blob: bbc101062760f84eac4b1e2d6fa4a08a8dd858ec [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions are
6// met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the distribution.
14//
15// - Neither the name of Sun Microsystems or the names of contributors may
16// be used to endorse or promote products derived from this software without
17// specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31// The original source code covered by the above license above has been
32// modified significantly by Google Inc.
33// Copyright 2006-2009 the V8 project authors. All rights reserved.
34
35// A lightweight X64 Assembler.
36
37#ifndef V8_X64_ASSEMBLER_X64_H_
38#define V8_X64_ASSEMBLER_X64_H_
39
Steve Blockd0582a62009-12-15 09:54:21 +000040#include "serialize.h"
41
Steve Blocka7e24c12009-10-30 11:49:00 +000042namespace v8 {
43namespace internal {
44
45// Utility functions
46
47// Test whether a 64-bit value is in a specific range.
48static inline bool is_uint32(int64_t x) {
Steve Block8defd9f2010-07-08 12:39:36 +010049 static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff);
50 return static_cast<uint64_t>(x) <= kMaxUInt32;
Steve Blocka7e24c12009-10-30 11:49:00 +000051}
52
53static inline bool is_int32(int64_t x) {
Steve Block8defd9f2010-07-08 12:39:36 +010054 static const int64_t kMinInt32 = -V8_INT64_C(0x80000000);
55 return is_uint32(x - kMinInt32);
Steve Blocka7e24c12009-10-30 11:49:00 +000056}
57
58static inline bool uint_is_int32(uint64_t x) {
Steve Block8defd9f2010-07-08 12:39:36 +010059 static const uint64_t kMaxInt32 = V8_UINT64_C(0x7fffffff);
60 return x <= kMaxInt32;
Steve Blocka7e24c12009-10-30 11:49:00 +000061}
62
63static inline bool is_uint32(uint64_t x) {
Steve Block8defd9f2010-07-08 12:39:36 +010064 static const uint64_t kMaxUInt32 = V8_UINT64_C(0xffffffff);
65 return x <= kMaxUInt32;
Steve Blocka7e24c12009-10-30 11:49:00 +000066}
67
68// CPU Registers.
69//
70// 1) We would prefer to use an enum, but enum values are assignment-
71// compatible with int, which has caused code-generation bugs.
72//
73// 2) We would prefer to use a class instead of a struct but we don't like
74// the register initialization to depend on the particular initialization
75// order (which appears to be different on OS X, Linux, and Windows for the
76// installed versions of C++ we tried). Using a struct permits C-style
77// "initialization". Also, the Register objects cannot be const as this
78// forces initialization stubs in MSVC, making us dependent on initialization
79// order.
80//
81// 3) By not using an enum, we are possibly preventing the compiler from
82// doing certain constant folds, which may significantly reduce the
83// code generated for some assembly instructions (because they boil down
84// to a few constants). If this is a problem, we could change the code
85// such that we use an enum in optimized mode, and the struct in debug
86// mode. This way we get the compile-time error checking in debug mode
87// and best performance in optimized code.
88//
89
90struct Register {
91 static Register toRegister(int code) {
92 Register r = { code };
93 return r;
94 }
Kristian Monsen0d5e1162010-09-30 15:31:59 +010095 bool is_valid() const { return 0 <= code_ && code_ < 16; }
96 bool is(Register reg) const { return code_ == reg.code_; }
97 int code() const {
Steve Blocka7e24c12009-10-30 11:49:00 +000098 ASSERT(is_valid());
99 return code_;
100 }
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100101 int bit() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000102 return 1 << code_;
103 }
104
105 // Return the high bit of the register code as a 0 or 1. Used often
106 // when constructing the REX prefix byte.
107 int high_bit() const {
108 return code_ >> 3;
109 }
110 // Return the 3 low bits of the register code. Used when encoding registers
111 // in modR/M, SIB, and opcode bytes.
112 int low_bits() const {
113 return code_ & 0x7;
114 }
115
Andrei Popescu31002712010-02-23 13:46:05 +0000116 // Unfortunately we can't make this private in a struct when initializing
117 // by assignment.
Steve Blocka7e24c12009-10-30 11:49:00 +0000118 int code_;
119};
120
Andrei Popescu402d9372010-02-26 13:31:12 +0000121const Register rax = { 0 };
122const Register rcx = { 1 };
123const Register rdx = { 2 };
124const Register rbx = { 3 };
125const Register rsp = { 4 };
126const Register rbp = { 5 };
127const Register rsi = { 6 };
128const Register rdi = { 7 };
129const Register r8 = { 8 };
130const Register r9 = { 9 };
131const Register r10 = { 10 };
132const Register r11 = { 11 };
133const Register r12 = { 12 };
134const Register r13 = { 13 };
135const Register r14 = { 14 };
136const Register r15 = { 15 };
137const Register no_reg = { -1 };
Steve Blocka7e24c12009-10-30 11:49:00 +0000138
139
140struct XMMRegister {
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100141 bool is_valid() const { return 0 <= code_ && code_ < 16; }
142 int code() const {
Steve Blocka7e24c12009-10-30 11:49:00 +0000143 ASSERT(is_valid());
144 return code_;
145 }
146
147 // Return the high bit of the register code as a 0 or 1. Used often
148 // when constructing the REX prefix byte.
149 int high_bit() const {
150 return code_ >> 3;
151 }
152 // Return the 3 low bits of the register code. Used when encoding registers
153 // in modR/M, SIB, and opcode bytes.
154 int low_bits() const {
155 return code_ & 0x7;
156 }
157
158 int code_;
159};
160
Andrei Popescu402d9372010-02-26 13:31:12 +0000161const XMMRegister xmm0 = { 0 };
162const XMMRegister xmm1 = { 1 };
163const XMMRegister xmm2 = { 2 };
164const XMMRegister xmm3 = { 3 };
165const XMMRegister xmm4 = { 4 };
166const XMMRegister xmm5 = { 5 };
167const XMMRegister xmm6 = { 6 };
168const XMMRegister xmm7 = { 7 };
169const XMMRegister xmm8 = { 8 };
170const XMMRegister xmm9 = { 9 };
171const XMMRegister xmm10 = { 10 };
172const XMMRegister xmm11 = { 11 };
173const XMMRegister xmm12 = { 12 };
174const XMMRegister xmm13 = { 13 };
175const XMMRegister xmm14 = { 14 };
176const XMMRegister xmm15 = { 15 };
Steve Blocka7e24c12009-10-30 11:49:00 +0000177
178enum Condition {
179 // any value < 0 is considered no_condition
180 no_condition = -1,
181
182 overflow = 0,
183 no_overflow = 1,
184 below = 2,
185 above_equal = 3,
186 equal = 4,
187 not_equal = 5,
188 below_equal = 6,
189 above = 7,
190 negative = 8,
191 positive = 9,
192 parity_even = 10,
193 parity_odd = 11,
194 less = 12,
195 greater_equal = 13,
196 less_equal = 14,
197 greater = 15,
198
Steve Block3ce2e202009-11-05 08:53:23 +0000199 // Fake conditions that are handled by the
200 // opcodes using them.
201 always = 16,
202 never = 17,
Steve Blocka7e24c12009-10-30 11:49:00 +0000203 // aliases
204 carry = below,
205 not_carry = above_equal,
206 zero = equal,
207 not_zero = not_equal,
208 sign = negative,
Steve Block3ce2e202009-11-05 08:53:23 +0000209 not_sign = positive,
210 last_condition = greater
Steve Blocka7e24c12009-10-30 11:49:00 +0000211};
212
213
214// Returns the equivalent of !cc.
215// Negation of the default no_condition (-1) results in a non-default
216// no_condition value (-2). As long as tests for no_condition check
217// for condition < 0, this will work as expected.
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100218inline Condition NegateCondition(Condition cc) {
219 return static_cast<Condition>(cc ^ 1);
220}
221
Steve Blocka7e24c12009-10-30 11:49:00 +0000222
223// Corresponds to transposing the operands of a comparison.
224inline Condition ReverseCondition(Condition cc) {
225 switch (cc) {
226 case below:
227 return above;
228 case above:
229 return below;
230 case above_equal:
231 return below_equal;
232 case below_equal:
233 return above_equal;
234 case less:
235 return greater;
236 case greater:
237 return less;
238 case greater_equal:
239 return less_equal;
240 case less_equal:
241 return greater_equal;
242 default:
243 return cc;
244 };
245}
246
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100247
Steve Blocka7e24c12009-10-30 11:49:00 +0000248enum Hint {
249 no_hint = 0,
250 not_taken = 0x2e,
251 taken = 0x3e
252};
253
254// The result of negating a hint is as if the corresponding condition
255// were negated by NegateCondition. That is, no_hint is mapped to
256// itself and not_taken and taken are mapped to each other.
257inline Hint NegateHint(Hint hint) {
258 return (hint == no_hint)
259 ? no_hint
260 : ((hint == not_taken) ? taken : not_taken);
261}
262
263
264// -----------------------------------------------------------------------------
265// Machine instruction Immediates
266
267class Immediate BASE_EMBEDDED {
268 public:
269 explicit Immediate(int32_t value) : value_(value) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000270
271 private:
272 int32_t value_;
273
274 friend class Assembler;
275};
276
277
278// -----------------------------------------------------------------------------
279// Machine instruction Operands
280
281enum ScaleFactor {
282 times_1 = 0,
283 times_2 = 1,
284 times_4 = 2,
285 times_8 = 3,
286 times_int_size = times_4,
Steve Blocka7e24c12009-10-30 11:49:00 +0000287 times_pointer_size = times_8
288};
289
290
291class Operand BASE_EMBEDDED {
292 public:
293 // [base + disp/r]
294 Operand(Register base, int32_t disp);
295
296 // [base + index*scale + disp/r]
297 Operand(Register base,
298 Register index,
299 ScaleFactor scale,
300 int32_t disp);
301
302 // [index*scale + disp/r]
303 Operand(Register index,
304 ScaleFactor scale,
305 int32_t disp);
306
Leon Clarkef7060e22010-06-03 12:02:55 +0100307 // Offset from existing memory operand.
308 // Offset is added to existing displacement as 32-bit signed values and
309 // this must not overflow.
310 Operand(const Operand& base, int32_t offset);
311
Steve Blocka7e24c12009-10-30 11:49:00 +0000312 private:
313 byte rex_;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100314 byte buf_[6];
Steve Blocka7e24c12009-10-30 11:49:00 +0000315 // The number of bytes in buf_.
316 unsigned int len_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000317
318 // Set the ModR/M byte without an encoded 'reg' register. The
319 // register is encoded later as part of the emit_operand operation.
320 // set_modrm can be called before or after set_sib and set_disp*.
321 inline void set_modrm(int mod, Register rm);
322
323 // Set the SIB byte if one is needed. Sets the length to 2 rather than 1.
324 inline void set_sib(ScaleFactor scale, Register index, Register base);
325
326 // Adds operand displacement fields (offsets added to the memory address).
327 // Needs to be called after set_sib, not before it.
328 inline void set_disp8(int disp);
329 inline void set_disp32(int disp);
330
331 friend class Assembler;
332};
333
334
335// CpuFeatures keeps track of which features are supported by the target CPU.
336// Supported features must be enabled by a Scope before use.
337// Example:
338// if (CpuFeatures::IsSupported(SSE3)) {
339// CpuFeatures::Scope fscope(SSE3);
340// // Generate SSE3 floating point code.
341// } else {
342// // Generate standard x87 or SSE2 floating point code.
343// }
344class CpuFeatures : public AllStatic {
345 public:
Steve Blocka7e24c12009-10-30 11:49:00 +0000346 // Detect features of the target CPU. Set safe defaults if the serializer
347 // is enabled (snapshots must be portable).
348 static void Probe();
349 // Check whether a feature is supported by the target CPU.
Steve Blockd0582a62009-12-15 09:54:21 +0000350 static bool IsSupported(CpuFeature f) {
Steve Block3ce2e202009-11-05 08:53:23 +0000351 if (f == SSE2 && !FLAG_enable_sse2) return false;
352 if (f == SSE3 && !FLAG_enable_sse3) return false;
353 if (f == CMOV && !FLAG_enable_cmov) return false;
354 if (f == RDTSC && !FLAG_enable_rdtsc) return false;
355 if (f == SAHF && !FLAG_enable_sahf) return false;
Steve Blocka7e24c12009-10-30 11:49:00 +0000356 return (supported_ & (V8_UINT64_C(1) << f)) != 0;
357 }
358 // Check whether a feature is currently enabled.
Steve Blockd0582a62009-12-15 09:54:21 +0000359 static bool IsEnabled(CpuFeature f) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000360 return (enabled_ & (V8_UINT64_C(1) << f)) != 0;
361 }
362 // Enable a specified feature within a scope.
363 class Scope BASE_EMBEDDED {
364#ifdef DEBUG
365 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000366 explicit Scope(CpuFeature f) {
367 uint64_t mask = (V8_UINT64_C(1) << f);
Steve Blocka7e24c12009-10-30 11:49:00 +0000368 ASSERT(CpuFeatures::IsSupported(f));
Steve Blockd0582a62009-12-15 09:54:21 +0000369 ASSERT(!Serializer::enabled() || (found_by_runtime_probing_ & mask) == 0);
Steve Blocka7e24c12009-10-30 11:49:00 +0000370 old_enabled_ = CpuFeatures::enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000371 CpuFeatures::enabled_ |= mask;
Steve Blocka7e24c12009-10-30 11:49:00 +0000372 }
373 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
374 private:
375 uint64_t old_enabled_;
376#else
377 public:
Steve Blockd0582a62009-12-15 09:54:21 +0000378 explicit Scope(CpuFeature f) {}
Steve Blocka7e24c12009-10-30 11:49:00 +0000379#endif
380 };
381 private:
382 // Safe defaults include SSE2 and CMOV for X64. It is always available, if
383 // anyone checks, but they shouldn't need to check.
Steve Blockd0582a62009-12-15 09:54:21 +0000384 static const uint64_t kDefaultCpuFeatures = (1 << SSE2 | 1 << CMOV);
Steve Blocka7e24c12009-10-30 11:49:00 +0000385 static uint64_t supported_;
386 static uint64_t enabled_;
Steve Blockd0582a62009-12-15 09:54:21 +0000387 static uint64_t found_by_runtime_probing_;
Steve Blocka7e24c12009-10-30 11:49:00 +0000388};
389
390
391class Assembler : public Malloced {
392 private:
393 // We check before assembling an instruction that there is sufficient
394 // space to write an instruction and its relocation information.
395 // The relocation writer's position must be kGap bytes above the end of
396 // the generated instructions. This leaves enough space for the
397 // longest possible x64 instruction, 15 bytes, and the longest possible
398 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
399 // (There is a 15 byte limit on x64 instruction length that rules out some
400 // otherwise valid instructions.)
401 // This allows for a single, fast space check per instruction.
402 static const int kGap = 32;
403
404 public:
405 // Create an assembler. Instructions and relocation information are emitted
406 // into a buffer, with the instructions starting from the beginning and the
407 // relocation information starting from the end of the buffer. See CodeDesc
408 // for a detailed comment on the layout (globals.h).
409 //
410 // If the provided buffer is NULL, the assembler allocates and grows its own
411 // buffer, and buffer_size determines the initial buffer size. The buffer is
412 // owned by the assembler and deallocated upon destruction of the assembler.
413 //
414 // If the provided buffer is not NULL, the assembler uses the provided buffer
415 // for code generation and assumes its size to be buffer_size. If the buffer
416 // is too small, a fatal error occurs. No deallocation of the buffer is done
417 // upon destruction of the assembler.
418 Assembler(void* buffer, int buffer_size);
419 ~Assembler();
420
421 // GetCode emits any pending (non-emitted) code and fills the descriptor
422 // desc. GetCode() is idempotent; it returns the same result if no other
423 // Assembler functions are invoked in between GetCode() calls.
424 void GetCode(CodeDesc* desc);
425
Steve Block3ce2e202009-11-05 08:53:23 +0000426 // Read/Modify the code target in the relative branch/call instruction at pc.
427 // On the x64 architecture, we use relative jumps with a 32-bit displacement
428 // to jump to other Code objects in the Code space in the heap.
429 // Jumps to C functions are done indirectly through a 64-bit register holding
430 // the absolute address of the target.
431 // These functions convert between absolute Addresses of Code objects and
432 // the relative displacements stored in the code.
Steve Blocka7e24c12009-10-30 11:49:00 +0000433 static inline Address target_address_at(Address pc);
434 static inline void set_target_address_at(Address pc, Address target);
Steve Blockd0582a62009-12-15 09:54:21 +0000435
436 // This sets the branch destination (which is in the instruction on x64).
437 // This is for calls and branches within generated code.
438 inline static void set_target_at(Address instruction_payload,
439 Address target) {
440 set_target_address_at(instruction_payload, target);
441 }
442
443 // This sets the branch destination (which is a load instruction on x64).
444 // This is for calls and branches to runtime code.
445 inline static void set_external_target_at(Address instruction_payload,
446 Address target) {
447 *reinterpret_cast<Address*>(instruction_payload) = target;
448 }
449
Steve Block3ce2e202009-11-05 08:53:23 +0000450 inline Handle<Object> code_target_object_handle_at(Address pc);
Steve Blockd0582a62009-12-15 09:54:21 +0000451 // Number of bytes taken up by the branch target in the code.
452 static const int kCallTargetSize = 4; // Use 32-bit displacement.
453 static const int kExternalTargetSize = 8; // Use 64-bit absolute.
Steve Blocka7e24c12009-10-30 11:49:00 +0000454 // Distance between the address of the code target in the call instruction
Steve Block3ce2e202009-11-05 08:53:23 +0000455 // and the return address pushed on the stack.
456 static const int kCallTargetAddressOffset = 4; // Use 32-bit displacement.
457 // Distance between the start of the JS return sequence and where the
458 // 32-bit displacement of a near call would be, relative to the pushed
459 // return address. TODO: Use return sequence length instead.
460 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
461 static const int kPatchReturnSequenceAddressOffset = 13 - 4;
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100462 // Distance between start of patched debug break slot and where the
463 // 32-bit displacement of a near call would be, relative to the pushed
464 // return address. TODO: Use return sequence length instead.
465 // Should equal Debug::kX64JSReturnSequenceLength - kCallTargetAddressOffset;
466 static const int kPatchDebugBreakSlotAddressOffset = 13 - 4;
Steve Block3ce2e202009-11-05 08:53:23 +0000467 // TODO(X64): Rename this, removing the "Real", after changing the above.
468 static const int kRealPatchReturnSequenceAddressOffset = 2;
Steve Blockd0582a62009-12-15 09:54:21 +0000469
470 // The x64 JS return sequence is padded with int3 to make it large
471 // enough to hold a call instruction when the debugger patches it.
472 static const int kCallInstructionLength = 13;
473 static const int kJSReturnSequenceLength = 13;
474
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +0100475 // The debug break slot must be able to contain a call instruction.
476 static const int kDebugBreakSlotLength = kCallInstructionLength;
477
478
Steve Blocka7e24c12009-10-30 11:49:00 +0000479 // ---------------------------------------------------------------------------
480 // Code generation
481 //
482 // Function names correspond one-to-one to x64 instruction mnemonics.
483 // Unless specified otherwise, instructions operate on 64-bit operands.
484 //
485 // If we need versions of an assembly instruction that operate on different
486 // width arguments, we add a single-letter suffix specifying the width.
487 // This is done for the following instructions: mov, cmp, inc, dec,
488 // add, sub, and test.
489 // There are no versions of these instructions without the suffix.
490 // - Instructions on 8-bit (byte) operands/registers have a trailing 'b'.
491 // - Instructions on 16-bit (word) operands/registers have a trailing 'w'.
492 // - Instructions on 32-bit (doubleword) operands/registers use 'l'.
493 // - Instructions on 64-bit (quadword) operands/registers use 'q'.
494 //
495 // Some mnemonics, such as "and", are the same as C++ keywords.
496 // Naming conflicts with C++ keywords are resolved by adding a trailing '_'.
497
498 // Insert the smallest number of nop instructions
499 // possible to align the pc offset to a multiple
500 // of m. m must be a power of 2.
501 void Align(int m);
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100502 // Aligns code to something that's optimal for a jump target for the platform.
503 void CodeTargetAlign();
Steve Blocka7e24c12009-10-30 11:49:00 +0000504
505 // Stack
506 void pushfq();
507 void popfq();
508
509 void push(Immediate value);
510 void push(Register src);
511 void push(const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000512
513 void pop(Register dst);
514 void pop(const Operand& dst);
515
516 void enter(Immediate size);
517 void leave();
518
519 // Moves
520 void movb(Register dst, const Operand& src);
521 void movb(Register dst, Immediate imm);
522 void movb(const Operand& dst, Register src);
523
Steve Block3ce2e202009-11-05 08:53:23 +0000524 // Move the low 16 bits of a 64-bit register value to a 16-bit
525 // memory location.
526 void movw(const Operand& dst, Register src);
527
Steve Blocka7e24c12009-10-30 11:49:00 +0000528 void movl(Register dst, Register src);
529 void movl(Register dst, const Operand& src);
530 void movl(const Operand& dst, Register src);
531 void movl(const Operand& dst, Immediate imm);
532 // Load a 32-bit immediate value, zero-extended to 64 bits.
533 void movl(Register dst, Immediate imm32);
534
535 // Move 64 bit register value to 64-bit memory location.
536 void movq(const Operand& dst, Register src);
537 // Move 64 bit memory location to 64-bit register value.
538 void movq(Register dst, const Operand& src);
539 void movq(Register dst, Register src);
540 // Sign extends immediate 32-bit value to 64 bits.
541 void movq(Register dst, Immediate x);
542 // Move the offset of the label location relative to the current
543 // position (after the move) to the destination.
544 void movl(const Operand& dst, Label* src);
545
546 // Move sign extended immediate to memory location.
547 void movq(const Operand& dst, Immediate value);
548 // New x64 instructions to load a 64-bit immediate into a register.
549 // All 64-bit immediates must have a relocation mode.
550 void movq(Register dst, void* ptr, RelocInfo::Mode rmode);
551 void movq(Register dst, int64_t value, RelocInfo::Mode rmode);
552 void movq(Register dst, const char* s, RelocInfo::Mode rmode);
553 // Moves the address of the external reference into the register.
554 void movq(Register dst, ExternalReference ext);
555 void movq(Register dst, Handle<Object> handle, RelocInfo::Mode rmode);
556
Steve Block3ce2e202009-11-05 08:53:23 +0000557 void movsxbq(Register dst, const Operand& src);
558 void movsxwq(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000559 void movsxlq(Register dst, Register src);
560 void movsxlq(Register dst, const Operand& src);
561 void movzxbq(Register dst, const Operand& src);
562 void movzxbl(Register dst, const Operand& src);
Steve Block3ce2e202009-11-05 08:53:23 +0000563 void movzxwq(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000564 void movzxwl(Register dst, const Operand& src);
565
Leon Clarked91b9f72010-01-27 17:25:45 +0000566 // Repeated moves.
567
568 void repmovsb();
569 void repmovsw();
570 void repmovsl();
571 void repmovsq();
572
Steve Blocka7e24c12009-10-30 11:49:00 +0000573 // New x64 instruction to load from an immediate 64-bit pointer into RAX.
574 void load_rax(void* ptr, RelocInfo::Mode rmode);
575 void load_rax(ExternalReference ext);
576
577 // Conditional moves.
578 void cmovq(Condition cc, Register dst, Register src);
579 void cmovq(Condition cc, Register dst, const Operand& src);
580 void cmovl(Condition cc, Register dst, Register src);
581 void cmovl(Condition cc, Register dst, const Operand& src);
582
583 // Exchange two registers
584 void xchg(Register dst, Register src);
585
586 // Arithmetics
587 void addl(Register dst, Register src) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100588 arithmetic_op_32(0x03, dst, src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000589 }
590
591 void addl(Register dst, Immediate src) {
592 immediate_arithmetic_op_32(0x0, dst, src);
593 }
594
595 void addl(Register dst, const Operand& src) {
596 arithmetic_op_32(0x03, dst, src);
597 }
598
599 void addl(const Operand& dst, Immediate src) {
600 immediate_arithmetic_op_32(0x0, dst, src);
601 }
602
603 void addq(Register dst, Register src) {
604 arithmetic_op(0x03, dst, src);
605 }
606
607 void addq(Register dst, const Operand& src) {
608 arithmetic_op(0x03, dst, src);
609 }
610
611 void addq(const Operand& dst, Register src) {
612 arithmetic_op(0x01, src, dst);
613 }
614
615 void addq(Register dst, Immediate src) {
616 immediate_arithmetic_op(0x0, dst, src);
617 }
618
619 void addq(const Operand& dst, Immediate src) {
620 immediate_arithmetic_op(0x0, dst, src);
621 }
622
Kristian Monsen25f61362010-05-21 11:50:48 +0100623 void sbbl(Register dst, Register src) {
Leon Clarkef7060e22010-06-03 12:02:55 +0100624 arithmetic_op_32(0x1b, dst, src);
Kristian Monsen25f61362010-05-21 11:50:48 +0100625 }
626
Steve Blocka7e24c12009-10-30 11:49:00 +0000627 void cmpb(Register dst, Immediate src) {
628 immediate_arithmetic_op_8(0x7, dst, src);
629 }
630
631 void cmpb_al(Immediate src);
632
633 void cmpb(Register dst, Register src) {
634 arithmetic_op(0x3A, dst, src);
635 }
636
637 void cmpb(Register dst, const Operand& src) {
638 arithmetic_op(0x3A, dst, src);
639 }
640
641 void cmpb(const Operand& dst, Register src) {
642 arithmetic_op(0x38, src, dst);
643 }
644
645 void cmpb(const Operand& dst, Immediate src) {
646 immediate_arithmetic_op_8(0x7, dst, src);
647 }
648
649 void cmpw(const Operand& dst, Immediate src) {
650 immediate_arithmetic_op_16(0x7, dst, src);
651 }
652
653 void cmpw(Register dst, Immediate src) {
654 immediate_arithmetic_op_16(0x7, dst, src);
655 }
656
657 void cmpw(Register dst, const Operand& src) {
658 arithmetic_op_16(0x3B, dst, src);
659 }
660
661 void cmpw(Register dst, Register src) {
662 arithmetic_op_16(0x3B, dst, src);
663 }
664
665 void cmpw(const Operand& dst, Register src) {
666 arithmetic_op_16(0x39, src, dst);
667 }
668
669 void cmpl(Register dst, Register src) {
670 arithmetic_op_32(0x3B, dst, src);
671 }
672
673 void cmpl(Register dst, const Operand& src) {
674 arithmetic_op_32(0x3B, dst, src);
675 }
676
677 void cmpl(const Operand& dst, Register src) {
678 arithmetic_op_32(0x39, src, dst);
679 }
680
681 void cmpl(Register dst, Immediate src) {
682 immediate_arithmetic_op_32(0x7, dst, src);
683 }
684
685 void cmpl(const Operand& dst, Immediate src) {
686 immediate_arithmetic_op_32(0x7, dst, src);
687 }
688
689 void cmpq(Register dst, Register src) {
690 arithmetic_op(0x3B, dst, src);
691 }
692
693 void cmpq(Register dst, const Operand& src) {
694 arithmetic_op(0x3B, dst, src);
695 }
696
697 void cmpq(const Operand& dst, Register src) {
698 arithmetic_op(0x39, src, dst);
699 }
700
701 void cmpq(Register dst, Immediate src) {
702 immediate_arithmetic_op(0x7, dst, src);
703 }
704
705 void cmpq(const Operand& dst, Immediate src) {
706 immediate_arithmetic_op(0x7, dst, src);
707 }
708
709 void and_(Register dst, Register src) {
710 arithmetic_op(0x23, dst, src);
711 }
712
713 void and_(Register dst, const Operand& src) {
714 arithmetic_op(0x23, dst, src);
715 }
716
717 void and_(const Operand& dst, Register src) {
718 arithmetic_op(0x21, src, dst);
719 }
720
721 void and_(Register dst, Immediate src) {
722 immediate_arithmetic_op(0x4, dst, src);
723 }
724
725 void and_(const Operand& dst, Immediate src) {
726 immediate_arithmetic_op(0x4, dst, src);
727 }
728
729 void andl(Register dst, Immediate src) {
730 immediate_arithmetic_op_32(0x4, dst, src);
731 }
732
Steve Block3ce2e202009-11-05 08:53:23 +0000733 void andl(Register dst, Register src) {
734 arithmetic_op_32(0x23, dst, src);
735 }
736
Leon Clarke4515c472010-02-03 11:58:03 +0000737 void andb(Register dst, Immediate src) {
738 immediate_arithmetic_op_8(0x4, dst, src);
739 }
Steve Block3ce2e202009-11-05 08:53:23 +0000740
Steve Blocka7e24c12009-10-30 11:49:00 +0000741 void decq(Register dst);
742 void decq(const Operand& dst);
743 void decl(Register dst);
744 void decl(const Operand& dst);
Steve Block3ce2e202009-11-05 08:53:23 +0000745 void decb(Register dst);
746 void decb(const Operand& dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000747
748 // Sign-extends rax into rdx:rax.
749 void cqo();
750 // Sign-extends eax into edx:eax.
751 void cdq();
752
753 // Divide rdx:rax by src. Quotient in rax, remainder in rdx.
754 void idivq(Register src);
755 // Divide edx:eax by lower 32 bits of src. Quotient in eax, rem. in edx.
756 void idivl(Register src);
757
758 // Signed multiply instructions.
759 void imul(Register src); // rdx:rax = rax * src.
760 void imul(Register dst, Register src); // dst = dst * src.
761 void imul(Register dst, const Operand& src); // dst = dst * src.
762 void imul(Register dst, Register src, Immediate imm); // dst = src * imm.
Steve Block6ded16b2010-05-10 14:33:55 +0100763 // Signed 32-bit multiply instructions.
764 void imull(Register dst, Register src); // dst = dst * src.
765 void imull(Register dst, Register src, Immediate imm); // dst = src * imm.
Steve Blocka7e24c12009-10-30 11:49:00 +0000766
767 void incq(Register dst);
768 void incq(const Operand& dst);
Kristian Monsen9dcf7e22010-06-28 14:14:28 +0100769 void incl(Register dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000770 void incl(const Operand& dst);
771
772 void lea(Register dst, const Operand& src);
Steve Block6ded16b2010-05-10 14:33:55 +0100773 void leal(Register dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000774
775 // Multiply rax by src, put the result in rdx:rax.
776 void mul(Register src);
777
778 void neg(Register dst);
779 void neg(const Operand& dst);
780 void negl(Register dst);
781
782 void not_(Register dst);
783 void not_(const Operand& dst);
Steve Block6ded16b2010-05-10 14:33:55 +0100784 void notl(Register dst);
Steve Blocka7e24c12009-10-30 11:49:00 +0000785
786 void or_(Register dst, Register src) {
787 arithmetic_op(0x0B, dst, src);
788 }
789
790 void orl(Register dst, Register src) {
791 arithmetic_op_32(0x0B, dst, src);
792 }
793
794 void or_(Register dst, const Operand& src) {
795 arithmetic_op(0x0B, dst, src);
796 }
797
798 void or_(const Operand& dst, Register src) {
799 arithmetic_op(0x09, src, dst);
800 }
801
802 void or_(Register dst, Immediate src) {
803 immediate_arithmetic_op(0x1, dst, src);
804 }
805
Steve Block3ce2e202009-11-05 08:53:23 +0000806 void orl(Register dst, Immediate src) {
807 immediate_arithmetic_op_32(0x1, dst, src);
808 }
809
Steve Blocka7e24c12009-10-30 11:49:00 +0000810 void or_(const Operand& dst, Immediate src) {
811 immediate_arithmetic_op(0x1, dst, src);
812 }
813
Steve Block3ce2e202009-11-05 08:53:23 +0000814 void orl(const Operand& dst, Immediate src) {
815 immediate_arithmetic_op_32(0x1, dst, src);
816 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000817
Steve Block3ce2e202009-11-05 08:53:23 +0000818
819 void rcl(Register dst, Immediate imm8) {
820 shift(dst, imm8, 0x2);
821 }
822
823 void rol(Register dst, Immediate imm8) {
824 shift(dst, imm8, 0x0);
825 }
826
827 void rcr(Register dst, Immediate imm8) {
828 shift(dst, imm8, 0x3);
829 }
830
831 void ror(Register dst, Immediate imm8) {
832 shift(dst, imm8, 0x1);
833 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000834
835 // Shifts dst:src left by cl bits, affecting only dst.
836 void shld(Register dst, Register src);
837
838 // Shifts src:dst right by cl bits, affecting only dst.
839 void shrd(Register dst, Register src);
840
841 // Shifts dst right, duplicating sign bit, by shift_amount bits.
842 // Shifting by 1 is handled efficiently.
843 void sar(Register dst, Immediate shift_amount) {
844 shift(dst, shift_amount, 0x7);
845 }
846
847 // Shifts dst right, duplicating sign bit, by shift_amount bits.
848 // Shifting by 1 is handled efficiently.
849 void sarl(Register dst, Immediate shift_amount) {
850 shift_32(dst, shift_amount, 0x7);
851 }
852
853 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
Steve Blockd0582a62009-12-15 09:54:21 +0000854 void sar_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000855 shift(dst, 0x7);
856 }
857
858 // Shifts dst right, duplicating sign bit, by cl % 64 bits.
Steve Blockd0582a62009-12-15 09:54:21 +0000859 void sarl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000860 shift_32(dst, 0x7);
861 }
862
863 void shl(Register dst, Immediate shift_amount) {
864 shift(dst, shift_amount, 0x4);
865 }
866
Steve Blockd0582a62009-12-15 09:54:21 +0000867 void shl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000868 shift(dst, 0x4);
869 }
870
Steve Blockd0582a62009-12-15 09:54:21 +0000871 void shll_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000872 shift_32(dst, 0x4);
873 }
874
875 void shll(Register dst, Immediate shift_amount) {
876 shift_32(dst, shift_amount, 0x4);
877 }
878
879 void shr(Register dst, Immediate shift_amount) {
880 shift(dst, shift_amount, 0x5);
881 }
882
Steve Blockd0582a62009-12-15 09:54:21 +0000883 void shr_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000884 shift(dst, 0x5);
885 }
886
Steve Blockd0582a62009-12-15 09:54:21 +0000887 void shrl_cl(Register dst) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000888 shift_32(dst, 0x5);
889 }
890
891 void shrl(Register dst, Immediate shift_amount) {
892 shift_32(dst, shift_amount, 0x5);
893 }
894
895 void store_rax(void* dst, RelocInfo::Mode mode);
896 void store_rax(ExternalReference ref);
897
898 void subq(Register dst, Register src) {
899 arithmetic_op(0x2B, dst, src);
900 }
901
902 void subq(Register dst, const Operand& src) {
903 arithmetic_op(0x2B, dst, src);
904 }
905
906 void subq(const Operand& dst, Register src) {
907 arithmetic_op(0x29, src, dst);
908 }
909
910 void subq(Register dst, Immediate src) {
911 immediate_arithmetic_op(0x5, dst, src);
912 }
913
914 void subq(const Operand& dst, Immediate src) {
915 immediate_arithmetic_op(0x5, dst, src);
916 }
917
918 void subl(Register dst, Register src) {
919 arithmetic_op_32(0x2B, dst, src);
920 }
921
Leon Clarkee46be812010-01-19 14:06:41 +0000922 void subl(Register dst, const Operand& src) {
923 arithmetic_op_32(0x2B, dst, src);
924 }
925
Steve Blocka7e24c12009-10-30 11:49:00 +0000926 void subl(const Operand& dst, Immediate src) {
927 immediate_arithmetic_op_32(0x5, dst, src);
928 }
929
930 void subl(Register dst, Immediate src) {
931 immediate_arithmetic_op_32(0x5, dst, src);
932 }
933
934 void subb(Register dst, Immediate src) {
935 immediate_arithmetic_op_8(0x5, dst, src);
936 }
937
Steve Block3ce2e202009-11-05 08:53:23 +0000938 void testb(Register dst, Register src);
Steve Blocka7e24c12009-10-30 11:49:00 +0000939 void testb(Register reg, Immediate mask);
940 void testb(const Operand& op, Immediate mask);
Leon Clarkee46be812010-01-19 14:06:41 +0000941 void testb(const Operand& op, Register reg);
Steve Blocka7e24c12009-10-30 11:49:00 +0000942 void testl(Register dst, Register src);
943 void testl(Register reg, Immediate mask);
944 void testl(const Operand& op, Immediate mask);
945 void testq(const Operand& op, Register reg);
946 void testq(Register dst, Register src);
947 void testq(Register dst, Immediate mask);
948
949 void xor_(Register dst, Register src) {
Steve Blockd0582a62009-12-15 09:54:21 +0000950 if (dst.code() == src.code()) {
951 arithmetic_op_32(0x33, dst, src);
952 } else {
953 arithmetic_op(0x33, dst, src);
954 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000955 }
956
957 void xorl(Register dst, Register src) {
958 arithmetic_op_32(0x33, dst, src);
959 }
960
961 void xor_(Register dst, const Operand& src) {
962 arithmetic_op(0x33, dst, src);
963 }
964
965 void xor_(const Operand& dst, Register src) {
966 arithmetic_op(0x31, src, dst);
967 }
968
969 void xor_(Register dst, Immediate src) {
970 immediate_arithmetic_op(0x6, dst, src);
971 }
972
973 void xor_(const Operand& dst, Immediate src) {
974 immediate_arithmetic_op(0x6, dst, src);
975 }
976
977 // Bit operations.
978 void bt(const Operand& dst, Register src);
979 void bts(const Operand& dst, Register src);
980
981 // Miscellaneous
Steve Block3ce2e202009-11-05 08:53:23 +0000982 void clc();
Steve Blocka7e24c12009-10-30 11:49:00 +0000983 void cpuid();
984 void hlt();
985 void int3();
986 void nop();
987 void nop(int n);
988 void rdtsc();
989 void ret(int imm16);
990 void setcc(Condition cc, Register reg);
991
992 // Label operations & relative jumps (PPUM Appendix D)
993 //
994 // Takes a branch opcode (cc) and a label (L) and generates
995 // either a backward branch or a forward branch and links it
996 // to the label fixup chain. Usage:
997 //
998 // Label L; // unbound label
999 // j(cc, &L); // forward branch to unbound label
1000 // bind(&L); // bind label to the current pc
1001 // j(cc, &L); // backward branch to bound label
1002 // bind(&L); // illegal: a label may be bound only once
1003 //
1004 // Note: The same Label can be used for forward and backward branches
1005 // but it may be bound only once.
1006
1007 void bind(Label* L); // binds an unbound label L to the current code position
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001008 void bind(NearLabel* L);
Steve Blocka7e24c12009-10-30 11:49:00 +00001009
1010 // Calls
1011 // Call near relative 32-bit displacement, relative to next instruction.
1012 void call(Label* L);
Steve Block3ce2e202009-11-05 08:53:23 +00001013 void call(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001014
1015 // Call near absolute indirect, address in register
1016 void call(Register adr);
1017
1018 // Call near indirect
1019 void call(const Operand& operand);
1020
1021 // Jumps
1022 // Jump short or near relative.
Steve Block3ce2e202009-11-05 08:53:23 +00001023 // Use a 32-bit signed displacement.
Steve Blocka7e24c12009-10-30 11:49:00 +00001024 void jmp(Label* L); // unconditional jump to L
Steve Block3ce2e202009-11-05 08:53:23 +00001025 void jmp(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001026
1027 // Jump near absolute indirect (r64)
1028 void jmp(Register adr);
1029
1030 // Jump near absolute indirect (m64)
1031 void jmp(const Operand& src);
1032
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001033 // Short jump
1034 void jmp(NearLabel* L);
1035
Steve Blocka7e24c12009-10-30 11:49:00 +00001036 // Conditional jumps
1037 void j(Condition cc, Label* L);
Steve Block3ce2e202009-11-05 08:53:23 +00001038 void j(Condition cc, Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001039
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001040 // Conditional short jump
1041 void j(Condition cc, NearLabel* L, Hint hint = no_hint);
1042
Steve Blocka7e24c12009-10-30 11:49:00 +00001043 // Floating-point operations
1044 void fld(int i);
1045
1046 void fld1();
1047 void fldz();
Steve Block6ded16b2010-05-10 14:33:55 +01001048 void fldpi();
Steve Blocka7e24c12009-10-30 11:49:00 +00001049
1050 void fld_s(const Operand& adr);
1051 void fld_d(const Operand& adr);
1052
1053 void fstp_s(const Operand& adr);
1054 void fstp_d(const Operand& adr);
Steve Block3ce2e202009-11-05 08:53:23 +00001055 void fstp(int index);
Steve Blocka7e24c12009-10-30 11:49:00 +00001056
1057 void fild_s(const Operand& adr);
1058 void fild_d(const Operand& adr);
1059
1060 void fist_s(const Operand& adr);
1061
1062 void fistp_s(const Operand& adr);
1063 void fistp_d(const Operand& adr);
1064
1065 void fisttp_s(const Operand& adr);
Leon Clarked91b9f72010-01-27 17:25:45 +00001066 void fisttp_d(const Operand& adr);
Steve Blocka7e24c12009-10-30 11:49:00 +00001067
1068 void fabs();
1069 void fchs();
1070
1071 void fadd(int i);
1072 void fsub(int i);
1073 void fmul(int i);
1074 void fdiv(int i);
1075
1076 void fisub_s(const Operand& adr);
1077
1078 void faddp(int i = 1);
1079 void fsubp(int i = 1);
1080 void fsubrp(int i = 1);
1081 void fmulp(int i = 1);
1082 void fdivp(int i = 1);
1083 void fprem();
1084 void fprem1();
1085
1086 void fxch(int i = 1);
1087 void fincstp();
1088 void ffree(int i = 0);
1089
1090 void ftst();
1091 void fucomp(int i);
1092 void fucompp();
Steve Block3ce2e202009-11-05 08:53:23 +00001093 void fucomi(int i);
1094 void fucomip();
1095
Steve Blocka7e24c12009-10-30 11:49:00 +00001096 void fcompp();
1097 void fnstsw_ax();
1098 void fwait();
1099 void fnclex();
1100
1101 void fsin();
1102 void fcos();
1103
1104 void frndint();
1105
1106 void sahf();
1107
1108 // SSE2 instructions
Steve Block6ded16b2010-05-10 14:33:55 +01001109 void movd(XMMRegister dst, Register src);
1110 void movd(Register dst, XMMRegister src);
1111 void movq(XMMRegister dst, Register src);
1112 void movq(Register dst, XMMRegister src);
1113 void extractps(Register dst, XMMRegister src, byte imm8);
1114
Steve Blocka7e24c12009-10-30 11:49:00 +00001115 void movsd(const Operand& dst, XMMRegister src);
Steve Block6ded16b2010-05-10 14:33:55 +01001116 void movsd(XMMRegister dst, XMMRegister src);
1117 void movsd(XMMRegister dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001118
Steve Block8defd9f2010-07-08 12:39:36 +01001119 void movss(XMMRegister dst, const Operand& src);
1120 void movss(const Operand& dst, XMMRegister src);
1121
Steve Blocka7e24c12009-10-30 11:49:00 +00001122 void cvttss2si(Register dst, const Operand& src);
1123 void cvttsd2si(Register dst, const Operand& src);
Kristian Monsen25f61362010-05-21 11:50:48 +01001124 void cvttsd2siq(Register dst, XMMRegister src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001125
1126 void cvtlsi2sd(XMMRegister dst, const Operand& src);
1127 void cvtlsi2sd(XMMRegister dst, Register src);
1128 void cvtqsi2sd(XMMRegister dst, const Operand& src);
1129 void cvtqsi2sd(XMMRegister dst, Register src);
1130
Steve Block8defd9f2010-07-08 12:39:36 +01001131 void cvtlsi2ss(XMMRegister dst, Register src);
1132
Steve Block6ded16b2010-05-10 14:33:55 +01001133 void cvtss2sd(XMMRegister dst, XMMRegister src);
Steve Block8defd9f2010-07-08 12:39:36 +01001134 void cvtss2sd(XMMRegister dst, const Operand& src);
1135 void cvtsd2ss(XMMRegister dst, XMMRegister src);
1136
1137 void cvtsd2si(Register dst, XMMRegister src);
1138 void cvtsd2siq(Register dst, XMMRegister src);
Steve Block6ded16b2010-05-10 14:33:55 +01001139
Steve Blocka7e24c12009-10-30 11:49:00 +00001140 void addsd(XMMRegister dst, XMMRegister src);
1141 void subsd(XMMRegister dst, XMMRegister src);
1142 void mulsd(XMMRegister dst, XMMRegister src);
1143 void divsd(XMMRegister dst, XMMRegister src);
1144
Andrei Popescu402d9372010-02-26 13:31:12 +00001145 void xorpd(XMMRegister dst, XMMRegister src);
Steve Block6ded16b2010-05-10 14:33:55 +01001146 void sqrtsd(XMMRegister dst, XMMRegister src);
Andrei Popescu402d9372010-02-26 13:31:12 +00001147
Andrei Popescu402d9372010-02-26 13:31:12 +00001148 void ucomisd(XMMRegister dst, XMMRegister src);
Steve Block8defd9f2010-07-08 12:39:36 +01001149 void ucomisd(XMMRegister dst, const Operand& src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001150
Steve Block6ded16b2010-05-10 14:33:55 +01001151 // The first argument is the reg field, the second argument is the r/m field.
Steve Blocka7e24c12009-10-30 11:49:00 +00001152 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1153 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1154 void emit_sse_operand(XMMRegister dst, Register src);
Steve Block6ded16b2010-05-10 14:33:55 +01001155 void emit_sse_operand(Register dst, XMMRegister src);
Steve Blocka7e24c12009-10-30 11:49:00 +00001156
1157 // Use either movsd or movlpd.
1158 // void movdbl(XMMRegister dst, const Operand& src);
1159 // void movdbl(const Operand& dst, XMMRegister src);
1160
1161 // Debugging
1162 void Print();
1163
1164 // Check the code size generated from label to here.
1165 int SizeOfCodeGeneratedSince(Label* l) { return pc_offset() - l->pos(); }
1166
1167 // Mark address of the ExitJSFrame code.
1168 void RecordJSReturn();
1169
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001170 // Mark address of a debug break slot.
1171 void RecordDebugBreakSlot();
1172
Steve Blocka7e24c12009-10-30 11:49:00 +00001173 // Record a comment relocation entry that can be used by a disassembler.
1174 // Use --debug_code to enable.
1175 void RecordComment(const char* msg);
1176
1177 void RecordPosition(int pos);
1178 void RecordStatementPosition(int pos);
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001179 bool WriteRecordedPositions();
Steve Blocka7e24c12009-10-30 11:49:00 +00001180
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001181 int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
Steve Blocka7e24c12009-10-30 11:49:00 +00001182 int current_statement_position() const { return current_statement_position_; }
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001183 int current_position() const { return current_position_; }
Steve Blocka7e24c12009-10-30 11:49:00 +00001184
1185 // Check if there is less than kGap bytes available in the buffer.
1186 // If this is the case, we need to grow the buffer before emitting
1187 // an instruction or relocation information.
1188 inline bool buffer_overflow() const {
1189 return pc_ >= reloc_info_writer.pos() - kGap;
1190 }
1191
1192 // Get the number of bytes available in the buffer.
Steve Blockd0582a62009-12-15 09:54:21 +00001193 inline int available_space() const {
1194 return static_cast<int>(reloc_info_writer.pos() - pc_);
1195 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001196
Ben Murdoch7f4d5bd2010-06-15 11:15:29 +01001197 static bool IsNop(Address addr) { return *addr == 0x90; }
1198
Steve Blocka7e24c12009-10-30 11:49:00 +00001199 // Avoid overflows for displacements etc.
1200 static const int kMaximalBufferSize = 512*MB;
1201 static const int kMinimalBufferSize = 4*KB;
1202
Steve Blocka7e24c12009-10-30 11:49:00 +00001203 private:
1204 byte* addr_at(int pos) { return buffer_ + pos; }
1205 byte byte_at(int pos) { return buffer_[pos]; }
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001206 void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
Steve Blocka7e24c12009-10-30 11:49:00 +00001207 uint32_t long_at(int pos) {
1208 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1209 }
1210 void long_at_put(int pos, uint32_t x) {
1211 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1212 }
1213
1214 // code emission
1215 void GrowBuffer();
1216
1217 void emit(byte x) { *pc_++ = x; }
1218 inline void emitl(uint32_t x);
Steve Blocka7e24c12009-10-30 11:49:00 +00001219 inline void emitq(uint64_t x, RelocInfo::Mode rmode);
1220 inline void emitw(uint16_t x);
Steve Block3ce2e202009-11-05 08:53:23 +00001221 inline void emit_code_target(Handle<Code> target, RelocInfo::Mode rmode);
Steve Blocka7e24c12009-10-30 11:49:00 +00001222 void emit(Immediate x) { emitl(x.value_); }
1223
1224 // Emits a REX prefix that encodes a 64-bit operand size and
1225 // the top bit of both register codes.
1226 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1227 // REX.W is set.
Steve Blocka7e24c12009-10-30 11:49:00 +00001228 inline void emit_rex_64(XMMRegister reg, Register rm_reg);
Steve Block6ded16b2010-05-10 14:33:55 +01001229 inline void emit_rex_64(Register reg, XMMRegister rm_reg);
1230 inline void emit_rex_64(Register reg, Register rm_reg);
Steve Blocka7e24c12009-10-30 11:49:00 +00001231
1232 // Emits a REX prefix that encodes a 64-bit operand size and
1233 // the top bit of the destination, index, and base register codes.
1234 // The high bit of reg is used for REX.R, the high bit of op's base
1235 // register is used for REX.B, and the high bit of op's index register
1236 // is used for REX.X. REX.W is set.
1237 inline void emit_rex_64(Register reg, const Operand& op);
1238 inline void emit_rex_64(XMMRegister reg, const Operand& op);
1239
1240 // Emits a REX prefix that encodes a 64-bit operand size and
1241 // the top bit of the register code.
1242 // The high bit of register is used for REX.B.
1243 // REX.W is set and REX.R and REX.X are clear.
1244 inline void emit_rex_64(Register rm_reg);
1245
1246 // Emits a REX prefix that encodes a 64-bit operand size and
1247 // the top bit of the index and base register codes.
1248 // The high bit of op's base register is used for REX.B, and the high
1249 // bit of op's index register is used for REX.X.
1250 // REX.W is set and REX.R clear.
1251 inline void emit_rex_64(const Operand& op);
1252
1253 // Emit a REX prefix that only sets REX.W to choose a 64-bit operand size.
1254 void emit_rex_64() { emit(0x48); }
1255
1256 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1257 // REX.W is clear.
1258 inline void emit_rex_32(Register reg, Register rm_reg);
1259
1260 // The high bit of reg is used for REX.R, the high bit of op's base
1261 // register is used for REX.B, and the high bit of op's index register
1262 // is used for REX.X. REX.W is cleared.
1263 inline void emit_rex_32(Register reg, const Operand& op);
1264
1265 // High bit of rm_reg goes to REX.B.
1266 // REX.W, REX.R and REX.X are clear.
1267 inline void emit_rex_32(Register rm_reg);
1268
1269 // High bit of base goes to REX.B and high bit of index to REX.X.
1270 // REX.W and REX.R are clear.
1271 inline void emit_rex_32(const Operand& op);
1272
1273 // High bit of reg goes to REX.R, high bit of rm_reg goes to REX.B.
1274 // REX.W is cleared. If no REX bits are set, no byte is emitted.
1275 inline void emit_optional_rex_32(Register reg, Register rm_reg);
1276
1277 // The high bit of reg is used for REX.R, the high bit of op's base
1278 // register is used for REX.B, and the high bit of op's index register
1279 // is used for REX.X. REX.W is cleared. If no REX bits are set, nothing
1280 // is emitted.
1281 inline void emit_optional_rex_32(Register reg, const Operand& op);
1282
1283 // As for emit_optional_rex_32(Register, Register), except that
1284 // the registers are XMM registers.
1285 inline void emit_optional_rex_32(XMMRegister reg, XMMRegister base);
1286
1287 // As for emit_optional_rex_32(Register, Register), except that
Steve Block6ded16b2010-05-10 14:33:55 +01001288 // one of the registers is an XMM registers.
Steve Blocka7e24c12009-10-30 11:49:00 +00001289 inline void emit_optional_rex_32(XMMRegister reg, Register base);
1290
Steve Block6ded16b2010-05-10 14:33:55 +01001291 // As for emit_optional_rex_32(Register, Register), except that
1292 // one of the registers is an XMM registers.
1293 inline void emit_optional_rex_32(Register reg, XMMRegister base);
1294
Steve Blocka7e24c12009-10-30 11:49:00 +00001295 // As for emit_optional_rex_32(Register, const Operand&), except that
1296 // the register is an XMM register.
1297 inline void emit_optional_rex_32(XMMRegister reg, const Operand& op);
1298
1299 // Optionally do as emit_rex_32(Register) if the register number has
1300 // the high bit set.
1301 inline void emit_optional_rex_32(Register rm_reg);
1302
1303 // Optionally do as emit_rex_32(const Operand&) if the operand register
1304 // numbers have a high bit set.
1305 inline void emit_optional_rex_32(const Operand& op);
1306
1307
1308 // Emit the ModR/M byte, and optionally the SIB byte and
1309 // 1- or 4-byte offset for a memory operand. Also encodes
1310 // the second operand of the operation, a register or operation
1311 // subcode, into the reg field of the ModR/M byte.
1312 void emit_operand(Register reg, const Operand& adr) {
1313 emit_operand(reg.low_bits(), adr);
1314 }
1315
1316 // Emit the ModR/M byte, and optionally the SIB byte and
1317 // 1- or 4-byte offset for a memory operand. Also used to encode
1318 // a three-bit opcode extension into the ModR/M byte.
1319 void emit_operand(int rm, const Operand& adr);
1320
1321 // Emit a ModR/M byte with registers coded in the reg and rm_reg fields.
1322 void emit_modrm(Register reg, Register rm_reg) {
1323 emit(0xC0 | reg.low_bits() << 3 | rm_reg.low_bits());
1324 }
1325
1326 // Emit a ModR/M byte with an operation subcode in the reg field and
1327 // a register in the rm_reg field.
1328 void emit_modrm(int code, Register rm_reg) {
1329 ASSERT(is_uint3(code));
1330 emit(0xC0 | code << 3 | rm_reg.low_bits());
1331 }
1332
1333 // Emit the code-object-relative offset of the label's position
1334 inline void emit_code_relative_offset(Label* label);
1335
1336 // Emit machine code for one of the operations ADD, ADC, SUB, SBC,
1337 // AND, OR, XOR, or CMP. The encodings of these operations are all
1338 // similar, differing just in the opcode or in the reg field of the
1339 // ModR/M byte.
1340 void arithmetic_op_16(byte opcode, Register reg, Register rm_reg);
1341 void arithmetic_op_16(byte opcode, Register reg, const Operand& rm_reg);
1342 void arithmetic_op_32(byte opcode, Register reg, Register rm_reg);
1343 void arithmetic_op_32(byte opcode, Register reg, const Operand& rm_reg);
1344 void arithmetic_op(byte opcode, Register reg, Register rm_reg);
1345 void arithmetic_op(byte opcode, Register reg, const Operand& rm_reg);
1346 void immediate_arithmetic_op(byte subcode, Register dst, Immediate src);
1347 void immediate_arithmetic_op(byte subcode, const Operand& dst, Immediate src);
1348 // Operate on a byte in memory or register.
1349 void immediate_arithmetic_op_8(byte subcode,
1350 Register dst,
1351 Immediate src);
1352 void immediate_arithmetic_op_8(byte subcode,
1353 const Operand& dst,
1354 Immediate src);
1355 // Operate on a word in memory or register.
1356 void immediate_arithmetic_op_16(byte subcode,
1357 Register dst,
1358 Immediate src);
1359 void immediate_arithmetic_op_16(byte subcode,
1360 const Operand& dst,
1361 Immediate src);
1362 // Operate on a 32-bit word in memory or register.
1363 void immediate_arithmetic_op_32(byte subcode,
1364 Register dst,
1365 Immediate src);
1366 void immediate_arithmetic_op_32(byte subcode,
1367 const Operand& dst,
1368 Immediate src);
1369
1370 // Emit machine code for a shift operation.
1371 void shift(Register dst, Immediate shift_amount, int subcode);
1372 void shift_32(Register dst, Immediate shift_amount, int subcode);
1373 // Shift dst by cl % 64 bits.
1374 void shift(Register dst, int subcode);
1375 void shift_32(Register dst, int subcode);
1376
1377 void emit_farith(int b1, int b2, int i);
1378
1379 // labels
1380 // void print(Label* L);
1381 void bind_to(Label* L, int pos);
Steve Blocka7e24c12009-10-30 11:49:00 +00001382
1383 // record reloc info for current pc_
1384 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1385
1386 friend class CodePatcher;
1387 friend class EnsureSpace;
1388 friend class RegExpMacroAssemblerX64;
1389
1390 // Code buffer:
1391 // The buffer into which code and relocation info are generated.
1392 byte* buffer_;
1393 int buffer_size_;
1394 // True if the assembler owns the buffer, false if buffer is external.
1395 bool own_buffer_;
1396 // A previously allocated buffer of kMinimalBufferSize bytes, or NULL.
1397 static byte* spare_buffer_;
1398
1399 // code generation
1400 byte* pc_; // the program counter; moves forward
1401 RelocInfoWriter reloc_info_writer;
1402
Steve Block3ce2e202009-11-05 08:53:23 +00001403 List< Handle<Code> > code_targets_;
Steve Blocka7e24c12009-10-30 11:49:00 +00001404 // push-pop elimination
1405 byte* last_pc_;
1406
1407 // source position information
1408 int current_statement_position_;
1409 int current_position_;
1410 int written_statement_position_;
1411 int written_position_;
1412};
1413
1414
1415// Helper class that ensures that there is enough space for generating
1416// instructions and relocation information. The constructor makes
1417// sure that there is enough space and (in debug mode) the destructor
1418// checks that we did not generate too much.
1419class EnsureSpace BASE_EMBEDDED {
1420 public:
1421 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1422 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1423#ifdef DEBUG
1424 space_before_ = assembler_->available_space();
1425#endif
1426 }
1427
1428#ifdef DEBUG
1429 ~EnsureSpace() {
1430 int bytes_generated = space_before_ - assembler_->available_space();
1431 ASSERT(bytes_generated < assembler_->kGap);
1432 }
1433#endif
1434
1435 private:
1436 Assembler* assembler_;
1437#ifdef DEBUG
1438 int space_before_;
1439#endif
1440};
1441
1442} } // namespace v8::internal
1443
1444#endif // V8_X64_ASSEMBLER_X64_H_