blob: 13b92a3d3d8bf98797950e5bcc7a3a830c696927 [file] [log] [blame]
Mike Marciniszyn77241052015-07-30 15:17:43 -04001/*
2 *
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2015 Intel Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * BSD LICENSE
20 *
21 * Copyright(c) 2015 Intel Corporation.
22 *
23 * Redistribution and use in source and binary forms, with or without
24 * modification, are permitted provided that the following conditions
25 * are met:
26 *
27 * - Redistributions of source code must retain the above copyright
28 * notice, this list of conditions and the following disclaimer.
29 * - Redistributions in binary form must reproduce the above copyright
30 * notice, this list of conditions and the following disclaimer in
31 * the documentation and/or other materials provided with the
32 * distribution.
33 * - Neither the name of Intel Corporation nor the names of its
34 * contributors may be used to endorse or promote products derived
35 * from this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 */
50
51/*
52 * This file contains all of the code that is specific to the HFI chip
53 */
54
55#include <linux/pci.h>
56#include <linux/delay.h>
57#include <linux/interrupt.h>
58#include <linux/module.h>
59
60#include "hfi.h"
61#include "trace.h"
62#include "mad.h"
63#include "pio.h"
64#include "sdma.h"
65#include "eprom.h"
Dean Luick5d9157a2015-11-16 21:59:34 -050066#include "efivar.h"
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -080067#include "platform.h"
Ashutosh Dixitaffa48d2016-02-03 14:33:06 -080068#include "aspm.h"
Mike Marciniszyn77241052015-07-30 15:17:43 -040069
70#define NUM_IB_PORTS 1
71
72uint kdeth_qp;
73module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
74MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
75
76uint num_vls = HFI1_MAX_VLS_SUPPORTED;
77module_param(num_vls, uint, S_IRUGO);
78MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
79
80/*
81 * Default time to aggregate two 10K packets from the idle state
82 * (timer not running). The timer starts at the end of the first packet,
83 * so only the time for one 10K packet and header plus a bit extra is needed.
84 * 10 * 1024 + 64 header byte = 10304 byte
85 * 10304 byte / 12.5 GB/s = 824.32ns
86 */
87uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
88module_param(rcv_intr_timeout, uint, S_IRUGO);
89MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
90
91uint rcv_intr_count = 16; /* same as qib */
92module_param(rcv_intr_count, uint, S_IRUGO);
93MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
94
95ushort link_crc_mask = SUPPORTED_CRCS;
96module_param(link_crc_mask, ushort, S_IRUGO);
97MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
98
99uint loopback;
100module_param_named(loopback, loopback, uint, S_IRUGO);
101MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
102
103/* Other driver tunables */
104uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
105static ushort crc_14b_sideband = 1;
106static uint use_flr = 1;
107uint quick_linkup; /* skip LNI */
108
109struct flag_table {
110 u64 flag; /* the flag */
111 char *str; /* description string */
112 u16 extra; /* extra information */
113 u16 unused0;
114 u32 unused1;
115};
116
117/* str must be a string constant */
118#define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
119#define FLAG_ENTRY0(str, flag) {flag, str, 0}
120
121/* Send Error Consequences */
122#define SEC_WRITE_DROPPED 0x1
123#define SEC_PACKET_DROPPED 0x2
124#define SEC_SC_HALTED 0x4 /* per-context only */
125#define SEC_SPC_FREEZE 0x8 /* per-HFI only */
126
Mike Marciniszyn77241052015-07-30 15:17:43 -0400127#define MIN_KERNEL_KCTXTS 2
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -0500128#define FIRST_KERNEL_KCTXT 1
Mike Marciniszyn77241052015-07-30 15:17:43 -0400129#define NUM_MAP_REGS 32
130
131/* Bit offset into the GUID which carries HFI id information */
132#define GUID_HFI_INDEX_SHIFT 39
133
134/* extract the emulation revision */
135#define emulator_rev(dd) ((dd)->irev >> 8)
136/* parallel and serial emulation versions are 3 and 4 respectively */
137#define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
138#define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
139
140/* RSM fields */
141
142/* packet type */
143#define IB_PACKET_TYPE 2ull
144#define QW_SHIFT 6ull
145/* QPN[7..1] */
146#define QPN_WIDTH 7ull
147
148/* LRH.BTH: QW 0, OFFSET 48 - for match */
149#define LRH_BTH_QW 0ull
150#define LRH_BTH_BIT_OFFSET 48ull
151#define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off))
152#define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
153#define LRH_BTH_SELECT
154#define LRH_BTH_MASK 3ull
155#define LRH_BTH_VALUE 2ull
156
157/* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
158#define LRH_SC_QW 0ull
159#define LRH_SC_BIT_OFFSET 56ull
160#define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off))
161#define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
162#define LRH_SC_MASK 128ull
163#define LRH_SC_VALUE 0ull
164
165/* SC[n..0] QW 0, OFFSET 60 - for select */
166#define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull))
167
168/* QPN[m+n:1] QW 1, OFFSET 1 */
169#define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull))
170
171/* defines to build power on SC2VL table */
172#define SC2VL_VAL( \
173 num, \
174 sc0, sc0val, \
175 sc1, sc1val, \
176 sc2, sc2val, \
177 sc3, sc3val, \
178 sc4, sc4val, \
179 sc5, sc5val, \
180 sc6, sc6val, \
181 sc7, sc7val) \
182( \
183 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
184 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
185 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
186 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
187 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
188 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
189 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
190 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \
191)
192
193#define DC_SC_VL_VAL( \
194 range, \
195 e0, e0val, \
196 e1, e1val, \
197 e2, e2val, \
198 e3, e3val, \
199 e4, e4val, \
200 e5, e5val, \
201 e6, e6val, \
202 e7, e7val, \
203 e8, e8val, \
204 e9, e9val, \
205 e10, e10val, \
206 e11, e11val, \
207 e12, e12val, \
208 e13, e13val, \
209 e14, e14val, \
210 e15, e15val) \
211( \
212 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
213 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
214 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
215 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
216 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
217 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
218 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
219 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
220 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
221 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
222 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
223 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
224 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
225 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
226 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
227 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
228)
229
230/* all CceStatus sub-block freeze bits */
231#define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
232 | CCE_STATUS_RXE_FROZE_SMASK \
233 | CCE_STATUS_TXE_FROZE_SMASK \
234 | CCE_STATUS_TXE_PIO_FROZE_SMASK)
235/* all CceStatus sub-block TXE pause bits */
236#define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
237 | CCE_STATUS_TXE_PAUSED_SMASK \
238 | CCE_STATUS_SDMA_PAUSED_SMASK)
239/* all CceStatus sub-block RXE pause bits */
240#define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
241
242/*
243 * CCE Error flags.
244 */
245static struct flag_table cce_err_status_flags[] = {
246/* 0*/ FLAG_ENTRY0("CceCsrParityErr",
247 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
248/* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr",
249 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
250/* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr",
251 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
252/* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
253 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
254/* 4*/ FLAG_ENTRY0("CceTrgtAccessErr",
255 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
256/* 5*/ FLAG_ENTRY0("CceRspdDataParityErr",
257 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
258/* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
259 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
260/* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr",
261 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
262/* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
263 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
264/* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
265 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
266/*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
267 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
268/*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
269 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
270/*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
271 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
272/*13*/ FLAG_ENTRY0("PcicRetryMemCorErr",
273 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
274/*14*/ FLAG_ENTRY0("PcicRetryMemCorErr",
275 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
276/*15*/ FLAG_ENTRY0("PcicPostHdQCorErr",
277 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
278/*16*/ FLAG_ENTRY0("PcicPostHdQCorErr",
279 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
280/*17*/ FLAG_ENTRY0("PcicPostHdQCorErr",
281 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
282/*18*/ FLAG_ENTRY0("PcicCplDatQCorErr",
283 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
284/*19*/ FLAG_ENTRY0("PcicNPostHQParityErr",
285 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
286/*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr",
287 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
288/*21*/ FLAG_ENTRY0("PcicRetryMemUncErr",
289 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
290/*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr",
291 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
292/*23*/ FLAG_ENTRY0("PcicPostHdQUncErr",
293 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
294/*24*/ FLAG_ENTRY0("PcicPostDatQUncErr",
295 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
296/*25*/ FLAG_ENTRY0("PcicCplHdQUncErr",
297 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
298/*26*/ FLAG_ENTRY0("PcicCplDatQUncErr",
299 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
300/*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr",
301 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
302/*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr",
303 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
304/*29*/ FLAG_ENTRY0("PcicReceiveParityErr",
305 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
306/*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr",
307 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
308/*31*/ FLAG_ENTRY0("LATriggered",
309 CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
310/*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr",
311 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
312/*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr",
313 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
314/*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
315 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
316/*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
317 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
318/*36*/ FLAG_ENTRY0("CceMsixTableCorErr",
319 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
320/*37*/ FLAG_ENTRY0("CceMsixTableUncErr",
321 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
322/*38*/ FLAG_ENTRY0("CceIntMapCorErr",
323 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
324/*39*/ FLAG_ENTRY0("CceIntMapUncErr",
325 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
326/*40*/ FLAG_ENTRY0("CceMsixCsrParityErr",
327 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
328/*41-63 reserved*/
329};
330
331/*
332 * Misc Error flags
333 */
334#define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
335static struct flag_table misc_err_status_flags[] = {
336/* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
337/* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
338/* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
339/* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
340/* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
341/* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
342/* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
343/* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
344/* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
345/* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
346/*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
347/*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
348/*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
349};
350
351/*
352 * TXE PIO Error flags and consequences
353 */
354static struct flag_table pio_err_status_flags[] = {
355/* 0*/ FLAG_ENTRY("PioWriteBadCtxt",
356 SEC_WRITE_DROPPED,
357 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
358/* 1*/ FLAG_ENTRY("PioWriteAddrParity",
359 SEC_SPC_FREEZE,
360 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
361/* 2*/ FLAG_ENTRY("PioCsrParity",
362 SEC_SPC_FREEZE,
363 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
364/* 3*/ FLAG_ENTRY("PioSbMemFifo0",
365 SEC_SPC_FREEZE,
366 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
367/* 4*/ FLAG_ENTRY("PioSbMemFifo1",
368 SEC_SPC_FREEZE,
369 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
370/* 5*/ FLAG_ENTRY("PioPccFifoParity",
371 SEC_SPC_FREEZE,
372 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
373/* 6*/ FLAG_ENTRY("PioPecFifoParity",
374 SEC_SPC_FREEZE,
375 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
376/* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity",
377 SEC_SPC_FREEZE,
378 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
379/* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
380 SEC_SPC_FREEZE,
381 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
382/* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr",
383 SEC_SPC_FREEZE,
384 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
385/*10*/ FLAG_ENTRY("PioSmPktResetParity",
386 SEC_SPC_FREEZE,
387 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
388/*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc",
389 SEC_SPC_FREEZE,
390 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
391/*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc",
392 SEC_SPC_FREEZE,
393 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
394/*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor",
395 0,
396 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
397/*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor",
398 0,
399 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
400/*15*/ FLAG_ENTRY("PioCreditRetFifoParity",
401 SEC_SPC_FREEZE,
402 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
403/*16*/ FLAG_ENTRY("PioPpmcPblFifo",
404 SEC_SPC_FREEZE,
405 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
406/*17*/ FLAG_ENTRY("PioInitSmIn",
407 0,
408 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
409/*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm",
410 SEC_SPC_FREEZE,
411 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
412/*19*/ FLAG_ENTRY("PioHostAddrMemUnc",
413 SEC_SPC_FREEZE,
414 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
415/*20*/ FLAG_ENTRY("PioHostAddrMemCor",
416 0,
417 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
418/*21*/ FLAG_ENTRY("PioWriteDataParity",
419 SEC_SPC_FREEZE,
420 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
421/*22*/ FLAG_ENTRY("PioStateMachine",
422 SEC_SPC_FREEZE,
423 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
424/*23*/ FLAG_ENTRY("PioWriteQwValidParity",
425 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
426 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
427/*24*/ FLAG_ENTRY("PioBlockQwCountParity",
428 SEC_WRITE_DROPPED|SEC_SPC_FREEZE,
429 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
430/*25*/ FLAG_ENTRY("PioVlfVlLenParity",
431 SEC_SPC_FREEZE,
432 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
433/*26*/ FLAG_ENTRY("PioVlfSopParity",
434 SEC_SPC_FREEZE,
435 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
436/*27*/ FLAG_ENTRY("PioVlFifoParity",
437 SEC_SPC_FREEZE,
438 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
439/*28*/ FLAG_ENTRY("PioPpmcBqcMemParity",
440 SEC_SPC_FREEZE,
441 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
442/*29*/ FLAG_ENTRY("PioPpmcSopLen",
443 SEC_SPC_FREEZE,
444 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
445/*30-31 reserved*/
446/*32*/ FLAG_ENTRY("PioCurrentFreeCntParity",
447 SEC_SPC_FREEZE,
448 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
449/*33*/ FLAG_ENTRY("PioLastReturnedCntParity",
450 SEC_SPC_FREEZE,
451 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
452/*34*/ FLAG_ENTRY("PioPccSopHeadParity",
453 SEC_SPC_FREEZE,
454 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
455/*35*/ FLAG_ENTRY("PioPecSopHeadParityErr",
456 SEC_SPC_FREEZE,
457 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
458/*36-63 reserved*/
459};
460
461/* TXE PIO errors that cause an SPC freeze */
462#define ALL_PIO_FREEZE_ERR \
463 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
464 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
465 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
466 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
467 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
468 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
469 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
470 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
471 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
472 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
473 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
474 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
475 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
476 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
477 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
478 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
479 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
480 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
481 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
482 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
483 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
484 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
485 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
486 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
487 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
488 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
489 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
490 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
491 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
492
493/*
494 * TXE SDMA Error flags
495 */
496static struct flag_table sdma_err_status_flags[] = {
497/* 0*/ FLAG_ENTRY0("SDmaRpyTagErr",
498 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
499/* 1*/ FLAG_ENTRY0("SDmaCsrParityErr",
500 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
501/* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
502 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
503/* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
504 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
505/*04-63 reserved*/
506};
507
508/* TXE SDMA errors that cause an SPC freeze */
509#define ALL_SDMA_FREEZE_ERR \
510 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
511 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
512 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
513
Mike Marciniszyn69a00b82016-02-03 14:31:49 -0800514/* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
515#define PORT_DISCARD_EGRESS_ERRS \
516 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
517 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
518 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
519
Mike Marciniszyn77241052015-07-30 15:17:43 -0400520/*
521 * TXE Egress Error flags
522 */
523#define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
524static struct flag_table egress_err_status_flags[] = {
525/* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
526/* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
527/* 2 reserved */
528/* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
529 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
530/* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
531/* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
532/* 6 reserved */
533/* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr",
534 SEES(TX_PIO_LAUNCH_INTF_PARITY)),
535/* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
536 SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
537/* 9-10 reserved */
538/*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
539 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
540/*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
541/*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
542/*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
543/*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
544/*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
545 SEES(TX_SDMA0_DISALLOWED_PACKET)),
546/*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
547 SEES(TX_SDMA1_DISALLOWED_PACKET)),
548/*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
549 SEES(TX_SDMA2_DISALLOWED_PACKET)),
550/*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
551 SEES(TX_SDMA3_DISALLOWED_PACKET)),
552/*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
553 SEES(TX_SDMA4_DISALLOWED_PACKET)),
554/*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
555 SEES(TX_SDMA5_DISALLOWED_PACKET)),
556/*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
557 SEES(TX_SDMA6_DISALLOWED_PACKET)),
558/*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
559 SEES(TX_SDMA7_DISALLOWED_PACKET)),
560/*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
561 SEES(TX_SDMA8_DISALLOWED_PACKET)),
562/*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
563 SEES(TX_SDMA9_DISALLOWED_PACKET)),
564/*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
565 SEES(TX_SDMA10_DISALLOWED_PACKET)),
566/*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
567 SEES(TX_SDMA11_DISALLOWED_PACKET)),
568/*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
569 SEES(TX_SDMA12_DISALLOWED_PACKET)),
570/*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
571 SEES(TX_SDMA13_DISALLOWED_PACKET)),
572/*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
573 SEES(TX_SDMA14_DISALLOWED_PACKET)),
574/*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
575 SEES(TX_SDMA15_DISALLOWED_PACKET)),
576/*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
577 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
578/*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
579 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
580/*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
581 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
582/*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
583 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
584/*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
585 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
586/*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
587 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
588/*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
589 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
590/*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
591 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
592/*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
593 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
594/*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
595/*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
596/*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
597/*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
598/*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
599/*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
600/*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
601/*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
602/*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
603/*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
604/*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
605/*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
606/*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
607/*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
608/*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
609/*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
610/*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
611/*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
612/*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
613/*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
614/*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
615/*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
616 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
617/*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
618 SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
619};
620
621/*
622 * TXE Egress Error Info flags
623 */
624#define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
625static struct flag_table egress_err_info_flags[] = {
626/* 0*/ FLAG_ENTRY0("Reserved", 0ull),
627/* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)),
628/* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
629/* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
630/* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
631/* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
632/* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
633/* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
634/* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)),
635/* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
636/*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)),
637/*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
638/*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
639/*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
640/*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
641/*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
642/*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
643/*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
644/*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
645/*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
646/*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
647/*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
648};
649
650/* TXE Egress errors that cause an SPC freeze */
651#define ALL_TXE_EGRESS_FREEZE_ERR \
652 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
653 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \
654 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
655 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
656 | SEES(TX_LAUNCH_CSR_PARITY) \
657 | SEES(TX_SBRD_CTL_CSR_PARITY) \
658 | SEES(TX_CONFIG_PARITY) \
659 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
660 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
661 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
662 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
663 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
664 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
665 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
666 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
667 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
668 | SEES(TX_CREDIT_RETURN_PARITY))
669
670/*
671 * TXE Send error flags
672 */
673#define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
674static struct flag_table send_err_status_flags[] = {
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -0500675/* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
Mike Marciniszyn77241052015-07-30 15:17:43 -0400676/* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
677/* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
678};
679
680/*
681 * TXE Send Context Error flags and consequences
682 */
683static struct flag_table sc_err_status_flags[] = {
684/* 0*/ FLAG_ENTRY("InconsistentSop",
685 SEC_PACKET_DROPPED | SEC_SC_HALTED,
686 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
687/* 1*/ FLAG_ENTRY("DisallowedPacket",
688 SEC_PACKET_DROPPED | SEC_SC_HALTED,
689 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
690/* 2*/ FLAG_ENTRY("WriteCrossesBoundary",
691 SEC_WRITE_DROPPED | SEC_SC_HALTED,
692 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
693/* 3*/ FLAG_ENTRY("WriteOverflow",
694 SEC_WRITE_DROPPED | SEC_SC_HALTED,
695 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
696/* 4*/ FLAG_ENTRY("WriteOutOfBounds",
697 SEC_WRITE_DROPPED | SEC_SC_HALTED,
698 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
699/* 5-63 reserved*/
700};
701
702/*
703 * RXE Receive Error flags
704 */
705#define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
706static struct flag_table rxe_err_status_flags[] = {
707/* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
708/* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
709/* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
710/* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
711/* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
712/* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
713/* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
714/* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
715/* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
716/* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
717/*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
718/*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
719/*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
720/*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
721/*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
722/*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
723/*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
724 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
725/*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
726/*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
727/*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr",
728 RXES(RBUF_BLOCK_LIST_READ_UNC)),
729/*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr",
730 RXES(RBUF_BLOCK_LIST_READ_COR)),
731/*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
732 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
733/*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
734 RXES(RBUF_CSR_QENT_CNT_PARITY)),
735/*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
736 RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
737/*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
738 RXES(RBUF_CSR_QVLD_BIT_PARITY)),
739/*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
740/*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
741/*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
742 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
743/*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
744/*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
745/*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
746/*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
747/*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
748/*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
749/*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
750/*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
751 RXES(RBUF_FL_INITDONE_PARITY)),
752/*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
753 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
754/*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
755/*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
756/*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
757/*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
758 RXES(LOOKUP_DES_PART1_UNC_COR)),
759/*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr",
760 RXES(LOOKUP_DES_PART2_PARITY)),
761/*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
762/*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
763/*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
764/*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
765/*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
766/*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
767/*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
768/*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
769/*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
770/*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
771/*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
772/*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
773/*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
774/*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
775/*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
776/*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
777/*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
778/*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
779/*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
780/*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
781/*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
782/*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
783};
784
785/* RXE errors that will trigger an SPC freeze */
786#define ALL_RXE_FREEZE_ERR \
787 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
788 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
789 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
790 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
791 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
792 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
793 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
794 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
795 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
796 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
797 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
798 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
799 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
800 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
801 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
802 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
803 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
804 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
805 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
806 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
807 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
808 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
809 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
810 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
811 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
812 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
813 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
814 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
815 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
816 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
817 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
818 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
819 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
820 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
821 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
822 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
823 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
824 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
825 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
826 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
827 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
828 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
829 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
830 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
831
832#define RXE_FREEZE_ABORT_MASK \
833 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
834 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
835 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
836
837/*
838 * DCC Error Flags
839 */
840#define DCCE(name) DCC_ERR_FLG_##name##_SMASK
841static struct flag_table dcc_err_flags[] = {
842 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
843 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
844 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
845 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
846 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
847 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
848 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
849 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
850 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
851 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
852 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
853 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
854 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
855 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
856 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
857 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
858 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
859 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
860 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
861 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
862 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
863 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
864 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
865 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
866 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
867 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
868 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
869 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
870 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
871 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
872 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
873 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
874 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
875 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
876 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
877 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
878 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
879 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
880 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
881 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
882 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
883 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
884 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
885 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
886 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
887 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
888};
889
890/*
891 * LCB error flags
892 */
893#define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
894static struct flag_table lcb_err_flags[] = {
895/* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
896/* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
897/* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
898/* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
899 LCBE(ALL_LNS_FAILED_REINIT_TEST)),
900/* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
901/* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
902/* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
903/* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
904/* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
905/* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
906/*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
907/*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
908/*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
909/*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
910 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
911/*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
912/*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
913/*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
914/*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
915/*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
916/*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
917 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
918/*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
919/*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
920/*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
921/*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
922/*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
923/*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
924/*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
925 LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
926/*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
927/*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
928 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
929/*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
930 LCBE(REDUNDANT_FLIT_PARITY_ERR))
931};
932
933/*
934 * DC8051 Error Flags
935 */
936#define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
937static struct flag_table dc8051_err_flags[] = {
938 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
939 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
940 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
941 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
942 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
943 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
944 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
945 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
946 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
947 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
948 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
949};
950
951/*
952 * DC8051 Information Error flags
953 *
954 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
955 */
956static struct flag_table dc8051_info_err_flags[] = {
957 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED),
958 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME),
959 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET),
960 FLAG_ENTRY0("Serdes internal loopback failure",
961 FAILED_SERDES_INTERNAL_LOOPBACK),
962 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT),
963 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING),
964 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE),
965 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM),
966 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ),
967 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
968 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
969 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT)
970};
971
972/*
973 * DC8051 Information Host Information flags
974 *
975 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
976 */
977static struct flag_table dc8051_info_host_msg_flags[] = {
978 FLAG_ENTRY0("Host request done", 0x0001),
979 FLAG_ENTRY0("BC SMA message", 0x0002),
980 FLAG_ENTRY0("BC PWR_MGM message", 0x0004),
981 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
982 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
983 FLAG_ENTRY0("External device config request", 0x0020),
984 FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
985 FLAG_ENTRY0("LinkUp achieved", 0x0080),
986 FLAG_ENTRY0("Link going down", 0x0100),
987};
988
989
990static u32 encoded_size(u32 size);
991static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
992static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
993static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
994 u8 *continuous);
995static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
996 u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
997static void read_vc_remote_link_width(struct hfi1_devdata *dd,
998 u8 *remote_tx_rate, u16 *link_widths);
999static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1000 u8 *flag_bits, u16 *link_widths);
1001static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1002 u8 *device_rev);
1003static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1004static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1005static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1006 u8 *tx_polarity_inversion,
1007 u8 *rx_polarity_inversion, u8 *max_rate);
1008static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1009 unsigned int context, u64 err_status);
1010static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1011static void handle_dcc_err(struct hfi1_devdata *dd,
1012 unsigned int context, u64 err_status);
1013static void handle_lcb_err(struct hfi1_devdata *dd,
1014 unsigned int context, u64 err_status);
1015static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1016static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1017static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1018static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1019static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1020static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1021static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1022static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1023static void set_partition_keys(struct hfi1_pportdata *);
1024static const char *link_state_name(u32 state);
1025static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1026 u32 state);
1027static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1028 u64 *out_data);
1029static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1030static int thermal_init(struct hfi1_devdata *dd);
1031
1032static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1033 int msecs);
1034static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1035static void handle_temp_err(struct hfi1_devdata *);
1036static void dc_shutdown(struct hfi1_devdata *);
1037static void dc_start(struct hfi1_devdata *);
1038
1039/*
1040 * Error interrupt table entry. This is used as input to the interrupt
1041 * "clear down" routine used for all second tier error interrupt register.
1042 * Second tier interrupt registers have a single bit representing them
1043 * in the top-level CceIntStatus.
1044 */
1045struct err_reg_info {
1046 u32 status; /* status CSR offset */
1047 u32 clear; /* clear CSR offset */
1048 u32 mask; /* mask CSR offset */
1049 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1050 const char *desc;
1051};
1052
1053#define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1054#define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1055#define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1056
1057/*
1058 * Helpers for building HFI and DC error interrupt table entries. Different
1059 * helpers are needed because of inconsistent register names.
1060 */
1061#define EE(reg, handler, desc) \
1062 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1063 handler, desc }
1064#define DC_EE1(reg, handler, desc) \
1065 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1066#define DC_EE2(reg, handler, desc) \
1067 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1068
1069/*
1070 * Table of the "misc" grouping of error interrupts. Each entry refers to
1071 * another register containing more information.
1072 */
1073static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1074/* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"),
1075/* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"),
1076/* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"),
1077/* 3*/ { 0, 0, 0, NULL }, /* reserved */
1078/* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"),
1079/* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"),
1080/* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1081/* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr")
1082 /* the rest are reserved */
1083};
1084
1085/*
1086 * Index into the Various section of the interrupt sources
1087 * corresponding to the Critical Temperature interrupt.
1088 */
1089#define TCRIT_INT_SOURCE 4
1090
1091/*
1092 * SDMA error interrupt entry - refers to another register containing more
1093 * information.
1094 */
1095static const struct err_reg_info sdma_eng_err =
1096 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1097
1098static const struct err_reg_info various_err[NUM_VARIOUS] = {
1099/* 0*/ { 0, 0, 0, NULL }, /* PbcInt */
1100/* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */
1101/* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"),
1102/* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"),
1103/* 4*/ { 0, 0, 0, NULL }, /* TCritInt */
1104 /* rest are reserved */
1105};
1106
1107/*
1108 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1109 * register can not be derived from the MTU value because 10K is not
1110 * a power of 2. Therefore, we need a constant. Everything else can
1111 * be calculated.
1112 */
1113#define DCC_CFG_PORT_MTU_CAP_10240 7
1114
1115/*
1116 * Table of the DC grouping of error interrupts. Each entry refers to
1117 * another register containing more information.
1118 */
1119static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1120/* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"),
1121/* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"),
1122/* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"),
1123/* 3*/ /* dc_lbm_int - special, see is_dc_int() */
1124 /* the rest are reserved */
1125};
1126
1127struct cntr_entry {
1128 /*
1129 * counter name
1130 */
1131 char *name;
1132
1133 /*
1134 * csr to read for name (if applicable)
1135 */
1136 u64 csr;
1137
1138 /*
1139 * offset into dd or ppd to store the counter's value
1140 */
1141 int offset;
1142
1143 /*
1144 * flags
1145 */
1146 u8 flags;
1147
1148 /*
1149 * accessor for stat element, context either dd or ppd
1150 */
1151 u64 (*rw_cntr)(const struct cntr_entry *,
1152 void *context,
1153 int vl,
1154 int mode,
1155 u64 data);
1156};
1157
1158#define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1159#define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1160
1161#define CNTR_ELEM(name, csr, offset, flags, accessor) \
1162{ \
1163 name, \
1164 csr, \
1165 offset, \
1166 flags, \
1167 accessor \
1168}
1169
1170/* 32bit RXE */
1171#define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1172CNTR_ELEM(#name, \
1173 (counter * 8 + RCV_COUNTER_ARRAY32), \
1174 0, flags | CNTR_32BIT, \
1175 port_access_u32_csr)
1176
1177#define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1178CNTR_ELEM(#name, \
1179 (counter * 8 + RCV_COUNTER_ARRAY32), \
1180 0, flags | CNTR_32BIT, \
1181 dev_access_u32_csr)
1182
1183/* 64bit RXE */
1184#define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1185CNTR_ELEM(#name, \
1186 (counter * 8 + RCV_COUNTER_ARRAY64), \
1187 0, flags, \
1188 port_access_u64_csr)
1189
1190#define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1191CNTR_ELEM(#name, \
1192 (counter * 8 + RCV_COUNTER_ARRAY64), \
1193 0, flags, \
1194 dev_access_u64_csr)
1195
1196#define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1197#define OVR_ELM(ctx) \
1198CNTR_ELEM("RcvHdrOvr" #ctx, \
1199 (RCV_HDR_OVFL_CNT + ctx*0x100), \
1200 0, CNTR_NORMAL, port_access_u64_csr)
1201
1202/* 32bit TXE */
1203#define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1204CNTR_ELEM(#name, \
1205 (counter * 8 + SEND_COUNTER_ARRAY32), \
1206 0, flags | CNTR_32BIT, \
1207 port_access_u32_csr)
1208
1209/* 64bit TXE */
1210#define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1211CNTR_ELEM(#name, \
1212 (counter * 8 + SEND_COUNTER_ARRAY64), \
1213 0, flags, \
1214 port_access_u64_csr)
1215
1216# define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1217CNTR_ELEM(#name,\
1218 counter * 8 + SEND_COUNTER_ARRAY64, \
1219 0, \
1220 flags, \
1221 dev_access_u64_csr)
1222
1223/* CCE */
1224#define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1225CNTR_ELEM(#name, \
1226 (counter * 8 + CCE_COUNTER_ARRAY32), \
1227 0, flags | CNTR_32BIT, \
1228 dev_access_u32_csr)
1229
1230#define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1231CNTR_ELEM(#name, \
1232 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1233 0, flags | CNTR_32BIT, \
1234 dev_access_u32_csr)
1235
1236/* DC */
1237#define DC_PERF_CNTR(name, counter, flags) \
1238CNTR_ELEM(#name, \
1239 counter, \
1240 0, \
1241 flags, \
1242 dev_access_u64_csr)
1243
1244#define DC_PERF_CNTR_LCB(name, counter, flags) \
1245CNTR_ELEM(#name, \
1246 counter, \
1247 0, \
1248 flags, \
1249 dc_access_lcb_cntr)
1250
1251/* ibp counters */
1252#define SW_IBP_CNTR(name, cntr) \
1253CNTR_ELEM(#name, \
1254 0, \
1255 0, \
1256 CNTR_SYNTH, \
1257 access_ibp_##cntr)
1258
1259u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1260{
1261 u64 val;
1262
1263 if (dd->flags & HFI1_PRESENT) {
1264 val = readq((void __iomem *)dd->kregbase + offset);
1265 return val;
1266 }
1267 return -1;
1268}
1269
1270void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1271{
1272 if (dd->flags & HFI1_PRESENT)
1273 writeq(value, (void __iomem *)dd->kregbase + offset);
1274}
1275
1276void __iomem *get_csr_addr(
1277 struct hfi1_devdata *dd,
1278 u32 offset)
1279{
1280 return (void __iomem *)dd->kregbase + offset;
1281}
1282
1283static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1284 int mode, u64 value)
1285{
1286 u64 ret;
1287
1288
1289 if (mode == CNTR_MODE_R) {
1290 ret = read_csr(dd, csr);
1291 } else if (mode == CNTR_MODE_W) {
1292 write_csr(dd, csr, value);
1293 ret = value;
1294 } else {
1295 dd_dev_err(dd, "Invalid cntr register access mode");
1296 return 0;
1297 }
1298
1299 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1300 return ret;
1301}
1302
1303/* Dev Access */
1304static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1305 void *context, int vl, int mode, u64 data)
1306{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301307 struct hfi1_devdata *dd = context;
Vennila Megavannana699c6c2016-01-11 18:30:56 -05001308 u64 csr = entry->csr;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001309
Vennila Megavannana699c6c2016-01-11 18:30:56 -05001310 if (entry->flags & CNTR_SDMA) {
1311 if (vl == CNTR_INVALID_VL)
1312 return 0;
1313 csr += 0x100 * vl;
1314 } else {
1315 if (vl != CNTR_INVALID_VL)
1316 return 0;
1317 }
1318 return read_write_csr(dd, csr, mode, data);
1319}
1320
1321static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1322 void *context, int idx, int mode, u64 data)
1323{
1324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1325
1326 if (dd->per_sdma && idx < dd->num_sdma)
1327 return dd->per_sdma[idx].err_cnt;
1328 return 0;
1329}
1330
1331static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1332 void *context, int idx, int mode, u64 data)
1333{
1334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1335
1336 if (dd->per_sdma && idx < dd->num_sdma)
1337 return dd->per_sdma[idx].sdma_int_cnt;
1338 return 0;
1339}
1340
1341static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1342 void *context, int idx, int mode, u64 data)
1343{
1344 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1345
1346 if (dd->per_sdma && idx < dd->num_sdma)
1347 return dd->per_sdma[idx].idle_int_cnt;
1348 return 0;
1349}
1350
1351static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1352 void *context, int idx, int mode,
1353 u64 data)
1354{
1355 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1356
1357 if (dd->per_sdma && idx < dd->num_sdma)
1358 return dd->per_sdma[idx].progress_int_cnt;
1359 return 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001360}
1361
1362static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1363 int vl, int mode, u64 data)
1364{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301365 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001366
1367 u64 val = 0;
1368 u64 csr = entry->csr;
1369
1370 if (entry->flags & CNTR_VL) {
1371 if (vl == CNTR_INVALID_VL)
1372 return 0;
1373 csr += 8 * vl;
1374 } else {
1375 if (vl != CNTR_INVALID_VL)
1376 return 0;
1377 }
1378
1379 val = read_write_csr(dd, csr, mode, data);
1380 return val;
1381}
1382
1383static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1384 int vl, int mode, u64 data)
1385{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301386 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001387 u32 csr = entry->csr;
1388 int ret = 0;
1389
1390 if (vl != CNTR_INVALID_VL)
1391 return 0;
1392 if (mode == CNTR_MODE_R)
1393 ret = read_lcb_csr(dd, csr, &data);
1394 else if (mode == CNTR_MODE_W)
1395 ret = write_lcb_csr(dd, csr, data);
1396
1397 if (ret) {
1398 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1399 return 0;
1400 }
1401
1402 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1403 return data;
1404}
1405
1406/* Port Access */
1407static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1408 int vl, int mode, u64 data)
1409{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301410 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001411
1412 if (vl != CNTR_INVALID_VL)
1413 return 0;
1414 return read_write_csr(ppd->dd, entry->csr, mode, data);
1415}
1416
1417static u64 port_access_u64_csr(const struct cntr_entry *entry,
1418 void *context, int vl, int mode, u64 data)
1419{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301420 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001421 u64 val;
1422 u64 csr = entry->csr;
1423
1424 if (entry->flags & CNTR_VL) {
1425 if (vl == CNTR_INVALID_VL)
1426 return 0;
1427 csr += 8 * vl;
1428 } else {
1429 if (vl != CNTR_INVALID_VL)
1430 return 0;
1431 }
1432 val = read_write_csr(ppd->dd, csr, mode, data);
1433 return val;
1434}
1435
1436/* Software defined */
1437static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1438 u64 data)
1439{
1440 u64 ret;
1441
1442 if (mode == CNTR_MODE_R) {
1443 ret = *cntr;
1444 } else if (mode == CNTR_MODE_W) {
1445 *cntr = data;
1446 ret = data;
1447 } else {
1448 dd_dev_err(dd, "Invalid cntr sw access mode");
1449 return 0;
1450 }
1451
1452 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1453
1454 return ret;
1455}
1456
1457static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1458 int vl, int mode, u64 data)
1459{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301460 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001461
1462 if (vl != CNTR_INVALID_VL)
1463 return 0;
1464 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1465}
1466
1467static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1468 int vl, int mode, u64 data)
1469{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301470 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001471
1472 if (vl != CNTR_INVALID_VL)
1473 return 0;
1474 return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1475}
1476
Dean Luick6d014532015-12-01 15:38:23 -05001477static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1478 void *context, int vl, int mode,
1479 u64 data)
1480{
1481 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1482
1483 if (vl != CNTR_INVALID_VL)
1484 return 0;
1485 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1486}
1487
Mike Marciniszyn77241052015-07-30 15:17:43 -04001488static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1489 void *context, int vl, int mode, u64 data)
1490{
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08001491 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1492 u64 zero = 0;
1493 u64 *counter;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001494
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08001495 if (vl == CNTR_INVALID_VL)
1496 counter = &ppd->port_xmit_discards;
1497 else if (vl >= 0 && vl < C_VL_COUNT)
1498 counter = &ppd->port_xmit_discards_vl[vl];
1499 else
1500 counter = &zero;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001501
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08001502 return read_write_sw(ppd->dd, counter, mode, data);
Mike Marciniszyn77241052015-07-30 15:17:43 -04001503}
1504
1505static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1506 void *context, int vl, int mode, u64 data)
1507{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301508 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001509
1510 if (vl != CNTR_INVALID_VL)
1511 return 0;
1512
1513 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1514 mode, data);
1515}
1516
1517static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1518 void *context, int vl, int mode, u64 data)
1519{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301520 struct hfi1_pportdata *ppd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001521
1522 if (vl != CNTR_INVALID_VL)
1523 return 0;
1524
1525 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1526 mode, data);
1527}
1528
1529u64 get_all_cpu_total(u64 __percpu *cntr)
1530{
1531 int cpu;
1532 u64 counter = 0;
1533
1534 for_each_possible_cpu(cpu)
1535 counter += *per_cpu_ptr(cntr, cpu);
1536 return counter;
1537}
1538
1539static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1540 u64 __percpu *cntr,
1541 int vl, int mode, u64 data)
1542{
1543
1544 u64 ret = 0;
1545
1546 if (vl != CNTR_INVALID_VL)
1547 return 0;
1548
1549 if (mode == CNTR_MODE_R) {
1550 ret = get_all_cpu_total(cntr) - *z_val;
1551 } else if (mode == CNTR_MODE_W) {
1552 /* A write can only zero the counter */
1553 if (data == 0)
1554 *z_val = get_all_cpu_total(cntr);
1555 else
1556 dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1557 } else {
1558 dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1559 return 0;
1560 }
1561
1562 return ret;
1563}
1564
1565static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1566 void *context, int vl, int mode, u64 data)
1567{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301568 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001569
1570 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1571 mode, data);
1572}
1573
1574static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1575 void *context, int vl, int mode, u64 data)
1576{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301577 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001578
1579 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1580 mode, data);
1581}
1582
1583static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1584 void *context, int vl, int mode, u64 data)
1585{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301586 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001587
1588 return dd->verbs_dev.n_piowait;
1589}
1590
1591static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1592 void *context, int vl, int mode, u64 data)
1593{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301594 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001595
1596 return dd->verbs_dev.n_txwait;
1597}
1598
1599static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1600 void *context, int vl, int mode, u64 data)
1601{
Shraddha Barkea787bde2015-10-15 00:58:29 +05301602 struct hfi1_devdata *dd = context;
Mike Marciniszyn77241052015-07-30 15:17:43 -04001603
1604 return dd->verbs_dev.n_kmem_wait;
1605}
1606
Dean Luickb4219222015-10-26 10:28:35 -04001607static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1608 void *context, int vl, int mode, u64 data)
1609{
1610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1611
Vennila Megavannan89abfc82016-02-03 14:34:07 -08001612 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1613 mode, data);
Dean Luickb4219222015-10-26 10:28:35 -04001614}
1615
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05001616/* Software counters for the error status bits within MISC_ERR_STATUS */
1617static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1618 void *context, int vl, int mode,
1619 u64 data)
1620{
1621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1622
1623 return dd->misc_err_status_cnt[12];
1624}
1625
1626static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1627 void *context, int vl, int mode,
1628 u64 data)
1629{
1630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1631
1632 return dd->misc_err_status_cnt[11];
1633}
1634
1635static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1636 void *context, int vl, int mode,
1637 u64 data)
1638{
1639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1640
1641 return dd->misc_err_status_cnt[10];
1642}
1643
1644static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1645 void *context, int vl,
1646 int mode, u64 data)
1647{
1648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1649
1650 return dd->misc_err_status_cnt[9];
1651}
1652
1653static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1654 void *context, int vl, int mode,
1655 u64 data)
1656{
1657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1658
1659 return dd->misc_err_status_cnt[8];
1660}
1661
1662static u64 access_misc_efuse_read_bad_addr_err_cnt(
1663 const struct cntr_entry *entry,
1664 void *context, int vl, int mode, u64 data)
1665{
1666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1667
1668 return dd->misc_err_status_cnt[7];
1669}
1670
1671static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1672 void *context, int vl,
1673 int mode, u64 data)
1674{
1675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1676
1677 return dd->misc_err_status_cnt[6];
1678}
1679
1680static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1681 void *context, int vl, int mode,
1682 u64 data)
1683{
1684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1685
1686 return dd->misc_err_status_cnt[5];
1687}
1688
1689static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1690 void *context, int vl, int mode,
1691 u64 data)
1692{
1693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1694
1695 return dd->misc_err_status_cnt[4];
1696}
1697
1698static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1699 void *context, int vl,
1700 int mode, u64 data)
1701{
1702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1703
1704 return dd->misc_err_status_cnt[3];
1705}
1706
1707static u64 access_misc_csr_write_bad_addr_err_cnt(
1708 const struct cntr_entry *entry,
1709 void *context, int vl, int mode, u64 data)
1710{
1711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1712
1713 return dd->misc_err_status_cnt[2];
1714}
1715
1716static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1717 void *context, int vl,
1718 int mode, u64 data)
1719{
1720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1721
1722 return dd->misc_err_status_cnt[1];
1723}
1724
1725static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1726 void *context, int vl, int mode,
1727 u64 data)
1728{
1729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1730
1731 return dd->misc_err_status_cnt[0];
1732}
1733
1734/*
1735 * Software counter for the aggregate of
1736 * individual CceErrStatus counters
1737 */
1738static u64 access_sw_cce_err_status_aggregated_cnt(
1739 const struct cntr_entry *entry,
1740 void *context, int vl, int mode, u64 data)
1741{
1742 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1743
1744 return dd->sw_cce_err_status_aggregate;
1745}
1746
1747/*
1748 * Software counters corresponding to each of the
1749 * error status bits within CceErrStatus
1750 */
1751static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1752 void *context, int vl, int mode,
1753 u64 data)
1754{
1755 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1756
1757 return dd->cce_err_status_cnt[40];
1758}
1759
1760static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1761 void *context, int vl, int mode,
1762 u64 data)
1763{
1764 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1765
1766 return dd->cce_err_status_cnt[39];
1767}
1768
1769static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1770 void *context, int vl, int mode,
1771 u64 data)
1772{
1773 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1774
1775 return dd->cce_err_status_cnt[38];
1776}
1777
1778static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1779 void *context, int vl, int mode,
1780 u64 data)
1781{
1782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1783
1784 return dd->cce_err_status_cnt[37];
1785}
1786
1787static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1788 void *context, int vl, int mode,
1789 u64 data)
1790{
1791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1792
1793 return dd->cce_err_status_cnt[36];
1794}
1795
1796static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1797 const struct cntr_entry *entry,
1798 void *context, int vl, int mode, u64 data)
1799{
1800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1801
1802 return dd->cce_err_status_cnt[35];
1803}
1804
1805static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1806 const struct cntr_entry *entry,
1807 void *context, int vl, int mode, u64 data)
1808{
1809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1810
1811 return dd->cce_err_status_cnt[34];
1812}
1813
1814static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1815 void *context, int vl,
1816 int mode, u64 data)
1817{
1818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1819
1820 return dd->cce_err_status_cnt[33];
1821}
1822
1823static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1824 void *context, int vl, int mode,
1825 u64 data)
1826{
1827 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1828
1829 return dd->cce_err_status_cnt[32];
1830}
1831
1832static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1833 void *context, int vl, int mode, u64 data)
1834{
1835 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1836
1837 return dd->cce_err_status_cnt[31];
1838}
1839
1840static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1841 void *context, int vl, int mode,
1842 u64 data)
1843{
1844 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1845
1846 return dd->cce_err_status_cnt[30];
1847}
1848
1849static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1850 void *context, int vl, int mode,
1851 u64 data)
1852{
1853 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1854
1855 return dd->cce_err_status_cnt[29];
1856}
1857
1858static u64 access_pcic_transmit_back_parity_err_cnt(
1859 const struct cntr_entry *entry,
1860 void *context, int vl, int mode, u64 data)
1861{
1862 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1863
1864 return dd->cce_err_status_cnt[28];
1865}
1866
1867static u64 access_pcic_transmit_front_parity_err_cnt(
1868 const struct cntr_entry *entry,
1869 void *context, int vl, int mode, u64 data)
1870{
1871 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1872
1873 return dd->cce_err_status_cnt[27];
1874}
1875
1876static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1877 void *context, int vl, int mode,
1878 u64 data)
1879{
1880 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1881
1882 return dd->cce_err_status_cnt[26];
1883}
1884
1885static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1886 void *context, int vl, int mode,
1887 u64 data)
1888{
1889 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1890
1891 return dd->cce_err_status_cnt[25];
1892}
1893
1894static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1895 void *context, int vl, int mode,
1896 u64 data)
1897{
1898 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1899
1900 return dd->cce_err_status_cnt[24];
1901}
1902
1903static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1904 void *context, int vl, int mode,
1905 u64 data)
1906{
1907 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1908
1909 return dd->cce_err_status_cnt[23];
1910}
1911
1912static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
1913 void *context, int vl,
1914 int mode, u64 data)
1915{
1916 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1917
1918 return dd->cce_err_status_cnt[22];
1919}
1920
1921static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
1922 void *context, int vl, int mode,
1923 u64 data)
1924{
1925 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1926
1927 return dd->cce_err_status_cnt[21];
1928}
1929
1930static u64 access_pcic_n_post_dat_q_parity_err_cnt(
1931 const struct cntr_entry *entry,
1932 void *context, int vl, int mode, u64 data)
1933{
1934 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1935
1936 return dd->cce_err_status_cnt[20];
1937}
1938
1939static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
1940 void *context, int vl,
1941 int mode, u64 data)
1942{
1943 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1944
1945 return dd->cce_err_status_cnt[19];
1946}
1947
1948static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1949 void *context, int vl, int mode,
1950 u64 data)
1951{
1952 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1953
1954 return dd->cce_err_status_cnt[18];
1955}
1956
1957static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1958 void *context, int vl, int mode,
1959 u64 data)
1960{
1961 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1962
1963 return dd->cce_err_status_cnt[17];
1964}
1965
1966static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
1967 void *context, int vl, int mode,
1968 u64 data)
1969{
1970 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1971
1972 return dd->cce_err_status_cnt[16];
1973}
1974
1975static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
1976 void *context, int vl, int mode,
1977 u64 data)
1978{
1979 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1980
1981 return dd->cce_err_status_cnt[15];
1982}
1983
1984static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
1985 void *context, int vl,
1986 int mode, u64 data)
1987{
1988 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1989
1990 return dd->cce_err_status_cnt[14];
1991}
1992
1993static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
1994 void *context, int vl, int mode,
1995 u64 data)
1996{
1997 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1998
1999 return dd->cce_err_status_cnt[13];
2000}
2001
2002static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2003 const struct cntr_entry *entry,
2004 void *context, int vl, int mode, u64 data)
2005{
2006 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2007
2008 return dd->cce_err_status_cnt[12];
2009}
2010
2011static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2012 const struct cntr_entry *entry,
2013 void *context, int vl, int mode, u64 data)
2014{
2015 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2016
2017 return dd->cce_err_status_cnt[11];
2018}
2019
2020static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2021 const struct cntr_entry *entry,
2022 void *context, int vl, int mode, u64 data)
2023{
2024 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2025
2026 return dd->cce_err_status_cnt[10];
2027}
2028
2029static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2030 const struct cntr_entry *entry,
2031 void *context, int vl, int mode, u64 data)
2032{
2033 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2034
2035 return dd->cce_err_status_cnt[9];
2036}
2037
2038static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2039 const struct cntr_entry *entry,
2040 void *context, int vl, int mode, u64 data)
2041{
2042 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2043
2044 return dd->cce_err_status_cnt[8];
2045}
2046
2047static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2048 void *context, int vl,
2049 int mode, u64 data)
2050{
2051 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2052
2053 return dd->cce_err_status_cnt[7];
2054}
2055
2056static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2057 const struct cntr_entry *entry,
2058 void *context, int vl, int mode, u64 data)
2059{
2060 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2061
2062 return dd->cce_err_status_cnt[6];
2063}
2064
2065static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2066 void *context, int vl, int mode,
2067 u64 data)
2068{
2069 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2070
2071 return dd->cce_err_status_cnt[5];
2072}
2073
2074static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2075 void *context, int vl, int mode,
2076 u64 data)
2077{
2078 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2079
2080 return dd->cce_err_status_cnt[4];
2081}
2082
2083static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2084 const struct cntr_entry *entry,
2085 void *context, int vl, int mode, u64 data)
2086{
2087 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2088
2089 return dd->cce_err_status_cnt[3];
2090}
2091
2092static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2093 void *context, int vl,
2094 int mode, u64 data)
2095{
2096 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2097
2098 return dd->cce_err_status_cnt[2];
2099}
2100
2101static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2102 void *context, int vl,
2103 int mode, u64 data)
2104{
2105 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2106
2107 return dd->cce_err_status_cnt[1];
2108}
2109
2110static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2111 void *context, int vl, int mode,
2112 u64 data)
2113{
2114 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2115
2116 return dd->cce_err_status_cnt[0];
2117}
2118
2119/*
2120 * Software counters corresponding to each of the
2121 * error status bits within RcvErrStatus
2122 */
2123static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2124 void *context, int vl, int mode,
2125 u64 data)
2126{
2127 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2128
2129 return dd->rcv_err_status_cnt[63];
2130}
2131
2132static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2133 void *context, int vl,
2134 int mode, u64 data)
2135{
2136 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137
2138 return dd->rcv_err_status_cnt[62];
2139}
2140
2141static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2142 void *context, int vl, int mode,
2143 u64 data)
2144{
2145 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146
2147 return dd->rcv_err_status_cnt[61];
2148}
2149
2150static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2151 void *context, int vl, int mode,
2152 u64 data)
2153{
2154 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155
2156 return dd->rcv_err_status_cnt[60];
2157}
2158
2159static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2160 void *context, int vl,
2161 int mode, u64 data)
2162{
2163 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164
2165 return dd->rcv_err_status_cnt[59];
2166}
2167
2168static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2169 void *context, int vl,
2170 int mode, u64 data)
2171{
2172 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173
2174 return dd->rcv_err_status_cnt[58];
2175}
2176
2177static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2178 void *context, int vl, int mode,
2179 u64 data)
2180{
2181 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182
2183 return dd->rcv_err_status_cnt[57];
2184}
2185
2186static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2187 void *context, int vl, int mode,
2188 u64 data)
2189{
2190 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191
2192 return dd->rcv_err_status_cnt[56];
2193}
2194
2195static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2196 void *context, int vl, int mode,
2197 u64 data)
2198{
2199 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200
2201 return dd->rcv_err_status_cnt[55];
2202}
2203
2204static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2205 const struct cntr_entry *entry,
2206 void *context, int vl, int mode, u64 data)
2207{
2208 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209
2210 return dd->rcv_err_status_cnt[54];
2211}
2212
2213static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2214 const struct cntr_entry *entry,
2215 void *context, int vl, int mode, u64 data)
2216{
2217 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2218
2219 return dd->rcv_err_status_cnt[53];
2220}
2221
2222static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2223 void *context, int vl,
2224 int mode, u64 data)
2225{
2226 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2227
2228 return dd->rcv_err_status_cnt[52];
2229}
2230
2231static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2232 void *context, int vl,
2233 int mode, u64 data)
2234{
2235 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2236
2237 return dd->rcv_err_status_cnt[51];
2238}
2239
2240static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2241 void *context, int vl,
2242 int mode, u64 data)
2243{
2244 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2245
2246 return dd->rcv_err_status_cnt[50];
2247}
2248
2249static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2250 void *context, int vl,
2251 int mode, u64 data)
2252{
2253 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2254
2255 return dd->rcv_err_status_cnt[49];
2256}
2257
2258static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2259 void *context, int vl,
2260 int mode, u64 data)
2261{
2262 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2263
2264 return dd->rcv_err_status_cnt[48];
2265}
2266
2267static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2268 void *context, int vl,
2269 int mode, u64 data)
2270{
2271 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2272
2273 return dd->rcv_err_status_cnt[47];
2274}
2275
2276static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2277 void *context, int vl, int mode,
2278 u64 data)
2279{
2280 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2281
2282 return dd->rcv_err_status_cnt[46];
2283}
2284
2285static u64 access_rx_hq_intr_csr_parity_err_cnt(
2286 const struct cntr_entry *entry,
2287 void *context, int vl, int mode, u64 data)
2288{
2289 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2290
2291 return dd->rcv_err_status_cnt[45];
2292}
2293
2294static u64 access_rx_lookup_csr_parity_err_cnt(
2295 const struct cntr_entry *entry,
2296 void *context, int vl, int mode, u64 data)
2297{
2298 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2299
2300 return dd->rcv_err_status_cnt[44];
2301}
2302
2303static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2304 const struct cntr_entry *entry,
2305 void *context, int vl, int mode, u64 data)
2306{
2307 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2308
2309 return dd->rcv_err_status_cnt[43];
2310}
2311
2312static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2313 const struct cntr_entry *entry,
2314 void *context, int vl, int mode, u64 data)
2315{
2316 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2317
2318 return dd->rcv_err_status_cnt[42];
2319}
2320
2321static u64 access_rx_lookup_des_part2_parity_err_cnt(
2322 const struct cntr_entry *entry,
2323 void *context, int vl, int mode, u64 data)
2324{
2325 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2326
2327 return dd->rcv_err_status_cnt[41];
2328}
2329
2330static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2331 const struct cntr_entry *entry,
2332 void *context, int vl, int mode, u64 data)
2333{
2334 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2335
2336 return dd->rcv_err_status_cnt[40];
2337}
2338
2339static u64 access_rx_lookup_des_part1_unc_err_cnt(
2340 const struct cntr_entry *entry,
2341 void *context, int vl, int mode, u64 data)
2342{
2343 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2344
2345 return dd->rcv_err_status_cnt[39];
2346}
2347
2348static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2349 const struct cntr_entry *entry,
2350 void *context, int vl, int mode, u64 data)
2351{
2352 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2353
2354 return dd->rcv_err_status_cnt[38];
2355}
2356
2357static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2358 const struct cntr_entry *entry,
2359 void *context, int vl, int mode, u64 data)
2360{
2361 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2362
2363 return dd->rcv_err_status_cnt[37];
2364}
2365
2366static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2367 const struct cntr_entry *entry,
2368 void *context, int vl, int mode, u64 data)
2369{
2370 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2371
2372 return dd->rcv_err_status_cnt[36];
2373}
2374
2375static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2376 const struct cntr_entry *entry,
2377 void *context, int vl, int mode, u64 data)
2378{
2379 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2380
2381 return dd->rcv_err_status_cnt[35];
2382}
2383
2384static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2385 const struct cntr_entry *entry,
2386 void *context, int vl, int mode, u64 data)
2387{
2388 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2389
2390 return dd->rcv_err_status_cnt[34];
2391}
2392
2393static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2394 const struct cntr_entry *entry,
2395 void *context, int vl, int mode, u64 data)
2396{
2397 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2398
2399 return dd->rcv_err_status_cnt[33];
2400}
2401
2402static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2403 void *context, int vl, int mode,
2404 u64 data)
2405{
2406 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2407
2408 return dd->rcv_err_status_cnt[32];
2409}
2410
2411static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2412 void *context, int vl, int mode,
2413 u64 data)
2414{
2415 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2416
2417 return dd->rcv_err_status_cnt[31];
2418}
2419
2420static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2421 void *context, int vl, int mode,
2422 u64 data)
2423{
2424 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2425
2426 return dd->rcv_err_status_cnt[30];
2427}
2428
2429static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2430 void *context, int vl, int mode,
2431 u64 data)
2432{
2433 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2434
2435 return dd->rcv_err_status_cnt[29];
2436}
2437
2438static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2439 void *context, int vl,
2440 int mode, u64 data)
2441{
2442 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2443
2444 return dd->rcv_err_status_cnt[28];
2445}
2446
2447static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2448 const struct cntr_entry *entry,
2449 void *context, int vl, int mode, u64 data)
2450{
2451 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2452
2453 return dd->rcv_err_status_cnt[27];
2454}
2455
2456static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2457 const struct cntr_entry *entry,
2458 void *context, int vl, int mode, u64 data)
2459{
2460 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2461
2462 return dd->rcv_err_status_cnt[26];
2463}
2464
2465static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2466 const struct cntr_entry *entry,
2467 void *context, int vl, int mode, u64 data)
2468{
2469 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2470
2471 return dd->rcv_err_status_cnt[25];
2472}
2473
2474static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2475 const struct cntr_entry *entry,
2476 void *context, int vl, int mode, u64 data)
2477{
2478 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2479
2480 return dd->rcv_err_status_cnt[24];
2481}
2482
2483static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2484 const struct cntr_entry *entry,
2485 void *context, int vl, int mode, u64 data)
2486{
2487 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2488
2489 return dd->rcv_err_status_cnt[23];
2490}
2491
2492static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2493 const struct cntr_entry *entry,
2494 void *context, int vl, int mode, u64 data)
2495{
2496 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2497
2498 return dd->rcv_err_status_cnt[22];
2499}
2500
2501static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2502 const struct cntr_entry *entry,
2503 void *context, int vl, int mode, u64 data)
2504{
2505 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2506
2507 return dd->rcv_err_status_cnt[21];
2508}
2509
2510static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2511 const struct cntr_entry *entry,
2512 void *context, int vl, int mode, u64 data)
2513{
2514 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2515
2516 return dd->rcv_err_status_cnt[20];
2517}
2518
2519static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2520 const struct cntr_entry *entry,
2521 void *context, int vl, int mode, u64 data)
2522{
2523 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2524
2525 return dd->rcv_err_status_cnt[19];
2526}
2527
2528static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2529 void *context, int vl,
2530 int mode, u64 data)
2531{
2532 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2533
2534 return dd->rcv_err_status_cnt[18];
2535}
2536
2537static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2538 void *context, int vl,
2539 int mode, u64 data)
2540{
2541 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2542
2543 return dd->rcv_err_status_cnt[17];
2544}
2545
2546static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2547 const struct cntr_entry *entry,
2548 void *context, int vl, int mode, u64 data)
2549{
2550 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2551
2552 return dd->rcv_err_status_cnt[16];
2553}
2554
2555static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2556 const struct cntr_entry *entry,
2557 void *context, int vl, int mode, u64 data)
2558{
2559 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2560
2561 return dd->rcv_err_status_cnt[15];
2562}
2563
2564static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2565 void *context, int vl,
2566 int mode, u64 data)
2567{
2568 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2569
2570 return dd->rcv_err_status_cnt[14];
2571}
2572
2573static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2574 void *context, int vl,
2575 int mode, u64 data)
2576{
2577 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2578
2579 return dd->rcv_err_status_cnt[13];
2580}
2581
2582static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2583 void *context, int vl, int mode,
2584 u64 data)
2585{
2586 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2587
2588 return dd->rcv_err_status_cnt[12];
2589}
2590
2591static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2592 void *context, int vl, int mode,
2593 u64 data)
2594{
2595 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2596
2597 return dd->rcv_err_status_cnt[11];
2598}
2599
2600static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2601 void *context, int vl, int mode,
2602 u64 data)
2603{
2604 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2605
2606 return dd->rcv_err_status_cnt[10];
2607}
2608
2609static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2610 void *context, int vl, int mode,
2611 u64 data)
2612{
2613 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2614
2615 return dd->rcv_err_status_cnt[9];
2616}
2617
2618static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2619 void *context, int vl, int mode,
2620 u64 data)
2621{
2622 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2623
2624 return dd->rcv_err_status_cnt[8];
2625}
2626
2627static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2628 const struct cntr_entry *entry,
2629 void *context, int vl, int mode, u64 data)
2630{
2631 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2632
2633 return dd->rcv_err_status_cnt[7];
2634}
2635
2636static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2637 const struct cntr_entry *entry,
2638 void *context, int vl, int mode, u64 data)
2639{
2640 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2641
2642 return dd->rcv_err_status_cnt[6];
2643}
2644
2645static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2646 void *context, int vl, int mode,
2647 u64 data)
2648{
2649 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2650
2651 return dd->rcv_err_status_cnt[5];
2652}
2653
2654static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2655 void *context, int vl, int mode,
2656 u64 data)
2657{
2658 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2659
2660 return dd->rcv_err_status_cnt[4];
2661}
2662
2663static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2664 void *context, int vl, int mode,
2665 u64 data)
2666{
2667 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2668
2669 return dd->rcv_err_status_cnt[3];
2670}
2671
2672static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2673 void *context, int vl, int mode,
2674 u64 data)
2675{
2676 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2677
2678 return dd->rcv_err_status_cnt[2];
2679}
2680
2681static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2682 void *context, int vl, int mode,
2683 u64 data)
2684{
2685 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2686
2687 return dd->rcv_err_status_cnt[1];
2688}
2689
2690static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2691 void *context, int vl, int mode,
2692 u64 data)
2693{
2694 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2695
2696 return dd->rcv_err_status_cnt[0];
2697}
2698
2699/*
2700 * Software counters corresponding to each of the
2701 * error status bits within SendPioErrStatus
2702 */
2703static u64 access_pio_pec_sop_head_parity_err_cnt(
2704 const struct cntr_entry *entry,
2705 void *context, int vl, int mode, u64 data)
2706{
2707 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2708
2709 return dd->send_pio_err_status_cnt[35];
2710}
2711
2712static u64 access_pio_pcc_sop_head_parity_err_cnt(
2713 const struct cntr_entry *entry,
2714 void *context, int vl, int mode, u64 data)
2715{
2716 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717
2718 return dd->send_pio_err_status_cnt[34];
2719}
2720
2721static u64 access_pio_last_returned_cnt_parity_err_cnt(
2722 const struct cntr_entry *entry,
2723 void *context, int vl, int mode, u64 data)
2724{
2725 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726
2727 return dd->send_pio_err_status_cnt[33];
2728}
2729
2730static u64 access_pio_current_free_cnt_parity_err_cnt(
2731 const struct cntr_entry *entry,
2732 void *context, int vl, int mode, u64 data)
2733{
2734 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735
2736 return dd->send_pio_err_status_cnt[32];
2737}
2738
2739static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2740 void *context, int vl, int mode,
2741 u64 data)
2742{
2743 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744
2745 return dd->send_pio_err_status_cnt[31];
2746}
2747
2748static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2749 void *context, int vl, int mode,
2750 u64 data)
2751{
2752 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753
2754 return dd->send_pio_err_status_cnt[30];
2755}
2756
2757static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2758 void *context, int vl, int mode,
2759 u64 data)
2760{
2761 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762
2763 return dd->send_pio_err_status_cnt[29];
2764}
2765
2766static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2767 const struct cntr_entry *entry,
2768 void *context, int vl, int mode, u64 data)
2769{
2770 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771
2772 return dd->send_pio_err_status_cnt[28];
2773}
2774
2775static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2776 void *context, int vl, int mode,
2777 u64 data)
2778{
2779 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780
2781 return dd->send_pio_err_status_cnt[27];
2782}
2783
2784static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2785 void *context, int vl, int mode,
2786 u64 data)
2787{
2788 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789
2790 return dd->send_pio_err_status_cnt[26];
2791}
2792
2793static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2794 void *context, int vl,
2795 int mode, u64 data)
2796{
2797 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2798
2799 return dd->send_pio_err_status_cnt[25];
2800}
2801
2802static u64 access_pio_block_qw_count_parity_err_cnt(
2803 const struct cntr_entry *entry,
2804 void *context, int vl, int mode, u64 data)
2805{
2806 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2807
2808 return dd->send_pio_err_status_cnt[24];
2809}
2810
2811static u64 access_pio_write_qw_valid_parity_err_cnt(
2812 const struct cntr_entry *entry,
2813 void *context, int vl, int mode, u64 data)
2814{
2815 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2816
2817 return dd->send_pio_err_status_cnt[23];
2818}
2819
2820static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2821 void *context, int vl, int mode,
2822 u64 data)
2823{
2824 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2825
2826 return dd->send_pio_err_status_cnt[22];
2827}
2828
2829static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2830 void *context, int vl,
2831 int mode, u64 data)
2832{
2833 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2834
2835 return dd->send_pio_err_status_cnt[21];
2836}
2837
2838static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2839 void *context, int vl,
2840 int mode, u64 data)
2841{
2842 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2843
2844 return dd->send_pio_err_status_cnt[20];
2845}
2846
2847static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2848 void *context, int vl,
2849 int mode, u64 data)
2850{
2851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2852
2853 return dd->send_pio_err_status_cnt[19];
2854}
2855
2856static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2857 const struct cntr_entry *entry,
2858 void *context, int vl, int mode, u64 data)
2859{
2860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2861
2862 return dd->send_pio_err_status_cnt[18];
2863}
2864
2865static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2866 void *context, int vl, int mode,
2867 u64 data)
2868{
2869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2870
2871 return dd->send_pio_err_status_cnt[17];
2872}
2873
2874static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2875 void *context, int vl, int mode,
2876 u64 data)
2877{
2878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2879
2880 return dd->send_pio_err_status_cnt[16];
2881}
2882
2883static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2884 const struct cntr_entry *entry,
2885 void *context, int vl, int mode, u64 data)
2886{
2887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2888
2889 return dd->send_pio_err_status_cnt[15];
2890}
2891
2892static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2893 const struct cntr_entry *entry,
2894 void *context, int vl, int mode, u64 data)
2895{
2896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2897
2898 return dd->send_pio_err_status_cnt[14];
2899}
2900
2901static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2902 const struct cntr_entry *entry,
2903 void *context, int vl, int mode, u64 data)
2904{
2905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2906
2907 return dd->send_pio_err_status_cnt[13];
2908}
2909
2910static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
2911 const struct cntr_entry *entry,
2912 void *context, int vl, int mode, u64 data)
2913{
2914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2915
2916 return dd->send_pio_err_status_cnt[12];
2917}
2918
2919static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
2920 const struct cntr_entry *entry,
2921 void *context, int vl, int mode, u64 data)
2922{
2923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2924
2925 return dd->send_pio_err_status_cnt[11];
2926}
2927
2928static u64 access_pio_sm_pkt_reset_parity_err_cnt(
2929 const struct cntr_entry *entry,
2930 void *context, int vl, int mode, u64 data)
2931{
2932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2933
2934 return dd->send_pio_err_status_cnt[10];
2935}
2936
2937static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
2938 const struct cntr_entry *entry,
2939 void *context, int vl, int mode, u64 data)
2940{
2941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2942
2943 return dd->send_pio_err_status_cnt[9];
2944}
2945
2946static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
2947 const struct cntr_entry *entry,
2948 void *context, int vl, int mode, u64 data)
2949{
2950 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2951
2952 return dd->send_pio_err_status_cnt[8];
2953}
2954
2955static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
2956 const struct cntr_entry *entry,
2957 void *context, int vl, int mode, u64 data)
2958{
2959 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2960
2961 return dd->send_pio_err_status_cnt[7];
2962}
2963
2964static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
2965 void *context, int vl, int mode,
2966 u64 data)
2967{
2968 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2969
2970 return dd->send_pio_err_status_cnt[6];
2971}
2972
2973static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
2974 void *context, int vl, int mode,
2975 u64 data)
2976{
2977 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2978
2979 return dd->send_pio_err_status_cnt[5];
2980}
2981
2982static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
2983 void *context, int vl, int mode,
2984 u64 data)
2985{
2986 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2987
2988 return dd->send_pio_err_status_cnt[4];
2989}
2990
2991static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
2992 void *context, int vl, int mode,
2993 u64 data)
2994{
2995 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2996
2997 return dd->send_pio_err_status_cnt[3];
2998}
2999
3000static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3001 void *context, int vl, int mode,
3002 u64 data)
3003{
3004 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3005
3006 return dd->send_pio_err_status_cnt[2];
3007}
3008
3009static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3010 void *context, int vl,
3011 int mode, u64 data)
3012{
3013 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3014
3015 return dd->send_pio_err_status_cnt[1];
3016}
3017
3018static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3019 void *context, int vl, int mode,
3020 u64 data)
3021{
3022 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3023
3024 return dd->send_pio_err_status_cnt[0];
3025}
3026
3027/*
3028 * Software counters corresponding to each of the
3029 * error status bits within SendDmaErrStatus
3030 */
3031static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3032 const struct cntr_entry *entry,
3033 void *context, int vl, int mode, u64 data)
3034{
3035 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3036
3037 return dd->send_dma_err_status_cnt[3];
3038}
3039
3040static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3041 const struct cntr_entry *entry,
3042 void *context, int vl, int mode, u64 data)
3043{
3044 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045
3046 return dd->send_dma_err_status_cnt[2];
3047}
3048
3049static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3050 void *context, int vl, int mode,
3051 u64 data)
3052{
3053 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054
3055 return dd->send_dma_err_status_cnt[1];
3056}
3057
3058static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3059 void *context, int vl, int mode,
3060 u64 data)
3061{
3062 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063
3064 return dd->send_dma_err_status_cnt[0];
3065}
3066
3067/*
3068 * Software counters corresponding to each of the
3069 * error status bits within SendEgressErrStatus
3070 */
3071static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3072 const struct cntr_entry *entry,
3073 void *context, int vl, int mode, u64 data)
3074{
3075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3076
3077 return dd->send_egress_err_status_cnt[63];
3078}
3079
3080static u64 access_tx_read_sdma_memory_csr_err_cnt(
3081 const struct cntr_entry *entry,
3082 void *context, int vl, int mode, u64 data)
3083{
3084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3085
3086 return dd->send_egress_err_status_cnt[62];
3087}
3088
3089static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3090 void *context, int vl, int mode,
3091 u64 data)
3092{
3093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3094
3095 return dd->send_egress_err_status_cnt[61];
3096}
3097
3098static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3099 void *context, int vl,
3100 int mode, u64 data)
3101{
3102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3103
3104 return dd->send_egress_err_status_cnt[60];
3105}
3106
3107static u64 access_tx_read_sdma_memory_cor_err_cnt(
3108 const struct cntr_entry *entry,
3109 void *context, int vl, int mode, u64 data)
3110{
3111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3112
3113 return dd->send_egress_err_status_cnt[59];
3114}
3115
3116static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3117 void *context, int vl, int mode,
3118 u64 data)
3119{
3120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3121
3122 return dd->send_egress_err_status_cnt[58];
3123}
3124
3125static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3126 void *context, int vl, int mode,
3127 u64 data)
3128{
3129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130
3131 return dd->send_egress_err_status_cnt[57];
3132}
3133
3134static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3135 void *context, int vl, int mode,
3136 u64 data)
3137{
3138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139
3140 return dd->send_egress_err_status_cnt[56];
3141}
3142
3143static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3144 void *context, int vl, int mode,
3145 u64 data)
3146{
3147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148
3149 return dd->send_egress_err_status_cnt[55];
3150}
3151
3152static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3153 void *context, int vl, int mode,
3154 u64 data)
3155{
3156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157
3158 return dd->send_egress_err_status_cnt[54];
3159}
3160
3161static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3162 void *context, int vl, int mode,
3163 u64 data)
3164{
3165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3166
3167 return dd->send_egress_err_status_cnt[53];
3168}
3169
3170static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3171 void *context, int vl, int mode,
3172 u64 data)
3173{
3174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3175
3176 return dd->send_egress_err_status_cnt[52];
3177}
3178
3179static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3180 void *context, int vl, int mode,
3181 u64 data)
3182{
3183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3184
3185 return dd->send_egress_err_status_cnt[51];
3186}
3187
3188static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3189 void *context, int vl, int mode,
3190 u64 data)
3191{
3192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3193
3194 return dd->send_egress_err_status_cnt[50];
3195}
3196
3197static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3198 void *context, int vl, int mode,
3199 u64 data)
3200{
3201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3202
3203 return dd->send_egress_err_status_cnt[49];
3204}
3205
3206static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3207 void *context, int vl, int mode,
3208 u64 data)
3209{
3210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3211
3212 return dd->send_egress_err_status_cnt[48];
3213}
3214
3215static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3216 void *context, int vl, int mode,
3217 u64 data)
3218{
3219 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3220
3221 return dd->send_egress_err_status_cnt[47];
3222}
3223
3224static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3225 void *context, int vl, int mode,
3226 u64 data)
3227{
3228 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3229
3230 return dd->send_egress_err_status_cnt[46];
3231}
3232
3233static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3234 void *context, int vl, int mode,
3235 u64 data)
3236{
3237 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3238
3239 return dd->send_egress_err_status_cnt[45];
3240}
3241
3242static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3243 void *context, int vl,
3244 int mode, u64 data)
3245{
3246 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3247
3248 return dd->send_egress_err_status_cnt[44];
3249}
3250
3251static u64 access_tx_read_sdma_memory_unc_err_cnt(
3252 const struct cntr_entry *entry,
3253 void *context, int vl, int mode, u64 data)
3254{
3255 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3256
3257 return dd->send_egress_err_status_cnt[43];
3258}
3259
3260static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3261 void *context, int vl, int mode,
3262 u64 data)
3263{
3264 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3265
3266 return dd->send_egress_err_status_cnt[42];
3267}
3268
3269static u64 access_tx_credit_return_partiy_err_cnt(
3270 const struct cntr_entry *entry,
3271 void *context, int vl, int mode, u64 data)
3272{
3273 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3274
3275 return dd->send_egress_err_status_cnt[41];
3276}
3277
3278static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3279 const struct cntr_entry *entry,
3280 void *context, int vl, int mode, u64 data)
3281{
3282 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3283
3284 return dd->send_egress_err_status_cnt[40];
3285}
3286
3287static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3288 const struct cntr_entry *entry,
3289 void *context, int vl, int mode, u64 data)
3290{
3291 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3292
3293 return dd->send_egress_err_status_cnt[39];
3294}
3295
3296static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3297 const struct cntr_entry *entry,
3298 void *context, int vl, int mode, u64 data)
3299{
3300 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3301
3302 return dd->send_egress_err_status_cnt[38];
3303}
3304
3305static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3306 const struct cntr_entry *entry,
3307 void *context, int vl, int mode, u64 data)
3308{
3309 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3310
3311 return dd->send_egress_err_status_cnt[37];
3312}
3313
3314static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3315 const struct cntr_entry *entry,
3316 void *context, int vl, int mode, u64 data)
3317{
3318 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3319
3320 return dd->send_egress_err_status_cnt[36];
3321}
3322
3323static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3324 const struct cntr_entry *entry,
3325 void *context, int vl, int mode, u64 data)
3326{
3327 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3328
3329 return dd->send_egress_err_status_cnt[35];
3330}
3331
3332static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3333 const struct cntr_entry *entry,
3334 void *context, int vl, int mode, u64 data)
3335{
3336 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3337
3338 return dd->send_egress_err_status_cnt[34];
3339}
3340
3341static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3342 const struct cntr_entry *entry,
3343 void *context, int vl, int mode, u64 data)
3344{
3345 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3346
3347 return dd->send_egress_err_status_cnt[33];
3348}
3349
3350static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3351 const struct cntr_entry *entry,
3352 void *context, int vl, int mode, u64 data)
3353{
3354 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3355
3356 return dd->send_egress_err_status_cnt[32];
3357}
3358
3359static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3360 const struct cntr_entry *entry,
3361 void *context, int vl, int mode, u64 data)
3362{
3363 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3364
3365 return dd->send_egress_err_status_cnt[31];
3366}
3367
3368static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3369 const struct cntr_entry *entry,
3370 void *context, int vl, int mode, u64 data)
3371{
3372 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3373
3374 return dd->send_egress_err_status_cnt[30];
3375}
3376
3377static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3378 const struct cntr_entry *entry,
3379 void *context, int vl, int mode, u64 data)
3380{
3381 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3382
3383 return dd->send_egress_err_status_cnt[29];
3384}
3385
3386static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3387 const struct cntr_entry *entry,
3388 void *context, int vl, int mode, u64 data)
3389{
3390 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3391
3392 return dd->send_egress_err_status_cnt[28];
3393}
3394
3395static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3396 const struct cntr_entry *entry,
3397 void *context, int vl, int mode, u64 data)
3398{
3399 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3400
3401 return dd->send_egress_err_status_cnt[27];
3402}
3403
3404static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3405 const struct cntr_entry *entry,
3406 void *context, int vl, int mode, u64 data)
3407{
3408 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3409
3410 return dd->send_egress_err_status_cnt[26];
3411}
3412
3413static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3414 const struct cntr_entry *entry,
3415 void *context, int vl, int mode, u64 data)
3416{
3417 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3418
3419 return dd->send_egress_err_status_cnt[25];
3420}
3421
3422static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3423 const struct cntr_entry *entry,
3424 void *context, int vl, int mode, u64 data)
3425{
3426 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3427
3428 return dd->send_egress_err_status_cnt[24];
3429}
3430
3431static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3432 const struct cntr_entry *entry,
3433 void *context, int vl, int mode, u64 data)
3434{
3435 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3436
3437 return dd->send_egress_err_status_cnt[23];
3438}
3439
3440static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3441 const struct cntr_entry *entry,
3442 void *context, int vl, int mode, u64 data)
3443{
3444 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3445
3446 return dd->send_egress_err_status_cnt[22];
3447}
3448
3449static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3450 const struct cntr_entry *entry,
3451 void *context, int vl, int mode, u64 data)
3452{
3453 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3454
3455 return dd->send_egress_err_status_cnt[21];
3456}
3457
3458static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3459 const struct cntr_entry *entry,
3460 void *context, int vl, int mode, u64 data)
3461{
3462 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3463
3464 return dd->send_egress_err_status_cnt[20];
3465}
3466
3467static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3468 const struct cntr_entry *entry,
3469 void *context, int vl, int mode, u64 data)
3470{
3471 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3472
3473 return dd->send_egress_err_status_cnt[19];
3474}
3475
3476static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3477 const struct cntr_entry *entry,
3478 void *context, int vl, int mode, u64 data)
3479{
3480 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3481
3482 return dd->send_egress_err_status_cnt[18];
3483}
3484
3485static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3486 const struct cntr_entry *entry,
3487 void *context, int vl, int mode, u64 data)
3488{
3489 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3490
3491 return dd->send_egress_err_status_cnt[17];
3492}
3493
3494static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3495 const struct cntr_entry *entry,
3496 void *context, int vl, int mode, u64 data)
3497{
3498 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3499
3500 return dd->send_egress_err_status_cnt[16];
3501}
3502
3503static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3504 void *context, int vl, int mode,
3505 u64 data)
3506{
3507 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3508
3509 return dd->send_egress_err_status_cnt[15];
3510}
3511
3512static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3513 void *context, int vl,
3514 int mode, u64 data)
3515{
3516 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3517
3518 return dd->send_egress_err_status_cnt[14];
3519}
3520
3521static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3522 void *context, int vl, int mode,
3523 u64 data)
3524{
3525 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3526
3527 return dd->send_egress_err_status_cnt[13];
3528}
3529
3530static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3531 void *context, int vl, int mode,
3532 u64 data)
3533{
3534 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3535
3536 return dd->send_egress_err_status_cnt[12];
3537}
3538
3539static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3540 const struct cntr_entry *entry,
3541 void *context, int vl, int mode, u64 data)
3542{
3543 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3544
3545 return dd->send_egress_err_status_cnt[11];
3546}
3547
3548static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3549 void *context, int vl, int mode,
3550 u64 data)
3551{
3552 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3553
3554 return dd->send_egress_err_status_cnt[10];
3555}
3556
3557static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3558 void *context, int vl, int mode,
3559 u64 data)
3560{
3561 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3562
3563 return dd->send_egress_err_status_cnt[9];
3564}
3565
3566static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3567 const struct cntr_entry *entry,
3568 void *context, int vl, int mode, u64 data)
3569{
3570 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3571
3572 return dd->send_egress_err_status_cnt[8];
3573}
3574
3575static u64 access_tx_pio_launch_intf_parity_err_cnt(
3576 const struct cntr_entry *entry,
3577 void *context, int vl, int mode, u64 data)
3578{
3579 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3580
3581 return dd->send_egress_err_status_cnt[7];
3582}
3583
3584static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3585 void *context, int vl, int mode,
3586 u64 data)
3587{
3588 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3589
3590 return dd->send_egress_err_status_cnt[6];
3591}
3592
3593static u64 access_tx_incorrect_link_state_err_cnt(
3594 const struct cntr_entry *entry,
3595 void *context, int vl, int mode, u64 data)
3596{
3597 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3598
3599 return dd->send_egress_err_status_cnt[5];
3600}
3601
3602static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3603 void *context, int vl, int mode,
3604 u64 data)
3605{
3606 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3607
3608 return dd->send_egress_err_status_cnt[4];
3609}
3610
3611static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3612 const struct cntr_entry *entry,
3613 void *context, int vl, int mode, u64 data)
3614{
3615 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3616
3617 return dd->send_egress_err_status_cnt[3];
3618}
3619
3620static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3621 void *context, int vl, int mode,
3622 u64 data)
3623{
3624 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3625
3626 return dd->send_egress_err_status_cnt[2];
3627}
3628
3629static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3630 const struct cntr_entry *entry,
3631 void *context, int vl, int mode, u64 data)
3632{
3633 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3634
3635 return dd->send_egress_err_status_cnt[1];
3636}
3637
3638static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3639 const struct cntr_entry *entry,
3640 void *context, int vl, int mode, u64 data)
3641{
3642 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3643
3644 return dd->send_egress_err_status_cnt[0];
3645}
3646
3647/*
3648 * Software counters corresponding to each of the
3649 * error status bits within SendErrStatus
3650 */
3651static u64 access_send_csr_write_bad_addr_err_cnt(
3652 const struct cntr_entry *entry,
3653 void *context, int vl, int mode, u64 data)
3654{
3655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3656
3657 return dd->send_err_status_cnt[2];
3658}
3659
3660static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3661 void *context, int vl,
3662 int mode, u64 data)
3663{
3664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665
3666 return dd->send_err_status_cnt[1];
3667}
3668
3669static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3670 void *context, int vl, int mode,
3671 u64 data)
3672{
3673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674
3675 return dd->send_err_status_cnt[0];
3676}
3677
3678/*
3679 * Software counters corresponding to each of the
3680 * error status bits within SendCtxtErrStatus
3681 */
3682static u64 access_pio_write_out_of_bounds_err_cnt(
3683 const struct cntr_entry *entry,
3684 void *context, int vl, int mode, u64 data)
3685{
3686 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3687
3688 return dd->sw_ctxt_err_status_cnt[4];
3689}
3690
3691static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3692 void *context, int vl, int mode,
3693 u64 data)
3694{
3695 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3696
3697 return dd->sw_ctxt_err_status_cnt[3];
3698}
3699
3700static u64 access_pio_write_crosses_boundary_err_cnt(
3701 const struct cntr_entry *entry,
3702 void *context, int vl, int mode, u64 data)
3703{
3704 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3705
3706 return dd->sw_ctxt_err_status_cnt[2];
3707}
3708
3709static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3710 void *context, int vl,
3711 int mode, u64 data)
3712{
3713 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3714
3715 return dd->sw_ctxt_err_status_cnt[1];
3716}
3717
3718static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3719 void *context, int vl, int mode,
3720 u64 data)
3721{
3722 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3723
3724 return dd->sw_ctxt_err_status_cnt[0];
3725}
3726
3727/*
3728 * Software counters corresponding to each of the
3729 * error status bits within SendDmaEngErrStatus
3730 */
3731static u64 access_sdma_header_request_fifo_cor_err_cnt(
3732 const struct cntr_entry *entry,
3733 void *context, int vl, int mode, u64 data)
3734{
3735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3736
3737 return dd->sw_send_dma_eng_err_status_cnt[23];
3738}
3739
3740static u64 access_sdma_header_storage_cor_err_cnt(
3741 const struct cntr_entry *entry,
3742 void *context, int vl, int mode, u64 data)
3743{
3744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3745
3746 return dd->sw_send_dma_eng_err_status_cnt[22];
3747}
3748
3749static u64 access_sdma_packet_tracking_cor_err_cnt(
3750 const struct cntr_entry *entry,
3751 void *context, int vl, int mode, u64 data)
3752{
3753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3754
3755 return dd->sw_send_dma_eng_err_status_cnt[21];
3756}
3757
3758static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3759 void *context, int vl, int mode,
3760 u64 data)
3761{
3762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3763
3764 return dd->sw_send_dma_eng_err_status_cnt[20];
3765}
3766
3767static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3768 void *context, int vl, int mode,
3769 u64 data)
3770{
3771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3772
3773 return dd->sw_send_dma_eng_err_status_cnt[19];
3774}
3775
3776static u64 access_sdma_header_request_fifo_unc_err_cnt(
3777 const struct cntr_entry *entry,
3778 void *context, int vl, int mode, u64 data)
3779{
3780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781
3782 return dd->sw_send_dma_eng_err_status_cnt[18];
3783}
3784
3785static u64 access_sdma_header_storage_unc_err_cnt(
3786 const struct cntr_entry *entry,
3787 void *context, int vl, int mode, u64 data)
3788{
3789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790
3791 return dd->sw_send_dma_eng_err_status_cnt[17];
3792}
3793
3794static u64 access_sdma_packet_tracking_unc_err_cnt(
3795 const struct cntr_entry *entry,
3796 void *context, int vl, int mode, u64 data)
3797{
3798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799
3800 return dd->sw_send_dma_eng_err_status_cnt[16];
3801}
3802
3803static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3804 void *context, int vl, int mode,
3805 u64 data)
3806{
3807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808
3809 return dd->sw_send_dma_eng_err_status_cnt[15];
3810}
3811
3812static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3813 void *context, int vl, int mode,
3814 u64 data)
3815{
3816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817
3818 return dd->sw_send_dma_eng_err_status_cnt[14];
3819}
3820
3821static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3822 void *context, int vl, int mode,
3823 u64 data)
3824{
3825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3826
3827 return dd->sw_send_dma_eng_err_status_cnt[13];
3828}
3829
3830static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3831 void *context, int vl, int mode,
3832 u64 data)
3833{
3834 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3835
3836 return dd->sw_send_dma_eng_err_status_cnt[12];
3837}
3838
3839static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3840 void *context, int vl, int mode,
3841 u64 data)
3842{
3843 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3844
3845 return dd->sw_send_dma_eng_err_status_cnt[11];
3846}
3847
3848static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3849 void *context, int vl, int mode,
3850 u64 data)
3851{
3852 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3853
3854 return dd->sw_send_dma_eng_err_status_cnt[10];
3855}
3856
3857static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3858 void *context, int vl, int mode,
3859 u64 data)
3860{
3861 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3862
3863 return dd->sw_send_dma_eng_err_status_cnt[9];
3864}
3865
3866static u64 access_sdma_packet_desc_overflow_err_cnt(
3867 const struct cntr_entry *entry,
3868 void *context, int vl, int mode, u64 data)
3869{
3870 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3871
3872 return dd->sw_send_dma_eng_err_status_cnt[8];
3873}
3874
3875static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3876 void *context, int vl,
3877 int mode, u64 data)
3878{
3879 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3880
3881 return dd->sw_send_dma_eng_err_status_cnt[7];
3882}
3883
3884static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3885 void *context, int vl, int mode, u64 data)
3886{
3887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3888
3889 return dd->sw_send_dma_eng_err_status_cnt[6];
3890}
3891
3892static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3893 void *context, int vl, int mode,
3894 u64 data)
3895{
3896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3897
3898 return dd->sw_send_dma_eng_err_status_cnt[5];
3899}
3900
3901static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3902 void *context, int vl, int mode,
3903 u64 data)
3904{
3905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3906
3907 return dd->sw_send_dma_eng_err_status_cnt[4];
3908}
3909
3910static u64 access_sdma_tail_out_of_bounds_err_cnt(
3911 const struct cntr_entry *entry,
3912 void *context, int vl, int mode, u64 data)
3913{
3914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3915
3916 return dd->sw_send_dma_eng_err_status_cnt[3];
3917}
3918
3919static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
3920 void *context, int vl, int mode,
3921 u64 data)
3922{
3923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3924
3925 return dd->sw_send_dma_eng_err_status_cnt[2];
3926}
3927
3928static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
3929 void *context, int vl, int mode,
3930 u64 data)
3931{
3932 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3933
3934 return dd->sw_send_dma_eng_err_status_cnt[1];
3935}
3936
3937static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
3938 void *context, int vl, int mode,
3939 u64 data)
3940{
3941 struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3942
3943 return dd->sw_send_dma_eng_err_status_cnt[0];
3944}
3945
Mike Marciniszyn77241052015-07-30 15:17:43 -04003946#define def_access_sw_cpu(cntr) \
3947static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \
3948 void *context, int vl, int mode, u64 data) \
3949{ \
3950 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
Dennis Dalessandro4eb06882016-01-19 14:42:39 -08003951 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \
3952 ppd->ibport_data.rvp.cntr, vl, \
Mike Marciniszyn77241052015-07-30 15:17:43 -04003953 mode, data); \
3954}
3955
3956def_access_sw_cpu(rc_acks);
3957def_access_sw_cpu(rc_qacks);
3958def_access_sw_cpu(rc_delayed_comp);
3959
3960#define def_access_ibp_counter(cntr) \
3961static u64 access_ibp_##cntr(const struct cntr_entry *entry, \
3962 void *context, int vl, int mode, u64 data) \
3963{ \
3964 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \
3965 \
3966 if (vl != CNTR_INVALID_VL) \
3967 return 0; \
3968 \
Dennis Dalessandro4eb06882016-01-19 14:42:39 -08003969 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \
Mike Marciniszyn77241052015-07-30 15:17:43 -04003970 mode, data); \
3971}
3972
3973def_access_ibp_counter(loop_pkts);
3974def_access_ibp_counter(rc_resends);
3975def_access_ibp_counter(rnr_naks);
3976def_access_ibp_counter(other_naks);
3977def_access_ibp_counter(rc_timeouts);
3978def_access_ibp_counter(pkt_drops);
3979def_access_ibp_counter(dmawait);
3980def_access_ibp_counter(rc_seqnak);
3981def_access_ibp_counter(rc_dupreq);
3982def_access_ibp_counter(rdma_seq);
3983def_access_ibp_counter(unaligned);
3984def_access_ibp_counter(seq_naks);
3985
3986static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
3987[C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
3988[C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
3989 CNTR_NORMAL),
3990[C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
3991 CNTR_NORMAL),
3992[C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
3993 RCV_TID_FLOW_GEN_MISMATCH_CNT,
3994 CNTR_NORMAL),
Mike Marciniszyn77241052015-07-30 15:17:43 -04003995[C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
3996 CNTR_NORMAL),
3997[C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
3998 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
3999[C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4000 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4001[C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4002 CNTR_NORMAL),
4003[C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4004 CNTR_NORMAL),
4005[C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4006 CNTR_NORMAL),
4007[C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4008 CNTR_NORMAL),
4009[C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4010 CNTR_NORMAL),
4011[C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4012 CNTR_NORMAL),
4013[C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4014 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL),
4015[C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4016 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4017[C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4018 CNTR_SYNTH),
4019[C_DC_RCV_ERR] = DC_PERF_CNTR(DcRecvErr, DCC_ERR_PORTRCV_ERR_CNT, CNTR_SYNTH),
4020[C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4021 CNTR_SYNTH),
4022[C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4023 CNTR_SYNTH),
4024[C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4025 CNTR_SYNTH),
4026[C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4027 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4028[C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4029 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4030 CNTR_SYNTH),
4031[C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4032 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4033[C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4034 CNTR_SYNTH),
4035[C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4036 CNTR_SYNTH),
4037[C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4038 CNTR_SYNTH),
4039[C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4040 CNTR_SYNTH),
4041[C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4042 CNTR_SYNTH),
4043[C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4044 CNTR_SYNTH),
4045[C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4046 CNTR_SYNTH),
4047[C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4048 CNTR_SYNTH | CNTR_VL),
4049[C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4050 CNTR_SYNTH | CNTR_VL),
4051[C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4052[C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4053 CNTR_SYNTH | CNTR_VL),
4054[C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4055[C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4056 CNTR_SYNTH | CNTR_VL),
4057[C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4058 CNTR_SYNTH),
4059[C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4060 CNTR_SYNTH | CNTR_VL),
4061[C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4062 CNTR_SYNTH),
4063[C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4064 CNTR_SYNTH | CNTR_VL),
4065[C_DC_TOTAL_CRC] =
4066 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4067 CNTR_SYNTH),
4068[C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4069 CNTR_SYNTH),
4070[C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4071 CNTR_SYNTH),
4072[C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4073 CNTR_SYNTH),
4074[C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4075 CNTR_SYNTH),
4076[C_DC_CRC_MULT_LN] =
4077 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4078 CNTR_SYNTH),
4079[C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4080 CNTR_SYNTH),
4081[C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4082 CNTR_SYNTH),
4083[C_DC_SEQ_CRC_CNT] =
4084 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4085 CNTR_SYNTH),
4086[C_DC_ESC0_ONLY_CNT] =
4087 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4088 CNTR_SYNTH),
4089[C_DC_ESC0_PLUS1_CNT] =
4090 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4091 CNTR_SYNTH),
4092[C_DC_ESC0_PLUS2_CNT] =
4093 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4094 CNTR_SYNTH),
4095[C_DC_REINIT_FROM_PEER_CNT] =
4096 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4097 CNTR_SYNTH),
4098[C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4099 CNTR_SYNTH),
4100[C_DC_MISC_FLG_CNT] =
4101 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4102 CNTR_SYNTH),
4103[C_DC_PRF_GOOD_LTP_CNT] =
4104 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4105[C_DC_PRF_ACCEPTED_LTP_CNT] =
4106 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4107 CNTR_SYNTH),
4108[C_DC_PRF_RX_FLIT_CNT] =
4109 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4110[C_DC_PRF_TX_FLIT_CNT] =
4111 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4112[C_DC_PRF_CLK_CNTR] =
4113 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4114[C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4115 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4116[C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4117 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4118 CNTR_SYNTH),
4119[C_DC_PG_STS_TX_SBE_CNT] =
4120 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4121[C_DC_PG_STS_TX_MBE_CNT] =
4122 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4123 CNTR_SYNTH),
4124[C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4125 access_sw_cpu_intr),
4126[C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4127 access_sw_cpu_rcv_limit),
4128[C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4129 access_sw_vtx_wait),
4130[C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4131 access_sw_pio_wait),
4132[C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4133 access_sw_kmem_wait),
Dean Luickb4219222015-10-26 10:28:35 -04004134[C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4135 access_sw_send_schedule),
Vennila Megavannana699c6c2016-01-11 18:30:56 -05004136[C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4137 SEND_DMA_DESC_FETCHED_CNT, 0,
4138 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4139 dev_access_u32_csr),
4140[C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4141 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4142 access_sde_int_cnt),
4143[C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4144 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4145 access_sde_err_cnt),
4146[C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4147 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4148 access_sde_idle_int_cnt),
4149[C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4150 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4151 access_sde_progress_int_cnt),
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05004152/* MISC_ERR_STATUS */
4153[C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4154 CNTR_NORMAL,
4155 access_misc_pll_lock_fail_err_cnt),
4156[C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4157 CNTR_NORMAL,
4158 access_misc_mbist_fail_err_cnt),
4159[C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4160 CNTR_NORMAL,
4161 access_misc_invalid_eep_cmd_err_cnt),
4162[C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4163 CNTR_NORMAL,
4164 access_misc_efuse_done_parity_err_cnt),
4165[C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4166 CNTR_NORMAL,
4167 access_misc_efuse_write_err_cnt),
4168[C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4169 0, CNTR_NORMAL,
4170 access_misc_efuse_read_bad_addr_err_cnt),
4171[C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4172 CNTR_NORMAL,
4173 access_misc_efuse_csr_parity_err_cnt),
4174[C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4175 CNTR_NORMAL,
4176 access_misc_fw_auth_failed_err_cnt),
4177[C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4178 CNTR_NORMAL,
4179 access_misc_key_mismatch_err_cnt),
4180[C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4181 CNTR_NORMAL,
4182 access_misc_sbus_write_failed_err_cnt),
4183[C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4184 CNTR_NORMAL,
4185 access_misc_csr_write_bad_addr_err_cnt),
4186[C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4187 CNTR_NORMAL,
4188 access_misc_csr_read_bad_addr_err_cnt),
4189[C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4190 CNTR_NORMAL,
4191 access_misc_csr_parity_err_cnt),
4192/* CceErrStatus */
4193[C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4194 CNTR_NORMAL,
4195 access_sw_cce_err_status_aggregated_cnt),
4196[C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4197 CNTR_NORMAL,
4198 access_cce_msix_csr_parity_err_cnt),
4199[C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4200 CNTR_NORMAL,
4201 access_cce_int_map_unc_err_cnt),
4202[C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4203 CNTR_NORMAL,
4204 access_cce_int_map_cor_err_cnt),
4205[C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4206 CNTR_NORMAL,
4207 access_cce_msix_table_unc_err_cnt),
4208[C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4209 CNTR_NORMAL,
4210 access_cce_msix_table_cor_err_cnt),
4211[C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4212 0, CNTR_NORMAL,
4213 access_cce_rxdma_conv_fifo_parity_err_cnt),
4214[C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4215 0, CNTR_NORMAL,
4216 access_cce_rcpl_async_fifo_parity_err_cnt),
4217[C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4218 CNTR_NORMAL,
4219 access_cce_seg_write_bad_addr_err_cnt),
4220[C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4221 CNTR_NORMAL,
4222 access_cce_seg_read_bad_addr_err_cnt),
4223[C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4224 CNTR_NORMAL,
4225 access_la_triggered_cnt),
4226[C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4227 CNTR_NORMAL,
4228 access_cce_trgt_cpl_timeout_err_cnt),
4229[C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4230 CNTR_NORMAL,
4231 access_pcic_receive_parity_err_cnt),
4232[C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4233 CNTR_NORMAL,
4234 access_pcic_transmit_back_parity_err_cnt),
4235[C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4236 0, CNTR_NORMAL,
4237 access_pcic_transmit_front_parity_err_cnt),
4238[C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4239 CNTR_NORMAL,
4240 access_pcic_cpl_dat_q_unc_err_cnt),
4241[C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4242 CNTR_NORMAL,
4243 access_pcic_cpl_hd_q_unc_err_cnt),
4244[C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4245 CNTR_NORMAL,
4246 access_pcic_post_dat_q_unc_err_cnt),
4247[C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4248 CNTR_NORMAL,
4249 access_pcic_post_hd_q_unc_err_cnt),
4250[C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4251 CNTR_NORMAL,
4252 access_pcic_retry_sot_mem_unc_err_cnt),
4253[C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4254 CNTR_NORMAL,
4255 access_pcic_retry_mem_unc_err),
4256[C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4257 CNTR_NORMAL,
4258 access_pcic_n_post_dat_q_parity_err_cnt),
4259[C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4260 CNTR_NORMAL,
4261 access_pcic_n_post_h_q_parity_err_cnt),
4262[C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4263 CNTR_NORMAL,
4264 access_pcic_cpl_dat_q_cor_err_cnt),
4265[C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4266 CNTR_NORMAL,
4267 access_pcic_cpl_hd_q_cor_err_cnt),
4268[C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4269 CNTR_NORMAL,
4270 access_pcic_post_dat_q_cor_err_cnt),
4271[C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4272 CNTR_NORMAL,
4273 access_pcic_post_hd_q_cor_err_cnt),
4274[C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4275 CNTR_NORMAL,
4276 access_pcic_retry_sot_mem_cor_err_cnt),
4277[C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4278 CNTR_NORMAL,
4279 access_pcic_retry_mem_cor_err_cnt),
4280[C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4281 "CceCli1AsyncFifoDbgParityError", 0, 0,
4282 CNTR_NORMAL,
4283 access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4284[C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4285 "CceCli1AsyncFifoRxdmaParityError", 0, 0,
4286 CNTR_NORMAL,
4287 access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4288 ),
4289[C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4290 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4291 CNTR_NORMAL,
4292 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4293[C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4294 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4295 CNTR_NORMAL,
4296 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4297[C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4298 0, CNTR_NORMAL,
4299 access_cce_cli2_async_fifo_parity_err_cnt),
4300[C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4301 CNTR_NORMAL,
4302 access_cce_csr_cfg_bus_parity_err_cnt),
4303[C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4304 0, CNTR_NORMAL,
4305 access_cce_cli0_async_fifo_parity_err_cnt),
4306[C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4307 CNTR_NORMAL,
4308 access_cce_rspd_data_parity_err_cnt),
4309[C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4310 CNTR_NORMAL,
4311 access_cce_trgt_access_err_cnt),
4312[C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4313 0, CNTR_NORMAL,
4314 access_cce_trgt_async_fifo_parity_err_cnt),
4315[C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4316 CNTR_NORMAL,
4317 access_cce_csr_write_bad_addr_err_cnt),
4318[C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4319 CNTR_NORMAL,
4320 access_cce_csr_read_bad_addr_err_cnt),
4321[C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4322 CNTR_NORMAL,
4323 access_ccs_csr_parity_err_cnt),
4324
4325/* RcvErrStatus */
4326[C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4327 CNTR_NORMAL,
4328 access_rx_csr_parity_err_cnt),
4329[C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4330 CNTR_NORMAL,
4331 access_rx_csr_write_bad_addr_err_cnt),
4332[C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4333 CNTR_NORMAL,
4334 access_rx_csr_read_bad_addr_err_cnt),
4335[C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4336 CNTR_NORMAL,
4337 access_rx_dma_csr_unc_err_cnt),
4338[C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4339 CNTR_NORMAL,
4340 access_rx_dma_dq_fsm_encoding_err_cnt),
4341[C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4342 CNTR_NORMAL,
4343 access_rx_dma_eq_fsm_encoding_err_cnt),
4344[C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4345 CNTR_NORMAL,
4346 access_rx_dma_csr_parity_err_cnt),
4347[C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4348 CNTR_NORMAL,
4349 access_rx_rbuf_data_cor_err_cnt),
4350[C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4351 CNTR_NORMAL,
4352 access_rx_rbuf_data_unc_err_cnt),
4353[C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4354 CNTR_NORMAL,
4355 access_rx_dma_data_fifo_rd_cor_err_cnt),
4356[C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4357 CNTR_NORMAL,
4358 access_rx_dma_data_fifo_rd_unc_err_cnt),
4359[C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4360 CNTR_NORMAL,
4361 access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4362[C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4363 CNTR_NORMAL,
4364 access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4365[C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4366 CNTR_NORMAL,
4367 access_rx_rbuf_desc_part2_cor_err_cnt),
4368[C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4369 CNTR_NORMAL,
4370 access_rx_rbuf_desc_part2_unc_err_cnt),
4371[C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4372 CNTR_NORMAL,
4373 access_rx_rbuf_desc_part1_cor_err_cnt),
4374[C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4375 CNTR_NORMAL,
4376 access_rx_rbuf_desc_part1_unc_err_cnt),
4377[C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4378 CNTR_NORMAL,
4379 access_rx_hq_intr_fsm_err_cnt),
4380[C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4381 CNTR_NORMAL,
4382 access_rx_hq_intr_csr_parity_err_cnt),
4383[C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4384 CNTR_NORMAL,
4385 access_rx_lookup_csr_parity_err_cnt),
4386[C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4387 CNTR_NORMAL,
4388 access_rx_lookup_rcv_array_cor_err_cnt),
4389[C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4390 CNTR_NORMAL,
4391 access_rx_lookup_rcv_array_unc_err_cnt),
4392[C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4393 0, CNTR_NORMAL,
4394 access_rx_lookup_des_part2_parity_err_cnt),
4395[C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4396 0, CNTR_NORMAL,
4397 access_rx_lookup_des_part1_unc_cor_err_cnt),
4398[C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4399 CNTR_NORMAL,
4400 access_rx_lookup_des_part1_unc_err_cnt),
4401[C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4402 CNTR_NORMAL,
4403 access_rx_rbuf_next_free_buf_cor_err_cnt),
4404[C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4405 CNTR_NORMAL,
4406 access_rx_rbuf_next_free_buf_unc_err_cnt),
4407[C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4408 "RxRbufFlInitWrAddrParityErr", 0, 0,
4409 CNTR_NORMAL,
4410 access_rbuf_fl_init_wr_addr_parity_err_cnt),
4411[C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4412 0, CNTR_NORMAL,
4413 access_rx_rbuf_fl_initdone_parity_err_cnt),
4414[C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4415 0, CNTR_NORMAL,
4416 access_rx_rbuf_fl_write_addr_parity_err_cnt),
4417[C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4418 CNTR_NORMAL,
4419 access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4420[C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4421 CNTR_NORMAL,
4422 access_rx_rbuf_empty_err_cnt),
4423[C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4424 CNTR_NORMAL,
4425 access_rx_rbuf_full_err_cnt),
4426[C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4427 CNTR_NORMAL,
4428 access_rbuf_bad_lookup_err_cnt),
4429[C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4430 CNTR_NORMAL,
4431 access_rbuf_ctx_id_parity_err_cnt),
4432[C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4433 CNTR_NORMAL,
4434 access_rbuf_csr_qeopdw_parity_err_cnt),
4435[C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4436 "RxRbufCsrQNumOfPktParityErr", 0, 0,
4437 CNTR_NORMAL,
4438 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4439[C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4440 "RxRbufCsrQTlPtrParityErr", 0, 0,
4441 CNTR_NORMAL,
4442 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4443[C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4444 0, CNTR_NORMAL,
4445 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4446[C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4447 0, CNTR_NORMAL,
4448 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4449[C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4450 0, 0, CNTR_NORMAL,
4451 access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4452[C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4453 0, CNTR_NORMAL,
4454 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4455[C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4456 "RxRbufCsrQHeadBufNumParityErr", 0, 0,
4457 CNTR_NORMAL,
4458 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4459[C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4460 0, CNTR_NORMAL,
4461 access_rx_rbuf_block_list_read_cor_err_cnt),
4462[C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4463 0, CNTR_NORMAL,
4464 access_rx_rbuf_block_list_read_unc_err_cnt),
4465[C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4466 CNTR_NORMAL,
4467 access_rx_rbuf_lookup_des_cor_err_cnt),
4468[C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4469 CNTR_NORMAL,
4470 access_rx_rbuf_lookup_des_unc_err_cnt),
4471[C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4472 "RxRbufLookupDesRegUncCorErr", 0, 0,
4473 CNTR_NORMAL,
4474 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4475[C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4476 CNTR_NORMAL,
4477 access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4478[C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4479 CNTR_NORMAL,
4480 access_rx_rbuf_free_list_cor_err_cnt),
4481[C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4482 CNTR_NORMAL,
4483 access_rx_rbuf_free_list_unc_err_cnt),
4484[C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4485 CNTR_NORMAL,
4486 access_rx_rcv_fsm_encoding_err_cnt),
4487[C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4488 CNTR_NORMAL,
4489 access_rx_dma_flag_cor_err_cnt),
4490[C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4491 CNTR_NORMAL,
4492 access_rx_dma_flag_unc_err_cnt),
4493[C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4494 CNTR_NORMAL,
4495 access_rx_dc_sop_eop_parity_err_cnt),
4496[C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4497 CNTR_NORMAL,
4498 access_rx_rcv_csr_parity_err_cnt),
4499[C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4500 CNTR_NORMAL,
4501 access_rx_rcv_qp_map_table_cor_err_cnt),
4502[C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4503 CNTR_NORMAL,
4504 access_rx_rcv_qp_map_table_unc_err_cnt),
4505[C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4506 CNTR_NORMAL,
4507 access_rx_rcv_data_cor_err_cnt),
4508[C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4509 CNTR_NORMAL,
4510 access_rx_rcv_data_unc_err_cnt),
4511[C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4512 CNTR_NORMAL,
4513 access_rx_rcv_hdr_cor_err_cnt),
4514[C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4515 CNTR_NORMAL,
4516 access_rx_rcv_hdr_unc_err_cnt),
4517[C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4518 CNTR_NORMAL,
4519 access_rx_dc_intf_parity_err_cnt),
4520[C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4521 CNTR_NORMAL,
4522 access_rx_dma_csr_cor_err_cnt),
4523/* SendPioErrStatus */
4524[C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4525 CNTR_NORMAL,
4526 access_pio_pec_sop_head_parity_err_cnt),
4527[C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4528 CNTR_NORMAL,
4529 access_pio_pcc_sop_head_parity_err_cnt),
4530[C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4531 0, 0, CNTR_NORMAL,
4532 access_pio_last_returned_cnt_parity_err_cnt),
4533[C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4534 0, CNTR_NORMAL,
4535 access_pio_current_free_cnt_parity_err_cnt),
4536[C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4537 CNTR_NORMAL,
4538 access_pio_reserved_31_err_cnt),
4539[C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4540 CNTR_NORMAL,
4541 access_pio_reserved_30_err_cnt),
4542[C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4543 CNTR_NORMAL,
4544 access_pio_ppmc_sop_len_err_cnt),
4545[C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4546 CNTR_NORMAL,
4547 access_pio_ppmc_bqc_mem_parity_err_cnt),
4548[C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4549 CNTR_NORMAL,
4550 access_pio_vl_fifo_parity_err_cnt),
4551[C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4552 CNTR_NORMAL,
4553 access_pio_vlf_sop_parity_err_cnt),
4554[C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4555 CNTR_NORMAL,
4556 access_pio_vlf_v1_len_parity_err_cnt),
4557[C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4558 CNTR_NORMAL,
4559 access_pio_block_qw_count_parity_err_cnt),
4560[C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4561 CNTR_NORMAL,
4562 access_pio_write_qw_valid_parity_err_cnt),
4563[C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4564 CNTR_NORMAL,
4565 access_pio_state_machine_err_cnt),
4566[C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4567 CNTR_NORMAL,
4568 access_pio_write_data_parity_err_cnt),
4569[C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4570 CNTR_NORMAL,
4571 access_pio_host_addr_mem_cor_err_cnt),
4572[C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4573 CNTR_NORMAL,
4574 access_pio_host_addr_mem_unc_err_cnt),
4575[C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4576 CNTR_NORMAL,
4577 access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4578[C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4579 CNTR_NORMAL,
4580 access_pio_init_sm_in_err_cnt),
4581[C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4582 CNTR_NORMAL,
4583 access_pio_ppmc_pbl_fifo_err_cnt),
4584[C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4585 0, CNTR_NORMAL,
4586 access_pio_credit_ret_fifo_parity_err_cnt),
4587[C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4588 CNTR_NORMAL,
4589 access_pio_v1_len_mem_bank1_cor_err_cnt),
4590[C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4591 CNTR_NORMAL,
4592 access_pio_v1_len_mem_bank0_cor_err_cnt),
4593[C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4594 CNTR_NORMAL,
4595 access_pio_v1_len_mem_bank1_unc_err_cnt),
4596[C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4597 CNTR_NORMAL,
4598 access_pio_v1_len_mem_bank0_unc_err_cnt),
4599[C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4600 CNTR_NORMAL,
4601 access_pio_sm_pkt_reset_parity_err_cnt),
4602[C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4603 CNTR_NORMAL,
4604 access_pio_pkt_evict_fifo_parity_err_cnt),
4605[C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4606 "PioSbrdctrlCrrelFifoParityErr", 0, 0,
4607 CNTR_NORMAL,
4608 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4609[C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4610 CNTR_NORMAL,
4611 access_pio_sbrdctl_crrel_parity_err_cnt),
4612[C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4613 CNTR_NORMAL,
4614 access_pio_pec_fifo_parity_err_cnt),
4615[C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4616 CNTR_NORMAL,
4617 access_pio_pcc_fifo_parity_err_cnt),
4618[C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4619 CNTR_NORMAL,
4620 access_pio_sb_mem_fifo1_err_cnt),
4621[C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4622 CNTR_NORMAL,
4623 access_pio_sb_mem_fifo0_err_cnt),
4624[C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4625 CNTR_NORMAL,
4626 access_pio_csr_parity_err_cnt),
4627[C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4628 CNTR_NORMAL,
4629 access_pio_write_addr_parity_err_cnt),
4630[C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4631 CNTR_NORMAL,
4632 access_pio_write_bad_ctxt_err_cnt),
4633/* SendDmaErrStatus */
4634[C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4635 0, CNTR_NORMAL,
4636 access_sdma_pcie_req_tracking_cor_err_cnt),
4637[C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4638 0, CNTR_NORMAL,
4639 access_sdma_pcie_req_tracking_unc_err_cnt),
4640[C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4641 CNTR_NORMAL,
4642 access_sdma_csr_parity_err_cnt),
4643[C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4644 CNTR_NORMAL,
4645 access_sdma_rpy_tag_err_cnt),
4646/* SendEgressErrStatus */
4647[C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4648 CNTR_NORMAL,
4649 access_tx_read_pio_memory_csr_unc_err_cnt),
4650[C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4651 0, CNTR_NORMAL,
4652 access_tx_read_sdma_memory_csr_err_cnt),
4653[C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4654 CNTR_NORMAL,
4655 access_tx_egress_fifo_cor_err_cnt),
4656[C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4657 CNTR_NORMAL,
4658 access_tx_read_pio_memory_cor_err_cnt),
4659[C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4660 CNTR_NORMAL,
4661 access_tx_read_sdma_memory_cor_err_cnt),
4662[C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4663 CNTR_NORMAL,
4664 access_tx_sb_hdr_cor_err_cnt),
4665[C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4666 CNTR_NORMAL,
4667 access_tx_credit_overrun_err_cnt),
4668[C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4669 CNTR_NORMAL,
4670 access_tx_launch_fifo8_cor_err_cnt),
4671[C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4672 CNTR_NORMAL,
4673 access_tx_launch_fifo7_cor_err_cnt),
4674[C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4675 CNTR_NORMAL,
4676 access_tx_launch_fifo6_cor_err_cnt),
4677[C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4678 CNTR_NORMAL,
4679 access_tx_launch_fifo5_cor_err_cnt),
4680[C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4681 CNTR_NORMAL,
4682 access_tx_launch_fifo4_cor_err_cnt),
4683[C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4684 CNTR_NORMAL,
4685 access_tx_launch_fifo3_cor_err_cnt),
4686[C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4687 CNTR_NORMAL,
4688 access_tx_launch_fifo2_cor_err_cnt),
4689[C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4690 CNTR_NORMAL,
4691 access_tx_launch_fifo1_cor_err_cnt),
4692[C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4693 CNTR_NORMAL,
4694 access_tx_launch_fifo0_cor_err_cnt),
4695[C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4696 CNTR_NORMAL,
4697 access_tx_credit_return_vl_err_cnt),
4698[C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4699 CNTR_NORMAL,
4700 access_tx_hcrc_insertion_err_cnt),
4701[C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4702 CNTR_NORMAL,
4703 access_tx_egress_fifo_unc_err_cnt),
4704[C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4705 CNTR_NORMAL,
4706 access_tx_read_pio_memory_unc_err_cnt),
4707[C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4708 CNTR_NORMAL,
4709 access_tx_read_sdma_memory_unc_err_cnt),
4710[C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4711 CNTR_NORMAL,
4712 access_tx_sb_hdr_unc_err_cnt),
4713[C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4714 CNTR_NORMAL,
4715 access_tx_credit_return_partiy_err_cnt),
4716[C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4717 0, 0, CNTR_NORMAL,
4718 access_tx_launch_fifo8_unc_or_parity_err_cnt),
4719[C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4720 0, 0, CNTR_NORMAL,
4721 access_tx_launch_fifo7_unc_or_parity_err_cnt),
4722[C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4723 0, 0, CNTR_NORMAL,
4724 access_tx_launch_fifo6_unc_or_parity_err_cnt),
4725[C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4726 0, 0, CNTR_NORMAL,
4727 access_tx_launch_fifo5_unc_or_parity_err_cnt),
4728[C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4729 0, 0, CNTR_NORMAL,
4730 access_tx_launch_fifo4_unc_or_parity_err_cnt),
4731[C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4732 0, 0, CNTR_NORMAL,
4733 access_tx_launch_fifo3_unc_or_parity_err_cnt),
4734[C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4735 0, 0, CNTR_NORMAL,
4736 access_tx_launch_fifo2_unc_or_parity_err_cnt),
4737[C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4738 0, 0, CNTR_NORMAL,
4739 access_tx_launch_fifo1_unc_or_parity_err_cnt),
4740[C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4741 0, 0, CNTR_NORMAL,
4742 access_tx_launch_fifo0_unc_or_parity_err_cnt),
4743[C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4744 0, 0, CNTR_NORMAL,
4745 access_tx_sdma15_disallowed_packet_err_cnt),
4746[C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4747 0, 0, CNTR_NORMAL,
4748 access_tx_sdma14_disallowed_packet_err_cnt),
4749[C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4750 0, 0, CNTR_NORMAL,
4751 access_tx_sdma13_disallowed_packet_err_cnt),
4752[C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4753 0, 0, CNTR_NORMAL,
4754 access_tx_sdma12_disallowed_packet_err_cnt),
4755[C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4756 0, 0, CNTR_NORMAL,
4757 access_tx_sdma11_disallowed_packet_err_cnt),
4758[C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4759 0, 0, CNTR_NORMAL,
4760 access_tx_sdma10_disallowed_packet_err_cnt),
4761[C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4762 0, 0, CNTR_NORMAL,
4763 access_tx_sdma9_disallowed_packet_err_cnt),
4764[C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4765 0, 0, CNTR_NORMAL,
4766 access_tx_sdma8_disallowed_packet_err_cnt),
4767[C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4768 0, 0, CNTR_NORMAL,
4769 access_tx_sdma7_disallowed_packet_err_cnt),
4770[C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4771 0, 0, CNTR_NORMAL,
4772 access_tx_sdma6_disallowed_packet_err_cnt),
4773[C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4774 0, 0, CNTR_NORMAL,
4775 access_tx_sdma5_disallowed_packet_err_cnt),
4776[C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4777 0, 0, CNTR_NORMAL,
4778 access_tx_sdma4_disallowed_packet_err_cnt),
4779[C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4780 0, 0, CNTR_NORMAL,
4781 access_tx_sdma3_disallowed_packet_err_cnt),
4782[C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4783 0, 0, CNTR_NORMAL,
4784 access_tx_sdma2_disallowed_packet_err_cnt),
4785[C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4786 0, 0, CNTR_NORMAL,
4787 access_tx_sdma1_disallowed_packet_err_cnt),
4788[C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4789 0, 0, CNTR_NORMAL,
4790 access_tx_sdma0_disallowed_packet_err_cnt),
4791[C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4792 CNTR_NORMAL,
4793 access_tx_config_parity_err_cnt),
4794[C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4795 CNTR_NORMAL,
4796 access_tx_sbrd_ctl_csr_parity_err_cnt),
4797[C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4798 CNTR_NORMAL,
4799 access_tx_launch_csr_parity_err_cnt),
4800[C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4801 CNTR_NORMAL,
4802 access_tx_illegal_vl_err_cnt),
4803[C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4804 "TxSbrdCtlStateMachineParityErr", 0, 0,
4805 CNTR_NORMAL,
4806 access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4807[C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4808 CNTR_NORMAL,
4809 access_egress_reserved_10_err_cnt),
4810[C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4811 CNTR_NORMAL,
4812 access_egress_reserved_9_err_cnt),
4813[C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4814 0, 0, CNTR_NORMAL,
4815 access_tx_sdma_launch_intf_parity_err_cnt),
4816[C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4817 CNTR_NORMAL,
4818 access_tx_pio_launch_intf_parity_err_cnt),
4819[C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4820 CNTR_NORMAL,
4821 access_egress_reserved_6_err_cnt),
4822[C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4823 CNTR_NORMAL,
4824 access_tx_incorrect_link_state_err_cnt),
4825[C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4826 CNTR_NORMAL,
4827 access_tx_linkdown_err_cnt),
4828[C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4829 "EgressFifoUnderrunOrParityErr", 0, 0,
4830 CNTR_NORMAL,
4831 access_tx_egress_fifi_underrun_or_parity_err_cnt),
4832[C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4833 CNTR_NORMAL,
4834 access_egress_reserved_2_err_cnt),
4835[C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4836 CNTR_NORMAL,
4837 access_tx_pkt_integrity_mem_unc_err_cnt),
4838[C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4839 CNTR_NORMAL,
4840 access_tx_pkt_integrity_mem_cor_err_cnt),
4841/* SendErrStatus */
4842[C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4843 CNTR_NORMAL,
4844 access_send_csr_write_bad_addr_err_cnt),
4845[C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4846 CNTR_NORMAL,
4847 access_send_csr_read_bad_addr_err_cnt),
4848[C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4849 CNTR_NORMAL,
4850 access_send_csr_parity_cnt),
4851/* SendCtxtErrStatus */
4852[C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4853 CNTR_NORMAL,
4854 access_pio_write_out_of_bounds_err_cnt),
4855[C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4856 CNTR_NORMAL,
4857 access_pio_write_overflow_err_cnt),
4858[C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4859 0, 0, CNTR_NORMAL,
4860 access_pio_write_crosses_boundary_err_cnt),
4861[C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4862 CNTR_NORMAL,
4863 access_pio_disallowed_packet_err_cnt),
4864[C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4865 CNTR_NORMAL,
4866 access_pio_inconsistent_sop_err_cnt),
4867/* SendDmaEngErrStatus */
4868[C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4869 0, 0, CNTR_NORMAL,
4870 access_sdma_header_request_fifo_cor_err_cnt),
4871[C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4872 CNTR_NORMAL,
4873 access_sdma_header_storage_cor_err_cnt),
4874[C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4875 CNTR_NORMAL,
4876 access_sdma_packet_tracking_cor_err_cnt),
4877[C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4878 CNTR_NORMAL,
4879 access_sdma_assembly_cor_err_cnt),
4880[C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
4881 CNTR_NORMAL,
4882 access_sdma_desc_table_cor_err_cnt),
4883[C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
4884 0, 0, CNTR_NORMAL,
4885 access_sdma_header_request_fifo_unc_err_cnt),
4886[C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
4887 CNTR_NORMAL,
4888 access_sdma_header_storage_unc_err_cnt),
4889[C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
4890 CNTR_NORMAL,
4891 access_sdma_packet_tracking_unc_err_cnt),
4892[C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
4893 CNTR_NORMAL,
4894 access_sdma_assembly_unc_err_cnt),
4895[C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
4896 CNTR_NORMAL,
4897 access_sdma_desc_table_unc_err_cnt),
4898[C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
4899 CNTR_NORMAL,
4900 access_sdma_timeout_err_cnt),
4901[C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
4902 CNTR_NORMAL,
4903 access_sdma_header_length_err_cnt),
4904[C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
4905 CNTR_NORMAL,
4906 access_sdma_header_address_err_cnt),
4907[C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
4908 CNTR_NORMAL,
4909 access_sdma_header_select_err_cnt),
4910[C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
4911 CNTR_NORMAL,
4912 access_sdma_reserved_9_err_cnt),
4913[C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
4914 CNTR_NORMAL,
4915 access_sdma_packet_desc_overflow_err_cnt),
4916[C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
4917 CNTR_NORMAL,
4918 access_sdma_length_mismatch_err_cnt),
4919[C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
4920 CNTR_NORMAL,
4921 access_sdma_halt_err_cnt),
4922[C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
4923 CNTR_NORMAL,
4924 access_sdma_mem_read_err_cnt),
4925[C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
4926 CNTR_NORMAL,
4927 access_sdma_first_desc_err_cnt),
4928[C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
4929 CNTR_NORMAL,
4930 access_sdma_tail_out_of_bounds_err_cnt),
4931[C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
4932 CNTR_NORMAL,
4933 access_sdma_too_long_err_cnt),
4934[C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
4935 CNTR_NORMAL,
4936 access_sdma_gen_mismatch_err_cnt),
4937[C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
4938 CNTR_NORMAL,
4939 access_sdma_wrong_dw_err_cnt),
Mike Marciniszyn77241052015-07-30 15:17:43 -04004940};
4941
4942static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
4943[C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
4944 CNTR_NORMAL),
4945[C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
4946 CNTR_NORMAL),
4947[C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
4948 CNTR_NORMAL),
4949[C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
4950 CNTR_NORMAL),
4951[C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
4952 CNTR_NORMAL),
4953[C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
4954 CNTR_NORMAL),
4955[C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
4956 CNTR_NORMAL),
4957[C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
4958[C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
4959[C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
4960[C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
4961 CNTR_SYNTH | CNTR_VL),
4962[C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
4963 CNTR_SYNTH | CNTR_VL),
4964[C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
4965 CNTR_SYNTH | CNTR_VL),
4966[C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
4967[C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
4968[C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4969 access_sw_link_dn_cnt),
4970[C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4971 access_sw_link_up_cnt),
Dean Luick6d014532015-12-01 15:38:23 -05004972[C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
4973 access_sw_unknown_frame_cnt),
Mike Marciniszyn77241052015-07-30 15:17:43 -04004974[C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
4975 access_sw_xmit_discards),
4976[C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
4977 CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
4978 access_sw_xmit_discards),
4979[C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
4980 access_xmit_constraint_errs),
4981[C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
4982 access_rcv_constraint_errs),
4983[C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
4984[C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
4985[C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
4986[C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
4987[C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
4988[C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
4989[C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
4990[C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
4991[C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
4992[C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
4993[C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
4994[C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
4995[C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
4996 access_sw_cpu_rc_acks),
4997[C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
4998 access_sw_cpu_rc_qacks),
4999[C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5000 access_sw_cpu_rc_delayed_comp),
5001[OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5002[OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5003[OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5004[OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5005[OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5006[OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5007[OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5008[OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5009[OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5010[OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5011[OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5012[OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5013[OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5014[OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5015[OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5016[OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5017[OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5018[OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5019[OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5020[OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5021[OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5022[OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5023[OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5024[OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5025[OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5026[OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5027[OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5028[OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5029[OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5030[OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5031[OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5032[OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5033[OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5034[OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5035[OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5036[OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5037[OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5038[OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5039[OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5040[OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5041[OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5042[OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5043[OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5044[OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5045[OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5046[OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5047[OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5048[OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5049[OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5050[OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5051[OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5052[OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5053[OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5054[OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5055[OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5056[OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5057[OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5058[OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5059[OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5060[OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5061[OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5062[OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5063[OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5064[OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5065[OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5066[OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5067[OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5068[OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5069[OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5070[OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5071[OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5072[OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5073[OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5074[OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5075[OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5076[OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5077[OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5078[OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5079[OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5080[OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5081};
5082
5083/* ======================================================================== */
5084
Mike Marciniszyn77241052015-07-30 15:17:43 -04005085/* return true if this is chip revision revision a */
5086int is_ax(struct hfi1_devdata *dd)
5087{
5088 u8 chip_rev_minor =
5089 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5090 & CCE_REVISION_CHIP_REV_MINOR_MASK;
5091 return (chip_rev_minor & 0xf0) == 0;
5092}
5093
5094/* return true if this is chip revision revision b */
5095int is_bx(struct hfi1_devdata *dd)
5096{
5097 u8 chip_rev_minor =
5098 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5099 & CCE_REVISION_CHIP_REV_MINOR_MASK;
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05005100 return (chip_rev_minor & 0xF0) == 0x10;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005101}
5102
5103/*
5104 * Append string s to buffer buf. Arguments curp and len are the current
5105 * position and remaining length, respectively.
5106 *
5107 * return 0 on success, 1 on out of room
5108 */
5109static int append_str(char *buf, char **curp, int *lenp, const char *s)
5110{
5111 char *p = *curp;
5112 int len = *lenp;
5113 int result = 0; /* success */
5114 char c;
5115
5116 /* add a comma, if first in the buffer */
5117 if (p != buf) {
5118 if (len == 0) {
5119 result = 1; /* out of room */
5120 goto done;
5121 }
5122 *p++ = ',';
5123 len--;
5124 }
5125
5126 /* copy the string */
5127 while ((c = *s++) != 0) {
5128 if (len == 0) {
5129 result = 1; /* out of room */
5130 goto done;
5131 }
5132 *p++ = c;
5133 len--;
5134 }
5135
5136done:
5137 /* write return values */
5138 *curp = p;
5139 *lenp = len;
5140
5141 return result;
5142}
5143
5144/*
5145 * Using the given flag table, print a comma separated string into
5146 * the buffer. End in '*' if the buffer is too short.
5147 */
5148static char *flag_string(char *buf, int buf_len, u64 flags,
5149 struct flag_table *table, int table_size)
5150{
5151 char extra[32];
5152 char *p = buf;
5153 int len = buf_len;
5154 int no_room = 0;
5155 int i;
5156
5157 /* make sure there is at least 2 so we can form "*" */
5158 if (len < 2)
5159 return "";
5160
5161 len--; /* leave room for a nul */
5162 for (i = 0; i < table_size; i++) {
5163 if (flags & table[i].flag) {
5164 no_room = append_str(buf, &p, &len, table[i].str);
5165 if (no_room)
5166 break;
5167 flags &= ~table[i].flag;
5168 }
5169 }
5170
5171 /* any undocumented bits left? */
5172 if (!no_room && flags) {
5173 snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5174 no_room = append_str(buf, &p, &len, extra);
5175 }
5176
5177 /* add * if ran out of room */
5178 if (no_room) {
5179 /* may need to back up to add space for a '*' */
5180 if (len == 0)
5181 --p;
5182 *p++ = '*';
5183 }
5184
5185 /* add final nul - space already allocated above */
5186 *p = 0;
5187 return buf;
5188}
5189
5190/* first 8 CCE error interrupt source names */
5191static const char * const cce_misc_names[] = {
5192 "CceErrInt", /* 0 */
5193 "RxeErrInt", /* 1 */
5194 "MiscErrInt", /* 2 */
5195 "Reserved3", /* 3 */
5196 "PioErrInt", /* 4 */
5197 "SDmaErrInt", /* 5 */
5198 "EgressErrInt", /* 6 */
5199 "TxeErrInt" /* 7 */
5200};
5201
5202/*
5203 * Return the miscellaneous error interrupt name.
5204 */
5205static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5206{
5207 if (source < ARRAY_SIZE(cce_misc_names))
5208 strncpy(buf, cce_misc_names[source], bsize);
5209 else
5210 snprintf(buf,
5211 bsize,
5212 "Reserved%u",
5213 source + IS_GENERAL_ERR_START);
5214
5215 return buf;
5216}
5217
5218/*
5219 * Return the SDMA engine error interrupt name.
5220 */
5221static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5222{
5223 snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5224 return buf;
5225}
5226
5227/*
5228 * Return the send context error interrupt name.
5229 */
5230static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5231{
5232 snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5233 return buf;
5234}
5235
5236static const char * const various_names[] = {
5237 "PbcInt",
5238 "GpioAssertInt",
5239 "Qsfp1Int",
5240 "Qsfp2Int",
5241 "TCritInt"
5242};
5243
5244/*
5245 * Return the various interrupt name.
5246 */
5247static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5248{
5249 if (source < ARRAY_SIZE(various_names))
5250 strncpy(buf, various_names[source], bsize);
5251 else
5252 snprintf(buf, bsize, "Reserved%u", source+IS_VARIOUS_START);
5253 return buf;
5254}
5255
5256/*
5257 * Return the DC interrupt name.
5258 */
5259static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5260{
5261 static const char * const dc_int_names[] = {
5262 "common",
5263 "lcb",
5264 "8051",
5265 "lbm" /* local block merge */
5266 };
5267
5268 if (source < ARRAY_SIZE(dc_int_names))
5269 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5270 else
5271 snprintf(buf, bsize, "DCInt%u", source);
5272 return buf;
5273}
5274
5275static const char * const sdma_int_names[] = {
5276 "SDmaInt",
5277 "SdmaIdleInt",
5278 "SdmaProgressInt",
5279};
5280
5281/*
5282 * Return the SDMA engine interrupt name.
5283 */
5284static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5285{
5286 /* what interrupt */
5287 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
5288 /* which engine */
5289 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5290
5291 if (likely(what < 3))
5292 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5293 else
5294 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5295 return buf;
5296}
5297
5298/*
5299 * Return the receive available interrupt name.
5300 */
5301static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5302{
5303 snprintf(buf, bsize, "RcvAvailInt%u", source);
5304 return buf;
5305}
5306
5307/*
5308 * Return the receive urgent interrupt name.
5309 */
5310static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5311{
5312 snprintf(buf, bsize, "RcvUrgentInt%u", source);
5313 return buf;
5314}
5315
5316/*
5317 * Return the send credit interrupt name.
5318 */
5319static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5320{
5321 snprintf(buf, bsize, "SendCreditInt%u", source);
5322 return buf;
5323}
5324
5325/*
5326 * Return the reserved interrupt name.
5327 */
5328static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5329{
5330 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5331 return buf;
5332}
5333
5334static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5335{
5336 return flag_string(buf, buf_len, flags,
5337 cce_err_status_flags, ARRAY_SIZE(cce_err_status_flags));
5338}
5339
5340static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5341{
5342 return flag_string(buf, buf_len, flags,
5343 rxe_err_status_flags, ARRAY_SIZE(rxe_err_status_flags));
5344}
5345
5346static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5347{
5348 return flag_string(buf, buf_len, flags, misc_err_status_flags,
5349 ARRAY_SIZE(misc_err_status_flags));
5350}
5351
5352static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5353{
5354 return flag_string(buf, buf_len, flags,
5355 pio_err_status_flags, ARRAY_SIZE(pio_err_status_flags));
5356}
5357
5358static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5359{
5360 return flag_string(buf, buf_len, flags,
5361 sdma_err_status_flags,
5362 ARRAY_SIZE(sdma_err_status_flags));
5363}
5364
5365static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5366{
5367 return flag_string(buf, buf_len, flags,
5368 egress_err_status_flags, ARRAY_SIZE(egress_err_status_flags));
5369}
5370
5371static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5372{
5373 return flag_string(buf, buf_len, flags,
5374 egress_err_info_flags, ARRAY_SIZE(egress_err_info_flags));
5375}
5376
5377static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5378{
5379 return flag_string(buf, buf_len, flags,
5380 send_err_status_flags,
5381 ARRAY_SIZE(send_err_status_flags));
5382}
5383
5384static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5385{
5386 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005387 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005388
5389 /*
5390 * For most these errors, there is nothing that can be done except
5391 * report or record it.
5392 */
5393 dd_dev_info(dd, "CCE Error: %s\n",
5394 cce_err_status_string(buf, sizeof(buf), reg));
5395
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05005396 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5397 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04005398 /* this error requires a manual drop into SPC freeze mode */
5399 /* then a fix up */
5400 start_freeze_handling(dd->pport, FREEZE_SELF);
5401 }
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005402
5403 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5404 if (reg & (1ull << i)) {
5405 incr_cntr64(&dd->cce_err_status_cnt[i]);
5406 /* maintain a counter over all cce_err_status errors */
5407 incr_cntr64(&dd->sw_cce_err_status_aggregate);
5408 }
5409 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005410}
5411
5412/*
5413 * Check counters for receive errors that do not have an interrupt
5414 * associated with them.
5415 */
5416#define RCVERR_CHECK_TIME 10
5417static void update_rcverr_timer(unsigned long opaque)
5418{
5419 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5420 struct hfi1_pportdata *ppd = dd->pport;
5421 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5422
5423 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5424 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5425 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5426 set_link_down_reason(ppd,
5427 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5428 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5429 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
5430 }
5431 dd->rcv_ovfl_cnt = (u32) cur_ovfl_cnt;
5432
5433 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5434}
5435
5436static int init_rcverr(struct hfi1_devdata *dd)
5437{
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +05305438 setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04005439 /* Assume the hardware counter has been reset */
5440 dd->rcv_ovfl_cnt = 0;
5441 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5442}
5443
5444static void free_rcverr(struct hfi1_devdata *dd)
5445{
5446 if (dd->rcverr_timer.data)
5447 del_timer_sync(&dd->rcverr_timer);
5448 dd->rcverr_timer.data = 0;
5449}
5450
5451static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5452{
5453 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005454 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005455
5456 dd_dev_info(dd, "Receive Error: %s\n",
5457 rxe_err_status_string(buf, sizeof(buf), reg));
5458
5459 if (reg & ALL_RXE_FREEZE_ERR) {
5460 int flags = 0;
5461
5462 /*
5463 * Freeze mode recovery is disabled for the errors
5464 * in RXE_FREEZE_ABORT_MASK
5465 */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05005466 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
Mike Marciniszyn77241052015-07-30 15:17:43 -04005467 flags = FREEZE_ABORT;
5468
5469 start_freeze_handling(dd->pport, flags);
5470 }
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005471
5472 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5473 if (reg & (1ull << i))
5474 incr_cntr64(&dd->rcv_err_status_cnt[i]);
5475 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005476}
5477
5478static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5479{
5480 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005481 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005482
5483 dd_dev_info(dd, "Misc Error: %s",
5484 misc_err_status_string(buf, sizeof(buf), reg));
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005485 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5486 if (reg & (1ull << i))
5487 incr_cntr64(&dd->misc_err_status_cnt[i]);
5488 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005489}
5490
5491static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5492{
5493 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005494 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005495
5496 dd_dev_info(dd, "PIO Error: %s\n",
5497 pio_err_status_string(buf, sizeof(buf), reg));
5498
5499 if (reg & ALL_PIO_FREEZE_ERR)
5500 start_freeze_handling(dd->pport, 0);
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005501
5502 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5503 if (reg & (1ull << i))
5504 incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5505 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005506}
5507
5508static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5509{
5510 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005511 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005512
5513 dd_dev_info(dd, "SDMA Error: %s\n",
5514 sdma_err_status_string(buf, sizeof(buf), reg));
5515
5516 if (reg & ALL_SDMA_FREEZE_ERR)
5517 start_freeze_handling(dd->pport, 0);
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005518
5519 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5520 if (reg & (1ull << i))
5521 incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5522 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005523}
5524
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005525static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5526{
5527 incr_cntr64(&ppd->port_xmit_discards);
5528}
5529
Mike Marciniszyn77241052015-07-30 15:17:43 -04005530static void count_port_inactive(struct hfi1_devdata *dd)
5531{
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005532 __count_port_discards(dd->pport);
Mike Marciniszyn77241052015-07-30 15:17:43 -04005533}
5534
5535/*
5536 * We have had a "disallowed packet" error during egress. Determine the
5537 * integrity check which failed, and update relevant error counter, etc.
5538 *
5539 * Note that the SEND_EGRESS_ERR_INFO register has only a single
5540 * bit of state per integrity check, and so we can miss the reason for an
5541 * egress error if more than one packet fails the same integrity check
5542 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5543 */
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005544static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5545 int vl)
Mike Marciniszyn77241052015-07-30 15:17:43 -04005546{
5547 struct hfi1_pportdata *ppd = dd->pport;
5548 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5549 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5550 char buf[96];
5551
5552 /* clear down all observed info as quickly as possible after read */
5553 write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5554
5555 dd_dev_info(dd,
5556 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5557 info, egress_err_info_string(buf, sizeof(buf), info), src);
5558
5559 /* Eventually add other counters for each bit */
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005560 if (info & PORT_DISCARD_EGRESS_ERRS) {
5561 int weight, i;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005562
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005563 /*
5564 * Count all, in case multiple bits are set. Reminder:
5565 * since there is only one info register for many sources,
5566 * these may be attributed to the wrong VL if they occur
5567 * too close together.
5568 */
5569 weight = hweight64(info);
5570 for (i = 0; i < weight; i++) {
5571 __count_port_discards(ppd);
5572 if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5573 incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5574 else if (vl == 15)
5575 incr_cntr64(&ppd->port_xmit_discards_vl
5576 [C_VL_15]);
5577 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005578 }
5579}
5580
5581/*
5582 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5583 * register. Does it represent a 'port inactive' error?
5584 */
5585static inline int port_inactive_err(u64 posn)
5586{
5587 return (posn >= SEES(TX_LINKDOWN) &&
5588 posn <= SEES(TX_INCORRECT_LINK_STATE));
5589}
5590
5591/*
5592 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5593 * register. Does it represent a 'disallowed packet' error?
5594 */
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005595static inline int disallowed_pkt_err(int posn)
Mike Marciniszyn77241052015-07-30 15:17:43 -04005596{
5597 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5598 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5599}
5600
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005601/*
5602 * Input value is a bit position of one of the SDMA engine disallowed
5603 * packet errors. Return which engine. Use of this must be guarded by
5604 * disallowed_pkt_err().
5605 */
5606static inline int disallowed_pkt_engine(int posn)
5607{
5608 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5609}
5610
5611/*
5612 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot
5613 * be done.
5614 */
5615static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5616{
5617 struct sdma_vl_map *m;
5618 int vl;
5619
5620 /* range check */
5621 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5622 return -1;
5623
5624 rcu_read_lock();
5625 m = rcu_dereference(dd->sdma_map);
5626 vl = m->engine_to_vl[engine];
5627 rcu_read_unlock();
5628
5629 return vl;
5630}
5631
5632/*
5633 * Translate the send context (sofware index) into a VL. Return -1 if the
5634 * translation cannot be done.
5635 */
5636static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5637{
5638 struct send_context_info *sci;
5639 struct send_context *sc;
5640 int i;
5641
5642 sci = &dd->send_contexts[sw_index];
5643
5644 /* there is no information for user (PSM) and ack contexts */
5645 if (sci->type != SC_KERNEL)
5646 return -1;
5647
5648 sc = sci->sc;
5649 if (!sc)
5650 return -1;
5651 if (dd->vld[15].sc == sc)
5652 return 15;
5653 for (i = 0; i < num_vls; i++)
5654 if (dd->vld[i].sc == sc)
5655 return i;
5656
5657 return -1;
5658}
5659
Mike Marciniszyn77241052015-07-30 15:17:43 -04005660static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5661{
5662 u64 reg_copy = reg, handled = 0;
5663 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005664 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005665
5666 if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5667 start_freeze_handling(dd->pport, 0);
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005668 else if (is_ax(dd) &&
5669 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5670 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
Mike Marciniszyn77241052015-07-30 15:17:43 -04005671 start_freeze_handling(dd->pport, 0);
5672
5673 while (reg_copy) {
5674 int posn = fls64(reg_copy);
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005675 /* fls64() returns a 1-based offset, we want it zero based */
Mike Marciniszyn77241052015-07-30 15:17:43 -04005676 int shift = posn - 1;
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005677 u64 mask = 1ULL << shift;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005678
5679 if (port_inactive_err(shift)) {
5680 count_port_inactive(dd);
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005681 handled |= mask;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005682 } else if (disallowed_pkt_err(shift)) {
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005683 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5684
5685 handle_send_egress_err_info(dd, vl);
5686 handled |= mask;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005687 }
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005688 reg_copy &= ~mask;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005689 }
5690
5691 reg &= ~handled;
5692
5693 if (reg)
5694 dd_dev_info(dd, "Egress Error: %s\n",
5695 egress_err_status_string(buf, sizeof(buf), reg));
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005696
5697 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5698 if (reg & (1ull << i))
5699 incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5700 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005701}
5702
5703static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5704{
5705 char buf[96];
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005706 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005707
5708 dd_dev_info(dd, "Send Error: %s\n",
5709 send_err_status_string(buf, sizeof(buf), reg));
5710
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005711 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5712 if (reg & (1ull << i))
5713 incr_cntr64(&dd->send_err_status_cnt[i]);
5714 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005715}
5716
5717/*
5718 * The maximum number of times the error clear down will loop before
5719 * blocking a repeating error. This value is arbitrary.
5720 */
5721#define MAX_CLEAR_COUNT 20
5722
5723/*
5724 * Clear and handle an error register. All error interrupts are funneled
5725 * through here to have a central location to correctly handle single-
5726 * or multi-shot errors.
5727 *
5728 * For non per-context registers, call this routine with a context value
5729 * of 0 so the per-context offset is zero.
5730 *
5731 * If the handler loops too many times, assume that something is wrong
5732 * and can't be fixed, so mask the error bits.
5733 */
5734static void interrupt_clear_down(struct hfi1_devdata *dd,
5735 u32 context,
5736 const struct err_reg_info *eri)
5737{
5738 u64 reg;
5739 u32 count;
5740
5741 /* read in a loop until no more errors are seen */
5742 count = 0;
5743 while (1) {
5744 reg = read_kctxt_csr(dd, context, eri->status);
5745 if (reg == 0)
5746 break;
5747 write_kctxt_csr(dd, context, eri->clear, reg);
5748 if (likely(eri->handler))
5749 eri->handler(dd, context, reg);
5750 count++;
5751 if (count > MAX_CLEAR_COUNT) {
5752 u64 mask;
5753
5754 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5755 eri->desc, reg);
5756 /*
5757 * Read-modify-write so any other masked bits
5758 * remain masked.
5759 */
5760 mask = read_kctxt_csr(dd, context, eri->mask);
5761 mask &= ~reg;
5762 write_kctxt_csr(dd, context, eri->mask, mask);
5763 break;
5764 }
5765 }
5766}
5767
5768/*
5769 * CCE block "misc" interrupt. Source is < 16.
5770 */
5771static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5772{
5773 const struct err_reg_info *eri = &misc_errs[source];
5774
5775 if (eri->handler) {
5776 interrupt_clear_down(dd, 0, eri);
5777 } else {
5778 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5779 source);
5780 }
5781}
5782
5783static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5784{
5785 return flag_string(buf, buf_len, flags,
5786 sc_err_status_flags, ARRAY_SIZE(sc_err_status_flags));
5787}
5788
5789/*
5790 * Send context error interrupt. Source (hw_context) is < 160.
5791 *
5792 * All send context errors cause the send context to halt. The normal
5793 * clear-down mechanism cannot be used because we cannot clear the
5794 * error bits until several other long-running items are done first.
5795 * This is OK because with the context halted, nothing else is going
5796 * to happen on it anyway.
5797 */
5798static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5799 unsigned int hw_context)
5800{
5801 struct send_context_info *sci;
5802 struct send_context *sc;
5803 char flags[96];
5804 u64 status;
5805 u32 sw_index;
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005806 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005807
5808 sw_index = dd->hw_to_sw[hw_context];
5809 if (sw_index >= dd->num_send_contexts) {
5810 dd_dev_err(dd,
5811 "out of range sw index %u for send context %u\n",
5812 sw_index, hw_context);
5813 return;
5814 }
5815 sci = &dd->send_contexts[sw_index];
5816 sc = sci->sc;
5817 if (!sc) {
5818 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5819 sw_index, hw_context);
5820 return;
5821 }
5822
5823 /* tell the software that a halt has begun */
5824 sc_stop(sc, SCF_HALTED);
5825
5826 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5827
5828 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5829 send_context_err_status_string(flags, sizeof(flags), status));
5830
5831 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
Mike Marciniszyn69a00b82016-02-03 14:31:49 -08005832 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
Mike Marciniszyn77241052015-07-30 15:17:43 -04005833
5834 /*
5835 * Automatically restart halted kernel contexts out of interrupt
5836 * context. User contexts must ask the driver to restart the context.
5837 */
5838 if (sc->type != SC_USER)
5839 queue_work(dd->pport->hfi1_wq, &sc->halt_work);
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005840
5841 /*
5842 * Update the counters for the corresponding status bits.
5843 * Note that these particular counters are aggregated over all
5844 * 160 contexts.
5845 */
5846 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5847 if (status & (1ull << i))
5848 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5849 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005850}
5851
5852static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5853 unsigned int source, u64 status)
5854{
5855 struct sdma_engine *sde;
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005856 int i = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005857
5858 sde = &dd->per_sdma[source];
5859#ifdef CONFIG_SDMA_VERBOSITY
5860 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5861 slashstrip(__FILE__), __LINE__, __func__);
5862 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
5863 sde->this_idx, source, (unsigned long long)status);
5864#endif
Vennila Megavannana699c6c2016-01-11 18:30:56 -05005865 sde->err_cnt++;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005866 sdma_engine_error(sde, status);
Joel Rosenzweig2c5b5212015-12-01 15:38:19 -05005867
5868 /*
5869 * Update the counters for the corresponding status bits.
5870 * Note that these particular counters are aggregated over
5871 * all 16 DMA engines.
5872 */
5873 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
5874 if (status & (1ull << i))
5875 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
5876 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04005877}
5878
5879/*
5880 * CCE block SDMA error interrupt. Source is < 16.
5881 */
5882static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
5883{
5884#ifdef CONFIG_SDMA_VERBOSITY
5885 struct sdma_engine *sde = &dd->per_sdma[source];
5886
5887 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
5888 slashstrip(__FILE__), __LINE__, __func__);
5889 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
5890 source);
5891 sdma_dumpstate(sde);
5892#endif
5893 interrupt_clear_down(dd, source, &sdma_eng_err);
5894}
5895
5896/*
5897 * CCE block "various" interrupt. Source is < 8.
5898 */
5899static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
5900{
5901 const struct err_reg_info *eri = &various_err[source];
5902
5903 /*
5904 * TCritInt cannot go through interrupt_clear_down()
5905 * because it is not a second tier interrupt. The handler
5906 * should be called directly.
5907 */
5908 if (source == TCRIT_INT_SOURCE)
5909 handle_temp_err(dd);
5910 else if (eri->handler)
5911 interrupt_clear_down(dd, 0, eri);
5912 else
5913 dd_dev_info(dd,
5914 "%s: Unimplemented/reserved interrupt %d\n",
5915 __func__, source);
5916}
5917
5918static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
5919{
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005920 /* src_ctx is always zero */
Mike Marciniszyn77241052015-07-30 15:17:43 -04005921 struct hfi1_pportdata *ppd = dd->pport;
5922 unsigned long flags;
5923 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
5924
5925 if (reg & QSFP_HFI0_MODPRST_N) {
5926
5927 dd_dev_info(dd, "%s: ModPresent triggered QSFP interrupt\n",
5928 __func__);
5929
5930 if (!qsfp_mod_present(ppd)) {
5931 ppd->driver_link_ready = 0;
5932 /*
5933 * Cable removed, reset all our information about the
5934 * cache and cable capabilities
5935 */
5936
5937 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5938 /*
5939 * We don't set cache_refresh_required here as we expect
5940 * an interrupt when a cable is inserted
5941 */
5942 ppd->qsfp_info.cache_valid = 0;
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005943 ppd->qsfp_info.reset_needed = 0;
5944 ppd->qsfp_info.limiting_active = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005945 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5946 flags);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005947 /* Invert the ModPresent pin now to detect plug-in */
5948 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5949 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
Bryan Morgana9c05e32016-02-03 14:30:49 -08005950
5951 if ((ppd->offline_disabled_reason >
5952 HFI1_ODR_MASK(
5953 OPA_LINKDOWN_REASONLOCAL_MEDIA_NOT_INSTALLED)) ||
5954 (ppd->offline_disabled_reason ==
5955 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
5956 ppd->offline_disabled_reason =
5957 HFI1_ODR_MASK(
5958 OPA_LINKDOWN_REASONLOCAL_MEDIA_NOT_INSTALLED);
5959
Mike Marciniszyn77241052015-07-30 15:17:43 -04005960 if (ppd->host_link_state == HLS_DN_POLL) {
5961 /*
5962 * The link is still in POLL. This means
5963 * that the normal link down processing
5964 * will not happen. We have to do it here
5965 * before turning the DC off.
5966 */
5967 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
5968 }
5969 } else {
5970 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5971 ppd->qsfp_info.cache_valid = 0;
5972 ppd->qsfp_info.cache_refresh_required = 1;
5973 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
5974 flags);
5975
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005976 /*
5977 * Stop inversion of ModPresent pin to detect
5978 * removal of the cable
5979 */
Mike Marciniszyn77241052015-07-30 15:17:43 -04005980 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08005981 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
5982 ASIC_QSFP1_INVERT, qsfp_int_mgmt);
5983
5984 ppd->offline_disabled_reason =
5985 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
Mike Marciniszyn77241052015-07-30 15:17:43 -04005986 }
5987 }
5988
5989 if (reg & QSFP_HFI0_INT_N) {
5990
5991 dd_dev_info(dd, "%s: IntN triggered QSFP interrupt\n",
5992 __func__);
5993 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
5994 ppd->qsfp_info.check_interrupt_flags = 1;
Mike Marciniszyn77241052015-07-30 15:17:43 -04005995 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
5996 }
5997
5998 /* Schedule the QSFP work only if there is a cable attached. */
5999 if (qsfp_mod_present(ppd))
6000 queue_work(ppd->hfi1_wq, &ppd->qsfp_info.qsfp_work);
6001}
6002
6003static int request_host_lcb_access(struct hfi1_devdata *dd)
6004{
6005 int ret;
6006
6007 ret = do_8051_command(dd, HCMD_MISC,
6008 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
6009 NULL);
6010 if (ret != HCMD_SUCCESS) {
6011 dd_dev_err(dd, "%s: command failed with error %d\n",
6012 __func__, ret);
6013 }
6014 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6015}
6016
6017static int request_8051_lcb_access(struct hfi1_devdata *dd)
6018{
6019 int ret;
6020
6021 ret = do_8051_command(dd, HCMD_MISC,
6022 (u64)HCMD_MISC_GRANT_LCB_ACCESS << LOAD_DATA_FIELD_ID_SHIFT,
6023 NULL);
6024 if (ret != HCMD_SUCCESS) {
6025 dd_dev_err(dd, "%s: command failed with error %d\n",
6026 __func__, ret);
6027 }
6028 return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6029}
6030
6031/*
6032 * Set the LCB selector - allow host access. The DCC selector always
6033 * points to the host.
6034 */
6035static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6036{
6037 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6038 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK
6039 | DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6040}
6041
6042/*
6043 * Clear the LCB selector - allow 8051 access. The DCC selector always
6044 * points to the host.
6045 */
6046static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6047{
6048 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6049 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6050}
6051
6052/*
6053 * Acquire LCB access from the 8051. If the host already has access,
6054 * just increment a counter. Otherwise, inform the 8051 that the
6055 * host is taking access.
6056 *
6057 * Returns:
6058 * 0 on success
6059 * -EBUSY if the 8051 has control and cannot be disturbed
6060 * -errno if unable to acquire access from the 8051
6061 */
6062int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6063{
6064 struct hfi1_pportdata *ppd = dd->pport;
6065 int ret = 0;
6066
6067 /*
6068 * Use the host link state lock so the operation of this routine
6069 * { link state check, selector change, count increment } can occur
6070 * as a unit against a link state change. Otherwise there is a
6071 * race between the state change and the count increment.
6072 */
6073 if (sleep_ok) {
6074 mutex_lock(&ppd->hls_lock);
6075 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03006076 while (!mutex_trylock(&ppd->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04006077 udelay(1);
6078 }
6079
6080 /* this access is valid only when the link is up */
6081 if ((ppd->host_link_state & HLS_UP) == 0) {
6082 dd_dev_info(dd, "%s: link state %s not up\n",
6083 __func__, link_state_name(ppd->host_link_state));
6084 ret = -EBUSY;
6085 goto done;
6086 }
6087
6088 if (dd->lcb_access_count == 0) {
6089 ret = request_host_lcb_access(dd);
6090 if (ret) {
6091 dd_dev_err(dd,
6092 "%s: unable to acquire LCB access, err %d\n",
6093 __func__, ret);
6094 goto done;
6095 }
6096 set_host_lcb_access(dd);
6097 }
6098 dd->lcb_access_count++;
6099done:
6100 mutex_unlock(&ppd->hls_lock);
6101 return ret;
6102}
6103
6104/*
6105 * Release LCB access by decrementing the use count. If the count is moving
6106 * from 1 to 0, inform 8051 that it has control back.
6107 *
6108 * Returns:
6109 * 0 on success
6110 * -errno if unable to release access to the 8051
6111 */
6112int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6113{
6114 int ret = 0;
6115
6116 /*
6117 * Use the host link state lock because the acquire needed it.
6118 * Here, we only need to keep { selector change, count decrement }
6119 * as a unit.
6120 */
6121 if (sleep_ok) {
6122 mutex_lock(&dd->pport->hls_lock);
6123 } else {
Dan Carpenter951842b2015-09-16 09:22:51 +03006124 while (!mutex_trylock(&dd->pport->hls_lock))
Mike Marciniszyn77241052015-07-30 15:17:43 -04006125 udelay(1);
6126 }
6127
6128 if (dd->lcb_access_count == 0) {
6129 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n",
6130 __func__);
6131 goto done;
6132 }
6133
6134 if (dd->lcb_access_count == 1) {
6135 set_8051_lcb_access(dd);
6136 ret = request_8051_lcb_access(dd);
6137 if (ret) {
6138 dd_dev_err(dd,
6139 "%s: unable to release LCB access, err %d\n",
6140 __func__, ret);
6141 /* restore host access if the grant didn't work */
6142 set_host_lcb_access(dd);
6143 goto done;
6144 }
6145 }
6146 dd->lcb_access_count--;
6147done:
6148 mutex_unlock(&dd->pport->hls_lock);
6149 return ret;
6150}
6151
6152/*
6153 * Initialize LCB access variables and state. Called during driver load,
6154 * after most of the initialization is finished.
6155 *
6156 * The DC default is LCB access on for the host. The driver defaults to
6157 * leaving access to the 8051. Assign access now - this constrains the call
6158 * to this routine to be after all LCB set-up is done. In particular, after
6159 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6160 */
6161static void init_lcb_access(struct hfi1_devdata *dd)
6162{
6163 dd->lcb_access_count = 0;
6164}
6165
6166/*
6167 * Write a response back to a 8051 request.
6168 */
6169static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6170{
6171 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6172 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK
6173 | (u64)return_code << DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT
6174 | (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6175}
6176
6177/*
Easwar Hariharancbac3862016-02-03 14:31:31 -08006178 * Handle host requests from the 8051.
6179 *
6180 * This is a work-queue function outside of the interrupt.
Mike Marciniszyn77241052015-07-30 15:17:43 -04006181 */
Easwar Hariharancbac3862016-02-03 14:31:31 -08006182void handle_8051_request(struct work_struct *work)
Mike Marciniszyn77241052015-07-30 15:17:43 -04006183{
Easwar Hariharancbac3862016-02-03 14:31:31 -08006184 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6185 dc_host_req_work);
6186 struct hfi1_devdata *dd = ppd->dd;
Mike Marciniszyn77241052015-07-30 15:17:43 -04006187 u64 reg;
Easwar Hariharancbac3862016-02-03 14:31:31 -08006188 u16 data = 0;
6189 u8 type, i, lanes, *cache = ppd->qsfp_info.cache;
6190 u8 cdr_ctrl_byte = cache[QSFP_CDR_CTRL_BYTE_OFFS];
Mike Marciniszyn77241052015-07-30 15:17:43 -04006191
6192 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6193 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6194 return; /* no request */
6195
6196 /* zero out COMPLETED so the response is seen */
6197 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6198
6199 /* extract request details */
6200 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6201 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6202 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6203 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6204
6205 switch (type) {
6206 case HREQ_LOAD_CONFIG:
6207 case HREQ_SAVE_CONFIG:
6208 case HREQ_READ_CONFIG:
6209 case HREQ_SET_TX_EQ_ABS:
6210 case HREQ_SET_TX_EQ_REL:
Mike Marciniszyn77241052015-07-30 15:17:43 -04006211 dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6212 type);
6213 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6214 break;
6215
Easwar Hariharancbac3862016-02-03 14:31:31 -08006216 case HREQ_ENABLE:
6217 lanes = data & 0xF;
6218 for (i = 0; lanes; lanes >>= 1, i++) {
6219 if (!(lanes & 1))
6220 continue;
6221 if (data & 0x200) {
6222 /* enable TX CDR */
6223 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6224 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6225 cdr_ctrl_byte |= (1 << (i + 4));
6226 } else {
6227 /* disable TX CDR */
6228 if (cache[QSFP_MOD_PWR_OFFS] & 0x8 &&
6229 cache[QSFP_CDR_INFO_OFFS] & 0x80)
6230 cdr_ctrl_byte &= ~(1 << (i + 4));
6231 }
6232
6233 if (data & 0x800) {
6234 /* enable RX CDR */
6235 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6236 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6237 cdr_ctrl_byte |= (1 << i);
6238 } else {
6239 /* disable RX CDR */
6240 if (cache[QSFP_MOD_PWR_OFFS] & 0x4 &&
6241 cache[QSFP_CDR_INFO_OFFS] & 0x40)
6242 cdr_ctrl_byte &= ~(1 << i);
6243 }
6244 }
6245 qsfp_write(ppd, ppd->dd->hfi1_id, QSFP_CDR_CTRL_BYTE_OFFS,
6246 &cdr_ctrl_byte, 1);
6247 hreq_response(dd, HREQ_SUCCESS, data);
6248 refresh_qsfp_cache(ppd, &ppd->qsfp_info);
6249 break;
6250
Mike Marciniszyn77241052015-07-30 15:17:43 -04006251 case HREQ_CONFIG_DONE:
6252 hreq_response(dd, HREQ_SUCCESS, 0);
6253 break;
6254
6255 case HREQ_INTERFACE_TEST:
6256 hreq_response(dd, HREQ_SUCCESS, data);
6257 break;
6258
6259 default:
6260 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6261 hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6262 break;
6263 }
6264}
6265
6266static void write_global_credit(struct hfi1_devdata *dd,
6267 u8 vau, u16 total, u16 shared)
6268{
6269 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
6270 ((u64)total
6271 << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
6272 | ((u64)shared
6273 << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
6274 | ((u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT));
6275}
6276
6277/*
6278 * Set up initial VL15 credits of the remote. Assumes the rest of
6279 * the CM credit registers are zero from a previous global or credit reset .
6280 */
6281void set_up_vl15(struct hfi1_devdata *dd, u8 vau, u16 vl15buf)
6282{
6283 /* leave shared count at zero for both global and VL15 */
6284 write_global_credit(dd, vau, vl15buf, 0);
6285
6286 /* We may need some credits for another VL when sending packets
6287 * with the snoop interface. Dividing it down the middle for VL15
6288 * and VL0 should suffice.
6289 */
6290 if (unlikely(dd->hfi1_snoop.mode_flag == HFI1_PORT_SNOOP_MODE)) {
6291 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)(vl15buf >> 1)
6292 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6293 write_csr(dd, SEND_CM_CREDIT_VL, (u64)(vl15buf >> 1)
6294 << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT);
6295 } else {
6296 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6297 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6298 }
6299}
6300
6301/*
6302 * Zero all credit details from the previous connection and
6303 * reset the CM manager's internal counters.
6304 */
6305void reset_link_credits(struct hfi1_devdata *dd)
6306{
6307 int i;
6308
6309 /* remove all previous VL credit limits */
6310 for (i = 0; i < TXE_NUM_DATA_VL; i++)
6311 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
6312 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6313 write_global_credit(dd, 0, 0, 0);
6314 /* reset the CM block */
6315 pio_send_control(dd, PSC_CM_RESET);
6316}
6317
6318/* convert a vCU to a CU */
6319static u32 vcu_to_cu(u8 vcu)
6320{
6321 return 1 << vcu;
6322}
6323
6324/* convert a CU to a vCU */
6325static u8 cu_to_vcu(u32 cu)
6326{
6327 return ilog2(cu);
6328}
6329
6330/* convert a vAU to an AU */
6331static u32 vau_to_au(u8 vau)
6332{
6333 return 8 * (1 << vau);
6334}
6335
6336static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6337{
6338 ppd->sm_trap_qp = 0x0;
6339 ppd->sa_qp = 0x1;
6340}
6341
6342/*
6343 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset.
6344 */
6345static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6346{
6347 u64 reg;
6348
6349 /* clear lcb run: LCB_CFG_RUN.EN = 0 */
6350 write_csr(dd, DC_LCB_CFG_RUN, 0);
6351 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6352 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6353 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6354 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6355 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6356 reg = read_csr(dd, DCC_CFG_RESET);
6357 write_csr(dd, DCC_CFG_RESET,
6358 reg
6359 | (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT)
6360 | (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6361 (void) read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6362 if (!abort) {
6363 udelay(1); /* must hold for the longer of 16cclks or 20ns */
6364 write_csr(dd, DCC_CFG_RESET, reg);
6365 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6366 }
6367}
6368
6369/*
6370 * This routine should be called after the link has been transitioned to
6371 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6372 * reset).
6373 *
6374 * The expectation is that the caller of this routine would have taken
6375 * care of properly transitioning the link into the correct state.
6376 */
6377static void dc_shutdown(struct hfi1_devdata *dd)
6378{
6379 unsigned long flags;
6380
6381 spin_lock_irqsave(&dd->dc8051_lock, flags);
6382 if (dd->dc_shutdown) {
6383 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6384 return;
6385 }
6386 dd->dc_shutdown = 1;
6387 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6388 /* Shutdown the LCB */
6389 lcb_shutdown(dd, 1);
6390 /* Going to OFFLINE would have causes the 8051 to put the
6391 * SerDes into reset already. Just need to shut down the 8051,
6392 * itself. */
6393 write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6394}
6395
6396/* Calling this after the DC has been brought out of reset should not
6397 * do any damage. */
6398static void dc_start(struct hfi1_devdata *dd)
6399{
6400 unsigned long flags;
6401 int ret;
6402
6403 spin_lock_irqsave(&dd->dc8051_lock, flags);
6404 if (!dd->dc_shutdown)
6405 goto done;
6406 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6407 /* Take the 8051 out of reset */
6408 write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6409 /* Wait until 8051 is ready */
6410 ret = wait_fm_ready(dd, TIMEOUT_8051_START);
6411 if (ret) {
6412 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6413 __func__);
6414 }
6415 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6416 write_csr(dd, DCC_CFG_RESET, 0x10);
6417 /* lcb_shutdown() with abort=1 does not restore these */
6418 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6419 spin_lock_irqsave(&dd->dc8051_lock, flags);
6420 dd->dc_shutdown = 0;
6421done:
6422 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
6423}
6424
6425/*
6426 * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6427 */
6428static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6429{
6430 u64 rx_radr, tx_radr;
6431 u32 version;
6432
6433 if (dd->icode != ICODE_FPGA_EMULATION)
6434 return;
6435
6436 /*
6437 * These LCB defaults on emulator _s are good, nothing to do here:
6438 * LCB_CFG_TX_FIFOS_RADR
6439 * LCB_CFG_RX_FIFOS_RADR
6440 * LCB_CFG_LN_DCLK
6441 * LCB_CFG_IGNORE_LOST_RCLK
6442 */
6443 if (is_emulator_s(dd))
6444 return;
6445 /* else this is _p */
6446
6447 version = emulator_rev(dd);
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05006448 if (!is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -04006449 version = 0x2d; /* all B0 use 0x2d or higher settings */
6450
6451 if (version <= 0x12) {
6452 /* release 0x12 and below */
6453
6454 /*
6455 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6456 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6457 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6458 */
6459 rx_radr =
6460 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6461 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6462 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6463 /*
6464 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6465 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6466 */
6467 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6468 } else if (version <= 0x18) {
6469 /* release 0x13 up to 0x18 */
6470 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6471 rx_radr =
6472 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6473 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6474 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6475 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6476 } else if (version == 0x19) {
6477 /* release 0x19 */
6478 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6479 rx_radr =
6480 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6481 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6482 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6483 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6484 } else if (version == 0x1a) {
6485 /* release 0x1a */
6486 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6487 rx_radr =
6488 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6489 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6490 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6491 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6492 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6493 } else {
6494 /* release 0x1b and higher */
6495 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6496 rx_radr =
6497 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6498 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6499 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6500 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6501 }
6502
6503 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6504 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6505 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6506 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6507 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6508}
6509
6510/*
6511 * Handle a SMA idle message
6512 *
6513 * This is a work-queue function outside of the interrupt.
6514 */
6515void handle_sma_message(struct work_struct *work)
6516{
6517 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6518 sma_message_work);
6519 struct hfi1_devdata *dd = ppd->dd;
6520 u64 msg;
6521 int ret;
6522
6523 /* msg is bytes 1-4 of the 40-bit idle message - the command code
6524 is stripped off */
6525 ret = read_idle_sma(dd, &msg);
6526 if (ret)
6527 return;
6528 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6529 /*
6530 * React to the SMA message. Byte[1] (0 for us) is the command.
6531 */
6532 switch (msg & 0xff) {
6533 case SMA_IDLE_ARM:
6534 /*
6535 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6536 * State Transitions
6537 *
6538 * Only expected in INIT or ARMED, discard otherwise.
6539 */
6540 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6541 ppd->neighbor_normal = 1;
6542 break;
6543 case SMA_IDLE_ACTIVE:
6544 /*
6545 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6546 * State Transitions
6547 *
6548 * Can activate the node. Discard otherwise.
6549 */
6550 if (ppd->host_link_state == HLS_UP_ARMED
6551 && ppd->is_active_optimize_enabled) {
6552 ppd->neighbor_normal = 1;
6553 ret = set_link_state(ppd, HLS_UP_ACTIVE);
6554 if (ret)
6555 dd_dev_err(
6556 dd,
6557 "%s: received Active SMA idle message, couldn't set link to Active\n",
6558 __func__);
6559 }
6560 break;
6561 default:
6562 dd_dev_err(dd,
6563 "%s: received unexpected SMA idle message 0x%llx\n",
6564 __func__, msg);
6565 break;
6566 }
6567}
6568
6569static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6570{
6571 u64 rcvctrl;
6572 unsigned long flags;
6573
6574 spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6575 rcvctrl = read_csr(dd, RCV_CTRL);
6576 rcvctrl |= add;
6577 rcvctrl &= ~clear;
6578 write_csr(dd, RCV_CTRL, rcvctrl);
6579 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6580}
6581
6582static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6583{
6584 adjust_rcvctrl(dd, add, 0);
6585}
6586
6587static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6588{
6589 adjust_rcvctrl(dd, 0, clear);
6590}
6591
6592/*
6593 * Called from all interrupt handlers to start handling an SPC freeze.
6594 */
6595void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6596{
6597 struct hfi1_devdata *dd = ppd->dd;
6598 struct send_context *sc;
6599 int i;
6600
6601 if (flags & FREEZE_SELF)
6602 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6603
6604 /* enter frozen mode */
6605 dd->flags |= HFI1_FROZEN;
6606
6607 /* notify all SDMA engines that they are going into a freeze */
6608 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6609
6610 /* do halt pre-handling on all enabled send contexts */
6611 for (i = 0; i < dd->num_send_contexts; i++) {
6612 sc = dd->send_contexts[i].sc;
6613 if (sc && (sc->flags & SCF_ENABLED))
6614 sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6615 }
6616
6617 /* Send context are frozen. Notify user space */
6618 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6619
6620 if (flags & FREEZE_ABORT) {
6621 dd_dev_err(dd,
6622 "Aborted freeze recovery. Please REBOOT system\n");
6623 return;
6624 }
6625 /* queue non-interrupt handler */
6626 queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6627}
6628
6629/*
6630 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6631 * depending on the "freeze" parameter.
6632 *
6633 * No need to return an error if it times out, our only option
6634 * is to proceed anyway.
6635 */
6636static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6637{
6638 unsigned long timeout;
6639 u64 reg;
6640
6641 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6642 while (1) {
6643 reg = read_csr(dd, CCE_STATUS);
6644 if (freeze) {
6645 /* waiting until all indicators are set */
6646 if ((reg & ALL_FROZE) == ALL_FROZE)
6647 return; /* all done */
6648 } else {
6649 /* waiting until all indicators are clear */
6650 if ((reg & ALL_FROZE) == 0)
6651 return; /* all done */
6652 }
6653
6654 if (time_after(jiffies, timeout)) {
6655 dd_dev_err(dd,
6656 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6657 freeze ? "" : "un",
6658 reg & ALL_FROZE,
6659 freeze ? ALL_FROZE : 0ull);
6660 return;
6661 }
6662 usleep_range(80, 120);
6663 }
6664}
6665
6666/*
6667 * Do all freeze handling for the RXE block.
6668 */
6669static void rxe_freeze(struct hfi1_devdata *dd)
6670{
6671 int i;
6672
6673 /* disable port */
6674 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6675
6676 /* disable all receive contexts */
6677 for (i = 0; i < dd->num_rcv_contexts; i++)
6678 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, i);
6679}
6680
6681/*
6682 * Unfreeze handling for the RXE block - kernel contexts only.
6683 * This will also enable the port. User contexts will do unfreeze
6684 * handling on a per-context basis as they call into the driver.
6685 *
6686 */
6687static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6688{
Mitko Haralanov566c1572016-02-03 14:32:49 -08006689 u32 rcvmask;
Mike Marciniszyn77241052015-07-30 15:17:43 -04006690 int i;
6691
6692 /* enable all kernel contexts */
Mitko Haralanov566c1572016-02-03 14:32:49 -08006693 for (i = 0; i < dd->n_krcv_queues; i++) {
6694 rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6695 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6696 rcvmask |= HFI1_CAP_KGET_MASK(dd->rcd[i]->flags, DMA_RTAIL) ?
6697 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6698 hfi1_rcvctrl(dd, rcvmask, i);
6699 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04006700
6701 /* enable port */
6702 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6703}
6704
6705/*
6706 * Non-interrupt SPC freeze handling.
6707 *
6708 * This is a work-queue function outside of the triggering interrupt.
6709 */
6710void handle_freeze(struct work_struct *work)
6711{
6712 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6713 freeze_work);
6714 struct hfi1_devdata *dd = ppd->dd;
6715
6716 /* wait for freeze indicators on all affected blocks */
Mike Marciniszyn77241052015-07-30 15:17:43 -04006717 wait_for_freeze_status(dd, 1);
6718
6719 /* SPC is now frozen */
6720
6721 /* do send PIO freeze steps */
6722 pio_freeze(dd);
6723
6724 /* do send DMA freeze steps */
6725 sdma_freeze(dd);
6726
6727 /* do send egress freeze steps - nothing to do */
6728
6729 /* do receive freeze steps */
6730 rxe_freeze(dd);
6731
6732 /*
6733 * Unfreeze the hardware - clear the freeze, wait for each
6734 * block's frozen bit to clear, then clear the frozen flag.
6735 */
6736 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6737 wait_for_freeze_status(dd, 0);
6738
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05006739 if (is_ax(dd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04006740 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6741 wait_for_freeze_status(dd, 1);
6742 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6743 wait_for_freeze_status(dd, 0);
6744 }
6745
6746 /* do send PIO unfreeze steps for kernel contexts */
6747 pio_kernel_unfreeze(dd);
6748
6749 /* do send DMA unfreeze steps */
6750 sdma_unfreeze(dd);
6751
6752 /* do send egress unfreeze steps - nothing to do */
6753
6754 /* do receive unfreeze steps for kernel contexts */
6755 rxe_kernel_unfreeze(dd);
6756
6757 /*
6758 * The unfreeze procedure touches global device registers when
6759 * it disables and re-enables RXE. Mark the device unfrozen
6760 * after all that is done so other parts of the driver waiting
6761 * for the device to unfreeze don't do things out of order.
6762 *
6763 * The above implies that the meaning of HFI1_FROZEN flag is
6764 * "Device has gone into freeze mode and freeze mode handling
6765 * is still in progress."
6766 *
6767 * The flag will be removed when freeze mode processing has
6768 * completed.
6769 */
6770 dd->flags &= ~HFI1_FROZEN;
6771 wake_up(&dd->event_queue);
6772
6773 /* no longer frozen */
Mike Marciniszyn77241052015-07-30 15:17:43 -04006774}
6775
6776/*
6777 * Handle a link up interrupt from the 8051.
6778 *
6779 * This is a work-queue function outside of the interrupt.
6780 */
6781void handle_link_up(struct work_struct *work)
6782{
6783 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6784 link_up_work);
6785 set_link_state(ppd, HLS_UP_INIT);
6786
6787 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6788 read_ltp_rtt(ppd->dd);
6789 /*
6790 * OPA specifies that certain counters are cleared on a transition
6791 * to link up, so do that.
6792 */
6793 clear_linkup_counters(ppd->dd);
6794 /*
6795 * And (re)set link up default values.
6796 */
6797 set_linkup_defaults(ppd);
6798
6799 /* enforce link speed enabled */
6800 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6801 /* oops - current speed is not enabled, bounce */
6802 dd_dev_err(ppd->dd,
6803 "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6804 ppd->link_speed_active, ppd->link_speed_enabled);
6805 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6806 OPA_LINKDOWN_REASON_SPEED_POLICY);
6807 set_link_state(ppd, HLS_DN_OFFLINE);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006808 tune_serdes(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006809 start_link(ppd);
6810 }
6811}
6812
6813/* Several pieces of LNI information were cached for SMA in ppd.
6814 * Reset these on link down */
6815static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6816{
6817 ppd->neighbor_guid = 0;
6818 ppd->neighbor_port_number = 0;
6819 ppd->neighbor_type = 0;
6820 ppd->neighbor_fm_security = 0;
6821}
6822
6823/*
6824 * Handle a link down interrupt from the 8051.
6825 *
6826 * This is a work-queue function outside of the interrupt.
6827 */
6828void handle_link_down(struct work_struct *work)
6829{
6830 u8 lcl_reason, neigh_reason = 0;
6831 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6832 link_down_work);
6833
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006834 if ((ppd->host_link_state &
6835 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
6836 ppd->port_type == PORT_TYPE_FIXED)
6837 ppd->offline_disabled_reason =
6838 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
6839
6840 /* Go offline first, then deal with reading/writing through 8051 */
Mike Marciniszyn77241052015-07-30 15:17:43 -04006841 set_link_state(ppd, HLS_DN_OFFLINE);
6842
6843 lcl_reason = 0;
6844 read_planned_down_reason_code(ppd->dd, &neigh_reason);
6845
6846 /*
6847 * If no reason, assume peer-initiated but missed
6848 * LinkGoingDown idle flits.
6849 */
6850 if (neigh_reason == 0)
6851 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
6852
6853 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
6854
6855 reset_neighbor_info(ppd);
6856
6857 /* disable the port */
6858 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6859
6860 /* If there is no cable attached, turn the DC off. Otherwise,
6861 * start the link bring up. */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006862 if (!qsfp_mod_present(ppd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04006863 dc_shutdown(ppd->dd);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006864 } else {
6865 tune_serdes(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006866 start_link(ppd);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006867 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04006868}
6869
6870void handle_link_bounce(struct work_struct *work)
6871{
6872 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6873 link_bounce_work);
6874
6875 /*
6876 * Only do something if the link is currently up.
6877 */
6878 if (ppd->host_link_state & HLS_UP) {
6879 set_link_state(ppd, HLS_DN_OFFLINE);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08006880 tune_serdes(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006881 start_link(ppd);
6882 } else {
6883 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
6884 __func__, link_state_name(ppd->host_link_state));
6885 }
6886}
6887
6888/*
6889 * Mask conversion: Capability exchange to Port LTP. The capability
6890 * exchange has an implicit 16b CRC that is mandatory.
6891 */
6892static int cap_to_port_ltp(int cap)
6893{
6894 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
6895
6896 if (cap & CAP_CRC_14B)
6897 port_ltp |= PORT_LTP_CRC_MODE_14;
6898 if (cap & CAP_CRC_48B)
6899 port_ltp |= PORT_LTP_CRC_MODE_48;
6900 if (cap & CAP_CRC_12B_16B_PER_LANE)
6901 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
6902
6903 return port_ltp;
6904}
6905
6906/*
6907 * Convert an OPA Port LTP mask to capability mask
6908 */
6909int port_ltp_to_cap(int port_ltp)
6910{
6911 int cap_mask = 0;
6912
6913 if (port_ltp & PORT_LTP_CRC_MODE_14)
6914 cap_mask |= CAP_CRC_14B;
6915 if (port_ltp & PORT_LTP_CRC_MODE_48)
6916 cap_mask |= CAP_CRC_48B;
6917 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
6918 cap_mask |= CAP_CRC_12B_16B_PER_LANE;
6919
6920 return cap_mask;
6921}
6922
6923/*
6924 * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
6925 */
6926static int lcb_to_port_ltp(int lcb_crc)
6927{
6928 int port_ltp = 0;
6929
6930 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
6931 port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
6932 else if (lcb_crc == LCB_CRC_48B)
6933 port_ltp = PORT_LTP_CRC_MODE_48;
6934 else if (lcb_crc == LCB_CRC_14B)
6935 port_ltp = PORT_LTP_CRC_MODE_14;
6936 else
6937 port_ltp = PORT_LTP_CRC_MODE_16;
6938
6939 return port_ltp;
6940}
6941
6942/*
6943 * Our neighbor has indicated that we are allowed to act as a fabric
6944 * manager, so place the full management partition key in the second
6945 * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
6946 * that we should already have the limited management partition key in
6947 * array element 1, and also that the port is not yet up when
6948 * add_full_mgmt_pkey() is invoked.
6949 */
6950static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
6951{
6952 struct hfi1_devdata *dd = ppd->dd;
6953
Dean Luick87645222015-12-01 15:38:21 -05006954 /* Sanity check - ppd->pkeys[2] should be 0, or already initalized */
6955 if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
6956 dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
6957 __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
Mike Marciniszyn77241052015-07-30 15:17:43 -04006958 ppd->pkeys[2] = FULL_MGMT_P_KEY;
6959 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
6960}
6961
6962/*
6963 * Convert the given link width to the OPA link width bitmask.
6964 */
6965static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
6966{
6967 switch (width) {
6968 case 0:
6969 /*
6970 * Simulator and quick linkup do not set the width.
6971 * Just set it to 4x without complaint.
6972 */
6973 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
6974 return OPA_LINK_WIDTH_4X;
6975 return 0; /* no lanes up */
6976 case 1: return OPA_LINK_WIDTH_1X;
6977 case 2: return OPA_LINK_WIDTH_2X;
6978 case 3: return OPA_LINK_WIDTH_3X;
6979 default:
6980 dd_dev_info(dd, "%s: invalid width %d, using 4\n",
6981 __func__, width);
6982 /* fall through */
6983 case 4: return OPA_LINK_WIDTH_4X;
6984 }
6985}
6986
6987/*
6988 * Do a population count on the bottom nibble.
6989 */
6990static const u8 bit_counts[16] = {
6991 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
6992};
6993static inline u8 nibble_to_count(u8 nibble)
6994{
6995 return bit_counts[nibble & 0xf];
6996}
6997
6998/*
6999 * Read the active lane information from the 8051 registers and return
7000 * their widths.
7001 *
7002 * Active lane information is found in these 8051 registers:
7003 * enable_lane_tx
7004 * enable_lane_rx
7005 */
7006static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7007 u16 *rx_width)
7008{
7009 u16 tx, rx;
7010 u8 enable_lane_rx;
7011 u8 enable_lane_tx;
7012 u8 tx_polarity_inversion;
7013 u8 rx_polarity_inversion;
7014 u8 max_rate;
7015
7016 /* read the active lanes */
7017 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7018 &rx_polarity_inversion, &max_rate);
7019 read_local_lni(dd, &enable_lane_rx);
7020
7021 /* convert to counts */
7022 tx = nibble_to_count(enable_lane_tx);
7023 rx = nibble_to_count(enable_lane_rx);
7024
7025 /*
7026 * Set link_speed_active here, overriding what was set in
7027 * handle_verify_cap(). The ASIC 8051 firmware does not correctly
7028 * set the max_rate field in handle_verify_cap until v0.19.
7029 */
7030 if ((dd->icode == ICODE_RTL_SILICON)
7031 && (dd->dc8051_ver < dc8051_ver(0, 19))) {
7032 /* max_rate: 0 = 12.5G, 1 = 25G */
7033 switch (max_rate) {
7034 case 0:
7035 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7036 break;
7037 default:
7038 dd_dev_err(dd,
7039 "%s: unexpected max rate %d, using 25Gb\n",
7040 __func__, (int)max_rate);
7041 /* fall through */
7042 case 1:
7043 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7044 break;
7045 }
7046 }
7047
7048 dd_dev_info(dd,
7049 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7050 enable_lane_tx, tx, enable_lane_rx, rx);
7051 *tx_width = link_width_to_bits(dd, tx);
7052 *rx_width = link_width_to_bits(dd, rx);
7053}
7054
7055/*
7056 * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7057 * Valid after the end of VerifyCap and during LinkUp. Does not change
7058 * after link up. I.e. look elsewhere for downgrade information.
7059 *
7060 * Bits are:
7061 * + bits [7:4] contain the number of active transmitters
7062 * + bits [3:0] contain the number of active receivers
7063 * These are numbers 1 through 4 and can be different values if the
7064 * link is asymmetric.
7065 *
7066 * verify_cap_local_fm_link_width[0] retains its original value.
7067 */
7068static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7069 u16 *rx_width)
7070{
7071 u16 widths, tx, rx;
7072 u8 misc_bits, local_flags;
7073 u16 active_tx, active_rx;
7074
7075 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7076 tx = widths >> 12;
7077 rx = (widths >> 8) & 0xf;
7078
7079 *tx_width = link_width_to_bits(dd, tx);
7080 *rx_width = link_width_to_bits(dd, rx);
7081
7082 /* print the active widths */
7083 get_link_widths(dd, &active_tx, &active_rx);
7084}
7085
7086/*
7087 * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7088 * hardware information when the link first comes up.
7089 *
7090 * The link width is not available until after VerifyCap.AllFramesReceived
7091 * (the trigger for handle_verify_cap), so this is outside that routine
7092 * and should be called when the 8051 signals linkup.
7093 */
7094void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7095{
7096 u16 tx_width, rx_width;
7097
7098 /* get end-of-LNI link widths */
7099 get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7100
7101 /* use tx_width as the link is supposed to be symmetric on link up */
7102 ppd->link_width_active = tx_width;
7103 /* link width downgrade active (LWD.A) starts out matching LW.A */
7104 ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7105 ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7106 /* per OPA spec, on link up LWD.E resets to LWD.S */
7107 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7108 /* cache the active egress rate (units {10^6 bits/sec]) */
7109 ppd->current_egress_rate = active_egress_rate(ppd);
7110}
7111
7112/*
7113 * Handle a verify capabilities interrupt from the 8051.
7114 *
7115 * This is a work-queue function outside of the interrupt.
7116 */
7117void handle_verify_cap(struct work_struct *work)
7118{
7119 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7120 link_vc_work);
7121 struct hfi1_devdata *dd = ppd->dd;
7122 u64 reg;
7123 u8 power_management;
7124 u8 continious;
7125 u8 vcu;
7126 u8 vau;
7127 u8 z;
7128 u16 vl15buf;
7129 u16 link_widths;
7130 u16 crc_mask;
7131 u16 crc_val;
7132 u16 device_id;
7133 u16 active_tx, active_rx;
7134 u8 partner_supported_crc;
7135 u8 remote_tx_rate;
7136 u8 device_rev;
7137
7138 set_link_state(ppd, HLS_VERIFY_CAP);
7139
7140 lcb_shutdown(dd, 0);
7141 adjust_lcb_for_fpga_serdes(dd);
7142
7143 /*
7144 * These are now valid:
7145 * remote VerifyCap fields in the general LNI config
7146 * CSR DC8051_STS_REMOTE_GUID
7147 * CSR DC8051_STS_REMOTE_NODE_TYPE
7148 * CSR DC8051_STS_REMOTE_FM_SECURITY
7149 * CSR DC8051_STS_REMOTE_PORT_NO
7150 */
7151
7152 read_vc_remote_phy(dd, &power_management, &continious);
7153 read_vc_remote_fabric(
7154 dd,
7155 &vau,
7156 &z,
7157 &vcu,
7158 &vl15buf,
7159 &partner_supported_crc);
7160 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7161 read_remote_device_id(dd, &device_id, &device_rev);
7162 /*
7163 * And the 'MgmtAllowed' information, which is exchanged during
7164 * LNI, is also be available at this point.
7165 */
7166 read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7167 /* print the active widths */
7168 get_link_widths(dd, &active_tx, &active_rx);
7169 dd_dev_info(dd,
7170 "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7171 (int)power_management, (int)continious);
7172 dd_dev_info(dd,
7173 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7174 (int)vau,
7175 (int)z,
7176 (int)vcu,
7177 (int)vl15buf,
7178 (int)partner_supported_crc);
7179 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7180 (u32)remote_tx_rate, (u32)link_widths);
7181 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7182 (u32)device_id, (u32)device_rev);
7183 /*
7184 * The peer vAU value just read is the peer receiver value. HFI does
7185 * not support a transmit vAU of 0 (AU == 8). We advertised that
7186 * with Z=1 in the fabric capabilities sent to the peer. The peer
7187 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7188 * receive to vAU of 1 (AU == 16). Do the same here. We do not care
7189 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7190 * subject to the Z value exception.
7191 */
7192 if (vau == 0)
7193 vau = 1;
7194 set_up_vl15(dd, vau, vl15buf);
7195
7196 /* set up the LCB CRC mode */
7197 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7198
7199 /* order is important: use the lowest bit in common */
7200 if (crc_mask & CAP_CRC_14B)
7201 crc_val = LCB_CRC_14B;
7202 else if (crc_mask & CAP_CRC_48B)
7203 crc_val = LCB_CRC_48B;
7204 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7205 crc_val = LCB_CRC_12B_16B_PER_LANE;
7206 else
7207 crc_val = LCB_CRC_16B;
7208
7209 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7210 write_csr(dd, DC_LCB_CFG_CRC_MODE,
7211 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7212
7213 /* set (14b only) or clear sideband credit */
7214 reg = read_csr(dd, SEND_CM_CTRL);
7215 if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7216 write_csr(dd, SEND_CM_CTRL,
7217 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7218 } else {
7219 write_csr(dd, SEND_CM_CTRL,
7220 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7221 }
7222
7223 ppd->link_speed_active = 0; /* invalid value */
7224 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
7225 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7226 switch (remote_tx_rate) {
7227 case 0:
7228 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7229 break;
7230 case 1:
7231 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7232 break;
7233 }
7234 } else {
7235 /* actual rate is highest bit of the ANDed rates */
7236 u8 rate = remote_tx_rate & ppd->local_tx_rate;
7237
7238 if (rate & 2)
7239 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7240 else if (rate & 1)
7241 ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7242 }
7243 if (ppd->link_speed_active == 0) {
7244 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7245 __func__, (int)remote_tx_rate);
7246 ppd->link_speed_active = OPA_LINK_SPEED_25G;
7247 }
7248
7249 /*
7250 * Cache the values of the supported, enabled, and active
7251 * LTP CRC modes to return in 'portinfo' queries. But the bit
7252 * flags that are returned in the portinfo query differ from
7253 * what's in the link_crc_mask, crc_sizes, and crc_val
7254 * variables. Convert these here.
7255 */
7256 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7257 /* supported crc modes */
7258 ppd->port_ltp_crc_mode |=
7259 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7260 /* enabled crc modes */
7261 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7262 /* active crc mode */
7263
7264 /* set up the remote credit return table */
7265 assign_remote_cm_au_table(dd, vcu);
7266
7267 /*
7268 * The LCB is reset on entry to handle_verify_cap(), so this must
7269 * be applied on every link up.
7270 *
7271 * Adjust LCB error kill enable to kill the link if
7272 * these RBUF errors are seen:
7273 * REPLAY_BUF_MBE_SMASK
7274 * FLIT_INPUT_BUF_MBE_SMASK
7275 */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -05007276 if (is_ax(dd)) { /* fixed in B0 */
Mike Marciniszyn77241052015-07-30 15:17:43 -04007277 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7278 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7279 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7280 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7281 }
7282
7283 /* pull LCB fifos out of reset - all fifo clocks must be stable */
7284 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7285
7286 /* give 8051 access to the LCB CSRs */
7287 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7288 set_8051_lcb_access(dd);
7289
7290 ppd->neighbor_guid =
7291 read_csr(dd, DC_DC8051_STS_REMOTE_GUID);
7292 ppd->neighbor_port_number = read_csr(dd, DC_DC8051_STS_REMOTE_PORT_NO) &
7293 DC_DC8051_STS_REMOTE_PORT_NO_VAL_SMASK;
7294 ppd->neighbor_type =
7295 read_csr(dd, DC_DC8051_STS_REMOTE_NODE_TYPE) &
7296 DC_DC8051_STS_REMOTE_NODE_TYPE_VAL_MASK;
7297 ppd->neighbor_fm_security =
7298 read_csr(dd, DC_DC8051_STS_REMOTE_FM_SECURITY) &
7299 DC_DC8051_STS_LOCAL_FM_SECURITY_DISABLED_MASK;
7300 dd_dev_info(dd,
7301 "Neighbor Guid: %llx Neighbor type %d MgmtAllowed %d FM security bypass %d\n",
7302 ppd->neighbor_guid, ppd->neighbor_type,
7303 ppd->mgmt_allowed, ppd->neighbor_fm_security);
7304 if (ppd->mgmt_allowed)
7305 add_full_mgmt_pkey(ppd);
7306
7307 /* tell the 8051 to go to LinkUp */
7308 set_link_state(ppd, HLS_GOING_UP);
7309}
7310
7311/*
7312 * Apply the link width downgrade enabled policy against the current active
7313 * link widths.
7314 *
7315 * Called when the enabled policy changes or the active link widths change.
7316 */
7317void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7318{
Mike Marciniszyn77241052015-07-30 15:17:43 -04007319 int do_bounce = 0;
Dean Luick323fd782015-11-16 21:59:24 -05007320 int tries;
7321 u16 lwde;
Mike Marciniszyn77241052015-07-30 15:17:43 -04007322 u16 tx, rx;
7323
Dean Luick323fd782015-11-16 21:59:24 -05007324 /* use the hls lock to avoid a race with actual link up */
7325 tries = 0;
7326retry:
Mike Marciniszyn77241052015-07-30 15:17:43 -04007327 mutex_lock(&ppd->hls_lock);
7328 /* only apply if the link is up */
Dean Luick323fd782015-11-16 21:59:24 -05007329 if (!(ppd->host_link_state & HLS_UP)) {
7330 /* still going up..wait and retry */
7331 if (ppd->host_link_state & HLS_GOING_UP) {
7332 if (++tries < 1000) {
7333 mutex_unlock(&ppd->hls_lock);
7334 usleep_range(100, 120); /* arbitrary */
7335 goto retry;
7336 }
7337 dd_dev_err(ppd->dd,
7338 "%s: giving up waiting for link state change\n",
7339 __func__);
7340 }
7341 goto done;
7342 }
7343
7344 lwde = ppd->link_width_downgrade_enabled;
Mike Marciniszyn77241052015-07-30 15:17:43 -04007345
7346 if (refresh_widths) {
7347 get_link_widths(ppd->dd, &tx, &rx);
7348 ppd->link_width_downgrade_tx_active = tx;
7349 ppd->link_width_downgrade_rx_active = rx;
7350 }
7351
7352 if (lwde == 0) {
7353 /* downgrade is disabled */
7354
7355 /* bounce if not at starting active width */
7356 if ((ppd->link_width_active !=
7357 ppd->link_width_downgrade_tx_active)
7358 || (ppd->link_width_active !=
7359 ppd->link_width_downgrade_rx_active)) {
7360 dd_dev_err(ppd->dd,
7361 "Link downgrade is disabled and link has downgraded, downing link\n");
7362 dd_dev_err(ppd->dd,
7363 " original 0x%x, tx active 0x%x, rx active 0x%x\n",
7364 ppd->link_width_active,
7365 ppd->link_width_downgrade_tx_active,
7366 ppd->link_width_downgrade_rx_active);
7367 do_bounce = 1;
7368 }
7369 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0
7370 || (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7371 /* Tx or Rx is outside the enabled policy */
7372 dd_dev_err(ppd->dd,
7373 "Link is outside of downgrade allowed, downing link\n");
7374 dd_dev_err(ppd->dd,
7375 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7376 lwde,
7377 ppd->link_width_downgrade_tx_active,
7378 ppd->link_width_downgrade_rx_active);
7379 do_bounce = 1;
7380 }
7381
Dean Luick323fd782015-11-16 21:59:24 -05007382done:
7383 mutex_unlock(&ppd->hls_lock);
7384
Mike Marciniszyn77241052015-07-30 15:17:43 -04007385 if (do_bounce) {
7386 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7387 OPA_LINKDOWN_REASON_WIDTH_POLICY);
7388 set_link_state(ppd, HLS_DN_OFFLINE);
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08007389 tune_serdes(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04007390 start_link(ppd);
7391 }
7392}
7393
7394/*
7395 * Handle a link downgrade interrupt from the 8051.
7396 *
7397 * This is a work-queue function outside of the interrupt.
7398 */
7399void handle_link_downgrade(struct work_struct *work)
7400{
7401 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7402 link_downgrade_work);
7403
7404 dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7405 apply_link_downgrade_policy(ppd, 1);
7406}
7407
7408static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7409{
7410 return flag_string(buf, buf_len, flags, dcc_err_flags,
7411 ARRAY_SIZE(dcc_err_flags));
7412}
7413
7414static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7415{
7416 return flag_string(buf, buf_len, flags, lcb_err_flags,
7417 ARRAY_SIZE(lcb_err_flags));
7418}
7419
7420static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7421{
7422 return flag_string(buf, buf_len, flags, dc8051_err_flags,
7423 ARRAY_SIZE(dc8051_err_flags));
7424}
7425
7426static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7427{
7428 return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7429 ARRAY_SIZE(dc8051_info_err_flags));
7430}
7431
7432static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7433{
7434 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7435 ARRAY_SIZE(dc8051_info_host_msg_flags));
7436}
7437
7438static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7439{
7440 struct hfi1_pportdata *ppd = dd->pport;
7441 u64 info, err, host_msg;
7442 int queue_link_down = 0;
7443 char buf[96];
7444
7445 /* look at the flags */
7446 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7447 /* 8051 information set by firmware */
7448 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7449 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7450 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7451 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7452 host_msg = (info >>
7453 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7454 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7455
7456 /*
7457 * Handle error flags.
7458 */
7459 if (err & FAILED_LNI) {
7460 /*
7461 * LNI error indications are cleared by the 8051
7462 * only when starting polling. Only pay attention
7463 * to them when in the states that occur during
7464 * LNI.
7465 */
7466 if (ppd->host_link_state
7467 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7468 queue_link_down = 1;
7469 dd_dev_info(dd, "Link error: %s\n",
7470 dc8051_info_err_string(buf,
7471 sizeof(buf),
7472 err & FAILED_LNI));
7473 }
7474 err &= ~(u64)FAILED_LNI;
7475 }
Dean Luick6d014532015-12-01 15:38:23 -05007476 /* unknown frames can happen durning LNI, just count */
7477 if (err & UNKNOWN_FRAME) {
7478 ppd->unknown_frame_count++;
7479 err &= ~(u64)UNKNOWN_FRAME;
7480 }
Mike Marciniszyn77241052015-07-30 15:17:43 -04007481 if (err) {
7482 /* report remaining errors, but do not do anything */
7483 dd_dev_err(dd, "8051 info error: %s\n",
7484 dc8051_info_err_string(buf, sizeof(buf), err));
7485 }
7486
7487 /*
7488 * Handle host message flags.
7489 */
7490 if (host_msg & HOST_REQ_DONE) {
7491 /*
7492 * Presently, the driver does a busy wait for
7493 * host requests to complete. This is only an
7494 * informational message.
7495 * NOTE: The 8051 clears the host message
7496 * information *on the next 8051 command*.
7497 * Therefore, when linkup is achieved,
7498 * this flag will still be set.
7499 */
7500 host_msg &= ~(u64)HOST_REQ_DONE;
7501 }
7502 if (host_msg & BC_SMA_MSG) {
7503 queue_work(ppd->hfi1_wq, &ppd->sma_message_work);
7504 host_msg &= ~(u64)BC_SMA_MSG;
7505 }
7506 if (host_msg & LINKUP_ACHIEVED) {
7507 dd_dev_info(dd, "8051: Link up\n");
7508 queue_work(ppd->hfi1_wq, &ppd->link_up_work);
7509 host_msg &= ~(u64)LINKUP_ACHIEVED;
7510 }
7511 if (host_msg & EXT_DEVICE_CFG_REQ) {
Easwar Hariharancbac3862016-02-03 14:31:31 -08007512 queue_work(ppd->hfi1_wq, &ppd->dc_host_req_work);
Mike Marciniszyn77241052015-07-30 15:17:43 -04007513 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7514 }
7515 if (host_msg & VERIFY_CAP_FRAME) {
7516 queue_work(ppd->hfi1_wq, &ppd->link_vc_work);
7517 host_msg &= ~(u64)VERIFY_CAP_FRAME;
7518 }
7519 if (host_msg & LINK_GOING_DOWN) {
7520 const char *extra = "";
7521 /* no downgrade action needed if going down */
7522 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7523 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7524 extra = " (ignoring downgrade)";
7525 }
7526 dd_dev_info(dd, "8051: Link down%s\n", extra);
7527 queue_link_down = 1;
7528 host_msg &= ~(u64)LINK_GOING_DOWN;
7529 }
7530 if (host_msg & LINK_WIDTH_DOWNGRADED) {
7531 queue_work(ppd->hfi1_wq, &ppd->link_downgrade_work);
7532 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7533 }
7534 if (host_msg) {
7535 /* report remaining messages, but do not do anything */
7536 dd_dev_info(dd, "8051 info host message: %s\n",
7537 dc8051_info_host_msg_string(buf, sizeof(buf),
7538 host_msg));
7539 }
7540
7541 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7542 }
7543 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7544 /*
7545 * Lost the 8051 heartbeat. If this happens, we
7546 * receive constant interrupts about it. Disable
7547 * the interrupt after the first.
7548 */
7549 dd_dev_err(dd, "Lost 8051 heartbeat\n");
7550 write_csr(dd, DC_DC8051_ERR_EN,
7551 read_csr(dd, DC_DC8051_ERR_EN)
7552 & ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7553
7554 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7555 }
7556 if (reg) {
7557 /* report the error, but do not do anything */
7558 dd_dev_err(dd, "8051 error: %s\n",
7559 dc8051_err_string(buf, sizeof(buf), reg));
7560 }
7561
7562 if (queue_link_down) {
7563 /* if the link is already going down or disabled, do not
7564 * queue another */
7565 if ((ppd->host_link_state
7566 & (HLS_GOING_OFFLINE|HLS_LINK_COOLDOWN))
7567 || ppd->link_enabled == 0) {
7568 dd_dev_info(dd, "%s: not queuing link down\n",
7569 __func__);
7570 } else {
7571 queue_work(ppd->hfi1_wq, &ppd->link_down_work);
7572 }
7573 }
7574}
7575
7576static const char * const fm_config_txt[] = {
7577[0] =
7578 "BadHeadDist: Distance violation between two head flits",
7579[1] =
7580 "BadTailDist: Distance violation between two tail flits",
7581[2] =
7582 "BadCtrlDist: Distance violation between two credit control flits",
7583[3] =
7584 "BadCrdAck: Credits return for unsupported VL",
7585[4] =
7586 "UnsupportedVLMarker: Received VL Marker",
7587[5] =
7588 "BadPreempt: Exceeded the preemption nesting level",
7589[6] =
7590 "BadControlFlit: Received unsupported control flit",
7591/* no 7 */
7592[8] =
7593 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7594};
7595
7596static const char * const port_rcv_txt[] = {
7597[1] =
7598 "BadPktLen: Illegal PktLen",
7599[2] =
7600 "PktLenTooLong: Packet longer than PktLen",
7601[3] =
7602 "PktLenTooShort: Packet shorter than PktLen",
7603[4] =
7604 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7605[5] =
7606 "BadDLID: Illegal DLID (0, doesn't match HFI)",
7607[6] =
7608 "BadL2: Illegal L2 opcode",
7609[7] =
7610 "BadSC: Unsupported SC",
7611[9] =
7612 "BadRC: Illegal RC",
7613[11] =
7614 "PreemptError: Preempting with same VL",
7615[12] =
7616 "PreemptVL15: Preempting a VL15 packet",
7617};
7618
7619#define OPA_LDR_FMCONFIG_OFFSET 16
7620#define OPA_LDR_PORTRCV_OFFSET 0
7621static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7622{
7623 u64 info, hdr0, hdr1;
7624 const char *extra;
7625 char buf[96];
7626 struct hfi1_pportdata *ppd = dd->pport;
7627 u8 lcl_reason = 0;
7628 int do_bounce = 0;
7629
7630 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7631 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7632 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7633 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7634 /* set status bit */
7635 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7636 }
7637 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7638 }
7639
7640 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7641 struct hfi1_pportdata *ppd = dd->pport;
7642 /* this counter saturates at (2^32) - 1 */
7643 if (ppd->link_downed < (u32)UINT_MAX)
7644 ppd->link_downed++;
7645 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7646 }
7647
7648 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7649 u8 reason_valid = 1;
7650
7651 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7652 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7653 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7654 /* set status bit */
7655 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7656 }
7657 switch (info) {
7658 case 0:
7659 case 1:
7660 case 2:
7661 case 3:
7662 case 4:
7663 case 5:
7664 case 6:
7665 extra = fm_config_txt[info];
7666 break;
7667 case 8:
7668 extra = fm_config_txt[info];
7669 if (ppd->port_error_action &
7670 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7671 do_bounce = 1;
7672 /*
7673 * lcl_reason cannot be derived from info
7674 * for this error
7675 */
7676 lcl_reason =
7677 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7678 }
7679 break;
7680 default:
7681 reason_valid = 0;
7682 snprintf(buf, sizeof(buf), "reserved%lld", info);
7683 extra = buf;
7684 break;
7685 }
7686
7687 if (reason_valid && !do_bounce) {
7688 do_bounce = ppd->port_error_action &
7689 (1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7690 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7691 }
7692
7693 /* just report this */
7694 dd_dev_info(dd, "DCC Error: fmconfig error: %s\n", extra);
7695 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7696 }
7697
7698 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7699 u8 reason_valid = 1;
7700
7701 info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7702 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7703 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7704 if (!(dd->err_info_rcvport.status_and_code &
7705 OPA_EI_STATUS_SMASK)) {
7706 dd->err_info_rcvport.status_and_code =
7707 info & OPA_EI_CODE_SMASK;
7708 /* set status bit */
7709 dd->err_info_rcvport.status_and_code |=
7710 OPA_EI_STATUS_SMASK;
7711 /* save first 2 flits in the packet that caused
7712 * the error */
7713 dd->err_info_rcvport.packet_flit1 = hdr0;
7714 dd->err_info_rcvport.packet_flit2 = hdr1;
7715 }
7716 switch (info) {
7717 case 1:
7718 case 2:
7719 case 3:
7720 case 4:
7721 case 5:
7722 case 6:
7723 case 7:
7724 case 9:
7725 case 11:
7726 case 12:
7727 extra = port_rcv_txt[info];
7728 break;
7729 default:
7730 reason_valid = 0;
7731 snprintf(buf, sizeof(buf), "reserved%lld", info);
7732 extra = buf;
7733 break;
7734 }
7735
7736 if (reason_valid && !do_bounce) {
7737 do_bounce = ppd->port_error_action &
7738 (1 << (OPA_LDR_PORTRCV_OFFSET + info));
7739 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
7740 }
7741
7742 /* just report this */
7743 dd_dev_info(dd, "DCC Error: PortRcv error: %s\n", extra);
7744 dd_dev_info(dd, " hdr0 0x%llx, hdr1 0x%llx\n",
7745 hdr0, hdr1);
7746
7747 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
7748 }
7749
7750 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
7751 /* informative only */
7752 dd_dev_info(dd, "8051 access to LCB blocked\n");
7753 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
7754 }
7755 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
7756 /* informative only */
7757 dd_dev_info(dd, "host access to LCB blocked\n");
7758 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
7759 }
7760
7761 /* report any remaining errors */
7762 if (reg)
7763 dd_dev_info(dd, "DCC Error: %s\n",
7764 dcc_err_string(buf, sizeof(buf), reg));
7765
7766 if (lcl_reason == 0)
7767 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
7768
7769 if (do_bounce) {
7770 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
7771 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
7772 queue_work(ppd->hfi1_wq, &ppd->link_bounce_work);
7773 }
7774}
7775
7776static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7777{
7778 char buf[96];
7779
7780 dd_dev_info(dd, "LCB Error: %s\n",
7781 lcb_err_string(buf, sizeof(buf), reg));
7782}
7783
7784/*
7785 * CCE block DC interrupt. Source is < 8.
7786 */
7787static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
7788{
7789 const struct err_reg_info *eri = &dc_errs[source];
7790
7791 if (eri->handler) {
7792 interrupt_clear_down(dd, 0, eri);
7793 } else if (source == 3 /* dc_lbm_int */) {
7794 /*
7795 * This indicates that a parity error has occurred on the
7796 * address/control lines presented to the LBM. The error
7797 * is a single pulse, there is no associated error flag,
7798 * and it is non-maskable. This is because if a parity
7799 * error occurs on the request the request is dropped.
7800 * This should never occur, but it is nice to know if it
7801 * ever does.
7802 */
7803 dd_dev_err(dd, "Parity error in DC LBM block\n");
7804 } else {
7805 dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
7806 }
7807}
7808
7809/*
7810 * TX block send credit interrupt. Source is < 160.
7811 */
7812static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
7813{
7814 sc_group_release_update(dd, source);
7815}
7816
7817/*
7818 * TX block SDMA interrupt. Source is < 48.
7819 *
7820 * SDMA interrupts are grouped by type:
7821 *
7822 * 0 - N-1 = SDma
7823 * N - 2N-1 = SDmaProgress
7824 * 2N - 3N-1 = SDmaIdle
7825 */
7826static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
7827{
7828 /* what interrupt */
7829 unsigned int what = source / TXE_NUM_SDMA_ENGINES;
7830 /* which engine */
7831 unsigned int which = source % TXE_NUM_SDMA_ENGINES;
7832
7833#ifdef CONFIG_SDMA_VERBOSITY
7834 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
7835 slashstrip(__FILE__), __LINE__, __func__);
7836 sdma_dumpstate(&dd->per_sdma[which]);
7837#endif
7838
7839 if (likely(what < 3 && which < dd->num_sdma)) {
7840 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
7841 } else {
7842 /* should not happen */
7843 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
7844 }
7845}
7846
7847/*
7848 * RX block receive available interrupt. Source is < 160.
7849 */
7850static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
7851{
7852 struct hfi1_ctxtdata *rcd;
7853 char *err_detail;
7854
7855 if (likely(source < dd->num_rcv_contexts)) {
7856 rcd = dd->rcd[source];
7857 if (rcd) {
7858 if (source < dd->first_user_ctxt)
Dean Luickf4f30031c2015-10-26 10:28:44 -04007859 rcd->do_interrupt(rcd, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04007860 else
7861 handle_user_interrupt(rcd);
7862 return; /* OK */
7863 }
7864 /* received an interrupt, but no rcd */
7865 err_detail = "dataless";
7866 } else {
7867 /* received an interrupt, but are not using that context */
7868 err_detail = "out of range";
7869 }
7870 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
7871 err_detail, source);
7872}
7873
7874/*
7875 * RX block receive urgent interrupt. Source is < 160.
7876 */
7877static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
7878{
7879 struct hfi1_ctxtdata *rcd;
7880 char *err_detail;
7881
7882 if (likely(source < dd->num_rcv_contexts)) {
7883 rcd = dd->rcd[source];
7884 if (rcd) {
7885 /* only pay attention to user urgent interrupts */
7886 if (source >= dd->first_user_ctxt)
7887 handle_user_interrupt(rcd);
7888 return; /* OK */
7889 }
7890 /* received an interrupt, but no rcd */
7891 err_detail = "dataless";
7892 } else {
7893 /* received an interrupt, but are not using that context */
7894 err_detail = "out of range";
7895 }
7896 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
7897 err_detail, source);
7898}
7899
7900/*
7901 * Reserved range interrupt. Should not be called in normal operation.
7902 */
7903static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
7904{
7905 char name[64];
7906
7907 dd_dev_err(dd, "unexpected %s interrupt\n",
7908 is_reserved_name(name, sizeof(name), source));
7909}
7910
7911static const struct is_table is_table[] = {
7912/* start end
7913 name func interrupt func */
7914{ IS_GENERAL_ERR_START, IS_GENERAL_ERR_END,
7915 is_misc_err_name, is_misc_err_int },
7916{ IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END,
7917 is_sdma_eng_err_name, is_sdma_eng_err_int },
7918{ IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
7919 is_sendctxt_err_name, is_sendctxt_err_int },
7920{ IS_SDMA_START, IS_SDMA_END,
7921 is_sdma_eng_name, is_sdma_eng_int },
7922{ IS_VARIOUS_START, IS_VARIOUS_END,
7923 is_various_name, is_various_int },
7924{ IS_DC_START, IS_DC_END,
7925 is_dc_name, is_dc_int },
7926{ IS_RCVAVAIL_START, IS_RCVAVAIL_END,
7927 is_rcv_avail_name, is_rcv_avail_int },
7928{ IS_RCVURGENT_START, IS_RCVURGENT_END,
7929 is_rcv_urgent_name, is_rcv_urgent_int },
7930{ IS_SENDCREDIT_START, IS_SENDCREDIT_END,
7931 is_send_credit_name, is_send_credit_int},
7932{ IS_RESERVED_START, IS_RESERVED_END,
7933 is_reserved_name, is_reserved_int},
7934};
7935
7936/*
7937 * Interrupt source interrupt - called when the given source has an interrupt.
7938 * Source is a bit index into an array of 64-bit integers.
7939 */
7940static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
7941{
7942 const struct is_table *entry;
7943
7944 /* avoids a double compare by walking the table in-order */
7945 for (entry = &is_table[0]; entry->is_name; entry++) {
7946 if (source < entry->end) {
7947 trace_hfi1_interrupt(dd, entry, source);
7948 entry->is_int(dd, source - entry->start);
7949 return;
7950 }
7951 }
7952 /* fell off the end */
7953 dd_dev_err(dd, "invalid interrupt source %u\n", source);
7954}
7955
7956/*
7957 * General interrupt handler. This is able to correctly handle
7958 * all interrupts in case INTx is used.
7959 */
7960static irqreturn_t general_interrupt(int irq, void *data)
7961{
7962 struct hfi1_devdata *dd = data;
7963 u64 regs[CCE_NUM_INT_CSRS];
7964 u32 bit;
7965 int i;
7966
7967 this_cpu_inc(*dd->int_counter);
7968
7969 /* phase 1: scan and clear all handled interrupts */
7970 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
7971 if (dd->gi_mask[i] == 0) {
7972 regs[i] = 0; /* used later */
7973 continue;
7974 }
7975 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
7976 dd->gi_mask[i];
7977 /* only clear if anything is set */
7978 if (regs[i])
7979 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
7980 }
7981
7982 /* phase 2: call the appropriate handler */
7983 for_each_set_bit(bit, (unsigned long *)&regs[0],
7984 CCE_NUM_INT_CSRS*64) {
7985 is_interrupt(dd, bit);
7986 }
7987
7988 return IRQ_HANDLED;
7989}
7990
7991static irqreturn_t sdma_interrupt(int irq, void *data)
7992{
7993 struct sdma_engine *sde = data;
7994 struct hfi1_devdata *dd = sde->dd;
7995 u64 status;
7996
7997#ifdef CONFIG_SDMA_VERBOSITY
7998 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
7999 slashstrip(__FILE__), __LINE__, __func__);
8000 sdma_dumpstate(sde);
8001#endif
8002
8003 this_cpu_inc(*dd->int_counter);
8004
8005 /* This read_csr is really bad in the hot path */
8006 status = read_csr(dd,
8007 CCE_INT_STATUS + (8*(IS_SDMA_START/64)))
8008 & sde->imask;
8009 if (likely(status)) {
8010 /* clear the interrupt(s) */
8011 write_csr(dd,
8012 CCE_INT_CLEAR + (8*(IS_SDMA_START/64)),
8013 status);
8014
8015 /* handle the interrupt(s) */
8016 sdma_engine_interrupt(sde, status);
8017 } else
8018 dd_dev_err(dd, "SDMA engine %u interrupt, but no status bits set\n",
8019 sde->this_idx);
8020
8021 return IRQ_HANDLED;
8022}
8023
8024/*
Dean Luickf4f30031c2015-10-26 10:28:44 -04008025 * Clear the receive interrupt, forcing the write and making sure
8026 * we have data from the chip, pushing everything in front of it
8027 * back to the host.
8028 */
8029static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8030{
8031 struct hfi1_devdata *dd = rcd->dd;
8032 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8033
8034 mmiowb(); /* make sure everything before is written */
8035 write_csr(dd, addr, rcd->imask);
8036 /* force the above write on the chip and get a value back */
8037 (void)read_csr(dd, addr);
8038}
8039
8040/* force the receive interrupt */
Jim Snowfb9036d2016-01-11 18:32:21 -05008041void force_recv_intr(struct hfi1_ctxtdata *rcd)
Dean Luickf4f30031c2015-10-26 10:28:44 -04008042{
8043 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8044}
8045
8046/* return non-zero if a packet is present */
8047static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8048{
8049 if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8050 return (rcd->seq_cnt ==
8051 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8052
8053 /* else is RDMA rtail */
8054 return (rcd->head != get_rcvhdrtail(rcd));
8055}
8056
8057/*
8058 * Receive packet IRQ handler. This routine expects to be on its own IRQ.
8059 * This routine will try to handle packets immediately (latency), but if
8060 * it finds too many, it will invoke the thread handler (bandwitdh). The
8061 * chip receive interupt is *not* cleared down until this or the thread (if
8062 * invoked) is finished. The intent is to avoid extra interrupts while we
8063 * are processing packets anyway.
Mike Marciniszyn77241052015-07-30 15:17:43 -04008064 */
8065static irqreturn_t receive_context_interrupt(int irq, void *data)
8066{
8067 struct hfi1_ctxtdata *rcd = data;
8068 struct hfi1_devdata *dd = rcd->dd;
Dean Luickf4f30031c2015-10-26 10:28:44 -04008069 int disposition;
8070 int present;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008071
8072 trace_hfi1_receive_interrupt(dd, rcd->ctxt);
8073 this_cpu_inc(*dd->int_counter);
Ashutosh Dixitaffa48d2016-02-03 14:33:06 -08008074 aspm_ctx_disable(rcd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008075
Dean Luickf4f30031c2015-10-26 10:28:44 -04008076 /* receive interrupt remains blocked while processing packets */
8077 disposition = rcd->do_interrupt(rcd, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04008078
Dean Luickf4f30031c2015-10-26 10:28:44 -04008079 /*
8080 * Too many packets were seen while processing packets in this
8081 * IRQ handler. Invoke the handler thread. The receive interrupt
8082 * remains blocked.
8083 */
8084 if (disposition == RCV_PKT_LIMIT)
8085 return IRQ_WAKE_THREAD;
8086
8087 /*
8088 * The packet processor detected no more packets. Clear the receive
8089 * interrupt and recheck for a packet packet that may have arrived
8090 * after the previous check and interrupt clear. If a packet arrived,
8091 * force another interrupt.
8092 */
8093 clear_recv_intr(rcd);
8094 present = check_packet_present(rcd);
8095 if (present)
8096 force_recv_intr(rcd);
8097
8098 return IRQ_HANDLED;
8099}
8100
8101/*
8102 * Receive packet thread handler. This expects to be invoked with the
8103 * receive interrupt still blocked.
8104 */
8105static irqreturn_t receive_context_thread(int irq, void *data)
8106{
8107 struct hfi1_ctxtdata *rcd = data;
8108 int present;
8109
8110 /* receive interrupt is still blocked from the IRQ handler */
8111 (void)rcd->do_interrupt(rcd, 1);
8112
8113 /*
8114 * The packet processor will only return if it detected no more
8115 * packets. Hold IRQs here so we can safely clear the interrupt and
8116 * recheck for a packet that may have arrived after the previous
8117 * check and the interrupt clear. If a packet arrived, force another
8118 * interrupt.
8119 */
8120 local_irq_disable();
8121 clear_recv_intr(rcd);
8122 present = check_packet_present(rcd);
8123 if (present)
8124 force_recv_intr(rcd);
8125 local_irq_enable();
Mike Marciniszyn77241052015-07-30 15:17:43 -04008126
8127 return IRQ_HANDLED;
8128}
8129
8130/* ========================================================================= */
8131
8132u32 read_physical_state(struct hfi1_devdata *dd)
8133{
8134 u64 reg;
8135
8136 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8137 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8138 & DC_DC8051_STS_CUR_STATE_PORT_MASK;
8139}
8140
Jim Snowfb9036d2016-01-11 18:32:21 -05008141u32 read_logical_state(struct hfi1_devdata *dd)
Mike Marciniszyn77241052015-07-30 15:17:43 -04008142{
8143 u64 reg;
8144
8145 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8146 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8147 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8148}
8149
8150static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8151{
8152 u64 reg;
8153
8154 reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8155 /* clear current state, set new state */
8156 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8157 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8158 write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8159}
8160
8161/*
8162 * Use the 8051 to read a LCB CSR.
8163 */
8164static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8165{
8166 u32 regno;
8167 int ret;
8168
8169 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8170 if (acquire_lcb_access(dd, 0) == 0) {
8171 *data = read_csr(dd, addr);
8172 release_lcb_access(dd, 0);
8173 return 0;
8174 }
8175 return -EBUSY;
8176 }
8177
8178 /* register is an index of LCB registers: (offset - base) / 8 */
8179 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8180 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8181 if (ret != HCMD_SUCCESS)
8182 return -EBUSY;
8183 return 0;
8184}
8185
8186/*
8187 * Read an LCB CSR. Access may not be in host control, so check.
8188 * Return 0 on success, -EBUSY on failure.
8189 */
8190int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8191{
8192 struct hfi1_pportdata *ppd = dd->pport;
8193
8194 /* if up, go through the 8051 for the value */
8195 if (ppd->host_link_state & HLS_UP)
8196 return read_lcb_via_8051(dd, addr, data);
8197 /* if going up or down, no access */
8198 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8199 return -EBUSY;
8200 /* otherwise, host has access */
8201 *data = read_csr(dd, addr);
8202 return 0;
8203}
8204
8205/*
8206 * Use the 8051 to write a LCB CSR.
8207 */
8208static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8209{
Dean Luick3bf40d62015-11-06 20:07:04 -05008210 u32 regno;
8211 int ret;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008212
Dean Luick3bf40d62015-11-06 20:07:04 -05008213 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8214 (dd->dc8051_ver < dc8051_ver(0, 20))) {
8215 if (acquire_lcb_access(dd, 0) == 0) {
8216 write_csr(dd, addr, data);
8217 release_lcb_access(dd, 0);
8218 return 0;
8219 }
8220 return -EBUSY;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008221 }
Dean Luick3bf40d62015-11-06 20:07:04 -05008222
8223 /* register is an index of LCB registers: (offset - base) / 8 */
8224 regno = (addr - DC_LCB_CFG_RUN) >> 3;
8225 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8226 if (ret != HCMD_SUCCESS)
8227 return -EBUSY;
8228 return 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -04008229}
8230
8231/*
8232 * Write an LCB CSR. Access may not be in host control, so check.
8233 * Return 0 on success, -EBUSY on failure.
8234 */
8235int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8236{
8237 struct hfi1_pportdata *ppd = dd->pport;
8238
8239 /* if up, go through the 8051 for the value */
8240 if (ppd->host_link_state & HLS_UP)
8241 return write_lcb_via_8051(dd, addr, data);
8242 /* if going up or down, no access */
8243 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8244 return -EBUSY;
8245 /* otherwise, host has access */
8246 write_csr(dd, addr, data);
8247 return 0;
8248}
8249
8250/*
8251 * Returns:
8252 * < 0 = Linux error, not able to get access
8253 * > 0 = 8051 command RETURN_CODE
8254 */
8255static int do_8051_command(
8256 struct hfi1_devdata *dd,
8257 u32 type,
8258 u64 in_data,
8259 u64 *out_data)
8260{
8261 u64 reg, completed;
8262 int return_code;
8263 unsigned long flags;
8264 unsigned long timeout;
8265
8266 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8267
8268 /*
8269 * Alternative to holding the lock for a long time:
8270 * - keep busy wait - have other users bounce off
8271 */
8272 spin_lock_irqsave(&dd->dc8051_lock, flags);
8273
8274 /* We can't send any commands to the 8051 if it's in reset */
8275 if (dd->dc_shutdown) {
8276 return_code = -ENODEV;
8277 goto fail;
8278 }
8279
8280 /*
8281 * If an 8051 host command timed out previously, then the 8051 is
8282 * stuck.
8283 *
8284 * On first timeout, attempt to reset and restart the entire DC
8285 * block (including 8051). (Is this too big of a hammer?)
8286 *
8287 * If the 8051 times out a second time, the reset did not bring it
8288 * back to healthy life. In that case, fail any subsequent commands.
8289 */
8290 if (dd->dc8051_timed_out) {
8291 if (dd->dc8051_timed_out > 1) {
8292 dd_dev_err(dd,
8293 "Previous 8051 host command timed out, skipping command %u\n",
8294 type);
8295 return_code = -ENXIO;
8296 goto fail;
8297 }
8298 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8299 dc_shutdown(dd);
8300 dc_start(dd);
8301 spin_lock_irqsave(&dd->dc8051_lock, flags);
8302 }
8303
8304 /*
8305 * If there is no timeout, then the 8051 command interface is
8306 * waiting for a command.
8307 */
8308
8309 /*
Dean Luick3bf40d62015-11-06 20:07:04 -05008310 * When writing a LCB CSR, out_data contains the full value to
8311 * to be written, while in_data contains the relative LCB
8312 * address in 7:0. Do the work here, rather than the caller,
8313 * of distrubting the write data to where it needs to go:
8314 *
8315 * Write data
8316 * 39:00 -> in_data[47:8]
8317 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8318 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8319 */
8320 if (type == HCMD_WRITE_LCB_CSR) {
8321 in_data |= ((*out_data) & 0xffffffffffull) << 8;
8322 reg = ((((*out_data) >> 40) & 0xff) <<
8323 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8324 | ((((*out_data) >> 48) & 0xffff) <<
8325 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8326 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8327 }
8328
8329 /*
Mike Marciniszyn77241052015-07-30 15:17:43 -04008330 * Do two writes: the first to stabilize the type and req_data, the
8331 * second to activate.
8332 */
8333 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8334 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8335 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8336 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8337 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8338 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8339 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8340
8341 /* wait for completion, alternate: interrupt */
8342 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8343 while (1) {
8344 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8345 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8346 if (completed)
8347 break;
8348 if (time_after(jiffies, timeout)) {
8349 dd->dc8051_timed_out++;
8350 dd_dev_err(dd, "8051 host command %u timeout\n", type);
8351 if (out_data)
8352 *out_data = 0;
8353 return_code = -ETIMEDOUT;
8354 goto fail;
8355 }
8356 udelay(2);
8357 }
8358
8359 if (out_data) {
8360 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8361 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8362 if (type == HCMD_READ_LCB_CSR) {
8363 /* top 16 bits are in a different register */
8364 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8365 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8366 << (48
8367 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8368 }
8369 }
8370 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8371 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8372 dd->dc8051_timed_out = 0;
8373 /*
8374 * Clear command for next user.
8375 */
8376 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8377
8378fail:
8379 spin_unlock_irqrestore(&dd->dc8051_lock, flags);
8380
8381 return return_code;
8382}
8383
8384static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8385{
8386 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8387}
8388
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08008389int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8390 u8 lane_id, u32 config_data)
Mike Marciniszyn77241052015-07-30 15:17:43 -04008391{
8392 u64 data;
8393 int ret;
8394
8395 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8396 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8397 | (u64)config_data << LOAD_DATA_DATA_SHIFT;
8398 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8399 if (ret != HCMD_SUCCESS) {
8400 dd_dev_err(dd,
8401 "load 8051 config: field id %d, lane %d, err %d\n",
8402 (int)field_id, (int)lane_id, ret);
8403 }
8404 return ret;
8405}
8406
8407/*
8408 * Read the 8051 firmware "registers". Use the RAM directly. Always
8409 * set the result, even on error.
8410 * Return 0 on success, -errno on failure
8411 */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08008412int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8413 u32 *result)
Mike Marciniszyn77241052015-07-30 15:17:43 -04008414{
8415 u64 big_data;
8416 u32 addr;
8417 int ret;
8418
8419 /* address start depends on the lane_id */
8420 if (lane_id < 4)
8421 addr = (4 * NUM_GENERAL_FIELDS)
8422 + (lane_id * 4 * NUM_LANE_FIELDS);
8423 else
8424 addr = 0;
8425 addr += field_id * 4;
8426
8427 /* read is in 8-byte chunks, hardware will truncate the address down */
8428 ret = read_8051_data(dd, addr, 8, &big_data);
8429
8430 if (ret == 0) {
8431 /* extract the 4 bytes we want */
8432 if (addr & 0x4)
8433 *result = (u32)(big_data >> 32);
8434 else
8435 *result = (u32)big_data;
8436 } else {
8437 *result = 0;
8438 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8439 __func__, lane_id, field_id);
8440 }
8441
8442 return ret;
8443}
8444
8445static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8446 u8 continuous)
8447{
8448 u32 frame;
8449
8450 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8451 | power_management << POWER_MANAGEMENT_SHIFT;
8452 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8453 GENERAL_CONFIG, frame);
8454}
8455
8456static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8457 u16 vl15buf, u8 crc_sizes)
8458{
8459 u32 frame;
8460
8461 frame = (u32)vau << VAU_SHIFT
8462 | (u32)z << Z_SHIFT
8463 | (u32)vcu << VCU_SHIFT
8464 | (u32)vl15buf << VL15BUF_SHIFT
8465 | (u32)crc_sizes << CRC_SIZES_SHIFT;
8466 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8467 GENERAL_CONFIG, frame);
8468}
8469
8470static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8471 u8 *flag_bits, u16 *link_widths)
8472{
8473 u32 frame;
8474
8475 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8476 &frame);
8477 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8478 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8479 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8480}
8481
8482static int write_vc_local_link_width(struct hfi1_devdata *dd,
8483 u8 misc_bits,
8484 u8 flag_bits,
8485 u16 link_widths)
8486{
8487 u32 frame;
8488
8489 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8490 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8491 | (u32)link_widths << LINK_WIDTH_SHIFT;
8492 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8493 frame);
8494}
8495
8496static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8497 u8 device_rev)
8498{
8499 u32 frame;
8500
8501 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8502 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8503 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8504}
8505
8506static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8507 u8 *device_rev)
8508{
8509 u32 frame;
8510
8511 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8512 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8513 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8514 & REMOTE_DEVICE_REV_MASK;
8515}
8516
8517void read_misc_status(struct hfi1_devdata *dd, u8 *ver_a, u8 *ver_b)
8518{
8519 u32 frame;
8520
8521 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8522 *ver_a = (frame >> STS_FM_VERSION_A_SHIFT) & STS_FM_VERSION_A_MASK;
8523 *ver_b = (frame >> STS_FM_VERSION_B_SHIFT) & STS_FM_VERSION_B_MASK;
8524}
8525
8526static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8527 u8 *continuous)
8528{
8529 u32 frame;
8530
8531 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8532 *power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8533 & POWER_MANAGEMENT_MASK;
8534 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8535 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8536}
8537
8538static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8539 u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8540{
8541 u32 frame;
8542
8543 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8544 *vau = (frame >> VAU_SHIFT) & VAU_MASK;
8545 *z = (frame >> Z_SHIFT) & Z_MASK;
8546 *vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8547 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8548 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8549}
8550
8551static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8552 u8 *remote_tx_rate,
8553 u16 *link_widths)
8554{
8555 u32 frame;
8556
8557 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8558 &frame);
8559 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8560 & REMOTE_TX_RATE_MASK;
8561 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8562}
8563
8564static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8565{
8566 u32 frame;
8567
8568 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8569 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8570}
8571
8572static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8573{
8574 u32 frame;
8575
8576 read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8577 *mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8578}
8579
8580static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8581{
8582 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8583}
8584
8585static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8586{
8587 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8588}
8589
8590void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8591{
8592 u32 frame;
8593 int ret;
8594
8595 *link_quality = 0;
8596 if (dd->pport->host_link_state & HLS_UP) {
8597 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8598 &frame);
8599 if (ret == 0)
8600 *link_quality = (frame >> LINK_QUALITY_SHIFT)
8601 & LINK_QUALITY_MASK;
8602 }
8603}
8604
8605static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8606{
8607 u32 frame;
8608
8609 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8610 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8611}
8612
8613static int read_tx_settings(struct hfi1_devdata *dd,
8614 u8 *enable_lane_tx,
8615 u8 *tx_polarity_inversion,
8616 u8 *rx_polarity_inversion,
8617 u8 *max_rate)
8618{
8619 u32 frame;
8620 int ret;
8621
8622 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8623 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8624 & ENABLE_LANE_TX_MASK;
8625 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8626 & TX_POLARITY_INVERSION_MASK;
8627 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8628 & RX_POLARITY_INVERSION_MASK;
8629 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8630 return ret;
8631}
8632
8633static int write_tx_settings(struct hfi1_devdata *dd,
8634 u8 enable_lane_tx,
8635 u8 tx_polarity_inversion,
8636 u8 rx_polarity_inversion,
8637 u8 max_rate)
8638{
8639 u32 frame;
8640
8641 /* no need to mask, all variable sizes match field widths */
8642 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
8643 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
8644 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
8645 | max_rate << MAX_RATE_SHIFT;
8646 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
8647}
8648
8649static void check_fabric_firmware_versions(struct hfi1_devdata *dd)
8650{
8651 u32 frame, version, prod_id;
8652 int ret, lane;
8653
8654 /* 4 lanes */
8655 for (lane = 0; lane < 4; lane++) {
8656 ret = read_8051_config(dd, SPICO_FW_VERSION, lane, &frame);
8657 if (ret) {
8658 dd_dev_err(
8659 dd,
8660 "Unable to read lane %d firmware details\n",
8661 lane);
8662 continue;
8663 }
8664 version = (frame >> SPICO_ROM_VERSION_SHIFT)
8665 & SPICO_ROM_VERSION_MASK;
8666 prod_id = (frame >> SPICO_ROM_PROD_ID_SHIFT)
8667 & SPICO_ROM_PROD_ID_MASK;
8668 dd_dev_info(dd,
8669 "Lane %d firmware: version 0x%04x, prod_id 0x%04x\n",
8670 lane, version, prod_id);
8671 }
8672}
8673
8674/*
8675 * Read an idle LCB message.
8676 *
8677 * Returns 0 on success, -EINVAL on error
8678 */
8679static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
8680{
8681 int ret;
8682
8683 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG,
8684 type, data_out);
8685 if (ret != HCMD_SUCCESS) {
8686 dd_dev_err(dd, "read idle message: type %d, err %d\n",
8687 (u32)type, ret);
8688 return -EINVAL;
8689 }
8690 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
8691 /* return only the payload as we already know the type */
8692 *data_out >>= IDLE_PAYLOAD_SHIFT;
8693 return 0;
8694}
8695
8696/*
8697 * Read an idle SMA message. To be done in response to a notification from
8698 * the 8051.
8699 *
8700 * Returns 0 on success, -EINVAL on error
8701 */
8702static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
8703{
8704 return read_idle_message(dd,
8705 (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, data);
8706}
8707
8708/*
8709 * Send an idle LCB message.
8710 *
8711 * Returns 0 on success, -EINVAL on error
8712 */
8713static int send_idle_message(struct hfi1_devdata *dd, u64 data)
8714{
8715 int ret;
8716
8717 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
8718 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
8719 if (ret != HCMD_SUCCESS) {
8720 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
8721 data, ret);
8722 return -EINVAL;
8723 }
8724 return 0;
8725}
8726
8727/*
8728 * Send an idle SMA message.
8729 *
8730 * Returns 0 on success, -EINVAL on error
8731 */
8732int send_idle_sma(struct hfi1_devdata *dd, u64 message)
8733{
8734 u64 data;
8735
8736 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT)
8737 | ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
8738 return send_idle_message(dd, data);
8739}
8740
8741/*
8742 * Initialize the LCB then do a quick link up. This may or may not be
8743 * in loopback.
8744 *
8745 * return 0 on success, -errno on error
8746 */
8747static int do_quick_linkup(struct hfi1_devdata *dd)
8748{
8749 u64 reg;
8750 unsigned long timeout;
8751 int ret;
8752
8753 lcb_shutdown(dd, 0);
8754
8755 if (loopback) {
8756 /* LCB_CFG_LOOPBACK.VAL = 2 */
8757 /* LCB_CFG_LANE_WIDTH.VAL = 0 */
8758 write_csr(dd, DC_LCB_CFG_LOOPBACK,
8759 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
8760 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
8761 }
8762
8763 /* start the LCBs */
8764 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
8765 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
8766
8767 /* simulator only loopback steps */
8768 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8769 /* LCB_CFG_RUN.EN = 1 */
8770 write_csr(dd, DC_LCB_CFG_RUN,
8771 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
8772
8773 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */
8774 timeout = jiffies + msecs_to_jiffies(10);
8775 while (1) {
8776 reg = read_csr(dd,
8777 DC_LCB_STS_LINK_TRANSFER_ACTIVE);
8778 if (reg)
8779 break;
8780 if (time_after(jiffies, timeout)) {
8781 dd_dev_err(dd,
8782 "timeout waiting for LINK_TRANSFER_ACTIVE\n");
8783 return -ETIMEDOUT;
8784 }
8785 udelay(2);
8786 }
8787
8788 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
8789 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
8790 }
8791
8792 if (!loopback) {
8793 /*
8794 * When doing quick linkup and not in loopback, both
8795 * sides must be done with LCB set-up before either
8796 * starts the quick linkup. Put a delay here so that
8797 * both sides can be started and have a chance to be
8798 * done with LCB set up before resuming.
8799 */
8800 dd_dev_err(dd,
8801 "Pausing for peer to be finished with LCB set up\n");
8802 msleep(5000);
8803 dd_dev_err(dd,
8804 "Continuing with quick linkup\n");
8805 }
8806
8807 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
8808 set_8051_lcb_access(dd);
8809
8810 /*
8811 * State "quick" LinkUp request sets the physical link state to
8812 * LinkUp without a verify capability sequence.
8813 * This state is in simulator v37 and later.
8814 */
8815 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
8816 if (ret != HCMD_SUCCESS) {
8817 dd_dev_err(dd,
8818 "%s: set physical link state to quick LinkUp failed with return %d\n",
8819 __func__, ret);
8820
8821 set_host_lcb_access(dd);
8822 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
8823
8824 if (ret >= 0)
8825 ret = -EINVAL;
8826 return ret;
8827 }
8828
8829 return 0; /* success */
8830}
8831
8832/*
8833 * Set the SerDes to internal loopback mode.
8834 * Returns 0 on success, -errno on error.
8835 */
8836static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
8837{
8838 int ret;
8839
8840 ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
8841 if (ret == HCMD_SUCCESS)
8842 return 0;
8843 dd_dev_err(dd,
8844 "Set physical link state to SerDes Loopback failed with return %d\n",
8845 ret);
8846 if (ret >= 0)
8847 ret = -EINVAL;
8848 return ret;
8849}
8850
8851/*
8852 * Do all special steps to set up loopback.
8853 */
8854static int init_loopback(struct hfi1_devdata *dd)
8855{
8856 dd_dev_info(dd, "Entering loopback mode\n");
8857
8858 /* all loopbacks should disable self GUID check */
8859 write_csr(dd, DC_DC8051_CFG_MODE,
8860 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
8861
8862 /*
8863 * The simulator has only one loopback option - LCB. Switch
8864 * to that option, which includes quick link up.
8865 *
8866 * Accept all valid loopback values.
8867 */
8868 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
8869 && (loopback == LOOPBACK_SERDES
8870 || loopback == LOOPBACK_LCB
8871 || loopback == LOOPBACK_CABLE)) {
8872 loopback = LOOPBACK_LCB;
8873 quick_linkup = 1;
8874 return 0;
8875 }
8876
8877 /* handle serdes loopback */
8878 if (loopback == LOOPBACK_SERDES) {
8879 /* internal serdes loopack needs quick linkup on RTL */
8880 if (dd->icode == ICODE_RTL_SILICON)
8881 quick_linkup = 1;
8882 return set_serdes_loopback_mode(dd);
8883 }
8884
8885 /* LCB loopback - handled at poll time */
8886 if (loopback == LOOPBACK_LCB) {
8887 quick_linkup = 1; /* LCB is always quick linkup */
8888
8889 /* not supported in emulation due to emulation RTL changes */
8890 if (dd->icode == ICODE_FPGA_EMULATION) {
8891 dd_dev_err(dd,
8892 "LCB loopback not supported in emulation\n");
8893 return -EINVAL;
8894 }
8895 return 0;
8896 }
8897
8898 /* external cable loopback requires no extra steps */
8899 if (loopback == LOOPBACK_CABLE)
8900 return 0;
8901
8902 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
8903 return -EINVAL;
8904}
8905
8906/*
8907 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
8908 * used in the Verify Capability link width attribute.
8909 */
8910static u16 opa_to_vc_link_widths(u16 opa_widths)
8911{
8912 int i;
8913 u16 result = 0;
8914
8915 static const struct link_bits {
8916 u16 from;
8917 u16 to;
8918 } opa_link_xlate[] = {
8919 { OPA_LINK_WIDTH_1X, 1 << (1-1) },
8920 { OPA_LINK_WIDTH_2X, 1 << (2-1) },
8921 { OPA_LINK_WIDTH_3X, 1 << (3-1) },
8922 { OPA_LINK_WIDTH_4X, 1 << (4-1) },
8923 };
8924
8925 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
8926 if (opa_widths & opa_link_xlate[i].from)
8927 result |= opa_link_xlate[i].to;
8928 }
8929 return result;
8930}
8931
8932/*
8933 * Set link attributes before moving to polling.
8934 */
8935static int set_local_link_attributes(struct hfi1_pportdata *ppd)
8936{
8937 struct hfi1_devdata *dd = ppd->dd;
8938 u8 enable_lane_tx;
8939 u8 tx_polarity_inversion;
8940 u8 rx_polarity_inversion;
8941 int ret;
8942
8943 /* reset our fabric serdes to clear any lingering problems */
8944 fabric_serdes_reset(dd);
8945
8946 /* set the local tx rate - need to read-modify-write */
8947 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
8948 &rx_polarity_inversion, &ppd->local_tx_rate);
8949 if (ret)
8950 goto set_local_link_attributes_fail;
8951
8952 if (dd->dc8051_ver < dc8051_ver(0, 20)) {
8953 /* set the tx rate to the fastest enabled */
8954 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8955 ppd->local_tx_rate = 1;
8956 else
8957 ppd->local_tx_rate = 0;
8958 } else {
8959 /* set the tx rate to all enabled */
8960 ppd->local_tx_rate = 0;
8961 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
8962 ppd->local_tx_rate |= 2;
8963 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
8964 ppd->local_tx_rate |= 1;
8965 }
Easwar Hariharanfebffe22015-10-26 10:28:36 -04008966
8967 enable_lane_tx = 0xF; /* enable all four lanes */
Mike Marciniszyn77241052015-07-30 15:17:43 -04008968 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
8969 rx_polarity_inversion, ppd->local_tx_rate);
8970 if (ret != HCMD_SUCCESS)
8971 goto set_local_link_attributes_fail;
8972
8973 /*
8974 * DC supports continuous updates.
8975 */
8976 ret = write_vc_local_phy(dd, 0 /* no power management */,
8977 1 /* continuous updates */);
8978 if (ret != HCMD_SUCCESS)
8979 goto set_local_link_attributes_fail;
8980
8981 /* z=1 in the next call: AU of 0 is not supported by the hardware */
8982 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
8983 ppd->port_crc_mode_enabled);
8984 if (ret != HCMD_SUCCESS)
8985 goto set_local_link_attributes_fail;
8986
8987 ret = write_vc_local_link_width(dd, 0, 0,
8988 opa_to_vc_link_widths(ppd->link_width_enabled));
8989 if (ret != HCMD_SUCCESS)
8990 goto set_local_link_attributes_fail;
8991
8992 /* let peer know who we are */
8993 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
8994 if (ret == HCMD_SUCCESS)
8995 return 0;
8996
8997set_local_link_attributes_fail:
8998 dd_dev_err(dd,
8999 "Failed to set local link attributes, return 0x%x\n",
9000 ret);
9001 return ret;
9002}
9003
9004/*
9005 * Call this to start the link. Schedule a retry if the cable is not
9006 * present or if unable to start polling. Do not do anything if the
9007 * link is disabled. Returns 0 if link is disabled or moved to polling
9008 */
9009int start_link(struct hfi1_pportdata *ppd)
9010{
9011 if (!ppd->link_enabled) {
9012 dd_dev_info(ppd->dd,
9013 "%s: stopping link start because link is disabled\n",
9014 __func__);
9015 return 0;
9016 }
9017 if (!ppd->driver_link_ready) {
9018 dd_dev_info(ppd->dd,
9019 "%s: stopping link start because driver is not ready\n",
9020 __func__);
9021 return 0;
9022 }
9023
9024 if (qsfp_mod_present(ppd) || loopback == LOOPBACK_SERDES ||
9025 loopback == LOOPBACK_LCB ||
9026 ppd->dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9027 return set_link_state(ppd, HLS_DN_POLL);
9028
9029 dd_dev_info(ppd->dd,
9030 "%s: stopping link start because no cable is present\n",
9031 __func__);
9032 return -EAGAIN;
9033}
9034
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009035static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9036{
9037 struct hfi1_devdata *dd = ppd->dd;
9038 u64 mask;
9039 unsigned long timeout;
9040
9041 /*
9042 * Check for QSFP interrupt for t_init (SFF 8679)
9043 */
9044 timeout = jiffies + msecs_to_jiffies(2000);
9045 while (1) {
9046 mask = read_csr(dd, dd->hfi1_id ?
9047 ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9048 if (!(mask & QSFP_HFI0_INT_N)) {
9049 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR :
9050 ASIC_QSFP1_CLEAR, QSFP_HFI0_INT_N);
9051 break;
9052 }
9053 if (time_after(jiffies, timeout)) {
9054 dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9055 __func__);
9056 break;
9057 }
9058 udelay(2);
9059 }
9060}
9061
9062static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9063{
9064 struct hfi1_devdata *dd = ppd->dd;
9065 u64 mask;
9066
9067 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9068 if (enable)
9069 mask |= (u64)QSFP_HFI0_INT_N;
9070 else
9071 mask &= ~(u64)QSFP_HFI0_INT_N;
9072 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9073}
9074
9075void reset_qsfp(struct hfi1_pportdata *ppd)
Mike Marciniszyn77241052015-07-30 15:17:43 -04009076{
9077 struct hfi1_devdata *dd = ppd->dd;
9078 u64 mask, qsfp_mask;
9079
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009080 /* Disable INT_N from triggering QSFP interrupts */
9081 set_qsfp_int_n(ppd, 0);
9082
9083 /* Reset the QSFP */
Mike Marciniszyn77241052015-07-30 15:17:43 -04009084 mask = (u64)QSFP_HFI0_RESET_N;
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009085 qsfp_mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009086 qsfp_mask |= mask;
9087 write_csr(dd,
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009088 dd->hfi1_id ? ASIC_QSFP2_OE : ASIC_QSFP1_OE, qsfp_mask);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009089
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009090 qsfp_mask = read_csr(dd, dd->hfi1_id ?
9091 ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009092 qsfp_mask &= ~mask;
9093 write_csr(dd,
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009094 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009095
9096 udelay(10);
9097
9098 qsfp_mask |= mask;
9099 write_csr(dd,
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009100 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9101
9102 wait_for_qsfp_init(ppd);
9103
9104 /*
9105 * Allow INT_N to trigger the QSFP interrupt to watch
9106 * for alarms and warnings
9107 */
9108 set_qsfp_int_n(ppd, 1);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009109}
9110
9111static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9112 u8 *qsfp_interrupt_status)
9113{
9114 struct hfi1_devdata *dd = ppd->dd;
9115
9116 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9117 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9118 dd_dev_info(dd,
9119 "%s: QSFP cable on fire\n",
9120 __func__);
9121
9122 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9123 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9124 dd_dev_info(dd,
9125 "%s: QSFP cable temperature too low\n",
9126 __func__);
9127
9128 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9129 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9130 dd_dev_info(dd,
9131 "%s: QSFP supply voltage too high\n",
9132 __func__);
9133
9134 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9135 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9136 dd_dev_info(dd,
9137 "%s: QSFP supply voltage too low\n",
9138 __func__);
9139
9140 /* Byte 2 is vendor specific */
9141
9142 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9143 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9144 dd_dev_info(dd,
9145 "%s: Cable RX channel 1/2 power too high\n",
9146 __func__);
9147
9148 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9149 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9150 dd_dev_info(dd,
9151 "%s: Cable RX channel 1/2 power too low\n",
9152 __func__);
9153
9154 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9155 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9156 dd_dev_info(dd,
9157 "%s: Cable RX channel 3/4 power too high\n",
9158 __func__);
9159
9160 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9161 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9162 dd_dev_info(dd,
9163 "%s: Cable RX channel 3/4 power too low\n",
9164 __func__);
9165
9166 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9167 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9168 dd_dev_info(dd,
9169 "%s: Cable TX channel 1/2 bias too high\n",
9170 __func__);
9171
9172 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9173 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9174 dd_dev_info(dd,
9175 "%s: Cable TX channel 1/2 bias too low\n",
9176 __func__);
9177
9178 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9179 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9180 dd_dev_info(dd,
9181 "%s: Cable TX channel 3/4 bias too high\n",
9182 __func__);
9183
9184 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9185 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9186 dd_dev_info(dd,
9187 "%s: Cable TX channel 3/4 bias too low\n",
9188 __func__);
9189
9190 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9191 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9192 dd_dev_info(dd,
9193 "%s: Cable TX channel 1/2 power too high\n",
9194 __func__);
9195
9196 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9197 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9198 dd_dev_info(dd,
9199 "%s: Cable TX channel 1/2 power too low\n",
9200 __func__);
9201
9202 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9203 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9204 dd_dev_info(dd,
9205 "%s: Cable TX channel 3/4 power too high\n",
9206 __func__);
9207
9208 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9209 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9210 dd_dev_info(dd,
9211 "%s: Cable TX channel 3/4 power too low\n",
9212 __func__);
9213
9214 /* Bytes 9-10 and 11-12 are reserved */
9215 /* Bytes 13-15 are vendor specific */
9216
9217 return 0;
9218}
9219
Mike Marciniszyn77241052015-07-30 15:17:43 -04009220/* This routine will only be scheduled if the QSFP module is present */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009221void qsfp_event(struct work_struct *work)
Mike Marciniszyn77241052015-07-30 15:17:43 -04009222{
9223 struct qsfp_data *qd;
9224 struct hfi1_pportdata *ppd;
9225 struct hfi1_devdata *dd;
9226
9227 qd = container_of(work, struct qsfp_data, qsfp_work);
9228 ppd = qd->ppd;
9229 dd = ppd->dd;
9230
9231 /* Sanity check */
9232 if (!qsfp_mod_present(ppd))
9233 return;
9234
9235 /*
9236 * Turn DC back on after cables has been
9237 * re-inserted. Up until now, the DC has been in
9238 * reset to save power.
9239 */
9240 dc_start(dd);
9241
9242 if (qd->cache_refresh_required) {
Mike Marciniszyn77241052015-07-30 15:17:43 -04009243
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009244 set_qsfp_int_n(ppd, 0);
9245
9246 wait_for_qsfp_init(ppd);
9247
9248 /*
9249 * Allow INT_N to trigger the QSFP interrupt to watch
9250 * for alarms and warnings
Mike Marciniszyn77241052015-07-30 15:17:43 -04009251 */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009252 set_qsfp_int_n(ppd, 1);
9253
9254 tune_serdes(ppd);
9255
9256 start_link(ppd);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009257 }
9258
9259 if (qd->check_interrupt_flags) {
9260 u8 qsfp_interrupt_status[16] = {0,};
9261
9262 if (qsfp_read(ppd, dd->hfi1_id, 6,
9263 &qsfp_interrupt_status[0], 16) != 16) {
9264 dd_dev_info(dd,
9265 "%s: Failed to read status of QSFP module\n",
9266 __func__);
9267 } else {
9268 unsigned long flags;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009269
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009270 handle_qsfp_error_conditions(
9271 ppd, qsfp_interrupt_status);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009272 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9273 ppd->qsfp_info.check_interrupt_flags = 0;
9274 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9275 flags);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009276 }
9277 }
9278}
9279
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009280static void init_qsfp_int(struct hfi1_devdata *dd)
Mike Marciniszyn77241052015-07-30 15:17:43 -04009281{
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009282 struct hfi1_pportdata *ppd = dd->pport;
9283 u64 qsfp_mask, cce_int_mask;
9284 const int qsfp1_int_smask = QSFP1_INT % 64;
9285 const int qsfp2_int_smask = QSFP2_INT % 64;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009286
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009287 /*
9288 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9289 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9290 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9291 * the index of the appropriate CSR in the CCEIntMask CSR array
9292 */
9293 cce_int_mask = read_csr(dd, CCE_INT_MASK +
9294 (8 * (QSFP1_INT / 64)));
9295 if (dd->hfi1_id) {
9296 cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9297 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9298 cce_int_mask);
9299 } else {
9300 cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9301 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9302 cce_int_mask);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009303 }
9304
Mike Marciniszyn77241052015-07-30 15:17:43 -04009305 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9306 /* Clear current status to avoid spurious interrupts */
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009307 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9308 qsfp_mask);
9309 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9310 qsfp_mask);
9311
9312 set_qsfp_int_n(ppd, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009313
9314 /* Handle active low nature of INT_N and MODPRST_N pins */
9315 if (qsfp_mod_present(ppd))
9316 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9317 write_csr(dd,
9318 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9319 qsfp_mask);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009320}
9321
Dean Luickbbdeb332015-12-01 15:38:15 -05009322/*
9323 * Do a one-time initialize of the LCB block.
9324 */
9325static void init_lcb(struct hfi1_devdata *dd)
9326{
Dean Luicka59329d2016-02-03 14:32:31 -08009327 /* simulator does not correctly handle LCB cclk loopback, skip */
9328 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9329 return;
9330
Dean Luickbbdeb332015-12-01 15:38:15 -05009331 /* the DC has been reset earlier in the driver load */
9332
9333 /* set LCB for cclk loopback on the port */
9334 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9335 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9336 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9337 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9338 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9339 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9340 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9341}
9342
Mike Marciniszyn77241052015-07-30 15:17:43 -04009343int bringup_serdes(struct hfi1_pportdata *ppd)
9344{
9345 struct hfi1_devdata *dd = ppd->dd;
9346 u64 guid;
9347 int ret;
9348
9349 if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9350 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9351
9352 guid = ppd->guid;
9353 if (!guid) {
9354 if (dd->base_guid)
9355 guid = dd->base_guid + ppd->port - 1;
9356 ppd->guid = guid;
9357 }
9358
Mike Marciniszyn77241052015-07-30 15:17:43 -04009359 /* Set linkinit_reason on power up per OPA spec */
9360 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9361
Dean Luickbbdeb332015-12-01 15:38:15 -05009362 /* one-time init of the LCB */
9363 init_lcb(dd);
9364
Mike Marciniszyn77241052015-07-30 15:17:43 -04009365 if (loopback) {
9366 ret = init_loopback(dd);
9367 if (ret < 0)
9368 return ret;
9369 }
9370
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009371 /* tune the SERDES to a ballpark setting for
9372 * optimal signal and bit error rate
9373 * Needs to be done before starting the link
9374 */
9375 tune_serdes(ppd);
9376
Mike Marciniszyn77241052015-07-30 15:17:43 -04009377 return start_link(ppd);
9378}
9379
9380void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9381{
9382 struct hfi1_devdata *dd = ppd->dd;
9383
9384 /*
9385 * Shut down the link and keep it down. First turn off that the
9386 * driver wants to allow the link to be up (driver_link_ready).
9387 * Then make sure the link is not automatically restarted
9388 * (link_enabled). Cancel any pending restart. And finally
9389 * go offline.
9390 */
9391 ppd->driver_link_ready = 0;
9392 ppd->link_enabled = 0;
9393
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009394 ppd->offline_disabled_reason =
9395 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009396 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9397 OPA_LINKDOWN_REASON_SMA_DISABLED);
9398 set_link_state(ppd, HLS_DN_OFFLINE);
9399
9400 /* disable the port */
9401 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9402}
9403
9404static inline int init_cpu_counters(struct hfi1_devdata *dd)
9405{
9406 struct hfi1_pportdata *ppd;
9407 int i;
9408
9409 ppd = (struct hfi1_pportdata *)(dd + 1);
9410 for (i = 0; i < dd->num_pports; i++, ppd++) {
Dennis Dalessandro4eb06882016-01-19 14:42:39 -08009411 ppd->ibport_data.rvp.rc_acks = NULL;
9412 ppd->ibport_data.rvp.rc_qacks = NULL;
9413 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9414 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9415 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9416 if (!ppd->ibport_data.rvp.rc_acks ||
9417 !ppd->ibport_data.rvp.rc_delayed_comp ||
9418 !ppd->ibport_data.rvp.rc_qacks)
Mike Marciniszyn77241052015-07-30 15:17:43 -04009419 return -ENOMEM;
9420 }
9421
9422 return 0;
9423}
9424
9425static const char * const pt_names[] = {
9426 "expected",
9427 "eager",
9428 "invalid"
9429};
9430
9431static const char *pt_name(u32 type)
9432{
9433 return type >= ARRAY_SIZE(pt_names) ? "unknown" : pt_names[type];
9434}
9435
9436/*
9437 * index is the index into the receive array
9438 */
9439void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9440 u32 type, unsigned long pa, u16 order)
9441{
9442 u64 reg;
9443 void __iomem *base = (dd->rcvarray_wc ? dd->rcvarray_wc :
9444 (dd->kregbase + RCV_ARRAY));
9445
9446 if (!(dd->flags & HFI1_PRESENT))
9447 goto done;
9448
9449 if (type == PT_INVALID) {
9450 pa = 0;
9451 } else if (type > PT_INVALID) {
9452 dd_dev_err(dd,
9453 "unexpected receive array type %u for index %u, not handled\n",
9454 type, index);
9455 goto done;
9456 }
9457
9458 hfi1_cdbg(TID, "type %s, index 0x%x, pa 0x%lx, bsize 0x%lx",
9459 pt_name(type), index, pa, (unsigned long)order);
9460
9461#define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */
9462 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9463 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9464 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9465 << RCV_ARRAY_RT_ADDR_SHIFT;
9466 writeq(reg, base + (index * 8));
9467
9468 if (type == PT_EAGER)
9469 /*
9470 * Eager entries are written one-by-one so we have to push them
9471 * after we write the entry.
9472 */
9473 flush_wc();
9474done:
9475 return;
9476}
9477
9478void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9479{
9480 struct hfi1_devdata *dd = rcd->dd;
9481 u32 i;
9482
9483 /* this could be optimized */
9484 for (i = rcd->eager_base; i < rcd->eager_base +
9485 rcd->egrbufs.alloced; i++)
9486 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9487
9488 for (i = rcd->expected_base;
9489 i < rcd->expected_base + rcd->expected_count; i++)
9490 hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9491}
9492
9493int hfi1_get_base_kinfo(struct hfi1_ctxtdata *rcd,
9494 struct hfi1_ctxt_info *kinfo)
9495{
9496 kinfo->runtime_flags = (HFI1_MISC_GET() << HFI1_CAP_USER_SHIFT) |
9497 HFI1_CAP_UGET(MASK) | HFI1_CAP_KGET(K2U);
9498 return 0;
9499}
9500
9501struct hfi1_message_header *hfi1_get_msgheader(
9502 struct hfi1_devdata *dd, __le32 *rhf_addr)
9503{
9504 u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr));
9505
9506 return (struct hfi1_message_header *)
9507 (rhf_addr - dd->rhf_offset + offset);
9508}
9509
9510static const char * const ib_cfg_name_strings[] = {
9511 "HFI1_IB_CFG_LIDLMC",
9512 "HFI1_IB_CFG_LWID_DG_ENB",
9513 "HFI1_IB_CFG_LWID_ENB",
9514 "HFI1_IB_CFG_LWID",
9515 "HFI1_IB_CFG_SPD_ENB",
9516 "HFI1_IB_CFG_SPD",
9517 "HFI1_IB_CFG_RXPOL_ENB",
9518 "HFI1_IB_CFG_LREV_ENB",
9519 "HFI1_IB_CFG_LINKLATENCY",
9520 "HFI1_IB_CFG_HRTBT",
9521 "HFI1_IB_CFG_OP_VLS",
9522 "HFI1_IB_CFG_VL_HIGH_CAP",
9523 "HFI1_IB_CFG_VL_LOW_CAP",
9524 "HFI1_IB_CFG_OVERRUN_THRESH",
9525 "HFI1_IB_CFG_PHYERR_THRESH",
9526 "HFI1_IB_CFG_LINKDEFAULT",
9527 "HFI1_IB_CFG_PKEYS",
9528 "HFI1_IB_CFG_MTU",
9529 "HFI1_IB_CFG_LSTATE",
9530 "HFI1_IB_CFG_VL_HIGH_LIMIT",
9531 "HFI1_IB_CFG_PMA_TICKS",
9532 "HFI1_IB_CFG_PORT"
9533};
9534
9535static const char *ib_cfg_name(int which)
9536{
9537 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9538 return "invalid";
9539 return ib_cfg_name_strings[which];
9540}
9541
9542int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9543{
9544 struct hfi1_devdata *dd = ppd->dd;
9545 int val = 0;
9546
9547 switch (which) {
9548 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9549 val = ppd->link_width_enabled;
9550 break;
9551 case HFI1_IB_CFG_LWID: /* currently active Link-width */
9552 val = ppd->link_width_active;
9553 break;
9554 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9555 val = ppd->link_speed_enabled;
9556 break;
9557 case HFI1_IB_CFG_SPD: /* current Link speed */
9558 val = ppd->link_speed_active;
9559 break;
9560
9561 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9562 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9563 case HFI1_IB_CFG_LINKLATENCY:
9564 goto unimplemented;
9565
9566 case HFI1_IB_CFG_OP_VLS:
9567 val = ppd->vls_operational;
9568 break;
9569 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9570 val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9571 break;
9572 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9573 val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9574 break;
9575 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9576 val = ppd->overrun_threshold;
9577 break;
9578 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9579 val = ppd->phy_error_threshold;
9580 break;
9581 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9582 val = dd->link_default;
9583 break;
9584
9585 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9586 case HFI1_IB_CFG_PMA_TICKS:
9587 default:
9588unimplemented:
9589 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9590 dd_dev_info(
9591 dd,
9592 "%s: which %s: not implemented\n",
9593 __func__,
9594 ib_cfg_name(which));
9595 break;
9596 }
9597
9598 return val;
9599}
9600
9601/*
9602 * The largest MAD packet size.
9603 */
9604#define MAX_MAD_PACKET 2048
9605
9606/*
9607 * Return the maximum header bytes that can go on the _wire_
9608 * for this device. This count includes the ICRC which is
9609 * not part of the packet held in memory but it is appended
9610 * by the HW.
9611 * This is dependent on the device's receive header entry size.
9612 * HFI allows this to be set per-receive context, but the
9613 * driver presently enforces a global value.
9614 */
9615u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9616{
9617 /*
9618 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9619 * the Receive Header Entry Size minus the PBC (or RHF) size
9620 * plus one DW for the ICRC appended by HW.
9621 *
9622 * dd->rcd[0].rcvhdrqentsize is in DW.
9623 * We use rcd[0] as all context will have the same value. Also,
9624 * the first kernel context would have been allocated by now so
9625 * we are guaranteed a valid value.
9626 */
9627 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
9628}
9629
9630/*
9631 * Set Send Length
9632 * @ppd - per port data
9633 *
9634 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck*
9635 * registers compare against LRH.PktLen, so use the max bytes included
9636 * in the LRH.
9637 *
9638 * This routine changes all VL values except VL15, which it maintains at
9639 * the same value.
9640 */
9641static void set_send_length(struct hfi1_pportdata *ppd)
9642{
9643 struct hfi1_devdata *dd = ppd->dd;
Harish Chegondi6cc6ad22015-12-01 15:38:24 -05009644 u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
9645 u32 maxvlmtu = dd->vld[15].mtu;
Mike Marciniszyn77241052015-07-30 15:17:43 -04009646 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
9647 & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
9648 SEND_LEN_CHECK1_LEN_VL15_SHIFT;
9649 int i;
9650
9651 for (i = 0; i < ppd->vls_supported; i++) {
9652 if (dd->vld[i].mtu > maxvlmtu)
9653 maxvlmtu = dd->vld[i].mtu;
9654 if (i <= 3)
9655 len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
9656 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
9657 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
9658 else
9659 len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
9660 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
9661 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
9662 }
9663 write_csr(dd, SEND_LEN_CHECK0, len1);
9664 write_csr(dd, SEND_LEN_CHECK1, len2);
9665 /* adjust kernel credit return thresholds based on new MTUs */
9666 /* all kernel receive contexts have the same hdrqentsize */
9667 for (i = 0; i < ppd->vls_supported; i++) {
9668 sc_set_cr_threshold(dd->vld[i].sc,
9669 sc_mtu_to_threshold(dd->vld[i].sc, dd->vld[i].mtu,
9670 dd->rcd[0]->rcvhdrqentsize));
9671 }
9672 sc_set_cr_threshold(dd->vld[15].sc,
9673 sc_mtu_to_threshold(dd->vld[15].sc, dd->vld[15].mtu,
9674 dd->rcd[0]->rcvhdrqentsize));
9675
9676 /* Adjust maximum MTU for the port in DC */
9677 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
9678 (ilog2(maxvlmtu >> 8) + 1);
9679 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
9680 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
9681 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
9682 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
9683 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
9684}
9685
9686static void set_lidlmc(struct hfi1_pportdata *ppd)
9687{
9688 int i;
9689 u64 sreg = 0;
9690 struct hfi1_devdata *dd = ppd->dd;
9691 u32 mask = ~((1U << ppd->lmc) - 1);
9692 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
9693
9694 if (dd->hfi1_snoop.mode_flag)
9695 dd_dev_info(dd, "Set lid/lmc while snooping");
9696
9697 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
9698 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
9699 c1 |= ((ppd->lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
9700 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT)|
9701 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
9702 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
9703 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
9704
9705 /*
9706 * Iterate over all the send contexts and set their SLID check
9707 */
9708 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
9709 SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
9710 (((ppd->lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
9711 SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
9712
9713 for (i = 0; i < dd->chip_send_contexts; i++) {
9714 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
9715 i, (u32)sreg);
9716 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
9717 }
9718
9719 /* Now we have to do the same thing for the sdma engines */
9720 sdma_update_lmc(dd, mask, ppd->lid);
9721}
9722
9723static int wait_phy_linkstate(struct hfi1_devdata *dd, u32 state, u32 msecs)
9724{
9725 unsigned long timeout;
9726 u32 curr_state;
9727
9728 timeout = jiffies + msecs_to_jiffies(msecs);
9729 while (1) {
9730 curr_state = read_physical_state(dd);
9731 if (curr_state == state)
9732 break;
9733 if (time_after(jiffies, timeout)) {
9734 dd_dev_err(dd,
9735 "timeout waiting for phy link state 0x%x, current state is 0x%x\n",
9736 state, curr_state);
9737 return -ETIMEDOUT;
9738 }
9739 usleep_range(1950, 2050); /* sleep 2ms-ish */
9740 }
9741
9742 return 0;
9743}
9744
9745/*
9746 * Helper for set_link_state(). Do not call except from that routine.
9747 * Expects ppd->hls_mutex to be held.
9748 *
9749 * @rem_reason value to be sent to the neighbor
9750 *
9751 * LinkDownReasons only set if transition succeeds.
9752 */
9753static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
9754{
9755 struct hfi1_devdata *dd = ppd->dd;
9756 u32 pstate, previous_state;
9757 u32 last_local_state;
9758 u32 last_remote_state;
9759 int ret;
9760 int do_transition;
9761 int do_wait;
9762
9763 previous_state = ppd->host_link_state;
9764 ppd->host_link_state = HLS_GOING_OFFLINE;
9765 pstate = read_physical_state(dd);
9766 if (pstate == PLS_OFFLINE) {
9767 do_transition = 0; /* in right state */
9768 do_wait = 0; /* ...no need to wait */
9769 } else if ((pstate & 0xff) == PLS_OFFLINE) {
9770 do_transition = 0; /* in an offline transient state */
9771 do_wait = 1; /* ...wait for it to settle */
9772 } else {
9773 do_transition = 1; /* need to move to offline */
9774 do_wait = 1; /* ...will need to wait */
9775 }
9776
9777 if (do_transition) {
9778 ret = set_physical_link_state(dd,
9779 PLS_OFFLINE | (rem_reason << 8));
9780
9781 if (ret != HCMD_SUCCESS) {
9782 dd_dev_err(dd,
9783 "Failed to transition to Offline link state, return %d\n",
9784 ret);
9785 return -EINVAL;
9786 }
Bryan Morgana9c05e32016-02-03 14:30:49 -08009787 if (ppd->offline_disabled_reason ==
9788 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
Mike Marciniszyn77241052015-07-30 15:17:43 -04009789 ppd->offline_disabled_reason =
Bryan Morgana9c05e32016-02-03 14:30:49 -08009790 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009791 }
9792
9793 if (do_wait) {
9794 /* it can take a while for the link to go down */
Dean Luickdc060242015-10-26 10:28:29 -04009795 ret = wait_phy_linkstate(dd, PLS_OFFLINE, 10000);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009796 if (ret < 0)
9797 return ret;
9798 }
9799
9800 /* make sure the logical state is also down */
9801 wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
9802
9803 /*
9804 * Now in charge of LCB - must be after the physical state is
9805 * offline.quiet and before host_link_state is changed.
9806 */
9807 set_host_lcb_access(dd);
9808 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9809 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
9810
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -08009811 if (ppd->port_type == PORT_TYPE_QSFP &&
9812 ppd->qsfp_info.limiting_active &&
9813 qsfp_mod_present(ppd)) {
9814 set_qsfp_tx(ppd, 0);
9815 }
9816
Mike Marciniszyn77241052015-07-30 15:17:43 -04009817 /*
9818 * The LNI has a mandatory wait time after the physical state
9819 * moves to Offline.Quiet. The wait time may be different
9820 * depending on how the link went down. The 8051 firmware
9821 * will observe the needed wait time and only move to ready
9822 * when that is completed. The largest of the quiet timeouts
Dean Luick05087f3b2015-12-01 15:38:16 -05009823 * is 6s, so wait that long and then at least 0.5s more for
9824 * other transitions, and another 0.5s for a buffer.
Mike Marciniszyn77241052015-07-30 15:17:43 -04009825 */
Dean Luick05087f3b2015-12-01 15:38:16 -05009826 ret = wait_fm_ready(dd, 7000);
Mike Marciniszyn77241052015-07-30 15:17:43 -04009827 if (ret) {
9828 dd_dev_err(dd,
9829 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
9830 /* state is really offline, so make it so */
9831 ppd->host_link_state = HLS_DN_OFFLINE;
9832 return ret;
9833 }
9834
9835 /*
9836 * The state is now offline and the 8051 is ready to accept host
9837 * requests.
9838 * - change our state
9839 * - notify others if we were previously in a linkup state
9840 */
9841 ppd->host_link_state = HLS_DN_OFFLINE;
9842 if (previous_state & HLS_UP) {
9843 /* went down while link was up */
9844 handle_linkup_change(dd, 0);
9845 } else if (previous_state
9846 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
9847 /* went down while attempting link up */
9848 /* byte 1 of last_*_state is the failure reason */
9849 read_last_local_state(dd, &last_local_state);
9850 read_last_remote_state(dd, &last_remote_state);
9851 dd_dev_err(dd,
9852 "LNI failure last states: local 0x%08x, remote 0x%08x\n",
9853 last_local_state, last_remote_state);
9854 }
9855
9856 /* the active link width (downgrade) is 0 on link down */
9857 ppd->link_width_active = 0;
9858 ppd->link_width_downgrade_tx_active = 0;
9859 ppd->link_width_downgrade_rx_active = 0;
9860 ppd->current_egress_rate = 0;
9861 return 0;
9862}
9863
9864/* return the link state name */
9865static const char *link_state_name(u32 state)
9866{
9867 const char *name;
9868 int n = ilog2(state);
9869 static const char * const names[] = {
9870 [__HLS_UP_INIT_BP] = "INIT",
9871 [__HLS_UP_ARMED_BP] = "ARMED",
9872 [__HLS_UP_ACTIVE_BP] = "ACTIVE",
9873 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF",
9874 [__HLS_DN_POLL_BP] = "POLL",
9875 [__HLS_DN_DISABLE_BP] = "DISABLE",
9876 [__HLS_DN_OFFLINE_BP] = "OFFLINE",
9877 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP",
9878 [__HLS_GOING_UP_BP] = "GOING_UP",
9879 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
9880 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
9881 };
9882
9883 name = n < ARRAY_SIZE(names) ? names[n] : NULL;
9884 return name ? name : "unknown";
9885}
9886
9887/* return the link state reason name */
9888static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
9889{
9890 if (state == HLS_UP_INIT) {
9891 switch (ppd->linkinit_reason) {
9892 case OPA_LINKINIT_REASON_LINKUP:
9893 return "(LINKUP)";
9894 case OPA_LINKINIT_REASON_FLAPPING:
9895 return "(FLAPPING)";
9896 case OPA_LINKINIT_OUTSIDE_POLICY:
9897 return "(OUTSIDE_POLICY)";
9898 case OPA_LINKINIT_QUARANTINED:
9899 return "(QUARANTINED)";
9900 case OPA_LINKINIT_INSUFIC_CAPABILITY:
9901 return "(INSUFIC_CAPABILITY)";
9902 default:
9903 break;
9904 }
9905 }
9906 return "";
9907}
9908
9909/*
9910 * driver_physical_state - convert the driver's notion of a port's
9911 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
9912 * Return -1 (converted to a u32) to indicate error.
9913 */
9914u32 driver_physical_state(struct hfi1_pportdata *ppd)
9915{
9916 switch (ppd->host_link_state) {
9917 case HLS_UP_INIT:
9918 case HLS_UP_ARMED:
9919 case HLS_UP_ACTIVE:
9920 return IB_PORTPHYSSTATE_LINKUP;
9921 case HLS_DN_POLL:
9922 return IB_PORTPHYSSTATE_POLLING;
9923 case HLS_DN_DISABLE:
9924 return IB_PORTPHYSSTATE_DISABLED;
9925 case HLS_DN_OFFLINE:
9926 return OPA_PORTPHYSSTATE_OFFLINE;
9927 case HLS_VERIFY_CAP:
9928 return IB_PORTPHYSSTATE_POLLING;
9929 case HLS_GOING_UP:
9930 return IB_PORTPHYSSTATE_POLLING;
9931 case HLS_GOING_OFFLINE:
9932 return OPA_PORTPHYSSTATE_OFFLINE;
9933 case HLS_LINK_COOLDOWN:
9934 return OPA_PORTPHYSSTATE_OFFLINE;
9935 case HLS_DN_DOWNDEF:
9936 default:
9937 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9938 ppd->host_link_state);
9939 return -1;
9940 }
9941}
9942
9943/*
9944 * driver_logical_state - convert the driver's notion of a port's
9945 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
9946 * (converted to a u32) to indicate error.
9947 */
9948u32 driver_logical_state(struct hfi1_pportdata *ppd)
9949{
9950 if (ppd->host_link_state && !(ppd->host_link_state & HLS_UP))
9951 return IB_PORT_DOWN;
9952
9953 switch (ppd->host_link_state & HLS_UP) {
9954 case HLS_UP_INIT:
9955 return IB_PORT_INIT;
9956 case HLS_UP_ARMED:
9957 return IB_PORT_ARMED;
9958 case HLS_UP_ACTIVE:
9959 return IB_PORT_ACTIVE;
9960 default:
9961 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
9962 ppd->host_link_state);
9963 return -1;
9964 }
9965}
9966
9967void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
9968 u8 neigh_reason, u8 rem_reason)
9969{
9970 if (ppd->local_link_down_reason.latest == 0 &&
9971 ppd->neigh_link_down_reason.latest == 0) {
9972 ppd->local_link_down_reason.latest = lcl_reason;
9973 ppd->neigh_link_down_reason.latest = neigh_reason;
9974 ppd->remote_link_down_reason = rem_reason;
9975 }
9976}
9977
9978/*
9979 * Change the physical and/or logical link state.
9980 *
9981 * Do not call this routine while inside an interrupt. It contains
9982 * calls to routines that can take multiple seconds to finish.
9983 *
9984 * Returns 0 on success, -errno on failure.
9985 */
9986int set_link_state(struct hfi1_pportdata *ppd, u32 state)
9987{
9988 struct hfi1_devdata *dd = ppd->dd;
9989 struct ib_event event = {.device = NULL};
9990 int ret1, ret = 0;
9991 int was_up, is_down;
9992 int orig_new_state, poll_bounce;
9993
9994 mutex_lock(&ppd->hls_lock);
9995
9996 orig_new_state = state;
9997 if (state == HLS_DN_DOWNDEF)
9998 state = dd->link_default;
9999
10000 /* interpret poll -> poll as a link bounce */
10001 poll_bounce = ppd->host_link_state == HLS_DN_POLL
10002 && state == HLS_DN_POLL;
10003
10004 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10005 link_state_name(ppd->host_link_state),
10006 link_state_name(orig_new_state),
10007 poll_bounce ? "(bounce) " : "",
10008 link_state_reason_name(ppd, state));
10009
10010 was_up = !!(ppd->host_link_state & HLS_UP);
10011
10012 /*
10013 * If we're going to a (HLS_*) link state that implies the logical
10014 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10015 * reset is_sm_config_started to 0.
10016 */
10017 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10018 ppd->is_sm_config_started = 0;
10019
10020 /*
10021 * Do nothing if the states match. Let a poll to poll link bounce
10022 * go through.
10023 */
10024 if (ppd->host_link_state == state && !poll_bounce)
10025 goto done;
10026
10027 switch (state) {
10028 case HLS_UP_INIT:
10029 if (ppd->host_link_state == HLS_DN_POLL && (quick_linkup
10030 || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10031 /*
10032 * Quick link up jumps from polling to here.
10033 *
10034 * Whether in normal or loopback mode, the
10035 * simulator jumps from polling to link up.
10036 * Accept that here.
10037 */
10038 /* OK */;
10039 } else if (ppd->host_link_state != HLS_GOING_UP) {
10040 goto unexpected;
10041 }
10042
10043 ppd->host_link_state = HLS_UP_INIT;
10044 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10045 if (ret) {
10046 /* logical state didn't change, stay at going_up */
10047 ppd->host_link_state = HLS_GOING_UP;
10048 dd_dev_err(dd,
10049 "%s: logical state did not change to INIT\n",
10050 __func__);
10051 } else {
10052 /* clear old transient LINKINIT_REASON code */
10053 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10054 ppd->linkinit_reason =
10055 OPA_LINKINIT_REASON_LINKUP;
10056
10057 /* enable the port */
10058 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10059
10060 handle_linkup_change(dd, 1);
10061 }
10062 break;
10063 case HLS_UP_ARMED:
10064 if (ppd->host_link_state != HLS_UP_INIT)
10065 goto unexpected;
10066
10067 ppd->host_link_state = HLS_UP_ARMED;
10068 set_logical_state(dd, LSTATE_ARMED);
10069 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10070 if (ret) {
10071 /* logical state didn't change, stay at init */
10072 ppd->host_link_state = HLS_UP_INIT;
10073 dd_dev_err(dd,
10074 "%s: logical state did not change to ARMED\n",
10075 __func__);
10076 }
10077 /*
10078 * The simulator does not currently implement SMA messages,
10079 * so neighbor_normal is not set. Set it here when we first
10080 * move to Armed.
10081 */
10082 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10083 ppd->neighbor_normal = 1;
10084 break;
10085 case HLS_UP_ACTIVE:
10086 if (ppd->host_link_state != HLS_UP_ARMED)
10087 goto unexpected;
10088
10089 ppd->host_link_state = HLS_UP_ACTIVE;
10090 set_logical_state(dd, LSTATE_ACTIVE);
10091 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10092 if (ret) {
10093 /* logical state didn't change, stay at armed */
10094 ppd->host_link_state = HLS_UP_ARMED;
10095 dd_dev_err(dd,
10096 "%s: logical state did not change to ACTIVE\n",
10097 __func__);
10098 } else {
10099
10100 /* tell all engines to go running */
10101 sdma_all_running(dd);
10102
10103 /* Signal the IB layer that the port has went active */
Dennis Dalessandroec3f2c12016-01-19 14:41:33 -080010104 event.device = &dd->verbs_dev.rdi.ibdev;
Mike Marciniszyn77241052015-07-30 15:17:43 -040010105 event.element.port_num = ppd->port;
10106 event.event = IB_EVENT_PORT_ACTIVE;
10107 }
10108 break;
10109 case HLS_DN_POLL:
10110 if ((ppd->host_link_state == HLS_DN_DISABLE ||
10111 ppd->host_link_state == HLS_DN_OFFLINE) &&
10112 dd->dc_shutdown)
10113 dc_start(dd);
10114 /* Hand LED control to the DC */
10115 write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10116
10117 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10118 u8 tmp = ppd->link_enabled;
10119
10120 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10121 if (ret) {
10122 ppd->link_enabled = tmp;
10123 break;
10124 }
10125 ppd->remote_link_down_reason = 0;
10126
10127 if (ppd->driver_link_ready)
10128 ppd->link_enabled = 1;
10129 }
10130
Jim Snowfb9036d2016-01-11 18:32:21 -050010131 set_all_slowpath(ppd->dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040010132 ret = set_local_link_attributes(ppd);
10133 if (ret)
10134 break;
10135
10136 ppd->port_error_action = 0;
10137 ppd->host_link_state = HLS_DN_POLL;
10138
10139 if (quick_linkup) {
10140 /* quick linkup does not go into polling */
10141 ret = do_quick_linkup(dd);
10142 } else {
10143 ret1 = set_physical_link_state(dd, PLS_POLLING);
10144 if (ret1 != HCMD_SUCCESS) {
10145 dd_dev_err(dd,
10146 "Failed to transition to Polling link state, return 0x%x\n",
10147 ret1);
10148 ret = -EINVAL;
10149 }
10150 }
Bryan Morgana9c05e32016-02-03 14:30:49 -080010151 ppd->offline_disabled_reason =
10152 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
Mike Marciniszyn77241052015-07-30 15:17:43 -040010153 /*
10154 * If an error occurred above, go back to offline. The
10155 * caller may reschedule another attempt.
10156 */
10157 if (ret)
10158 goto_offline(ppd, 0);
10159 break;
10160 case HLS_DN_DISABLE:
10161 /* link is disabled */
10162 ppd->link_enabled = 0;
10163
10164 /* allow any state to transition to disabled */
10165
10166 /* must transition to offline first */
10167 if (ppd->host_link_state != HLS_DN_OFFLINE) {
10168 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10169 if (ret)
10170 break;
10171 ppd->remote_link_down_reason = 0;
10172 }
10173
10174 ret1 = set_physical_link_state(dd, PLS_DISABLED);
10175 if (ret1 != HCMD_SUCCESS) {
10176 dd_dev_err(dd,
10177 "Failed to transition to Disabled link state, return 0x%x\n",
10178 ret1);
10179 ret = -EINVAL;
10180 break;
10181 }
10182 ppd->host_link_state = HLS_DN_DISABLE;
10183 dc_shutdown(dd);
10184 break;
10185 case HLS_DN_OFFLINE:
10186 if (ppd->host_link_state == HLS_DN_DISABLE)
10187 dc_start(dd);
10188
10189 /* allow any state to transition to offline */
10190 ret = goto_offline(ppd, ppd->remote_link_down_reason);
10191 if (!ret)
10192 ppd->remote_link_down_reason = 0;
10193 break;
10194 case HLS_VERIFY_CAP:
10195 if (ppd->host_link_state != HLS_DN_POLL)
10196 goto unexpected;
10197 ppd->host_link_state = HLS_VERIFY_CAP;
10198 break;
10199 case HLS_GOING_UP:
10200 if (ppd->host_link_state != HLS_VERIFY_CAP)
10201 goto unexpected;
10202
10203 ret1 = set_physical_link_state(dd, PLS_LINKUP);
10204 if (ret1 != HCMD_SUCCESS) {
10205 dd_dev_err(dd,
10206 "Failed to transition to link up state, return 0x%x\n",
10207 ret1);
10208 ret = -EINVAL;
10209 break;
10210 }
10211 ppd->host_link_state = HLS_GOING_UP;
10212 break;
10213
10214 case HLS_GOING_OFFLINE: /* transient within goto_offline() */
10215 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */
10216 default:
10217 dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10218 __func__, state);
10219 ret = -EINVAL;
10220 break;
10221 }
10222
10223 is_down = !!(ppd->host_link_state & (HLS_DN_POLL |
10224 HLS_DN_DISABLE | HLS_DN_OFFLINE));
10225
10226 if (was_up && is_down && ppd->local_link_down_reason.sma == 0 &&
10227 ppd->neigh_link_down_reason.sma == 0) {
10228 ppd->local_link_down_reason.sma =
10229 ppd->local_link_down_reason.latest;
10230 ppd->neigh_link_down_reason.sma =
10231 ppd->neigh_link_down_reason.latest;
10232 }
10233
10234 goto done;
10235
10236unexpected:
10237 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10238 __func__, link_state_name(ppd->host_link_state),
10239 link_state_name(state));
10240 ret = -EINVAL;
10241
10242done:
10243 mutex_unlock(&ppd->hls_lock);
10244
10245 if (event.device)
10246 ib_dispatch_event(&event);
10247
10248 return ret;
10249}
10250
10251int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10252{
10253 u64 reg;
10254 int ret = 0;
10255
10256 switch (which) {
10257 case HFI1_IB_CFG_LIDLMC:
10258 set_lidlmc(ppd);
10259 break;
10260 case HFI1_IB_CFG_VL_HIGH_LIMIT:
10261 /*
10262 * The VL Arbitrator high limit is sent in units of 4k
10263 * bytes, while HFI stores it in units of 64 bytes.
10264 */
10265 val *= 4096/64;
10266 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10267 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10268 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10269 break;
10270 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10271 /* HFI only supports POLL as the default link down state */
10272 if (val != HLS_DN_POLL)
10273 ret = -EINVAL;
10274 break;
10275 case HFI1_IB_CFG_OP_VLS:
10276 if (ppd->vls_operational != val) {
10277 ppd->vls_operational = val;
10278 if (!ppd->port)
10279 ret = -EINVAL;
10280 else
10281 ret = sdma_map_init(
10282 ppd->dd,
10283 ppd->port - 1,
10284 val,
10285 NULL);
10286 }
10287 break;
10288 /*
10289 * For link width, link width downgrade, and speed enable, always AND
10290 * the setting with what is actually supported. This has two benefits.
10291 * First, enabled can't have unsupported values, no matter what the
10292 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean
10293 * "fill in with your supported value" have all the bits in the
10294 * field set, so simply ANDing with supported has the desired result.
10295 */
10296 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10297 ppd->link_width_enabled = val & ppd->link_width_supported;
10298 break;
10299 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10300 ppd->link_width_downgrade_enabled =
10301 val & ppd->link_width_downgrade_supported;
10302 break;
10303 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10304 ppd->link_speed_enabled = val & ppd->link_speed_supported;
10305 break;
10306 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10307 /*
10308 * HFI does not follow IB specs, save this value
10309 * so we can report it, if asked.
10310 */
10311 ppd->overrun_threshold = val;
10312 break;
10313 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10314 /*
10315 * HFI does not follow IB specs, save this value
10316 * so we can report it, if asked.
10317 */
10318 ppd->phy_error_threshold = val;
10319 break;
10320
10321 case HFI1_IB_CFG_MTU:
10322 set_send_length(ppd);
10323 break;
10324
10325 case HFI1_IB_CFG_PKEYS:
10326 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10327 set_partition_keys(ppd);
10328 break;
10329
10330 default:
10331 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10332 dd_dev_info(ppd->dd,
10333 "%s: which %s, val 0x%x: not implemented\n",
10334 __func__, ib_cfg_name(which), val);
10335 break;
10336 }
10337 return ret;
10338}
10339
10340/* begin functions related to vl arbitration table caching */
10341static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10342{
10343 int i;
10344
10345 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10346 VL_ARB_LOW_PRIO_TABLE_SIZE);
10347 BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10348 VL_ARB_HIGH_PRIO_TABLE_SIZE);
10349
10350 /*
10351 * Note that we always return values directly from the
10352 * 'vl_arb_cache' (and do no CSR reads) in response to a
10353 * 'Get(VLArbTable)'. This is obviously correct after a
10354 * 'Set(VLArbTable)', since the cache will then be up to
10355 * date. But it's also correct prior to any 'Set(VLArbTable)'
10356 * since then both the cache, and the relevant h/w registers
10357 * will be zeroed.
10358 */
10359
10360 for (i = 0; i < MAX_PRIO_TABLE; i++)
10361 spin_lock_init(&ppd->vl_arb_cache[i].lock);
10362}
10363
10364/*
10365 * vl_arb_lock_cache
10366 *
10367 * All other vl_arb_* functions should be called only after locking
10368 * the cache.
10369 */
10370static inline struct vl_arb_cache *
10371vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10372{
10373 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10374 return NULL;
10375 spin_lock(&ppd->vl_arb_cache[idx].lock);
10376 return &ppd->vl_arb_cache[idx];
10377}
10378
10379static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10380{
10381 spin_unlock(&ppd->vl_arb_cache[idx].lock);
10382}
10383
10384static void vl_arb_get_cache(struct vl_arb_cache *cache,
10385 struct ib_vl_weight_elem *vl)
10386{
10387 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10388}
10389
10390static void vl_arb_set_cache(struct vl_arb_cache *cache,
10391 struct ib_vl_weight_elem *vl)
10392{
10393 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10394}
10395
10396static int vl_arb_match_cache(struct vl_arb_cache *cache,
10397 struct ib_vl_weight_elem *vl)
10398{
10399 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10400}
10401/* end functions related to vl arbitration table caching */
10402
10403static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10404 u32 size, struct ib_vl_weight_elem *vl)
10405{
10406 struct hfi1_devdata *dd = ppd->dd;
10407 u64 reg;
10408 unsigned int i, is_up = 0;
10409 int drain, ret = 0;
10410
10411 mutex_lock(&ppd->hls_lock);
10412
10413 if (ppd->host_link_state & HLS_UP)
10414 is_up = 1;
10415
10416 drain = !is_ax(dd) && is_up;
10417
10418 if (drain)
10419 /*
10420 * Before adjusting VL arbitration weights, empty per-VL
10421 * FIFOs, otherwise a packet whose VL weight is being
10422 * set to 0 could get stuck in a FIFO with no chance to
10423 * egress.
10424 */
10425 ret = stop_drain_data_vls(dd);
10426
10427 if (ret) {
10428 dd_dev_err(
10429 dd,
10430 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10431 __func__);
10432 goto err;
10433 }
10434
10435 for (i = 0; i < size; i++, vl++) {
10436 /*
10437 * NOTE: The low priority shift and mask are used here, but
10438 * they are the same for both the low and high registers.
10439 */
10440 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
10441 << SEND_LOW_PRIORITY_LIST_VL_SHIFT)
10442 | (((u64)vl->weight
10443 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
10444 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
10445 write_csr(dd, target + (i * 8), reg);
10446 }
10447 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
10448
10449 if (drain)
10450 open_fill_data_vls(dd); /* reopen all VLs */
10451
10452err:
10453 mutex_unlock(&ppd->hls_lock);
10454
10455 return ret;
10456}
10457
10458/*
10459 * Read one credit merge VL register.
10460 */
10461static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
10462 struct vl_limit *vll)
10463{
10464 u64 reg = read_csr(dd, csr);
10465
10466 vll->dedicated = cpu_to_be16(
10467 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
10468 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
10469 vll->shared = cpu_to_be16(
10470 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
10471 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
10472}
10473
10474/*
10475 * Read the current credit merge limits.
10476 */
10477static int get_buffer_control(struct hfi1_devdata *dd,
10478 struct buffer_control *bc, u16 *overall_limit)
10479{
10480 u64 reg;
10481 int i;
10482
10483 /* not all entries are filled in */
10484 memset(bc, 0, sizeof(*bc));
10485
10486 /* OPA and HFI have a 1-1 mapping */
10487 for (i = 0; i < TXE_NUM_DATA_VL; i++)
10488 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8*i), &bc->vl[i]);
10489
10490 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
10491 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
10492
10493 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10494 bc->overall_shared_limit = cpu_to_be16(
10495 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
10496 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
10497 if (overall_limit)
10498 *overall_limit = (reg
10499 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
10500 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
10501 return sizeof(struct buffer_control);
10502}
10503
10504static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10505{
10506 u64 reg;
10507 int i;
10508
10509 /* each register contains 16 SC->VLnt mappings, 4 bits each */
10510 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
10511 for (i = 0; i < sizeof(u64); i++) {
10512 u8 byte = *(((u8 *)&reg) + i);
10513
10514 dp->vlnt[2 * i] = byte & 0xf;
10515 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
10516 }
10517
10518 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
10519 for (i = 0; i < sizeof(u64); i++) {
10520 u8 byte = *(((u8 *)&reg) + i);
10521
10522 dp->vlnt[16 + (2 * i)] = byte & 0xf;
10523 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
10524 }
10525 return sizeof(struct sc2vlnt);
10526}
10527
10528static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
10529 struct ib_vl_weight_elem *vl)
10530{
10531 unsigned int i;
10532
10533 for (i = 0; i < nelems; i++, vl++) {
10534 vl->vl = 0xf;
10535 vl->weight = 0;
10536 }
10537}
10538
10539static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
10540{
10541 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
10542 DC_SC_VL_VAL(15_0,
10543 0, dp->vlnt[0] & 0xf,
10544 1, dp->vlnt[1] & 0xf,
10545 2, dp->vlnt[2] & 0xf,
10546 3, dp->vlnt[3] & 0xf,
10547 4, dp->vlnt[4] & 0xf,
10548 5, dp->vlnt[5] & 0xf,
10549 6, dp->vlnt[6] & 0xf,
10550 7, dp->vlnt[7] & 0xf,
10551 8, dp->vlnt[8] & 0xf,
10552 9, dp->vlnt[9] & 0xf,
10553 10, dp->vlnt[10] & 0xf,
10554 11, dp->vlnt[11] & 0xf,
10555 12, dp->vlnt[12] & 0xf,
10556 13, dp->vlnt[13] & 0xf,
10557 14, dp->vlnt[14] & 0xf,
10558 15, dp->vlnt[15] & 0xf));
10559 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
10560 DC_SC_VL_VAL(31_16,
10561 16, dp->vlnt[16] & 0xf,
10562 17, dp->vlnt[17] & 0xf,
10563 18, dp->vlnt[18] & 0xf,
10564 19, dp->vlnt[19] & 0xf,
10565 20, dp->vlnt[20] & 0xf,
10566 21, dp->vlnt[21] & 0xf,
10567 22, dp->vlnt[22] & 0xf,
10568 23, dp->vlnt[23] & 0xf,
10569 24, dp->vlnt[24] & 0xf,
10570 25, dp->vlnt[25] & 0xf,
10571 26, dp->vlnt[26] & 0xf,
10572 27, dp->vlnt[27] & 0xf,
10573 28, dp->vlnt[28] & 0xf,
10574 29, dp->vlnt[29] & 0xf,
10575 30, dp->vlnt[30] & 0xf,
10576 31, dp->vlnt[31] & 0xf));
10577}
10578
10579static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
10580 u16 limit)
10581{
10582 if (limit != 0)
10583 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
10584 what, (int)limit, idx);
10585}
10586
10587/* change only the shared limit portion of SendCmGLobalCredit */
10588static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
10589{
10590 u64 reg;
10591
10592 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10593 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
10594 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
10595 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10596}
10597
10598/* change only the total credit limit portion of SendCmGLobalCredit */
10599static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
10600{
10601 u64 reg;
10602
10603 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
10604 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
10605 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
10606 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
10607}
10608
10609/* set the given per-VL shared limit */
10610static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
10611{
10612 u64 reg;
10613 u32 addr;
10614
10615 if (vl < TXE_NUM_DATA_VL)
10616 addr = SEND_CM_CREDIT_VL + (8 * vl);
10617 else
10618 addr = SEND_CM_CREDIT_VL15;
10619
10620 reg = read_csr(dd, addr);
10621 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
10622 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
10623 write_csr(dd, addr, reg);
10624}
10625
10626/* set the given per-VL dedicated limit */
10627static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
10628{
10629 u64 reg;
10630 u32 addr;
10631
10632 if (vl < TXE_NUM_DATA_VL)
10633 addr = SEND_CM_CREDIT_VL + (8 * vl);
10634 else
10635 addr = SEND_CM_CREDIT_VL15;
10636
10637 reg = read_csr(dd, addr);
10638 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
10639 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
10640 write_csr(dd, addr, reg);
10641}
10642
10643/* spin until the given per-VL status mask bits clear */
10644static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
10645 const char *which)
10646{
10647 unsigned long timeout;
10648 u64 reg;
10649
10650 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
10651 while (1) {
10652 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
10653
10654 if (reg == 0)
10655 return; /* success */
10656 if (time_after(jiffies, timeout))
10657 break; /* timed out */
10658 udelay(1);
10659 }
10660
10661 dd_dev_err(dd,
10662 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
10663 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
10664 /*
10665 * If this occurs, it is likely there was a credit loss on the link.
10666 * The only recovery from that is a link bounce.
10667 */
10668 dd_dev_err(dd,
10669 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n");
10670}
10671
10672/*
10673 * The number of credits on the VLs may be changed while everything
10674 * is "live", but the following algorithm must be followed due to
10675 * how the hardware is actually implemented. In particular,
10676 * Return_Credit_Status[] is the only correct status check.
10677 *
10678 * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
10679 * set Global_Shared_Credit_Limit = 0
10680 * use_all_vl = 1
10681 * mask0 = all VLs that are changing either dedicated or shared limits
10682 * set Shared_Limit[mask0] = 0
10683 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
10684 * if (changing any dedicated limit)
10685 * mask1 = all VLs that are lowering dedicated limits
10686 * lower Dedicated_Limit[mask1]
10687 * spin until Return_Credit_Status[mask1] == 0
10688 * raise Dedicated_Limits
10689 * raise Shared_Limits
10690 * raise Global_Shared_Credit_Limit
10691 *
10692 * lower = if the new limit is lower, set the limit to the new value
10693 * raise = if the new limit is higher than the current value (may be changed
10694 * earlier in the algorithm), set the new limit to the new value
10695 */
10696static int set_buffer_control(struct hfi1_devdata *dd,
10697 struct buffer_control *new_bc)
10698{
10699 u64 changing_mask, ld_mask, stat_mask;
10700 int change_count;
10701 int i, use_all_mask;
10702 int this_shared_changing;
10703 /*
10704 * A0: add the variable any_shared_limit_changing below and in the
10705 * algorithm above. If removing A0 support, it can be removed.
10706 */
10707 int any_shared_limit_changing;
10708 struct buffer_control cur_bc;
10709 u8 changing[OPA_MAX_VLS];
10710 u8 lowering_dedicated[OPA_MAX_VLS];
10711 u16 cur_total;
10712 u32 new_total = 0;
10713 const u64 all_mask =
10714 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
10715 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
10716 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
10717 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
10718 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
10719 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
10720 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
10721 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
10722 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
10723
10724#define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
10725#define NUM_USABLE_VLS 16 /* look at VL15 and less */
10726
10727
10728 /* find the new total credits, do sanity check on unused VLs */
10729 for (i = 0; i < OPA_MAX_VLS; i++) {
10730 if (valid_vl(i)) {
10731 new_total += be16_to_cpu(new_bc->vl[i].dedicated);
10732 continue;
10733 }
10734 nonzero_msg(dd, i, "dedicated",
10735 be16_to_cpu(new_bc->vl[i].dedicated));
10736 nonzero_msg(dd, i, "shared",
10737 be16_to_cpu(new_bc->vl[i].shared));
10738 new_bc->vl[i].dedicated = 0;
10739 new_bc->vl[i].shared = 0;
10740 }
10741 new_total += be16_to_cpu(new_bc->overall_shared_limit);
Dean Luickbff14bb2015-12-17 19:24:13 -050010742
Mike Marciniszyn77241052015-07-30 15:17:43 -040010743 /* fetch the current values */
10744 get_buffer_control(dd, &cur_bc, &cur_total);
10745
10746 /*
10747 * Create the masks we will use.
10748 */
10749 memset(changing, 0, sizeof(changing));
10750 memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
10751 /* NOTE: Assumes that the individual VL bits are adjacent and in
10752 increasing order */
10753 stat_mask =
10754 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
10755 changing_mask = 0;
10756 ld_mask = 0;
10757 change_count = 0;
10758 any_shared_limit_changing = 0;
10759 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
10760 if (!valid_vl(i))
10761 continue;
10762 this_shared_changing = new_bc->vl[i].shared
10763 != cur_bc.vl[i].shared;
10764 if (this_shared_changing)
10765 any_shared_limit_changing = 1;
10766 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated
10767 || this_shared_changing) {
10768 changing[i] = 1;
10769 changing_mask |= stat_mask;
10770 change_count++;
10771 }
10772 if (be16_to_cpu(new_bc->vl[i].dedicated) <
10773 be16_to_cpu(cur_bc.vl[i].dedicated)) {
10774 lowering_dedicated[i] = 1;
10775 ld_mask |= stat_mask;
10776 }
10777 }
10778
10779 /* bracket the credit change with a total adjustment */
10780 if (new_total > cur_total)
10781 set_global_limit(dd, new_total);
10782
10783 /*
10784 * Start the credit change algorithm.
10785 */
10786 use_all_mask = 0;
10787 if ((be16_to_cpu(new_bc->overall_shared_limit) <
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050010788 be16_to_cpu(cur_bc.overall_shared_limit)) ||
10789 (is_ax(dd) && any_shared_limit_changing)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040010790 set_global_shared(dd, 0);
10791 cur_bc.overall_shared_limit = 0;
10792 use_all_mask = 1;
10793 }
10794
10795 for (i = 0; i < NUM_USABLE_VLS; i++) {
10796 if (!valid_vl(i))
10797 continue;
10798
10799 if (changing[i]) {
10800 set_vl_shared(dd, i, 0);
10801 cur_bc.vl[i].shared = 0;
10802 }
10803 }
10804
10805 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
10806 "shared");
10807
10808 if (change_count > 0) {
10809 for (i = 0; i < NUM_USABLE_VLS; i++) {
10810 if (!valid_vl(i))
10811 continue;
10812
10813 if (lowering_dedicated[i]) {
10814 set_vl_dedicated(dd, i,
10815 be16_to_cpu(new_bc->vl[i].dedicated));
10816 cur_bc.vl[i].dedicated =
10817 new_bc->vl[i].dedicated;
10818 }
10819 }
10820
10821 wait_for_vl_status_clear(dd, ld_mask, "dedicated");
10822
10823 /* now raise all dedicated that are going up */
10824 for (i = 0; i < NUM_USABLE_VLS; i++) {
10825 if (!valid_vl(i))
10826 continue;
10827
10828 if (be16_to_cpu(new_bc->vl[i].dedicated) >
10829 be16_to_cpu(cur_bc.vl[i].dedicated))
10830 set_vl_dedicated(dd, i,
10831 be16_to_cpu(new_bc->vl[i].dedicated));
10832 }
10833 }
10834
10835 /* next raise all shared that are going up */
10836 for (i = 0; i < NUM_USABLE_VLS; i++) {
10837 if (!valid_vl(i))
10838 continue;
10839
10840 if (be16_to_cpu(new_bc->vl[i].shared) >
10841 be16_to_cpu(cur_bc.vl[i].shared))
10842 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
10843 }
10844
10845 /* finally raise the global shared */
10846 if (be16_to_cpu(new_bc->overall_shared_limit) >
10847 be16_to_cpu(cur_bc.overall_shared_limit))
10848 set_global_shared(dd,
10849 be16_to_cpu(new_bc->overall_shared_limit));
10850
10851 /* bracket the credit change with a total adjustment */
10852 if (new_total < cur_total)
10853 set_global_limit(dd, new_total);
10854 return 0;
10855}
10856
10857/*
10858 * Read the given fabric manager table. Return the size of the
10859 * table (in bytes) on success, and a negative error code on
10860 * failure.
10861 */
10862int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
10863
10864{
10865 int size;
10866 struct vl_arb_cache *vlc;
10867
10868 switch (which) {
10869 case FM_TBL_VL_HIGH_ARB:
10870 size = 256;
10871 /*
10872 * OPA specifies 128 elements (of 2 bytes each), though
10873 * HFI supports only 16 elements in h/w.
10874 */
10875 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10876 vl_arb_get_cache(vlc, t);
10877 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10878 break;
10879 case FM_TBL_VL_LOW_ARB:
10880 size = 256;
10881 /*
10882 * OPA specifies 128 elements (of 2 bytes each), though
10883 * HFI supports only 16 elements in h/w.
10884 */
10885 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10886 vl_arb_get_cache(vlc, t);
10887 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10888 break;
10889 case FM_TBL_BUFFER_CONTROL:
10890 size = get_buffer_control(ppd->dd, t, NULL);
10891 break;
10892 case FM_TBL_SC2VLNT:
10893 size = get_sc2vlnt(ppd->dd, t);
10894 break;
10895 case FM_TBL_VL_PREEMPT_ELEMS:
10896 size = 256;
10897 /* OPA specifies 128 elements, of 2 bytes each */
10898 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
10899 break;
10900 case FM_TBL_VL_PREEMPT_MATRIX:
10901 size = 256;
10902 /*
10903 * OPA specifies that this is the same size as the VL
10904 * arbitration tables (i.e., 256 bytes).
10905 */
10906 break;
10907 default:
10908 return -EINVAL;
10909 }
10910 return size;
10911}
10912
10913/*
10914 * Write the given fabric manager table.
10915 */
10916int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
10917{
10918 int ret = 0;
10919 struct vl_arb_cache *vlc;
10920
10921 switch (which) {
10922 case FM_TBL_VL_HIGH_ARB:
10923 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
10924 if (vl_arb_match_cache(vlc, t)) {
10925 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10926 break;
10927 }
10928 vl_arb_set_cache(vlc, t);
10929 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
10930 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
10931 VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
10932 break;
10933 case FM_TBL_VL_LOW_ARB:
10934 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
10935 if (vl_arb_match_cache(vlc, t)) {
10936 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10937 break;
10938 }
10939 vl_arb_set_cache(vlc, t);
10940 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
10941 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
10942 VL_ARB_LOW_PRIO_TABLE_SIZE, t);
10943 break;
10944 case FM_TBL_BUFFER_CONTROL:
10945 ret = set_buffer_control(ppd->dd, t);
10946 break;
10947 case FM_TBL_SC2VLNT:
10948 set_sc2vlnt(ppd->dd, t);
10949 break;
10950 default:
10951 ret = -EINVAL;
10952 }
10953 return ret;
10954}
10955
10956/*
10957 * Disable all data VLs.
10958 *
10959 * Return 0 if disabled, non-zero if the VLs cannot be disabled.
10960 */
10961static int disable_data_vls(struct hfi1_devdata *dd)
10962{
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050010963 if (is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -040010964 return 1;
10965
10966 pio_send_control(dd, PSC_DATA_VL_DISABLE);
10967
10968 return 0;
10969}
10970
10971/*
10972 * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
10973 * Just re-enables all data VLs (the "fill" part happens
10974 * automatically - the name was chosen for symmetry with
10975 * stop_drain_data_vls()).
10976 *
10977 * Return 0 if successful, non-zero if the VLs cannot be enabled.
10978 */
10979int open_fill_data_vls(struct hfi1_devdata *dd)
10980{
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050010981 if (is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -040010982 return 1;
10983
10984 pio_send_control(dd, PSC_DATA_VL_ENABLE);
10985
10986 return 0;
10987}
10988
10989/*
10990 * drain_data_vls() - assumes that disable_data_vls() has been called,
10991 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
10992 * engines to drop to 0.
10993 */
10994static void drain_data_vls(struct hfi1_devdata *dd)
10995{
10996 sc_wait(dd);
10997 sdma_wait(dd);
10998 pause_for_credit_return(dd);
10999}
11000
11001/*
11002 * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11003 *
11004 * Use open_fill_data_vls() to resume using data VLs. This pair is
11005 * meant to be used like this:
11006 *
11007 * stop_drain_data_vls(dd);
11008 * // do things with per-VL resources
11009 * open_fill_data_vls(dd);
11010 */
11011int stop_drain_data_vls(struct hfi1_devdata *dd)
11012{
11013 int ret;
11014
11015 ret = disable_data_vls(dd);
11016 if (ret == 0)
11017 drain_data_vls(dd);
11018
11019 return ret;
11020}
11021
11022/*
11023 * Convert a nanosecond time to a cclock count. No matter how slow
11024 * the cclock, a non-zero ns will always have a non-zero result.
11025 */
11026u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11027{
11028 u32 cclocks;
11029
11030 if (dd->icode == ICODE_FPGA_EMULATION)
11031 cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11032 else /* simulation pretends to be ASIC */
11033 cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11034 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */
11035 cclocks = 1;
11036 return cclocks;
11037}
11038
11039/*
11040 * Convert a cclock count to nanoseconds. Not matter how slow
11041 * the cclock, a non-zero cclocks will always have a non-zero result.
11042 */
11043u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11044{
11045 u32 ns;
11046
11047 if (dd->icode == ICODE_FPGA_EMULATION)
11048 ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11049 else /* simulation pretends to be ASIC */
11050 ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11051 if (cclocks && !ns)
11052 ns = 1;
11053 return ns;
11054}
11055
11056/*
11057 * Dynamically adjust the receive interrupt timeout for a context based on
11058 * incoming packet rate.
11059 *
11060 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11061 */
11062static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11063{
11064 struct hfi1_devdata *dd = rcd->dd;
11065 u32 timeout = rcd->rcvavail_timeout;
11066
11067 /*
11068 * This algorithm doubles or halves the timeout depending on whether
11069 * the number of packets received in this interrupt were less than or
11070 * greater equal the interrupt count.
11071 *
11072 * The calculations below do not allow a steady state to be achieved.
11073 * Only at the endpoints it is possible to have an unchanging
11074 * timeout.
11075 */
11076 if (npkts < rcv_intr_count) {
11077 /*
11078 * Not enough packets arrived before the timeout, adjust
11079 * timeout downward.
11080 */
11081 if (timeout < 2) /* already at minimum? */
11082 return;
11083 timeout >>= 1;
11084 } else {
11085 /*
11086 * More than enough packets arrived before the timeout, adjust
11087 * timeout upward.
11088 */
11089 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11090 return;
11091 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11092 }
11093
11094 rcd->rcvavail_timeout = timeout;
11095 /* timeout cannot be larger than rcv_intr_timeout_csr which has already
11096 been verified to be in range */
11097 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11098 (u64)timeout << RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11099}
11100
11101void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11102 u32 intr_adjust, u32 npkts)
11103{
11104 struct hfi1_devdata *dd = rcd->dd;
11105 u64 reg;
11106 u32 ctxt = rcd->ctxt;
11107
11108 /*
11109 * Need to write timeout register before updating RcvHdrHead to ensure
11110 * that a new value is used when the HW decides to restart counting.
11111 */
11112 if (intr_adjust)
11113 adjust_rcv_timeout(rcd, npkts);
11114 if (updegr) {
11115 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11116 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11117 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11118 }
11119 mmiowb();
11120 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11121 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11122 << RCV_HDR_HEAD_HEAD_SHIFT);
11123 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11124 mmiowb();
11125}
11126
11127u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11128{
11129 u32 head, tail;
11130
11131 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11132 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11133
11134 if (rcd->rcvhdrtail_kvaddr)
11135 tail = get_rcvhdrtail(rcd);
11136 else
11137 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11138
11139 return head == tail;
11140}
11141
11142/*
11143 * Context Control and Receive Array encoding for buffer size:
11144 * 0x0 invalid
11145 * 0x1 4 KB
11146 * 0x2 8 KB
11147 * 0x3 16 KB
11148 * 0x4 32 KB
11149 * 0x5 64 KB
11150 * 0x6 128 KB
11151 * 0x7 256 KB
11152 * 0x8 512 KB (Receive Array only)
11153 * 0x9 1 MB (Receive Array only)
11154 * 0xa 2 MB (Receive Array only)
11155 *
11156 * 0xB-0xF - reserved (Receive Array only)
11157 *
11158 *
11159 * This routine assumes that the value has already been sanity checked.
11160 */
11161static u32 encoded_size(u32 size)
11162{
11163 switch (size) {
11164 case 4*1024: return 0x1;
11165 case 8*1024: return 0x2;
11166 case 16*1024: return 0x3;
11167 case 32*1024: return 0x4;
11168 case 64*1024: return 0x5;
11169 case 128*1024: return 0x6;
11170 case 256*1024: return 0x7;
11171 case 512*1024: return 0x8;
11172 case 1*1024*1024: return 0x9;
11173 case 2*1024*1024: return 0xa;
11174 }
11175 return 0x1; /* if invalid, go with the minimum size */
11176}
11177
11178void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, int ctxt)
11179{
11180 struct hfi1_ctxtdata *rcd;
11181 u64 rcvctrl, reg;
11182 int did_enable = 0;
11183
11184 rcd = dd->rcd[ctxt];
11185 if (!rcd)
11186 return;
11187
11188 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11189
11190 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11191 /* if the context already enabled, don't do the extra steps */
11192 if ((op & HFI1_RCVCTRL_CTXT_ENB)
11193 && !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11194 /* reset the tail and hdr addresses, and sequence count */
11195 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11196 rcd->rcvhdrq_phys);
11197 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11198 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11199 rcd->rcvhdrqtailaddr_phys);
11200 rcd->seq_cnt = 1;
11201
11202 /* reset the cached receive header queue head value */
11203 rcd->head = 0;
11204
11205 /*
11206 * Zero the receive header queue so we don't get false
11207 * positives when checking the sequence number. The
11208 * sequence numbers could land exactly on the same spot.
11209 * E.g. a rcd restart before the receive header wrapped.
11210 */
11211 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11212
11213 /* starting timeout */
11214 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11215
11216 /* enable the context */
11217 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11218
11219 /* clean the egr buffer size first */
11220 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11221 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11222 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11223 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11224
11225 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11226 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11227 did_enable = 1;
11228
11229 /* zero RcvEgrIndexHead */
11230 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11231
11232 /* set eager count and base index */
11233 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11234 & RCV_EGR_CTRL_EGR_CNT_MASK)
11235 << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11236 (((rcd->eager_base >> RCV_SHIFT)
11237 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11238 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11239 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11240
11241 /*
11242 * Set TID (expected) count and base index.
11243 * rcd->expected_count is set to individual RcvArray entries,
11244 * not pairs, and the CSR takes a pair-count in groups of
11245 * four, so divide by 8.
11246 */
11247 reg = (((rcd->expected_count >> RCV_SHIFT)
11248 & RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11249 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11250 (((rcd->expected_base >> RCV_SHIFT)
11251 & RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11252 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11253 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050011254 if (ctxt == HFI1_CTRL_CTXT)
11255 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011256 }
11257 if (op & HFI1_RCVCTRL_CTXT_DIS) {
11258 write_csr(dd, RCV_VL15, 0);
Mark F. Brown46b010d2015-11-09 19:18:20 -050011259 /*
11260 * When receive context is being disabled turn on tail
11261 * update with a dummy tail address and then disable
11262 * receive context.
11263 */
11264 if (dd->rcvhdrtail_dummy_physaddr) {
11265 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11266 dd->rcvhdrtail_dummy_physaddr);
Mitko Haralanov566c1572016-02-03 14:32:49 -080011267 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */
Mark F. Brown46b010d2015-11-09 19:18:20 -050011268 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11269 }
11270
Mike Marciniszyn77241052015-07-30 15:17:43 -040011271 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11272 }
11273 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11274 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11275 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11276 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11277 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_phys)
11278 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
Mitko Haralanov566c1572016-02-03 14:32:49 -080011279 if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11280 /* See comment on RcvCtxtCtrl.TailUpd above */
11281 if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11282 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11283 }
Mike Marciniszyn77241052015-07-30 15:17:43 -040011284 if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11285 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11286 if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11287 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11288 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11289 /* In one-packet-per-eager mode, the size comes from
11290 the RcvArray entry. */
11291 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11292 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11293 }
11294 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11295 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11296 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11297 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11298 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11299 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11300 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11301 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11302 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11303 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11304 rcd->rcvctrl = rcvctrl;
11305 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11306 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11307
11308 /* work around sticky RcvCtxtStatus.BlockedRHQFull */
11309 if (did_enable
11310 && (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11311 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11312 if (reg != 0) {
11313 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11314 ctxt, reg);
11315 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11316 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11317 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11318 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11319 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11320 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11321 ctxt, reg, reg == 0 ? "not" : "still");
11322 }
11323 }
11324
11325 if (did_enable) {
11326 /*
11327 * The interrupt timeout and count must be set after
11328 * the context is enabled to take effect.
11329 */
11330 /* set interrupt timeout */
11331 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11332 (u64)rcd->rcvavail_timeout <<
11333 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11334
11335 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11336 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11337 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11338 }
11339
11340 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11341 /*
11342 * If the context has been disabled and the Tail Update has
Mark F. Brown46b010d2015-11-09 19:18:20 -050011343 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11344 * so it doesn't contain an address that is invalid.
Mike Marciniszyn77241052015-07-30 15:17:43 -040011345 */
Mark F. Brown46b010d2015-11-09 19:18:20 -050011346 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11347 dd->rcvhdrtail_dummy_physaddr);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011348}
11349
11350u32 hfi1_read_cntrs(struct hfi1_devdata *dd, loff_t pos, char **namep,
11351 u64 **cntrp)
11352{
11353 int ret;
11354 u64 val = 0;
11355
11356 if (namep) {
11357 ret = dd->cntrnameslen;
11358 if (pos != 0) {
11359 dd_dev_err(dd, "read_cntrs does not support indexing");
11360 return 0;
11361 }
11362 *namep = dd->cntrnames;
11363 } else {
11364 const struct cntr_entry *entry;
11365 int i, j;
11366
11367 ret = (dd->ndevcntrs) * sizeof(u64);
11368 if (pos != 0) {
11369 dd_dev_err(dd, "read_cntrs does not support indexing");
11370 return 0;
11371 }
11372
11373 /* Get the start of the block of counters */
11374 *cntrp = dd->cntrs;
11375
11376 /*
11377 * Now go and fill in each counter in the block.
11378 */
11379 for (i = 0; i < DEV_CNTR_LAST; i++) {
11380 entry = &dev_cntrs[i];
11381 hfi1_cdbg(CNTR, "reading %s", entry->name);
11382 if (entry->flags & CNTR_DISABLED) {
11383 /* Nothing */
11384 hfi1_cdbg(CNTR, "\tDisabled\n");
11385 } else {
11386 if (entry->flags & CNTR_VL) {
11387 hfi1_cdbg(CNTR, "\tPer VL\n");
11388 for (j = 0; j < C_VL_COUNT; j++) {
11389 val = entry->rw_cntr(entry,
11390 dd, j,
11391 CNTR_MODE_R,
11392 0);
11393 hfi1_cdbg(
11394 CNTR,
11395 "\t\tRead 0x%llx for %d\n",
11396 val, j);
11397 dd->cntrs[entry->offset + j] =
11398 val;
11399 }
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011400 } else if (entry->flags & CNTR_SDMA) {
11401 hfi1_cdbg(CNTR,
11402 "\t Per SDMA Engine\n");
11403 for (j = 0; j < dd->chip_sdma_engines;
11404 j++) {
11405 val =
11406 entry->rw_cntr(entry, dd, j,
11407 CNTR_MODE_R, 0);
11408 hfi1_cdbg(CNTR,
11409 "\t\tRead 0x%llx for %d\n",
11410 val, j);
11411 dd->cntrs[entry->offset + j] =
11412 val;
11413 }
Mike Marciniszyn77241052015-07-30 15:17:43 -040011414 } else {
11415 val = entry->rw_cntr(entry, dd,
11416 CNTR_INVALID_VL,
11417 CNTR_MODE_R, 0);
11418 dd->cntrs[entry->offset] = val;
11419 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11420 }
11421 }
11422 }
11423 }
11424 return ret;
11425}
11426
11427/*
11428 * Used by sysfs to create files for hfi stats to read
11429 */
11430u32 hfi1_read_portcntrs(struct hfi1_devdata *dd, loff_t pos, u32 port,
11431 char **namep, u64 **cntrp)
11432{
11433 int ret;
11434 u64 val = 0;
11435
11436 if (namep) {
11437 ret = dd->portcntrnameslen;
11438 if (pos != 0) {
11439 dd_dev_err(dd, "index not supported");
11440 return 0;
11441 }
11442 *namep = dd->portcntrnames;
11443 } else {
11444 const struct cntr_entry *entry;
11445 struct hfi1_pportdata *ppd;
11446 int i, j;
11447
11448 ret = (dd->nportcntrs) * sizeof(u64);
11449 if (pos != 0) {
11450 dd_dev_err(dd, "indexing not supported");
11451 return 0;
11452 }
11453 ppd = (struct hfi1_pportdata *)(dd + 1 + port);
11454 *cntrp = ppd->cntrs;
11455
11456 for (i = 0; i < PORT_CNTR_LAST; i++) {
11457 entry = &port_cntrs[i];
11458 hfi1_cdbg(CNTR, "reading %s", entry->name);
11459 if (entry->flags & CNTR_DISABLED) {
11460 /* Nothing */
11461 hfi1_cdbg(CNTR, "\tDisabled\n");
11462 continue;
11463 }
11464
11465 if (entry->flags & CNTR_VL) {
11466 hfi1_cdbg(CNTR, "\tPer VL");
11467 for (j = 0; j < C_VL_COUNT; j++) {
11468 val = entry->rw_cntr(entry, ppd, j,
11469 CNTR_MODE_R,
11470 0);
11471 hfi1_cdbg(
11472 CNTR,
11473 "\t\tRead 0x%llx for %d",
11474 val, j);
11475 ppd->cntrs[entry->offset + j] = val;
11476 }
11477 } else {
11478 val = entry->rw_cntr(entry, ppd,
11479 CNTR_INVALID_VL,
11480 CNTR_MODE_R,
11481 0);
11482 ppd->cntrs[entry->offset] = val;
11483 hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
11484 }
11485 }
11486 }
11487 return ret;
11488}
11489
11490static void free_cntrs(struct hfi1_devdata *dd)
11491{
11492 struct hfi1_pportdata *ppd;
11493 int i;
11494
11495 if (dd->synth_stats_timer.data)
11496 del_timer_sync(&dd->synth_stats_timer);
11497 dd->synth_stats_timer.data = 0;
11498 ppd = (struct hfi1_pportdata *)(dd + 1);
11499 for (i = 0; i < dd->num_pports; i++, ppd++) {
11500 kfree(ppd->cntrs);
11501 kfree(ppd->scntrs);
Dennis Dalessandro4eb06882016-01-19 14:42:39 -080011502 free_percpu(ppd->ibport_data.rvp.rc_acks);
11503 free_percpu(ppd->ibport_data.rvp.rc_qacks);
11504 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011505 ppd->cntrs = NULL;
11506 ppd->scntrs = NULL;
Dennis Dalessandro4eb06882016-01-19 14:42:39 -080011507 ppd->ibport_data.rvp.rc_acks = NULL;
11508 ppd->ibport_data.rvp.rc_qacks = NULL;
11509 ppd->ibport_data.rvp.rc_delayed_comp = NULL;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011510 }
11511 kfree(dd->portcntrnames);
11512 dd->portcntrnames = NULL;
11513 kfree(dd->cntrs);
11514 dd->cntrs = NULL;
11515 kfree(dd->scntrs);
11516 dd->scntrs = NULL;
11517 kfree(dd->cntrnames);
11518 dd->cntrnames = NULL;
11519}
11520
11521#define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
11522#define CNTR_32BIT_MAX 0x00000000FFFFFFFF
11523
11524static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
11525 u64 *psval, void *context, int vl)
11526{
11527 u64 val;
11528 u64 sval = *psval;
11529
11530 if (entry->flags & CNTR_DISABLED) {
11531 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11532 return 0;
11533 }
11534
11535 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11536
11537 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
11538
11539 /* If its a synthetic counter there is more work we need to do */
11540 if (entry->flags & CNTR_SYNTH) {
11541 if (sval == CNTR_MAX) {
11542 /* No need to read already saturated */
11543 return CNTR_MAX;
11544 }
11545
11546 if (entry->flags & CNTR_32BIT) {
11547 /* 32bit counters can wrap multiple times */
11548 u64 upper = sval >> 32;
11549 u64 lower = (sval << 32) >> 32;
11550
11551 if (lower > val) { /* hw wrapped */
11552 if (upper == CNTR_32BIT_MAX)
11553 val = CNTR_MAX;
11554 else
11555 upper++;
11556 }
11557
11558 if (val != CNTR_MAX)
11559 val = (upper << 32) | val;
11560
11561 } else {
11562 /* If we rolled we are saturated */
11563 if ((val < sval) || (val > CNTR_MAX))
11564 val = CNTR_MAX;
11565 }
11566 }
11567
11568 *psval = val;
11569
11570 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11571
11572 return val;
11573}
11574
11575static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
11576 struct cntr_entry *entry,
11577 u64 *psval, void *context, int vl, u64 data)
11578{
11579 u64 val;
11580
11581 if (entry->flags & CNTR_DISABLED) {
11582 dd_dev_err(dd, "Counter %s not enabled", entry->name);
11583 return 0;
11584 }
11585
11586 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
11587
11588 if (entry->flags & CNTR_SYNTH) {
11589 *psval = data;
11590 if (entry->flags & CNTR_32BIT) {
11591 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11592 (data << 32) >> 32);
11593 val = data; /* return the full 64bit value */
11594 } else {
11595 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
11596 data);
11597 }
11598 } else {
11599 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
11600 }
11601
11602 *psval = val;
11603
11604 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
11605
11606 return val;
11607}
11608
11609u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
11610{
11611 struct cntr_entry *entry;
11612 u64 *sval;
11613
11614 entry = &dev_cntrs[index];
11615 sval = dd->scntrs + entry->offset;
11616
11617 if (vl != CNTR_INVALID_VL)
11618 sval += vl;
11619
11620 return read_dev_port_cntr(dd, entry, sval, dd, vl);
11621}
11622
11623u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
11624{
11625 struct cntr_entry *entry;
11626 u64 *sval;
11627
11628 entry = &dev_cntrs[index];
11629 sval = dd->scntrs + entry->offset;
11630
11631 if (vl != CNTR_INVALID_VL)
11632 sval += vl;
11633
11634 return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
11635}
11636
11637u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
11638{
11639 struct cntr_entry *entry;
11640 u64 *sval;
11641
11642 entry = &port_cntrs[index];
11643 sval = ppd->scntrs + entry->offset;
11644
11645 if (vl != CNTR_INVALID_VL)
11646 sval += vl;
11647
11648 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11649 (index <= C_RCV_HDR_OVF_LAST)) {
11650 /* We do not want to bother for disabled contexts */
11651 return 0;
11652 }
11653
11654 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
11655}
11656
11657u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
11658{
11659 struct cntr_entry *entry;
11660 u64 *sval;
11661
11662 entry = &port_cntrs[index];
11663 sval = ppd->scntrs + entry->offset;
11664
11665 if (vl != CNTR_INVALID_VL)
11666 sval += vl;
11667
11668 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
11669 (index <= C_RCV_HDR_OVF_LAST)) {
11670 /* We do not want to bother for disabled contexts */
11671 return 0;
11672 }
11673
11674 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
11675}
11676
11677static void update_synth_timer(unsigned long opaque)
11678{
11679 u64 cur_tx;
11680 u64 cur_rx;
11681 u64 total_flits;
11682 u8 update = 0;
11683 int i, j, vl;
11684 struct hfi1_pportdata *ppd;
11685 struct cntr_entry *entry;
11686
11687 struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
11688
11689 /*
11690 * Rather than keep beating on the CSRs pick a minimal set that we can
11691 * check to watch for potential roll over. We can do this by looking at
11692 * the number of flits sent/recv. If the total flits exceeds 32bits then
11693 * we have to iterate all the counters and update.
11694 */
11695 entry = &dev_cntrs[C_DC_RCV_FLITS];
11696 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11697
11698 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11699 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
11700
11701 hfi1_cdbg(
11702 CNTR,
11703 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
11704 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
11705
11706 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
11707 /*
11708 * May not be strictly necessary to update but it won't hurt and
11709 * simplifies the logic here.
11710 */
11711 update = 1;
11712 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
11713 dd->unit);
11714 } else {
11715 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
11716 hfi1_cdbg(CNTR,
11717 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
11718 total_flits, (u64)CNTR_32BIT_MAX);
11719 if (total_flits >= CNTR_32BIT_MAX) {
11720 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
11721 dd->unit);
11722 update = 1;
11723 }
11724 }
11725
11726 if (update) {
11727 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
11728 for (i = 0; i < DEV_CNTR_LAST; i++) {
11729 entry = &dev_cntrs[i];
11730 if (entry->flags & CNTR_VL) {
11731 for (vl = 0; vl < C_VL_COUNT; vl++)
11732 read_dev_cntr(dd, i, vl);
11733 } else {
11734 read_dev_cntr(dd, i, CNTR_INVALID_VL);
11735 }
11736 }
11737 ppd = (struct hfi1_pportdata *)(dd + 1);
11738 for (i = 0; i < dd->num_pports; i++, ppd++) {
11739 for (j = 0; j < PORT_CNTR_LAST; j++) {
11740 entry = &port_cntrs[j];
11741 if (entry->flags & CNTR_VL) {
11742 for (vl = 0; vl < C_VL_COUNT; vl++)
11743 read_port_cntr(ppd, j, vl);
11744 } else {
11745 read_port_cntr(ppd, j, CNTR_INVALID_VL);
11746 }
11747 }
11748 }
11749
11750 /*
11751 * We want the value in the register. The goal is to keep track
11752 * of the number of "ticks" not the counter value. In other
11753 * words if the register rolls we want to notice it and go ahead
11754 * and force an update.
11755 */
11756 entry = &dev_cntrs[C_DC_XMIT_FLITS];
11757 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11758 CNTR_MODE_R, 0);
11759
11760 entry = &dev_cntrs[C_DC_RCV_FLITS];
11761 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
11762 CNTR_MODE_R, 0);
11763
11764 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
11765 dd->unit, dd->last_tx, dd->last_rx);
11766
11767 } else {
11768 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
11769 }
11770
11771mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
11772}
11773
11774#define C_MAX_NAME 13 /* 12 chars + one for /0 */
11775static int init_cntrs(struct hfi1_devdata *dd)
11776{
Dean Luickc024c552016-01-11 18:30:57 -050011777 int i, rcv_ctxts, j;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011778 size_t sz;
11779 char *p;
11780 char name[C_MAX_NAME];
11781 struct hfi1_pportdata *ppd;
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011782 const char *bit_type_32 = ",32";
11783 const int bit_type_32_sz = strlen(bit_type_32);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011784
11785 /* set up the stats timer; the add_timer is done at the end */
Muhammad Falak R Wani24523a92015-10-25 16:13:23 +053011786 setup_timer(&dd->synth_stats_timer, update_synth_timer,
11787 (unsigned long)dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011788
11789 /***********************/
11790 /* per device counters */
11791 /***********************/
11792
11793 /* size names and determine how many we have*/
11794 dd->ndevcntrs = 0;
11795 sz = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011796
11797 for (i = 0; i < DEV_CNTR_LAST; i++) {
11798 hfi1_dbg_early("Init cntr %s\n", dev_cntrs[i].name);
11799 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11800 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
11801 continue;
11802 }
11803
11804 if (dev_cntrs[i].flags & CNTR_VL) {
11805 hfi1_dbg_early("\tProcessing VL cntr\n");
Dean Luickc024c552016-01-11 18:30:57 -050011806 dev_cntrs[i].offset = dd->ndevcntrs;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011807 for (j = 0; j < C_VL_COUNT; j++) {
11808 memset(name, '\0', C_MAX_NAME);
11809 snprintf(name, C_MAX_NAME, "%s%d",
11810 dev_cntrs[i].name,
11811 vl_from_idx(j));
11812 sz += strlen(name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011813 /* Add ",32" for 32-bit counters */
11814 if (dev_cntrs[i].flags & CNTR_32BIT)
11815 sz += bit_type_32_sz;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011816 sz++;
11817 hfi1_dbg_early("\t\t%s\n", name);
11818 dd->ndevcntrs++;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011819 }
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011820 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11821 hfi1_dbg_early(
11822 "\tProcessing per SDE counters chip enginers %u\n",
11823 dd->chip_sdma_engines);
Dean Luickc024c552016-01-11 18:30:57 -050011824 dev_cntrs[i].offset = dd->ndevcntrs;
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011825 for (j = 0; j < dd->chip_sdma_engines; j++) {
11826 memset(name, '\0', C_MAX_NAME);
11827 snprintf(name, C_MAX_NAME, "%s%d",
11828 dev_cntrs[i].name, j);
11829 sz += strlen(name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011830 /* Add ",32" for 32-bit counters */
11831 if (dev_cntrs[i].flags & CNTR_32BIT)
11832 sz += bit_type_32_sz;
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011833 sz++;
11834 hfi1_dbg_early("\t\t%s\n", name);
11835 dd->ndevcntrs++;
Vennila Megavannana699c6c2016-01-11 18:30:56 -050011836 }
Mike Marciniszyn77241052015-07-30 15:17:43 -040011837 } else {
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011838 /* +1 for newline. */
Mike Marciniszyn77241052015-07-30 15:17:43 -040011839 sz += strlen(dev_cntrs[i].name) + 1;
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011840 /* Add ",32" for 32-bit counters */
11841 if (dev_cntrs[i].flags & CNTR_32BIT)
11842 sz += bit_type_32_sz;
Dean Luickc024c552016-01-11 18:30:57 -050011843 dev_cntrs[i].offset = dd->ndevcntrs;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011844 dd->ndevcntrs++;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011845 hfi1_dbg_early("\tAdding %s\n", dev_cntrs[i].name);
11846 }
11847 }
11848
11849 /* allocate space for the counter values */
Dean Luickc024c552016-01-11 18:30:57 -050011850 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011851 if (!dd->cntrs)
11852 goto bail;
11853
Dean Luickc024c552016-01-11 18:30:57 -050011854 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
Mike Marciniszyn77241052015-07-30 15:17:43 -040011855 if (!dd->scntrs)
11856 goto bail;
11857
11858
11859 /* allocate space for the counter names */
11860 dd->cntrnameslen = sz;
11861 dd->cntrnames = kmalloc(sz, GFP_KERNEL);
11862 if (!dd->cntrnames)
11863 goto bail;
11864
11865 /* fill in the names */
Dean Luickc024c552016-01-11 18:30:57 -050011866 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040011867 if (dev_cntrs[i].flags & CNTR_DISABLED) {
11868 /* Nothing */
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011869 } else if (dev_cntrs[i].flags & CNTR_VL) {
11870 for (j = 0; j < C_VL_COUNT; j++) {
11871 memset(name, '\0', C_MAX_NAME);
11872 snprintf(name, C_MAX_NAME, "%s%d",
11873 dev_cntrs[i].name,
11874 vl_from_idx(j));
11875 memcpy(p, name, strlen(name));
11876 p += strlen(name);
11877
11878 /* Counter is 32 bits */
11879 if (dev_cntrs[i].flags & CNTR_32BIT) {
11880 memcpy(p, bit_type_32, bit_type_32_sz);
11881 p += bit_type_32_sz;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011882 }
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011883
Mike Marciniszyn77241052015-07-30 15:17:43 -040011884 *p++ = '\n';
11885 }
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011886 } else if (dev_cntrs[i].flags & CNTR_SDMA) {
11887 for (j = 0; j < dd->chip_sdma_engines; j++) {
11888 memset(name, '\0', C_MAX_NAME);
11889 snprintf(name, C_MAX_NAME, "%s%d",
11890 dev_cntrs[i].name, j);
11891 memcpy(p, name, strlen(name));
11892 p += strlen(name);
11893
11894 /* Counter is 32 bits */
11895 if (dev_cntrs[i].flags & CNTR_32BIT) {
11896 memcpy(p, bit_type_32, bit_type_32_sz);
11897 p += bit_type_32_sz;
11898 }
11899
11900 *p++ = '\n';
11901 }
11902 } else {
11903 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
11904 p += strlen(dev_cntrs[i].name);
11905
11906 /* Counter is 32 bits */
11907 if (dev_cntrs[i].flags & CNTR_32BIT) {
11908 memcpy(p, bit_type_32, bit_type_32_sz);
11909 p += bit_type_32_sz;
11910 }
11911
11912 *p++ = '\n';
Mike Marciniszyn77241052015-07-30 15:17:43 -040011913 }
11914 }
11915
11916 /*********************/
11917 /* per port counters */
11918 /*********************/
11919
11920 /*
11921 * Go through the counters for the overflows and disable the ones we
11922 * don't need. This varies based on platform so we need to do it
11923 * dynamically here.
11924 */
11925 rcv_ctxts = dd->num_rcv_contexts;
11926 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
11927 i <= C_RCV_HDR_OVF_LAST; i++) {
11928 port_cntrs[i].flags |= CNTR_DISABLED;
11929 }
11930
11931 /* size port counter names and determine how many we have*/
11932 sz = 0;
11933 dd->nportcntrs = 0;
11934 for (i = 0; i < PORT_CNTR_LAST; i++) {
11935 hfi1_dbg_early("Init pcntr %s\n", port_cntrs[i].name);
11936 if (port_cntrs[i].flags & CNTR_DISABLED) {
11937 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
11938 continue;
11939 }
11940
11941 if (port_cntrs[i].flags & CNTR_VL) {
11942 hfi1_dbg_early("\tProcessing VL cntr\n");
11943 port_cntrs[i].offset = dd->nportcntrs;
11944 for (j = 0; j < C_VL_COUNT; j++) {
11945 memset(name, '\0', C_MAX_NAME);
11946 snprintf(name, C_MAX_NAME, "%s%d",
11947 port_cntrs[i].name,
11948 vl_from_idx(j));
11949 sz += strlen(name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011950 /* Add ",32" for 32-bit counters */
11951 if (port_cntrs[i].flags & CNTR_32BIT)
11952 sz += bit_type_32_sz;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011953 sz++;
11954 hfi1_dbg_early("\t\t%s\n", name);
11955 dd->nportcntrs++;
11956 }
11957 } else {
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011958 /* +1 for newline */
Mike Marciniszyn77241052015-07-30 15:17:43 -040011959 sz += strlen(port_cntrs[i].name) + 1;
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011960 /* Add ",32" for 32-bit counters */
11961 if (port_cntrs[i].flags & CNTR_32BIT)
11962 sz += bit_type_32_sz;
Mike Marciniszyn77241052015-07-30 15:17:43 -040011963 port_cntrs[i].offset = dd->nportcntrs;
11964 dd->nportcntrs++;
11965 hfi1_dbg_early("\tAdding %s\n", port_cntrs[i].name);
11966 }
11967 }
11968
11969 /* allocate space for the counter names */
11970 dd->portcntrnameslen = sz;
11971 dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
11972 if (!dd->portcntrnames)
11973 goto bail;
11974
11975 /* fill in port cntr names */
11976 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
11977 if (port_cntrs[i].flags & CNTR_DISABLED)
11978 continue;
11979
11980 if (port_cntrs[i].flags & CNTR_VL) {
11981 for (j = 0; j < C_VL_COUNT; j++) {
11982 memset(name, '\0', C_MAX_NAME);
11983 snprintf(name, C_MAX_NAME, "%s%d",
11984 port_cntrs[i].name,
11985 vl_from_idx(j));
11986 memcpy(p, name, strlen(name));
11987 p += strlen(name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080011988
11989 /* Counter is 32 bits */
11990 if (port_cntrs[i].flags & CNTR_32BIT) {
11991 memcpy(p, bit_type_32, bit_type_32_sz);
11992 p += bit_type_32_sz;
11993 }
11994
Mike Marciniszyn77241052015-07-30 15:17:43 -040011995 *p++ = '\n';
11996 }
11997 } else {
11998 memcpy(p, port_cntrs[i].name,
11999 strlen(port_cntrs[i].name));
12000 p += strlen(port_cntrs[i].name);
Sebastian Sanchez11d2b112016-02-03 14:32:40 -080012001
12002 /* Counter is 32 bits */
12003 if (port_cntrs[i].flags & CNTR_32BIT) {
12004 memcpy(p, bit_type_32, bit_type_32_sz);
12005 p += bit_type_32_sz;
12006 }
12007
Mike Marciniszyn77241052015-07-30 15:17:43 -040012008 *p++ = '\n';
12009 }
12010 }
12011
12012 /* allocate per port storage for counter values */
12013 ppd = (struct hfi1_pportdata *)(dd + 1);
12014 for (i = 0; i < dd->num_pports; i++, ppd++) {
12015 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12016 if (!ppd->cntrs)
12017 goto bail;
12018
12019 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12020 if (!ppd->scntrs)
12021 goto bail;
12022 }
12023
12024 /* CPU counters need to be allocated and zeroed */
12025 if (init_cpu_counters(dd))
12026 goto bail;
12027
12028 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12029 return 0;
12030bail:
12031 free_cntrs(dd);
12032 return -ENOMEM;
12033}
12034
12035
12036static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12037{
12038 switch (chip_lstate) {
12039 default:
12040 dd_dev_err(dd,
12041 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12042 chip_lstate);
12043 /* fall through */
12044 case LSTATE_DOWN:
12045 return IB_PORT_DOWN;
12046 case LSTATE_INIT:
12047 return IB_PORT_INIT;
12048 case LSTATE_ARMED:
12049 return IB_PORT_ARMED;
12050 case LSTATE_ACTIVE:
12051 return IB_PORT_ACTIVE;
12052 }
12053}
12054
12055u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12056{
12057 /* look at the HFI meta-states only */
12058 switch (chip_pstate & 0xf0) {
12059 default:
12060 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12061 chip_pstate);
12062 /* fall through */
12063 case PLS_DISABLED:
12064 return IB_PORTPHYSSTATE_DISABLED;
12065 case PLS_OFFLINE:
12066 return OPA_PORTPHYSSTATE_OFFLINE;
12067 case PLS_POLLING:
12068 return IB_PORTPHYSSTATE_POLLING;
12069 case PLS_CONFIGPHY:
12070 return IB_PORTPHYSSTATE_TRAINING;
12071 case PLS_LINKUP:
12072 return IB_PORTPHYSSTATE_LINKUP;
12073 case PLS_PHYTEST:
12074 return IB_PORTPHYSSTATE_PHY_TEST;
12075 }
12076}
12077
12078/* return the OPA port logical state name */
12079const char *opa_lstate_name(u32 lstate)
12080{
12081 static const char * const port_logical_names[] = {
12082 "PORT_NOP",
12083 "PORT_DOWN",
12084 "PORT_INIT",
12085 "PORT_ARMED",
12086 "PORT_ACTIVE",
12087 "PORT_ACTIVE_DEFER",
12088 };
12089 if (lstate < ARRAY_SIZE(port_logical_names))
12090 return port_logical_names[lstate];
12091 return "unknown";
12092}
12093
12094/* return the OPA port physical state name */
12095const char *opa_pstate_name(u32 pstate)
12096{
12097 static const char * const port_physical_names[] = {
12098 "PHYS_NOP",
12099 "reserved1",
12100 "PHYS_POLL",
12101 "PHYS_DISABLED",
12102 "PHYS_TRAINING",
12103 "PHYS_LINKUP",
12104 "PHYS_LINK_ERR_RECOVER",
12105 "PHYS_PHY_TEST",
12106 "reserved8",
12107 "PHYS_OFFLINE",
12108 "PHYS_GANGED",
12109 "PHYS_TEST",
12110 };
12111 if (pstate < ARRAY_SIZE(port_physical_names))
12112 return port_physical_names[pstate];
12113 return "unknown";
12114}
12115
12116/*
12117 * Read the hardware link state and set the driver's cached value of it.
12118 * Return the (new) current value.
12119 */
12120u32 get_logical_state(struct hfi1_pportdata *ppd)
12121{
12122 u32 new_state;
12123
12124 new_state = chip_to_opa_lstate(ppd->dd, read_logical_state(ppd->dd));
12125 if (new_state != ppd->lstate) {
12126 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12127 opa_lstate_name(new_state), new_state);
12128 ppd->lstate = new_state;
12129 }
12130 /*
12131 * Set port status flags in the page mapped into userspace
12132 * memory. Do it here to ensure a reliable state - this is
12133 * the only function called by all state handling code.
12134 * Always set the flags due to the fact that the cache value
12135 * might have been changed explicitly outside of this
12136 * function.
12137 */
12138 if (ppd->statusp) {
12139 switch (ppd->lstate) {
12140 case IB_PORT_DOWN:
12141 case IB_PORT_INIT:
12142 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12143 HFI1_STATUS_IB_READY);
12144 break;
12145 case IB_PORT_ARMED:
12146 *ppd->statusp |= HFI1_STATUS_IB_CONF;
12147 break;
12148 case IB_PORT_ACTIVE:
12149 *ppd->statusp |= HFI1_STATUS_IB_READY;
12150 break;
12151 }
12152 }
12153 return ppd->lstate;
12154}
12155
12156/**
12157 * wait_logical_linkstate - wait for an IB link state change to occur
12158 * @ppd: port device
12159 * @state: the state to wait for
12160 * @msecs: the number of milliseconds to wait
12161 *
12162 * Wait up to msecs milliseconds for IB link state change to occur.
12163 * For now, take the easy polling route.
12164 * Returns 0 if state reached, otherwise -ETIMEDOUT.
12165 */
12166static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12167 int msecs)
12168{
12169 unsigned long timeout;
12170
12171 timeout = jiffies + msecs_to_jiffies(msecs);
12172 while (1) {
12173 if (get_logical_state(ppd) == state)
12174 return 0;
12175 if (time_after(jiffies, timeout))
12176 break;
12177 msleep(20);
12178 }
12179 dd_dev_err(ppd->dd, "timeout waiting for link state 0x%x\n", state);
12180
12181 return -ETIMEDOUT;
12182}
12183
12184u8 hfi1_ibphys_portstate(struct hfi1_pportdata *ppd)
12185{
12186 static u32 remembered_state = 0xff;
12187 u32 pstate;
12188 u32 ib_pstate;
12189
12190 pstate = read_physical_state(ppd->dd);
12191 ib_pstate = chip_to_opa_pstate(ppd->dd, pstate);
12192 if (remembered_state != ib_pstate) {
12193 dd_dev_info(ppd->dd,
12194 "%s: physical state changed to %s (0x%x), phy 0x%x\n",
12195 __func__, opa_pstate_name(ib_pstate), ib_pstate,
12196 pstate);
12197 remembered_state = ib_pstate;
12198 }
12199 return ib_pstate;
12200}
12201
12202/*
12203 * Read/modify/write ASIC_QSFP register bits as selected by mask
12204 * data: 0 or 1 in the positions depending on what needs to be written
12205 * dir: 0 for read, 1 for write
12206 * mask: select by setting
12207 * I2CCLK (bit 0)
12208 * I2CDATA (bit 1)
12209 */
12210u64 hfi1_gpio_mod(struct hfi1_devdata *dd, u32 target, u32 data, u32 dir,
12211 u32 mask)
12212{
12213 u64 qsfp_oe, target_oe;
12214
12215 target_oe = target ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
12216 if (mask) {
12217 /* We are writing register bits, so lock access */
12218 dir &= mask;
12219 data &= mask;
12220
12221 qsfp_oe = read_csr(dd, target_oe);
12222 qsfp_oe = (qsfp_oe & ~(u64)mask) | (u64)dir;
12223 write_csr(dd, target_oe, qsfp_oe);
12224 }
12225 /* We are exclusively reading bits here, but it is unlikely
12226 * we'll get valid data when we set the direction of the pin
12227 * in the same call, so read should call this function again
12228 * to get valid data
12229 */
12230 return read_csr(dd, target ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
12231}
12232
12233#define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12234(r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12235
12236#define SET_STATIC_RATE_CONTROL_SMASK(r) \
12237(r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12238
12239int hfi1_init_ctxt(struct send_context *sc)
12240{
12241 if (sc != NULL) {
12242 struct hfi1_devdata *dd = sc->dd;
12243 u64 reg;
12244 u8 set = (sc->type == SC_USER ?
12245 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12246 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12247 reg = read_kctxt_csr(dd, sc->hw_context,
12248 SEND_CTXT_CHECK_ENABLE);
12249 if (set)
12250 CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12251 else
12252 SET_STATIC_RATE_CONTROL_SMASK(reg);
12253 write_kctxt_csr(dd, sc->hw_context,
12254 SEND_CTXT_CHECK_ENABLE, reg);
12255 }
12256 return 0;
12257}
12258
12259int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12260{
12261 int ret = 0;
12262 u64 reg;
12263
12264 if (dd->icode != ICODE_RTL_SILICON) {
12265 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12266 dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12267 __func__);
12268 return -EINVAL;
12269 }
12270 reg = read_csr(dd, ASIC_STS_THERM);
12271 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12272 ASIC_STS_THERM_CURR_TEMP_MASK);
12273 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12274 ASIC_STS_THERM_LO_TEMP_MASK);
12275 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12276 ASIC_STS_THERM_HI_TEMP_MASK);
12277 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12278 ASIC_STS_THERM_CRIT_TEMP_MASK);
12279 /* triggers is a 3-bit value - 1 bit per trigger. */
12280 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12281
12282 return ret;
12283}
12284
12285/* ========================================================================= */
12286
12287/*
12288 * Enable/disable chip from delivering interrupts.
12289 */
12290void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12291{
12292 int i;
12293
12294 /*
12295 * In HFI, the mask needs to be 1 to allow interrupts.
12296 */
12297 if (enable) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040012298 /* enable all interrupts */
12299 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12300 write_csr(dd, CCE_INT_MASK + (8*i), ~(u64)0);
12301
Easwar Hariharan8ebd4cf2016-02-03 14:31:14 -080012302 init_qsfp_int(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012303 } else {
12304 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12305 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
12306 }
12307}
12308
12309/*
12310 * Clear all interrupt sources on the chip.
12311 */
12312static void clear_all_interrupts(struct hfi1_devdata *dd)
12313{
12314 int i;
12315
12316 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12317 write_csr(dd, CCE_INT_CLEAR + (8*i), ~(u64)0);
12318
12319 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12320 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12321 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12322 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12323 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12324 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12325 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12326 for (i = 0; i < dd->chip_send_contexts; i++)
12327 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12328 for (i = 0; i < dd->chip_sdma_engines; i++)
12329 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12330
12331 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12332 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12333 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12334}
12335
12336/* Move to pcie.c? */
12337static void disable_intx(struct pci_dev *pdev)
12338{
12339 pci_intx(pdev, 0);
12340}
12341
12342static void clean_up_interrupts(struct hfi1_devdata *dd)
12343{
12344 int i;
12345
12346 /* remove irqs - must happen before disabling/turning off */
12347 if (dd->num_msix_entries) {
12348 /* MSI-X */
12349 struct hfi1_msix_entry *me = dd->msix_entries;
12350
12351 for (i = 0; i < dd->num_msix_entries; i++, me++) {
12352 if (me->arg == NULL) /* => no irq, no affinity */
Mitko Haralanov957558c2016-02-03 14:33:40 -080012353 continue;
12354 hfi1_put_irq_affinity(dd, &dd->msix_entries[i]);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012355 free_irq(me->msix.vector, me->arg);
12356 }
12357 } else {
12358 /* INTx */
12359 if (dd->requested_intx_irq) {
12360 free_irq(dd->pcidev->irq, dd);
12361 dd->requested_intx_irq = 0;
12362 }
12363 }
12364
12365 /* turn off interrupts */
12366 if (dd->num_msix_entries) {
12367 /* MSI-X */
Amitoj Kaur Chawla6e5b6132015-11-01 16:14:32 +053012368 pci_disable_msix(dd->pcidev);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012369 } else {
12370 /* INTx */
12371 disable_intx(dd->pcidev);
12372 }
12373
12374 /* clean structures */
Mike Marciniszyn77241052015-07-30 15:17:43 -040012375 kfree(dd->msix_entries);
12376 dd->msix_entries = NULL;
12377 dd->num_msix_entries = 0;
12378}
12379
12380/*
12381 * Remap the interrupt source from the general handler to the given MSI-X
12382 * interrupt.
12383 */
12384static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12385{
12386 u64 reg;
12387 int m, n;
12388
12389 /* clear from the handled mask of the general interrupt */
12390 m = isrc / 64;
12391 n = isrc % 64;
12392 dd->gi_mask[m] &= ~((u64)1 << n);
12393
12394 /* direct the chip source to the given MSI-X interrupt */
12395 m = isrc / 8;
12396 n = isrc % 8;
12397 reg = read_csr(dd, CCE_INT_MAP + (8*m));
12398 reg &= ~((u64)0xff << (8*n));
12399 reg |= ((u64)msix_intr & 0xff) << (8*n);
12400 write_csr(dd, CCE_INT_MAP + (8*m), reg);
12401}
12402
12403static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12404 int engine, int msix_intr)
12405{
12406 /*
12407 * SDMA engine interrupt sources grouped by type, rather than
12408 * engine. Per-engine interrupts are as follows:
12409 * SDMA
12410 * SDMAProgress
12411 * SDMAIdle
12412 */
12413 remap_intr(dd, IS_SDMA_START + 0*TXE_NUM_SDMA_ENGINES + engine,
12414 msix_intr);
12415 remap_intr(dd, IS_SDMA_START + 1*TXE_NUM_SDMA_ENGINES + engine,
12416 msix_intr);
12417 remap_intr(dd, IS_SDMA_START + 2*TXE_NUM_SDMA_ENGINES + engine,
12418 msix_intr);
12419}
12420
Mike Marciniszyn77241052015-07-30 15:17:43 -040012421static int request_intx_irq(struct hfi1_devdata *dd)
12422{
12423 int ret;
12424
Jubin John98050712015-11-16 21:59:27 -050012425 snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12426 dd->unit);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012427 ret = request_irq(dd->pcidev->irq, general_interrupt,
12428 IRQF_SHARED, dd->intx_name, dd);
12429 if (ret)
12430 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
12431 ret);
12432 else
12433 dd->requested_intx_irq = 1;
12434 return ret;
12435}
12436
12437static int request_msix_irqs(struct hfi1_devdata *dd)
12438{
Mike Marciniszyn77241052015-07-30 15:17:43 -040012439 int first_general, last_general;
12440 int first_sdma, last_sdma;
12441 int first_rx, last_rx;
Mitko Haralanov957558c2016-02-03 14:33:40 -080012442 int i, ret = 0;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012443
12444 /* calculate the ranges we are going to use */
12445 first_general = 0;
12446 first_sdma = last_general = first_general + 1;
12447 first_rx = last_sdma = first_sdma + dd->num_sdma;
12448 last_rx = first_rx + dd->n_krcv_queues;
12449
12450 /*
Mike Marciniszyn77241052015-07-30 15:17:43 -040012451 * Sanity check - the code expects all SDMA chip source
12452 * interrupts to be in the same CSR, starting at bit 0. Verify
12453 * that this is true by checking the bit location of the start.
12454 */
12455 BUILD_BUG_ON(IS_SDMA_START % 64);
12456
12457 for (i = 0; i < dd->num_msix_entries; i++) {
12458 struct hfi1_msix_entry *me = &dd->msix_entries[i];
12459 const char *err_info;
12460 irq_handler_t handler;
Dean Luickf4f30031c2015-10-26 10:28:44 -040012461 irq_handler_t thread = NULL;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012462 void *arg;
12463 int idx;
12464 struct hfi1_ctxtdata *rcd = NULL;
12465 struct sdma_engine *sde = NULL;
12466
12467 /* obtain the arguments to request_irq */
12468 if (first_general <= i && i < last_general) {
12469 idx = i - first_general;
12470 handler = general_interrupt;
12471 arg = dd;
12472 snprintf(me->name, sizeof(me->name),
Jubin John98050712015-11-16 21:59:27 -050012473 DRIVER_NAME "_%d", dd->unit);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012474 err_info = "general";
Mitko Haralanov957558c2016-02-03 14:33:40 -080012475 me->type = IRQ_GENERAL;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012476 } else if (first_sdma <= i && i < last_sdma) {
12477 idx = i - first_sdma;
12478 sde = &dd->per_sdma[idx];
12479 handler = sdma_interrupt;
12480 arg = sde;
12481 snprintf(me->name, sizeof(me->name),
Jubin John98050712015-11-16 21:59:27 -050012482 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012483 err_info = "sdma";
12484 remap_sdma_interrupts(dd, idx, i);
Mitko Haralanov957558c2016-02-03 14:33:40 -080012485 me->type = IRQ_SDMA;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012486 } else if (first_rx <= i && i < last_rx) {
12487 idx = i - first_rx;
12488 rcd = dd->rcd[idx];
12489 /* no interrupt if no rcd */
12490 if (!rcd)
12491 continue;
12492 /*
12493 * Set the interrupt register and mask for this
12494 * context's interrupt.
12495 */
12496 rcd->ireg = (IS_RCVAVAIL_START+idx) / 64;
12497 rcd->imask = ((u64)1) <<
12498 ((IS_RCVAVAIL_START+idx) % 64);
12499 handler = receive_context_interrupt;
Dean Luickf4f30031c2015-10-26 10:28:44 -040012500 thread = receive_context_thread;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012501 arg = rcd;
12502 snprintf(me->name, sizeof(me->name),
Jubin John98050712015-11-16 21:59:27 -050012503 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012504 err_info = "receive context";
Amitoj Kaur Chawla66c09332015-11-01 16:18:18 +053012505 remap_intr(dd, IS_RCVAVAIL_START + idx, i);
Mitko Haralanov957558c2016-02-03 14:33:40 -080012506 me->type = IRQ_RCVCTXT;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012507 } else {
12508 /* not in our expected range - complain, then
12509 ignore it */
12510 dd_dev_err(dd,
12511 "Unexpected extra MSI-X interrupt %d\n", i);
12512 continue;
12513 }
12514 /* no argument, no interrupt */
12515 if (arg == NULL)
12516 continue;
12517 /* make sure the name is terminated */
12518 me->name[sizeof(me->name)-1] = 0;
12519
Dean Luickf4f30031c2015-10-26 10:28:44 -040012520 ret = request_threaded_irq(me->msix.vector, handler, thread, 0,
12521 me->name, arg);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012522 if (ret) {
12523 dd_dev_err(dd,
12524 "unable to allocate %s interrupt, vector %d, index %d, err %d\n",
12525 err_info, me->msix.vector, idx, ret);
12526 return ret;
12527 }
12528 /*
12529 * assign arg after request_irq call, so it will be
12530 * cleaned up
12531 */
12532 me->arg = arg;
12533
Mitko Haralanov957558c2016-02-03 14:33:40 -080012534 ret = hfi1_get_irq_affinity(dd, me);
12535 if (ret)
12536 dd_dev_err(dd,
12537 "unable to pin IRQ %d\n", ret);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012538 }
12539
Mike Marciniszyn77241052015-07-30 15:17:43 -040012540 return ret;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012541}
12542
12543/*
12544 * Set the general handler to accept all interrupts, remap all
12545 * chip interrupts back to MSI-X 0.
12546 */
12547static void reset_interrupts(struct hfi1_devdata *dd)
12548{
12549 int i;
12550
12551 /* all interrupts handled by the general handler */
12552 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12553 dd->gi_mask[i] = ~(u64)0;
12554
12555 /* all chip interrupts map to MSI-X 0 */
12556 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12557 write_csr(dd, CCE_INT_MAP + (8*i), 0);
12558}
12559
12560static int set_up_interrupts(struct hfi1_devdata *dd)
12561{
12562 struct hfi1_msix_entry *entries;
12563 u32 total, request;
12564 int i, ret;
12565 int single_interrupt = 0; /* we expect to have all the interrupts */
12566
12567 /*
12568 * Interrupt count:
12569 * 1 general, "slow path" interrupt (includes the SDMA engines
12570 * slow source, SDMACleanupDone)
12571 * N interrupts - one per used SDMA engine
12572 * M interrupt - one per kernel receive context
12573 */
12574 total = 1 + dd->num_sdma + dd->n_krcv_queues;
12575
12576 entries = kcalloc(total, sizeof(*entries), GFP_KERNEL);
12577 if (!entries) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040012578 ret = -ENOMEM;
12579 goto fail;
12580 }
12581 /* 1-1 MSI-X entry assignment */
12582 for (i = 0; i < total; i++)
12583 entries[i].msix.entry = i;
12584
12585 /* ask for MSI-X interrupts */
12586 request = total;
12587 request_msix(dd, &request, entries);
12588
12589 if (request == 0) {
12590 /* using INTx */
12591 /* dd->num_msix_entries already zero */
12592 kfree(entries);
12593 single_interrupt = 1;
12594 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
12595 } else {
12596 /* using MSI-X */
12597 dd->num_msix_entries = request;
12598 dd->msix_entries = entries;
12599
12600 if (request != total) {
12601 /* using MSI-X, with reduced interrupts */
12602 dd_dev_err(
12603 dd,
12604 "cannot handle reduced interrupt case, want %u, got %u\n",
12605 total, request);
12606 ret = -EINVAL;
12607 goto fail;
12608 }
12609 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
12610 }
12611
12612 /* mask all interrupts */
12613 set_intr_state(dd, 0);
12614 /* clear all pending interrupts */
12615 clear_all_interrupts(dd);
12616
12617 /* reset general handler mask, chip MSI-X mappings */
12618 reset_interrupts(dd);
12619
12620 if (single_interrupt)
12621 ret = request_intx_irq(dd);
12622 else
12623 ret = request_msix_irqs(dd);
12624 if (ret)
12625 goto fail;
12626
12627 return 0;
12628
12629fail:
12630 clean_up_interrupts(dd);
12631 return ret;
12632}
12633
12634/*
12635 * Set up context values in dd. Sets:
12636 *
12637 * num_rcv_contexts - number of contexts being used
12638 * n_krcv_queues - number of kernel contexts
12639 * first_user_ctxt - first non-kernel context in array of contexts
12640 * freectxts - number of free user contexts
12641 * num_send_contexts - number of PIO send contexts being used
12642 */
12643static int set_up_context_variables(struct hfi1_devdata *dd)
12644{
12645 int num_kernel_contexts;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012646 int total_contexts;
12647 int ret;
12648 unsigned ngroups;
12649
12650 /*
12651 * Kernel contexts: (to be fixed later):
12652 * - min or 2 or 1 context/numa
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050012653 * - Context 0 - control context (VL15/multicast/error)
12654 * - Context 1 - default context
Mike Marciniszyn77241052015-07-30 15:17:43 -040012655 */
12656 if (n_krcvqs)
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050012657 /*
12658 * Don't count context 0 in n_krcvqs since
12659 * is isn't used for normal verbs traffic.
12660 *
12661 * krcvqs will reflect number of kernel
12662 * receive contexts above 0.
12663 */
12664 num_kernel_contexts = n_krcvqs + MIN_KERNEL_KCTXTS - 1;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012665 else
jubin.john@intel.com0edf80e2016-01-11 18:30:55 -050012666 num_kernel_contexts = num_online_nodes() + 1;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012667 num_kernel_contexts =
12668 max_t(int, MIN_KERNEL_KCTXTS, num_kernel_contexts);
12669 /*
12670 * Every kernel receive context needs an ACK send context.
12671 * one send context is allocated for each VL{0-7} and VL15
12672 */
12673 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
12674 dd_dev_err(dd,
12675 "Reducing # kernel rcv contexts to: %d, from %d\n",
12676 (int)(dd->chip_send_contexts - num_vls - 1),
12677 (int)num_kernel_contexts);
12678 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
12679 }
12680 /*
12681 * User contexts: (to be fixed later)
Sebastian Sanchez2ce6bf22015-12-11 08:44:48 -050012682 * - default to 1 user context per CPU if num_user_contexts is
12683 * negative
Mike Marciniszyn77241052015-07-30 15:17:43 -040012684 */
Sebastian Sanchez2ce6bf22015-12-11 08:44:48 -050012685 if (num_user_contexts < 0)
Mike Marciniszyn77241052015-07-30 15:17:43 -040012686 num_user_contexts = num_online_cpus();
12687
12688 total_contexts = num_kernel_contexts + num_user_contexts;
12689
12690 /*
12691 * Adjust the counts given a global max.
12692 */
12693 if (total_contexts > dd->chip_rcv_contexts) {
12694 dd_dev_err(dd,
12695 "Reducing # user receive contexts to: %d, from %d\n",
12696 (int)(dd->chip_rcv_contexts - num_kernel_contexts),
12697 (int)num_user_contexts);
12698 num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
12699 /* recalculate */
12700 total_contexts = num_kernel_contexts + num_user_contexts;
12701 }
12702
12703 /* the first N are kernel contexts, the rest are user contexts */
12704 dd->num_rcv_contexts = total_contexts;
12705 dd->n_krcv_queues = num_kernel_contexts;
12706 dd->first_user_ctxt = num_kernel_contexts;
Ashutosh Dixitaffa48d2016-02-03 14:33:06 -080012707 dd->num_user_contexts = num_user_contexts;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012708 dd->freectxts = num_user_contexts;
12709 dd_dev_info(dd,
12710 "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
12711 (int)dd->chip_rcv_contexts,
12712 (int)dd->num_rcv_contexts,
12713 (int)dd->n_krcv_queues,
12714 (int)dd->num_rcv_contexts - dd->n_krcv_queues);
12715
12716 /*
12717 * Receive array allocation:
12718 * All RcvArray entries are divided into groups of 8. This
12719 * is required by the hardware and will speed up writes to
12720 * consecutive entries by using write-combining of the entire
12721 * cacheline.
12722 *
12723 * The number of groups are evenly divided among all contexts.
12724 * any left over groups will be given to the first N user
12725 * contexts.
12726 */
12727 dd->rcv_entries.group_size = RCV_INCREMENT;
12728 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
12729 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
12730 dd->rcv_entries.nctxt_extra = ngroups -
12731 (dd->num_rcv_contexts * dd->rcv_entries.ngroups);
12732 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
12733 dd->rcv_entries.ngroups,
12734 dd->rcv_entries.nctxt_extra);
12735 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
12736 MAX_EAGER_ENTRIES * 2) {
12737 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
12738 dd->rcv_entries.group_size;
12739 dd_dev_info(dd,
12740 "RcvArray group count too high, change to %u\n",
12741 dd->rcv_entries.ngroups);
12742 dd->rcv_entries.nctxt_extra = 0;
12743 }
12744 /*
12745 * PIO send contexts
12746 */
12747 ret = init_sc_pools_and_sizes(dd);
12748 if (ret >= 0) { /* success */
12749 dd->num_send_contexts = ret;
12750 dd_dev_info(
12751 dd,
12752 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d)\n",
12753 dd->chip_send_contexts,
12754 dd->num_send_contexts,
12755 dd->sc_sizes[SC_KERNEL].count,
12756 dd->sc_sizes[SC_ACK].count,
12757 dd->sc_sizes[SC_USER].count);
12758 ret = 0; /* success */
12759 }
12760
12761 return ret;
12762}
12763
12764/*
12765 * Set the device/port partition key table. The MAD code
12766 * will ensure that, at least, the partial management
12767 * partition key is present in the table.
12768 */
12769static void set_partition_keys(struct hfi1_pportdata *ppd)
12770{
12771 struct hfi1_devdata *dd = ppd->dd;
12772 u64 reg = 0;
12773 int i;
12774
12775 dd_dev_info(dd, "Setting partition keys\n");
12776 for (i = 0; i < hfi1_get_npkeys(dd); i++) {
12777 reg |= (ppd->pkeys[i] &
12778 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
12779 ((i % 4) *
12780 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
12781 /* Each register holds 4 PKey values. */
12782 if ((i % 4) == 3) {
12783 write_csr(dd, RCV_PARTITION_KEY +
12784 ((i - 3) * 2), reg);
12785 reg = 0;
12786 }
12787 }
12788
12789 /* Always enable HW pkeys check when pkeys table is set */
12790 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
12791}
12792
12793/*
12794 * These CSRs and memories are uninitialized on reset and must be
12795 * written before reading to set the ECC/parity bits.
12796 *
12797 * NOTE: All user context CSRs that are not mmaped write-only
12798 * (e.g. the TID flows) must be initialized even if the driver never
12799 * reads them.
12800 */
12801static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
12802{
12803 int i, j;
12804
12805 /* CceIntMap */
12806 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12807 write_csr(dd, CCE_INT_MAP+(8*i), 0);
12808
12809 /* SendCtxtCreditReturnAddr */
12810 for (i = 0; i < dd->chip_send_contexts; i++)
12811 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
12812
12813 /* PIO Send buffers */
12814 /* SDMA Send buffers */
12815 /* These are not normally read, and (presently) have no method
12816 to be read, so are not pre-initialized */
12817
12818 /* RcvHdrAddr */
12819 /* RcvHdrTailAddr */
12820 /* RcvTidFlowTable */
12821 for (i = 0; i < dd->chip_rcv_contexts; i++) {
12822 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
12823 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
12824 for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
12825 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE+(8*j), 0);
12826 }
12827
12828 /* RcvArray */
12829 for (i = 0; i < dd->chip_rcv_array_count; i++)
12830 write_csr(dd, RCV_ARRAY + (8*i),
12831 RCV_ARRAY_RT_WRITE_ENABLE_SMASK);
12832
12833 /* RcvQPMapTable */
12834 for (i = 0; i < 32; i++)
12835 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
12836}
12837
12838/*
12839 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
12840 */
12841static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
12842 u64 ctrl_bits)
12843{
12844 unsigned long timeout;
12845 u64 reg;
12846
12847 /* is the condition present? */
12848 reg = read_csr(dd, CCE_STATUS);
12849 if ((reg & status_bits) == 0)
12850 return;
12851
12852 /* clear the condition */
12853 write_csr(dd, CCE_CTRL, ctrl_bits);
12854
12855 /* wait for the condition to clear */
12856 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
12857 while (1) {
12858 reg = read_csr(dd, CCE_STATUS);
12859 if ((reg & status_bits) == 0)
12860 return;
12861 if (time_after(jiffies, timeout)) {
12862 dd_dev_err(dd,
12863 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
12864 status_bits, reg & status_bits);
12865 return;
12866 }
12867 udelay(1);
12868 }
12869}
12870
12871/* set CCE CSRs to chip reset defaults */
12872static void reset_cce_csrs(struct hfi1_devdata *dd)
12873{
12874 int i;
12875
12876 /* CCE_REVISION read-only */
12877 /* CCE_REVISION2 read-only */
12878 /* CCE_CTRL - bits clear automatically */
12879 /* CCE_STATUS read-only, use CceCtrl to clear */
12880 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
12881 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
12882 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
12883 for (i = 0; i < CCE_NUM_SCRATCH; i++)
12884 write_csr(dd, CCE_SCRATCH + (8 * i), 0);
12885 /* CCE_ERR_STATUS read-only */
12886 write_csr(dd, CCE_ERR_MASK, 0);
12887 write_csr(dd, CCE_ERR_CLEAR, ~0ull);
12888 /* CCE_ERR_FORCE leave alone */
12889 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
12890 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
12891 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
12892 /* CCE_PCIE_CTRL leave alone */
12893 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
12894 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
12895 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
12896 CCE_MSIX_TABLE_UPPER_RESETCSR);
12897 }
12898 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
12899 /* CCE_MSIX_PBA read-only */
12900 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
12901 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
12902 }
12903 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
12904 write_csr(dd, CCE_INT_MAP, 0);
12905 for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
12906 /* CCE_INT_STATUS read-only */
12907 write_csr(dd, CCE_INT_MASK + (8 * i), 0);
12908 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
12909 /* CCE_INT_FORCE leave alone */
12910 /* CCE_INT_BLOCKED read-only */
12911 }
12912 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
12913 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
12914}
12915
12916/* set ASIC CSRs to chip reset defaults */
12917static void reset_asic_csrs(struct hfi1_devdata *dd)
12918{
Mike Marciniszyn77241052015-07-30 15:17:43 -040012919 int i;
12920
12921 /*
12922 * If the HFIs are shared between separate nodes or VMs,
12923 * then more will need to be done here. One idea is a module
12924 * parameter that returns early, letting the first power-on or
12925 * a known first load do the reset and blocking all others.
12926 */
12927
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040012928 if (!(dd->flags & HFI1_DO_INIT_ASIC))
12929 return;
Mike Marciniszyn77241052015-07-30 15:17:43 -040012930
12931 if (dd->icode != ICODE_FPGA_EMULATION) {
12932 /* emulation does not have an SBus - leave these alone */
12933 /*
12934 * All writes to ASIC_CFG_SBUS_REQUEST do something.
12935 * Notes:
12936 * o The reset is not zero if aimed at the core. See the
12937 * SBus documentation for details.
12938 * o If the SBus firmware has been updated (e.g. by the BIOS),
12939 * will the reset revert that?
12940 */
12941 /* ASIC_CFG_SBUS_REQUEST leave alone */
12942 write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0);
12943 }
12944 /* ASIC_SBUS_RESULT read-only */
12945 write_csr(dd, ASIC_STS_SBUS_COUNTERS, 0);
12946 for (i = 0; i < ASIC_NUM_SCRATCH; i++)
12947 write_csr(dd, ASIC_CFG_SCRATCH + (8 * i), 0);
12948 write_csr(dd, ASIC_CFG_MUTEX, 0); /* this will clear it */
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040012949
12950 /* We might want to retain this state across FLR if we ever use it */
Mike Marciniszyn77241052015-07-30 15:17:43 -040012951 write_csr(dd, ASIC_CFG_DRV_STR, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040012952
Jareer Abdel-Qader4ef98982015-11-06 20:07:00 -050012953 /* ASIC_CFG_THERM_POLL_EN leave alone */
Mike Marciniszyn77241052015-07-30 15:17:43 -040012954 /* ASIC_STS_THERM read-only */
12955 /* ASIC_CFG_RESET leave alone */
12956
12957 write_csr(dd, ASIC_PCIE_SD_HOST_CMD, 0);
12958 /* ASIC_PCIE_SD_HOST_STATUS read-only */
12959 write_csr(dd, ASIC_PCIE_SD_INTRPT_DATA_CODE, 0);
12960 write_csr(dd, ASIC_PCIE_SD_INTRPT_ENABLE, 0);
12961 /* ASIC_PCIE_SD_INTRPT_PROGRESS read-only */
12962 write_csr(dd, ASIC_PCIE_SD_INTRPT_STATUS, ~0ull); /* clear */
12963 /* ASIC_HFI0_PCIE_SD_INTRPT_RSPD_DATA read-only */
12964 /* ASIC_HFI1_PCIE_SD_INTRPT_RSPD_DATA read-only */
12965 for (i = 0; i < 16; i++)
12966 write_csr(dd, ASIC_PCIE_SD_INTRPT_LIST + (8 * i), 0);
12967
12968 /* ASIC_GPIO_IN read-only */
12969 write_csr(dd, ASIC_GPIO_OE, 0);
12970 write_csr(dd, ASIC_GPIO_INVERT, 0);
12971 write_csr(dd, ASIC_GPIO_OUT, 0);
12972 write_csr(dd, ASIC_GPIO_MASK, 0);
12973 /* ASIC_GPIO_STATUS read-only */
12974 write_csr(dd, ASIC_GPIO_CLEAR, ~0ull);
12975 /* ASIC_GPIO_FORCE leave alone */
12976
12977 /* ASIC_QSFP1_IN read-only */
12978 write_csr(dd, ASIC_QSFP1_OE, 0);
12979 write_csr(dd, ASIC_QSFP1_INVERT, 0);
12980 write_csr(dd, ASIC_QSFP1_OUT, 0);
12981 write_csr(dd, ASIC_QSFP1_MASK, 0);
12982 /* ASIC_QSFP1_STATUS read-only */
12983 write_csr(dd, ASIC_QSFP1_CLEAR, ~0ull);
12984 /* ASIC_QSFP1_FORCE leave alone */
12985
12986 /* ASIC_QSFP2_IN read-only */
12987 write_csr(dd, ASIC_QSFP2_OE, 0);
12988 write_csr(dd, ASIC_QSFP2_INVERT, 0);
12989 write_csr(dd, ASIC_QSFP2_OUT, 0);
12990 write_csr(dd, ASIC_QSFP2_MASK, 0);
12991 /* ASIC_QSFP2_STATUS read-only */
12992 write_csr(dd, ASIC_QSFP2_CLEAR, ~0ull);
12993 /* ASIC_QSFP2_FORCE leave alone */
12994
12995 write_csr(dd, ASIC_EEP_CTL_STAT, ASIC_EEP_CTL_STAT_RESETCSR);
12996 /* this also writes a NOP command, clearing paging mode */
12997 write_csr(dd, ASIC_EEP_ADDR_CMD, 0);
12998 write_csr(dd, ASIC_EEP_DATA, 0);
Mike Marciniszyn77241052015-07-30 15:17:43 -040012999}
13000
13001/* set MISC CSRs to chip reset defaults */
13002static void reset_misc_csrs(struct hfi1_devdata *dd)
13003{
13004 int i;
13005
13006 for (i = 0; i < 32; i++) {
13007 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13008 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13009 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13010 }
13011 /* MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13012 only be written 128-byte chunks */
13013 /* init RSA engine to clear lingering errors */
13014 write_csr(dd, MISC_CFG_RSA_CMD, 1);
13015 write_csr(dd, MISC_CFG_RSA_MU, 0);
13016 write_csr(dd, MISC_CFG_FW_CTRL, 0);
13017 /* MISC_STS_8051_DIGEST read-only */
13018 /* MISC_STS_SBM_DIGEST read-only */
13019 /* MISC_STS_PCIE_DIGEST read-only */
13020 /* MISC_STS_FAB_DIGEST read-only */
13021 /* MISC_ERR_STATUS read-only */
13022 write_csr(dd, MISC_ERR_MASK, 0);
13023 write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13024 /* MISC_ERR_FORCE leave alone */
13025}
13026
13027/* set TXE CSRs to chip reset defaults */
13028static void reset_txe_csrs(struct hfi1_devdata *dd)
13029{
13030 int i;
13031
13032 /*
13033 * TXE Kernel CSRs
13034 */
13035 write_csr(dd, SEND_CTRL, 0);
13036 __cm_reset(dd, 0); /* reset CM internal state */
13037 /* SEND_CONTEXTS read-only */
13038 /* SEND_DMA_ENGINES read-only */
13039 /* SEND_PIO_MEM_SIZE read-only */
13040 /* SEND_DMA_MEM_SIZE read-only */
13041 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13042 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */
13043 /* SEND_PIO_ERR_STATUS read-only */
13044 write_csr(dd, SEND_PIO_ERR_MASK, 0);
13045 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13046 /* SEND_PIO_ERR_FORCE leave alone */
13047 /* SEND_DMA_ERR_STATUS read-only */
13048 write_csr(dd, SEND_DMA_ERR_MASK, 0);
13049 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13050 /* SEND_DMA_ERR_FORCE leave alone */
13051 /* SEND_EGRESS_ERR_STATUS read-only */
13052 write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13053 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13054 /* SEND_EGRESS_ERR_FORCE leave alone */
13055 write_csr(dd, SEND_BTH_QP, 0);
13056 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13057 write_csr(dd, SEND_SC2VLT0, 0);
13058 write_csr(dd, SEND_SC2VLT1, 0);
13059 write_csr(dd, SEND_SC2VLT2, 0);
13060 write_csr(dd, SEND_SC2VLT3, 0);
13061 write_csr(dd, SEND_LEN_CHECK0, 0);
13062 write_csr(dd, SEND_LEN_CHECK1, 0);
13063 /* SEND_ERR_STATUS read-only */
13064 write_csr(dd, SEND_ERR_MASK, 0);
13065 write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13066 /* SEND_ERR_FORCE read-only */
13067 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13068 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8*i), 0);
13069 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13070 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8*i), 0);
13071 for (i = 0; i < dd->chip_send_contexts/NUM_CONTEXTS_PER_SET; i++)
13072 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8*i), 0);
13073 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13074 write_csr(dd, SEND_COUNTER_ARRAY32 + (8*i), 0);
13075 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13076 write_csr(dd, SEND_COUNTER_ARRAY64 + (8*i), 0);
13077 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13078 write_csr(dd, SEND_CM_GLOBAL_CREDIT,
13079 SEND_CM_GLOBAL_CREDIT_RESETCSR);
13080 /* SEND_CM_CREDIT_USED_STATUS read-only */
13081 write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13082 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13083 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13084 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13085 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13086 for (i = 0; i < TXE_NUM_DATA_VL; i++)
13087 write_csr(dd, SEND_CM_CREDIT_VL + (8*i), 0);
13088 write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13089 /* SEND_CM_CREDIT_USED_VL read-only */
13090 /* SEND_CM_CREDIT_USED_VL15 read-only */
13091 /* SEND_EGRESS_CTXT_STATUS read-only */
13092 /* SEND_EGRESS_SEND_DMA_STATUS read-only */
13093 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13094 /* SEND_EGRESS_ERR_INFO read-only */
13095 /* SEND_EGRESS_ERR_SOURCE read-only */
13096
13097 /*
13098 * TXE Per-Context CSRs
13099 */
13100 for (i = 0; i < dd->chip_send_contexts; i++) {
13101 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13102 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13103 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13104 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13105 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13106 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13107 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13108 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13109 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13110 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13111 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13112 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13113 }
13114
13115 /*
13116 * TXE Per-SDMA CSRs
13117 */
13118 for (i = 0; i < dd->chip_sdma_engines; i++) {
13119 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13120 /* SEND_DMA_STATUS read-only */
13121 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13122 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13123 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13124 /* SEND_DMA_HEAD read-only */
13125 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13126 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13127 /* SEND_DMA_IDLE_CNT read-only */
13128 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13129 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13130 /* SEND_DMA_DESC_FETCHED_CNT read-only */
13131 /* SEND_DMA_ENG_ERR_STATUS read-only */
13132 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13133 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13134 /* SEND_DMA_ENG_ERR_FORCE leave alone */
13135 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13136 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13137 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13138 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13139 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13140 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13141 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13142 }
13143}
13144
13145/*
13146 * Expect on entry:
13147 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13148 */
13149static void init_rbufs(struct hfi1_devdata *dd)
13150{
13151 u64 reg;
13152 int count;
13153
13154 /*
13155 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13156 * clear.
13157 */
13158 count = 0;
13159 while (1) {
13160 reg = read_csr(dd, RCV_STATUS);
13161 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13162 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13163 break;
13164 /*
13165 * Give up after 1ms - maximum wait time.
13166 *
13167 * RBuf size is 148KiB. Slowest possible is PCIe Gen1 x1 at
13168 * 250MB/s bandwidth. Lower rate to 66% for overhead to get:
13169 * 148 KB / (66% * 250MB/s) = 920us
13170 */
13171 if (count++ > 500) {
13172 dd_dev_err(dd,
13173 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13174 __func__, reg);
13175 break;
13176 }
13177 udelay(2); /* do not busy-wait the CSR */
13178 }
13179
13180 /* start the init - expect RcvCtrl to be 0 */
13181 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13182
13183 /*
13184 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief
13185 * period after the write before RcvStatus.RxRbufInitDone is valid.
13186 * The delay in the first run through the loop below is sufficient and
13187 * required before the first read of RcvStatus.RxRbufInintDone.
13188 */
13189 read_csr(dd, RCV_CTRL);
13190
13191 /* wait for the init to finish */
13192 count = 0;
13193 while (1) {
13194 /* delay is required first time through - see above */
13195 udelay(2); /* do not busy-wait the CSR */
13196 reg = read_csr(dd, RCV_STATUS);
13197 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13198 break;
13199
13200 /* give up after 100us - slowest possible at 33MHz is 73us */
13201 if (count++ > 50) {
13202 dd_dev_err(dd,
13203 "%s: RcvStatus.RxRbufInit not set, continuing\n",
13204 __func__);
13205 break;
13206 }
13207 }
13208}
13209
13210/* set RXE CSRs to chip reset defaults */
13211static void reset_rxe_csrs(struct hfi1_devdata *dd)
13212{
13213 int i, j;
13214
13215 /*
13216 * RXE Kernel CSRs
13217 */
13218 write_csr(dd, RCV_CTRL, 0);
13219 init_rbufs(dd);
13220 /* RCV_STATUS read-only */
13221 /* RCV_CONTEXTS read-only */
13222 /* RCV_ARRAY_CNT read-only */
13223 /* RCV_BUF_SIZE read-only */
13224 write_csr(dd, RCV_BTH_QP, 0);
13225 write_csr(dd, RCV_MULTICAST, 0);
13226 write_csr(dd, RCV_BYPASS, 0);
13227 write_csr(dd, RCV_VL15, 0);
13228 /* this is a clear-down */
13229 write_csr(dd, RCV_ERR_INFO,
13230 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13231 /* RCV_ERR_STATUS read-only */
13232 write_csr(dd, RCV_ERR_MASK, 0);
13233 write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13234 /* RCV_ERR_FORCE leave alone */
13235 for (i = 0; i < 32; i++)
13236 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13237 for (i = 0; i < 4; i++)
13238 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13239 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13240 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13241 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13242 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13243 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) {
13244 write_csr(dd, RCV_RSM_CFG + (8 * i), 0);
13245 write_csr(dd, RCV_RSM_SELECT + (8 * i), 0);
13246 write_csr(dd, RCV_RSM_MATCH + (8 * i), 0);
13247 }
13248 for (i = 0; i < 32; i++)
13249 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13250
13251 /*
13252 * RXE Kernel and User Per-Context CSRs
13253 */
13254 for (i = 0; i < dd->chip_rcv_contexts; i++) {
13255 /* kernel */
13256 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13257 /* RCV_CTXT_STATUS read-only */
13258 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13259 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13260 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13261 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13262 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13263 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13264 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13265 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13266 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13267 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13268
13269 /* user */
13270 /* RCV_HDR_TAIL read-only */
13271 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13272 /* RCV_EGR_INDEX_TAIL read-only */
13273 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13274 /* RCV_EGR_OFFSET_TAIL read-only */
13275 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13276 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j),
13277 0);
13278 }
13279 }
13280}
13281
13282/*
13283 * Set sc2vl tables.
13284 *
13285 * They power on to zeros, so to avoid send context errors
13286 * they need to be set:
13287 *
13288 * SC 0-7 -> VL 0-7 (respectively)
13289 * SC 15 -> VL 15
13290 * otherwise
13291 * -> VL 0
13292 */
13293static void init_sc2vl_tables(struct hfi1_devdata *dd)
13294{
13295 int i;
13296 /* init per architecture spec, constrained by hardware capability */
13297
13298 /* HFI maps sent packets */
13299 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13300 0,
13301 0, 0, 1, 1,
13302 2, 2, 3, 3,
13303 4, 4, 5, 5,
13304 6, 6, 7, 7));
13305 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13306 1,
13307 8, 0, 9, 0,
13308 10, 0, 11, 0,
13309 12, 0, 13, 0,
13310 14, 0, 15, 15));
13311 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13312 2,
13313 16, 0, 17, 0,
13314 18, 0, 19, 0,
13315 20, 0, 21, 0,
13316 22, 0, 23, 0));
13317 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13318 3,
13319 24, 0, 25, 0,
13320 26, 0, 27, 0,
13321 28, 0, 29, 0,
13322 30, 0, 31, 0));
13323
13324 /* DC maps received packets */
13325 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13326 15_0,
13327 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7,
13328 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13329 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13330 31_16,
13331 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13332 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13333
13334 /* initialize the cached sc2vl values consistently with h/w */
13335 for (i = 0; i < 32; i++) {
13336 if (i < 8 || i == 15)
13337 *((u8 *)(dd->sc2vl) + i) = (u8)i;
13338 else
13339 *((u8 *)(dd->sc2vl) + i) = 0;
13340 }
13341}
13342
13343/*
13344 * Read chip sizes and then reset parts to sane, disabled, values. We cannot
13345 * depend on the chip going through a power-on reset - a driver may be loaded
13346 * and unloaded many times.
13347 *
13348 * Do not write any CSR values to the chip in this routine - there may be
13349 * a reset following the (possible) FLR in this routine.
13350 *
13351 */
13352static void init_chip(struct hfi1_devdata *dd)
13353{
13354 int i;
13355
13356 /*
13357 * Put the HFI CSRs in a known state.
13358 * Combine this with a DC reset.
13359 *
13360 * Stop the device from doing anything while we do a
13361 * reset. We know there are no other active users of
13362 * the device since we are now in charge. Turn off
13363 * off all outbound and inbound traffic and make sure
13364 * the device does not generate any interrupts.
13365 */
13366
13367 /* disable send contexts and SDMA engines */
13368 write_csr(dd, SEND_CTRL, 0);
13369 for (i = 0; i < dd->chip_send_contexts; i++)
13370 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13371 for (i = 0; i < dd->chip_sdma_engines; i++)
13372 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13373 /* disable port (turn off RXE inbound traffic) and contexts */
13374 write_csr(dd, RCV_CTRL, 0);
13375 for (i = 0; i < dd->chip_rcv_contexts; i++)
13376 write_csr(dd, RCV_CTXT_CTRL, 0);
13377 /* mask all interrupt sources */
13378 for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13379 write_csr(dd, CCE_INT_MASK + (8*i), 0ull);
13380
13381 /*
13382 * DC Reset: do a full DC reset before the register clear.
13383 * A recommended length of time to hold is one CSR read,
13384 * so reread the CceDcCtrl. Then, hold the DC in reset
13385 * across the clear.
13386 */
13387 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13388 (void) read_csr(dd, CCE_DC_CTRL);
13389
13390 if (use_flr) {
13391 /*
13392 * A FLR will reset the SPC core and part of the PCIe.
13393 * The parts that need to be restored have already been
13394 * saved.
13395 */
13396 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13397
13398 /* do the FLR, the DC reset will remain */
13399 hfi1_pcie_flr(dd);
13400
13401 /* restore command and BARs */
13402 restore_pci_variables(dd);
13403
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013404 if (is_ax(dd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013405 dd_dev_info(dd, "Resetting CSRs with FLR\n");
13406 hfi1_pcie_flr(dd);
13407 restore_pci_variables(dd);
13408 }
13409
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040013410 reset_asic_csrs(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013411 } else {
13412 dd_dev_info(dd, "Resetting CSRs with writes\n");
13413 reset_cce_csrs(dd);
13414 reset_txe_csrs(dd);
13415 reset_rxe_csrs(dd);
13416 reset_asic_csrs(dd);
13417 reset_misc_csrs(dd);
13418 }
13419 /* clear the DC reset */
13420 write_csr(dd, CCE_DC_CTRL, 0);
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040013421
Mike Marciniszyn77241052015-07-30 15:17:43 -040013422 /* Set the LED off */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013423 if (is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -040013424 setextled(dd, 0);
13425 /*
13426 * Clear the QSFP reset.
Easwar Hariharan72a67ba2015-11-06 20:06:57 -050013427 * An FLR enforces a 0 on all out pins. The driver does not touch
Mike Marciniszyn77241052015-07-30 15:17:43 -040013428 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and
Easwar Hariharan72a67ba2015-11-06 20:06:57 -050013429 * anything plugged constantly in reset, if it pays attention
Mike Marciniszyn77241052015-07-30 15:17:43 -040013430 * to RESET_N.
Easwar Hariharan72a67ba2015-11-06 20:06:57 -050013431 * Prime examples of this are optical cables. Set all pins high.
Mike Marciniszyn77241052015-07-30 15:17:43 -040013432 * I2CCLK and I2CDAT will change per direction, and INT_N and
13433 * MODPRS_N are input only and their value is ignored.
13434 */
Easwar Hariharan72a67ba2015-11-06 20:06:57 -050013435 write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13436 write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013437}
13438
13439static void init_early_variables(struct hfi1_devdata *dd)
13440{
13441 int i;
13442
13443 /* assign link credit variables */
13444 dd->vau = CM_VAU;
13445 dd->link_credits = CM_GLOBAL_CREDITS;
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013446 if (is_ax(dd))
Mike Marciniszyn77241052015-07-30 15:17:43 -040013447 dd->link_credits--;
13448 dd->vcu = cu_to_vcu(hfi1_cu);
13449 /* enough room for 8 MAD packets plus header - 17K */
13450 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13451 if (dd->vl15_init > dd->link_credits)
13452 dd->vl15_init = dd->link_credits;
13453
13454 write_uninitialized_csrs_and_memories(dd);
13455
13456 if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13457 for (i = 0; i < dd->num_pports; i++) {
13458 struct hfi1_pportdata *ppd = &dd->pport[i];
13459
13460 set_partition_keys(ppd);
13461 }
13462 init_sc2vl_tables(dd);
13463}
13464
13465static void init_kdeth_qp(struct hfi1_devdata *dd)
13466{
13467 /* user changed the KDETH_QP */
13468 if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13469 /* out of range or illegal value */
13470 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13471 kdeth_qp = 0;
13472 }
13473 if (kdeth_qp == 0) /* not set, or failed range check */
13474 kdeth_qp = DEFAULT_KDETH_QP;
13475
13476 write_csr(dd, SEND_BTH_QP,
13477 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK)
13478 << SEND_BTH_QP_KDETH_QP_SHIFT);
13479
13480 write_csr(dd, RCV_BTH_QP,
13481 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK)
13482 << RCV_BTH_QP_KDETH_QP_SHIFT);
13483}
13484
13485/**
13486 * init_qpmap_table
13487 * @dd - device data
13488 * @first_ctxt - first context
13489 * @last_ctxt - first context
13490 *
13491 * This return sets the qpn mapping table that
13492 * is indexed by qpn[8:1].
13493 *
13494 * The routine will round robin the 256 settings
13495 * from first_ctxt to last_ctxt.
13496 *
13497 * The first/last looks ahead to having specialized
13498 * receive contexts for mgmt and bypass. Normal
13499 * verbs traffic will assumed to be on a range
13500 * of receive contexts.
13501 */
13502static void init_qpmap_table(struct hfi1_devdata *dd,
13503 u32 first_ctxt,
13504 u32 last_ctxt)
13505{
13506 u64 reg = 0;
13507 u64 regno = RCV_QP_MAP_TABLE;
13508 int i;
13509 u64 ctxt = first_ctxt;
13510
13511 for (i = 0; i < 256;) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013512 reg |= ctxt << (8 * (i % 8));
13513 i++;
13514 ctxt++;
13515 if (ctxt > last_ctxt)
13516 ctxt = first_ctxt;
13517 if (i % 8 == 0) {
13518 write_csr(dd, regno, reg);
13519 reg = 0;
13520 regno += 8;
13521 }
13522 }
13523 if (i % 8)
13524 write_csr(dd, regno, reg);
13525
13526 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
13527 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
13528}
13529
13530/**
13531 * init_qos - init RX qos
13532 * @dd - device data
13533 * @first_context
13534 *
13535 * This routine initializes Rule 0 and the
13536 * RSM map table to implement qos.
13537 *
13538 * If all of the limit tests succeed,
13539 * qos is applied based on the array
13540 * interpretation of krcvqs where
13541 * entry 0 is VL0.
13542 *
13543 * The number of vl bits (n) and the number of qpn
13544 * bits (m) are computed to feed both the RSM map table
13545 * and the single rule.
13546 *
13547 */
13548static void init_qos(struct hfi1_devdata *dd, u32 first_ctxt)
13549{
13550 u8 max_by_vl = 0;
13551 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
13552 u64 *rsmmap;
13553 u64 reg;
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013554 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */
Mike Marciniszyn77241052015-07-30 15:17:43 -040013555
13556 /* validate */
13557 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
13558 num_vls == 1 ||
13559 krcvqsset <= 1)
13560 goto bail;
13561 for (i = 0; i < min_t(unsigned, num_vls, krcvqsset); i++)
13562 if (krcvqs[i] > max_by_vl)
13563 max_by_vl = krcvqs[i];
13564 if (max_by_vl > 32)
13565 goto bail;
13566 qpns_per_vl = __roundup_pow_of_two(max_by_vl);
13567 /* determine bits vl */
13568 n = ilog2(num_vls);
13569 /* determine bits for qpn */
13570 m = ilog2(qpns_per_vl);
13571 if ((m + n) > 7)
13572 goto bail;
13573 if (num_vls * qpns_per_vl > dd->chip_rcv_contexts)
13574 goto bail;
13575 rsmmap = kmalloc_array(NUM_MAP_REGS, sizeof(u64), GFP_KERNEL);
Easwar Hariharan859bcad2015-12-10 11:13:38 -050013576 if (!rsmmap)
13577 goto bail;
Mike Marciniszyn77241052015-07-30 15:17:43 -040013578 memset(rsmmap, rxcontext, NUM_MAP_REGS * sizeof(u64));
13579 /* init the local copy of the table */
13580 for (i = 0, ctxt = first_ctxt; i < num_vls; i++) {
13581 unsigned tctxt;
13582
13583 for (qpn = 0, tctxt = ctxt;
13584 krcvqs[i] && qpn < qpns_per_vl; qpn++) {
13585 unsigned idx, regoff, regidx;
13586
13587 /* generate index <= 128 */
13588 idx = (qpn << n) ^ i;
13589 regoff = (idx % 8) * 8;
13590 regidx = idx / 8;
13591 reg = rsmmap[regidx];
13592 /* replace 0xff with context number */
13593 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
13594 << regoff);
13595 reg |= (u64)(tctxt++) << regoff;
13596 rsmmap[regidx] = reg;
13597 if (tctxt == ctxt + krcvqs[i])
13598 tctxt = ctxt;
13599 }
13600 ctxt += krcvqs[i];
13601 }
13602 /* flush cached copies to chip */
13603 for (i = 0; i < NUM_MAP_REGS; i++)
13604 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rsmmap[i]);
13605 /* add rule0 */
13606 write_csr(dd, RCV_RSM_CFG /* + (8 * 0) */,
13607 RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_MASK
13608 << RCV_RSM_CFG_ENABLE_OR_CHAIN_RSM0_SHIFT |
13609 2ull << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
13610 write_csr(dd, RCV_RSM_SELECT /* + (8 * 0) */,
13611 LRH_BTH_MATCH_OFFSET
13612 << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
13613 LRH_SC_MATCH_OFFSET << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
13614 LRH_SC_SELECT_OFFSET << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
13615 ((u64)n) << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
13616 QPN_SELECT_OFFSET << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
13617 ((u64)m + (u64)n) << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
13618 write_csr(dd, RCV_RSM_MATCH /* + (8 * 0) */,
13619 LRH_BTH_MASK << RCV_RSM_MATCH_MASK1_SHIFT |
13620 LRH_BTH_VALUE << RCV_RSM_MATCH_VALUE1_SHIFT |
13621 LRH_SC_MASK << RCV_RSM_MATCH_MASK2_SHIFT |
13622 LRH_SC_VALUE << RCV_RSM_MATCH_VALUE2_SHIFT);
13623 /* Enable RSM */
13624 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
13625 kfree(rsmmap);
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050013626 /* map everything else to first context */
13627 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, MIN_KERNEL_KCTXTS - 1);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013628 dd->qos_shift = n + 1;
13629 return;
13630bail:
13631 dd->qos_shift = 1;
Niranjana Vishwanathapura82c26112015-11-11 00:35:19 -050013632 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013633}
13634
13635static void init_rxe(struct hfi1_devdata *dd)
13636{
13637 /* enable all receive errors */
13638 write_csr(dd, RCV_ERR_MASK, ~0ull);
13639 /* setup QPN map table - start where VL15 context leaves off */
13640 init_qos(
13641 dd,
13642 dd->n_krcv_queues > MIN_KERNEL_KCTXTS ? MIN_KERNEL_KCTXTS : 0);
13643 /*
13644 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
13645 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
13646 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one
13647 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
13648 * Max_PayLoad_Size set to its minimum of 128.
13649 *
13650 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
13651 * (64 bytes). Max_Payload_Size is possibly modified upward in
13652 * tune_pcie_caps() which is called after this routine.
13653 */
13654}
13655
13656static void init_other(struct hfi1_devdata *dd)
13657{
13658 /* enable all CCE errors */
13659 write_csr(dd, CCE_ERR_MASK, ~0ull);
13660 /* enable *some* Misc errors */
13661 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
13662 /* enable all DC errors, except LCB */
13663 write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
13664 write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
13665}
13666
13667/*
13668 * Fill out the given AU table using the given CU. A CU is defined in terms
13669 * AUs. The table is a an encoding: given the index, how many AUs does that
13670 * represent?
13671 *
13672 * NOTE: Assumes that the register layout is the same for the
13673 * local and remote tables.
13674 */
13675static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
13676 u32 csr0to3, u32 csr4to7)
13677{
13678 write_csr(dd, csr0to3,
13679 0ull <<
13680 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT
13681 | 1ull <<
13682 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT
13683 | 2ull * cu <<
13684 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT
13685 | 4ull * cu <<
13686 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
13687 write_csr(dd, csr4to7,
13688 8ull * cu <<
13689 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT
13690 | 16ull * cu <<
13691 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT
13692 | 32ull * cu <<
13693 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT
13694 | 64ull * cu <<
13695 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
13696
13697}
13698
13699static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13700{
13701 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
13702 SEND_CM_LOCAL_AU_TABLE4_TO7);
13703}
13704
13705void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
13706{
13707 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
13708 SEND_CM_REMOTE_AU_TABLE4_TO7);
13709}
13710
13711static void init_txe(struct hfi1_devdata *dd)
13712{
13713 int i;
13714
13715 /* enable all PIO, SDMA, general, and Egress errors */
13716 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
13717 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
13718 write_csr(dd, SEND_ERR_MASK, ~0ull);
13719 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
13720
13721 /* enable all per-context and per-SDMA engine errors */
13722 for (i = 0; i < dd->chip_send_contexts; i++)
13723 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
13724 for (i = 0; i < dd->chip_sdma_engines; i++)
13725 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
13726
13727 /* set the local CU to AU mapping */
13728 assign_local_cm_au_table(dd, dd->vcu);
13729
13730 /*
13731 * Set reasonable default for Credit Return Timer
13732 * Don't set on Simulator - causes it to choke.
13733 */
13734 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
13735 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
13736}
13737
13738int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt, u16 jkey)
13739{
13740 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13741 unsigned sctxt;
13742 int ret = 0;
13743 u64 reg;
13744
13745 if (!rcd || !rcd->sc) {
13746 ret = -EINVAL;
13747 goto done;
13748 }
13749 sctxt = rcd->sc->hw_context;
13750 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
13751 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
13752 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
13753 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
13754 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
13755 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
13756 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
13757 /*
13758 * Enable send-side J_KEY integrity check, unless this is A0 h/w
Mike Marciniszyn77241052015-07-30 15:17:43 -040013759 */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013760 if (!is_ax(dd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013761 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13762 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13763 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13764 }
13765
13766 /* Enable J_KEY check on receive context. */
13767 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
13768 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
13769 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
13770 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, reg);
13771done:
13772 return ret;
13773}
13774
13775int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, unsigned ctxt)
13776{
13777 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
13778 unsigned sctxt;
13779 int ret = 0;
13780 u64 reg;
13781
13782 if (!rcd || !rcd->sc) {
13783 ret = -EINVAL;
13784 goto done;
13785 }
13786 sctxt = rcd->sc->hw_context;
13787 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
13788 /*
13789 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
13790 * This check would not have been enabled for A0 h/w, see
13791 * set_ctxt_jkey().
13792 */
Mike Marciniszyn995deaf2015-11-16 21:59:29 -050013793 if (!is_ax(dd)) {
Mike Marciniszyn77241052015-07-30 15:17:43 -040013794 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13795 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
13796 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13797 }
13798 /* Turn off the J_KEY on the receive side */
13799 write_kctxt_csr(dd, ctxt, RCV_KEY_CTRL, 0);
13800done:
13801 return ret;
13802}
13803
13804int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt, u16 pkey)
13805{
13806 struct hfi1_ctxtdata *rcd;
13807 unsigned sctxt;
13808 int ret = 0;
13809 u64 reg;
13810
13811 if (ctxt < dd->num_rcv_contexts)
13812 rcd = dd->rcd[ctxt];
13813 else {
13814 ret = -EINVAL;
13815 goto done;
13816 }
13817 if (!rcd || !rcd->sc) {
13818 ret = -EINVAL;
13819 goto done;
13820 }
13821 sctxt = rcd->sc->hw_context;
13822 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
13823 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
13824 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
13825 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13826 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13827 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13828done:
13829 return ret;
13830}
13831
13832int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, unsigned ctxt)
13833{
13834 struct hfi1_ctxtdata *rcd;
13835 unsigned sctxt;
13836 int ret = 0;
13837 u64 reg;
13838
13839 if (ctxt < dd->num_rcv_contexts)
13840 rcd = dd->rcd[ctxt];
13841 else {
13842 ret = -EINVAL;
13843 goto done;
13844 }
13845 if (!rcd || !rcd->sc) {
13846 ret = -EINVAL;
13847 goto done;
13848 }
13849 sctxt = rcd->sc->hw_context;
13850 reg = read_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE);
13851 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
13852 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_ENABLE, reg);
13853 write_kctxt_csr(dd, sctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13854done:
13855 return ret;
13856}
13857
13858/*
13859 * Start doing the clean up the the chip. Our clean up happens in multiple
13860 * stages and this is just the first.
13861 */
13862void hfi1_start_cleanup(struct hfi1_devdata *dd)
13863{
Ashutosh Dixitaffa48d2016-02-03 14:33:06 -080013864 aspm_exit(dd);
Mike Marciniszyn77241052015-07-30 15:17:43 -040013865 free_cntrs(dd);
13866 free_rcverr(dd);
13867 clean_up_interrupts(dd);
13868}
13869
13870#define HFI_BASE_GUID(dev) \
13871 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
13872
13873/*
13874 * Certain chip functions need to be initialized only once per asic
13875 * instead of per-device. This function finds the peer device and
13876 * checks whether that chip initialization needs to be done by this
13877 * device.
13878 */
13879static void asic_should_init(struct hfi1_devdata *dd)
13880{
13881 unsigned long flags;
13882 struct hfi1_devdata *tmp, *peer = NULL;
13883
13884 spin_lock_irqsave(&hfi1_devs_lock, flags);
13885 /* Find our peer device */
13886 list_for_each_entry(tmp, &hfi1_dev_list, list) {
13887 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
13888 dd->unit != tmp->unit) {
13889 peer = tmp;
13890 break;
13891 }
13892 }
13893
13894 /*
13895 * "Claim" the ASIC for initialization if it hasn't been
13896 " "claimed" yet.
13897 */
13898 if (!peer || !(peer->flags & HFI1_DO_INIT_ASIC))
13899 dd->flags |= HFI1_DO_INIT_ASIC;
13900 spin_unlock_irqrestore(&hfi1_devs_lock, flags);
13901}
13902
Dean Luick5d9157a2015-11-16 21:59:34 -050013903/*
13904 * Set dd->boardname. Use a generic name if a name is not returned from
13905 * EFI variable space.
13906 *
13907 * Return 0 on success, -ENOMEM if space could not be allocated.
13908 */
13909static int obtain_boardname(struct hfi1_devdata *dd)
13910{
13911 /* generic board description */
13912 const char generic[] =
13913 "Intel Omni-Path Host Fabric Interface Adapter 100 Series";
13914 unsigned long size;
13915 int ret;
13916
13917 ret = read_hfi1_efi_var(dd, "description", &size,
13918 (void **)&dd->boardname);
13919 if (ret) {
Dean Luick845f8762016-02-03 14:31:57 -080013920 dd_dev_info(dd, "Board description not found\n");
Dean Luick5d9157a2015-11-16 21:59:34 -050013921 /* use generic description */
13922 dd->boardname = kstrdup(generic, GFP_KERNEL);
13923 if (!dd->boardname)
13924 return -ENOMEM;
13925 }
13926 return 0;
13927}
13928
Mike Marciniszyn77241052015-07-30 15:17:43 -040013929/**
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040013930 * Allocate and initialize the device structure for the hfi.
Mike Marciniszyn77241052015-07-30 15:17:43 -040013931 * @dev: the pci_dev for hfi1_ib device
13932 * @ent: pci_device_id struct for this dev
13933 *
13934 * Also allocates, initializes, and returns the devdata struct for this
13935 * device instance
13936 *
13937 * This is global, and is called directly at init to set up the
13938 * chip-specific function pointers for later use.
13939 */
13940struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
13941 const struct pci_device_id *ent)
13942{
13943 struct hfi1_devdata *dd;
13944 struct hfi1_pportdata *ppd;
13945 u64 reg;
13946 int i, ret;
13947 static const char * const inames[] = { /* implementation names */
13948 "RTL silicon",
13949 "RTL VCS simulation",
13950 "RTL FPGA emulation",
13951 "Functional simulator"
13952 };
13953
13954 dd = hfi1_alloc_devdata(pdev,
13955 NUM_IB_PORTS * sizeof(struct hfi1_pportdata));
13956 if (IS_ERR(dd))
13957 goto bail;
13958 ppd = dd->pport;
13959 for (i = 0; i < dd->num_pports; i++, ppd++) {
13960 int vl;
13961 /* init common fields */
13962 hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
13963 /* DC supports 4 link widths */
13964 ppd->link_width_supported =
13965 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
13966 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
13967 ppd->link_width_downgrade_supported =
13968 ppd->link_width_supported;
13969 /* start out enabling only 4X */
13970 ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
13971 ppd->link_width_downgrade_enabled =
13972 ppd->link_width_downgrade_supported;
13973 /* link width active is 0 when link is down */
13974 /* link width downgrade active is 0 when link is down */
13975
13976 if (num_vls < HFI1_MIN_VLS_SUPPORTED
13977 || num_vls > HFI1_MAX_VLS_SUPPORTED) {
13978 hfi1_early_err(&pdev->dev,
13979 "Invalid num_vls %u, using %u VLs\n",
13980 num_vls, HFI1_MAX_VLS_SUPPORTED);
13981 num_vls = HFI1_MAX_VLS_SUPPORTED;
13982 }
13983 ppd->vls_supported = num_vls;
13984 ppd->vls_operational = ppd->vls_supported;
13985 /* Set the default MTU. */
13986 for (vl = 0; vl < num_vls; vl++)
13987 dd->vld[vl].mtu = hfi1_max_mtu;
13988 dd->vld[15].mtu = MAX_MAD_PACKET;
13989 /*
13990 * Set the initial values to reasonable default, will be set
13991 * for real when link is up.
13992 */
13993 ppd->lstate = IB_PORT_DOWN;
13994 ppd->overrun_threshold = 0x4;
13995 ppd->phy_error_threshold = 0xf;
13996 ppd->port_crc_mode_enabled = link_crc_mask;
13997 /* initialize supported LTP CRC mode */
13998 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
13999 /* initialize enabled LTP CRC mode */
14000 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14001 /* start in offline */
14002 ppd->host_link_state = HLS_DN_OFFLINE;
14003 init_vl_arb_caches(ppd);
14004 }
14005
14006 dd->link_default = HLS_DN_POLL;
14007
14008 /*
14009 * Do remaining PCIe setup and save PCIe values in dd.
14010 * Any error printing is already done by the init code.
14011 * On return, we have the chip mapped.
14012 */
14013 ret = hfi1_pcie_ddinit(dd, pdev, ent);
14014 if (ret < 0)
14015 goto bail_free;
14016
14017 /* verify that reads actually work, save revision for reset check */
14018 dd->revision = read_csr(dd, CCE_REVISION);
14019 if (dd->revision == ~(u64)0) {
14020 dd_dev_err(dd, "cannot read chip CSRs\n");
14021 ret = -EINVAL;
14022 goto bail_cleanup;
14023 }
14024 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14025 & CCE_REVISION_CHIP_REV_MAJOR_MASK;
14026 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14027 & CCE_REVISION_CHIP_REV_MINOR_MASK;
14028
14029 /* obtain the hardware ID - NOT related to unit, which is a
14030 software enumeration */
14031 reg = read_csr(dd, CCE_REVISION2);
14032 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14033 & CCE_REVISION2_HFI_ID_MASK;
14034 /* the variable size will remove unwanted bits */
14035 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14036 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14037 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14038 dd->icode < ARRAY_SIZE(inames) ? inames[dd->icode] : "unknown",
14039 (int)dd->irev);
14040
14041 /* speeds the hardware can support */
14042 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14043 /* speeds allowed to run at */
14044 dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14045 /* give a reasonable active value, will be set on link up */
14046 dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14047
14048 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14049 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14050 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14051 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14052 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14053 /* fix up link widths for emulation _p */
14054 ppd = dd->pport;
14055 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14056 ppd->link_width_supported =
14057 ppd->link_width_enabled =
14058 ppd->link_width_downgrade_supported =
14059 ppd->link_width_downgrade_enabled =
14060 OPA_LINK_WIDTH_1X;
14061 }
14062 /* insure num_vls isn't larger than number of sdma engines */
14063 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14064 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
Dean Luick11a59092015-12-01 15:38:18 -050014065 num_vls, dd->chip_sdma_engines);
14066 num_vls = dd->chip_sdma_engines;
14067 ppd->vls_supported = dd->chip_sdma_engines;
Mike Marciniszyn77241052015-07-30 15:17:43 -040014068 }
14069
14070 /*
14071 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14072 * Limit the max if larger than the field holds. If timeout is
14073 * non-zero, then the calculated field will be at least 1.
14074 *
14075 * Must be after icode is set up - the cclock rate depends
14076 * on knowing the hardware being used.
14077 */
14078 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14079 if (dd->rcv_intr_timeout_csr >
14080 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14081 dd->rcv_intr_timeout_csr =
14082 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14083 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14084 dd->rcv_intr_timeout_csr = 1;
14085
Easwar Hariharan7c03ed82015-10-26 10:28:28 -040014086 /* needs to be done before we look for the peer device */
14087 read_guid(dd);
14088
14089 /* should this device init the ASIC block? */
14090 asic_should_init(dd);
14091
Mike Marciniszyn77241052015-07-30 15:17:43 -040014092 /* obtain chip sizes, reset chip CSRs */
14093 init_chip(dd);
14094
14095 /* read in the PCIe link speed information */
14096 ret = pcie_speeds(dd);
14097 if (ret)
14098 goto bail_cleanup;
14099
Mike Marciniszyn77241052015-07-30 15:17:43 -040014100 /* read in firmware */
14101 ret = hfi1_firmware_init(dd);
14102 if (ret)
14103 goto bail_cleanup;
14104
14105 /*
14106 * In general, the PCIe Gen3 transition must occur after the
14107 * chip has been idled (so it won't initiate any PCIe transactions
14108 * e.g. an interrupt) and before the driver changes any registers
14109 * (the transition will reset the registers).
14110 *
14111 * In particular, place this call after:
14112 * - init_chip() - the chip will not initiate any PCIe transactions
14113 * - pcie_speeds() - reads the current link speed
14114 * - hfi1_firmware_init() - the needed firmware is ready to be
14115 * downloaded
14116 */
14117 ret = do_pcie_gen3_transition(dd);
14118 if (ret)
14119 goto bail_cleanup;
14120
14121 /* start setting dd values and adjusting CSRs */
14122 init_early_variables(dd);
14123
14124 parse_platform_config(dd);
14125
Dean Luick5d9157a2015-11-16 21:59:34 -050014126 ret = obtain_boardname(dd);
14127 if (ret)
Mike Marciniszyn77241052015-07-30 15:17:43 -040014128 goto bail_cleanup;
Mike Marciniszyn77241052015-07-30 15:17:43 -040014129
14130 snprintf(dd->boardversion, BOARD_VERS_MAX,
Dean Luick5d9157a2015-11-16 21:59:34 -050014131 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
Mike Marciniszyn77241052015-07-30 15:17:43 -040014132 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
Mike Marciniszyn77241052015-07-30 15:17:43 -040014133 (u32)dd->majrev,
14134 (u32)dd->minrev,
14135 (dd->revision >> CCE_REVISION_SW_SHIFT)
14136 & CCE_REVISION_SW_MASK);
14137
14138 ret = set_up_context_variables(dd);
14139 if (ret)
14140 goto bail_cleanup;
14141
14142 /* set initial RXE CSRs */
14143 init_rxe(dd);
14144 /* set initial TXE CSRs */
14145 init_txe(dd);
14146 /* set initial non-RXE, non-TXE CSRs */
14147 init_other(dd);
14148 /* set up KDETH QP prefix in both RX and TX CSRs */
14149 init_kdeth_qp(dd);
14150
Mitko Haralanov957558c2016-02-03 14:33:40 -080014151 ret = hfi1_dev_affinity_init(dd);
14152 if (ret)
14153 goto bail_cleanup;
14154
Mike Marciniszyn77241052015-07-30 15:17:43 -040014155 /* send contexts must be set up before receive contexts */
14156 ret = init_send_contexts(dd);
14157 if (ret)
14158 goto bail_cleanup;
14159
14160 ret = hfi1_create_ctxts(dd);
14161 if (ret)
14162 goto bail_cleanup;
14163
14164 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
14165 /*
14166 * rcd[0] is guaranteed to be valid by this point. Also, all
14167 * context are using the same value, as per the module parameter.
14168 */
14169 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
14170
14171 ret = init_pervl_scs(dd);
14172 if (ret)
14173 goto bail_cleanup;
14174
14175 /* sdma init */
14176 for (i = 0; i < dd->num_pports; ++i) {
14177 ret = sdma_init(dd, i);
14178 if (ret)
14179 goto bail_cleanup;
14180 }
14181
14182 /* use contexts created by hfi1_create_ctxts */
14183 ret = set_up_interrupts(dd);
14184 if (ret)
14185 goto bail_cleanup;
14186
14187 /* set up LCB access - must be after set_up_interrupts() */
14188 init_lcb_access(dd);
14189
14190 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14191 dd->base_guid & 0xFFFFFF);
14192
14193 dd->oui1 = dd->base_guid >> 56 & 0xFF;
14194 dd->oui2 = dd->base_guid >> 48 & 0xFF;
14195 dd->oui3 = dd->base_guid >> 40 & 0xFF;
14196
14197 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14198 if (ret)
14199 goto bail_clear_intr;
14200 check_fabric_firmware_versions(dd);
14201
14202 thermal_init(dd);
14203
14204 ret = init_cntrs(dd);
14205 if (ret)
14206 goto bail_clear_intr;
14207
14208 ret = init_rcverr(dd);
14209 if (ret)
14210 goto bail_free_cntrs;
14211
14212 ret = eprom_init(dd);
14213 if (ret)
14214 goto bail_free_rcverr;
14215
14216 goto bail;
14217
14218bail_free_rcverr:
14219 free_rcverr(dd);
14220bail_free_cntrs:
14221 free_cntrs(dd);
14222bail_clear_intr:
14223 clean_up_interrupts(dd);
14224bail_cleanup:
14225 hfi1_pcie_ddcleanup(dd);
14226bail_free:
14227 hfi1_free_devdata(dd);
14228 dd = ERR_PTR(ret);
14229bail:
14230 return dd;
14231}
14232
14233static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
14234 u32 dw_len)
14235{
14236 u32 delta_cycles;
14237 u32 current_egress_rate = ppd->current_egress_rate;
14238 /* rates here are in units of 10^6 bits/sec */
14239
14240 if (desired_egress_rate == -1)
14241 return 0; /* shouldn't happen */
14242
14243 if (desired_egress_rate >= current_egress_rate)
14244 return 0; /* we can't help go faster, only slower */
14245
14246 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
14247 egress_cycles(dw_len * 4, current_egress_rate);
14248
14249 return (u16)delta_cycles;
14250}
14251
14252
14253/**
14254 * create_pbc - build a pbc for transmission
14255 * @flags: special case flags or-ed in built pbc
14256 * @srate: static rate
14257 * @vl: vl
14258 * @dwlen: dword length (header words + data words + pbc words)
14259 *
14260 * Create a PBC with the given flags, rate, VL, and length.
14261 *
14262 * NOTE: The PBC created will not insert any HCRC - all callers but one are
14263 * for verbs, which does not use this PSM feature. The lone other caller
14264 * is for the diagnostic interface which calls this if the user does not
14265 * supply their own PBC.
14266 */
14267u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
14268 u32 dw_len)
14269{
14270 u64 pbc, delay = 0;
14271
14272 if (unlikely(srate_mbs))
14273 delay = delay_cycles(ppd, srate_mbs, dw_len);
14274
14275 pbc = flags
14276 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
14277 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
14278 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT
14279 | (dw_len & PBC_LENGTH_DWS_MASK)
14280 << PBC_LENGTH_DWS_SHIFT;
14281
14282 return pbc;
14283}
14284
14285#define SBUS_THERMAL 0x4f
14286#define SBUS_THERM_MONITOR_MODE 0x1
14287
14288#define THERM_FAILURE(dev, ret, reason) \
14289 dd_dev_err((dd), \
14290 "Thermal sensor initialization failed: %s (%d)\n", \
14291 (reason), (ret))
14292
14293/*
14294 * Initialize the Avago Thermal sensor.
14295 *
14296 * After initialization, enable polling of thermal sensor through
14297 * SBus interface. In order for this to work, the SBus Master
14298 * firmware has to be loaded due to the fact that the HW polling
14299 * logic uses SBus interrupts, which are not supported with
14300 * default firmware. Otherwise, no data will be returned through
14301 * the ASIC_STS_THERM CSR.
14302 */
14303static int thermal_init(struct hfi1_devdata *dd)
14304{
14305 int ret = 0;
14306
14307 if (dd->icode != ICODE_RTL_SILICON ||
14308 !(dd->flags & HFI1_DO_INIT_ASIC))
14309 return ret;
14310
14311 acquire_hw_mutex(dd);
14312 dd_dev_info(dd, "Initializing thermal sensor\n");
Jareer Abdel-Qader4ef98982015-11-06 20:07:00 -050014313 /* Disable polling of thermal readings */
14314 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
14315 msleep(100);
Mike Marciniszyn77241052015-07-30 15:17:43 -040014316 /* Thermal Sensor Initialization */
14317 /* Step 1: Reset the Thermal SBus Receiver */
14318 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14319 RESET_SBUS_RECEIVER, 0);
14320 if (ret) {
14321 THERM_FAILURE(dd, ret, "Bus Reset");
14322 goto done;
14323 }
14324 /* Step 2: Set Reset bit in Thermal block */
14325 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14326 WRITE_SBUS_RECEIVER, 0x1);
14327 if (ret) {
14328 THERM_FAILURE(dd, ret, "Therm Block Reset");
14329 goto done;
14330 }
14331 /* Step 3: Write clock divider value (100MHz -> 2MHz) */
14332 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
14333 WRITE_SBUS_RECEIVER, 0x32);
14334 if (ret) {
14335 THERM_FAILURE(dd, ret, "Write Clock Div");
14336 goto done;
14337 }
14338 /* Step 4: Select temperature mode */
14339 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
14340 WRITE_SBUS_RECEIVER,
14341 SBUS_THERM_MONITOR_MODE);
14342 if (ret) {
14343 THERM_FAILURE(dd, ret, "Write Mode Sel");
14344 goto done;
14345 }
14346 /* Step 5: De-assert block reset and start conversion */
14347 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
14348 WRITE_SBUS_RECEIVER, 0x2);
14349 if (ret) {
14350 THERM_FAILURE(dd, ret, "Write Reset Deassert");
14351 goto done;
14352 }
14353 /* Step 5.1: Wait for first conversion (21.5ms per spec) */
14354 msleep(22);
14355
14356 /* Enable polling of thermal readings */
14357 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
14358done:
14359 release_hw_mutex(dd);
14360 return ret;
14361}
14362
14363static void handle_temp_err(struct hfi1_devdata *dd)
14364{
14365 struct hfi1_pportdata *ppd = &dd->pport[0];
14366 /*
14367 * Thermal Critical Interrupt
14368 * Put the device into forced freeze mode, take link down to
14369 * offline, and put DC into reset.
14370 */
14371 dd_dev_emerg(dd,
14372 "Critical temperature reached! Forcing device into freeze mode!\n");
14373 dd->flags |= HFI1_FORCED_FREEZE;
14374 start_freeze_handling(ppd, FREEZE_SELF|FREEZE_ABORT);
14375 /*
14376 * Shut DC down as much and as quickly as possible.
14377 *
14378 * Step 1: Take the link down to OFFLINE. This will cause the
14379 * 8051 to put the Serdes in reset. However, we don't want to
14380 * go through the entire link state machine since we want to
14381 * shutdown ASAP. Furthermore, this is not a graceful shutdown
14382 * but rather an attempt to save the chip.
14383 * Code below is almost the same as quiet_serdes() but avoids
14384 * all the extra work and the sleeps.
14385 */
14386 ppd->driver_link_ready = 0;
14387 ppd->link_enabled = 0;
14388 set_physical_link_state(dd, PLS_OFFLINE |
14389 (OPA_LINKDOWN_REASON_SMA_DISABLED << 8));
14390 /*
14391 * Step 2: Shutdown LCB and 8051
14392 * After shutdown, do not restore DC_CFG_RESET value.
14393 */
14394 dc_shutdown(dd);
14395}