blob: 2ef100be6c4f5700aeef1139d0af231aad722bde [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Olaf Weber3e57ecf2006-06-09 14:48:12 +10002 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
Nathan Scott7b718762005-11-02 14:58:39 +11003 * All Rights Reserved.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004 *
Nathan Scott7b718762005-11-02 14:58:39 +11005 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
Linus Torvalds1da177e2005-04-16 15:20:36 -07007 * published by the Free Software Foundation.
8 *
Nathan Scott7b718762005-11-02 14:58:39 +11009 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 *
Nathan Scott7b718762005-11-02 14:58:39 +110014 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Linus Torvalds1da177e2005-04-16 15:20:36 -070017 */
Linus Torvalds1da177e2005-04-16 15:20:36 -070018#include "xfs.h"
Nathan Scotta844f452005-11-02 14:38:42 +110019#include "xfs_fs.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070020#include "xfs_types.h"
Nathan Scotta844f452005-11-02 14:38:42 +110021#include "xfs_bit.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070022#include "xfs_log.h"
Nathan Scotta844f452005-11-02 14:38:42 +110023#include "xfs_inum.h"
24#include "xfs_imap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070025#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070029#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include "xfs_bmap_btree.h"
Nathan Scotta844f452005-11-02 14:38:42 +110033#include "xfs_alloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include "xfs_ialloc_btree.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include "xfs_dir2_sf.h"
Nathan Scotta844f452005-11-02 14:38:42 +110036#include "xfs_attr_sf.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070037#include "xfs_dinode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070038#include "xfs_inode.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070039#include "xfs_buf_item.h"
Nathan Scotta844f452005-11-02 14:38:42 +110040#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include "xfs_rw.h"
46#include "xfs_error.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070047#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070050#include "xfs_acl.h"
David Chinner2a82b8b2007-07-11 11:09:12 +100051#include "xfs_filestream.h"
Linus Torvalds1da177e2005-04-16 15:20:36 -070052
Vignesh Babu16a087d2007-06-28 16:46:37 +100053#include <linux/log2.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070054
55kmem_zone_t *xfs_ifork_zone;
56kmem_zone_t *xfs_inode_zone;
57kmem_zone_t *xfs_chashlist_zone;
58
59/*
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
65STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69
70
71#ifdef DEBUG
72/*
73 * Make sure that the extents in the given memory buffer
74 * are valid.
75 */
76STATIC void
77xfs_validate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110078 xfs_ifork_t *ifp,
Linus Torvalds1da177e2005-04-16 15:20:36 -070079 int nrecs,
80 int disk,
81 xfs_exntfmt_t fmt)
82{
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110083 xfs_bmbt_rec_t *ep;
Linus Torvalds1da177e2005-04-16 15:20:36 -070084 xfs_bmbt_irec_t irec;
85 xfs_bmbt_rec_t rec;
86 int i;
87
88 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +110089 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -070090 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
91 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
92 if (disk)
93 xfs_bmbt_disk_get_all(&rec, &irec);
94 else
95 xfs_bmbt_get_all(&rec, &irec);
96 if (fmt == XFS_EXTFMT_NOSTATE)
97 ASSERT(irec.br_state == XFS_EXT_NORM);
Linus Torvalds1da177e2005-04-16 15:20:36 -070098 }
99}
100#else /* DEBUG */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100101#define xfs_validate_extents(ifp, nrecs, disk, fmt)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700102#endif /* DEBUG */
103
104/*
105 * Check that none of the inode's in the buffer have a next
106 * unlinked field of 0.
107 */
108#if defined(DEBUG)
109void
110xfs_inobp_check(
111 xfs_mount_t *mp,
112 xfs_buf_t *bp)
113{
114 int i;
115 int j;
116 xfs_dinode_t *dip;
117
118 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
119
120 for (i = 0; i < j; i++) {
121 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
122 i * mp->m_sb.sb_inodesize);
123 if (!dip->di_next_unlinked) {
124 xfs_fs_cmn_err(CE_ALERT, mp,
125 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
126 bp);
127 ASSERT(dip->di_next_unlinked);
128 }
129 }
130}
131#endif
132
133/*
Linus Torvalds1da177e2005-04-16 15:20:36 -0700134 * This routine is called to map an inode number within a file
135 * system to the buffer containing the on-disk version of the
136 * inode. It returns a pointer to the buffer containing the
137 * on-disk inode in the bpp parameter, and in the dip parameter
138 * it returns a pointer to the on-disk inode within that buffer.
139 *
140 * If a non-zero error is returned, then the contents of bpp and
141 * dipp are undefined.
142 *
143 * Use xfs_imap() to determine the size and location of the
144 * buffer to read from disk.
145 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +1000146STATIC int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700147xfs_inotobp(
148 xfs_mount_t *mp,
149 xfs_trans_t *tp,
150 xfs_ino_t ino,
151 xfs_dinode_t **dipp,
152 xfs_buf_t **bpp,
153 int *offset)
154{
155 int di_ok;
156 xfs_imap_t imap;
157 xfs_buf_t *bp;
158 int error;
159 xfs_dinode_t *dip;
160
161 /*
Nathan Scottc41564b2006-03-29 08:55:14 +1000162 * Call the space management code to find the location of the
Linus Torvalds1da177e2005-04-16 15:20:36 -0700163 * inode on disk.
164 */
165 imap.im_blkno = 0;
166 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
167 if (error != 0) {
168 cmn_err(CE_WARN,
169 "xfs_inotobp: xfs_imap() returned an "
170 "error %d on %s. Returning error.", error, mp->m_fsname);
171 return error;
172 }
173
174 /*
175 * If the inode number maps to a block outside the bounds of the
176 * file system then return NULL rather than calling read_buf
177 * and panicing when we get an error from the driver.
178 */
179 if ((imap.im_blkno + imap.im_len) >
180 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
181 cmn_err(CE_WARN,
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100182 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
Linus Torvalds1da177e2005-04-16 15:20:36 -0700183 "of the file system %s. Returning EINVAL.",
Christoph Hellwigda1650a2005-11-02 10:21:35 +1100184 (unsigned long long)imap.im_blkno,
185 imap.im_len, mp->m_fsname);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700186 return XFS_ERROR(EINVAL);
187 }
188
189 /*
190 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
191 * default to just a read_buf() call.
192 */
193 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
194 (int)imap.im_len, XFS_BUF_LOCK, &bp);
195
196 if (error) {
197 cmn_err(CE_WARN,
198 "xfs_inotobp: xfs_trans_read_buf() returned an "
199 "error %d on %s. Returning error.", error, mp->m_fsname);
200 return error;
201 }
202 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
203 di_ok =
204 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
205 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
206 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
207 XFS_RANDOM_ITOBP_INOTOBP))) {
208 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
209 xfs_trans_brelse(tp, bp);
210 cmn_err(CE_WARN,
211 "xfs_inotobp: XFS_TEST_ERROR() returned an "
212 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
213 return XFS_ERROR(EFSCORRUPTED);
214 }
215
216 xfs_inobp_check(mp, bp);
217
218 /*
219 * Set *dipp to point to the on-disk inode in the buffer.
220 */
221 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
222 *bpp = bp;
223 *offset = imap.im_boffset;
224 return 0;
225}
226
227
228/*
229 * This routine is called to map an inode to the buffer containing
230 * the on-disk version of the inode. It returns a pointer to the
231 * buffer containing the on-disk inode in the bpp parameter, and in
232 * the dip parameter it returns a pointer to the on-disk inode within
233 * that buffer.
234 *
235 * If a non-zero error is returned, then the contents of bpp and
236 * dipp are undefined.
237 *
238 * If the inode is new and has not yet been initialized, use xfs_imap()
239 * to determine the size and location of the buffer to read from disk.
240 * If the inode has already been mapped to its buffer and read in once,
241 * then use the mapping information stored in the inode rather than
242 * calling xfs_imap(). This allows us to avoid the overhead of looking
243 * at the inode btree for small block file systems (see xfs_dilocate()).
244 * We can tell whether the inode has been mapped in before by comparing
245 * its disk block address to 0. Only uninitialized inodes will have
246 * 0 for the disk block address.
247 */
248int
249xfs_itobp(
250 xfs_mount_t *mp,
251 xfs_trans_t *tp,
252 xfs_inode_t *ip,
253 xfs_dinode_t **dipp,
254 xfs_buf_t **bpp,
Nathan Scottb12dd342006-03-17 17:26:04 +1100255 xfs_daddr_t bno,
256 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700257{
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000258 xfs_imap_t imap;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700259 xfs_buf_t *bp;
260 int error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700261 int i;
262 int ni;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700263
264 if (ip->i_blkno == (xfs_daddr_t)0) {
265 /*
266 * Call the space management code to find the location of the
267 * inode on disk.
268 */
269 imap.im_blkno = bno;
Nathan Scottb12dd342006-03-17 17:26:04 +1100270 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
271 XFS_IMAP_LOOKUP | imap_flags)))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700272 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700273
274 /*
275 * If the inode number maps to a block outside the bounds
276 * of the file system then return NULL rather than calling
277 * read_buf and panicing when we get an error from the
278 * driver.
279 */
280 if ((imap.im_blkno + imap.im_len) >
281 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
282#ifdef DEBUG
283 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
284 "(imap.im_blkno (0x%llx) "
285 "+ imap.im_len (0x%llx)) > "
286 " XFS_FSB_TO_BB(mp, "
287 "mp->m_sb.sb_dblocks) (0x%llx)",
288 (unsigned long long) imap.im_blkno,
289 (unsigned long long) imap.im_len,
290 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
291#endif /* DEBUG */
292 return XFS_ERROR(EINVAL);
293 }
294
295 /*
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
298 */
299 ip->i_blkno = imap.im_blkno;
300 ip->i_len = imap.im_len;
301 ip->i_boffset = imap.im_boffset;
302 } else {
303 /*
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
306 */
307 imap.im_blkno = ip->i_blkno;
308 imap.im_len = ip->i_len;
309 imap.im_boffset = ip->i_boffset;
310 }
311 ASSERT(bno == 0 || bno == imap.im_blkno);
312
313 /*
314 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
315 * default to just a read_buf() call.
316 */
317 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
318 (int)imap.im_len, XFS_BUF_LOCK, &bp);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700319 if (error) {
320#ifdef DEBUG
321 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
322 "xfs_trans_read_buf() returned error %d, "
323 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
324 error, (unsigned long long) imap.im_blkno,
325 (unsigned long long) imap.im_len);
326#endif /* DEBUG */
327 return error;
328 }
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000329
Linus Torvalds1da177e2005-04-16 15:20:36 -0700330 /*
331 * Validate the magic number and version of every inode in the buffer
332 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000333 * No validation is done here in userspace (xfs_repair).
Linus Torvalds1da177e2005-04-16 15:20:36 -0700334 */
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000335#if !defined(__KERNEL__)
336 ni = 0;
337#elif defined(DEBUG)
Nathan Scott41ff7152006-07-28 17:05:51 +1000338 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000339#else /* usual case */
Nathan Scott41ff7152006-07-28 17:05:51 +1000340 ni = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700341#endif
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000342
Linus Torvalds1da177e2005-04-16 15:20:36 -0700343 for (i = 0; i < ni; i++) {
344 int di_ok;
345 xfs_dinode_t *dip;
346
347 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
348 (i << mp->m_sb.sb_inodelog));
349 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
350 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
Nathan Scott41ff7152006-07-28 17:05:51 +1000351 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
352 XFS_ERRTAG_ITOBP_INOTOBP,
353 XFS_RANDOM_ITOBP_INOTOBP))) {
354 if (imap_flags & XFS_IMAP_BULKSTAT) {
355 xfs_trans_brelse(tp, bp);
356 return XFS_ERROR(EINVAL);
357 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700358#ifdef DEBUG
Nathan Scott41ff7152006-07-28 17:05:51 +1000359 cmn_err(CE_ALERT,
Nathan Scott4d1a2ed2006-06-09 17:12:28 +1000360 "Device %s - bad inode magic/vsn "
361 "daddr %lld #%d (magic=%x)",
Nathan Scottb6574522006-06-09 15:29:40 +1000362 XFS_BUFTARG_NAME(mp->m_ddev_targp),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700363 (unsigned long long)imap.im_blkno, i,
364 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
365#endif
366 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
367 mp, dip);
368 xfs_trans_brelse(tp, bp);
369 return XFS_ERROR(EFSCORRUPTED);
370 }
371 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700372
373 xfs_inobp_check(mp, bp);
374
375 /*
376 * Mark the buffer as an inode buffer now that it looks good
377 */
378 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
379
380 /*
381 * Set *dipp to point to the on-disk inode in the buffer.
382 */
383 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
384 *bpp = bp;
385 return 0;
386}
387
388/*
389 * Move inode type and inode format specific information from the
390 * on-disk inode to the in-core inode. For fifos, devs, and sockets
391 * this means set if_rdev to the proper value. For files, directories,
392 * and symlinks this means to bring in the in-line data or extent
393 * pointers. For a file in B-tree format, only the root is immediately
394 * brought in-core. The rest will be in-lined in if_extents when it
395 * is first referenced (see xfs_iread_extents()).
396 */
397STATIC int
398xfs_iformat(
399 xfs_inode_t *ip,
400 xfs_dinode_t *dip)
401{
402 xfs_attr_shortform_t *atp;
403 int size;
404 int error;
405 xfs_fsize_t di_size;
406 ip->i_df.if_ext_max =
407 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
408 error = 0;
409
410 if (unlikely(
411 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
412 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
413 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100414 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
415 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700416 (unsigned long long)ip->i_ino,
417 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
418 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
419 (unsigned long long)
420 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
421 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
422 ip->i_mount, dip);
423 return XFS_ERROR(EFSCORRUPTED);
424 }
425
426 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100427 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
428 "corrupt dinode %Lu, forkoff = 0x%x.",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700429 (unsigned long long)ip->i_ino,
430 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
431 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
432 ip->i_mount, dip);
433 return XFS_ERROR(EFSCORRUPTED);
434 }
435
436 switch (ip->i_d.di_mode & S_IFMT) {
437 case S_IFIFO:
438 case S_IFCHR:
439 case S_IFBLK:
440 case S_IFSOCK:
441 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
442 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
443 ip->i_mount, dip);
444 return XFS_ERROR(EFSCORRUPTED);
445 }
446 ip->i_d.di_size = 0;
Lachlan McIlroyba87ea62007-05-08 13:49:46 +1000447 ip->i_size = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700448 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
449 break;
450
451 case S_IFREG:
452 case S_IFLNK:
453 case S_IFDIR:
454 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
455 case XFS_DINODE_FMT_LOCAL:
456 /*
457 * no local regular files yet
458 */
459 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100460 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
461 "corrupt inode %Lu "
462 "(local format for regular file).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700463 (unsigned long long) ip->i_ino);
464 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
465 XFS_ERRLEVEL_LOW,
466 ip->i_mount, dip);
467 return XFS_ERROR(EFSCORRUPTED);
468 }
469
470 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
471 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100472 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
473 "corrupt inode %Lu "
474 "(bad size %Ld for local inode).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700475 (unsigned long long) ip->i_ino,
476 (long long) di_size);
477 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
478 XFS_ERRLEVEL_LOW,
479 ip->i_mount, dip);
480 return XFS_ERROR(EFSCORRUPTED);
481 }
482
483 size = (int)di_size;
484 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
485 break;
486 case XFS_DINODE_FMT_EXTENTS:
487 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
488 break;
489 case XFS_DINODE_FMT_BTREE:
490 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
491 break;
492 default:
493 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
494 ip->i_mount);
495 return XFS_ERROR(EFSCORRUPTED);
496 }
497 break;
498
499 default:
500 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
501 return XFS_ERROR(EFSCORRUPTED);
502 }
503 if (error) {
504 return error;
505 }
506 if (!XFS_DFORK_Q(dip))
507 return 0;
508 ASSERT(ip->i_afp == NULL);
509 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
510 ip->i_afp->if_ext_max =
511 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
512 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
513 case XFS_DINODE_FMT_LOCAL:
514 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
Nathan Scott3b244aa2006-03-17 17:29:25 +1100515 size = be16_to_cpu(atp->hdr.totsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
517 break;
518 case XFS_DINODE_FMT_EXTENTS:
519 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
520 break;
521 case XFS_DINODE_FMT_BTREE:
522 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
523 break;
524 default:
525 error = XFS_ERROR(EFSCORRUPTED);
526 break;
527 }
528 if (error) {
529 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
530 ip->i_afp = NULL;
531 xfs_idestroy_fork(ip, XFS_DATA_FORK);
532 }
533 return error;
534}
535
536/*
537 * The file is in-lined in the on-disk inode.
538 * If it fits into if_inline_data, then copy
539 * it there, otherwise allocate a buffer for it
540 * and copy the data there. Either way, set
541 * if_data to point at the data.
542 * If we allocate a buffer for the data, make
543 * sure that its size is a multiple of 4 and
544 * record the real size in i_real_bytes.
545 */
546STATIC int
547xfs_iformat_local(
548 xfs_inode_t *ip,
549 xfs_dinode_t *dip,
550 int whichfork,
551 int size)
552{
553 xfs_ifork_t *ifp;
554 int real_size;
555
556 /*
557 * If the size is unreasonable, then something
558 * is wrong and we just bail out rather than crash in
559 * kmem_alloc() or memcpy() below.
560 */
561 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100562 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
563 "corrupt inode %Lu "
564 "(bad size %d for local fork, size = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700565 (unsigned long long) ip->i_ino, size,
566 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
567 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
568 ip->i_mount, dip);
569 return XFS_ERROR(EFSCORRUPTED);
570 }
571 ifp = XFS_IFORK_PTR(ip, whichfork);
572 real_size = 0;
573 if (size == 0)
574 ifp->if_u1.if_data = NULL;
575 else if (size <= sizeof(ifp->if_u2.if_inline_data))
576 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
577 else {
578 real_size = roundup(size, 4);
579 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
580 }
581 ifp->if_bytes = size;
582 ifp->if_real_bytes = real_size;
583 if (size)
584 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
585 ifp->if_flags &= ~XFS_IFEXTENTS;
586 ifp->if_flags |= XFS_IFINLINE;
587 return 0;
588}
589
590/*
591 * The file consists of a set of extents all
592 * of which fit into the on-disk inode.
593 * If there are few enough extents to fit into
594 * the if_inline_ext, then copy them there.
595 * Otherwise allocate a buffer for them and copy
596 * them into it. Either way, set if_extents
597 * to point at the extents.
598 */
599STATIC int
600xfs_iformat_extents(
601 xfs_inode_t *ip,
602 xfs_dinode_t *dip,
603 int whichfork)
604{
605 xfs_bmbt_rec_t *ep, *dp;
606 xfs_ifork_t *ifp;
607 int nex;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700608 int size;
609 int i;
610
611 ifp = XFS_IFORK_PTR(ip, whichfork);
612 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
613 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
614
615 /*
616 * If the number of extents is unreasonable, then something
617 * is wrong and we just bail out rather than crash in
618 * kmem_alloc() or memcpy() below.
619 */
620 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100621 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
622 "corrupt inode %Lu ((a)extents = %d).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623 (unsigned long long) ip->i_ino, nex);
624 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
625 ip->i_mount, dip);
626 return XFS_ERROR(EFSCORRUPTED);
627 }
628
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100629 ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630 if (nex == 0)
631 ifp->if_u1.if_extents = NULL;
632 else if (nex <= XFS_INLINE_EXTS)
633 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100634 else
635 xfs_iext_add(ifp, 0, nex);
636
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637 ifp->if_bytes = size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638 if (size) {
639 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100640 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
641 for (i = 0; i < nex; i++, dp++) {
642 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
644 ARCH_CONVERT);
645 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
646 ARCH_CONVERT);
647 }
648 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
649 whichfork);
650 if (whichfork != XFS_DATA_FORK ||
651 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
652 if (unlikely(xfs_check_nostate_extents(
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +1100653 ifp, 0, nex))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700654 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
655 XFS_ERRLEVEL_LOW,
656 ip->i_mount);
657 return XFS_ERROR(EFSCORRUPTED);
658 }
659 }
660 ifp->if_flags |= XFS_IFEXTENTS;
661 return 0;
662}
663
664/*
665 * The file has too many extents to fit into
666 * the inode, so they are in B-tree format.
667 * Allocate a buffer for the root of the B-tree
668 * and copy the root into it. The i_extents
669 * field will remain NULL until all of the
670 * extents are read in (when they are needed).
671 */
672STATIC int
673xfs_iformat_btree(
674 xfs_inode_t *ip,
675 xfs_dinode_t *dip,
676 int whichfork)
677{
678 xfs_bmdr_block_t *dfp;
679 xfs_ifork_t *ifp;
680 /* REFERENCED */
681 int nrecs;
682 int size;
683
684 ifp = XFS_IFORK_PTR(ip, whichfork);
685 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
686 size = XFS_BMAP_BROOT_SPACE(dfp);
687 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
688
689 /*
690 * blow out if -- fork has less extents than can fit in
691 * fork (fork shouldn't be a btree format), root btree
692 * block has more records than can fit into the fork,
693 * or the number of extents is greater than the number of
694 * blocks.
695 */
696 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
697 || XFS_BMDR_SPACE_CALC(nrecs) >
698 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
699 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
Nathan Scott3762ec62006-01-12 10:29:53 +1100700 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
701 "corrupt inode %Lu (btree).",
Linus Torvalds1da177e2005-04-16 15:20:36 -0700702 (unsigned long long) ip->i_ino);
703 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
704 ip->i_mount);
705 return XFS_ERROR(EFSCORRUPTED);
706 }
707
708 ifp->if_broot_bytes = size;
709 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
710 ASSERT(ifp->if_broot != NULL);
711 /*
712 * Copy and convert from the on-disk structure
713 * to the in-memory structure.
714 */
715 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
716 ifp->if_broot, size);
717 ifp->if_flags &= ~XFS_IFEXTENTS;
718 ifp->if_flags |= XFS_IFBROOT;
719
720 return 0;
721}
722
723/*
724 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
725 * and native format
726 *
727 * buf = on-disk representation
728 * dip = native representation
729 * dir = direction - +ve -> disk to native
730 * -ve -> native to disk
731 */
732void
733xfs_xlate_dinode_core(
734 xfs_caddr_t buf,
735 xfs_dinode_core_t *dip,
736 int dir)
737{
738 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
739 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
740 xfs_arch_t arch = ARCH_CONVERT;
741
742 ASSERT(dir);
743
744 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
745 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
746 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
747 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
748 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
749 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
750 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
751 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
752 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
753
754 if (dir > 0) {
755 memcpy(mem_core->di_pad, buf_core->di_pad,
756 sizeof(buf_core->di_pad));
757 } else {
758 memcpy(buf_core->di_pad, mem_core->di_pad,
759 sizeof(buf_core->di_pad));
760 }
761
762 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
763
764 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
765 dir, arch);
766 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
767 dir, arch);
768 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
769 dir, arch);
770 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
771 dir, arch);
772 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
773 dir, arch);
774 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
775 dir, arch);
776 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
777 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
778 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
779 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
780 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
781 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
782 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
783 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
784 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
785 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
786 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
787}
788
789STATIC uint
790_xfs_dic2xflags(
Linus Torvalds1da177e2005-04-16 15:20:36 -0700791 __uint16_t di_flags)
792{
793 uint flags = 0;
794
795 if (di_flags & XFS_DIFLAG_ANY) {
796 if (di_flags & XFS_DIFLAG_REALTIME)
797 flags |= XFS_XFLAG_REALTIME;
798 if (di_flags & XFS_DIFLAG_PREALLOC)
799 flags |= XFS_XFLAG_PREALLOC;
800 if (di_flags & XFS_DIFLAG_IMMUTABLE)
801 flags |= XFS_XFLAG_IMMUTABLE;
802 if (di_flags & XFS_DIFLAG_APPEND)
803 flags |= XFS_XFLAG_APPEND;
804 if (di_flags & XFS_DIFLAG_SYNC)
805 flags |= XFS_XFLAG_SYNC;
806 if (di_flags & XFS_DIFLAG_NOATIME)
807 flags |= XFS_XFLAG_NOATIME;
808 if (di_flags & XFS_DIFLAG_NODUMP)
809 flags |= XFS_XFLAG_NODUMP;
810 if (di_flags & XFS_DIFLAG_RTINHERIT)
811 flags |= XFS_XFLAG_RTINHERIT;
812 if (di_flags & XFS_DIFLAG_PROJINHERIT)
813 flags |= XFS_XFLAG_PROJINHERIT;
814 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
815 flags |= XFS_XFLAG_NOSYMLINKS;
Nathan Scottdd9f4382006-01-11 15:28:28 +1100816 if (di_flags & XFS_DIFLAG_EXTSIZE)
817 flags |= XFS_XFLAG_EXTSIZE;
818 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
819 flags |= XFS_XFLAG_EXTSZINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +1000820 if (di_flags & XFS_DIFLAG_NODEFRAG)
821 flags |= XFS_XFLAG_NODEFRAG;
David Chinner2a82b8b2007-07-11 11:09:12 +1000822 if (di_flags & XFS_DIFLAG_FILESTREAM)
823 flags |= XFS_XFLAG_FILESTREAM;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700824 }
825
826 return flags;
827}
828
829uint
830xfs_ip2xflags(
831 xfs_inode_t *ip)
832{
833 xfs_dinode_core_t *dic = &ip->i_d;
834
Nathan Scotta916e2b2006-06-09 17:12:17 +1000835 return _xfs_dic2xflags(dic->di_flags) |
836 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837}
838
839uint
840xfs_dic2xflags(
841 xfs_dinode_core_t *dic)
842{
Nathan Scotta916e2b2006-06-09 17:12:17 +1000843 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
844 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700845}
846
847/*
848 * Given a mount structure and an inode number, return a pointer
Nathan Scottc41564b2006-03-29 08:55:14 +1000849 * to a newly allocated in-core inode corresponding to the given
Linus Torvalds1da177e2005-04-16 15:20:36 -0700850 * inode number.
851 *
852 * Initialize the inode's attributes and extent pointers if it
853 * already has them (it will not if the inode has no links).
854 */
855int
856xfs_iread(
857 xfs_mount_t *mp,
858 xfs_trans_t *tp,
859 xfs_ino_t ino,
860 xfs_inode_t **ipp,
Nathan Scott745b1f472006-09-28 11:02:23 +1000861 xfs_daddr_t bno,
862 uint imap_flags)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700863{
864 xfs_buf_t *bp;
865 xfs_dinode_t *dip;
866 xfs_inode_t *ip;
867 int error;
868
869 ASSERT(xfs_inode_zone != NULL);
870
871 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
872 ip->i_ino = ino;
873 ip->i_mount = mp;
David Chinnerf273ab82006-09-28 11:06:03 +1000874 spin_lock_init(&ip->i_flags_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700875
876 /*
877 * Get pointer's to the on-disk inode and the buffer containing it.
878 * If the inode number refers to a block outside the file system
879 * then xfs_itobp() will return NULL. In this case we should
880 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
881 * know that this is a new incore inode.
882 */
Nathan Scott745b1f472006-09-28 11:02:23 +1000883 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
Nathan Scottb12dd342006-03-17 17:26:04 +1100884 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700885 kmem_zone_free(xfs_inode_zone, ip);
886 return error;
887 }
888
889 /*
890 * Initialize inode's trace buffers.
891 * Do this before xfs_iformat in case it adds entries.
892 */
893#ifdef XFS_BMAP_TRACE
894 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_BMBT_TRACE
897 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
898#endif
899#ifdef XFS_RW_TRACE
900 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
901#endif
902#ifdef XFS_ILOCK_TRACE
903 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
904#endif
905#ifdef XFS_DIR2_TRACE
906 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
907#endif
908
909 /*
910 * If we got something that isn't an inode it means someone
911 * (nfs or dmi) has a stale handle.
912 */
913 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
914 kmem_zone_free(xfs_inode_zone, ip);
915 xfs_trans_brelse(tp, bp);
916#ifdef DEBUG
917 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
918 "dip->di_core.di_magic (0x%x) != "
919 "XFS_DINODE_MAGIC (0x%x)",
920 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
921 XFS_DINODE_MAGIC);
922#endif /* DEBUG */
923 return XFS_ERROR(EINVAL);
924 }
925
926 /*
927 * If the on-disk inode is already linked to a directory
928 * entry, copy all of the inode into the in-core inode.
929 * xfs_iformat() handles copying in the inode format
930 * specific information.
931 * Otherwise, just get the truly permanent information.
932 */
933 if (dip->di_core.di_mode) {
934 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
935 &(ip->i_d), 1);
936 error = xfs_iformat(ip, dip);
937 if (error) {
938 kmem_zone_free(xfs_inode_zone, ip);
939 xfs_trans_brelse(tp, bp);
940#ifdef DEBUG
941 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
942 "xfs_iformat() returned error %d",
943 error);
944#endif /* DEBUG */
945 return error;
946 }
947 } else {
948 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
949 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
950 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
951 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
952 /*
953 * Make sure to pull in the mode here as well in
954 * case the inode is released without being used.
955 * This ensures that xfs_inactive() will see that
956 * the inode is already free and not try to mess
957 * with the uninitialized part of it.
958 */
959 ip->i_d.di_mode = 0;
960 /*
961 * Initialize the per-fork minima and maxima for a new
962 * inode here. xfs_iformat will do it for old inodes.
963 */
964 ip->i_df.if_ext_max =
965 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
966 }
967
968 INIT_LIST_HEAD(&ip->i_reclaim);
969
970 /*
971 * The inode format changed when we moved the link count and
972 * made it 32 bits long. If this is an old format inode,
973 * convert it in memory to look like a new one. If it gets
974 * flushed to disk we will convert back before flushing or
975 * logging it. We zero out the new projid field and the old link
976 * count field. We'll handle clearing the pad field (the remains
977 * of the old uuid field) when we actually convert the inode to
978 * the new format. We don't change the version number so that we
979 * can distinguish this from a real new format inode.
980 */
981 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
982 ip->i_d.di_nlink = ip->i_d.di_onlink;
983 ip->i_d.di_onlink = 0;
984 ip->i_d.di_projid = 0;
985 }
986
987 ip->i_delayed_blks = 0;
Lachlan McIlroyba87ea62007-05-08 13:49:46 +1000988 ip->i_size = ip->i_d.di_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700989
990 /*
991 * Mark the buffer containing the inode as something to keep
992 * around for a while. This helps to keep recently accessed
993 * meta-data in-core longer.
994 */
995 XFS_BUF_SET_REF(bp, XFS_INO_REF);
996
997 /*
998 * Use xfs_trans_brelse() to release the buffer containing the
999 * on-disk inode, because it was acquired with xfs_trans_read_buf()
1000 * in xfs_itobp() above. If tp is NULL, this is just a normal
1001 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1002 * will only release the buffer if it is not dirty within the
1003 * transaction. It will be OK to release the buffer in this case,
1004 * because inodes on disk are never destroyed and we will be
1005 * locking the new in-core inode before putting it in the hash
1006 * table where other processes can find it. Thus we don't have
1007 * to worry about the inode being changed just because we released
1008 * the buffer.
1009 */
1010 xfs_trans_brelse(tp, bp);
1011 *ipp = ip;
1012 return 0;
1013}
1014
1015/*
1016 * Read in extents from a btree-format inode.
1017 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1018 */
1019int
1020xfs_iread_extents(
1021 xfs_trans_t *tp,
1022 xfs_inode_t *ip,
1023 int whichfork)
1024{
1025 int error;
1026 xfs_ifork_t *ifp;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001027 xfs_extnum_t nextents;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028 size_t size;
1029
1030 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1031 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1032 ip->i_mount);
1033 return XFS_ERROR(EFSCORRUPTED);
1034 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001035 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1036 size = nextents * sizeof(xfs_bmbt_rec_t);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001037 ifp = XFS_IFORK_PTR(ip, whichfork);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001038
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 /*
1040 * We know that the size is valid (it's checked in iformat_btree)
1041 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001042 ifp->if_lastex = NULLEXTNUM;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001043 ifp->if_bytes = ifp->if_real_bytes = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001044 ifp->if_flags |= XFS_IFEXTENTS;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001045 xfs_iext_add(ifp, 0, nextents);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001046 error = xfs_bmap_read_extents(tp, ip, whichfork);
1047 if (error) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001048 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001049 ifp->if_flags &= ~XFS_IFEXTENTS;
1050 return error;
1051 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11001052 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001053 return 0;
1054}
1055
1056/*
1057 * Allocate an inode on disk and return a copy of its in-core version.
1058 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1059 * appropriately within the inode. The uid and gid for the inode are
1060 * set according to the contents of the given cred structure.
1061 *
1062 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1063 * has a free inode available, call xfs_iget()
1064 * to obtain the in-core version of the allocated inode. Finally,
1065 * fill in the inode and log its initial contents. In this case,
1066 * ialloc_context would be set to NULL and call_again set to false.
1067 *
1068 * If xfs_dialloc() does not have an available inode,
1069 * it will replenish its supply by doing an allocation. Since we can
1070 * only do one allocation within a transaction without deadlocks, we
1071 * must commit the current transaction before returning the inode itself.
1072 * In this case, therefore, we will set call_again to true and return.
1073 * The caller should then commit the current transaction, start a new
1074 * transaction, and call xfs_ialloc() again to actually get the inode.
1075 *
1076 * To ensure that some other process does not grab the inode that
1077 * was allocated during the first call to xfs_ialloc(), this routine
1078 * also returns the [locked] bp pointing to the head of the freelist
1079 * as ialloc_context. The caller should hold this buffer across
1080 * the commit and pass it back into this routine on the second call.
1081 */
1082int
1083xfs_ialloc(
1084 xfs_trans_t *tp,
1085 xfs_inode_t *pip,
1086 mode_t mode,
Nathan Scott31b084a2005-05-05 13:25:00 -07001087 xfs_nlink_t nlink,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001088 xfs_dev_t rdev,
1089 cred_t *cr,
1090 xfs_prid_t prid,
1091 int okalloc,
1092 xfs_buf_t **ialloc_context,
1093 boolean_t *call_again,
1094 xfs_inode_t **ipp)
1095{
1096 xfs_ino_t ino;
1097 xfs_inode_t *ip;
Nathan Scott67fcaa72006-06-09 17:00:52 +10001098 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099 uint flags;
1100 int error;
1101
1102 /*
1103 * Call the space management code to pick
1104 * the on-disk inode to be allocated.
1105 */
1106 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1107 ialloc_context, call_again, &ino);
1108 if (error != 0) {
1109 return error;
1110 }
1111 if (*call_again || ino == NULLFSINO) {
1112 *ipp = NULL;
1113 return 0;
1114 }
1115 ASSERT(*ialloc_context == NULL);
1116
1117 /*
1118 * Get the in-core inode with the lock held exclusively.
1119 * This is because we're setting fields here we need
1120 * to prevent others from looking at until we're done.
1121 */
1122 error = xfs_trans_iget(tp->t_mountp, tp, ino,
Nathan Scott745b1f472006-09-28 11:02:23 +10001123 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001124 if (error != 0) {
1125 return error;
1126 }
1127 ASSERT(ip != NULL);
1128
1129 vp = XFS_ITOV(ip);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130 ip->i_d.di_mode = (__uint16_t)mode;
1131 ip->i_d.di_onlink = 0;
1132 ip->i_d.di_nlink = nlink;
1133 ASSERT(ip->i_d.di_nlink == nlink);
1134 ip->i_d.di_uid = current_fsuid(cr);
1135 ip->i_d.di_gid = current_fsgid(cr);
1136 ip->i_d.di_projid = prid;
1137 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1138
1139 /*
1140 * If the superblock version is up to where we support new format
1141 * inodes and this is currently an old format inode, then change
1142 * the inode version number now. This way we only do the conversion
1143 * here rather than here and in the flush/logging code.
1144 */
1145 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1146 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1147 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1148 /*
1149 * We've already zeroed the old link count, the projid field,
1150 * and the pad field.
1151 */
1152 }
1153
1154 /*
1155 * Project ids won't be stored on disk if we are using a version 1 inode.
1156 */
David Chinner2a82b8b2007-07-11 11:09:12 +10001157 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001158 xfs_bump_ino_vers2(tp, ip);
1159
1160 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1161 ip->i_d.di_gid = pip->i_d.di_gid;
1162 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1163 ip->i_d.di_mode |= S_ISGID;
1164 }
1165 }
1166
1167 /*
1168 * If the group ID of the new file does not match the effective group
1169 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1170 * (and only if the irix_sgid_inherit compatibility variable is set).
1171 */
1172 if ((irix_sgid_inherit) &&
1173 (ip->i_d.di_mode & S_ISGID) &&
1174 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1175 ip->i_d.di_mode &= ~S_ISGID;
1176 }
1177
1178 ip->i_d.di_size = 0;
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001179 ip->i_size = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001180 ip->i_d.di_nextents = 0;
1181 ASSERT(ip->i_d.di_nblocks == 0);
1182 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1183 /*
1184 * di_gen will have been taken care of in xfs_iread.
1185 */
1186 ip->i_d.di_extsize = 0;
1187 ip->i_d.di_dmevmask = 0;
1188 ip->i_d.di_dmstate = 0;
1189 ip->i_d.di_flags = 0;
1190 flags = XFS_ILOG_CORE;
1191 switch (mode & S_IFMT) {
1192 case S_IFIFO:
1193 case S_IFCHR:
1194 case S_IFBLK:
1195 case S_IFSOCK:
1196 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1197 ip->i_df.if_u2.if_rdev = rdev;
1198 ip->i_df.if_flags = 0;
1199 flags |= XFS_ILOG_DEV;
1200 break;
1201 case S_IFREG:
David Chinner2a82b8b2007-07-11 11:09:12 +10001202 if (xfs_inode_is_filestream(pip)) {
1203 error = xfs_filestream_associate(pip, ip);
1204 if (error < 0)
1205 return -error;
1206 if (!error)
1207 xfs_iflags_set(ip, XFS_IFILESTREAM);
1208 }
1209 /* fall through */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001210 case S_IFDIR:
David Chinner2a82b8b2007-07-11 11:09:12 +10001211 if (pip->i_d.di_flags & XFS_DIFLAG_ANY) {
Nathan Scott365ca832005-06-21 15:39:12 +10001212 uint di_flags = 0;
1213
1214 if ((mode & S_IFMT) == S_IFDIR) {
1215 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1216 di_flags |= XFS_DIFLAG_RTINHERIT;
Nathan Scottdd9f4382006-01-11 15:28:28 +11001217 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1218 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1219 ip->i_d.di_extsize = pip->i_d.di_extsize;
1220 }
1221 } else if ((mode & S_IFMT) == S_IFREG) {
Nathan Scott365ca832005-06-21 15:39:12 +10001222 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1223 di_flags |= XFS_DIFLAG_REALTIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001224 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1225 }
Nathan Scottdd9f4382006-01-11 15:28:28 +11001226 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1227 di_flags |= XFS_DIFLAG_EXTSIZE;
1228 ip->i_d.di_extsize = pip->i_d.di_extsize;
1229 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001230 }
1231 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1232 xfs_inherit_noatime)
Nathan Scott365ca832005-06-21 15:39:12 +10001233 di_flags |= XFS_DIFLAG_NOATIME;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001234 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1235 xfs_inherit_nodump)
Nathan Scott365ca832005-06-21 15:39:12 +10001236 di_flags |= XFS_DIFLAG_NODUMP;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001237 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1238 xfs_inherit_sync)
Nathan Scott365ca832005-06-21 15:39:12 +10001239 di_flags |= XFS_DIFLAG_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001240 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1241 xfs_inherit_nosymlinks)
Nathan Scott365ca832005-06-21 15:39:12 +10001242 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1243 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1244 di_flags |= XFS_DIFLAG_PROJINHERIT;
Barry Naujokd3446ea2006-06-09 14:54:19 +10001245 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1246 xfs_inherit_nodefrag)
1247 di_flags |= XFS_DIFLAG_NODEFRAG;
David Chinner2a82b8b2007-07-11 11:09:12 +10001248 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1249 di_flags |= XFS_DIFLAG_FILESTREAM;
Nathan Scott365ca832005-06-21 15:39:12 +10001250 ip->i_d.di_flags |= di_flags;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001251 }
1252 /* FALLTHROUGH */
1253 case S_IFLNK:
1254 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1255 ip->i_df.if_flags = XFS_IFEXTENTS;
1256 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1257 ip->i_df.if_u1.if_extents = NULL;
1258 break;
1259 default:
1260 ASSERT(0);
1261 }
1262 /*
1263 * Attribute fork settings for new inode.
1264 */
1265 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1266 ip->i_d.di_anextents = 0;
1267
1268 /*
1269 * Log the new values stuffed into the inode.
1270 */
1271 xfs_trans_log_inode(tp, ip, flags);
1272
Nathan Scottb83bd132006-06-09 16:48:30 +10001273 /* now that we have an i_mode we can setup inode ops and unlock */
1274 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001275
1276 *ipp = ip;
1277 return 0;
1278}
1279
1280/*
1281 * Check to make sure that there are no blocks allocated to the
1282 * file beyond the size of the file. We don't check this for
1283 * files with fixed size extents or real time extents, but we
1284 * at least do it for regular files.
1285 */
1286#ifdef DEBUG
1287void
1288xfs_isize_check(
1289 xfs_mount_t *mp,
1290 xfs_inode_t *ip,
1291 xfs_fsize_t isize)
1292{
1293 xfs_fileoff_t map_first;
1294 int nimaps;
1295 xfs_bmbt_irec_t imaps[2];
1296
1297 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1298 return;
1299
Nathan Scottdd9f4382006-01-11 15:28:28 +11001300 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001301 return;
1302
1303 nimaps = 2;
1304 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1305 /*
1306 * The filesystem could be shutting down, so bmapi may return
1307 * an error.
1308 */
1309 if (xfs_bmapi(NULL, ip, map_first,
1310 (XFS_B_TO_FSB(mp,
1311 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1312 map_first),
1313 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001314 NULL, NULL))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001315 return;
1316 ASSERT(nimaps == 1);
1317 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1318}
1319#endif /* DEBUG */
1320
1321/*
1322 * Calculate the last possible buffered byte in a file. This must
1323 * include data that was buffered beyond the EOF by the write code.
1324 * This also needs to deal with overflowing the xfs_fsize_t type
1325 * which can happen for sizes near the limit.
1326 *
1327 * We also need to take into account any blocks beyond the EOF. It
1328 * may be the case that they were buffered by a write which failed.
1329 * In that case the pages will still be in memory, but the inode size
1330 * will never have been updated.
1331 */
1332xfs_fsize_t
1333xfs_file_last_byte(
1334 xfs_inode_t *ip)
1335{
1336 xfs_mount_t *mp;
1337 xfs_fsize_t last_byte;
1338 xfs_fileoff_t last_block;
1339 xfs_fileoff_t size_last_block;
1340 int error;
1341
1342 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1343
1344 mp = ip->i_mount;
1345 /*
1346 * Only check for blocks beyond the EOF if the extents have
1347 * been read in. This eliminates the need for the inode lock,
1348 * and it also saves us from looking when it really isn't
1349 * necessary.
1350 */
1351 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1352 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1353 XFS_DATA_FORK);
1354 if (error) {
1355 last_block = 0;
1356 }
1357 } else {
1358 last_block = 0;
1359 }
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001360 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001361 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1362
1363 last_byte = XFS_FSB_TO_B(mp, last_block);
1364 if (last_byte < 0) {
1365 return XFS_MAXIOFFSET(mp);
1366 }
1367 last_byte += (1 << mp->m_writeio_log);
1368 if (last_byte < 0) {
1369 return XFS_MAXIOFFSET(mp);
1370 }
1371 return last_byte;
1372}
1373
1374#if defined(XFS_RW_TRACE)
1375STATIC void
1376xfs_itrunc_trace(
1377 int tag,
1378 xfs_inode_t *ip,
1379 int flag,
1380 xfs_fsize_t new_size,
1381 xfs_off_t toss_start,
1382 xfs_off_t toss_finish)
1383{
1384 if (ip->i_rwtrace == NULL) {
1385 return;
1386 }
1387
1388 ktrace_enter(ip->i_rwtrace,
1389 (void*)((long)tag),
1390 (void*)ip,
1391 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1392 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1393 (void*)((long)flag),
1394 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1395 (void*)(unsigned long)(new_size & 0xffffffff),
1396 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1397 (void*)(unsigned long)(toss_start & 0xffffffff),
1398 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1399 (void*)(unsigned long)(toss_finish & 0xffffffff),
1400 (void*)(unsigned long)current_cpu(),
Yingping Luf1fdc842006-03-22 12:44:15 +11001401 (void*)(unsigned long)current_pid(),
1402 (void*)NULL,
1403 (void*)NULL,
1404 (void*)NULL);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001405}
1406#else
1407#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1408#endif
1409
1410/*
1411 * Start the truncation of the file to new_size. The new size
1412 * must be smaller than the current size. This routine will
1413 * clear the buffer and page caches of file data in the removed
1414 * range, and xfs_itruncate_finish() will remove the underlying
1415 * disk blocks.
1416 *
1417 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1418 * must NOT have the inode lock held at all. This is because we're
1419 * calling into the buffer/page cache code and we can't hold the
1420 * inode lock when we do so.
1421 *
David Chinner38e22992006-03-22 12:47:15 +11001422 * We need to wait for any direct I/Os in flight to complete before we
1423 * proceed with the truncate. This is needed to prevent the extents
1424 * being read or written by the direct I/Os from being removed while the
1425 * I/O is in flight as there is no other method of synchronising
1426 * direct I/O with the truncate operation. Also, because we hold
1427 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1428 * started until the truncate completes and drops the lock. Essentially,
1429 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1430 * between direct I/Os and the truncate operation.
1431 *
Linus Torvalds1da177e2005-04-16 15:20:36 -07001432 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1433 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1434 * in the case that the caller is locking things out of order and
1435 * may not be able to call xfs_itruncate_finish() with the inode lock
1436 * held without dropping the I/O lock. If the caller must drop the
1437 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1438 * must be called again with all the same restrictions as the initial
1439 * call.
1440 */
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001441int
Linus Torvalds1da177e2005-04-16 15:20:36 -07001442xfs_itruncate_start(
1443 xfs_inode_t *ip,
1444 uint flags,
1445 xfs_fsize_t new_size)
1446{
1447 xfs_fsize_t last_byte;
1448 xfs_off_t toss_start;
1449 xfs_mount_t *mp;
Nathan Scott67fcaa72006-06-09 17:00:52 +10001450 bhv_vnode_t *vp;
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001451 int error = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001452
1453 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001454 ASSERT((new_size == 0) || (new_size <= ip->i_size));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001455 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1456 (flags == XFS_ITRUNC_MAYBE));
1457
1458 mp = ip->i_mount;
1459 vp = XFS_ITOV(ip);
Yingping Lu9fa80462006-03-22 12:44:35 +11001460
1461 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1462
Linus Torvalds1da177e2005-04-16 15:20:36 -07001463 /*
Nathan Scott67fcaa72006-06-09 17:00:52 +10001464 * Call toss_pages or flushinval_pages to get rid of pages
Linus Torvalds1da177e2005-04-16 15:20:36 -07001465 * overlapping the region being removed. We have to use
Nathan Scott67fcaa72006-06-09 17:00:52 +10001466 * the less efficient flushinval_pages in the case that the
Linus Torvalds1da177e2005-04-16 15:20:36 -07001467 * caller may not be able to finish the truncate without
1468 * dropping the inode's I/O lock. Make sure
1469 * to catch any pages brought in by buffers overlapping
1470 * the EOF by searching out beyond the isize by our
1471 * block size. We round new_size up to a block boundary
1472 * so that we don't toss things on the same block as
1473 * new_size but before it.
1474 *
Nathan Scott67fcaa72006-06-09 17:00:52 +10001475 * Before calling toss_page or flushinval_pages, make sure to
Linus Torvalds1da177e2005-04-16 15:20:36 -07001476 * call remapf() over the same region if the file is mapped.
1477 * This frees up mapped file references to the pages in the
Nathan Scott67fcaa72006-06-09 17:00:52 +10001478 * given range and for the flushinval_pages case it ensures
Linus Torvalds1da177e2005-04-16 15:20:36 -07001479 * that we get the latest mapped changes flushed out.
1480 */
1481 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1482 toss_start = XFS_FSB_TO_B(mp, toss_start);
1483 if (toss_start < 0) {
1484 /*
1485 * The place to start tossing is beyond our maximum
1486 * file size, so there is no way that the data extended
1487 * out there.
1488 */
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001489 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001490 }
1491 last_byte = xfs_file_last_byte(ip);
1492 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1493 last_byte);
1494 if (last_byte > toss_start) {
1495 if (flags & XFS_ITRUNC_DEFINITE) {
Nathan Scott67fcaa72006-06-09 17:00:52 +10001496 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001497 } else {
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001498 error = bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001499 }
1500 }
1501
1502#ifdef DEBUG
1503 if (new_size == 0) {
1504 ASSERT(VN_CACHED(vp) == 0);
1505 }
1506#endif
Lachlan McIlroyd3cf2092007-05-08 13:49:27 +10001507 return error;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001508}
1509
1510/*
1511 * Shrink the file to the given new_size. The new
1512 * size must be smaller than the current size.
1513 * This will free up the underlying blocks
1514 * in the removed range after a call to xfs_itruncate_start()
1515 * or xfs_atruncate_start().
1516 *
1517 * The transaction passed to this routine must have made
1518 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1519 * This routine may commit the given transaction and
1520 * start new ones, so make sure everything involved in
1521 * the transaction is tidy before calling here.
1522 * Some transaction will be returned to the caller to be
1523 * committed. The incoming transaction must already include
1524 * the inode, and both inode locks must be held exclusively.
1525 * The inode must also be "held" within the transaction. On
1526 * return the inode will be "held" within the returned transaction.
1527 * This routine does NOT require any disk space to be reserved
1528 * for it within the transaction.
1529 *
1530 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1531 * and it indicates the fork which is to be truncated. For the
1532 * attribute fork we only support truncation to size 0.
1533 *
1534 * We use the sync parameter to indicate whether or not the first
1535 * transaction we perform might have to be synchronous. For the attr fork,
1536 * it needs to be so if the unlink of the inode is not yet known to be
1537 * permanent in the log. This keeps us from freeing and reusing the
1538 * blocks of the attribute fork before the unlink of the inode becomes
1539 * permanent.
1540 *
1541 * For the data fork, we normally have to run synchronously if we're
1542 * being called out of the inactive path or we're being called
1543 * out of the create path where we're truncating an existing file.
1544 * Either way, the truncate needs to be sync so blocks don't reappear
1545 * in the file with altered data in case of a crash. wsync filesystems
1546 * can run the first case async because anything that shrinks the inode
1547 * has to run sync so by the time we're called here from inactive, the
1548 * inode size is permanently set to 0.
1549 *
1550 * Calls from the truncate path always need to be sync unless we're
1551 * in a wsync filesystem and the file has already been unlinked.
1552 *
1553 * The caller is responsible for correctly setting the sync parameter.
1554 * It gets too hard for us to guess here which path we're being called
1555 * out of just based on inode state.
1556 */
1557int
1558xfs_itruncate_finish(
1559 xfs_trans_t **tp,
1560 xfs_inode_t *ip,
1561 xfs_fsize_t new_size,
1562 int fork,
1563 int sync)
1564{
1565 xfs_fsblock_t first_block;
1566 xfs_fileoff_t first_unmap_block;
1567 xfs_fileoff_t last_block;
1568 xfs_filblks_t unmap_len=0;
1569 xfs_mount_t *mp;
1570 xfs_trans_t *ntp;
1571 int done;
1572 int committed;
1573 xfs_bmap_free_t free_list;
1574 int error;
1575
1576 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1577 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001578 ASSERT((new_size == 0) || (new_size <= ip->i_size));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001579 ASSERT(*tp != NULL);
1580 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1581 ASSERT(ip->i_transp == *tp);
1582 ASSERT(ip->i_itemp != NULL);
1583 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1584
1585
1586 ntp = *tp;
1587 mp = (ntp)->t_mountp;
1588 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1589
1590 /*
1591 * We only support truncating the entire attribute fork.
1592 */
1593 if (fork == XFS_ATTR_FORK) {
1594 new_size = 0LL;
1595 }
1596 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1597 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1598 /*
1599 * The first thing we do is set the size to new_size permanently
1600 * on disk. This way we don't have to worry about anyone ever
1601 * being able to look at the data being freed even in the face
1602 * of a crash. What we're getting around here is the case where
1603 * we free a block, it is allocated to another file, it is written
1604 * to, and then we crash. If the new data gets written to the
1605 * file but the log buffers containing the free and reallocation
1606 * don't, then we'd end up with garbage in the blocks being freed.
1607 * As long as we make the new_size permanent before actually
1608 * freeing any blocks it doesn't matter if they get writtten to.
1609 *
1610 * The callers must signal into us whether or not the size
1611 * setting here must be synchronous. There are a few cases
1612 * where it doesn't have to be synchronous. Those cases
1613 * occur if the file is unlinked and we know the unlink is
1614 * permanent or if the blocks being truncated are guaranteed
1615 * to be beyond the inode eof (regardless of the link count)
1616 * and the eof value is permanent. Both of these cases occur
1617 * only on wsync-mounted filesystems. In those cases, we're
1618 * guaranteed that no user will ever see the data in the blocks
1619 * that are being truncated so the truncate can run async.
1620 * In the free beyond eof case, the file may wind up with
1621 * more blocks allocated to it than it needs if we crash
1622 * and that won't get fixed until the next time the file
1623 * is re-opened and closed but that's ok as that shouldn't
1624 * be too many blocks.
1625 *
1626 * However, we can't just make all wsync xactions run async
1627 * because there's one call out of the create path that needs
1628 * to run sync where it's truncating an existing file to size
1629 * 0 whose size is > 0.
1630 *
1631 * It's probably possible to come up with a test in this
1632 * routine that would correctly distinguish all the above
1633 * cases from the values of the function parameters and the
1634 * inode state but for sanity's sake, I've decided to let the
1635 * layers above just tell us. It's simpler to correctly figure
1636 * out in the layer above exactly under what conditions we
1637 * can run async and I think it's easier for others read and
1638 * follow the logic in case something has to be changed.
1639 * cscope is your friend -- rcc.
1640 *
1641 * The attribute fork is much simpler.
1642 *
1643 * For the attribute fork we allow the caller to tell us whether
1644 * the unlink of the inode that led to this call is yet permanent
1645 * in the on disk log. If it is not and we will be freeing extents
1646 * in this inode then we make the first transaction synchronous
1647 * to make sure that the unlink is permanent by the time we free
1648 * the blocks.
1649 */
1650 if (fork == XFS_DATA_FORK) {
1651 if (ip->i_d.di_nextents > 0) {
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001652 /*
1653 * If we are not changing the file size then do
1654 * not update the on-disk file size - we may be
1655 * called from xfs_inactive_free_eofblocks(). If we
1656 * update the on-disk file size and then the system
1657 * crashes before the contents of the file are
1658 * flushed to disk then the files may be full of
1659 * holes (ie NULL files bug).
1660 */
1661 if (ip->i_size != new_size) {
1662 ip->i_d.di_size = new_size;
1663 ip->i_size = new_size;
1664 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1665 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001666 }
1667 } else if (sync) {
1668 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1669 if (ip->i_d.di_anextents > 0)
1670 xfs_trans_set_sync(ntp);
1671 }
1672 ASSERT(fork == XFS_DATA_FORK ||
1673 (fork == XFS_ATTR_FORK &&
1674 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1675 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1676
1677 /*
1678 * Since it is possible for space to become allocated beyond
1679 * the end of the file (in a crash where the space is allocated
1680 * but the inode size is not yet updated), simply remove any
1681 * blocks which show up between the new EOF and the maximum
1682 * possible file size. If the first block to be removed is
1683 * beyond the maximum file size (ie it is the same as last_block),
1684 * then there is nothing to do.
1685 */
1686 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1687 ASSERT(first_unmap_block <= last_block);
1688 done = 0;
1689 if (last_block == first_unmap_block) {
1690 done = 1;
1691 } else {
1692 unmap_len = last_block - first_unmap_block + 1;
1693 }
1694 while (!done) {
1695 /*
1696 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1697 * will tell us whether it freed the entire range or
1698 * not. If this is a synchronous mount (wsync),
1699 * then we can tell bunmapi to keep all the
1700 * transactions asynchronous since the unlink
1701 * transaction that made this inode inactive has
1702 * already hit the disk. There's no danger of
1703 * the freed blocks being reused, there being a
1704 * crash, and the reused blocks suddenly reappearing
1705 * in this file with garbage in them once recovery
1706 * runs.
1707 */
1708 XFS_BMAP_INIT(&free_list, &first_block);
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001709 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1710 first_unmap_block, unmap_len,
Linus Torvalds1da177e2005-04-16 15:20:36 -07001711 XFS_BMAPI_AFLAG(fork) |
1712 (sync ? 0 : XFS_BMAPI_ASYNC),
1713 XFS_ITRUNC_MAX_EXTENTS,
Olaf Weber3e57ecf2006-06-09 14:48:12 +10001714 &first_block, &free_list,
1715 NULL, &done);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001716 if (error) {
1717 /*
1718 * If the bunmapi call encounters an error,
1719 * return to the caller where the transaction
1720 * can be properly aborted. We just need to
1721 * make sure we're not holding any resources
1722 * that we were not when we came in.
1723 */
1724 xfs_bmap_cancel(&free_list);
1725 return error;
1726 }
1727
1728 /*
1729 * Duplicate the transaction that has the permanent
1730 * reservation and commit the old transaction.
1731 */
Eric Sandeenf7c99b62007-02-10 18:37:16 +11001732 error = xfs_bmap_finish(tp, &free_list, &committed);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733 ntp = *tp;
1734 if (error) {
1735 /*
1736 * If the bmap finish call encounters an error,
1737 * return to the caller where the transaction
1738 * can be properly aborted. We just need to
1739 * make sure we're not holding any resources
1740 * that we were not when we came in.
1741 *
1742 * Aborting from this point might lose some
1743 * blocks in the file system, but oh well.
1744 */
1745 xfs_bmap_cancel(&free_list);
1746 if (committed) {
1747 /*
1748 * If the passed in transaction committed
1749 * in xfs_bmap_finish(), then we want to
1750 * add the inode to this one before returning.
1751 * This keeps things simple for the higher
1752 * level code, because it always knows that
1753 * the inode is locked and held in the
1754 * transaction that returns to it whether
1755 * errors occur or not. We don't mark the
1756 * inode dirty so that this transaction can
1757 * be easily aborted if possible.
1758 */
1759 xfs_trans_ijoin(ntp, ip,
1760 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1761 xfs_trans_ihold(ntp, ip);
1762 }
1763 return error;
1764 }
1765
1766 if (committed) {
1767 /*
1768 * The first xact was committed,
1769 * so add the inode to the new one.
1770 * Mark it dirty so it will be logged
1771 * and moved forward in the log as
1772 * part of every commit.
1773 */
1774 xfs_trans_ijoin(ntp, ip,
1775 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1776 xfs_trans_ihold(ntp, ip);
1777 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1778 }
1779 ntp = xfs_trans_dup(ntp);
Eric Sandeen1c72bf92007-05-08 13:48:42 +10001780 (void) xfs_trans_commit(*tp, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001781 *tp = ntp;
1782 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1783 XFS_TRANS_PERM_LOG_RES,
1784 XFS_ITRUNCATE_LOG_COUNT);
1785 /*
1786 * Add the inode being truncated to the next chained
1787 * transaction.
1788 */
1789 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1790 xfs_trans_ihold(ntp, ip);
1791 if (error)
1792 return (error);
1793 }
1794 /*
1795 * Only update the size in the case of the data fork, but
1796 * always re-log the inode so that our permanent transaction
1797 * can keep on rolling it forward in the log.
1798 */
1799 if (fork == XFS_DATA_FORK) {
1800 xfs_isize_check(mp, ip, new_size);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001801 /*
1802 * If we are not changing the file size then do
1803 * not update the on-disk file size - we may be
1804 * called from xfs_inactive_free_eofblocks(). If we
1805 * update the on-disk file size and then the system
1806 * crashes before the contents of the file are
1807 * flushed to disk then the files may be full of
1808 * holes (ie NULL files bug).
1809 */
1810 if (ip->i_size != new_size) {
1811 ip->i_d.di_size = new_size;
1812 ip->i_size = new_size;
1813 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001814 }
1815 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1816 ASSERT((new_size != 0) ||
1817 (fork == XFS_ATTR_FORK) ||
1818 (ip->i_delayed_blks == 0));
1819 ASSERT((new_size != 0) ||
1820 (fork == XFS_ATTR_FORK) ||
1821 (ip->i_d.di_nextents == 0));
1822 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1823 return 0;
1824}
1825
1826
1827/*
1828 * xfs_igrow_start
1829 *
1830 * Do the first part of growing a file: zero any data in the last
1831 * block that is beyond the old EOF. We need to do this before
1832 * the inode is joined to the transaction to modify the i_size.
1833 * That way we can drop the inode lock and call into the buffer
1834 * cache to get the buffer mapping the EOF.
1835 */
1836int
1837xfs_igrow_start(
1838 xfs_inode_t *ip,
1839 xfs_fsize_t new_size,
1840 cred_t *credp)
1841{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001842 int error;
1843
1844 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1845 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001846 ASSERT(new_size > ip->i_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001847
Linus Torvalds1da177e2005-04-16 15:20:36 -07001848 /*
1849 * Zero any pages that may have been created by
1850 * xfs_write_file() beyond the end of the file
1851 * and any blocks between the old and new file sizes.
1852 */
Eric Sandeen24ee8082006-01-11 15:34:32 +11001853 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001854 ip->i_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001855 return error;
1856}
1857
1858/*
1859 * xfs_igrow_finish
1860 *
1861 * This routine is called to extend the size of a file.
1862 * The inode must have both the iolock and the ilock locked
1863 * for update and it must be a part of the current transaction.
1864 * The xfs_igrow_start() function must have been called previously.
1865 * If the change_flag is not zero, the inode change timestamp will
1866 * be updated.
1867 */
1868void
1869xfs_igrow_finish(
1870 xfs_trans_t *tp,
1871 xfs_inode_t *ip,
1872 xfs_fsize_t new_size,
1873 int change_flag)
1874{
1875 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1876 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1877 ASSERT(ip->i_transp == tp);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001878 ASSERT(new_size > ip->i_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001879
1880 /*
1881 * Update the file size. Update the inode change timestamp
1882 * if change_flag set.
1883 */
1884 ip->i_d.di_size = new_size;
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10001885 ip->i_size = new_size;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001886 if (change_flag)
1887 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1888 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1889
1890}
1891
1892
1893/*
1894 * This is called when the inode's link count goes to 0.
1895 * We place the on-disk inode on a list in the AGI. It
1896 * will be pulled from this list when the inode is freed.
1897 */
1898int
1899xfs_iunlink(
1900 xfs_trans_t *tp,
1901 xfs_inode_t *ip)
1902{
1903 xfs_mount_t *mp;
1904 xfs_agi_t *agi;
1905 xfs_dinode_t *dip;
1906 xfs_buf_t *agibp;
1907 xfs_buf_t *ibp;
1908 xfs_agnumber_t agno;
1909 xfs_daddr_t agdaddr;
1910 xfs_agino_t agino;
1911 short bucket_index;
1912 int offset;
1913 int error;
1914 int agi_ok;
1915
1916 ASSERT(ip->i_d.di_nlink == 0);
1917 ASSERT(ip->i_d.di_mode != 0);
1918 ASSERT(ip->i_transp == tp);
1919
1920 mp = tp->t_mountp;
1921
1922 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1923 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1924
1925 /*
1926 * Get the agi buffer first. It ensures lock ordering
1927 * on the list.
1928 */
1929 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1930 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1931 if (error) {
1932 return error;
1933 }
1934 /*
1935 * Validate the magic number of the agi block.
1936 */
1937 agi = XFS_BUF_TO_AGI(agibp);
1938 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11001939 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1940 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07001941 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1942 XFS_RANDOM_IUNLINK))) {
1943 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1944 xfs_trans_brelse(tp, agibp);
1945 return XFS_ERROR(EFSCORRUPTED);
1946 }
1947 /*
1948 * Get the index into the agi hash table for the
1949 * list this inode will go on.
1950 */
1951 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1952 ASSERT(agino != 0);
1953 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1954 ASSERT(agi->agi_unlinked[bucket_index]);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001955 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001956
Christoph Hellwig16259e72005-11-02 15:11:25 +11001957 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001958 /*
1959 * There is already another inode in the bucket we need
1960 * to add ourselves to. Add us at the front of the list.
1961 * Here we put the head pointer into our next pointer,
1962 * and then we fall through to point the head at us.
1963 */
Nathan Scottb12dd342006-03-17 17:26:04 +11001964 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001965 if (error) {
1966 return error;
1967 }
1968 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1969 ASSERT(dip->di_next_unlinked);
1970 /* both on-disk, don't endian flip twice */
1971 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1972 offset = ip->i_boffset +
1973 offsetof(xfs_dinode_t, di_next_unlinked);
1974 xfs_trans_inode_buf(tp, ibp);
1975 xfs_trans_log_buf(tp, ibp, offset,
1976 (offset + sizeof(xfs_agino_t) - 1));
1977 xfs_inobp_check(mp, ibp);
1978 }
1979
1980 /*
1981 * Point the bucket head pointer at the inode being inserted.
1982 */
1983 ASSERT(agino != 0);
Christoph Hellwig16259e72005-11-02 15:11:25 +11001984 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001985 offset = offsetof(xfs_agi_t, agi_unlinked) +
1986 (sizeof(xfs_agino_t) * bucket_index);
1987 xfs_trans_log_buf(tp, agibp, offset,
1988 (offset + sizeof(xfs_agino_t) - 1));
1989 return 0;
1990}
1991
1992/*
1993 * Pull the on-disk inode from the AGI unlinked list.
1994 */
1995STATIC int
1996xfs_iunlink_remove(
1997 xfs_trans_t *tp,
1998 xfs_inode_t *ip)
1999{
2000 xfs_ino_t next_ino;
2001 xfs_mount_t *mp;
2002 xfs_agi_t *agi;
2003 xfs_dinode_t *dip;
2004 xfs_buf_t *agibp;
2005 xfs_buf_t *ibp;
2006 xfs_agnumber_t agno;
2007 xfs_daddr_t agdaddr;
2008 xfs_agino_t agino;
2009 xfs_agino_t next_agino;
2010 xfs_buf_t *last_ibp;
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10002011 xfs_dinode_t *last_dip = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002012 short bucket_index;
Nathan Scott6fdf8cc2006-06-28 10:13:52 +10002013 int offset, last_offset = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002014 int error;
2015 int agi_ok;
2016
2017 /*
2018 * First pull the on-disk inode from the AGI unlinked list.
2019 */
2020 mp = tp->t_mountp;
2021
2022 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2023 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2024
2025 /*
2026 * Get the agi buffer first. It ensures lock ordering
2027 * on the list.
2028 */
2029 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2030 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2031 if (error) {
2032 cmn_err(CE_WARN,
2033 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2034 error, mp->m_fsname);
2035 return error;
2036 }
2037 /*
2038 * Validate the magic number of the agi block.
2039 */
2040 agi = XFS_BUF_TO_AGI(agibp);
2041 agi_ok =
Christoph Hellwig16259e72005-11-02 15:11:25 +11002042 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2043 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002044 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2045 XFS_RANDOM_IUNLINK_REMOVE))) {
2046 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2047 mp, agi);
2048 xfs_trans_brelse(tp, agibp);
2049 cmn_err(CE_WARN,
2050 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2051 mp->m_fsname);
2052 return XFS_ERROR(EFSCORRUPTED);
2053 }
2054 /*
2055 * Get the index into the agi hash table for the
2056 * list this inode will go on.
2057 */
2058 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2059 ASSERT(agino != 0);
2060 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
Christoph Hellwig16259e72005-11-02 15:11:25 +11002061 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002062 ASSERT(agi->agi_unlinked[bucket_index]);
2063
Christoph Hellwig16259e72005-11-02 15:11:25 +11002064 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002065 /*
2066 * We're at the head of the list. Get the inode's
2067 * on-disk buffer to see if there is anyone after us
2068 * on the list. Only modify our next pointer if it
2069 * is not already NULLAGINO. This saves us the overhead
2070 * of dealing with the buffer when there is no need to
2071 * change it.
2072 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002073 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002074 if (error) {
2075 cmn_err(CE_WARN,
2076 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2077 error, mp->m_fsname);
2078 return error;
2079 }
2080 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2081 ASSERT(next_agino != 0);
2082 if (next_agino != NULLAGINO) {
2083 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2084 offset = ip->i_boffset +
2085 offsetof(xfs_dinode_t, di_next_unlinked);
2086 xfs_trans_inode_buf(tp, ibp);
2087 xfs_trans_log_buf(tp, ibp, offset,
2088 (offset + sizeof(xfs_agino_t) - 1));
2089 xfs_inobp_check(mp, ibp);
2090 } else {
2091 xfs_trans_brelse(tp, ibp);
2092 }
2093 /*
2094 * Point the bucket head pointer at the next inode.
2095 */
2096 ASSERT(next_agino != 0);
2097 ASSERT(next_agino != agino);
Christoph Hellwig16259e72005-11-02 15:11:25 +11002098 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002099 offset = offsetof(xfs_agi_t, agi_unlinked) +
2100 (sizeof(xfs_agino_t) * bucket_index);
2101 xfs_trans_log_buf(tp, agibp, offset,
2102 (offset + sizeof(xfs_agino_t) - 1));
2103 } else {
2104 /*
2105 * We need to search the list for the inode being freed.
2106 */
Christoph Hellwig16259e72005-11-02 15:11:25 +11002107 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002108 last_ibp = NULL;
2109 while (next_agino != agino) {
2110 /*
2111 * If the last inode wasn't the one pointing to
2112 * us, then release its buffer since we're not
2113 * going to do anything with it.
2114 */
2115 if (last_ibp != NULL) {
2116 xfs_trans_brelse(tp, last_ibp);
2117 }
2118 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2119 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2120 &last_ibp, &last_offset);
2121 if (error) {
2122 cmn_err(CE_WARN,
2123 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2124 error, mp->m_fsname);
2125 return error;
2126 }
2127 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2128 ASSERT(next_agino != NULLAGINO);
2129 ASSERT(next_agino != 0);
2130 }
2131 /*
2132 * Now last_ibp points to the buffer previous to us on
2133 * the unlinked list. Pull us from the list.
2134 */
Nathan Scottb12dd342006-03-17 17:26:04 +11002135 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002136 if (error) {
2137 cmn_err(CE_WARN,
2138 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2139 error, mp->m_fsname);
2140 return error;
2141 }
2142 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2143 ASSERT(next_agino != 0);
2144 ASSERT(next_agino != agino);
2145 if (next_agino != NULLAGINO) {
2146 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2147 offset = ip->i_boffset +
2148 offsetof(xfs_dinode_t, di_next_unlinked);
2149 xfs_trans_inode_buf(tp, ibp);
2150 xfs_trans_log_buf(tp, ibp, offset,
2151 (offset + sizeof(xfs_agino_t) - 1));
2152 xfs_inobp_check(mp, ibp);
2153 } else {
2154 xfs_trans_brelse(tp, ibp);
2155 }
2156 /*
2157 * Point the previous inode on the list to the next inode.
2158 */
2159 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2160 ASSERT(next_agino != 0);
2161 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2162 xfs_trans_inode_buf(tp, last_ibp);
2163 xfs_trans_log_buf(tp, last_ibp, offset,
2164 (offset + sizeof(xfs_agino_t) - 1));
2165 xfs_inobp_check(mp, last_ibp);
2166 }
2167 return 0;
2168}
2169
David Chinner7989cb82007-02-10 18:34:56 +11002170STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002171{
2172 return (((ip->i_itemp == NULL) ||
2173 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2174 (ip->i_update_core == 0));
2175}
2176
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002177STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002178xfs_ifree_cluster(
2179 xfs_inode_t *free_ip,
2180 xfs_trans_t *tp,
2181 xfs_ino_t inum)
2182{
2183 xfs_mount_t *mp = free_ip->i_mount;
2184 int blks_per_cluster;
2185 int nbufs;
2186 int ninodes;
2187 int i, j, found, pre_flushed;
2188 xfs_daddr_t blkno;
2189 xfs_buf_t *bp;
2190 xfs_ihash_t *ih;
2191 xfs_inode_t *ip, **ip_found;
2192 xfs_inode_log_item_t *iip;
2193 xfs_log_item_t *lip;
2194 SPLDECL(s);
2195
2196 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2197 blks_per_cluster = 1;
2198 ninodes = mp->m_sb.sb_inopblock;
2199 nbufs = XFS_IALLOC_BLOCKS(mp);
2200 } else {
2201 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2202 mp->m_sb.sb_blocksize;
2203 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2204 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2205 }
2206
2207 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2208
2209 for (j = 0; j < nbufs; j++, inum += ninodes) {
2210 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211 XFS_INO_TO_AGBNO(mp, inum));
2212
2213
2214 /*
2215 * Look for each inode in memory and attempt to lock it,
2216 * we can be racing with flush and tail pushing here.
2217 * any inode we get the locks on, add to an array of
2218 * inode items to process later.
2219 *
2220 * The get the buffer lock, we could beat a flush
2221 * or tail pushing thread to the lock here, in which
2222 * case they will go looking for the inode buffer
2223 * and fail, we need some other form of interlock
2224 * here.
2225 */
2226 found = 0;
2227 for (i = 0; i < ninodes; i++) {
2228 ih = XFS_IHASH(mp, inum + i);
2229 read_lock(&ih->ih_lock);
2230 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2231 if (ip->i_ino == inum + i)
2232 break;
2233 }
2234
2235 /* Inode not in memory or we found it already,
2236 * nothing to do
2237 */
David Chinner7a18c382006-11-11 18:04:54 +11002238 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002239 read_unlock(&ih->ih_lock);
2240 continue;
2241 }
2242
2243 if (xfs_inode_clean(ip)) {
2244 read_unlock(&ih->ih_lock);
2245 continue;
2246 }
2247
2248 /* If we can get the locks then add it to the
2249 * list, otherwise by the time we get the bp lock
2250 * below it will already be attached to the
2251 * inode buffer.
2252 */
2253
2254 /* This inode will already be locked - by us, lets
2255 * keep it that way.
2256 */
2257
2258 if (ip == free_ip) {
2259 if (xfs_iflock_nowait(ip)) {
David Chinner7a18c382006-11-11 18:04:54 +11002260 xfs_iflags_set(ip, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002261 if (xfs_inode_clean(ip)) {
2262 xfs_ifunlock(ip);
2263 } else {
2264 ip_found[found++] = ip;
2265 }
2266 }
2267 read_unlock(&ih->ih_lock);
2268 continue;
2269 }
2270
2271 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2272 if (xfs_iflock_nowait(ip)) {
David Chinner7a18c382006-11-11 18:04:54 +11002273 xfs_iflags_set(ip, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002274
2275 if (xfs_inode_clean(ip)) {
2276 xfs_ifunlock(ip);
2277 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2278 } else {
2279 ip_found[found++] = ip;
2280 }
2281 } else {
2282 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2283 }
2284 }
2285
2286 read_unlock(&ih->ih_lock);
2287 }
2288
2289 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2290 mp->m_bsize * blks_per_cluster,
2291 XFS_BUF_LOCK);
2292
2293 pre_flushed = 0;
2294 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2295 while (lip) {
2296 if (lip->li_type == XFS_LI_INODE) {
2297 iip = (xfs_inode_log_item_t *)lip;
2298 ASSERT(iip->ili_logged == 1);
2299 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2300 AIL_LOCK(mp,s);
2301 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2302 AIL_UNLOCK(mp, s);
David Chinnere5ffd2b2006-11-21 18:55:33 +11002303 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002304 pre_flushed++;
2305 }
2306 lip = lip->li_bio_list;
2307 }
2308
2309 for (i = 0; i < found; i++) {
2310 ip = ip_found[i];
2311 iip = ip->i_itemp;
2312
2313 if (!iip) {
2314 ip->i_update_core = 0;
2315 xfs_ifunlock(ip);
2316 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2317 continue;
2318 }
2319
2320 iip->ili_last_fields = iip->ili_format.ilf_fields;
2321 iip->ili_format.ilf_fields = 0;
2322 iip->ili_logged = 1;
2323 AIL_LOCK(mp,s);
2324 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2325 AIL_UNLOCK(mp, s);
2326
2327 xfs_buf_attach_iodone(bp,
2328 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2329 xfs_istale_done, (xfs_log_item_t *)iip);
2330 if (ip != free_ip) {
2331 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2332 }
2333 }
2334
2335 if (found || pre_flushed)
2336 xfs_trans_stale_inode_buf(tp, bp);
2337 xfs_trans_binval(tp, bp);
2338 }
2339
2340 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2341}
2342
2343/*
2344 * This is called to return an inode to the inode free list.
2345 * The inode should already be truncated to 0 length and have
2346 * no pages associated with it. This routine also assumes that
2347 * the inode is already a part of the transaction.
2348 *
2349 * The on-disk copy of the inode will have been added to the list
2350 * of unlinked inodes in the AGI. We need to remove the inode from
2351 * that list atomically with respect to freeing it here.
2352 */
2353int
2354xfs_ifree(
2355 xfs_trans_t *tp,
2356 xfs_inode_t *ip,
2357 xfs_bmap_free_t *flist)
2358{
2359 int error;
2360 int delete;
2361 xfs_ino_t first_ino;
2362
2363 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2364 ASSERT(ip->i_transp == tp);
2365 ASSERT(ip->i_d.di_nlink == 0);
2366 ASSERT(ip->i_d.di_nextents == 0);
2367 ASSERT(ip->i_d.di_anextents == 0);
Lachlan McIlroyba87ea62007-05-08 13:49:46 +10002368 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07002369 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2370 ASSERT(ip->i_d.di_nblocks == 0);
2371
2372 /*
2373 * Pull the on-disk inode from the AGI unlinked list.
2374 */
2375 error = xfs_iunlink_remove(tp, ip);
2376 if (error != 0) {
2377 return error;
2378 }
2379
2380 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2381 if (error != 0) {
2382 return error;
2383 }
2384 ip->i_d.di_mode = 0; /* mark incore inode as free */
2385 ip->i_d.di_flags = 0;
2386 ip->i_d.di_dmevmask = 0;
2387 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2388 ip->i_df.if_ext_max =
2389 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2390 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2391 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2392 /*
2393 * Bump the generation count so no one will be confused
2394 * by reincarnations of this inode.
2395 */
2396 ip->i_d.di_gen++;
2397 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2398
2399 if (delete) {
2400 xfs_ifree_cluster(ip, tp, first_ino);
2401 }
2402
2403 return 0;
2404}
2405
2406/*
2407 * Reallocate the space for if_broot based on the number of records
2408 * being added or deleted as indicated in rec_diff. Move the records
2409 * and pointers in if_broot to fit the new size. When shrinking this
2410 * will eliminate holes between the records and pointers created by
2411 * the caller. When growing this will create holes to be filled in
2412 * by the caller.
2413 *
2414 * The caller must not request to add more records than would fit in
2415 * the on-disk inode root. If the if_broot is currently NULL, then
2416 * if we adding records one will be allocated. The caller must also
2417 * not request that the number of records go below zero, although
2418 * it can go to zero.
2419 *
2420 * ip -- the inode whose if_broot area is changing
2421 * ext_diff -- the change in the number of records, positive or negative,
2422 * requested for the if_broot array.
2423 */
2424void
2425xfs_iroot_realloc(
2426 xfs_inode_t *ip,
2427 int rec_diff,
2428 int whichfork)
2429{
2430 int cur_max;
2431 xfs_ifork_t *ifp;
2432 xfs_bmbt_block_t *new_broot;
2433 int new_max;
2434 size_t new_size;
2435 char *np;
2436 char *op;
2437
2438 /*
2439 * Handle the degenerate case quietly.
2440 */
2441 if (rec_diff == 0) {
2442 return;
2443 }
2444
2445 ifp = XFS_IFORK_PTR(ip, whichfork);
2446 if (rec_diff > 0) {
2447 /*
2448 * If there wasn't any memory allocated before, just
2449 * allocate it now and get out.
2450 */
2451 if (ifp->if_broot_bytes == 0) {
2452 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2453 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2454 KM_SLEEP);
2455 ifp->if_broot_bytes = (int)new_size;
2456 return;
2457 }
2458
2459 /*
2460 * If there is already an existing if_broot, then we need
2461 * to realloc() it and shift the pointers to their new
2462 * location. The records don't change location because
2463 * they are kept butted up against the btree block header.
2464 */
2465 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2466 new_max = cur_max + rec_diff;
2467 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2468 ifp->if_broot = (xfs_bmbt_block_t *)
2469 kmem_realloc(ifp->if_broot,
2470 new_size,
2471 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2472 KM_SLEEP);
2473 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2474 ifp->if_broot_bytes);
2475 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2476 (int)new_size);
2477 ifp->if_broot_bytes = (int)new_size;
2478 ASSERT(ifp->if_broot_bytes <=
2479 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2480 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2481 return;
2482 }
2483
2484 /*
2485 * rec_diff is less than 0. In this case, we are shrinking the
2486 * if_broot buffer. It must already exist. If we go to zero
2487 * records, just get rid of the root and clear the status bit.
2488 */
2489 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2490 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2491 new_max = cur_max + rec_diff;
2492 ASSERT(new_max >= 0);
2493 if (new_max > 0)
2494 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2495 else
2496 new_size = 0;
2497 if (new_size > 0) {
2498 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2499 /*
2500 * First copy over the btree block header.
2501 */
2502 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2503 } else {
2504 new_broot = NULL;
2505 ifp->if_flags &= ~XFS_IFBROOT;
2506 }
2507
2508 /*
2509 * Only copy the records and pointers if there are any.
2510 */
2511 if (new_max > 0) {
2512 /*
2513 * First copy the records.
2514 */
2515 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2516 ifp->if_broot_bytes);
2517 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2518 (int)new_size);
2519 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2520
2521 /*
2522 * Then copy the pointers.
2523 */
2524 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2525 ifp->if_broot_bytes);
2526 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2527 (int)new_size);
2528 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2529 }
2530 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2531 ifp->if_broot = new_broot;
2532 ifp->if_broot_bytes = (int)new_size;
2533 ASSERT(ifp->if_broot_bytes <=
2534 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2535 return;
2536}
2537
2538
2539/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002540 * This is called when the amount of space needed for if_data
2541 * is increased or decreased. The change in size is indicated by
2542 * the number of bytes that need to be added or deleted in the
2543 * byte_diff parameter.
2544 *
2545 * If the amount of space needed has decreased below the size of the
2546 * inline buffer, then switch to using the inline buffer. Otherwise,
2547 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2548 * to what is needed.
2549 *
2550 * ip -- the inode whose if_data area is changing
2551 * byte_diff -- the change in the number of bytes, positive or negative,
2552 * requested for the if_data array.
2553 */
2554void
2555xfs_idata_realloc(
2556 xfs_inode_t *ip,
2557 int byte_diff,
2558 int whichfork)
2559{
2560 xfs_ifork_t *ifp;
2561 int new_size;
2562 int real_size;
2563
2564 if (byte_diff == 0) {
2565 return;
2566 }
2567
2568 ifp = XFS_IFORK_PTR(ip, whichfork);
2569 new_size = (int)ifp->if_bytes + byte_diff;
2570 ASSERT(new_size >= 0);
2571
2572 if (new_size == 0) {
2573 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2574 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2575 }
2576 ifp->if_u1.if_data = NULL;
2577 real_size = 0;
2578 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2579 /*
2580 * If the valid extents/data can fit in if_inline_ext/data,
2581 * copy them from the malloc'd vector and free it.
2582 */
2583 if (ifp->if_u1.if_data == NULL) {
2584 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2585 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2586 ASSERT(ifp->if_real_bytes != 0);
2587 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2588 new_size);
2589 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2590 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2591 }
2592 real_size = 0;
2593 } else {
2594 /*
2595 * Stuck with malloc/realloc.
2596 * For inline data, the underlying buffer must be
2597 * a multiple of 4 bytes in size so that it can be
2598 * logged and stay on word boundaries. We enforce
2599 * that here.
2600 */
2601 real_size = roundup(new_size, 4);
2602 if (ifp->if_u1.if_data == NULL) {
2603 ASSERT(ifp->if_real_bytes == 0);
2604 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2605 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2606 /*
2607 * Only do the realloc if the underlying size
2608 * is really changing.
2609 */
2610 if (ifp->if_real_bytes != real_size) {
2611 ifp->if_u1.if_data =
2612 kmem_realloc(ifp->if_u1.if_data,
2613 real_size,
2614 ifp->if_real_bytes,
2615 KM_SLEEP);
2616 }
2617 } else {
2618 ASSERT(ifp->if_real_bytes == 0);
2619 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2620 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2621 ifp->if_bytes);
2622 }
2623 }
2624 ifp->if_real_bytes = real_size;
2625 ifp->if_bytes = new_size;
2626 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2627}
2628
2629
2630
2631
2632/*
2633 * Map inode to disk block and offset.
2634 *
2635 * mp -- the mount point structure for the current file system
2636 * tp -- the current transaction
2637 * ino -- the inode number of the inode to be located
2638 * imap -- this structure is filled in with the information necessary
2639 * to retrieve the given inode from disk
2640 * flags -- flags to pass to xfs_dilocate indicating whether or not
2641 * lookups in the inode btree were OK or not
2642 */
2643int
2644xfs_imap(
2645 xfs_mount_t *mp,
2646 xfs_trans_t *tp,
2647 xfs_ino_t ino,
2648 xfs_imap_t *imap,
2649 uint flags)
2650{
2651 xfs_fsblock_t fsbno;
2652 int len;
2653 int off;
2654 int error;
2655
2656 fsbno = imap->im_blkno ?
2657 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2658 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2659 if (error != 0) {
2660 return error;
2661 }
2662 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2663 imap->im_len = XFS_FSB_TO_BB(mp, len);
2664 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2665 imap->im_ioffset = (ushort)off;
2666 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2667 return 0;
2668}
2669
2670void
2671xfs_idestroy_fork(
2672 xfs_inode_t *ip,
2673 int whichfork)
2674{
2675 xfs_ifork_t *ifp;
2676
2677 ifp = XFS_IFORK_PTR(ip, whichfork);
2678 if (ifp->if_broot != NULL) {
2679 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2680 ifp->if_broot = NULL;
2681 }
2682
2683 /*
2684 * If the format is local, then we can't have an extents
2685 * array so just look for an inline data array. If we're
2686 * not local then we may or may not have an extents list,
2687 * so check and free it up if we do.
2688 */
2689 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2690 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2691 (ifp->if_u1.if_data != NULL)) {
2692 ASSERT(ifp->if_real_bytes != 0);
2693 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2694 ifp->if_u1.if_data = NULL;
2695 ifp->if_real_bytes = 0;
2696 }
2697 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11002698 ((ifp->if_flags & XFS_IFEXTIREC) ||
2699 ((ifp->if_u1.if_extents != NULL) &&
2700 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002701 ASSERT(ifp->if_real_bytes != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002702 xfs_iext_destroy(ifp);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002703 }
2704 ASSERT(ifp->if_u1.if_extents == NULL ||
2705 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2706 ASSERT(ifp->if_real_bytes == 0);
2707 if (whichfork == XFS_ATTR_FORK) {
2708 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2709 ip->i_afp = NULL;
2710 }
2711}
2712
2713/*
2714 * This is called free all the memory associated with an inode.
2715 * It must free the inode itself and any buffers allocated for
2716 * if_extents/if_data and if_broot. It must also free the lock
2717 * associated with the inode.
2718 */
2719void
2720xfs_idestroy(
2721 xfs_inode_t *ip)
2722{
2723
2724 switch (ip->i_d.di_mode & S_IFMT) {
2725 case S_IFREG:
2726 case S_IFDIR:
2727 case S_IFLNK:
2728 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2729 break;
2730 }
2731 if (ip->i_afp)
2732 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2733 mrfree(&ip->i_lock);
2734 mrfree(&ip->i_iolock);
2735 freesema(&ip->i_flock);
2736#ifdef XFS_BMAP_TRACE
2737 ktrace_free(ip->i_xtrace);
2738#endif
2739#ifdef XFS_BMBT_TRACE
2740 ktrace_free(ip->i_btrace);
2741#endif
2742#ifdef XFS_RW_TRACE
2743 ktrace_free(ip->i_rwtrace);
2744#endif
2745#ifdef XFS_ILOCK_TRACE
2746 ktrace_free(ip->i_lock_trace);
2747#endif
2748#ifdef XFS_DIR2_TRACE
2749 ktrace_free(ip->i_dir_trace);
2750#endif
2751 if (ip->i_itemp) {
David Chinnerf74eaf52007-02-10 18:36:04 +11002752 /*
2753 * Only if we are shutting down the fs will we see an
2754 * inode still in the AIL. If it is there, we should remove
2755 * it to prevent a use-after-free from occurring.
2756 */
2757 xfs_mount_t *mp = ip->i_mount;
2758 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2759 int s;
2760
2761 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2762 XFS_FORCED_SHUTDOWN(ip->i_mount));
2763 if (lip->li_flags & XFS_LI_IN_AIL) {
2764 AIL_LOCK(mp, s);
2765 if (lip->li_flags & XFS_LI_IN_AIL)
2766 xfs_trans_delete_ail(mp, lip, s);
2767 else
2768 AIL_UNLOCK(mp, s);
2769 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002770 xfs_inode_item_destroy(ip);
2771 }
2772 kmem_zone_free(xfs_inode_zone, ip);
2773}
2774
2775
2776/*
2777 * Increment the pin count of the given buffer.
2778 * This value is protected by ipinlock spinlock in the mount structure.
2779 */
2780void
2781xfs_ipin(
2782 xfs_inode_t *ip)
2783{
2784 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2785
2786 atomic_inc(&ip->i_pincount);
2787}
2788
2789/*
2790 * Decrement the pin count of the given inode, and wake up
2791 * anyone in xfs_iwait_unpin() if the count goes to 0. The
Nathan Scottc41564b2006-03-29 08:55:14 +10002792 * inode must have been previously pinned with a call to xfs_ipin().
Linus Torvalds1da177e2005-04-16 15:20:36 -07002793 */
2794void
2795xfs_iunpin(
2796 xfs_inode_t *ip)
2797{
2798 ASSERT(atomic_read(&ip->i_pincount) > 0);
2799
David Chinner4c606582006-11-11 18:05:00 +11002800 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
David Chinnerf273ab82006-09-28 11:06:03 +10002801
David Chinner4c606582006-11-11 18:05:00 +11002802 /*
2803 * If the inode is currently being reclaimed, the link between
2804 * the bhv_vnode and the xfs_inode will be broken after the
2805 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2806 * set, then we can move forward and mark the linux inode dirty
2807 * knowing that it is still valid as it won't freed until after
2808 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2809 * i_flags_lock is used to synchronise the setting of the
2810 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2811 * can execute atomically w.r.t to reclaim by holding this lock
2812 * here.
2813 *
2814 * However, we still need to issue the unpin wakeup call as the
2815 * inode reclaim may be blocked waiting for the inode to become
2816 * unpinned.
2817 */
2818
David Chinner7a18c382006-11-11 18:04:54 +11002819 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
Nathan Scott67fcaa72006-06-09 17:00:52 +10002820 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
David Chinner4c606582006-11-11 18:05:00 +11002821 struct inode *inode = NULL;
2822
2823 BUG_ON(vp == NULL);
2824 inode = vn_to_inode(vp);
2825 BUG_ON(inode->i_state & I_CLEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002826
David Chinner58829e42006-04-11 15:11:20 +10002827 /* make sync come back and flush this inode */
David Chinner4c606582006-11-11 18:05:00 +11002828 if (!(inode->i_state & (I_NEW|I_FREEING)))
2829 mark_inode_dirty_sync(inode);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002830 }
David Chinnerf273ab82006-09-28 11:06:03 +10002831 spin_unlock(&ip->i_flags_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002832 wake_up(&ip->i_ipin_wait);
2833 }
2834}
2835
2836/*
2837 * This is called to wait for the given inode to be unpinned.
2838 * It will sleep until this happens. The caller must have the
2839 * inode locked in at least shared mode so that the buffer cannot
2840 * be subsequently pinned once someone is waiting for it to be
2841 * unpinned.
2842 */
Christoph Hellwigba0f32d2005-06-21 15:36:52 +10002843STATIC void
Linus Torvalds1da177e2005-04-16 15:20:36 -07002844xfs_iunpin_wait(
2845 xfs_inode_t *ip)
2846{
2847 xfs_inode_log_item_t *iip;
2848 xfs_lsn_t lsn;
2849
2850 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2851
2852 if (atomic_read(&ip->i_pincount) == 0) {
2853 return;
2854 }
2855
2856 iip = ip->i_itemp;
2857 if (iip && iip->ili_last_lsn) {
2858 lsn = iip->ili_last_lsn;
2859 } else {
2860 lsn = (xfs_lsn_t)0;
2861 }
2862
2863 /*
2864 * Give the log a push so we don't wait here too long.
2865 */
2866 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2867
2868 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2869}
2870
2871
2872/*
2873 * xfs_iextents_copy()
2874 *
2875 * This is called to copy the REAL extents (as opposed to the delayed
2876 * allocation extents) from the inode into the given buffer. It
2877 * returns the number of bytes copied into the buffer.
2878 *
2879 * If there are no delayed allocation extents, then we can just
2880 * memcpy() the extents into the buffer. Otherwise, we need to
2881 * examine each extent in turn and skip those which are delayed.
2882 */
2883int
2884xfs_iextents_copy(
2885 xfs_inode_t *ip,
2886 xfs_bmbt_rec_t *buffer,
2887 int whichfork)
2888{
2889 int copied;
2890 xfs_bmbt_rec_t *dest_ep;
2891 xfs_bmbt_rec_t *ep;
2892#ifdef XFS_BMAP_TRACE
2893 static char fname[] = "xfs_iextents_copy";
2894#endif
2895 int i;
2896 xfs_ifork_t *ifp;
2897 int nrecs;
2898 xfs_fsblock_t start_block;
2899
2900 ifp = XFS_IFORK_PTR(ip, whichfork);
2901 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2902 ASSERT(ifp->if_bytes > 0);
2903
2904 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2905 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2906 ASSERT(nrecs > 0);
2907
2908 /*
2909 * There are some delayed allocation extents in the
2910 * inode, so copy the extents one at a time and skip
2911 * the delayed ones. There must be at least one
2912 * non-delayed extent.
2913 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002914 dest_ep = buffer;
2915 copied = 0;
2916 for (i = 0; i < nrecs; i++) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002917 ep = xfs_iext_get_ext(ifp, i);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002918 start_block = xfs_bmbt_get_startblock(ep);
2919 if (ISNULLSTARTBLOCK(start_block)) {
2920 /*
2921 * It's a delayed allocation extent, so skip it.
2922 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002923 continue;
2924 }
2925
2926 /* Translate to on disk format */
2927 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2928 (__uint64_t*)&dest_ep->l0);
2929 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2930 (__uint64_t*)&dest_ep->l1);
2931 dest_ep++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002932 copied++;
2933 }
2934 ASSERT(copied != 0);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002935 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07002936
2937 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2938}
2939
2940/*
2941 * Each of the following cases stores data into the same region
2942 * of the on-disk inode, so only one of them can be valid at
2943 * any given time. While it is possible to have conflicting formats
2944 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2945 * in EXTENTS format, this can only happen when the fork has
2946 * changed formats after being modified but before being flushed.
2947 * In these cases, the format always takes precedence, because the
2948 * format indicates the current state of the fork.
2949 */
2950/*ARGSUSED*/
2951STATIC int
2952xfs_iflush_fork(
2953 xfs_inode_t *ip,
2954 xfs_dinode_t *dip,
2955 xfs_inode_log_item_t *iip,
2956 int whichfork,
2957 xfs_buf_t *bp)
2958{
2959 char *cp;
2960 xfs_ifork_t *ifp;
2961 xfs_mount_t *mp;
2962#ifdef XFS_TRANS_DEBUG
2963 int first;
2964#endif
2965 static const short brootflag[2] =
2966 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2967 static const short dataflag[2] =
2968 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2969 static const short extflag[2] =
2970 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2971
2972 if (iip == NULL)
2973 return 0;
2974 ifp = XFS_IFORK_PTR(ip, whichfork);
2975 /*
2976 * This can happen if we gave up in iformat in an error path,
2977 * for the attribute fork.
2978 */
2979 if (ifp == NULL) {
2980 ASSERT(whichfork == XFS_ATTR_FORK);
2981 return 0;
2982 }
2983 cp = XFS_DFORK_PTR(dip, whichfork);
2984 mp = ip->i_mount;
2985 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2986 case XFS_DINODE_FMT_LOCAL:
2987 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2988 (ifp->if_bytes > 0)) {
2989 ASSERT(ifp->if_u1.if_data != NULL);
2990 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2991 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2992 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002993 break;
2994
2995 case XFS_DINODE_FMT_EXTENTS:
2996 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2997 !(iip->ili_format.ilf_fields & extflag[whichfork]));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11002998 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2999 (ifp->if_bytes == 0));
3000 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
3001 (ifp->if_bytes > 0));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003002 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3003 (ifp->if_bytes > 0)) {
3004 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3005 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3006 whichfork);
3007 }
3008 break;
3009
3010 case XFS_DINODE_FMT_BTREE:
3011 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3012 (ifp->if_broot_bytes > 0)) {
3013 ASSERT(ifp->if_broot != NULL);
3014 ASSERT(ifp->if_broot_bytes <=
3015 (XFS_IFORK_SIZE(ip, whichfork) +
3016 XFS_BROOT_SIZE_ADJ));
3017 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3018 (xfs_bmdr_block_t *)cp,
3019 XFS_DFORK_SIZE(dip, mp, whichfork));
3020 }
3021 break;
3022
3023 case XFS_DINODE_FMT_DEV:
3024 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3025 ASSERT(whichfork == XFS_DATA_FORK);
3026 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
3027 }
3028 break;
3029
3030 case XFS_DINODE_FMT_UUID:
3031 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3032 ASSERT(whichfork == XFS_DATA_FORK);
3033 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3034 sizeof(uuid_t));
3035 }
3036 break;
3037
3038 default:
3039 ASSERT(0);
3040 break;
3041 }
3042
3043 return 0;
3044}
3045
3046/*
3047 * xfs_iflush() will write a modified inode's changes out to the
3048 * inode's on disk home. The caller must have the inode lock held
3049 * in at least shared mode and the inode flush semaphore must be
3050 * held as well. The inode lock will still be held upon return from
3051 * the call and the caller is free to unlock it.
3052 * The inode flush lock will be unlocked when the inode reaches the disk.
3053 * The flags indicate how the inode's buffer should be written out.
3054 */
3055int
3056xfs_iflush(
3057 xfs_inode_t *ip,
3058 uint flags)
3059{
3060 xfs_inode_log_item_t *iip;
3061 xfs_buf_t *bp;
3062 xfs_dinode_t *dip;
3063 xfs_mount_t *mp;
3064 int error;
3065 /* REFERENCED */
3066 xfs_chash_t *ch;
3067 xfs_inode_t *iq;
3068 int clcount; /* count of inodes clustered */
3069 int bufwasdelwri;
3070 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3071 SPLDECL(s);
3072
3073 XFS_STATS_INC(xs_iflush_count);
3074
3075 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
Al Viro0d8fee32006-06-19 08:41:30 +10003076 ASSERT(issemalocked(&(ip->i_flock)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003077 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3078 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3079
3080 iip = ip->i_itemp;
3081 mp = ip->i_mount;
3082
3083 /*
3084 * If the inode isn't dirty, then just release the inode
3085 * flush lock and do nothing.
3086 */
3087 if ((ip->i_update_core == 0) &&
3088 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3089 ASSERT((iip != NULL) ?
3090 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3091 xfs_ifunlock(ip);
3092 return 0;
3093 }
3094
3095 /*
3096 * We can't flush the inode until it is unpinned, so
3097 * wait for it. We know noone new can pin it, because
3098 * we are holding the inode lock shared and you need
3099 * to hold it exclusively to pin the inode.
3100 */
3101 xfs_iunpin_wait(ip);
3102
3103 /*
3104 * This may have been unpinned because the filesystem is shutting
3105 * down forcibly. If that's the case we must not write this inode
3106 * to disk, because the log record didn't make it to disk!
3107 */
3108 if (XFS_FORCED_SHUTDOWN(mp)) {
3109 ip->i_update_core = 0;
3110 if (iip)
3111 iip->ili_format.ilf_fields = 0;
3112 xfs_ifunlock(ip);
3113 return XFS_ERROR(EIO);
3114 }
3115
3116 /*
3117 * Get the buffer containing the on-disk inode.
3118 */
Nathan Scottb12dd342006-03-17 17:26:04 +11003119 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3120 if (error) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003121 xfs_ifunlock(ip);
3122 return error;
3123 }
3124
3125 /*
3126 * Decide how buffer will be flushed out. This is done before
3127 * the call to xfs_iflush_int because this field is zeroed by it.
3128 */
3129 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3130 /*
3131 * Flush out the inode buffer according to the directions
3132 * of the caller. In the cases where the caller has given
3133 * us a choice choose the non-delwri case. This is because
3134 * the inode is in the AIL and we need to get it out soon.
3135 */
3136 switch (flags) {
3137 case XFS_IFLUSH_SYNC:
3138 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3139 flags = 0;
3140 break;
3141 case XFS_IFLUSH_ASYNC:
3142 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3143 flags = INT_ASYNC;
3144 break;
3145 case XFS_IFLUSH_DELWRI:
3146 flags = INT_DELWRI;
3147 break;
3148 default:
3149 ASSERT(0);
3150 flags = 0;
3151 break;
3152 }
3153 } else {
3154 switch (flags) {
3155 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3156 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3157 case XFS_IFLUSH_DELWRI:
3158 flags = INT_DELWRI;
3159 break;
3160 case XFS_IFLUSH_ASYNC:
3161 flags = INT_ASYNC;
3162 break;
3163 case XFS_IFLUSH_SYNC:
3164 flags = 0;
3165 break;
3166 default:
3167 ASSERT(0);
3168 flags = 0;
3169 break;
3170 }
3171 }
3172
3173 /*
3174 * First flush out the inode that xfs_iflush was called with.
3175 */
3176 error = xfs_iflush_int(ip, bp);
3177 if (error) {
3178 goto corrupt_out;
3179 }
3180
3181 /*
3182 * inode clustering:
3183 * see if other inodes can be gathered into this write
3184 */
3185
3186 ip->i_chash->chl_buf = bp;
3187
3188 ch = XFS_CHASH(mp, ip->i_blkno);
3189 s = mutex_spinlock(&ch->ch_lock);
3190
3191 clcount = 0;
3192 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3193 /*
3194 * Do an un-protected check to see if the inode is dirty and
3195 * is a candidate for flushing. These checks will be repeated
3196 * later after the appropriate locks are acquired.
3197 */
3198 iip = iq->i_itemp;
3199 if ((iq->i_update_core == 0) &&
3200 ((iip == NULL) ||
3201 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3202 xfs_ipincount(iq) == 0) {
3203 continue;
3204 }
3205
3206 /*
3207 * Try to get locks. If any are unavailable,
3208 * then this inode cannot be flushed and is skipped.
3209 */
3210
3211 /* get inode locks (just i_lock) */
3212 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3213 /* get inode flush lock */
3214 if (xfs_iflock_nowait(iq)) {
3215 /* check if pinned */
3216 if (xfs_ipincount(iq) == 0) {
3217 /* arriving here means that
3218 * this inode can be flushed.
3219 * first re-check that it's
3220 * dirty
3221 */
3222 iip = iq->i_itemp;
3223 if ((iq->i_update_core != 0)||
3224 ((iip != NULL) &&
3225 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3226 clcount++;
3227 error = xfs_iflush_int(iq, bp);
3228 if (error) {
3229 xfs_iunlock(iq,
3230 XFS_ILOCK_SHARED);
3231 goto cluster_corrupt_out;
3232 }
3233 } else {
3234 xfs_ifunlock(iq);
3235 }
3236 } else {
3237 xfs_ifunlock(iq);
3238 }
3239 }
3240 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3241 }
3242 }
3243 mutex_spinunlock(&ch->ch_lock, s);
3244
3245 if (clcount) {
3246 XFS_STATS_INC(xs_icluster_flushcnt);
3247 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3248 }
3249
3250 /*
3251 * If the buffer is pinned then push on the log so we won't
3252 * get stuck waiting in the write for too long.
3253 */
3254 if (XFS_BUF_ISPINNED(bp)){
3255 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3256 }
3257
3258 if (flags & INT_DELWRI) {
3259 xfs_bdwrite(mp, bp);
3260 } else if (flags & INT_ASYNC) {
3261 xfs_bawrite(mp, bp);
3262 } else {
3263 error = xfs_bwrite(mp, bp);
3264 }
3265 return error;
3266
3267corrupt_out:
3268 xfs_buf_relse(bp);
Nathan Scott7d04a332006-06-09 14:58:38 +10003269 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003270 xfs_iflush_abort(ip);
3271 /*
3272 * Unlocks the flush lock
3273 */
3274 return XFS_ERROR(EFSCORRUPTED);
3275
3276cluster_corrupt_out:
3277 /* Corruption detected in the clustering loop. Invalidate the
3278 * inode buffer and shut down the filesystem.
3279 */
3280 mutex_spinunlock(&ch->ch_lock, s);
3281
3282 /*
3283 * Clean up the buffer. If it was B_DELWRI, just release it --
3284 * brelse can handle it with no problems. If not, shut down the
3285 * filesystem before releasing the buffer.
3286 */
3287 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3288 xfs_buf_relse(bp);
3289 }
3290
Nathan Scott7d04a332006-06-09 14:58:38 +10003291 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003292
3293 if(!bufwasdelwri) {
3294 /*
3295 * Just like incore_relse: if we have b_iodone functions,
3296 * mark the buffer as an error and call them. Otherwise
3297 * mark it as stale and brelse.
3298 */
3299 if (XFS_BUF_IODONE_FUNC(bp)) {
3300 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3301 XFS_BUF_UNDONE(bp);
3302 XFS_BUF_STALE(bp);
3303 XFS_BUF_SHUT(bp);
3304 XFS_BUF_ERROR(bp,EIO);
3305 xfs_biodone(bp);
3306 } else {
3307 XFS_BUF_STALE(bp);
3308 xfs_buf_relse(bp);
3309 }
3310 }
3311
3312 xfs_iflush_abort(iq);
3313 /*
3314 * Unlocks the flush lock
3315 */
3316 return XFS_ERROR(EFSCORRUPTED);
3317}
3318
3319
3320STATIC int
3321xfs_iflush_int(
3322 xfs_inode_t *ip,
3323 xfs_buf_t *bp)
3324{
3325 xfs_inode_log_item_t *iip;
3326 xfs_dinode_t *dip;
3327 xfs_mount_t *mp;
3328#ifdef XFS_TRANS_DEBUG
3329 int first;
3330#endif
3331 SPLDECL(s);
3332
3333 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
Al Viro0d8fee32006-06-19 08:41:30 +10003334 ASSERT(issemalocked(&(ip->i_flock)));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003335 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3336 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3337
3338 iip = ip->i_itemp;
3339 mp = ip->i_mount;
3340
3341
3342 /*
3343 * If the inode isn't dirty, then just release the inode
3344 * flush lock and do nothing.
3345 */
3346 if ((ip->i_update_core == 0) &&
3347 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3348 xfs_ifunlock(ip);
3349 return 0;
3350 }
3351
3352 /* set *dip = inode's place in the buffer */
3353 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3354
3355 /*
3356 * Clear i_update_core before copying out the data.
3357 * This is for coordination with our timestamp updates
3358 * that don't hold the inode lock. They will always
3359 * update the timestamps BEFORE setting i_update_core,
3360 * so if we clear i_update_core after they set it we
3361 * are guaranteed to see their updates to the timestamps.
3362 * I believe that this depends on strongly ordered memory
3363 * semantics, but we have that. We use the SYNCHRONIZE
3364 * macro to make sure that the compiler does not reorder
3365 * the i_update_core access below the data copy below.
3366 */
3367 ip->i_update_core = 0;
3368 SYNCHRONIZE();
3369
Christoph Hellwig42fe2b12006-01-11 15:35:17 +11003370 /*
3371 * Make sure to get the latest atime from the Linux inode.
3372 */
3373 xfs_synchronize_atime(ip);
3374
Linus Torvalds1da177e2005-04-16 15:20:36 -07003375 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3376 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3377 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3378 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3379 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3380 goto corrupt_out;
3381 }
3382 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3383 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3384 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3385 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3386 ip->i_ino, ip, ip->i_d.di_magic);
3387 goto corrupt_out;
3388 }
3389 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3390 if (XFS_TEST_ERROR(
3391 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3392 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3393 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3394 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3395 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3396 ip->i_ino, ip);
3397 goto corrupt_out;
3398 }
3399 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3400 if (XFS_TEST_ERROR(
3401 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3402 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3403 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3404 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3405 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3406 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3407 ip->i_ino, ip);
3408 goto corrupt_out;
3409 }
3410 }
3411 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3412 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3413 XFS_RANDOM_IFLUSH_5)) {
3414 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3415 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3416 ip->i_ino,
3417 ip->i_d.di_nextents + ip->i_d.di_anextents,
3418 ip->i_d.di_nblocks,
3419 ip);
3420 goto corrupt_out;
3421 }
3422 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3423 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3424 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3425 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3426 ip->i_ino, ip->i_d.di_forkoff, ip);
3427 goto corrupt_out;
3428 }
3429 /*
3430 * bump the flush iteration count, used to detect flushes which
3431 * postdate a log record during recovery.
3432 */
3433
3434 ip->i_d.di_flushiter++;
3435
3436 /*
3437 * Copy the dirty parts of the inode into the on-disk
3438 * inode. We always copy out the core of the inode,
3439 * because if the inode is dirty at all the core must
3440 * be.
3441 */
3442 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3443
3444 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3445 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3446 ip->i_d.di_flushiter = 0;
3447
3448 /*
3449 * If this is really an old format inode and the superblock version
3450 * has not been updated to support only new format inodes, then
3451 * convert back to the old inode format. If the superblock version
3452 * has been updated, then make the conversion permanent.
3453 */
3454 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3455 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3456 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3457 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3458 /*
3459 * Convert it back.
3460 */
3461 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3462 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3463 } else {
3464 /*
3465 * The superblock version has already been bumped,
3466 * so just make the conversion to the new inode
3467 * format permanent.
3468 */
3469 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3470 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3471 ip->i_d.di_onlink = 0;
3472 dip->di_core.di_onlink = 0;
3473 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3474 memset(&(dip->di_core.di_pad[0]), 0,
3475 sizeof(dip->di_core.di_pad));
3476 ASSERT(ip->i_d.di_projid == 0);
3477 }
3478 }
3479
3480 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3481 goto corrupt_out;
3482 }
3483
3484 if (XFS_IFORK_Q(ip)) {
3485 /*
3486 * The only error from xfs_iflush_fork is on the data fork.
3487 */
3488 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3489 }
3490 xfs_inobp_check(mp, bp);
3491
3492 /*
3493 * We've recorded everything logged in the inode, so we'd
3494 * like to clear the ilf_fields bits so we don't log and
3495 * flush things unnecessarily. However, we can't stop
3496 * logging all this information until the data we've copied
3497 * into the disk buffer is written to disk. If we did we might
3498 * overwrite the copy of the inode in the log with all the
3499 * data after re-logging only part of it, and in the face of
3500 * a crash we wouldn't have all the data we need to recover.
3501 *
3502 * What we do is move the bits to the ili_last_fields field.
3503 * When logging the inode, these bits are moved back to the
3504 * ilf_fields field. In the xfs_iflush_done() routine we
3505 * clear ili_last_fields, since we know that the information
3506 * those bits represent is permanently on disk. As long as
3507 * the flush completes before the inode is logged again, then
3508 * both ilf_fields and ili_last_fields will be cleared.
3509 *
3510 * We can play with the ilf_fields bits here, because the inode
3511 * lock must be held exclusively in order to set bits there
3512 * and the flush lock protects the ili_last_fields bits.
3513 * Set ili_logged so the flush done
3514 * routine can tell whether or not to look in the AIL.
3515 * Also, store the current LSN of the inode so that we can tell
3516 * whether the item has moved in the AIL from xfs_iflush_done().
3517 * In order to read the lsn we need the AIL lock, because
3518 * it is a 64 bit value that cannot be read atomically.
3519 */
3520 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3521 iip->ili_last_fields = iip->ili_format.ilf_fields;
3522 iip->ili_format.ilf_fields = 0;
3523 iip->ili_logged = 1;
3524
3525 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3526 AIL_LOCK(mp,s);
3527 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3528 AIL_UNLOCK(mp, s);
3529
3530 /*
3531 * Attach the function xfs_iflush_done to the inode's
3532 * buffer. This will remove the inode from the AIL
3533 * and unlock the inode's flush lock when the inode is
3534 * completely written to disk.
3535 */
3536 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3537 xfs_iflush_done, (xfs_log_item_t *)iip);
3538
3539 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3540 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3541 } else {
3542 /*
3543 * We're flushing an inode which is not in the AIL and has
3544 * not been logged but has i_update_core set. For this
3545 * case we can use a B_DELWRI flush and immediately drop
3546 * the inode flush lock because we can avoid the whole
3547 * AIL state thing. It's OK to drop the flush lock now,
3548 * because we've already locked the buffer and to do anything
3549 * you really need both.
3550 */
3551 if (iip != NULL) {
3552 ASSERT(iip->ili_logged == 0);
3553 ASSERT(iip->ili_last_fields == 0);
3554 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3555 }
3556 xfs_ifunlock(ip);
3557 }
3558
3559 return 0;
3560
3561corrupt_out:
3562 return XFS_ERROR(EFSCORRUPTED);
3563}
3564
3565
3566/*
Christoph Hellwigefa80272005-06-21 15:37:17 +10003567 * Flush all inactive inodes in mp.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003568 */
Christoph Hellwigefa80272005-06-21 15:37:17 +10003569void
Linus Torvalds1da177e2005-04-16 15:20:36 -07003570xfs_iflush_all(
Christoph Hellwigefa80272005-06-21 15:37:17 +10003571 xfs_mount_t *mp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003572{
Linus Torvalds1da177e2005-04-16 15:20:36 -07003573 xfs_inode_t *ip;
Nathan Scott67fcaa72006-06-09 17:00:52 +10003574 bhv_vnode_t *vp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003575
Christoph Hellwigefa80272005-06-21 15:37:17 +10003576 again:
3577 XFS_MOUNT_ILOCK(mp);
3578 ip = mp->m_inodes;
3579 if (ip == NULL)
3580 goto out;
3581
3582 do {
3583 /* Make sure we skip markers inserted by sync */
3584 if (ip->i_mount == NULL) {
3585 ip = ip->i_mnext;
3586 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003587 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003588
Christoph Hellwigefa80272005-06-21 15:37:17 +10003589 vp = XFS_ITOV_NULL(ip);
3590 if (!vp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003591 XFS_MOUNT_IUNLOCK(mp);
Christoph Hellwigefa80272005-06-21 15:37:17 +10003592 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3593 goto again;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003594 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003595
Christoph Hellwigefa80272005-06-21 15:37:17 +10003596 ASSERT(vn_count(vp) == 0);
3597
3598 ip = ip->i_mnext;
3599 } while (ip != mp->m_inodes);
3600 out:
3601 XFS_MOUNT_IUNLOCK(mp);
3602}
Linus Torvalds1da177e2005-04-16 15:20:36 -07003603
3604/*
3605 * xfs_iaccess: check accessibility of inode for mode.
3606 */
3607int
3608xfs_iaccess(
3609 xfs_inode_t *ip,
3610 mode_t mode,
3611 cred_t *cr)
3612{
3613 int error;
3614 mode_t orgmode = mode;
Nathan Scottec86dc02006-03-17 17:25:36 +11003615 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
Linus Torvalds1da177e2005-04-16 15:20:36 -07003616
3617 if (mode & S_IWUSR) {
3618 umode_t imode = inode->i_mode;
3619
3620 if (IS_RDONLY(inode) &&
3621 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3622 return XFS_ERROR(EROFS);
3623
3624 if (IS_IMMUTABLE(inode))
3625 return XFS_ERROR(EACCES);
3626 }
3627
3628 /*
3629 * If there's an Access Control List it's used instead of
3630 * the mode bits.
3631 */
3632 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3633 return error ? XFS_ERROR(error) : 0;
3634
3635 if (current_fsuid(cr) != ip->i_d.di_uid) {
3636 mode >>= 3;
3637 if (!in_group_p((gid_t)ip->i_d.di_gid))
3638 mode >>= 3;
3639 }
3640
3641 /*
3642 * If the DACs are ok we don't need any capability check.
3643 */
3644 if ((ip->i_d.di_mode & mode) == mode)
3645 return 0;
3646 /*
3647 * Read/write DACs are always overridable.
3648 * Executable DACs are overridable if at least one exec bit is set.
3649 */
3650 if (!(orgmode & S_IXUSR) ||
3651 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3652 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3653 return 0;
3654
3655 if ((orgmode == S_IRUSR) ||
3656 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3657 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3658 return 0;
3659#ifdef NOISE
3660 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3661#endif /* NOISE */
3662 return XFS_ERROR(EACCES);
3663 }
3664 return XFS_ERROR(EACCES);
3665}
3666
3667/*
3668 * xfs_iroundup: round up argument to next power of two
3669 */
3670uint
3671xfs_iroundup(
3672 uint v)
3673{
3674 int i;
3675 uint m;
3676
3677 if ((v & (v - 1)) == 0)
3678 return v;
3679 ASSERT((v & 0x80000000) == 0);
3680 if ((v & (v + 1)) == 0)
3681 return v + 1;
3682 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3683 if (v & m)
3684 continue;
3685 v |= m;
3686 if ((v & (v + 1)) == 0)
3687 return v + 1;
3688 }
3689 ASSERT(0);
3690 return( 0 );
3691}
3692
Linus Torvalds1da177e2005-04-16 15:20:36 -07003693#ifdef XFS_ILOCK_TRACE
3694ktrace_t *xfs_ilock_trace_buf;
3695
3696void
3697xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3698{
3699 ktrace_enter(ip->i_lock_trace,
3700 (void *)ip,
3701 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3702 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3703 (void *)ra, /* caller of ilock */
3704 (void *)(unsigned long)current_cpu(),
3705 (void *)(unsigned long)current_pid(),
3706 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3707}
3708#endif
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003709
3710/*
3711 * Return a pointer to the extent record at file index idx.
3712 */
3713xfs_bmbt_rec_t *
3714xfs_iext_get_ext(
3715 xfs_ifork_t *ifp, /* inode fork pointer */
3716 xfs_extnum_t idx) /* index of target extent */
3717{
3718 ASSERT(idx >= 0);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003719 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3720 return ifp->if_u1.if_ext_irec->er_extbuf;
3721 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3722 xfs_ext_irec_t *erp; /* irec pointer */
3723 int erp_idx = 0; /* irec index */
3724 xfs_extnum_t page_idx = idx; /* ext index in target list */
3725
3726 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3727 return &erp->er_extbuf[page_idx];
3728 } else if (ifp->if_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003729 return &ifp->if_u1.if_extents[idx];
3730 } else {
3731 return NULL;
3732 }
3733}
3734
3735/*
3736 * Insert new item(s) into the extent records for incore inode
3737 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3738 */
3739void
3740xfs_iext_insert(
3741 xfs_ifork_t *ifp, /* inode fork pointer */
3742 xfs_extnum_t idx, /* starting index of new items */
3743 xfs_extnum_t count, /* number of inserted items */
3744 xfs_bmbt_irec_t *new) /* items to insert */
3745{
3746 xfs_bmbt_rec_t *ep; /* extent record pointer */
3747 xfs_extnum_t i; /* extent record index */
3748
3749 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3750 xfs_iext_add(ifp, idx, count);
3751 for (i = idx; i < idx + count; i++, new++) {
3752 ep = xfs_iext_get_ext(ifp, i);
3753 xfs_bmbt_set_all(ep, new);
3754 }
3755}
3756
3757/*
3758 * This is called when the amount of space required for incore file
3759 * extents needs to be increased. The ext_diff parameter stores the
3760 * number of new extents being added and the idx parameter contains
3761 * the extent index where the new extents will be added. If the new
3762 * extents are being appended, then we just need to (re)allocate and
3763 * initialize the space. Otherwise, if the new extents are being
3764 * inserted into the middle of the existing entries, a bit more work
3765 * is required to make room for the new extents to be inserted. The
3766 * caller is responsible for filling in the new extent entries upon
3767 * return.
3768 */
3769void
3770xfs_iext_add(
3771 xfs_ifork_t *ifp, /* inode fork pointer */
3772 xfs_extnum_t idx, /* index to begin adding exts */
Nathan Scottc41564b2006-03-29 08:55:14 +10003773 int ext_diff) /* number of extents to add */
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003774{
3775 int byte_diff; /* new bytes being added */
3776 int new_size; /* size of extents after adding */
3777 xfs_extnum_t nextents; /* number of extents in file */
3778
3779 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3780 ASSERT((idx >= 0) && (idx <= nextents));
3781 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3782 new_size = ifp->if_bytes + byte_diff;
3783 /*
3784 * If the new number of extents (nextents + ext_diff)
3785 * fits inside the inode, then continue to use the inline
3786 * extent buffer.
3787 */
3788 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3789 if (idx < nextents) {
3790 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3791 &ifp->if_u2.if_inline_ext[idx],
3792 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3793 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3794 }
3795 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3796 ifp->if_real_bytes = 0;
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003797 ifp->if_lastex = nextents + ext_diff;
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003798 }
3799 /*
3800 * Otherwise use a linear (direct) extent list.
3801 * If the extents are currently inside the inode,
3802 * xfs_iext_realloc_direct will switch us from
3803 * inline to direct extent allocation mode.
3804 */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003805 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003806 xfs_iext_realloc_direct(ifp, new_size);
3807 if (idx < nextents) {
3808 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3809 &ifp->if_u1.if_extents[idx],
3810 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3811 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3812 }
3813 }
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003814 /* Indirection array */
3815 else {
3816 xfs_ext_irec_t *erp;
3817 int erp_idx = 0;
3818 int page_idx = idx;
3819
3820 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3821 if (ifp->if_flags & XFS_IFEXTIREC) {
3822 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3823 } else {
3824 xfs_iext_irec_init(ifp);
3825 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3826 erp = ifp->if_u1.if_ext_irec;
3827 }
3828 /* Extents fit in target extent page */
3829 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3830 if (page_idx < erp->er_extcount) {
3831 memmove(&erp->er_extbuf[page_idx + ext_diff],
3832 &erp->er_extbuf[page_idx],
3833 (erp->er_extcount - page_idx) *
3834 sizeof(xfs_bmbt_rec_t));
3835 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3836 }
3837 erp->er_extcount += ext_diff;
3838 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3839 }
3840 /* Insert a new extent page */
3841 else if (erp) {
3842 xfs_iext_add_indirect_multi(ifp,
3843 erp_idx, page_idx, ext_diff);
3844 }
3845 /*
3846 * If extent(s) are being appended to the last page in
3847 * the indirection array and the new extent(s) don't fit
3848 * in the page, then erp is NULL and erp_idx is set to
3849 * the next index needed in the indirection array.
3850 */
3851 else {
3852 int count = ext_diff;
3853
3854 while (count) {
3855 erp = xfs_iext_irec_new(ifp, erp_idx);
3856 erp->er_extcount = count;
3857 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3858 if (count) {
3859 erp_idx++;
3860 }
3861 }
3862 }
3863 }
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003864 ifp->if_bytes = new_size;
3865}
3866
3867/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003868 * This is called when incore extents are being added to the indirection
3869 * array and the new extents do not fit in the target extent list. The
3870 * erp_idx parameter contains the irec index for the target extent list
3871 * in the indirection array, and the idx parameter contains the extent
3872 * index within the list. The number of extents being added is stored
3873 * in the count parameter.
3874 *
3875 * |-------| |-------|
3876 * | | | | idx - number of extents before idx
3877 * | idx | | count |
3878 * | | | | count - number of extents being inserted at idx
3879 * |-------| |-------|
3880 * | count | | nex2 | nex2 - number of extents after idx + count
3881 * |-------| |-------|
3882 */
3883void
3884xfs_iext_add_indirect_multi(
3885 xfs_ifork_t *ifp, /* inode fork pointer */
3886 int erp_idx, /* target extent irec index */
3887 xfs_extnum_t idx, /* index within target list */
3888 int count) /* new extents being added */
3889{
3890 int byte_diff; /* new bytes being added */
3891 xfs_ext_irec_t *erp; /* pointer to irec entry */
3892 xfs_extnum_t ext_diff; /* number of extents to add */
3893 xfs_extnum_t ext_cnt; /* new extents still needed */
3894 xfs_extnum_t nex2; /* extents after idx + count */
3895 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3896 int nlists; /* number of irec's (lists) */
3897
3898 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3899 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3900 nex2 = erp->er_extcount - idx;
3901 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3902
3903 /*
3904 * Save second part of target extent list
3905 * (all extents past */
3906 if (nex2) {
3907 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3908 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3909 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3910 erp->er_extcount -= nex2;
3911 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3912 memset(&erp->er_extbuf[idx], 0, byte_diff);
3913 }
3914
3915 /*
3916 * Add the new extents to the end of the target
3917 * list, then allocate new irec record(s) and
3918 * extent buffer(s) as needed to store the rest
3919 * of the new extents.
3920 */
3921 ext_cnt = count;
3922 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3923 if (ext_diff) {
3924 erp->er_extcount += ext_diff;
3925 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3926 ext_cnt -= ext_diff;
3927 }
3928 while (ext_cnt) {
3929 erp_idx++;
3930 erp = xfs_iext_irec_new(ifp, erp_idx);
3931 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3932 erp->er_extcount = ext_diff;
3933 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3934 ext_cnt -= ext_diff;
3935 }
3936
3937 /* Add nex2 extents back to indirection array */
3938 if (nex2) {
3939 xfs_extnum_t ext_avail;
3940 int i;
3941
3942 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3943 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3944 i = 0;
3945 /*
3946 * If nex2 extents fit in the current page, append
3947 * nex2_ep after the new extents.
3948 */
3949 if (nex2 <= ext_avail) {
3950 i = erp->er_extcount;
3951 }
3952 /*
3953 * Otherwise, check if space is available in the
3954 * next page.
3955 */
3956 else if ((erp_idx < nlists - 1) &&
3957 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3958 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3959 erp_idx++;
3960 erp++;
3961 /* Create a hole for nex2 extents */
3962 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3963 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3964 }
3965 /*
3966 * Final choice, create a new extent page for
3967 * nex2 extents.
3968 */
3969 else {
3970 erp_idx++;
3971 erp = xfs_iext_irec_new(ifp, erp_idx);
3972 }
3973 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3974 kmem_free(nex2_ep, byte_diff);
3975 erp->er_extcount += nex2;
3976 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3977 }
3978}
3979
3980/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003981 * This is called when the amount of space required for incore file
3982 * extents needs to be decreased. The ext_diff parameter stores the
3983 * number of extents to be removed and the idx parameter contains
3984 * the extent index where the extents will be removed from.
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11003985 *
3986 * If the amount of space needed has decreased below the linear
3987 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3988 * extent array. Otherwise, use kmem_realloc() to adjust the
3989 * size to what is needed.
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11003990 */
3991void
3992xfs_iext_remove(
3993 xfs_ifork_t *ifp, /* inode fork pointer */
3994 xfs_extnum_t idx, /* index to begin removing exts */
3995 int ext_diff) /* number of extents to remove */
3996{
3997 xfs_extnum_t nextents; /* number of extents in file */
3998 int new_size; /* size of extents after removal */
3999
4000 ASSERT(ext_diff > 0);
4001 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4002 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
4003
4004 if (new_size == 0) {
4005 xfs_iext_destroy(ifp);
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004006 } else if (ifp->if_flags & XFS_IFEXTIREC) {
4007 xfs_iext_remove_indirect(ifp, idx, ext_diff);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004008 } else if (ifp->if_real_bytes) {
4009 xfs_iext_remove_direct(ifp, idx, ext_diff);
4010 } else {
4011 xfs_iext_remove_inline(ifp, idx, ext_diff);
4012 }
4013 ifp->if_bytes = new_size;
4014}
4015
4016/*
4017 * This removes ext_diff extents from the inline buffer, beginning
4018 * at extent index idx.
4019 */
4020void
4021xfs_iext_remove_inline(
4022 xfs_ifork_t *ifp, /* inode fork pointer */
4023 xfs_extnum_t idx, /* index to begin removing exts */
4024 int ext_diff) /* number of extents to remove */
4025{
4026 int nextents; /* number of extents in file */
4027
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004028 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004029 ASSERT(idx < XFS_INLINE_EXTS);
4030 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4031 ASSERT(((nextents - ext_diff) > 0) &&
4032 (nextents - ext_diff) < XFS_INLINE_EXTS);
4033
4034 if (idx + ext_diff < nextents) {
4035 memmove(&ifp->if_u2.if_inline_ext[idx],
4036 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4037 (nextents - (idx + ext_diff)) *
4038 sizeof(xfs_bmbt_rec_t));
4039 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4040 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4041 } else {
4042 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4043 ext_diff * sizeof(xfs_bmbt_rec_t));
4044 }
4045}
4046
4047/*
4048 * This removes ext_diff extents from a linear (direct) extent list,
4049 * beginning at extent index idx. If the extents are being removed
4050 * from the end of the list (ie. truncate) then we just need to re-
4051 * allocate the list to remove the extra space. Otherwise, if the
4052 * extents are being removed from the middle of the existing extent
4053 * entries, then we first need to move the extent records beginning
4054 * at idx + ext_diff up in the list to overwrite the records being
4055 * removed, then remove the extra space via kmem_realloc.
4056 */
4057void
4058xfs_iext_remove_direct(
4059 xfs_ifork_t *ifp, /* inode fork pointer */
4060 xfs_extnum_t idx, /* index to begin removing exts */
4061 int ext_diff) /* number of extents to remove */
4062{
4063 xfs_extnum_t nextents; /* number of extents in file */
4064 int new_size; /* size of extents after removal */
4065
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004066 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004067 new_size = ifp->if_bytes -
4068 (ext_diff * sizeof(xfs_bmbt_rec_t));
4069 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4070
4071 if (new_size == 0) {
4072 xfs_iext_destroy(ifp);
4073 return;
4074 }
4075 /* Move extents up in the list (if needed) */
4076 if (idx + ext_diff < nextents) {
4077 memmove(&ifp->if_u1.if_extents[idx],
4078 &ifp->if_u1.if_extents[idx + ext_diff],
4079 (nextents - (idx + ext_diff)) *
4080 sizeof(xfs_bmbt_rec_t));
4081 }
4082 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4083 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4084 /*
4085 * Reallocate the direct extent list. If the extents
4086 * will fit inside the inode then xfs_iext_realloc_direct
4087 * will switch from direct to inline extent allocation
4088 * mode for us.
4089 */
4090 xfs_iext_realloc_direct(ifp, new_size);
4091 ifp->if_bytes = new_size;
4092}
4093
4094/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004095 * This is called when incore extents are being removed from the
4096 * indirection array and the extents being removed span multiple extent
4097 * buffers. The idx parameter contains the file extent index where we
4098 * want to begin removing extents, and the count parameter contains
4099 * how many extents need to be removed.
4100 *
4101 * |-------| |-------|
4102 * | nex1 | | | nex1 - number of extents before idx
4103 * |-------| | count |
4104 * | | | | count - number of extents being removed at idx
4105 * | count | |-------|
4106 * | | | nex2 | nex2 - number of extents after idx + count
4107 * |-------| |-------|
4108 */
4109void
4110xfs_iext_remove_indirect(
4111 xfs_ifork_t *ifp, /* inode fork pointer */
4112 xfs_extnum_t idx, /* index to begin removing extents */
4113 int count) /* number of extents to remove */
4114{
4115 xfs_ext_irec_t *erp; /* indirection array pointer */
4116 int erp_idx = 0; /* indirection array index */
4117 xfs_extnum_t ext_cnt; /* extents left to remove */
4118 xfs_extnum_t ext_diff; /* extents to remove in current list */
4119 xfs_extnum_t nex1; /* number of extents before idx */
4120 xfs_extnum_t nex2; /* extents after idx + count */
Nathan Scottc41564b2006-03-29 08:55:14 +10004121 int nlists; /* entries in indirection array */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004122 int page_idx = idx; /* index in target extent list */
4123
4124 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4125 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4126 ASSERT(erp != NULL);
4127 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4128 nex1 = page_idx;
4129 ext_cnt = count;
4130 while (ext_cnt) {
4131 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4132 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4133 /*
4134 * Check for deletion of entire list;
4135 * xfs_iext_irec_remove() updates extent offsets.
4136 */
4137 if (ext_diff == erp->er_extcount) {
4138 xfs_iext_irec_remove(ifp, erp_idx);
4139 ext_cnt -= ext_diff;
4140 nex1 = 0;
4141 if (ext_cnt) {
4142 ASSERT(erp_idx < ifp->if_real_bytes /
4143 XFS_IEXT_BUFSZ);
4144 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4145 nex1 = 0;
4146 continue;
4147 } else {
4148 break;
4149 }
4150 }
4151 /* Move extents up (if needed) */
4152 if (nex2) {
4153 memmove(&erp->er_extbuf[nex1],
4154 &erp->er_extbuf[nex1 + ext_diff],
4155 nex2 * sizeof(xfs_bmbt_rec_t));
4156 }
4157 /* Zero out rest of page */
4158 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4159 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4160 /* Update remaining counters */
4161 erp->er_extcount -= ext_diff;
4162 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4163 ext_cnt -= ext_diff;
4164 nex1 = 0;
4165 erp_idx++;
4166 erp++;
4167 }
4168 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4169 xfs_iext_irec_compact(ifp);
4170}
4171
4172/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004173 * Create, destroy, or resize a linear (direct) block of extents.
4174 */
4175void
4176xfs_iext_realloc_direct(
4177 xfs_ifork_t *ifp, /* inode fork pointer */
4178 int new_size) /* new size of extents */
4179{
4180 int rnew_size; /* real new size of extents */
4181
4182 rnew_size = new_size;
4183
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004184 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4185 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4186 (new_size != ifp->if_real_bytes)));
4187
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004188 /* Free extent records */
4189 if (new_size == 0) {
4190 xfs_iext_destroy(ifp);
4191 }
4192 /* Resize direct extent list and zero any new bytes */
4193 else if (ifp->if_real_bytes) {
4194 /* Check if extents will fit inside the inode */
4195 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4196 xfs_iext_direct_to_inline(ifp, new_size /
4197 (uint)sizeof(xfs_bmbt_rec_t));
4198 ifp->if_bytes = new_size;
4199 return;
4200 }
Vignesh Babu16a087d2007-06-28 16:46:37 +10004201 if (!is_power_of_2(new_size)){
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004202 rnew_size = xfs_iroundup(new_size);
4203 }
4204 if (rnew_size != ifp->if_real_bytes) {
4205 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4206 kmem_realloc(ifp->if_u1.if_extents,
4207 rnew_size,
4208 ifp->if_real_bytes,
4209 KM_SLEEP);
4210 }
4211 if (rnew_size > ifp->if_real_bytes) {
4212 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4213 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4214 rnew_size - ifp->if_real_bytes);
4215 }
4216 }
4217 /*
4218 * Switch from the inline extent buffer to a direct
4219 * extent list. Be sure to include the inline extent
4220 * bytes in new_size.
4221 */
4222 else {
4223 new_size += ifp->if_bytes;
Vignesh Babu16a087d2007-06-28 16:46:37 +10004224 if (!is_power_of_2(new_size)) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004225 rnew_size = xfs_iroundup(new_size);
4226 }
4227 xfs_iext_inline_to_direct(ifp, rnew_size);
4228 }
4229 ifp->if_real_bytes = rnew_size;
4230 ifp->if_bytes = new_size;
4231}
4232
4233/*
4234 * Switch from linear (direct) extent records to inline buffer.
4235 */
4236void
4237xfs_iext_direct_to_inline(
4238 xfs_ifork_t *ifp, /* inode fork pointer */
4239 xfs_extnum_t nextents) /* number of extents in file */
4240{
4241 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4242 ASSERT(nextents <= XFS_INLINE_EXTS);
4243 /*
4244 * The inline buffer was zeroed when we switched
4245 * from inline to direct extent allocation mode,
4246 * so we don't need to clear it here.
4247 */
4248 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4249 nextents * sizeof(xfs_bmbt_rec_t));
Mandy Kirkconnellfe6c1e72006-06-09 14:51:25 +10004250 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004251 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4252 ifp->if_real_bytes = 0;
4253}
4254
4255/*
4256 * Switch from inline buffer to linear (direct) extent records.
4257 * new_size should already be rounded up to the next power of 2
4258 * by the caller (when appropriate), so use new_size as it is.
4259 * However, since new_size may be rounded up, we can't update
4260 * if_bytes here. It is the caller's responsibility to update
4261 * if_bytes upon return.
4262 */
4263void
4264xfs_iext_inline_to_direct(
4265 xfs_ifork_t *ifp, /* inode fork pointer */
4266 int new_size) /* number of extents in file */
4267{
4268 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4269 kmem_alloc(new_size, KM_SLEEP);
4270 memset(ifp->if_u1.if_extents, 0, new_size);
4271 if (ifp->if_bytes) {
4272 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4273 ifp->if_bytes);
4274 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4275 sizeof(xfs_bmbt_rec_t));
4276 }
4277 ifp->if_real_bytes = new_size;
4278}
4279
4280/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004281 * Resize an extent indirection array to new_size bytes.
4282 */
4283void
4284xfs_iext_realloc_indirect(
4285 xfs_ifork_t *ifp, /* inode fork pointer */
4286 int new_size) /* new indirection array size */
4287{
4288 int nlists; /* number of irec's (ex lists) */
4289 int size; /* current indirection array size */
4290
4291 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4292 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4293 size = nlists * sizeof(xfs_ext_irec_t);
4294 ASSERT(ifp->if_real_bytes);
4295 ASSERT((new_size >= 0) && (new_size != size));
4296 if (new_size == 0) {
4297 xfs_iext_destroy(ifp);
4298 } else {
4299 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4300 kmem_realloc(ifp->if_u1.if_ext_irec,
4301 new_size, size, KM_SLEEP);
4302 }
4303}
4304
4305/*
4306 * Switch from indirection array to linear (direct) extent allocations.
4307 */
4308void
4309xfs_iext_indirect_to_direct(
4310 xfs_ifork_t *ifp) /* inode fork pointer */
4311{
4312 xfs_bmbt_rec_t *ep; /* extent record pointer */
4313 xfs_extnum_t nextents; /* number of extents in file */
4314 int size; /* size of file extents */
4315
4316 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4317 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4318 ASSERT(nextents <= XFS_LINEAR_EXTS);
4319 size = nextents * sizeof(xfs_bmbt_rec_t);
4320
4321 xfs_iext_irec_compact_full(ifp);
4322 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4323
4324 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4325 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4326 ifp->if_flags &= ~XFS_IFEXTIREC;
4327 ifp->if_u1.if_extents = ep;
4328 ifp->if_bytes = size;
4329 if (nextents < XFS_LINEAR_EXTS) {
4330 xfs_iext_realloc_direct(ifp, size);
4331 }
4332}
4333
4334/*
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004335 * Free incore file extents.
4336 */
4337void
4338xfs_iext_destroy(
4339 xfs_ifork_t *ifp) /* inode fork pointer */
4340{
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004341 if (ifp->if_flags & XFS_IFEXTIREC) {
4342 int erp_idx;
4343 int nlists;
4344
4345 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4346 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4347 xfs_iext_irec_remove(ifp, erp_idx);
4348 }
4349 ifp->if_flags &= ~XFS_IFEXTIREC;
4350 } else if (ifp->if_real_bytes) {
Mandy Kirkconnell4eea22f2006-03-14 13:29:52 +11004351 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4352 } else if (ifp->if_bytes) {
4353 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4354 sizeof(xfs_bmbt_rec_t));
4355 }
4356 ifp->if_u1.if_extents = NULL;
4357 ifp->if_real_bytes = 0;
4358 ifp->if_bytes = 0;
4359}
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004360
4361/*
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004362 * Return a pointer to the extent record for file system block bno.
4363 */
4364xfs_bmbt_rec_t * /* pointer to found extent record */
4365xfs_iext_bno_to_ext(
4366 xfs_ifork_t *ifp, /* inode fork pointer */
4367 xfs_fileoff_t bno, /* block number to search for */
4368 xfs_extnum_t *idxp) /* index of target extent */
4369{
4370 xfs_bmbt_rec_t *base; /* pointer to first extent */
4371 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4372 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4373 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
Nathan Scottc41564b2006-03-29 08:55:14 +10004374 int high; /* upper boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004375 xfs_extnum_t idx = 0; /* index of target extent */
Nathan Scottc41564b2006-03-29 08:55:14 +10004376 int low; /* lower boundary in search */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004377 xfs_extnum_t nextents; /* number of file extents */
4378 xfs_fileoff_t startoff = 0; /* start offset of extent */
4379
4380 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4381 if (nextents == 0) {
4382 *idxp = 0;
4383 return NULL;
4384 }
4385 low = 0;
4386 if (ifp->if_flags & XFS_IFEXTIREC) {
4387 /* Find target extent list */
4388 int erp_idx = 0;
4389 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4390 base = erp->er_extbuf;
4391 high = erp->er_extcount - 1;
4392 } else {
4393 base = ifp->if_u1.if_extents;
4394 high = nextents - 1;
4395 }
4396 /* Binary search extent records */
4397 while (low <= high) {
4398 idx = (low + high) >> 1;
4399 ep = base + idx;
4400 startoff = xfs_bmbt_get_startoff(ep);
4401 blockcount = xfs_bmbt_get_blockcount(ep);
4402 if (bno < startoff) {
4403 high = idx - 1;
4404 } else if (bno >= startoff + blockcount) {
4405 low = idx + 1;
4406 } else {
4407 /* Convert back to file-based extent index */
4408 if (ifp->if_flags & XFS_IFEXTIREC) {
4409 idx += erp->er_extoff;
4410 }
4411 *idxp = idx;
4412 return ep;
4413 }
4414 }
4415 /* Convert back to file-based extent index */
4416 if (ifp->if_flags & XFS_IFEXTIREC) {
4417 idx += erp->er_extoff;
4418 }
4419 if (bno >= startoff + blockcount) {
4420 if (++idx == nextents) {
4421 ep = NULL;
4422 } else {
4423 ep = xfs_iext_get_ext(ifp, idx);
4424 }
4425 }
4426 *idxp = idx;
4427 return ep;
4428}
4429
4430/*
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004431 * Return a pointer to the indirection array entry containing the
4432 * extent record for filesystem block bno. Store the index of the
4433 * target irec in *erp_idxp.
4434 */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004435xfs_ext_irec_t * /* pointer to found extent record */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004436xfs_iext_bno_to_irec(
4437 xfs_ifork_t *ifp, /* inode fork pointer */
4438 xfs_fileoff_t bno, /* block number to search for */
4439 int *erp_idxp) /* irec index of target ext list */
4440{
4441 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4442 xfs_ext_irec_t *erp_next; /* next indirection array entry */
Mandy Kirkconnell8867bc92006-03-17 17:25:04 +11004443 int erp_idx; /* indirection array index */
Mandy Kirkconnell0293ce32006-03-14 13:30:23 +11004444 int nlists; /* number of extent irec's (lists) */
4445 int high; /* binary search upper limit */
4446 int low; /* binary search lower limit */
4447
4448 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4449 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4450 erp_idx = 0;
4451 low = 0;
4452 high = nlists - 1;
4453 while (low <= high) {
4454 erp_idx = (low + high) >> 1;
4455 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4456 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4457 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4458 high = erp_idx - 1;
4459 } else if (erp_next && bno >=
4460 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4461 low = erp_idx + 1;
4462 } else {
4463 break;
4464 }
4465 }
4466 *erp_idxp = erp_idx;
4467 return erp;
4468}
4469
4470/*
4471 * Return a pointer to the indirection array entry containing the
4472 * extent record at file extent index *idxp. Store the index of the
4473 * target irec in *erp_idxp and store the page index of the target
4474 * extent record in *idxp.
4475 */
4476xfs_ext_irec_t *
4477xfs_iext_idx_to_irec(
4478 xfs_ifork_t *ifp, /* inode fork pointer */
4479 xfs_extnum_t *idxp, /* extent index (file -> page) */
4480 int *erp_idxp, /* pointer to target irec */
4481 int realloc) /* new bytes were just added */
4482{
4483 xfs_ext_irec_t *prev; /* pointer to previous irec */
4484 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4485 int erp_idx; /* indirection array index */
4486 int nlists; /* number of irec's (ex lists) */
4487 int high; /* binary search upper limit */
4488 int low; /* binary search lower limit */
4489 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4490
4491 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4492 ASSERT(page_idx >= 0 && page_idx <=
4493 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4494 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4495 erp_idx = 0;
4496 low = 0;
4497 high = nlists - 1;
4498
4499 /* Binary search extent irec's */
4500 while (low <= high) {
4501 erp_idx = (low + high) >> 1;
4502 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4503 prev = erp_idx > 0 ? erp - 1 : NULL;
4504 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4505 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4506 high = erp_idx - 1;
4507 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4508 (page_idx == erp->er_extoff + erp->er_extcount &&
4509 !realloc)) {
4510 low = erp_idx + 1;
4511 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4512 erp->er_extcount == XFS_LINEAR_EXTS) {
4513 ASSERT(realloc);
4514 page_idx = 0;
4515 erp_idx++;
4516 erp = erp_idx < nlists ? erp + 1 : NULL;
4517 break;
4518 } else {
4519 page_idx -= erp->er_extoff;
4520 break;
4521 }
4522 }
4523 *idxp = page_idx;
4524 *erp_idxp = erp_idx;
4525 return(erp);
4526}
4527
4528/*
4529 * Allocate and initialize an indirection array once the space needed
4530 * for incore extents increases above XFS_IEXT_BUFSZ.
4531 */
4532void
4533xfs_iext_irec_init(
4534 xfs_ifork_t *ifp) /* inode fork pointer */
4535{
4536 xfs_ext_irec_t *erp; /* indirection array pointer */
4537 xfs_extnum_t nextents; /* number of extents in file */
4538
4539 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4540 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4541 ASSERT(nextents <= XFS_LINEAR_EXTS);
4542
4543 erp = (xfs_ext_irec_t *)
4544 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4545
4546 if (nextents == 0) {
4547 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4548 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4549 } else if (!ifp->if_real_bytes) {
4550 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4551 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4552 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4553 }
4554 erp->er_extbuf = ifp->if_u1.if_extents;
4555 erp->er_extcount = nextents;
4556 erp->er_extoff = 0;
4557
4558 ifp->if_flags |= XFS_IFEXTIREC;
4559 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4560 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4561 ifp->if_u1.if_ext_irec = erp;
4562
4563 return;
4564}
4565
4566/*
4567 * Allocate and initialize a new entry in the indirection array.
4568 */
4569xfs_ext_irec_t *
4570xfs_iext_irec_new(
4571 xfs_ifork_t *ifp, /* inode fork pointer */
4572 int erp_idx) /* index for new irec */
4573{
4574 xfs_ext_irec_t *erp; /* indirection array pointer */
4575 int i; /* loop counter */
4576 int nlists; /* number of irec's (ex lists) */
4577
4578 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4579 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4580
4581 /* Resize indirection array */
4582 xfs_iext_realloc_indirect(ifp, ++nlists *
4583 sizeof(xfs_ext_irec_t));
4584 /*
4585 * Move records down in the array so the
4586 * new page can use erp_idx.
4587 */
4588 erp = ifp->if_u1.if_ext_irec;
4589 for (i = nlists - 1; i > erp_idx; i--) {
4590 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4591 }
4592 ASSERT(i == erp_idx);
4593
4594 /* Initialize new extent record */
4595 erp = ifp->if_u1.if_ext_irec;
4596 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4597 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4598 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4599 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4600 erp[erp_idx].er_extcount = 0;
4601 erp[erp_idx].er_extoff = erp_idx > 0 ?
4602 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4603 return (&erp[erp_idx]);
4604}
4605
4606/*
4607 * Remove a record from the indirection array.
4608 */
4609void
4610xfs_iext_irec_remove(
4611 xfs_ifork_t *ifp, /* inode fork pointer */
4612 int erp_idx) /* irec index to remove */
4613{
4614 xfs_ext_irec_t *erp; /* indirection array pointer */
4615 int i; /* loop counter */
4616 int nlists; /* number of irec's (ex lists) */
4617
4618 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4619 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4620 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4621 if (erp->er_extbuf) {
4622 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4623 -erp->er_extcount);
4624 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4625 }
4626 /* Compact extent records */
4627 erp = ifp->if_u1.if_ext_irec;
4628 for (i = erp_idx; i < nlists - 1; i++) {
4629 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4630 }
4631 /*
4632 * Manually free the last extent record from the indirection
4633 * array. A call to xfs_iext_realloc_indirect() with a size
4634 * of zero would result in a call to xfs_iext_destroy() which
4635 * would in turn call this function again, creating a nasty
4636 * infinite loop.
4637 */
4638 if (--nlists) {
4639 xfs_iext_realloc_indirect(ifp,
4640 nlists * sizeof(xfs_ext_irec_t));
4641 } else {
4642 kmem_free(ifp->if_u1.if_ext_irec,
4643 sizeof(xfs_ext_irec_t));
4644 }
4645 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4646}
4647
4648/*
4649 * This is called to clean up large amounts of unused memory allocated
4650 * by the indirection array. Before compacting anything though, verify
4651 * that the indirection array is still needed and switch back to the
4652 * linear extent list (or even the inline buffer) if possible. The
4653 * compaction policy is as follows:
4654 *
4655 * Full Compaction: Extents fit into a single page (or inline buffer)
4656 * Full Compaction: Extents occupy less than 10% of allocated space
4657 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4658 * No Compaction: Extents occupy at least 50% of allocated space
4659 */
4660void
4661xfs_iext_irec_compact(
4662 xfs_ifork_t *ifp) /* inode fork pointer */
4663{
4664 xfs_extnum_t nextents; /* number of extents in file */
4665 int nlists; /* number of irec's (ex lists) */
4666
4667 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4668 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4669 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4670
4671 if (nextents == 0) {
4672 xfs_iext_destroy(ifp);
4673 } else if (nextents <= XFS_INLINE_EXTS) {
4674 xfs_iext_indirect_to_direct(ifp);
4675 xfs_iext_direct_to_inline(ifp, nextents);
4676 } else if (nextents <= XFS_LINEAR_EXTS) {
4677 xfs_iext_indirect_to_direct(ifp);
4678 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4679 xfs_iext_irec_compact_full(ifp);
4680 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4681 xfs_iext_irec_compact_pages(ifp);
4682 }
4683}
4684
4685/*
4686 * Combine extents from neighboring extent pages.
4687 */
4688void
4689xfs_iext_irec_compact_pages(
4690 xfs_ifork_t *ifp) /* inode fork pointer */
4691{
4692 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4693 int erp_idx = 0; /* indirection array index */
4694 int nlists; /* number of irec's (ex lists) */
4695
4696 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4697 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4698 while (erp_idx < nlists - 1) {
4699 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4700 erp_next = erp + 1;
4701 if (erp_next->er_extcount <=
4702 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4703 memmove(&erp->er_extbuf[erp->er_extcount],
4704 erp_next->er_extbuf, erp_next->er_extcount *
4705 sizeof(xfs_bmbt_rec_t));
4706 erp->er_extcount += erp_next->er_extcount;
4707 /*
4708 * Free page before removing extent record
4709 * so er_extoffs don't get modified in
4710 * xfs_iext_irec_remove.
4711 */
4712 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4713 erp_next->er_extbuf = NULL;
4714 xfs_iext_irec_remove(ifp, erp_idx + 1);
4715 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4716 } else {
4717 erp_idx++;
4718 }
4719 }
4720}
4721
4722/*
4723 * Fully compact the extent records managed by the indirection array.
4724 */
4725void
4726xfs_iext_irec_compact_full(
4727 xfs_ifork_t *ifp) /* inode fork pointer */
4728{
4729 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4730 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4731 int erp_idx = 0; /* extent irec index */
4732 int ext_avail; /* empty entries in ex list */
4733 int ext_diff; /* number of exts to add */
4734 int nlists; /* number of irec's (ex lists) */
4735
4736 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4737 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4738 erp = ifp->if_u1.if_ext_irec;
4739 ep = &erp->er_extbuf[erp->er_extcount];
4740 erp_next = erp + 1;
4741 ep_next = erp_next->er_extbuf;
4742 while (erp_idx < nlists - 1) {
4743 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4744 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4745 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4746 erp->er_extcount += ext_diff;
4747 erp_next->er_extcount -= ext_diff;
4748 /* Remove next page */
4749 if (erp_next->er_extcount == 0) {
4750 /*
4751 * Free page before removing extent record
4752 * so er_extoffs don't get modified in
4753 * xfs_iext_irec_remove.
4754 */
4755 kmem_free(erp_next->er_extbuf,
4756 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4757 erp_next->er_extbuf = NULL;
4758 xfs_iext_irec_remove(ifp, erp_idx + 1);
4759 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4760 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4761 /* Update next page */
4762 } else {
4763 /* Move rest of page up to become next new page */
4764 memmove(erp_next->er_extbuf, ep_next,
4765 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4766 ep_next = erp_next->er_extbuf;
4767 memset(&ep_next[erp_next->er_extcount], 0,
4768 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4769 sizeof(xfs_bmbt_rec_t));
4770 }
4771 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4772 erp_idx++;
4773 if (erp_idx < nlists)
4774 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4775 else
4776 break;
4777 }
4778 ep = &erp->er_extbuf[erp->er_extcount];
4779 erp_next = erp + 1;
4780 ep_next = erp_next->er_extbuf;
4781 }
4782}
4783
4784/*
4785 * This is called to update the er_extoff field in the indirection
4786 * array when extents have been added or removed from one of the
4787 * extent lists. erp_idx contains the irec index to begin updating
4788 * at and ext_diff contains the number of extents that were added
4789 * or removed.
4790 */
4791void
4792xfs_iext_irec_update_extoffs(
4793 xfs_ifork_t *ifp, /* inode fork pointer */
4794 int erp_idx, /* irec index to update */
4795 int ext_diff) /* number of new extents */
4796{
4797 int i; /* loop counter */
4798 int nlists; /* number of irec's (ex lists */
4799
4800 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4801 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4802 for (i = erp_idx; i < nlists; i++) {
4803 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4804 }
4805}