val)
7116 declare ppc_fp128 @llvm.log.ppcf128(ppc_fp128 %Val)
7117
7118Overview:
7119"""""""""
7120
7121The '``llvm.log.*``' intrinsics perform the log function.
7122
7123Arguments:
7124""""""""""
7125
7126The argument and return value are floating point numbers of the same
7127type.
7128
7129Semantics:
7130""""""""""
7131
7132This function returns the same values as the libm ``log`` functions
7133would, and handles error conditions in the same way.
7134
7135'``llvm.log10.*``' Intrinsic
7136^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7137
7138Syntax:
7139"""""""
7140
7141This is an overloaded intrinsic. You can use ``llvm.log10`` on any
7142floating point or vector of floating point type. Not all targets support
7143all types however.
7144
7145::
7146
7147 declare float @llvm.log10.f32(float %Val)
7148 declare double @llvm.log10.f64(double %Val)
7149 declare x86_fp80 @llvm.log10.f80(x86_fp80 %Val)
7150 declare fp128 @llvm.log10.f128(fp128 %Val)
7151 declare ppc_fp128 @llvm.log10.ppcf128(ppc_fp128 %Val)
7152
7153Overview:
7154"""""""""
7155
7156The '``llvm.log10.*``' intrinsics perform the log10 function.
7157
7158Arguments:
7159""""""""""
7160
7161The argument and return value are floating point numbers of the same
7162type.
7163
7164Semantics:
7165""""""""""
7166
7167This function returns the same values as the libm ``log10`` functions
7168would, and handles error conditions in the same way.
7169
7170'``llvm.log2.*``' Intrinsic
7171^^^^^^^^^^^^^^^^^^^^^^^^^^^
7172
7173Syntax:
7174"""""""
7175
7176This is an overloaded intrinsic. You can use ``llvm.log2`` on any
7177floating point or vector of floating point type. Not all targets support
7178all types however.
7179
7180::
7181
7182 declare float @llvm.log2.f32(float %Val)
7183 declare double @llvm.log2.f64(double %Val)
7184 declare x86_fp80 @llvm.log2.f80(x86_fp80 %Val)
7185 declare fp128 @llvm.log2.f128(fp128 %Val)
7186 declare ppc_fp128 @llvm.log2.ppcf128(ppc_fp128 %Val)
7187
7188Overview:
7189"""""""""
7190
7191The '``llvm.log2.*``' intrinsics perform the log2 function.
7192
7193Arguments:
7194""""""""""
7195
7196The argument and return value are floating point numbers of the same
7197type.
7198
7199Semantics:
7200""""""""""
7201
7202This function returns the same values as the libm ``log2`` functions
7203would, and handles error conditions in the same way.
7204
7205'``llvm.fma.*``' Intrinsic
7206^^^^^^^^^^^^^^^^^^^^^^^^^^
7207
7208Syntax:
7209"""""""
7210
7211This is an overloaded intrinsic. You can use ``llvm.fma`` on any
7212floating point or vector of floating point type. Not all targets support
7213all types however.
7214
7215::
7216
7217 declare float @llvm.fma.f32(float %a, float %b, float %c)
7218 declare double @llvm.fma.f64(double %a, double %b, double %c)
7219 declare x86_fp80 @llvm.fma.f80(x86_fp80 %a, x86_fp80 %b, x86_fp80 %c)
7220 declare fp128 @llvm.fma.f128(fp128 %a, fp128 %b, fp128 %c)
7221 declare ppc_fp128 @llvm.fma.ppcf128(ppc_fp128 %a, ppc_fp128 %b, ppc_fp128 %c)
7222
7223Overview:
7224"""""""""
7225
7226The '``llvm.fma.*``' intrinsics perform the fused multiply-add
7227operation.
7228
7229Arguments:
7230""""""""""
7231
7232The argument and return value are floating point numbers of the same
7233type.
7234
7235Semantics:
7236""""""""""
7237
7238This function returns the same values as the libm ``fma`` functions
7239would.
7240
7241'``llvm.fabs.*``' Intrinsic
7242^^^^^^^^^^^^^^^^^^^^^^^^^^^
7243
7244Syntax:
7245"""""""
7246
7247This is an overloaded intrinsic. You can use ``llvm.fabs`` on any
7248floating point or vector of floating point type. Not all targets support
7249all types however.
7250
7251::
7252
7253 declare float @llvm.fabs.f32(float %Val)
7254 declare double @llvm.fabs.f64(double %Val)
7255 declare x86_fp80 @llvm.fabs.f80(x86_fp80 %Val)
7256 declare fp128 @llvm.fabs.f128(fp128 %Val)
7257 declare ppc_fp128 @llvm.fabs.ppcf128(ppc_fp128 %Val)
7258
7259Overview:
7260"""""""""
7261
7262The '``llvm.fabs.*``' intrinsics return the absolute value of the
7263operand.
7264
7265Arguments:
7266""""""""""
7267
7268The argument and return value are floating point numbers of the same
7269type.
7270
7271Semantics:
7272""""""""""
7273
7274This function returns the same values as the libm ``fabs`` functions
7275would, and handles error conditions in the same way.
7276
7277'``llvm.floor.*``' Intrinsic
7278^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7279
7280Syntax:
7281"""""""
7282
7283This is an overloaded intrinsic. You can use ``llvm.floor`` on any
7284floating point or vector of floating point type. Not all targets support
7285all types however.
7286
7287::
7288
7289 declare float @llvm.floor.f32(float %Val)
7290 declare double @llvm.floor.f64(double %Val)
7291 declare x86_fp80 @llvm.floor.f80(x86_fp80 %Val)
7292 declare fp128 @llvm.floor.f128(fp128 %Val)
7293 declare ppc_fp128 @llvm.floor.ppcf128(ppc_fp128 %Val)
7294
7295Overview:
7296"""""""""
7297
7298The '``llvm.floor.*``' intrinsics return the floor of the operand.
7299
7300Arguments:
7301""""""""""
7302
7303The argument and return value are floating point numbers of the same
7304type.
7305
7306Semantics:
7307""""""""""
7308
7309This function returns the same values as the libm ``floor`` functions
7310would, and handles error conditions in the same way.
7311
7312'``llvm.ceil.*``' Intrinsic
7313^^^^^^^^^^^^^^^^^^^^^^^^^^^
7314
7315Syntax:
7316"""""""
7317
7318This is an overloaded intrinsic. You can use ``llvm.ceil`` on any
7319floating point or vector of floating point type. Not all targets support
7320all types however.
7321
7322::
7323
7324 declare float @llvm.ceil.f32(float %Val)
7325 declare double @llvm.ceil.f64(double %Val)
7326 declare x86_fp80 @llvm.ceil.f80(x86_fp80 %Val)
7327 declare fp128 @llvm.ceil.f128(fp128 %Val)
7328 declare ppc_fp128 @llvm.ceil.ppcf128(ppc_fp128 %Val)
7329
7330Overview:
7331"""""""""
7332
7333The '``llvm.ceil.*``' intrinsics return the ceiling of the operand.
7334
7335Arguments:
7336""""""""""
7337
7338The argument and return value are floating point numbers of the same
7339type.
7340
7341Semantics:
7342""""""""""
7343
7344This function returns the same values as the libm ``ceil`` functions
7345would, and handles error conditions in the same way.
7346
7347'``llvm.trunc.*``' Intrinsic
7348^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7349
7350Syntax:
7351"""""""
7352
7353This is an overloaded intrinsic. You can use ``llvm.trunc`` on any
7354floating point or vector of floating point type. Not all targets support
7355all types however.
7356
7357::
7358
7359 declare float @llvm.trunc.f32(float %Val)
7360 declare double @llvm.trunc.f64(double %Val)
7361 declare x86_fp80 @llvm.trunc.f80(x86_fp80 %Val)
7362 declare fp128 @llvm.trunc.f128(fp128 %Val)
7363 declare ppc_fp128 @llvm.trunc.ppcf128(ppc_fp128 %Val)
7364
7365Overview:
7366"""""""""
7367
7368The '``llvm.trunc.*``' intrinsics returns the operand rounded to the
7369nearest integer not larger in magnitude than the operand.
7370
7371Arguments:
7372""""""""""
7373
7374The argument and return value are floating point numbers of the same
7375type.
7376
7377Semantics:
7378""""""""""
7379
7380This function returns the same values as the libm ``trunc`` functions
7381would, and handles error conditions in the same way.
7382
7383'``llvm.rint.*``' Intrinsic
7384^^^^^^^^^^^^^^^^^^^^^^^^^^^
7385
7386Syntax:
7387"""""""
7388
7389This is an overloaded intrinsic. You can use ``llvm.rint`` on any
7390floating point or vector of floating point type. Not all targets support
7391all types however.
7392
7393::
7394
7395 declare float @llvm.rint.f32(float %Val)
7396 declare double @llvm.rint.f64(double %Val)
7397 declare x86_fp80 @llvm.rint.f80(x86_fp80 %Val)
7398 declare fp128 @llvm.rint.f128(fp128 %Val)
7399 declare ppc_fp128 @llvm.rint.ppcf128(ppc_fp128 %Val)
7400
7401Overview:
7402"""""""""
7403
7404The '``llvm.rint.*``' intrinsics returns the operand rounded to the
7405nearest integer. It may raise an inexact floating-point exception if the
7406operand isn't an integer.
7407
7408Arguments:
7409""""""""""
7410
7411The argument and return value are floating point numbers of the same
7412type.
7413
7414Semantics:
7415""""""""""
7416
7417This function returns the same values as the libm ``rint`` functions
7418would, and handles error conditions in the same way.
7419
7420'``llvm.nearbyint.*``' Intrinsic
7421^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7422
7423Syntax:
7424"""""""
7425
7426This is an overloaded intrinsic. You can use ``llvm.nearbyint`` on any
7427floating point or vector of floating point type. Not all targets support
7428all types however.
7429
7430::
7431
7432 declare float @llvm.nearbyint.f32(float %Val)
7433 declare double @llvm.nearbyint.f64(double %Val)
7434 declare x86_fp80 @llvm.nearbyint.f80(x86_fp80 %Val)
7435 declare fp128 @llvm.nearbyint.f128(fp128 %Val)
7436 declare ppc_fp128 @llvm.nearbyint.ppcf128(ppc_fp128 %Val)
7437
7438Overview:
7439"""""""""
7440
7441The '``llvm.nearbyint.*``' intrinsics returns the operand rounded to the
7442nearest integer.
7443
7444Arguments:
7445""""""""""
7446
7447The argument and return value are floating point numbers of the same
7448type.
7449
7450Semantics:
7451""""""""""
7452
7453This function returns the same values as the libm ``nearbyint``
7454functions would, and handles error conditions in the same way.
7455
7456Bit Manipulation Intrinsics
7457---------------------------
7458
7459LLVM provides intrinsics for a few important bit manipulation
7460operations. These allow efficient code generation for some algorithms.
7461
7462'``llvm.bswap.*``' Intrinsics
7463^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7464
7465Syntax:
7466"""""""
7467
7468This is an overloaded intrinsic function. You can use bswap on any
7469integer type that is an even number of bytes (i.e. BitWidth % 16 == 0).
7470
7471::
7472
7473 declare i16 @llvm.bswap.i16(i16 <id>)
7474 declare i32 @llvm.bswap.i32(i32 <id>)
7475 declare i64 @llvm.bswap.i64(i64 <id>)
7476
7477Overview:
7478"""""""""
7479
7480The '``llvm.bswap``' family of intrinsics is used to byte swap integer
7481values with an even number of bytes (positive multiple of 16 bits).
7482These are useful for performing operations on data that is not in the
7483target's native byte order.
7484
7485Semantics:
7486""""""""""
7487
7488The ``llvm.bswap.i16`` intrinsic returns an i16 value that has the high
7489and low byte of the input i16 swapped. Similarly, the ``llvm.bswap.i32``
7490intrinsic returns an i32 value that has the four bytes of the input i32
7491swapped, so that if the input bytes are numbered 0, 1, 2, 3 then the
7492returned i32 will have its bytes in 3, 2, 1, 0 order. The
7493``llvm.bswap.i48``, ``llvm.bswap.i64`` and other intrinsics extend this
7494concept to additional even-byte lengths (6 bytes, 8 bytes and more,
7495respectively).
7496
7497'``llvm.ctpop.*``' Intrinsic
7498^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7499
7500Syntax:
7501"""""""
7502
7503This is an overloaded intrinsic. You can use llvm.ctpop on any integer
7504bit width, or on any vector with integer elements. Not all targets
7505support all bit widths or vector types, however.
7506
7507::
7508
7509 declare i8 @llvm.ctpop.i8(i8 <src>)
7510 declare i16 @llvm.ctpop.i16(i16 <src>)
7511 declare i32 @llvm.ctpop.i32(i32 <src>)
7512 declare i64 @llvm.ctpop.i64(i64 <src>)
7513 declare i256 @llvm.ctpop.i256(i256 <src>)
7514 declare <2 x i32> @llvm.ctpop.v2i32(<2 x i32> <src>)
7515
7516Overview:
7517"""""""""
7518
7519The '``llvm.ctpop``' family of intrinsics counts the number of bits set
7520in a value.
7521
7522Arguments:
7523""""""""""
7524
7525The only argument is the value to be counted. The argument may be of any
7526integer type, or a vector with integer elements. The return type must
7527match the argument type.
7528
7529Semantics:
7530""""""""""
7531
7532The '``llvm.ctpop``' intrinsic counts the 1's in a variable, or within
7533each element of a vector.
7534
7535'``llvm.ctlz.*``' Intrinsic
7536^^^^^^^^^^^^^^^^^^^^^^^^^^^
7537
7538Syntax:
7539"""""""
7540
7541This is an overloaded intrinsic. You can use ``llvm.ctlz`` on any
7542integer bit width, or any vector whose elements are integers. Not all
7543targets support all bit widths or vector types, however.
7544
7545::
7546
7547 declare i8 @llvm.ctlz.i8 (i8 <src>, i1 <is_zero_undef>)
7548 declare i16 @llvm.ctlz.i16 (i16 <src>, i1 <is_zero_undef>)
7549 declare i32 @llvm.ctlz.i32 (i32 <src>, i1 <is_zero_undef>)
7550 declare i64 @llvm.ctlz.i64 (i64 <src>, i1 <is_zero_undef>)
7551 declare i256 @llvm.ctlz.i256(i256 <src>, i1 <is_zero_undef>)
7552 declase <2 x i32> @llvm.ctlz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7553
7554Overview:
7555"""""""""
7556
7557The '``llvm.ctlz``' family of intrinsic functions counts the number of
7558leading zeros in a variable.
7559
7560Arguments:
7561""""""""""
7562
7563The first argument is the value to be counted. This argument may be of
7564any integer type, or a vectory with integer element type. The return
7565type must match the first argument type.
7566
7567The second argument must be a constant and is a flag to indicate whether
7568the intrinsic should ensure that a zero as the first argument produces a
7569defined result. Historically some architectures did not provide a
7570defined result for zero values as efficiently, and many algorithms are
7571now predicated on avoiding zero-value inputs.
7572
7573Semantics:
7574""""""""""
7575
7576The '``llvm.ctlz``' intrinsic counts the leading (most significant)
7577zeros in a variable, or within each element of the vector. If
7578``src == 0`` then the result is the size in bits of the type of ``src``
7579if ``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7580``llvm.ctlz(i32 2) = 30``.
7581
7582'``llvm.cttz.*``' Intrinsic
7583^^^^^^^^^^^^^^^^^^^^^^^^^^^
7584
7585Syntax:
7586"""""""
7587
7588This is an overloaded intrinsic. You can use ``llvm.cttz`` on any
7589integer bit width, or any vector of integer elements. Not all targets
7590support all bit widths or vector types, however.
7591
7592::
7593
7594 declare i8 @llvm.cttz.i8 (i8 <src>, i1 <is_zero_undef>)
7595 declare i16 @llvm.cttz.i16 (i16 <src>, i1 <is_zero_undef>)
7596 declare i32 @llvm.cttz.i32 (i32 <src>, i1 <is_zero_undef>)
7597 declare i64 @llvm.cttz.i64 (i64 <src>, i1 <is_zero_undef>)
7598 declare i256 @llvm.cttz.i256(i256 <src>, i1 <is_zero_undef>)
7599 declase <2 x i32> @llvm.cttz.v2i32(<2 x i32> <src>, i1 <is_zero_undef>)
7600
7601Overview:
7602"""""""""
7603
7604The '``llvm.cttz``' family of intrinsic functions counts the number of
7605trailing zeros.
7606
7607Arguments:
7608""""""""""
7609
7610The first argument is the value to be counted. This argument may be of
7611any integer type, or a vectory with integer element type. The return
7612type must match the first argument type.
7613
7614The second argument must be a constant and is a flag to indicate whether
7615the intrinsic should ensure that a zero as the first argument produces a
7616defined result. Historically some architectures did not provide a
7617defined result for zero values as efficiently, and many algorithms are
7618now predicated on avoiding zero-value inputs.
7619
7620Semantics:
7621""""""""""
7622
7623The '``llvm.cttz``' intrinsic counts the trailing (least significant)
7624zeros in a variable, or within each element of a vector. If ``src == 0``
7625then the result is the size in bits of the type of ``src`` if
7626``is_zero_undef == 0`` and ``undef`` otherwise. For example,
7627``llvm.cttz(2) = 1``.
7628
7629Arithmetic with Overflow Intrinsics
7630-----------------------------------
7631
7632LLVM provides intrinsics for some arithmetic with overflow operations.
7633
7634'``llvm.sadd.with.overflow.*``' Intrinsics
7635^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7636
7637Syntax:
7638"""""""
7639
7640This is an overloaded intrinsic. You can use ``llvm.sadd.with.overflow``
7641on any integer bit width.
7642
7643::
7644
7645 declare {i16, i1} @llvm.sadd.with.overflow.i16(i16 %a, i16 %b)
7646 declare {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7647 declare {i64, i1} @llvm.sadd.with.overflow.i64(i64 %a, i64 %b)
7648
7649Overview:
7650"""""""""
7651
7652The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
7653a signed addition of the two arguments, and indicate whether an overflow
7654occurred during the signed summation.
7655
7656Arguments:
7657""""""""""
7658
7659The arguments (%a and %b) and the first element of the result structure
7660may be of integer types of any bit width, but they must have the same
7661bit width. The second element of the result structure must be of type
7662``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7663addition.
7664
7665Semantics:
7666""""""""""
7667
7668The '``llvm.sadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007669a signed addition of the two variables. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007670first element of which is the signed summation, and the second element
7671of which is a bit specifying if the signed summation resulted in an
7672overflow.
7673
7674Examples:
7675"""""""""
7676
7677.. code-block:: llvm
7678
7679 %res = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %a, i32 %b)
7680 %sum = extractvalue {i32, i1} %res, 0
7681 %obit = extractvalue {i32, i1} %res, 1
7682 br i1 %obit, label %overflow, label %normal
7683
7684'``llvm.uadd.with.overflow.*``' Intrinsics
7685^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7686
7687Syntax:
7688"""""""
7689
7690This is an overloaded intrinsic. You can use ``llvm.uadd.with.overflow``
7691on any integer bit width.
7692
7693::
7694
7695 declare {i16, i1} @llvm.uadd.with.overflow.i16(i16 %a, i16 %b)
7696 declare {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7697 declare {i64, i1} @llvm.uadd.with.overflow.i64(i64 %a, i64 %b)
7698
7699Overview:
7700"""""""""
7701
7702The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
7703an unsigned addition of the two arguments, and indicate whether a carry
7704occurred during the unsigned summation.
7705
7706Arguments:
7707""""""""""
7708
7709The arguments (%a and %b) and the first element of the result structure
7710may be of integer types of any bit width, but they must have the same
7711bit width. The second element of the result structure must be of type
7712``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7713addition.
7714
7715Semantics:
7716""""""""""
7717
7718The '``llvm.uadd.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007719an unsigned addition of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007720first element of which is the sum, and the second element of which is a
7721bit specifying if the unsigned summation resulted in a carry.
7722
7723Examples:
7724"""""""""
7725
7726.. code-block:: llvm
7727
7728 %res = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %a, i32 %b)
7729 %sum = extractvalue {i32, i1} %res, 0
7730 %obit = extractvalue {i32, i1} %res, 1
7731 br i1 %obit, label %carry, label %normal
7732
7733'``llvm.ssub.with.overflow.*``' Intrinsics
7734^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7735
7736Syntax:
7737"""""""
7738
7739This is an overloaded intrinsic. You can use ``llvm.ssub.with.overflow``
7740on any integer bit width.
7741
7742::
7743
7744 declare {i16, i1} @llvm.ssub.with.overflow.i16(i16 %a, i16 %b)
7745 declare {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7746 declare {i64, i1} @llvm.ssub.with.overflow.i64(i64 %a, i64 %b)
7747
7748Overview:
7749"""""""""
7750
7751The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
7752a signed subtraction of the two arguments, and indicate whether an
7753overflow occurred during the signed subtraction.
7754
7755Arguments:
7756""""""""""
7757
7758The arguments (%a and %b) and the first element of the result structure
7759may be of integer types of any bit width, but they must have the same
7760bit width. The second element of the result structure must be of type
7761``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7762subtraction.
7763
7764Semantics:
7765""""""""""
7766
7767The '``llvm.ssub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007768a signed subtraction of the two arguments. They return a structure --- the
Sean Silvaf722b002012-12-07 10:36:55 +00007769first element of which is the subtraction, and the second element of
7770which is a bit specifying if the signed subtraction resulted in an
7771overflow.
7772
7773Examples:
7774"""""""""
7775
7776.. code-block:: llvm
7777
7778 %res = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
7779 %sum = extractvalue {i32, i1} %res, 0
7780 %obit = extractvalue {i32, i1} %res, 1
7781 br i1 %obit, label %overflow, label %normal
7782
7783'``llvm.usub.with.overflow.*``' Intrinsics
7784^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7785
7786Syntax:
7787"""""""
7788
7789This is an overloaded intrinsic. You can use ``llvm.usub.with.overflow``
7790on any integer bit width.
7791
7792::
7793
7794 declare {i16, i1} @llvm.usub.with.overflow.i16(i16 %a, i16 %b)
7795 declare {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7796 declare {i64, i1} @llvm.usub.with.overflow.i64(i64 %a, i64 %b)
7797
7798Overview:
7799"""""""""
7800
7801The '``llvm.usub.with.overflow``' family of intrinsic functions perform
7802an unsigned subtraction of the two arguments, and indicate whether an
7803overflow occurred during the unsigned subtraction.
7804
7805Arguments:
7806""""""""""
7807
7808The arguments (%a and %b) and the first element of the result structure
7809may be of integer types of any bit width, but they must have the same
7810bit width. The second element of the result structure must be of type
7811``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7812subtraction.
7813
7814Semantics:
7815""""""""""
7816
7817The '``llvm.usub.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007818an unsigned subtraction of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007819the first element of which is the subtraction, and the second element of
7820which is a bit specifying if the unsigned subtraction resulted in an
7821overflow.
7822
7823Examples:
7824"""""""""
7825
7826.. code-block:: llvm
7827
7828 %res = call {i32, i1} @llvm.usub.with.overflow.i32(i32 %a, i32 %b)
7829 %sum = extractvalue {i32, i1} %res, 0
7830 %obit = extractvalue {i32, i1} %res, 1
7831 br i1 %obit, label %overflow, label %normal
7832
7833'``llvm.smul.with.overflow.*``' Intrinsics
7834^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7835
7836Syntax:
7837"""""""
7838
7839This is an overloaded intrinsic. You can use ``llvm.smul.with.overflow``
7840on any integer bit width.
7841
7842::
7843
7844 declare {i16, i1} @llvm.smul.with.overflow.i16(i16 %a, i16 %b)
7845 declare {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7846 declare {i64, i1} @llvm.smul.with.overflow.i64(i64 %a, i64 %b)
7847
7848Overview:
7849"""""""""
7850
7851The '``llvm.smul.with.overflow``' family of intrinsic functions perform
7852a signed multiplication of the two arguments, and indicate whether an
7853overflow occurred during the signed multiplication.
7854
7855Arguments:
7856""""""""""
7857
7858The arguments (%a and %b) and the first element of the result structure
7859may be of integer types of any bit width, but they must have the same
7860bit width. The second element of the result structure must be of type
7861``i1``. ``%a`` and ``%b`` are the two values that will undergo signed
7862multiplication.
7863
7864Semantics:
7865""""""""""
7866
7867The '``llvm.smul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007868a signed multiplication of the two arguments. They return a structure ---
Sean Silvaf722b002012-12-07 10:36:55 +00007869the first element of which is the multiplication, and the second element
7870of which is a bit specifying if the signed multiplication resulted in an
7871overflow.
7872
7873Examples:
7874"""""""""
7875
7876.. code-block:: llvm
7877
7878 %res = call {i32, i1} @llvm.smul.with.overflow.i32(i32 %a, i32 %b)
7879 %sum = extractvalue {i32, i1} %res, 0
7880 %obit = extractvalue {i32, i1} %res, 1
7881 br i1 %obit, label %overflow, label %normal
7882
7883'``llvm.umul.with.overflow.*``' Intrinsics
7884^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7885
7886Syntax:
7887"""""""
7888
7889This is an overloaded intrinsic. You can use ``llvm.umul.with.overflow``
7890on any integer bit width.
7891
7892::
7893
7894 declare {i16, i1} @llvm.umul.with.overflow.i16(i16 %a, i16 %b)
7895 declare {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7896 declare {i64, i1} @llvm.umul.with.overflow.i64(i64 %a, i64 %b)
7897
7898Overview:
7899"""""""""
7900
7901The '``llvm.umul.with.overflow``' family of intrinsic functions perform
7902a unsigned multiplication of the two arguments, and indicate whether an
7903overflow occurred during the unsigned multiplication.
7904
7905Arguments:
7906""""""""""
7907
7908The arguments (%a and %b) and the first element of the result structure
7909may be of integer types of any bit width, but they must have the same
7910bit width. The second element of the result structure must be of type
7911``i1``. ``%a`` and ``%b`` are the two values that will undergo unsigned
7912multiplication.
7913
7914Semantics:
7915""""""""""
7916
7917The '``llvm.umul.with.overflow``' family of intrinsic functions perform
Dmitri Gribenkoae4a9ae2013-01-19 20:34:20 +00007918an unsigned multiplication of the two arguments. They return a structure ---
7919the first element of which is the multiplication, and the second
Sean Silvaf722b002012-12-07 10:36:55 +00007920element of which is a bit specifying if the unsigned multiplication
7921resulted in an overflow.
7922
7923Examples:
7924"""""""""
7925
7926.. code-block:: llvm
7927
7928 %res = call {i32, i1} @llvm.umul.with.overflow.i32(i32 %a, i32 %b)
7929 %sum = extractvalue {i32, i1} %res, 0
7930 %obit = extractvalue {i32, i1} %res, 1
7931 br i1 %obit, label %overflow, label %normal
7932
7933Specialised Arithmetic Intrinsics
7934---------------------------------
7935
7936'``llvm.fmuladd.*``' Intrinsic
7937^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7938
7939Syntax:
7940"""""""
7941
7942::
7943
7944 declare float @llvm.fmuladd.f32(float %a, float %b, float %c)
7945 declare double @llvm.fmuladd.f64(double %a, double %b, double %c)
7946
7947Overview:
7948"""""""""
7949
7950The '``llvm.fmuladd.*``' intrinsic functions represent multiply-add
Lang Hamesb0ec16b2013-01-17 00:00:49 +00007951expressions that can be fused if the code generator determines that (a) the
7952target instruction set has support for a fused operation, and (b) that the
7953fused operation is more efficient than the equivalent, separate pair of mul
7954and add instructions.
Sean Silvaf722b002012-12-07 10:36:55 +00007955
7956Arguments:
7957""""""""""
7958
7959The '``llvm.fmuladd.*``' intrinsics each take three arguments: two
7960multiplicands, a and b, and an addend c.
7961
7962Semantics:
7963""""""""""
7964
7965The expression:
7966
7967::
7968
7969 %0 = call float @llvm.fmuladd.f32(%a, %b, %c)
7970
7971is equivalent to the expression a \* b + c, except that rounding will
7972not be performed between the multiplication and addition steps if the
7973code generator fuses the operations. Fusion is not guaranteed, even if
7974the target platform supports it. If a fused multiply-add is required the
7975corresponding llvm.fma.\* intrinsic function should be used instead.
7976
7977Examples:
7978"""""""""
7979
7980.. code-block:: llvm
7981
7982 %r2 = call float @llvm.fmuladd.f32(float %a, float %b, float %c) ; yields {float}:r2 = (a * b) + c
7983
7984Half Precision Floating Point Intrinsics
7985----------------------------------------
7986
7987For most target platforms, half precision floating point is a
7988storage-only format. This means that it is a dense encoding (in memory)
7989but does not support computation in the format.
7990
7991This means that code must first load the half-precision floating point
7992value as an i16, then convert it to float with
7993:ref:`llvm.convert.from.fp16 <int_convert_from_fp16>`. Computation can
7994then be performed on the float value (including extending to double
7995etc). To store the value back to memory, it is first converted to float
7996if needed, then converted to i16 with
7997:ref:`llvm.convert.to.fp16 <int_convert_to_fp16>`, then storing as an
7998i16 value.
7999
8000.. _int_convert_to_fp16:
8001
8002'``llvm.convert.to.fp16``' Intrinsic
8003^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8004
8005Syntax:
8006"""""""
8007
8008::
8009
8010 declare i16 @llvm.convert.to.fp16(f32 %a)
8011
8012Overview:
8013"""""""""
8014
8015The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8016from single precision floating point format to half precision floating
8017point format.
8018
8019Arguments:
8020""""""""""
8021
8022The intrinsic function contains single argument - the value to be
8023converted.
8024
8025Semantics:
8026""""""""""
8027
8028The '``llvm.convert.to.fp16``' intrinsic function performs a conversion
8029from single precision floating point format to half precision floating
8030point format. The return value is an ``i16`` which contains the
8031converted number.
8032
8033Examples:
8034"""""""""
8035
8036.. code-block:: llvm
8037
8038 %res = call i16 @llvm.convert.to.fp16(f32 %a)
8039 store i16 %res, i16* @x, align 2
8040
8041.. _int_convert_from_fp16:
8042
8043'``llvm.convert.from.fp16``' Intrinsic
8044^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8045
8046Syntax:
8047"""""""
8048
8049::
8050
8051 declare f32 @llvm.convert.from.fp16(i16 %a)
8052
8053Overview:
8054"""""""""
8055
8056The '``llvm.convert.from.fp16``' intrinsic function performs a
8057conversion from half precision floating point format to single precision
8058floating point format.
8059
8060Arguments:
8061""""""""""
8062
8063The intrinsic function contains single argument - the value to be
8064converted.
8065
8066Semantics:
8067""""""""""
8068
8069The '``llvm.convert.from.fp16``' intrinsic function performs a
8070conversion from half single precision floating point format to single
8071precision floating point format. The input half-float value is
8072represented by an ``i16`` value.
8073
8074Examples:
8075"""""""""
8076
8077.. code-block:: llvm
8078
8079 %a = load i16* @x, align 2
8080 %res = call f32 @llvm.convert.from.fp16(i16 %a)
8081
8082Debugger Intrinsics
8083-------------------
8084
8085The LLVM debugger intrinsics (which all start with ``llvm.dbg.``
8086prefix), are described in the `LLVM Source Level
8087Debugging <SourceLevelDebugging.html#format_common_intrinsics>`_
8088document.
8089
8090Exception Handling Intrinsics
8091-----------------------------
8092
8093The LLVM exception handling intrinsics (which all start with
8094``llvm.eh.`` prefix), are described in the `LLVM Exception
8095Handling <ExceptionHandling.html#format_common_intrinsics>`_ document.
8096
8097.. _int_trampoline:
8098
8099Trampoline Intrinsics
8100---------------------
8101
8102These intrinsics make it possible to excise one parameter, marked with
8103the :ref:`nest <nest>` attribute, from a function. The result is a
8104callable function pointer lacking the nest parameter - the caller does
8105not need to provide a value for it. Instead, the value to use is stored
8106in advance in a "trampoline", a block of memory usually allocated on the
8107stack, which also contains code to splice the nest value into the
8108argument list. This is used to implement the GCC nested function address
8109extension.
8110
8111For example, if the function is ``i32 f(i8* nest %c, i32 %x, i32 %y)``
8112then the resulting function pointer has signature ``i32 (i32, i32)*``.
8113It can be created as follows:
8114
8115.. code-block:: llvm
8116
8117 %tramp = alloca [10 x i8], align 4 ; size and alignment only correct for X86
8118 %tramp1 = getelementptr [10 x i8]* %tramp, i32 0, i32 0
8119 call i8* @llvm.init.trampoline(i8* %tramp1, i8* bitcast (i32 (i8*, i32, i32)* @f to i8*), i8* %nval)
8120 %p = call i8* @llvm.adjust.trampoline(i8* %tramp1)
8121 %fp = bitcast i8* %p to i32 (i32, i32)*
8122
8123The call ``%val = call i32 %fp(i32 %x, i32 %y)`` is then equivalent to
8124``%val = call i32 %f(i8* %nval, i32 %x, i32 %y)``.
8125
8126.. _int_it:
8127
8128'``llvm.init.trampoline``' Intrinsic
8129^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8130
8131Syntax:
8132"""""""
8133
8134::
8135
8136 declare void @llvm.init.trampoline(i8* <tramp>, i8* <func>, i8* <nval>)
8137
8138Overview:
8139"""""""""
8140
8141This fills the memory pointed to by ``tramp`` with executable code,
8142turning it into a trampoline.
8143
8144Arguments:
8145""""""""""
8146
8147The ``llvm.init.trampoline`` intrinsic takes three arguments, all
8148pointers. The ``tramp`` argument must point to a sufficiently large and
8149sufficiently aligned block of memory; this memory is written to by the
8150intrinsic. Note that the size and the alignment are target-specific -
8151LLVM currently provides no portable way of determining them, so a
8152front-end that generates this intrinsic needs to have some
8153target-specific knowledge. The ``func`` argument must hold a function
8154bitcast to an ``i8*``.
8155
8156Semantics:
8157""""""""""
8158
8159The block of memory pointed to by ``tramp`` is filled with target
8160dependent code, turning it into a function. Then ``tramp`` needs to be
8161passed to :ref:`llvm.adjust.trampoline <int_at>` to get a pointer which can
8162be :ref:`bitcast (to a new function) and called <int_trampoline>`. The new
8163function's signature is the same as that of ``func`` with any arguments
8164marked with the ``nest`` attribute removed. At most one such ``nest``
8165argument is allowed, and it must be of pointer type. Calling the new
8166function is equivalent to calling ``func`` with the same argument list,
8167but with ``nval`` used for the missing ``nest`` argument. If, after
8168calling ``llvm.init.trampoline``, the memory pointed to by ``tramp`` is
8169modified, then the effect of any later call to the returned function
8170pointer is undefined.
8171
8172.. _int_at:
8173
8174'``llvm.adjust.trampoline``' Intrinsic
8175^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8176
8177Syntax:
8178"""""""
8179
8180::
8181
8182 declare i8* @llvm.adjust.trampoline(i8* <tramp>)
8183
8184Overview:
8185"""""""""
8186
8187This performs any required machine-specific adjustment to the address of
8188a trampoline (passed as ``tramp``).
8189
8190Arguments:
8191""""""""""
8192
8193``tramp`` must point to a block of memory which already has trampoline
8194code filled in by a previous call to
8195:ref:`llvm.init.trampoline <int_it>`.
8196
8197Semantics:
8198""""""""""
8199
8200On some architectures the address of the code to be executed needs to be
8201different to the address where the trampoline is actually stored. This
8202intrinsic returns the executable address corresponding to ``tramp``
8203after performing the required machine specific adjustments. The pointer
8204returned can then be :ref:`bitcast and executed <int_trampoline>`.
8205
8206Memory Use Markers
8207------------------
8208
8209This class of intrinsics exists to information about the lifetime of
8210memory objects and ranges where variables are immutable.
8211
8212'``llvm.lifetime.start``' Intrinsic
8213^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8214
8215Syntax:
8216"""""""
8217
8218::
8219
8220 declare void @llvm.lifetime.start(i64 <size>, i8* nocapture <ptr>)
8221
8222Overview:
8223"""""""""
8224
8225The '``llvm.lifetime.start``' intrinsic specifies the start of a memory
8226object's lifetime.
8227
8228Arguments:
8229""""""""""
8230
8231The first argument is a constant integer representing the size of the
8232object, or -1 if it is variable sized. The second argument is a pointer
8233to the object.
8234
8235Semantics:
8236""""""""""
8237
8238This intrinsic indicates that before this point in the code, the value
8239of the memory pointed to by ``ptr`` is dead. This means that it is known
8240to never be used and has an undefined value. A load from the pointer
8241that precedes this intrinsic can be replaced with ``'undef'``.
8242
8243'``llvm.lifetime.end``' Intrinsic
8244^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8245
8246Syntax:
8247"""""""
8248
8249::
8250
8251 declare void @llvm.lifetime.end(i64 <size>, i8* nocapture <ptr>)
8252
8253Overview:
8254"""""""""
8255
8256The '``llvm.lifetime.end``' intrinsic specifies the end of a memory
8257object's lifetime.
8258
8259Arguments:
8260""""""""""
8261
8262The first argument is a constant integer representing the size of the
8263object, or -1 if it is variable sized. The second argument is a pointer
8264to the object.
8265
8266Semantics:
8267""""""""""
8268
8269This intrinsic indicates that after this point in the code, the value of
8270the memory pointed to by ``ptr`` is dead. This means that it is known to
8271never be used and has an undefined value. Any stores into the memory
8272object following this intrinsic may be removed as dead.
8273
8274'``llvm.invariant.start``' Intrinsic
8275^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8276
8277Syntax:
8278"""""""
8279
8280::
8281
8282 declare {}* @llvm.invariant.start(i64 <size>, i8* nocapture <ptr>)
8283
8284Overview:
8285"""""""""
8286
8287The '``llvm.invariant.start``' intrinsic specifies that the contents of
8288a memory object will not change.
8289
8290Arguments:
8291""""""""""
8292
8293The first argument is a constant integer representing the size of the
8294object, or -1 if it is variable sized. The second argument is a pointer
8295to the object.
8296
8297Semantics:
8298""""""""""
8299
8300This intrinsic indicates that until an ``llvm.invariant.end`` that uses
8301the return value, the referenced memory location is constant and
8302unchanging.
8303
8304'``llvm.invariant.end``' Intrinsic
8305^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8306
8307Syntax:
8308"""""""
8309
8310::
8311
8312 declare void @llvm.invariant.end({}* <start>, i64 <size>, i8* nocapture <ptr>)
8313
8314Overview:
8315"""""""""
8316
8317The '``llvm.invariant.end``' intrinsic specifies that the contents of a
8318memory object are mutable.
8319
8320Arguments:
8321""""""""""
8322
8323The first argument is the matching ``llvm.invariant.start`` intrinsic.
8324The second argument is a constant integer representing the size of the
8325object, or -1 if it is variable sized and the third argument is a
8326pointer to the object.
8327
8328Semantics:
8329""""""""""
8330
8331This intrinsic indicates that the memory is mutable again.
8332
8333General Intrinsics
8334------------------
8335
8336This class of intrinsics is designed to be generic and has no specific
8337purpose.
8338
8339'``llvm.var.annotation``' Intrinsic
8340^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8341
8342Syntax:
8343"""""""
8344
8345::
8346
8347 declare void @llvm.var.annotation(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8348
8349Overview:
8350"""""""""
8351
8352The '``llvm.var.annotation``' intrinsic.
8353
8354Arguments:
8355""""""""""
8356
8357The first argument is a pointer to a value, the second is a pointer to a
8358global string, the third is a pointer to a global string which is the
8359source file name, and the last argument is the line number.
8360
8361Semantics:
8362""""""""""
8363
8364This intrinsic allows annotation of local variables with arbitrary
8365strings. This can be useful for special purpose optimizations that want
8366to look for these annotations. These have no other defined use; they are
8367ignored by code generation and optimization.
8368
Michael Gottesman872b4e52013-03-26 00:34:27 +00008369'``llvm.ptr.annotation.*``' Intrinsic
8370^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8371
8372Syntax:
8373"""""""
8374
8375This is an overloaded intrinsic. You can use '``llvm.ptr.annotation``' on a
8376pointer to an integer of any width. *NOTE* you must specify an address space for
8377the pointer. The identifier for the default address space is the integer
8378'``0``'.
8379
8380::
8381
8382 declare i8* @llvm.ptr.annotation.p<address space>i8(i8* <val>, i8* <str>, i8* <str>, i32 <int>)
8383 declare i16* @llvm.ptr.annotation.p<address space>i16(i16* <val>, i8* <str>, i8* <str>, i32 <int>)
8384 declare i32* @llvm.ptr.annotation.p<address space>i32(i32* <val>, i8* <str>, i8* <str>, i32 <int>)
8385 declare i64* @llvm.ptr.annotation.p<address space>i64(i64* <val>, i8* <str>, i8* <str>, i32 <int>)
8386 declare i256* @llvm.ptr.annotation.p<address space>i256(i256* <val>, i8* <str>, i8* <str>, i32 <int>)
8387
8388Overview:
8389"""""""""
8390
8391The '``llvm.ptr.annotation``' intrinsic.
8392
8393Arguments:
8394""""""""""
8395
8396The first argument is a pointer to an integer value of arbitrary bitwidth
8397(result of some expression), the second is a pointer to a global string, the
8398third is a pointer to a global string which is the source file name, and the
8399last argument is the line number. It returns the value of the first argument.
8400
8401Semantics:
8402""""""""""
8403
8404This intrinsic allows annotation of a pointer to an integer with arbitrary
8405strings. This can be useful for special purpose optimizations that want to look
8406for these annotations. These have no other defined use; they are ignored by code
8407generation and optimization.
8408
Sean Silvaf722b002012-12-07 10:36:55 +00008409'``llvm.annotation.*``' Intrinsic
8410^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8411
8412Syntax:
8413"""""""
8414
8415This is an overloaded intrinsic. You can use '``llvm.annotation``' on
8416any integer bit width.
8417
8418::
8419
8420 declare i8 @llvm.annotation.i8(i8 <val>, i8* <str>, i8* <str>, i32 <int>)
8421 declare i16 @llvm.annotation.i16(i16 <val>, i8* <str>, i8* <str>, i32 <int>)
8422 declare i32 @llvm.annotation.i32(i32 <val>, i8* <str>, i8* <str>, i32 <int>)
8423 declare i64 @llvm.annotation.i64(i64 <val>, i8* <str>, i8* <str>, i32 <int>)
8424 declare i256 @llvm.annotation.i256(i256 <val>, i8* <str>, i8* <str>, i32 <int>)
8425
8426Overview:
8427"""""""""
8428
8429The '``llvm.annotation``' intrinsic.
8430
8431Arguments:
8432""""""""""
8433
8434The first argument is an integer value (result of some expression), the
8435second is a pointer to a global string, the third is a pointer to a
8436global string which is the source file name, and the last argument is
8437the line number. It returns the value of the first argument.
8438
8439Semantics:
8440""""""""""
8441
8442This intrinsic allows annotations to be put on arbitrary expressions
8443with arbitrary strings. This can be useful for special purpose
8444optimizations that want to look for these annotations. These have no
8445other defined use; they are ignored by code generation and optimization.
8446
8447'``llvm.trap``' Intrinsic
8448^^^^^^^^^^^^^^^^^^^^^^^^^
8449
8450Syntax:
8451"""""""
8452
8453::
8454
8455 declare void @llvm.trap() noreturn nounwind
8456
8457Overview:
8458"""""""""
8459
8460The '``llvm.trap``' intrinsic.
8461
8462Arguments:
8463""""""""""
8464
8465None.
8466
8467Semantics:
8468""""""""""
8469
8470This intrinsic is lowered to the target dependent trap instruction. If
8471the target does not have a trap instruction, this intrinsic will be
8472lowered to a call of the ``abort()`` function.
8473
8474'``llvm.debugtrap``' Intrinsic
8475^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8476
8477Syntax:
8478"""""""
8479
8480::
8481
8482 declare void @llvm.debugtrap() nounwind
8483
8484Overview:
8485"""""""""
8486
8487The '``llvm.debugtrap``' intrinsic.
8488
8489Arguments:
8490""""""""""
8491
8492None.
8493
8494Semantics:
8495""""""""""
8496
8497This intrinsic is lowered to code which is intended to cause an
8498execution trap with the intention of requesting the attention of a
8499debugger.
8500
8501'``llvm.stackprotector``' Intrinsic
8502^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8503
8504Syntax:
8505"""""""
8506
8507::
8508
8509 declare void @llvm.stackprotector(i8* <guard>, i8** <slot>)
8510
8511Overview:
8512"""""""""
8513
8514The ``llvm.stackprotector`` intrinsic takes the ``guard`` and stores it
8515onto the stack at ``slot``. The stack slot is adjusted to ensure that it
8516is placed on the stack before local variables.
8517
8518Arguments:
8519""""""""""
8520
8521The ``llvm.stackprotector`` intrinsic requires two pointer arguments.
8522The first argument is the value loaded from the stack guard
8523``@__stack_chk_guard``. The second variable is an ``alloca`` that has
8524enough space to hold the value of the guard.
8525
8526Semantics:
8527""""""""""
8528
8529This intrinsic causes the prologue/epilogue inserter to force the
8530position of the ``AllocaInst`` stack slot to be before local variables
8531on the stack. This is to ensure that if a local variable on the stack is
8532overwritten, it will destroy the value of the guard. When the function
8533exits, the guard on the stack is checked against the original guard. If
8534they are different, then the program aborts by calling the
8535``__stack_chk_fail()`` function.
8536
8537'``llvm.objectsize``' Intrinsic
8538^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8539
8540Syntax:
8541"""""""
8542
8543::
8544
8545 declare i32 @llvm.objectsize.i32(i8* <object>, i1 <min>)
8546 declare i64 @llvm.objectsize.i64(i8* <object>, i1 <min>)
8547
8548Overview:
8549"""""""""
8550
8551The ``llvm.objectsize`` intrinsic is designed to provide information to
8552the optimizers to determine at compile time whether a) an operation
8553(like memcpy) will overflow a buffer that corresponds to an object, or
8554b) that a runtime check for overflow isn't necessary. An object in this
8555context means an allocation of a specific class, structure, array, or
8556other object.
8557
8558Arguments:
8559""""""""""
8560
8561The ``llvm.objectsize`` intrinsic takes two arguments. The first
8562argument is a pointer to or into the ``object``. The second argument is
8563a boolean and determines whether ``llvm.objectsize`` returns 0 (if true)
8564or -1 (if false) when the object size is unknown. The second argument
8565only accepts constants.
8566
8567Semantics:
8568""""""""""
8569
8570The ``llvm.objectsize`` intrinsic is lowered to a constant representing
8571the size of the object concerned. If the size cannot be determined at
8572compile time, ``llvm.objectsize`` returns ``i32/i64 -1 or 0`` (depending
8573on the ``min`` argument).
8574
8575'``llvm.expect``' Intrinsic
8576^^^^^^^^^^^^^^^^^^^^^^^^^^^
8577
8578Syntax:
8579"""""""
8580
8581::
8582
8583 declare i32 @llvm.expect.i32(i32 <val>, i32 <expected_val>)
8584 declare i64 @llvm.expect.i64(i64 <val>, i64 <expected_val>)
8585
8586Overview:
8587"""""""""
8588
8589The ``llvm.expect`` intrinsic provides information about expected (the
8590most probable) value of ``val``, which can be used by optimizers.
8591
8592Arguments:
8593""""""""""
8594
8595The ``llvm.expect`` intrinsic takes two arguments. The first argument is
8596a value. The second argument is an expected value, this needs to be a
8597constant value, variables are not allowed.
8598
8599Semantics:
8600""""""""""
8601
8602This intrinsic is lowered to the ``val``.
8603
8604'``llvm.donothing``' Intrinsic
8605^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
8606
8607Syntax:
8608"""""""
8609
8610::
8611
8612 declare void @llvm.donothing() nounwind readnone
8613
8614Overview:
8615"""""""""
8616
8617The ``llvm.donothing`` intrinsic doesn't perform any operation. It's the
8618only intrinsic that can be called with an invoke instruction.
8619
8620Arguments:
8621""""""""""
8622
8623None.
8624
8625Semantics:
8626""""""""""
8627
8628This intrinsic does nothing, and it's removed by optimizers and ignored
8629by codegen.