blob: 29e6f6aba9e2e9d9c1271aa70a1791cdf17796af [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*******************************************************************************
2
Auke Kok0abb6eb2006-09-27 12:53:14 -07003 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
Linus Torvalds1da177e2005-04-16 15:20:36 -070013 more details.
Auke Kok0abb6eb2006-09-27 12:53:14 -070014
Linus Torvalds1da177e2005-04-16 15:20:36 -070015 You should have received a copy of the GNU General Public License along with
Auke Kok0abb6eb2006-09-27 12:53:14 -070016 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
Linus Torvalds1da177e2005-04-16 15:20:36 -070022 Contact Information:
23 Linux NICS <linux.nics@intel.com>
Auke Kok3d41e302006-04-14 19:05:31 -070024 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
Linus Torvalds1da177e2005-04-16 15:20:36 -070025 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
Auke Kok8fc897b2006-08-28 14:56:16 -070033
Linus Torvalds1da177e2005-04-16 15:20:36 -070034#include "e1000_hw.h"
35
Nicholas Nunley35574762006-09-27 12:53:34 -070036static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
37static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
38static int32_t e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data);
39static int32_t e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data);
40static int32_t e1000_get_software_semaphore(struct e1000_hw *hw);
41static void e1000_release_software_semaphore(struct e1000_hw *hw);
42
43static uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw);
44static int32_t e1000_check_downshift(struct e1000_hw *hw);
45static int32_t e1000_check_polarity(struct e1000_hw *hw, e1000_rev_polarity *polarity);
46static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
47static void e1000_clear_vfta(struct e1000_hw *hw);
48static int32_t e1000_commit_shadow_ram(struct e1000_hw *hw);
49static int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up);
50static int32_t e1000_config_fc_after_link_up(struct e1000_hw *hw);
51static int32_t e1000_detect_gig_phy(struct e1000_hw *hw);
52static int32_t e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank);
53static int32_t e1000_get_auto_rd_done(struct e1000_hw *hw);
54static int32_t e1000_get_cable_length(struct e1000_hw *hw, uint16_t *min_length, uint16_t *max_length);
55static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
56static int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw);
57static int32_t e1000_get_software_flag(struct e1000_hw *hw);
58static int32_t e1000_ich8_cycle_init(struct e1000_hw *hw);
59static int32_t e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout);
60static int32_t e1000_id_led_init(struct e1000_hw *hw);
61static int32_t e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, uint32_t cnf_base_addr, uint32_t cnf_size);
62static int32_t e1000_init_lcd_from_nvm(struct e1000_hw *hw);
63static void e1000_init_rx_addrs(struct e1000_hw *hw);
Jeff Kirsher09ae3e82006-09-27 12:53:51 -070064static void e1000_initialize_hardware_bits(struct e1000_hw *hw);
Nicholas Nunley35574762006-09-27 12:53:34 -070065static boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw);
66static int32_t e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw);
67static int32_t e1000_mng_enable_host_if(struct e1000_hw *hw);
68static int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, uint16_t length, uint16_t offset, uint8_t *sum);
69static int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, struct e1000_host_mng_command_header* hdr);
70static int32_t e1000_mng_write_commit(struct e1000_hw *hw);
71static int32_t e1000_phy_ife_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
72static int32_t e1000_phy_igp_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
73static int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
74static int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
75static int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd);
76static int32_t e1000_phy_m88_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info);
77static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
78static int32_t e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t *data);
79static int32_t e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
80static int32_t e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte);
81static int32_t e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data);
82static int32_t e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t *data);
83static int32_t e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size, uint16_t data);
84static int32_t e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
85static int32_t e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data);
86static void e1000_release_software_flag(struct e1000_hw *hw);
87static int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
88static int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active);
89static int32_t e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop);
90static void e1000_set_pci_express_master_disable(struct e1000_hw *hw);
91static int32_t e1000_wait_autoneg(struct e1000_hw *hw);
92static void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value);
Linus Torvalds1da177e2005-04-16 15:20:36 -070093static int32_t e1000_set_phy_type(struct e1000_hw *hw);
94static void e1000_phy_init_script(struct e1000_hw *hw);
95static int32_t e1000_setup_copper_link(struct e1000_hw *hw);
96static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
97static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
98static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw);
99static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw);
100static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
101static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl);
102static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data,
103 uint16_t count);
104static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw);
105static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw);
106static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset,
107 uint16_t words, uint16_t *data);
108static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw,
109 uint16_t offset, uint16_t words,
110 uint16_t *data);
111static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw);
112static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
113static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd);
114static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data,
115 uint16_t count);
116static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
117 uint16_t phy_data);
118static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr,
119 uint16_t *phy_data);
120static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count);
121static int32_t e1000_acquire_eeprom(struct e1000_hw *hw);
122static void e1000_release_eeprom(struct e1000_hw *hw);
123static void e1000_standby_eeprom(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700124static int32_t e1000_set_vco_speed(struct e1000_hw *hw);
125static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw);
126static int32_t e1000_set_phy_mode(struct e1000_hw *hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700127static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer);
128static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length);
Auke Kokcd94dd02006-06-27 09:08:22 -0700129static int32_t e1000_configure_kmrn_for_10_100(struct e1000_hw *hw,
130 uint16_t duplex);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800131static int32_t e1000_configure_kmrn_for_1000(struct e1000_hw *hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700132
133/* IGP cable length table */
134static const
135uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] =
136 { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
137 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
138 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
139 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
140 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
141 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100,
142 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
143 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120};
144
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700145static const
146uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] =
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400147 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
148 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
149 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
150 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
151 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
152 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
153 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
154 104, 109, 114, 118, 121, 124};
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700155
Linus Torvalds1da177e2005-04-16 15:20:36 -0700156/******************************************************************************
157 * Set the phy type member in the hw struct.
158 *
159 * hw - Struct containing variables accessed by shared code
160 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -0700161static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -0700162e1000_set_phy_type(struct e1000_hw *hw)
163{
164 DEBUGFUNC("e1000_set_phy_type");
165
Auke Kok8fc897b2006-08-28 14:56:16 -0700166 if (hw->mac_type == e1000_undefined)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700167 return -E1000_ERR_PHY_TYPE;
168
Auke Kok8fc897b2006-08-28 14:56:16 -0700169 switch (hw->phy_id) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700170 case M88E1000_E_PHY_ID:
171 case M88E1000_I_PHY_ID:
172 case M88E1011_I_PHY_ID:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700173 case M88E1111_I_PHY_ID:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700174 hw->phy_type = e1000_phy_m88;
175 break;
176 case IGP01E1000_I_PHY_ID:
Auke Kok8fc897b2006-08-28 14:56:16 -0700177 if (hw->mac_type == e1000_82541 ||
178 hw->mac_type == e1000_82541_rev_2 ||
179 hw->mac_type == e1000_82547 ||
180 hw->mac_type == e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700181 hw->phy_type = e1000_phy_igp;
182 break;
183 }
Auke Kokcd94dd02006-06-27 09:08:22 -0700184 case IGP03E1000_E_PHY_ID:
185 hw->phy_type = e1000_phy_igp_3;
186 break;
187 case IFE_E_PHY_ID:
188 case IFE_PLUS_E_PHY_ID:
189 case IFE_C_E_PHY_ID:
190 hw->phy_type = e1000_phy_ife;
191 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800192 case GG82563_E_PHY_ID:
193 if (hw->mac_type == e1000_80003es2lan) {
194 hw->phy_type = e1000_phy_gg82563;
195 break;
196 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700197 /* Fall Through */
198 default:
199 /* Should never have loaded on this device */
200 hw->phy_type = e1000_phy_undefined;
201 return -E1000_ERR_PHY_TYPE;
202 }
203
204 return E1000_SUCCESS;
205}
206
207/******************************************************************************
208 * IGP phy init script - initializes the GbE PHY
209 *
210 * hw - Struct containing variables accessed by shared code
211 *****************************************************************************/
212static void
213e1000_phy_init_script(struct e1000_hw *hw)
214{
215 uint32_t ret_val;
216 uint16_t phy_saved_data;
217
218 DEBUGFUNC("e1000_phy_init_script");
219
Auke Kok8fc897b2006-08-28 14:56:16 -0700220 if (hw->phy_init_script) {
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400221 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700222
223 /* Save off the current value of register 0x2F5B to be restored at
224 * the end of this routine. */
225 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
226
227 /* Disabled the PHY transmitter */
228 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
229
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400230 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700231
232 e1000_write_phy_reg(hw,0x0000,0x0140);
233
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400234 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700235
Auke Kok8fc897b2006-08-28 14:56:16 -0700236 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700237 case e1000_82541:
238 case e1000_82547:
239 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
240
241 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
242
243 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
244
245 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
246
247 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
248
249 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
250
251 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
252
253 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
254
255 e1000_write_phy_reg(hw, 0x2010, 0x0008);
256 break;
257
258 case e1000_82541_rev_2:
259 case e1000_82547_rev_2:
260 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
261 break;
262 default:
263 break;
264 }
265
266 e1000_write_phy_reg(hw, 0x0000, 0x3300);
267
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400268 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700269
270 /* Now enable the transmitter */
271 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
272
Auke Kok8fc897b2006-08-28 14:56:16 -0700273 if (hw->mac_type == e1000_82547) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700274 uint16_t fused, fine, coarse;
275
276 /* Move to analog registers page */
277 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
278
Auke Kok8fc897b2006-08-28 14:56:16 -0700279 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700280 e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
281
282 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
283 coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
284
Auke Kok8fc897b2006-08-28 14:56:16 -0700285 if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700286 coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
287 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
Auke Kok8fc897b2006-08-28 14:56:16 -0700288 } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700289 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
290
291 fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
292 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
293 (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
294
295 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
296 e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
297 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
298 }
299 }
300 }
301}
302
303/******************************************************************************
304 * Set the mac type member in the hw struct.
305 *
306 * hw - Struct containing variables accessed by shared code
307 *****************************************************************************/
308int32_t
309e1000_set_mac_type(struct e1000_hw *hw)
310{
311 DEBUGFUNC("e1000_set_mac_type");
312
313 switch (hw->device_id) {
314 case E1000_DEV_ID_82542:
315 switch (hw->revision_id) {
316 case E1000_82542_2_0_REV_ID:
317 hw->mac_type = e1000_82542_rev2_0;
318 break;
319 case E1000_82542_2_1_REV_ID:
320 hw->mac_type = e1000_82542_rev2_1;
321 break;
322 default:
323 /* Invalid 82542 revision ID */
324 return -E1000_ERR_MAC_TYPE;
325 }
326 break;
327 case E1000_DEV_ID_82543GC_FIBER:
328 case E1000_DEV_ID_82543GC_COPPER:
329 hw->mac_type = e1000_82543;
330 break;
331 case E1000_DEV_ID_82544EI_COPPER:
332 case E1000_DEV_ID_82544EI_FIBER:
333 case E1000_DEV_ID_82544GC_COPPER:
334 case E1000_DEV_ID_82544GC_LOM:
335 hw->mac_type = e1000_82544;
336 break;
337 case E1000_DEV_ID_82540EM:
338 case E1000_DEV_ID_82540EM_LOM:
339 case E1000_DEV_ID_82540EP:
340 case E1000_DEV_ID_82540EP_LOM:
341 case E1000_DEV_ID_82540EP_LP:
342 hw->mac_type = e1000_82540;
343 break;
344 case E1000_DEV_ID_82545EM_COPPER:
345 case E1000_DEV_ID_82545EM_FIBER:
346 hw->mac_type = e1000_82545;
347 break;
348 case E1000_DEV_ID_82545GM_COPPER:
349 case E1000_DEV_ID_82545GM_FIBER:
350 case E1000_DEV_ID_82545GM_SERDES:
351 hw->mac_type = e1000_82545_rev_3;
352 break;
353 case E1000_DEV_ID_82546EB_COPPER:
354 case E1000_DEV_ID_82546EB_FIBER:
355 case E1000_DEV_ID_82546EB_QUAD_COPPER:
356 hw->mac_type = e1000_82546;
357 break;
358 case E1000_DEV_ID_82546GB_COPPER:
359 case E1000_DEV_ID_82546GB_FIBER:
360 case E1000_DEV_ID_82546GB_SERDES:
361 case E1000_DEV_ID_82546GB_PCIE:
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800362 case E1000_DEV_ID_82546GB_QUAD_COPPER:
363 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700364 hw->mac_type = e1000_82546_rev_3;
365 break;
366 case E1000_DEV_ID_82541EI:
367 case E1000_DEV_ID_82541EI_MOBILE:
Auke Kokcd94dd02006-06-27 09:08:22 -0700368 case E1000_DEV_ID_82541ER_LOM:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700369 hw->mac_type = e1000_82541;
370 break;
371 case E1000_DEV_ID_82541ER:
372 case E1000_DEV_ID_82541GI:
373 case E1000_DEV_ID_82541GI_LF:
374 case E1000_DEV_ID_82541GI_MOBILE:
375 hw->mac_type = e1000_82541_rev_2;
376 break;
377 case E1000_DEV_ID_82547EI:
Auke Kokcd94dd02006-06-27 09:08:22 -0700378 case E1000_DEV_ID_82547EI_MOBILE:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700379 hw->mac_type = e1000_82547;
380 break;
381 case E1000_DEV_ID_82547GI:
382 hw->mac_type = e1000_82547_rev_2;
383 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400384 case E1000_DEV_ID_82571EB_COPPER:
385 case E1000_DEV_ID_82571EB_FIBER:
386 case E1000_DEV_ID_82571EB_SERDES:
Jesse Brandeburg5881cde2006-08-31 14:27:47 -0700387 case E1000_DEV_ID_82571EB_QUAD_COPPER:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400388 hw->mac_type = e1000_82571;
389 break;
390 case E1000_DEV_ID_82572EI_COPPER:
391 case E1000_DEV_ID_82572EI_FIBER:
392 case E1000_DEV_ID_82572EI_SERDES:
Auke Kokcd94dd02006-06-27 09:08:22 -0700393 case E1000_DEV_ID_82572EI:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400394 hw->mac_type = e1000_82572;
395 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700396 case E1000_DEV_ID_82573E:
397 case E1000_DEV_ID_82573E_IAMT:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400398 case E1000_DEV_ID_82573L:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700399 hw->mac_type = e1000_82573;
400 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700401 case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
402 case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800403 case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
404 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
405 hw->mac_type = e1000_80003es2lan;
406 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700407 case E1000_DEV_ID_ICH8_IGP_M_AMT:
408 case E1000_DEV_ID_ICH8_IGP_AMT:
409 case E1000_DEV_ID_ICH8_IGP_C:
410 case E1000_DEV_ID_ICH8_IFE:
411 case E1000_DEV_ID_ICH8_IGP_M:
412 hw->mac_type = e1000_ich8lan;
413 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700414 default:
415 /* Should never have loaded on this device */
416 return -E1000_ERR_MAC_TYPE;
417 }
418
Auke Kok8fc897b2006-08-28 14:56:16 -0700419 switch (hw->mac_type) {
Auke Kokcd94dd02006-06-27 09:08:22 -0700420 case e1000_ich8lan:
421 hw->swfwhw_semaphore_present = TRUE;
422 hw->asf_firmware_present = TRUE;
423 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800424 case e1000_80003es2lan:
425 hw->swfw_sync_present = TRUE;
426 /* fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400427 case e1000_82571:
428 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700429 case e1000_82573:
430 hw->eeprom_semaphore_present = TRUE;
431 /* fall through */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700432 case e1000_82541:
433 case e1000_82547:
434 case e1000_82541_rev_2:
435 case e1000_82547_rev_2:
436 hw->asf_firmware_present = TRUE;
437 break;
438 default:
439 break;
440 }
441
442 return E1000_SUCCESS;
443}
444
445/*****************************************************************************
446 * Set media type and TBI compatibility.
447 *
448 * hw - Struct containing variables accessed by shared code
449 * **************************************************************************/
450void
451e1000_set_media_type(struct e1000_hw *hw)
452{
453 uint32_t status;
454
455 DEBUGFUNC("e1000_set_media_type");
456
Auke Kok8fc897b2006-08-28 14:56:16 -0700457 if (hw->mac_type != e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700458 /* tbi_compatibility is only valid on 82543 */
459 hw->tbi_compatibility_en = FALSE;
460 }
461
462 switch (hw->device_id) {
463 case E1000_DEV_ID_82545GM_SERDES:
464 case E1000_DEV_ID_82546GB_SERDES:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400465 case E1000_DEV_ID_82571EB_SERDES:
466 case E1000_DEV_ID_82572EI_SERDES:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800467 case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700468 hw->media_type = e1000_media_type_internal_serdes;
469 break;
470 default:
Malli Chilakala3893d542005-06-17 17:44:49 -0700471 switch (hw->mac_type) {
472 case e1000_82542_rev2_0:
473 case e1000_82542_rev2_1:
474 hw->media_type = e1000_media_type_fiber;
475 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700476 case e1000_ich8lan:
Malli Chilakala3893d542005-06-17 17:44:49 -0700477 case e1000_82573:
478 /* The STATUS_TBIMODE bit is reserved or reused for the this
479 * device.
480 */
481 hw->media_type = e1000_media_type_copper;
482 break;
483 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484 status = E1000_READ_REG(hw, STATUS);
Malli Chilakala3893d542005-06-17 17:44:49 -0700485 if (status & E1000_STATUS_TBIMODE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486 hw->media_type = e1000_media_type_fiber;
487 /* tbi_compatibility not valid on fiber */
488 hw->tbi_compatibility_en = FALSE;
489 } else {
490 hw->media_type = e1000_media_type_copper;
491 }
Malli Chilakala3893d542005-06-17 17:44:49 -0700492 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700493 }
494 }
495}
496
497/******************************************************************************
498 * Reset the transmit and receive units; mask and clear all interrupts.
499 *
500 * hw - Struct containing variables accessed by shared code
501 *****************************************************************************/
502int32_t
503e1000_reset_hw(struct e1000_hw *hw)
504{
505 uint32_t ctrl;
506 uint32_t ctrl_ext;
507 uint32_t icr;
508 uint32_t manc;
509 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700510 uint32_t timeout;
511 uint32_t extcnf_ctrl;
512 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700513
514 DEBUGFUNC("e1000_reset_hw");
515
516 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
Auke Kok8fc897b2006-08-28 14:56:16 -0700517 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700518 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
519 e1000_pci_clear_mwi(hw);
520 }
521
Auke Kok8fc897b2006-08-28 14:56:16 -0700522 if (hw->bus_type == e1000_bus_type_pci_express) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700523 /* Prevent the PCI-E bus from sticking if there is no TLP connection
524 * on the last TLP read/write transaction when MAC is reset.
525 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700526 if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700527 DEBUGOUT("PCI-E Master disable polling has failed.\n");
528 }
529 }
530
Linus Torvalds1da177e2005-04-16 15:20:36 -0700531 /* Clear interrupt mask to stop board from generating interrupts */
532 DEBUGOUT("Masking off all interrupts\n");
533 E1000_WRITE_REG(hw, IMC, 0xffffffff);
534
535 /* Disable the Transmit and Receive units. Then delay to allow
536 * any pending transactions to complete before we hit the MAC with
537 * the global reset.
538 */
539 E1000_WRITE_REG(hw, RCTL, 0);
540 E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
541 E1000_WRITE_FLUSH(hw);
542
543 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
544 hw->tbi_compatibility_on = FALSE;
545
546 /* Delay to allow any outstanding PCI transactions to complete before
547 * resetting the device
548 */
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400549 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700550
551 ctrl = E1000_READ_REG(hw, CTRL);
552
553 /* Must reset the PHY before resetting the MAC */
Auke Kok8fc897b2006-08-28 14:56:16 -0700554 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700555 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400556 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700557 }
558
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700559 /* Must acquire the MDIO ownership before MAC reset.
560 * Ownership defaults to firmware after a reset. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700561 if (hw->mac_type == e1000_82573) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700562 timeout = 10;
563
564 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
565 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
566
567 do {
568 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
569 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
570
Auke Kok8fc897b2006-08-28 14:56:16 -0700571 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700572 break;
573 else
574 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
575
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400576 msleep(2);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700577 timeout--;
Auke Kok8fc897b2006-08-28 14:56:16 -0700578 } while (timeout);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700579 }
580
Auke Kokcd94dd02006-06-27 09:08:22 -0700581 /* Workaround for ICH8 bit corruption issue in FIFO memory */
582 if (hw->mac_type == e1000_ich8lan) {
583 /* Set Tx and Rx buffer allocation to 8k apiece. */
584 E1000_WRITE_REG(hw, PBA, E1000_PBA_8K);
585 /* Set Packet Buffer Size to 16k. */
586 E1000_WRITE_REG(hw, PBS, E1000_PBS_16K);
587 }
588
Linus Torvalds1da177e2005-04-16 15:20:36 -0700589 /* Issue a global reset to the MAC. This will reset the chip's
590 * transmit, receive, DMA, and link units. It will not effect
591 * the current PCI configuration. The global reset bit is self-
592 * clearing, and should clear within a microsecond.
593 */
594 DEBUGOUT("Issuing a global reset to MAC\n");
595
Auke Kok8fc897b2006-08-28 14:56:16 -0700596 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700597 case e1000_82544:
598 case e1000_82540:
599 case e1000_82545:
600 case e1000_82546:
601 case e1000_82541:
602 case e1000_82541_rev_2:
603 /* These controllers can't ack the 64-bit write when issuing the
604 * reset, so use IO-mapping as a workaround to issue the reset */
605 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
606 break;
607 case e1000_82545_rev_3:
608 case e1000_82546_rev_3:
609 /* Reset is performed on a shadow of the control register */
610 E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
611 break;
Auke Kokcd94dd02006-06-27 09:08:22 -0700612 case e1000_ich8lan:
613 if (!hw->phy_reset_disable &&
614 e1000_check_phy_reset_block(hw) == E1000_SUCCESS) {
615 /* e1000_ich8lan PHY HW reset requires MAC CORE reset
616 * at the same time to make sure the interface between
617 * MAC and the external PHY is reset.
618 */
619 ctrl |= E1000_CTRL_PHY_RST;
620 }
621
622 e1000_get_software_flag(hw);
623 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400624 msleep(5);
Auke Kokcd94dd02006-06-27 09:08:22 -0700625 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700626 default:
627 E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
628 break;
629 }
630
631 /* After MAC reset, force reload of EEPROM to restore power-on settings to
632 * device. Later controllers reload the EEPROM automatically, so just wait
633 * for reload to complete.
634 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700635 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700636 case e1000_82542_rev2_0:
637 case e1000_82542_rev2_1:
638 case e1000_82543:
639 case e1000_82544:
640 /* Wait for reset to complete */
641 udelay(10);
642 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
643 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
644 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
645 E1000_WRITE_FLUSH(hw);
646 /* Wait for EEPROM reload */
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400647 msleep(2);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700648 break;
649 case e1000_82541:
650 case e1000_82541_rev_2:
651 case e1000_82547:
652 case e1000_82547_rev_2:
653 /* Wait for EEPROM reload */
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400654 msleep(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700655 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700656 case e1000_82573:
Jeff Kirsherfd803242005-12-13 00:06:22 -0500657 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
658 udelay(10);
659 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
660 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
661 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
662 E1000_WRITE_FLUSH(hw);
663 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700664 /* fall through */
Jeff Kirsher2a88c172006-09-27 12:54:05 -0700665 default:
666 /* Auto read done will delay 5ms or poll based on mac type */
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700667 ret_val = e1000_get_auto_rd_done(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -0700668 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700669 return ret_val;
670 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700671 }
672
673 /* Disable HW ARPs on ASF enabled adapters */
Auke Kok8fc897b2006-08-28 14:56:16 -0700674 if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675 manc = E1000_READ_REG(hw, MANC);
676 manc &= ~(E1000_MANC_ARP_EN);
677 E1000_WRITE_REG(hw, MANC, manc);
678 }
679
Auke Kok8fc897b2006-08-28 14:56:16 -0700680 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681 e1000_phy_init_script(hw);
682
683 /* Configure activity LED after PHY reset */
684 led_ctrl = E1000_READ_REG(hw, LEDCTL);
685 led_ctrl &= IGP_ACTIVITY_LED_MASK;
686 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
687 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
688 }
689
690 /* Clear interrupt mask to stop board from generating interrupts */
691 DEBUGOUT("Masking off all interrupts\n");
692 E1000_WRITE_REG(hw, IMC, 0xffffffff);
693
694 /* Clear any pending interrupt events. */
695 icr = E1000_READ_REG(hw, ICR);
696
697 /* If MWI was previously enabled, reenable it. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700698 if (hw->mac_type == e1000_82542_rev2_0) {
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400699 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700700 e1000_pci_set_mwi(hw);
701 }
702
Auke Kokcd94dd02006-06-27 09:08:22 -0700703 if (hw->mac_type == e1000_ich8lan) {
704 uint32_t kab = E1000_READ_REG(hw, KABGTXD);
705 kab |= E1000_KABGTXD_BGSQLBIAS;
706 E1000_WRITE_REG(hw, KABGTXD, kab);
707 }
708
Linus Torvalds1da177e2005-04-16 15:20:36 -0700709 return E1000_SUCCESS;
710}
711
712/******************************************************************************
Jeff Kirsher09ae3e82006-09-27 12:53:51 -0700713 *
714 * Initialize a number of hardware-dependent bits
715 *
716 * hw: Struct containing variables accessed by shared code
717 *
718 * This function contains hardware limitation workarounds for PCI-E adapters
719 *
720 *****************************************************************************/
721static void
722e1000_initialize_hardware_bits(struct e1000_hw *hw)
723{
724 if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) {
725 /* Settings common to all PCI-express silicon */
726 uint32_t reg_ctrl, reg_ctrl_ext;
727 uint32_t reg_tarc0, reg_tarc1;
728 uint32_t reg_tctl;
729 uint32_t reg_txdctl, reg_txdctl1;
730
731 /* link autonegotiation/sync workarounds */
732 reg_tarc0 = E1000_READ_REG(hw, TARC0);
733 reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));
734
735 /* Enable not-done TX descriptor counting */
736 reg_txdctl = E1000_READ_REG(hw, TXDCTL);
737 reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
738 E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
739 reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
740 reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
741 E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);
742
743 switch (hw->mac_type) {
744 case e1000_82571:
745 case e1000_82572:
746 /* Clear PHY TX compatible mode bits */
747 reg_tarc1 = E1000_READ_REG(hw, TARC1);
748 reg_tarc1 &= ~((1 << 30)|(1 << 29));
749
750 /* link autonegotiation/sync workarounds */
751 reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));
752
753 /* TX ring control fixes */
754 reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));
755
756 /* Multiple read bit is reversed polarity */
757 reg_tctl = E1000_READ_REG(hw, TCTL);
758 if (reg_tctl & E1000_TCTL_MULR)
759 reg_tarc1 &= ~(1 << 28);
760 else
761 reg_tarc1 |= (1 << 28);
762
763 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
764 break;
765 case e1000_82573:
766 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
767 reg_ctrl_ext &= ~(1 << 23);
768 reg_ctrl_ext |= (1 << 22);
769
770 /* TX byte count fix */
771 reg_ctrl = E1000_READ_REG(hw, CTRL);
772 reg_ctrl &= ~(1 << 29);
773
774 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
775 E1000_WRITE_REG(hw, CTRL, reg_ctrl);
776 break;
777 case e1000_80003es2lan:
778 /* improve small packet performace for fiber/serdes */
779 if ((hw->media_type == e1000_media_type_fiber) ||
780 (hw->media_type == e1000_media_type_internal_serdes)) {
781 reg_tarc0 &= ~(1 << 20);
782 }
783
784 /* Multiple read bit is reversed polarity */
785 reg_tctl = E1000_READ_REG(hw, TCTL);
786 reg_tarc1 = E1000_READ_REG(hw, TARC1);
787 if (reg_tctl & E1000_TCTL_MULR)
788 reg_tarc1 &= ~(1 << 28);
789 else
790 reg_tarc1 |= (1 << 28);
791
792 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
793 break;
794 case e1000_ich8lan:
795 /* Reduce concurrent DMA requests to 3 from 4 */
796 if ((hw->revision_id < 3) ||
797 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
798 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
799 reg_tarc0 |= ((1 << 29)|(1 << 28));
800
801 reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
802 reg_ctrl_ext |= (1 << 22);
803 E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
804
805 /* workaround TX hang with TSO=on */
806 reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));
807
808 /* Multiple read bit is reversed polarity */
809 reg_tctl = E1000_READ_REG(hw, TCTL);
810 reg_tarc1 = E1000_READ_REG(hw, TARC1);
811 if (reg_tctl & E1000_TCTL_MULR)
812 reg_tarc1 &= ~(1 << 28);
813 else
814 reg_tarc1 |= (1 << 28);
815
816 /* workaround TX hang with TSO=on */
817 reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));
818
819 E1000_WRITE_REG(hw, TARC1, reg_tarc1);
820 break;
821 default:
822 break;
823 }
824
825 E1000_WRITE_REG(hw, TARC0, reg_tarc0);
826 }
827}
828
829/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -0700830 * Performs basic configuration of the adapter.
831 *
832 * hw - Struct containing variables accessed by shared code
833 *
834 * Assumes that the controller has previously been reset and is in a
835 * post-reset uninitialized state. Initializes the receive address registers,
836 * multicast table, and VLAN filter table. Calls routines to setup link
837 * configuration and flow control settings. Clears all on-chip counters. Leaves
838 * the transmit and receive units disabled and uninitialized.
839 *****************************************************************************/
840int32_t
841e1000_init_hw(struct e1000_hw *hw)
842{
843 uint32_t ctrl;
844 uint32_t i;
845 int32_t ret_val;
846 uint16_t pcix_cmd_word;
847 uint16_t pcix_stat_hi_word;
848 uint16_t cmd_mmrbc;
849 uint16_t stat_mmrbc;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700850 uint32_t mta_size;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800851 uint32_t reg_data;
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -0800852 uint32_t ctrl_ext;
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700853
Linus Torvalds1da177e2005-04-16 15:20:36 -0700854 DEBUGFUNC("e1000_init_hw");
855
Jeff Kirsher7820d422006-08-16 13:39:00 -0700856 /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
Jeff Kirsher09ae3e82006-09-27 12:53:51 -0700857 if ((hw->mac_type == e1000_ich8lan) &&
858 ((hw->revision_id < 3) ||
859 ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
860 (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
861 reg_data = E1000_READ_REG(hw, STATUS);
862 reg_data &= ~0x80000000;
863 E1000_WRITE_REG(hw, STATUS, reg_data);
Jeff Kirsher7820d422006-08-16 13:39:00 -0700864 }
865
Linus Torvalds1da177e2005-04-16 15:20:36 -0700866 /* Initialize Identification LED */
867 ret_val = e1000_id_led_init(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -0700868 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700869 DEBUGOUT("Error Initializing Identification LED\n");
870 return ret_val;
871 }
872
873 /* Set the media type and TBI compatibility */
874 e1000_set_media_type(hw);
875
Jeff Kirsher09ae3e82006-09-27 12:53:51 -0700876 /* Must be called after e1000_set_media_type because media_type is used */
877 e1000_initialize_hardware_bits(hw);
878
Linus Torvalds1da177e2005-04-16 15:20:36 -0700879 /* Disabling VLAN filtering. */
880 DEBUGOUT("Initializing the IEEE VLAN\n");
Auke Kokcd94dd02006-06-27 09:08:22 -0700881 /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
882 if (hw->mac_type != e1000_ich8lan) {
883 if (hw->mac_type < e1000_82545_rev_3)
884 E1000_WRITE_REG(hw, VET, 0);
885 e1000_clear_vfta(hw);
886 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700887
888 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
Auke Kok8fc897b2006-08-28 14:56:16 -0700889 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700890 DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
891 e1000_pci_clear_mwi(hw);
892 E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
893 E1000_WRITE_FLUSH(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400894 msleep(5);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700895 }
896
897 /* Setup the receive address. This involves initializing all of the Receive
898 * Address Registers (RARs 0 - 15).
899 */
900 e1000_init_rx_addrs(hw);
901
902 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
Auke Kok8fc897b2006-08-28 14:56:16 -0700903 if (hw->mac_type == e1000_82542_rev2_0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700904 E1000_WRITE_REG(hw, RCTL, 0);
905 E1000_WRITE_FLUSH(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400906 msleep(1);
907 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908 e1000_pci_set_mwi(hw);
909 }
910
911 /* Zero out the Multicast HASH table */
912 DEBUGOUT("Zeroing the MTA\n");
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700913 mta_size = E1000_MC_TBL_SIZE;
Auke Kokcd94dd02006-06-27 09:08:22 -0700914 if (hw->mac_type == e1000_ich8lan)
915 mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
Auke Kok8fc897b2006-08-28 14:56:16 -0700916 for (i = 0; i < mta_size; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700917 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
Auke Kok4ca213a2006-06-27 09:07:08 -0700918 /* use write flush to prevent Memory Write Block (MWB) from
919 * occuring when accessing our register space */
920 E1000_WRITE_FLUSH(hw);
921 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922
923 /* Set the PCI priority bit correctly in the CTRL register. This
924 * determines if the adapter gives priority to receives, or if it
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700925 * gives equal priority to transmits and receives. Valid only on
926 * 82542 and 82543 silicon.
Linus Torvalds1da177e2005-04-16 15:20:36 -0700927 */
Auke Kok8fc897b2006-08-28 14:56:16 -0700928 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929 ctrl = E1000_READ_REG(hw, CTRL);
930 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
931 }
932
Auke Kok8fc897b2006-08-28 14:56:16 -0700933 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700934 case e1000_82545_rev_3:
935 case e1000_82546_rev_3:
936 break;
937 default:
938 /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
Auke Kok8fc897b2006-08-28 14:56:16 -0700939 if (hw->bus_type == e1000_bus_type_pcix) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940 e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
941 e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI,
942 &pcix_stat_hi_word);
943 cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
944 PCIX_COMMAND_MMRBC_SHIFT;
945 stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
946 PCIX_STATUS_HI_MMRBC_SHIFT;
Auke Kok8fc897b2006-08-28 14:56:16 -0700947 if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700948 stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
Auke Kok8fc897b2006-08-28 14:56:16 -0700949 if (cmd_mmrbc > stat_mmrbc) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700950 pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
951 pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
952 e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER,
953 &pcix_cmd_word);
954 }
955 }
956 break;
957 }
958
Auke Kokcd94dd02006-06-27 09:08:22 -0700959 /* More time needed for PHY to initialize */
960 if (hw->mac_type == e1000_ich8lan)
Jeff Garzikf8ec4732006-09-19 15:27:07 -0400961 msleep(15);
Auke Kokcd94dd02006-06-27 09:08:22 -0700962
Linus Torvalds1da177e2005-04-16 15:20:36 -0700963 /* Call a subroutine to configure the link and setup flow control. */
964 ret_val = e1000_setup_link(hw);
965
966 /* Set the transmit descriptor write-back policy */
Auke Kok8fc897b2006-08-28 14:56:16 -0700967 if (hw->mac_type > e1000_82544) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968 ctrl = E1000_READ_REG(hw, TXDCTL);
969 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
970 E1000_WRITE_REG(hw, TXDCTL, ctrl);
971 }
972
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700973 if (hw->mac_type == e1000_82573) {
Auke Kok76c224b2006-05-23 13:36:06 -0700974 e1000_enable_tx_pkt_filtering(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -0700975 }
976
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -0400977 switch (hw->mac_type) {
978 default:
979 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -0800980 case e1000_80003es2lan:
981 /* Enable retransmit on late collisions */
982 reg_data = E1000_READ_REG(hw, TCTL);
983 reg_data |= E1000_TCTL_RTLC;
984 E1000_WRITE_REG(hw, TCTL, reg_data);
985
986 /* Configure Gigabit Carry Extend Padding */
987 reg_data = E1000_READ_REG(hw, TCTL_EXT);
988 reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
989 reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
990 E1000_WRITE_REG(hw, TCTL_EXT, reg_data);
991
992 /* Configure Transmit Inter-Packet Gap */
993 reg_data = E1000_READ_REG(hw, TIPG);
994 reg_data &= ~E1000_TIPG_IPGT_MASK;
995 reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
996 E1000_WRITE_REG(hw, TIPG, reg_data);
997
998 reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
999 reg_data &= ~0x00100000;
1000 E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
1001 /* Fall through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04001002 case e1000_82571:
Mallikarjuna R Chilakalaa7990ba2005-10-04 07:08:19 -04001003 case e1000_82572:
Auke Kokcd94dd02006-06-27 09:08:22 -07001004 case e1000_ich8lan:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04001005 ctrl = E1000_READ_REG(hw, TXDCTL1);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001006 ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04001007 E1000_WRITE_REG(hw, TXDCTL1, ctrl);
1008 break;
1009 }
1010
1011
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04001012 if (hw->mac_type == e1000_82573) {
1013 uint32_t gcr = E1000_READ_REG(hw, GCR);
1014 gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1015 E1000_WRITE_REG(hw, GCR, gcr);
1016 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001017
Linus Torvalds1da177e2005-04-16 15:20:36 -07001018 /* Clear all of the statistics registers (clear on read). It is
1019 * important that we do this after we have tried to establish link
1020 * because the symbol error count will increment wildly if there
1021 * is no link.
1022 */
1023 e1000_clear_hw_cntrs(hw);
1024
Auke Kokcd94dd02006-06-27 09:08:22 -07001025 /* ICH8 No-snoop bits are opposite polarity.
1026 * Set to snoop by default after reset. */
1027 if (hw->mac_type == e1000_ich8lan)
1028 e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL);
1029
Jeff Kirsherb7ee49d2006-01-12 16:51:21 -08001030 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
1031 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
1032 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1033 /* Relaxed ordering must be disabled to avoid a parity
1034 * error crash in a PCI slot. */
1035 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
1036 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1037 }
1038
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039 return ret_val;
1040}
1041
1042/******************************************************************************
1043 * Adjust SERDES output amplitude based on EEPROM setting.
1044 *
1045 * hw - Struct containing variables accessed by shared code.
1046 *****************************************************************************/
1047static int32_t
1048e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
1049{
1050 uint16_t eeprom_data;
1051 int32_t ret_val;
1052
1053 DEBUGFUNC("e1000_adjust_serdes_amplitude");
1054
Auke Kok8fc897b2006-08-28 14:56:16 -07001055 if (hw->media_type != e1000_media_type_internal_serdes)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001056 return E1000_SUCCESS;
1057
Auke Kok8fc897b2006-08-28 14:56:16 -07001058 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001059 case e1000_82545_rev_3:
1060 case e1000_82546_rev_3:
1061 break;
1062 default:
1063 return E1000_SUCCESS;
1064 }
1065
1066 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data);
1067 if (ret_val) {
1068 return ret_val;
1069 }
1070
Auke Kok8fc897b2006-08-28 14:56:16 -07001071 if (eeprom_data != EEPROM_RESERVED_WORD) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072 /* Adjust SERDES output amplitude only. */
Auke Kok76c224b2006-05-23 13:36:06 -07001073 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001074 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001075 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001076 return ret_val;
1077 }
1078
1079 return E1000_SUCCESS;
1080}
1081
1082/******************************************************************************
1083 * Configures flow control and link settings.
1084 *
1085 * hw - Struct containing variables accessed by shared code
1086 *
1087 * Determines which flow control settings to use. Calls the apropriate media-
1088 * specific link configuration function. Configures the flow control settings.
1089 * Assuming the adapter has a valid link partner, a valid link should be
1090 * established. Assumes the hardware has previously been reset and the
1091 * transmitter and receiver are not enabled.
1092 *****************************************************************************/
1093int32_t
1094e1000_setup_link(struct e1000_hw *hw)
1095{
1096 uint32_t ctrl_ext;
1097 int32_t ret_val;
1098 uint16_t eeprom_data;
1099
1100 DEBUGFUNC("e1000_setup_link");
1101
Jeff Kirsher526f9952006-01-12 16:50:46 -08001102 /* In the case of the phy reset being blocked, we already have a link.
1103 * We do not have to set it up again. */
1104 if (e1000_check_phy_reset_block(hw))
1105 return E1000_SUCCESS;
1106
Linus Torvalds1da177e2005-04-16 15:20:36 -07001107 /* Read and store word 0x0F of the EEPROM. This word contains bits
1108 * that determine the hardware's default PAUSE (flow control) mode,
1109 * a bit that determines whether the HW defaults to enabling or
1110 * disabling auto-negotiation, and the direction of the
1111 * SW defined pins. If there is no SW over-ride of the flow
1112 * control setting, then the variable hw->fc will
1113 * be initialized based on a value in the EEPROM.
1114 */
Jeff Kirsher11241b12006-09-27 12:53:28 -07001115 if (hw->fc == E1000_FC_DEFAULT) {
Jeff Kirsherfd803242005-12-13 00:06:22 -05001116 switch (hw->mac_type) {
Auke Kokcd94dd02006-06-27 09:08:22 -07001117 case e1000_ich8lan:
Jeff Kirsherfd803242005-12-13 00:06:22 -05001118 case e1000_82573:
Jeff Kirsher11241b12006-09-27 12:53:28 -07001119 hw->fc = E1000_FC_FULL;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001120 break;
1121 default:
1122 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1123 1, &eeprom_data);
1124 if (ret_val) {
1125 DEBUGOUT("EEPROM Read Error\n");
1126 return -E1000_ERR_EEPROM;
1127 }
1128 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
Jeff Kirsher11241b12006-09-27 12:53:28 -07001129 hw->fc = E1000_FC_NONE;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001130 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
1131 EEPROM_WORD0F_ASM_DIR)
Jeff Kirsher11241b12006-09-27 12:53:28 -07001132 hw->fc = E1000_FC_TX_PAUSE;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001133 else
Jeff Kirsher11241b12006-09-27 12:53:28 -07001134 hw->fc = E1000_FC_FULL;
Jeff Kirsherfd803242005-12-13 00:06:22 -05001135 break;
1136 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137 }
1138
1139 /* We want to save off the original Flow Control configuration just
1140 * in case we get disconnected and then reconnected into a different
1141 * hub or switch with different Flow Control capabilities.
1142 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001143 if (hw->mac_type == e1000_82542_rev2_0)
Jeff Kirsher11241b12006-09-27 12:53:28 -07001144 hw->fc &= (~E1000_FC_TX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001145
Auke Kok8fc897b2006-08-28 14:56:16 -07001146 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
Jeff Kirsher11241b12006-09-27 12:53:28 -07001147 hw->fc &= (~E1000_FC_RX_PAUSE);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148
1149 hw->original_fc = hw->fc;
1150
1151 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
1152
1153 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
1154 * polarity value for the SW controlled pins, and setup the
1155 * Extended Device Control reg with that info.
1156 * This is needed because one of the SW controlled pins is used for
1157 * signal detection. So this should be done before e1000_setup_pcs_link()
1158 * or e1000_phy_setup() is called.
1159 */
Jeff Kirsher497fce52006-03-02 18:18:20 -08001160 if (hw->mac_type == e1000_82543) {
Auke Kok8fc897b2006-08-28 14:56:16 -07001161 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
1162 1, &eeprom_data);
1163 if (ret_val) {
1164 DEBUGOUT("EEPROM Read Error\n");
1165 return -E1000_ERR_EEPROM;
1166 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001167 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
1168 SWDPIO__EXT_SHIFT);
1169 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1170 }
1171
1172 /* Call the necessary subroutine to configure the link. */
1173 ret_val = (hw->media_type == e1000_media_type_copper) ?
1174 e1000_setup_copper_link(hw) :
1175 e1000_setup_fiber_serdes_link(hw);
1176
1177 /* Initialize the flow control address, type, and PAUSE timer
1178 * registers to their default values. This is done even if flow
1179 * control is disabled, because it does not hurt anything to
1180 * initialize these registers.
1181 */
1182 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
1183
Auke Kokcd94dd02006-06-27 09:08:22 -07001184 /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
1185 if (hw->mac_type != e1000_ich8lan) {
1186 E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
1187 E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
1188 E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
1189 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001190
Linus Torvalds1da177e2005-04-16 15:20:36 -07001191 E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
1192
1193 /* Set the flow control receive threshold registers. Normally,
1194 * these registers will be set to a default threshold that may be
1195 * adjusted later by the driver's runtime code. However, if the
1196 * ability to transmit pause frames in not enabled, then these
1197 * registers will be set to 0.
1198 */
Jeff Kirsher11241b12006-09-27 12:53:28 -07001199 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001200 E1000_WRITE_REG(hw, FCRTL, 0);
1201 E1000_WRITE_REG(hw, FCRTH, 0);
1202 } else {
1203 /* We need to set up the Receive Threshold high and low water marks
1204 * as well as (optionally) enabling the transmission of XON frames.
1205 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001206 if (hw->fc_send_xon) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001207 E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
1208 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1209 } else {
1210 E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
1211 E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
1212 }
1213 }
1214 return ret_val;
1215}
1216
1217/******************************************************************************
1218 * Sets up link for a fiber based or serdes based adapter
1219 *
1220 * hw - Struct containing variables accessed by shared code
1221 *
1222 * Manipulates Physical Coding Sublayer functions in order to configure
1223 * link. Assumes the hardware has been previously reset and the transmitter
1224 * and receiver are not enabled.
1225 *****************************************************************************/
1226static int32_t
1227e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
1228{
1229 uint32_t ctrl;
1230 uint32_t status;
1231 uint32_t txcw = 0;
1232 uint32_t i;
1233 uint32_t signal = 0;
1234 int32_t ret_val;
1235
1236 DEBUGFUNC("e1000_setup_fiber_serdes_link");
1237
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04001238 /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists
1239 * until explicitly turned off or a power cycle is performed. A read to
1240 * the register does not indicate its status. Therefore, we ensure
1241 * loopback mode is disabled during initialization.
1242 */
1243 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572)
1244 E1000_WRITE_REG(hw, SCTL, E1000_DISABLE_SERDES_LOOPBACK);
1245
Jeff Kirsher09ae3e82006-09-27 12:53:51 -07001246 /* On adapters with a MAC newer than 82544, SWDP 1 will be
Linus Torvalds1da177e2005-04-16 15:20:36 -07001247 * set when the optics detect a signal. On older adapters, it will be
1248 * cleared when there is a signal. This applies to fiber media only.
Jeff Kirsher09ae3e82006-09-27 12:53:51 -07001249 * If we're on serdes media, adjust the output amplitude to value
1250 * set in the EEPROM.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001251 */
1252 ctrl = E1000_READ_REG(hw, CTRL);
Auke Kok8fc897b2006-08-28 14:56:16 -07001253 if (hw->media_type == e1000_media_type_fiber)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001254 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
1255
1256 ret_val = e1000_adjust_serdes_amplitude(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001257 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001258 return ret_val;
1259
1260 /* Take the link out of reset */
1261 ctrl &= ~(E1000_CTRL_LRST);
1262
1263 /* Adjust VCO speed to improve BER performance */
1264 ret_val = e1000_set_vco_speed(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001265 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001266 return ret_val;
1267
1268 e1000_config_collision_dist(hw);
1269
1270 /* Check for a software override of the flow control settings, and setup
1271 * the device accordingly. If auto-negotiation is enabled, then software
1272 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
1273 * Config Word Register (TXCW) and re-start auto-negotiation. However, if
1274 * auto-negotiation is disabled, then software will have to manually
1275 * configure the two flow control enable bits in the CTRL register.
1276 *
1277 * The possible values of the "fc" parameter are:
1278 * 0: Flow control is completely disabled
1279 * 1: Rx flow control is enabled (we can receive pause frames, but
1280 * not send pause frames).
1281 * 2: Tx flow control is enabled (we can send pause frames but we do
1282 * not support receiving pause frames).
1283 * 3: Both Rx and TX flow control (symmetric) are enabled.
1284 */
1285 switch (hw->fc) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07001286 case E1000_FC_NONE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001287 /* Flow control is completely disabled by a software over-ride. */
1288 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
1289 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07001290 case E1000_FC_RX_PAUSE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001291 /* RX Flow control is enabled and TX Flow control is disabled by a
1292 * software over-ride. Since there really isn't a way to advertise
1293 * that we are capable of RX Pause ONLY, we will advertise that we
1294 * support both symmetric and asymmetric RX PAUSE. Later, we will
1295 * disable the adapter's ability to send PAUSE frames.
1296 */
1297 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1298 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07001299 case E1000_FC_TX_PAUSE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001300 /* TX Flow control is enabled, and RX Flow control is disabled, by a
1301 * software over-ride.
1302 */
1303 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
1304 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07001305 case E1000_FC_FULL:
Linus Torvalds1da177e2005-04-16 15:20:36 -07001306 /* Flow control (both RX and TX) is enabled by a software over-ride. */
1307 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
1308 break;
1309 default:
1310 DEBUGOUT("Flow control param set incorrectly\n");
1311 return -E1000_ERR_CONFIG;
1312 break;
1313 }
1314
1315 /* Since auto-negotiation is enabled, take the link out of reset (the link
1316 * will be in reset, because we previously reset the chip). This will
1317 * restart auto-negotiation. If auto-neogtiation is successful then the
1318 * link-up status bit will be set and the flow control enable bits (RFCE
1319 * and TFCE) will be set according to their negotiated value.
1320 */
1321 DEBUGOUT("Auto-negotiation enabled\n");
1322
1323 E1000_WRITE_REG(hw, TXCW, txcw);
1324 E1000_WRITE_REG(hw, CTRL, ctrl);
1325 E1000_WRITE_FLUSH(hw);
1326
1327 hw->txcw = txcw;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04001328 msleep(1);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001329
1330 /* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
1331 * indication in the Device Status Register. Time-out if a link isn't
1332 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
1333 * less than 500 milliseconds even if the other end is doing it in SW).
1334 * For internal serdes, we just assume a signal is present, then poll.
1335 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001336 if (hw->media_type == e1000_media_type_internal_serdes ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07001337 (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
1338 DEBUGOUT("Looking for Link\n");
Auke Kok8fc897b2006-08-28 14:56:16 -07001339 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
Jeff Garzikf8ec4732006-09-19 15:27:07 -04001340 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001341 status = E1000_READ_REG(hw, STATUS);
Auke Kok8fc897b2006-08-28 14:56:16 -07001342 if (status & E1000_STATUS_LU) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001343 }
Auke Kok8fc897b2006-08-28 14:56:16 -07001344 if (i == (LINK_UP_TIMEOUT / 10)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001345 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1346 hw->autoneg_failed = 1;
1347 /* AutoNeg failed to achieve a link, so we'll call
1348 * e1000_check_for_link. This routine will force the link up if
1349 * we detect a signal. This will allow us to communicate with
1350 * non-autonegotiating link partners.
1351 */
1352 ret_val = e1000_check_for_link(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001353 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001354 DEBUGOUT("Error while checking for link\n");
1355 return ret_val;
1356 }
1357 hw->autoneg_failed = 0;
1358 } else {
1359 hw->autoneg_failed = 0;
1360 DEBUGOUT("Valid Link Found\n");
1361 }
1362 } else {
1363 DEBUGOUT("No Signal Detected\n");
1364 }
1365 return E1000_SUCCESS;
1366}
1367
1368/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001369* Make sure we have a valid PHY and change PHY mode before link setup.
Linus Torvalds1da177e2005-04-16 15:20:36 -07001370*
1371* hw - Struct containing variables accessed by shared code
1372******************************************************************************/
1373static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001374e1000_copper_link_preconfig(struct e1000_hw *hw)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001375{
1376 uint32_t ctrl;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001377 int32_t ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001378 uint16_t phy_data;
1379
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001380 DEBUGFUNC("e1000_copper_link_preconfig");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001381
1382 ctrl = E1000_READ_REG(hw, CTRL);
1383 /* With 82543, we need to force speed and duplex on the MAC equal to what
1384 * the PHY speed and duplex configuration is. In addition, we need to
1385 * perform a hardware reset on the PHY to take it out of reset.
1386 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001387 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001388 ctrl |= E1000_CTRL_SLU;
1389 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1390 E1000_WRITE_REG(hw, CTRL, ctrl);
1391 } else {
1392 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1393 E1000_WRITE_REG(hw, CTRL, ctrl);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001394 ret_val = e1000_phy_hw_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001395 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001396 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001397 }
1398
1399 /* Make sure we have a valid PHY */
1400 ret_val = e1000_detect_gig_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001401 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001402 DEBUGOUT("Error, did not detect valid phy.\n");
1403 return ret_val;
1404 }
1405 DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
1406
1407 /* Set PHY to class A mode (if necessary) */
1408 ret_val = e1000_set_phy_mode(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001409 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001410 return ret_val;
1411
Auke Kok8fc897b2006-08-28 14:56:16 -07001412 if ((hw->mac_type == e1000_82545_rev_3) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07001413 (hw->mac_type == e1000_82546_rev_3)) {
1414 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1415 phy_data |= 0x00000008;
1416 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1417 }
1418
Auke Kok8fc897b2006-08-28 14:56:16 -07001419 if (hw->mac_type <= e1000_82543 ||
1420 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1421 hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001422 hw->phy_reset_disable = FALSE;
1423
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001424 return E1000_SUCCESS;
1425}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001426
Linus Torvalds1da177e2005-04-16 15:20:36 -07001427
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001428/********************************************************************
1429* Copper link setup for e1000_phy_igp series.
1430*
1431* hw - Struct containing variables accessed by shared code
1432*********************************************************************/
1433static int32_t
1434e1000_copper_link_igp_setup(struct e1000_hw *hw)
1435{
1436 uint32_t led_ctrl;
1437 int32_t ret_val;
1438 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001439
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001440 DEBUGFUNC("e1000_copper_link_igp_setup");
Linus Torvalds1da177e2005-04-16 15:20:36 -07001441
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001442 if (hw->phy_reset_disable)
1443 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001444
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001445 ret_val = e1000_phy_reset(hw);
1446 if (ret_val) {
1447 DEBUGOUT("Error Resetting the PHY\n");
1448 return ret_val;
1449 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001450
Auke Kok8fc897b2006-08-28 14:56:16 -07001451 /* Wait 15ms for MAC to configure PHY from eeprom settings */
Jeff Garzikf8ec4732006-09-19 15:27:07 -04001452 msleep(15);
Auke Kokcd94dd02006-06-27 09:08:22 -07001453 if (hw->mac_type != e1000_ich8lan) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001454 /* Configure activity LED after PHY reset */
1455 led_ctrl = E1000_READ_REG(hw, LEDCTL);
1456 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1457 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1458 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
Auke Kokcd94dd02006-06-27 09:08:22 -07001459 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001460
Jeff Kirsherc9c1b832006-08-16 13:38:54 -07001461 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1462 if (hw->phy_type == e1000_phy_igp) {
1463 /* disable lplu d3 during driver init */
1464 ret_val = e1000_set_d3_lplu_state(hw, FALSE);
1465 if (ret_val) {
1466 DEBUGOUT("Error Disabling LPLU D3\n");
1467 return ret_val;
1468 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001469 }
1470
1471 /* disable lplu d0 during driver init */
1472 ret_val = e1000_set_d0_lplu_state(hw, FALSE);
1473 if (ret_val) {
1474 DEBUGOUT("Error Disabling LPLU D0\n");
1475 return ret_val;
1476 }
1477 /* Configure mdi-mdix settings */
1478 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1479 if (ret_val)
1480 return ret_val;
1481
1482 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1483 hw->dsp_config_state = e1000_dsp_config_disabled;
1484 /* Force MDI for earlier revs of the IGP PHY */
1485 phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX);
1486 hw->mdix = 1;
1487
1488 } else {
1489 hw->dsp_config_state = e1000_dsp_config_enabled;
1490 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1491
1492 switch (hw->mdix) {
1493 case 1:
1494 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1495 break;
1496 case 2:
1497 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1498 break;
1499 case 0:
1500 default:
1501 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1502 break;
1503 }
1504 }
1505 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001506 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001507 return ret_val;
1508
1509 /* set auto-master slave resolution settings */
Auke Kok8fc897b2006-08-28 14:56:16 -07001510 if (hw->autoneg) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001511 e1000_ms_type phy_ms_setting = hw->master_slave;
1512
Auke Kok8fc897b2006-08-28 14:56:16 -07001513 if (hw->ffe_config_state == e1000_ffe_config_active)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001514 hw->ffe_config_state = e1000_ffe_config_enabled;
1515
Auke Kok8fc897b2006-08-28 14:56:16 -07001516 if (hw->dsp_config_state == e1000_dsp_config_activated)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001517 hw->dsp_config_state = e1000_dsp_config_enabled;
1518
1519 /* when autonegotiation advertisment is only 1000Mbps then we
1520 * should disable SmartSpeed and enable Auto MasterSlave
1521 * resolution as hardware default. */
Auke Kok8fc897b2006-08-28 14:56:16 -07001522 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001523 /* Disable SmartSpeed */
Auke Kok8fc897b2006-08-28 14:56:16 -07001524 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1525 &phy_data);
1526 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001527 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001528 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
Auke Kok8fc897b2006-08-28 14:56:16 -07001529 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1530 phy_data);
1531 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001532 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001533 /* Set auto Master/Slave resolution process */
1534 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001535 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001536 return ret_val;
1537 phy_data &= ~CR_1000T_MS_ENABLE;
1538 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001539 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001540 return ret_val;
1541 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001542
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001543 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001544 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001545 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001546
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001547 /* load defaults for future use */
1548 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1549 ((phy_data & CR_1000T_MS_VALUE) ?
1550 e1000_ms_force_master :
1551 e1000_ms_force_slave) :
1552 e1000_ms_auto;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001553
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001554 switch (phy_ms_setting) {
1555 case e1000_ms_force_master:
1556 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1557 break;
1558 case e1000_ms_force_slave:
1559 phy_data |= CR_1000T_MS_ENABLE;
1560 phy_data &= ~(CR_1000T_MS_VALUE);
1561 break;
1562 case e1000_ms_auto:
1563 phy_data &= ~CR_1000T_MS_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001564 default:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001565 break;
1566 }
1567 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001568 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001569 return ret_val;
Malli Chilakala2b028932005-06-17 17:46:06 -07001570 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001571
Malli Chilakala2b028932005-06-17 17:46:06 -07001572 return E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001573}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001574
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001575/********************************************************************
1576* Copper link setup for e1000_phy_gg82563 series.
1577*
1578* hw - Struct containing variables accessed by shared code
1579*********************************************************************/
1580static int32_t
1581e1000_copper_link_ggp_setup(struct e1000_hw *hw)
1582{
1583 int32_t ret_val;
1584 uint16_t phy_data;
1585 uint32_t reg_data;
1586
1587 DEBUGFUNC("e1000_copper_link_ggp_setup");
1588
Auke Kok8fc897b2006-08-28 14:56:16 -07001589 if (!hw->phy_reset_disable) {
Auke Kok76c224b2006-05-23 13:36:06 -07001590
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001591 /* Enable CRS on TX for half-duplex operation. */
1592 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1593 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001594 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001595 return ret_val;
1596
1597 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
1598 /* Use 25MHz for both link down and 1000BASE-T for Tx clock */
1599 phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;
1600
1601 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL,
1602 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001603 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001604 return ret_val;
1605
1606 /* Options:
1607 * MDI/MDI-X = 0 (default)
1608 * 0 - Auto for all speeds
1609 * 1 - MDI mode
1610 * 2 - MDI-X mode
1611 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1612 */
1613 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001614 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001615 return ret_val;
1616
1617 phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
1618
1619 switch (hw->mdix) {
1620 case 1:
1621 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
1622 break;
1623 case 2:
1624 phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
1625 break;
1626 case 0:
1627 default:
1628 phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
1629 break;
1630 }
1631
1632 /* Options:
1633 * disable_polarity_correction = 0 (default)
1634 * Automatic Correction for Reversed Cable Polarity
1635 * 0 - Disabled
1636 * 1 - Enabled
1637 */
1638 phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
Auke Kok8fc897b2006-08-28 14:56:16 -07001639 if (hw->disable_polarity_correction == 1)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001640 phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
1641 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data);
1642
Auke Kok8fc897b2006-08-28 14:56:16 -07001643 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001644 return ret_val;
1645
1646 /* SW Reset the PHY so all changes take effect */
1647 ret_val = e1000_phy_reset(hw);
1648 if (ret_val) {
1649 DEBUGOUT("Error Resetting the PHY\n");
1650 return ret_val;
1651 }
1652 } /* phy_reset_disable */
1653
1654 if (hw->mac_type == e1000_80003es2lan) {
1655 /* Bypass RX and TX FIFO's */
1656 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
1657 E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS |
1658 E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
1659 if (ret_val)
1660 return ret_val;
1661
1662 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data);
1663 if (ret_val)
1664 return ret_val;
1665
1666 phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
1667 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data);
1668
1669 if (ret_val)
1670 return ret_val;
1671
1672 reg_data = E1000_READ_REG(hw, CTRL_EXT);
1673 reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
1674 E1000_WRITE_REG(hw, CTRL_EXT, reg_data);
1675
1676 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1677 &phy_data);
1678 if (ret_val)
1679 return ret_val;
1680
1681 /* Do not init these registers when the HW is in IAMT mode, since the
1682 * firmware will have already initialized them. We only initialize
1683 * them if the HW is not in IAMT mode.
1684 */
1685 if (e1000_check_mng_mode(hw) == FALSE) {
1686 /* Enable Electrical Idle on the PHY */
1687 phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
1688 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL,
1689 phy_data);
1690 if (ret_val)
1691 return ret_val;
1692
1693 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1694 &phy_data);
1695 if (ret_val)
1696 return ret_val;
1697
Auke Kokcd94dd02006-06-27 09:08:22 -07001698 phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001699 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL,
1700 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001701
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001702 if (ret_val)
1703 return ret_val;
1704 }
1705
1706 /* Workaround: Disable padding in Kumeran interface in the MAC
1707 * and in the PHY to avoid CRC errors.
1708 */
1709 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1710 &phy_data);
1711 if (ret_val)
1712 return ret_val;
1713 phy_data |= GG82563_ICR_DIS_PADDING;
1714 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL,
1715 phy_data);
1716 if (ret_val)
1717 return ret_val;
1718 }
1719
1720 return E1000_SUCCESS;
1721}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001722
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001723/********************************************************************
1724* Copper link setup for e1000_phy_m88 series.
1725*
1726* hw - Struct containing variables accessed by shared code
1727*********************************************************************/
1728static int32_t
1729e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1730{
1731 int32_t ret_val;
1732 uint16_t phy_data;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001733
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001734 DEBUGFUNC("e1000_copper_link_mgp_setup");
1735
Auke Kok8fc897b2006-08-28 14:56:16 -07001736 if (hw->phy_reset_disable)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001737 return E1000_SUCCESS;
Auke Kok76c224b2006-05-23 13:36:06 -07001738
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001739 /* Enable CRS on TX. This must be set for half-duplex operation. */
1740 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001741 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001742 return ret_val;
1743
1744 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1745
1746 /* Options:
1747 * MDI/MDI-X = 0 (default)
1748 * 0 - Auto for all speeds
1749 * 1 - MDI mode
1750 * 2 - MDI-X mode
1751 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1752 */
1753 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1754
1755 switch (hw->mdix) {
1756 case 1:
1757 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1758 break;
1759 case 2:
1760 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1761 break;
1762 case 3:
1763 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1764 break;
1765 case 0:
1766 default:
1767 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1768 break;
1769 }
1770
1771 /* Options:
1772 * disable_polarity_correction = 0 (default)
1773 * Automatic Correction for Reversed Cable Polarity
1774 * 0 - Disabled
1775 * 1 - Enabled
1776 */
1777 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
Auke Kok8fc897b2006-08-28 14:56:16 -07001778 if (hw->disable_polarity_correction == 1)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001779 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
Auke Kokee040222006-06-27 09:08:03 -07001780 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1781 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001782 return ret_val;
1783
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001784 if (hw->phy_revision < M88E1011_I_REV_4) {
Auke Kokee040222006-06-27 09:08:03 -07001785 /* Force TX_CLK in the Extended PHY Specific Control Register
1786 * to 25MHz clock.
1787 */
1788 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1789 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001790 return ret_val;
Auke Kokee040222006-06-27 09:08:03 -07001791
1792 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1793
1794 if ((hw->phy_revision == E1000_REVISION_2) &&
1795 (hw->phy_id == M88E1111_I_PHY_ID)) {
1796 /* Vidalia Phy, set the downshift counter to 5x */
1797 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1798 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1799 ret_val = e1000_write_phy_reg(hw,
1800 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1801 if (ret_val)
1802 return ret_val;
1803 } else {
1804 /* Configure Master and Slave downshift values */
1805 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1806 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1807 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1808 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1809 ret_val = e1000_write_phy_reg(hw,
1810 M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1811 if (ret_val)
1812 return ret_val;
1813 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001814 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001815
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001816 /* SW Reset the PHY so all changes take effect */
1817 ret_val = e1000_phy_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001818 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001819 DEBUGOUT("Error Resetting the PHY\n");
1820 return ret_val;
1821 }
1822
1823 return E1000_SUCCESS;
1824}
1825
1826/********************************************************************
1827* Setup auto-negotiation and flow control advertisements,
1828* and then perform auto-negotiation.
1829*
1830* hw - Struct containing variables accessed by shared code
1831*********************************************************************/
1832static int32_t
1833e1000_copper_link_autoneg(struct e1000_hw *hw)
1834{
1835 int32_t ret_val;
1836 uint16_t phy_data;
1837
1838 DEBUGFUNC("e1000_copper_link_autoneg");
1839
1840 /* Perform some bounds checking on the hw->autoneg_advertised
1841 * parameter. If this variable is zero, then set it to the default.
1842 */
1843 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1844
1845 /* If autoneg_advertised is zero, we assume it was not defaulted
1846 * by the calling code so we set to advertise full capability.
1847 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001848 if (hw->autoneg_advertised == 0)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001849 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1850
Auke Kokcd94dd02006-06-27 09:08:22 -07001851 /* IFE phy only supports 10/100 */
1852 if (hw->phy_type == e1000_phy_ife)
1853 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1854
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001855 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
1856 ret_val = e1000_phy_setup_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001857 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001858 DEBUGOUT("Error Setting up Auto-Negotiation\n");
1859 return ret_val;
1860 }
1861 DEBUGOUT("Restarting Auto-Neg\n");
1862
1863 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1864 * the Auto Neg Restart bit in the PHY control register.
1865 */
1866 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001867 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001868 return ret_val;
1869
1870 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1871 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07001872 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001873 return ret_val;
1874
1875 /* Does the user want to wait for Auto-Neg to complete here, or
1876 * check at a later time (for example, callback routine).
1877 */
Auke Kok8fc897b2006-08-28 14:56:16 -07001878 if (hw->wait_autoneg_complete) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001879 ret_val = e1000_wait_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001880 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001881 DEBUGOUT("Error while waiting for autoneg to complete\n");
1882 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001883 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001884 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001885
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001886 hw->get_link_status = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001887
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001888 return E1000_SUCCESS;
1889}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001890
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001891/******************************************************************************
1892* Config the MAC and the PHY after link is up.
1893* 1) Set up the MAC to the current PHY speed/duplex
1894* if we are on 82543. If we
1895* are on newer silicon, we only need to configure
1896* collision distance in the Transmit Control Register.
1897* 2) Set up flow control on the MAC to that established with
1898* the link partner.
Auke Kok76c224b2006-05-23 13:36:06 -07001899* 3) Config DSP to improve Gigabit link quality for some PHY revisions.
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001900*
1901* hw - Struct containing variables accessed by shared code
1902******************************************************************************/
1903static int32_t
1904e1000_copper_link_postconfig(struct e1000_hw *hw)
1905{
1906 int32_t ret_val;
1907 DEBUGFUNC("e1000_copper_link_postconfig");
Auke Kok76c224b2006-05-23 13:36:06 -07001908
Auke Kok8fc897b2006-08-28 14:56:16 -07001909 if (hw->mac_type >= e1000_82544) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001910 e1000_config_collision_dist(hw);
1911 } else {
1912 ret_val = e1000_config_mac_to_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001913 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001914 DEBUGOUT("Error configuring MAC to PHY settings\n");
1915 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001916 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001917 }
1918 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001919 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001920 DEBUGOUT("Error Configuring Flow Control\n");
1921 return ret_val;
1922 }
1923
1924 /* Config DSP to improve Giga link quality */
Auke Kok8fc897b2006-08-28 14:56:16 -07001925 if (hw->phy_type == e1000_phy_igp) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001926 ret_val = e1000_config_dsp_after_link_change(hw, TRUE);
Auke Kok8fc897b2006-08-28 14:56:16 -07001927 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001928 DEBUGOUT("Error Configuring DSP after link up\n");
1929 return ret_val;
1930 }
1931 }
Auke Kok76c224b2006-05-23 13:36:06 -07001932
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001933 return E1000_SUCCESS;
1934}
1935
1936/******************************************************************************
1937* Detects which PHY is present and setup the speed and duplex
1938*
1939* hw - Struct containing variables accessed by shared code
1940******************************************************************************/
1941static int32_t
1942e1000_setup_copper_link(struct e1000_hw *hw)
1943{
1944 int32_t ret_val;
1945 uint16_t i;
1946 uint16_t phy_data;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001947 uint16_t reg_data;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001948
1949 DEBUGFUNC("e1000_setup_copper_link");
1950
Auke Kokcd94dd02006-06-27 09:08:22 -07001951 switch (hw->mac_type) {
1952 case e1000_80003es2lan:
1953 case e1000_ich8lan:
1954 /* Set the mac to wait the maximum time between each
1955 * iteration and increase the max iterations when
1956 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
1957 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1958 if (ret_val)
1959 return ret_val;
1960 ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1961 if (ret_val)
1962 return ret_val;
1963 reg_data |= 0x3F;
1964 ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1965 if (ret_val)
1966 return ret_val;
1967 default:
1968 break;
1969 }
1970
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001971 /* Check if it is a valid PHY and set PHY mode if necessary. */
1972 ret_val = e1000_copper_link_preconfig(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001973 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001974 return ret_val;
1975
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001976 switch (hw->mac_type) {
1977 case e1000_80003es2lan:
Auke Kokcd94dd02006-06-27 09:08:22 -07001978 /* Kumeran registers are written-only */
1979 reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08001980 reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
1981 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL,
1982 reg_data);
1983 if (ret_val)
1984 return ret_val;
1985 break;
1986 default:
1987 break;
1988 }
1989
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001990 if (hw->phy_type == e1000_phy_igp ||
Auke Kokcd94dd02006-06-27 09:08:22 -07001991 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001992 hw->phy_type == e1000_phy_igp_2) {
1993 ret_val = e1000_copper_link_igp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001994 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001995 return ret_val;
1996 } else if (hw->phy_type == e1000_phy_m88) {
1997 ret_val = e1000_copper_link_mgp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07001998 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07001999 return ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002000 } else if (hw->phy_type == e1000_phy_gg82563) {
2001 ret_val = e1000_copper_link_ggp_setup(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002002 if (ret_val)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002003 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002004 }
2005
Auke Kok8fc897b2006-08-28 14:56:16 -07002006 if (hw->autoneg) {
Auke Kok76c224b2006-05-23 13:36:06 -07002007 /* Setup autoneg and flow control advertisement
2008 * and perform autonegotiation */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002009 ret_val = e1000_copper_link_autoneg(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002010 if (ret_val)
Auke Kok76c224b2006-05-23 13:36:06 -07002011 return ret_val;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002012 } else {
2013 /* PHY will be set to 10H, 10F, 100H,or 100F
2014 * depending on value from forced_speed_duplex. */
2015 DEBUGOUT("Forcing speed and duplex\n");
2016 ret_val = e1000_phy_force_speed_duplex(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002017 if (ret_val) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002018 DEBUGOUT("Error Forcing Speed and Duplex\n");
2019 return ret_val;
2020 }
2021 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002022
2023 /* Check link status. Wait up to 100 microseconds for link to become
2024 * valid.
2025 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002026 for (i = 0; i < 10; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002027 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002028 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002029 return ret_val;
2030 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002031 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002032 return ret_val;
2033
Auke Kok8fc897b2006-08-28 14:56:16 -07002034 if (phy_data & MII_SR_LINK_STATUS) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002035 /* Config the MAC and PHY after link is up */
2036 ret_val = e1000_copper_link_postconfig(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002037 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002038 return ret_val;
Auke Kok76c224b2006-05-23 13:36:06 -07002039
Linus Torvalds1da177e2005-04-16 15:20:36 -07002040 DEBUGOUT("Valid link established!!!\n");
2041 return E1000_SUCCESS;
2042 }
2043 udelay(10);
2044 }
2045
2046 DEBUGOUT("Unable to establish link!!!\n");
2047 return E1000_SUCCESS;
2048}
2049
2050/******************************************************************************
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002051* Configure the MAC-to-PHY interface for 10/100Mbps
2052*
2053* hw - Struct containing variables accessed by shared code
2054******************************************************************************/
2055static int32_t
Auke Kokcd94dd02006-06-27 09:08:22 -07002056e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002057{
2058 int32_t ret_val = E1000_SUCCESS;
2059 uint32_t tipg;
2060 uint16_t reg_data;
2061
2062 DEBUGFUNC("e1000_configure_kmrn_for_10_100");
2063
2064 reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
2065 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2066 reg_data);
2067 if (ret_val)
2068 return ret_val;
2069
2070 /* Configure Transmit Inter-Packet Gap */
2071 tipg = E1000_READ_REG(hw, TIPG);
2072 tipg &= ~E1000_TIPG_IPGT_MASK;
2073 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
2074 E1000_WRITE_REG(hw, TIPG, tipg);
2075
Auke Kokcd94dd02006-06-27 09:08:22 -07002076 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2077
2078 if (ret_val)
2079 return ret_val;
2080
2081 if (duplex == HALF_DUPLEX)
2082 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
2083 else
2084 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2085
2086 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2087
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002088 return ret_val;
2089}
2090
2091static int32_t
2092e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
2093{
2094 int32_t ret_val = E1000_SUCCESS;
2095 uint16_t reg_data;
2096 uint32_t tipg;
2097
2098 DEBUGFUNC("e1000_configure_kmrn_for_1000");
2099
2100 reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
2101 ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL,
2102 reg_data);
2103 if (ret_val)
2104 return ret_val;
2105
2106 /* Configure Transmit Inter-Packet Gap */
2107 tipg = E1000_READ_REG(hw, TIPG);
2108 tipg &= ~E1000_TIPG_IPGT_MASK;
2109 tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
2110 E1000_WRITE_REG(hw, TIPG, tipg);
2111
Auke Kokcd94dd02006-06-27 09:08:22 -07002112 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
2113
2114 if (ret_val)
2115 return ret_val;
2116
2117 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
2118 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
2119
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002120 return ret_val;
2121}
2122
2123/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07002124* Configures PHY autoneg and flow control advertisement settings
2125*
2126* hw - Struct containing variables accessed by shared code
2127******************************************************************************/
2128int32_t
2129e1000_phy_setup_autoneg(struct e1000_hw *hw)
2130{
2131 int32_t ret_val;
2132 uint16_t mii_autoneg_adv_reg;
2133 uint16_t mii_1000t_ctrl_reg;
2134
2135 DEBUGFUNC("e1000_phy_setup_autoneg");
2136
2137 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
2138 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002139 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002140 return ret_val;
2141
Auke Kokcd94dd02006-06-27 09:08:22 -07002142 if (hw->phy_type != e1000_phy_ife) {
2143 /* Read the MII 1000Base-T Control Register (Address 9). */
2144 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
2145 if (ret_val)
2146 return ret_val;
2147 } else
2148 mii_1000t_ctrl_reg=0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002149
2150 /* Need to parse both autoneg_advertised and fc and set up
2151 * the appropriate PHY registers. First we will parse for
2152 * autoneg_advertised software override. Since we can advertise
2153 * a plethora of combinations, we need to check each bit
2154 * individually.
2155 */
2156
2157 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
2158 * Advertisement Register (Address 4) and the 1000 mb speed bits in
2159 * the 1000Base-T Control Register (Address 9).
2160 */
2161 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
2162 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
2163
2164 DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
2165
2166 /* Do we want to advertise 10 Mb Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002167 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002168 DEBUGOUT("Advertise 10mb Half duplex\n");
2169 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
2170 }
2171
2172 /* Do we want to advertise 10 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002173 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002174 DEBUGOUT("Advertise 10mb Full duplex\n");
2175 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
2176 }
2177
2178 /* Do we want to advertise 100 Mb Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002179 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002180 DEBUGOUT("Advertise 100mb Half duplex\n");
2181 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
2182 }
2183
2184 /* Do we want to advertise 100 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002185 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002186 DEBUGOUT("Advertise 100mb Full duplex\n");
2187 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
2188 }
2189
2190 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
Auke Kok8fc897b2006-08-28 14:56:16 -07002191 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002192 DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
2193 }
2194
2195 /* Do we want to advertise 1000 Mb Full Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002196 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002197 DEBUGOUT("Advertise 1000mb Full duplex\n");
2198 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
Auke Kokcd94dd02006-06-27 09:08:22 -07002199 if (hw->phy_type == e1000_phy_ife) {
2200 DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n");
2201 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002202 }
2203
2204 /* Check for a software override of the flow control settings, and
2205 * setup the PHY advertisement registers accordingly. If
2206 * auto-negotiation is enabled, then software will have to set the
2207 * "PAUSE" bits to the correct value in the Auto-Negotiation
2208 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
2209 *
2210 * The possible values of the "fc" parameter are:
2211 * 0: Flow control is completely disabled
2212 * 1: Rx flow control is enabled (we can receive pause frames
2213 * but not send pause frames).
2214 * 2: Tx flow control is enabled (we can send pause frames
2215 * but we do not support receiving pause frames).
2216 * 3: Both Rx and TX flow control (symmetric) are enabled.
2217 * other: No software override. The flow control configuration
2218 * in the EEPROM is used.
2219 */
2220 switch (hw->fc) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002221 case E1000_FC_NONE: /* 0 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002222 /* Flow control (RX & TX) is completely disabled by a
2223 * software over-ride.
2224 */
2225 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2226 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002227 case E1000_FC_RX_PAUSE: /* 1 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002228 /* RX Flow control is enabled, and TX Flow control is
2229 * disabled, by a software over-ride.
2230 */
2231 /* Since there really isn't a way to advertise that we are
2232 * capable of RX Pause ONLY, we will advertise that we
2233 * support both symmetric and asymmetric RX PAUSE. Later
2234 * (in e1000_config_fc_after_link_up) we will disable the
2235 *hw's ability to send PAUSE frames.
2236 */
2237 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2238 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002239 case E1000_FC_TX_PAUSE: /* 2 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002240 /* TX Flow control is enabled, and RX Flow control is
2241 * disabled, by a software over-ride.
2242 */
2243 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
2244 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
2245 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002246 case E1000_FC_FULL: /* 3 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07002247 /* Flow control (both RX and TX) is enabled by a software
2248 * over-ride.
2249 */
2250 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
2251 break;
2252 default:
2253 DEBUGOUT("Flow control param set incorrectly\n");
2254 return -E1000_ERR_CONFIG;
2255 }
2256
2257 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002258 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002259 return ret_val;
2260
2261 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
2262
Auke Kokcd94dd02006-06-27 09:08:22 -07002263 if (hw->phy_type != e1000_phy_ife) {
2264 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
2265 if (ret_val)
2266 return ret_val;
2267 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07002268
2269 return E1000_SUCCESS;
2270}
2271
2272/******************************************************************************
2273* Force PHY speed and duplex settings to hw->forced_speed_duplex
2274*
2275* hw - Struct containing variables accessed by shared code
2276******************************************************************************/
2277static int32_t
2278e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2279{
2280 uint32_t ctrl;
2281 int32_t ret_val;
2282 uint16_t mii_ctrl_reg;
2283 uint16_t mii_status_reg;
2284 uint16_t phy_data;
2285 uint16_t i;
2286
2287 DEBUGFUNC("e1000_phy_force_speed_duplex");
2288
2289 /* Turn off Flow control if we are forcing speed and duplex. */
Jeff Kirsher11241b12006-09-27 12:53:28 -07002290 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002291
2292 DEBUGOUT1("hw->fc = %d\n", hw->fc);
2293
2294 /* Read the Device Control Register. */
2295 ctrl = E1000_READ_REG(hw, CTRL);
2296
2297 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
2298 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2299 ctrl &= ~(DEVICE_SPEED_MASK);
2300
2301 /* Clear the Auto Speed Detect Enable bit. */
2302 ctrl &= ~E1000_CTRL_ASDE;
2303
2304 /* Read the MII Control Register. */
2305 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002306 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002307 return ret_val;
2308
2309 /* We need to disable autoneg in order to force link and duplex. */
2310
2311 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
2312
2313 /* Are we forcing Full or Half Duplex? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002314 if (hw->forced_speed_duplex == e1000_100_full ||
2315 hw->forced_speed_duplex == e1000_10_full) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002316 /* We want to force full duplex so we SET the full duplex bits in the
2317 * Device and MII Control Registers.
2318 */
2319 ctrl |= E1000_CTRL_FD;
2320 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
2321 DEBUGOUT("Full Duplex\n");
2322 } else {
2323 /* We want to force half duplex so we CLEAR the full duplex bits in
2324 * the Device and MII Control Registers.
2325 */
2326 ctrl &= ~E1000_CTRL_FD;
2327 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
2328 DEBUGOUT("Half Duplex\n");
2329 }
2330
2331 /* Are we forcing 100Mbps??? */
Auke Kok8fc897b2006-08-28 14:56:16 -07002332 if (hw->forced_speed_duplex == e1000_100_full ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07002333 hw->forced_speed_duplex == e1000_100_half) {
2334 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
2335 ctrl |= E1000_CTRL_SPD_100;
2336 mii_ctrl_reg |= MII_CR_SPEED_100;
2337 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
2338 DEBUGOUT("Forcing 100mb ");
2339 } else {
2340 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
2341 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2342 mii_ctrl_reg |= MII_CR_SPEED_10;
2343 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
2344 DEBUGOUT("Forcing 10mb ");
2345 }
2346
2347 e1000_config_collision_dist(hw);
2348
2349 /* Write the configured values back to the Device Control Reg. */
2350 E1000_WRITE_REG(hw, CTRL, ctrl);
2351
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002352 if ((hw->phy_type == e1000_phy_m88) ||
2353 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002354 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002355 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002356 return ret_val;
2357
2358 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
2359 * forced whenever speed are duplex are forced.
2360 */
2361 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
2362 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002363 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002364 return ret_val;
2365
2366 DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data);
2367
2368 /* Need to reset the PHY or these changes will be ignored */
2369 mii_ctrl_reg |= MII_CR_RESET;
Auke Kok90fb5132006-11-01 08:47:30 -08002370
Auke Kokcd94dd02006-06-27 09:08:22 -07002371 /* Disable MDI-X support for 10/100 */
2372 } else if (hw->phy_type == e1000_phy_ife) {
2373 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
2374 if (ret_val)
2375 return ret_val;
2376
2377 phy_data &= ~IFE_PMC_AUTO_MDIX;
2378 phy_data &= ~IFE_PMC_FORCE_MDIX;
2379
2380 ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data);
2381 if (ret_val)
2382 return ret_val;
Auke Kok90fb5132006-11-01 08:47:30 -08002383
Linus Torvalds1da177e2005-04-16 15:20:36 -07002384 } else {
2385 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
2386 * forced whenever speed or duplex are forced.
2387 */
2388 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002389 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002390 return ret_val;
2391
2392 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
2393 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
2394
2395 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002396 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002397 return ret_val;
2398 }
2399
2400 /* Write back the modified PHY MII control register. */
2401 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002402 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002403 return ret_val;
2404
2405 udelay(1);
2406
2407 /* The wait_autoneg_complete flag may be a little misleading here.
2408 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
2409 * But we do want to delay for a period while forcing only so we
2410 * don't generate false No Link messages. So we will wait here
2411 * only if the user has set wait_autoneg_complete to 1, which is
2412 * the default.
2413 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002414 if (hw->wait_autoneg_complete) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002415 /* We will wait for autoneg to complete. */
2416 DEBUGOUT("Waiting for forced speed/duplex link.\n");
2417 mii_status_reg = 0;
2418
2419 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
Auke Kok8fc897b2006-08-28 14:56:16 -07002420 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002421 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2422 * to be set.
2423 */
2424 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002425 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002426 return ret_val;
2427
2428 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002429 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002430 return ret_val;
2431
Auke Kok8fc897b2006-08-28 14:56:16 -07002432 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04002433 msleep(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002434 }
Auke Kok8fc897b2006-08-28 14:56:16 -07002435 if ((i == 0) &&
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002436 ((hw->phy_type == e1000_phy_m88) ||
2437 (hw->phy_type == e1000_phy_gg82563))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002438 /* We didn't get link. Reset the DSP and wait again for link. */
2439 ret_val = e1000_phy_reset_dsp(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002440 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002441 DEBUGOUT("Error Resetting PHY DSP\n");
2442 return ret_val;
2443 }
2444 }
2445 /* This loop will early-out if the link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07002446 for (i = PHY_FORCE_TIME; i > 0; i--) {
2447 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04002448 msleep(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002449 /* Read the MII Status Register and wait for Auto-Neg Complete bit
2450 * to be set.
2451 */
2452 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002453 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002454 return ret_val;
2455
2456 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002457 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002458 return ret_val;
2459 }
2460 }
2461
2462 if (hw->phy_type == e1000_phy_m88) {
2463 /* Because we reset the PHY above, we need to re-force TX_CLK in the
2464 * Extended PHY Specific Control Register to 25MHz clock. This value
2465 * defaults back to a 2.5MHz clock when the PHY is reset.
2466 */
2467 ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002468 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002469 return ret_val;
2470
2471 phy_data |= M88E1000_EPSCR_TX_CLK_25;
2472 ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002473 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002474 return ret_val;
2475
2476 /* In addition, because of the s/w reset above, we need to enable CRS on
2477 * TX. This must be set for both full and half duplex operation.
2478 */
2479 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002480 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002481 return ret_val;
2482
2483 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
2484 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002485 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002486 return ret_val;
2487
Auke Kok8fc897b2006-08-28 14:56:16 -07002488 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2489 (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full ||
2490 hw->forced_speed_duplex == e1000_10_half)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002491 ret_val = e1000_polarity_reversal_workaround(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002492 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002493 return ret_val;
2494 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08002495 } else if (hw->phy_type == e1000_phy_gg82563) {
2496 /* The TX_CLK of the Extended PHY Specific Control Register defaults
2497 * to 2.5MHz on a reset. We need to re-force it back to 25MHz, if
2498 * we're not in a forced 10/duplex configuration. */
2499 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
2500 if (ret_val)
2501 return ret_val;
2502
2503 phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
2504 if ((hw->forced_speed_duplex == e1000_10_full) ||
2505 (hw->forced_speed_duplex == e1000_10_half))
2506 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ;
2507 else
2508 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ;
2509
2510 /* Also due to the reset, we need to enable CRS on Tx. */
2511 phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
2512
2513 ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
2514 if (ret_val)
2515 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002516 }
2517 return E1000_SUCCESS;
2518}
2519
2520/******************************************************************************
2521* Sets the collision distance in the Transmit Control register
2522*
2523* hw - Struct containing variables accessed by shared code
2524*
2525* Link should have been established previously. Reads the speed and duplex
2526* information from the Device Status register.
2527******************************************************************************/
2528void
2529e1000_config_collision_dist(struct e1000_hw *hw)
2530{
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002531 uint32_t tctl, coll_dist;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002532
2533 DEBUGFUNC("e1000_config_collision_dist");
2534
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002535 if (hw->mac_type < e1000_82543)
2536 coll_dist = E1000_COLLISION_DISTANCE_82542;
2537 else
2538 coll_dist = E1000_COLLISION_DISTANCE;
2539
Linus Torvalds1da177e2005-04-16 15:20:36 -07002540 tctl = E1000_READ_REG(hw, TCTL);
2541
2542 tctl &= ~E1000_TCTL_COLD;
Jeff Kirsher0fadb052006-01-12 16:51:05 -08002543 tctl |= coll_dist << E1000_COLD_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002544
2545 E1000_WRITE_REG(hw, TCTL, tctl);
2546 E1000_WRITE_FLUSH(hw);
2547}
2548
2549/******************************************************************************
2550* Sets MAC speed and duplex settings to reflect the those in the PHY
2551*
2552* hw - Struct containing variables accessed by shared code
2553* mii_reg - data to write to the MII control register
2554*
2555* The contents of the PHY register containing the needed information need to
2556* be passed in.
2557******************************************************************************/
2558static int32_t
2559e1000_config_mac_to_phy(struct e1000_hw *hw)
2560{
2561 uint32_t ctrl;
2562 int32_t ret_val;
2563 uint16_t phy_data;
2564
2565 DEBUGFUNC("e1000_config_mac_to_phy");
2566
Auke Kok76c224b2006-05-23 13:36:06 -07002567 /* 82544 or newer MAC, Auto Speed Detection takes care of
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002568 * MAC speed/duplex configuration.*/
2569 if (hw->mac_type >= e1000_82544)
2570 return E1000_SUCCESS;
2571
Linus Torvalds1da177e2005-04-16 15:20:36 -07002572 /* Read the Device Control Register and set the bits to Force Speed
2573 * and Duplex.
2574 */
2575 ctrl = E1000_READ_REG(hw, CTRL);
2576 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2577 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
2578
2579 /* Set up duplex in the Device Control and Transmit Control
2580 * registers depending on negotiated values.
2581 */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002582 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002583 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002584 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002585
Auke Kok8fc897b2006-08-28 14:56:16 -07002586 if (phy_data & M88E1000_PSSR_DPLX)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002587 ctrl |= E1000_CTRL_FD;
Auke Kok76c224b2006-05-23 13:36:06 -07002588 else
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002589 ctrl &= ~E1000_CTRL_FD;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002590
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002591 e1000_config_collision_dist(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07002592
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002593 /* Set up speed in the Device Control register depending on
2594 * negotiated values.
2595 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002596 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002597 ctrl |= E1000_CTRL_SPD_1000;
Auke Kok8fc897b2006-08-28 14:56:16 -07002598 else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07002599 ctrl |= E1000_CTRL_SPD_100;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002600
Linus Torvalds1da177e2005-04-16 15:20:36 -07002601 /* Write the configured values back to the Device Control Reg. */
2602 E1000_WRITE_REG(hw, CTRL, ctrl);
2603 return E1000_SUCCESS;
2604}
2605
2606/******************************************************************************
2607 * Forces the MAC's flow control settings.
2608 *
2609 * hw - Struct containing variables accessed by shared code
2610 *
2611 * Sets the TFCE and RFCE bits in the device control register to reflect
2612 * the adapter settings. TFCE and RFCE need to be explicitly set by
2613 * software when a Copper PHY is used because autonegotiation is managed
2614 * by the PHY rather than the MAC. Software must also configure these
2615 * bits when link is forced on a fiber connection.
2616 *****************************************************************************/
2617int32_t
2618e1000_force_mac_fc(struct e1000_hw *hw)
2619{
2620 uint32_t ctrl;
2621
2622 DEBUGFUNC("e1000_force_mac_fc");
2623
2624 /* Get the current configuration of the Device Control Register */
2625 ctrl = E1000_READ_REG(hw, CTRL);
2626
2627 /* Because we didn't get link via the internal auto-negotiation
2628 * mechanism (we either forced link or we got link via PHY
2629 * auto-neg), we have to manually enable/disable transmit an
2630 * receive flow control.
2631 *
2632 * The "Case" statement below enables/disable flow control
2633 * according to the "hw->fc" parameter.
2634 *
2635 * The possible values of the "fc" parameter are:
2636 * 0: Flow control is completely disabled
2637 * 1: Rx flow control is enabled (we can receive pause
2638 * frames but not send pause frames).
2639 * 2: Tx flow control is enabled (we can send pause frames
2640 * frames but we do not receive pause frames).
2641 * 3: Both Rx and TX flow control (symmetric) is enabled.
2642 * other: No other values should be possible at this point.
2643 */
2644
2645 switch (hw->fc) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002646 case E1000_FC_NONE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002647 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2648 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002649 case E1000_FC_RX_PAUSE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002650 ctrl &= (~E1000_CTRL_TFCE);
2651 ctrl |= E1000_CTRL_RFCE;
2652 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002653 case E1000_FC_TX_PAUSE:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002654 ctrl &= (~E1000_CTRL_RFCE);
2655 ctrl |= E1000_CTRL_TFCE;
2656 break;
Jeff Kirsher11241b12006-09-27 12:53:28 -07002657 case E1000_FC_FULL:
Linus Torvalds1da177e2005-04-16 15:20:36 -07002658 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2659 break;
2660 default:
2661 DEBUGOUT("Flow control param set incorrectly\n");
2662 return -E1000_ERR_CONFIG;
2663 }
2664
2665 /* Disable TX Flow Control for 82542 (rev 2.0) */
Auke Kok8fc897b2006-08-28 14:56:16 -07002666 if (hw->mac_type == e1000_82542_rev2_0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002667 ctrl &= (~E1000_CTRL_TFCE);
2668
2669 E1000_WRITE_REG(hw, CTRL, ctrl);
2670 return E1000_SUCCESS;
2671}
2672
2673/******************************************************************************
2674 * Configures flow control settings after link is established
2675 *
2676 * hw - Struct containing variables accessed by shared code
2677 *
2678 * Should be called immediately after a valid link has been established.
2679 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2680 * and autonegotiation is enabled, the MAC flow control settings will be set
2681 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2682 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
2683 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01002684static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07002685e1000_config_fc_after_link_up(struct e1000_hw *hw)
2686{
2687 int32_t ret_val;
2688 uint16_t mii_status_reg;
2689 uint16_t mii_nway_adv_reg;
2690 uint16_t mii_nway_lp_ability_reg;
2691 uint16_t speed;
2692 uint16_t duplex;
2693
2694 DEBUGFUNC("e1000_config_fc_after_link_up");
2695
2696 /* Check for the case where we have fiber media and auto-neg failed
2697 * so we had to force link. In this case, we need to force the
2698 * configuration of the MAC to match the "fc" parameter.
2699 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002700 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
2701 ((hw->media_type == e1000_media_type_internal_serdes) &&
2702 (hw->autoneg_failed)) ||
2703 ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002704 ret_val = e1000_force_mac_fc(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002705 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002706 DEBUGOUT("Error forcing flow control settings\n");
2707 return ret_val;
2708 }
2709 }
2710
2711 /* Check for the case where we have copper media and auto-neg is
2712 * enabled. In this case, we need to check and see if Auto-Neg
2713 * has completed, and if so, how the PHY and link partner has
2714 * flow control configured.
2715 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002716 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002717 /* Read the MII Status Register and check to see if AutoNeg
2718 * has completed. We read this twice because this reg has
2719 * some "sticky" (latched) bits.
2720 */
2721 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002722 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002723 return ret_val;
2724 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002725 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002726 return ret_val;
2727
Auke Kok8fc897b2006-08-28 14:56:16 -07002728 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002729 /* The AutoNeg process has completed, so we now need to
2730 * read both the Auto Negotiation Advertisement Register
2731 * (Address 4) and the Auto_Negotiation Base Page Ability
2732 * Register (Address 5) to determine how flow control was
2733 * negotiated.
2734 */
2735 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2736 &mii_nway_adv_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002737 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002738 return ret_val;
2739 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2740 &mii_nway_lp_ability_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07002741 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002742 return ret_val;
2743
2744 /* Two bits in the Auto Negotiation Advertisement Register
2745 * (Address 4) and two bits in the Auto Negotiation Base
2746 * Page Ability Register (Address 5) determine flow control
2747 * for both the PHY and the link partner. The following
2748 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
2749 * 1999, describes these PAUSE resolution bits and how flow
2750 * control is determined based upon these settings.
2751 * NOTE: DC = Don't Care
2752 *
2753 * LOCAL DEVICE | LINK PARTNER
2754 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2755 *-------|---------|-------|---------|--------------------
Jeff Kirsher11241b12006-09-27 12:53:28 -07002756 * 0 | 0 | DC | DC | E1000_FC_NONE
2757 * 0 | 1 | 0 | DC | E1000_FC_NONE
2758 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2759 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2760 * 1 | 0 | 0 | DC | E1000_FC_NONE
2761 * 1 | DC | 1 | DC | E1000_FC_FULL
2762 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2763 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
Linus Torvalds1da177e2005-04-16 15:20:36 -07002764 *
2765 */
2766 /* Are both PAUSE bits set to 1? If so, this implies
2767 * Symmetric Flow Control is enabled at both ends. The
2768 * ASM_DIR bits are irrelevant per the spec.
2769 *
2770 * For Symmetric Flow Control:
2771 *
2772 * LOCAL DEVICE | LINK PARTNER
2773 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2774 *-------|---------|-------|---------|--------------------
Jeff Kirsher11241b12006-09-27 12:53:28 -07002775 * 1 | DC | 1 | DC | E1000_FC_FULL
Linus Torvalds1da177e2005-04-16 15:20:36 -07002776 *
2777 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002778 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2779 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002780 /* Now we need to check if the user selected RX ONLY
2781 * of pause frames. In this case, we had to advertise
2782 * FULL flow control because we could not advertise RX
2783 * ONLY. Hence, we must now check to see if we need to
2784 * turn OFF the TRANSMISSION of PAUSE frames.
2785 */
Jeff Kirsher11241b12006-09-27 12:53:28 -07002786 if (hw->original_fc == E1000_FC_FULL) {
2787 hw->fc = E1000_FC_FULL;
Auke Koka42a5072006-05-23 13:36:01 -07002788 DEBUGOUT("Flow Control = FULL.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002789 } else {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002790 hw->fc = E1000_FC_RX_PAUSE;
Auke Koka42a5072006-05-23 13:36:01 -07002791 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002792 }
2793 }
2794 /* For receiving PAUSE frames ONLY.
2795 *
2796 * LOCAL DEVICE | LINK PARTNER
2797 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2798 *-------|---------|-------|---------|--------------------
Jeff Kirsher11241b12006-09-27 12:53:28 -07002799 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
Linus Torvalds1da177e2005-04-16 15:20:36 -07002800 *
2801 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002802 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2803 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2804 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2805 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002806 hw->fc = E1000_FC_TX_PAUSE;
Auke Koka42a5072006-05-23 13:36:01 -07002807 DEBUGOUT("Flow Control = TX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002808 }
2809 /* For transmitting PAUSE frames ONLY.
2810 *
2811 * LOCAL DEVICE | LINK PARTNER
2812 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2813 *-------|---------|-------|---------|--------------------
Jeff Kirsher11241b12006-09-27 12:53:28 -07002814 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
Linus Torvalds1da177e2005-04-16 15:20:36 -07002815 *
2816 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002817 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2818 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2819 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2820 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002821 hw->fc = E1000_FC_RX_PAUSE;
Auke Koka42a5072006-05-23 13:36:01 -07002822 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002823 }
2824 /* Per the IEEE spec, at this point flow control should be
2825 * disabled. However, we want to consider that we could
2826 * be connected to a legacy switch that doesn't advertise
2827 * desired flow control, but can be forced on the link
2828 * partner. So if we advertised no flow control, that is
2829 * what we will resolve to. If we advertised some kind of
2830 * receive capability (Rx Pause Only or Full Flow Control)
2831 * and the link partner advertised none, we will configure
2832 * ourselves to enable Rx Flow Control only. We can do
2833 * this safely for two reasons: If the link partner really
2834 * didn't want flow control enabled, and we enable Rx, no
2835 * harm done since we won't be receiving any PAUSE frames
2836 * anyway. If the intent on the link partner was to have
2837 * flow control enabled, then by us enabling RX only, we
2838 * can at least receive pause frames and process them.
2839 * This is a good idea because in most cases, since we are
2840 * predominantly a server NIC, more times than not we will
2841 * be asked to delay transmission of packets than asking
2842 * our link partner to pause transmission of frames.
2843 */
Jeff Kirsher11241b12006-09-27 12:53:28 -07002844 else if ((hw->original_fc == E1000_FC_NONE ||
2845 hw->original_fc == E1000_FC_TX_PAUSE) ||
Auke Kok8fc897b2006-08-28 14:56:16 -07002846 hw->fc_strict_ieee) {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002847 hw->fc = E1000_FC_NONE;
Auke Koka42a5072006-05-23 13:36:01 -07002848 DEBUGOUT("Flow Control = NONE.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002849 } else {
Jeff Kirsher11241b12006-09-27 12:53:28 -07002850 hw->fc = E1000_FC_RX_PAUSE;
Auke Koka42a5072006-05-23 13:36:01 -07002851 DEBUGOUT("Flow Control = RX PAUSE frames only.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002852 }
2853
2854 /* Now we need to do one last check... If we auto-
2855 * negotiated to HALF DUPLEX, flow control should not be
2856 * enabled per IEEE 802.3 spec.
2857 */
2858 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
Auke Kok8fc897b2006-08-28 14:56:16 -07002859 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002860 DEBUGOUT("Error getting link speed and duplex\n");
2861 return ret_val;
2862 }
2863
Auke Kok8fc897b2006-08-28 14:56:16 -07002864 if (duplex == HALF_DUPLEX)
Jeff Kirsher11241b12006-09-27 12:53:28 -07002865 hw->fc = E1000_FC_NONE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002866
2867 /* Now we call a subroutine to actually force the MAC
2868 * controller to use the correct flow control settings.
2869 */
2870 ret_val = e1000_force_mac_fc(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002871 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002872 DEBUGOUT("Error forcing flow control settings\n");
2873 return ret_val;
2874 }
2875 } else {
Auke Koka42a5072006-05-23 13:36:01 -07002876 DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07002877 }
2878 }
2879 return E1000_SUCCESS;
2880}
2881
2882/******************************************************************************
2883 * Checks to see if the link status of the hardware has changed.
2884 *
2885 * hw - Struct containing variables accessed by shared code
2886 *
2887 * Called by any function that needs to check the link status of the adapter.
2888 *****************************************************************************/
2889int32_t
2890e1000_check_for_link(struct e1000_hw *hw)
2891{
2892 uint32_t rxcw = 0;
2893 uint32_t ctrl;
2894 uint32_t status;
2895 uint32_t rctl;
2896 uint32_t icr;
2897 uint32_t signal = 0;
2898 int32_t ret_val;
2899 uint16_t phy_data;
2900
2901 DEBUGFUNC("e1000_check_for_link");
2902
2903 ctrl = E1000_READ_REG(hw, CTRL);
2904 status = E1000_READ_REG(hw, STATUS);
2905
2906 /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
2907 * set when the optics detect a signal. On older adapters, it will be
2908 * cleared when there is a signal. This applies to fiber media only.
2909 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002910 if ((hw->media_type == e1000_media_type_fiber) ||
2911 (hw->media_type == e1000_media_type_internal_serdes)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002912 rxcw = E1000_READ_REG(hw, RXCW);
2913
Auke Kok8fc897b2006-08-28 14:56:16 -07002914 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002915 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
Auke Kok8fc897b2006-08-28 14:56:16 -07002916 if (status & E1000_STATUS_LU)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002917 hw->get_link_status = FALSE;
2918 }
2919 }
2920
2921 /* If we have a copper PHY then we only want to go out to the PHY
2922 * registers to see if Auto-Neg has completed and/or if our link
2923 * status has changed. The get_link_status flag will be set if we
2924 * receive a Link Status Change interrupt or we have Rx Sequence
2925 * Errors.
2926 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002927 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002928 /* First we want to see if the MII Status Register reports
2929 * link. If so, then we want to get the current speed/duplex
2930 * of the PHY.
2931 * Read the register twice since the link bit is sticky.
2932 */
2933 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002934 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002935 return ret_val;
2936 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07002937 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002938 return ret_val;
2939
Auke Kok8fc897b2006-08-28 14:56:16 -07002940 if (phy_data & MII_SR_LINK_STATUS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002941 hw->get_link_status = FALSE;
2942 /* Check if there was DownShift, must be checked immediately after
2943 * link-up */
2944 e1000_check_downshift(hw);
2945
2946 /* If we are on 82544 or 82543 silicon and speed/duplex
2947 * are forced to 10H or 10F, then we will implement the polarity
2948 * reversal workaround. We disable interrupts first, and upon
2949 * returning, place the devices interrupt state to its previous
2950 * value except for the link status change interrupt which will
2951 * happen due to the execution of this workaround.
2952 */
2953
Auke Kok8fc897b2006-08-28 14:56:16 -07002954 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) &&
2955 (!hw->autoneg) &&
2956 (hw->forced_speed_duplex == e1000_10_full ||
2957 hw->forced_speed_duplex == e1000_10_half)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002958 E1000_WRITE_REG(hw, IMC, 0xffffffff);
2959 ret_val = e1000_polarity_reversal_workaround(hw);
2960 icr = E1000_READ_REG(hw, ICR);
2961 E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC));
2962 E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK);
2963 }
2964
2965 } else {
2966 /* No link detected */
2967 e1000_config_dsp_after_link_change(hw, FALSE);
2968 return 0;
2969 }
2970
2971 /* If we are forcing speed/duplex, then we simply return since
2972 * we have already determined whether we have link or not.
2973 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002974 if (!hw->autoneg) return -E1000_ERR_CONFIG;
Linus Torvalds1da177e2005-04-16 15:20:36 -07002975
2976 /* optimize the dsp settings for the igp phy */
2977 e1000_config_dsp_after_link_change(hw, TRUE);
2978
2979 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2980 * have Si on board that is 82544 or newer, Auto
2981 * Speed Detection takes care of MAC speed/duplex
2982 * configuration. So we only need to configure Collision
2983 * Distance in the MAC. Otherwise, we need to force
2984 * speed/duplex on the MAC to the current PHY speed/duplex
2985 * settings.
2986 */
Auke Kok8fc897b2006-08-28 14:56:16 -07002987 if (hw->mac_type >= e1000_82544)
Linus Torvalds1da177e2005-04-16 15:20:36 -07002988 e1000_config_collision_dist(hw);
2989 else {
2990 ret_val = e1000_config_mac_to_phy(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07002991 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07002992 DEBUGOUT("Error configuring MAC to PHY settings\n");
2993 return ret_val;
2994 }
2995 }
2996
2997 /* Configure Flow Control now that Auto-Neg has completed. First, we
2998 * need to restore the desired flow control settings because we may
2999 * have had to re-autoneg with a different link partner.
3000 */
3001 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07003002 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003003 DEBUGOUT("Error configuring flow control\n");
3004 return ret_val;
3005 }
3006
3007 /* At this point we know that we are on copper and we have
3008 * auto-negotiated link. These are conditions for checking the link
3009 * partner capability register. We use the link speed to determine if
3010 * TBI compatibility needs to be turned on or off. If the link is not
3011 * at gigabit speed, then TBI compatibility is not needed. If we are
3012 * at gigabit speed, we turn on TBI compatibility.
3013 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003014 if (hw->tbi_compatibility_en) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003015 uint16_t speed, duplex;
Auke Kok592600a2006-06-27 09:08:09 -07003016 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
3017 if (ret_val) {
3018 DEBUGOUT("Error getting link speed and duplex\n");
3019 return ret_val;
3020 }
3021 if (speed != SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003022 /* If link speed is not set to gigabit speed, we do not need
3023 * to enable TBI compatibility.
3024 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003025 if (hw->tbi_compatibility_on) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003026 /* If we previously were in the mode, turn it off. */
3027 rctl = E1000_READ_REG(hw, RCTL);
3028 rctl &= ~E1000_RCTL_SBP;
3029 E1000_WRITE_REG(hw, RCTL, rctl);
3030 hw->tbi_compatibility_on = FALSE;
3031 }
3032 } else {
3033 /* If TBI compatibility is was previously off, turn it on. For
3034 * compatibility with a TBI link partner, we will store bad
3035 * packets. Some frames have an additional byte on the end and
3036 * will look like CRC errors to to the hardware.
3037 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003038 if (!hw->tbi_compatibility_on) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003039 hw->tbi_compatibility_on = TRUE;
3040 rctl = E1000_READ_REG(hw, RCTL);
3041 rctl |= E1000_RCTL_SBP;
3042 E1000_WRITE_REG(hw, RCTL, rctl);
3043 }
3044 }
3045 }
3046 }
3047 /* If we don't have link (auto-negotiation failed or link partner cannot
3048 * auto-negotiate), the cable is plugged in (we have signal), and our
3049 * link partner is not trying to auto-negotiate with us (we are receiving
3050 * idles or data), we need to force link up. We also need to give
3051 * auto-negotiation time to complete, in case the cable was just plugged
3052 * in. The autoneg_failed flag does this.
3053 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003054 else if ((((hw->media_type == e1000_media_type_fiber) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003055 ((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
Auke Kok8fc897b2006-08-28 14:56:16 -07003056 (hw->media_type == e1000_media_type_internal_serdes)) &&
3057 (!(status & E1000_STATUS_LU)) &&
3058 (!(rxcw & E1000_RXCW_C))) {
3059 if (hw->autoneg_failed == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003060 hw->autoneg_failed = 1;
3061 return 0;
3062 }
Auke Koka42a5072006-05-23 13:36:01 -07003063 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003064
3065 /* Disable auto-negotiation in the TXCW register */
3066 E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
3067
3068 /* Force link-up and also force full-duplex. */
3069 ctrl = E1000_READ_REG(hw, CTRL);
3070 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
3071 E1000_WRITE_REG(hw, CTRL, ctrl);
3072
3073 /* Configure Flow Control after forcing link up. */
3074 ret_val = e1000_config_fc_after_link_up(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07003075 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003076 DEBUGOUT("Error configuring flow control\n");
3077 return ret_val;
3078 }
3079 }
3080 /* If we are forcing link and we are receiving /C/ ordered sets, re-enable
3081 * auto-negotiation in the TXCW register and disable forced link in the
3082 * Device Control register in an attempt to auto-negotiate with our link
3083 * partner.
3084 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003085 else if (((hw->media_type == e1000_media_type_fiber) ||
3086 (hw->media_type == e1000_media_type_internal_serdes)) &&
3087 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
Auke Koka42a5072006-05-23 13:36:01 -07003088 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003089 E1000_WRITE_REG(hw, TXCW, hw->txcw);
3090 E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
3091
3092 hw->serdes_link_down = FALSE;
3093 }
3094 /* If we force link for non-auto-negotiation switch, check link status
3095 * based on MAC synchronization for internal serdes media type.
3096 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003097 else if ((hw->media_type == e1000_media_type_internal_serdes) &&
3098 !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003099 /* SYNCH bit and IV bit are sticky. */
3100 udelay(10);
Auke Kok8fc897b2006-08-28 14:56:16 -07003101 if (E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
3102 if (!(rxcw & E1000_RXCW_IV)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003103 hw->serdes_link_down = FALSE;
3104 DEBUGOUT("SERDES: Link is up.\n");
3105 }
3106 } else {
3107 hw->serdes_link_down = TRUE;
3108 DEBUGOUT("SERDES: Link is down.\n");
3109 }
3110 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003111 if ((hw->media_type == e1000_media_type_internal_serdes) &&
3112 (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003113 hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS));
3114 }
3115 return E1000_SUCCESS;
3116}
3117
3118/******************************************************************************
3119 * Detects the current speed and duplex settings of the hardware.
3120 *
3121 * hw - Struct containing variables accessed by shared code
3122 * speed - Speed of the connection
3123 * duplex - Duplex setting of the connection
3124 *****************************************************************************/
3125int32_t
3126e1000_get_speed_and_duplex(struct e1000_hw *hw,
3127 uint16_t *speed,
3128 uint16_t *duplex)
3129{
3130 uint32_t status;
3131 int32_t ret_val;
3132 uint16_t phy_data;
3133
3134 DEBUGFUNC("e1000_get_speed_and_duplex");
3135
Auke Kok8fc897b2006-08-28 14:56:16 -07003136 if (hw->mac_type >= e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003137 status = E1000_READ_REG(hw, STATUS);
Auke Kok8fc897b2006-08-28 14:56:16 -07003138 if (status & E1000_STATUS_SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003139 *speed = SPEED_1000;
3140 DEBUGOUT("1000 Mbs, ");
Auke Kok8fc897b2006-08-28 14:56:16 -07003141 } else if (status & E1000_STATUS_SPEED_100) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003142 *speed = SPEED_100;
3143 DEBUGOUT("100 Mbs, ");
3144 } else {
3145 *speed = SPEED_10;
3146 DEBUGOUT("10 Mbs, ");
3147 }
3148
Auke Kok8fc897b2006-08-28 14:56:16 -07003149 if (status & E1000_STATUS_FD) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003150 *duplex = FULL_DUPLEX;
Auke Koka42a5072006-05-23 13:36:01 -07003151 DEBUGOUT("Full Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003152 } else {
3153 *duplex = HALF_DUPLEX;
Auke Koka42a5072006-05-23 13:36:01 -07003154 DEBUGOUT(" Half Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003155 }
3156 } else {
Auke Koka42a5072006-05-23 13:36:01 -07003157 DEBUGOUT("1000 Mbs, Full Duplex\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -07003158 *speed = SPEED_1000;
3159 *duplex = FULL_DUPLEX;
3160 }
3161
3162 /* IGP01 PHY may advertise full duplex operation after speed downgrade even
3163 * if it is operating at half duplex. Here we set the duplex settings to
3164 * match the duplex in the link partner's capabilities.
3165 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003166 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003167 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003168 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003169 return ret_val;
3170
Auke Kok8fc897b2006-08-28 14:56:16 -07003171 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
Linus Torvalds1da177e2005-04-16 15:20:36 -07003172 *duplex = HALF_DUPLEX;
3173 else {
3174 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003175 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003176 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07003177 if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07003178 (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
3179 *duplex = HALF_DUPLEX;
3180 }
3181 }
3182
Auke Kok76c224b2006-05-23 13:36:06 -07003183 if ((hw->mac_type == e1000_80003es2lan) &&
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003184 (hw->media_type == e1000_media_type_copper)) {
3185 if (*speed == SPEED_1000)
3186 ret_val = e1000_configure_kmrn_for_1000(hw);
3187 else
Auke Kokcd94dd02006-06-27 09:08:22 -07003188 ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
3189 if (ret_val)
3190 return ret_val;
3191 }
3192
3193 if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
3194 ret_val = e1000_kumeran_lock_loss_workaround(hw);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003195 if (ret_val)
3196 return ret_val;
3197 }
3198
Linus Torvalds1da177e2005-04-16 15:20:36 -07003199 return E1000_SUCCESS;
3200}
3201
3202/******************************************************************************
3203* Blocks until autoneg completes or times out (~4.5 seconds)
3204*
3205* hw - Struct containing variables accessed by shared code
3206******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01003207static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003208e1000_wait_autoneg(struct e1000_hw *hw)
3209{
3210 int32_t ret_val;
3211 uint16_t i;
3212 uint16_t phy_data;
3213
3214 DEBUGFUNC("e1000_wait_autoneg");
3215 DEBUGOUT("Waiting for Auto-Neg to complete.\n");
3216
3217 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
Auke Kok8fc897b2006-08-28 14:56:16 -07003218 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003219 /* Read the MII Status Register and wait for Auto-Neg
3220 * Complete bit to be set.
3221 */
3222 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003223 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003224 return ret_val;
3225 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003226 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003227 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07003228 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003229 return E1000_SUCCESS;
3230 }
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003231 msleep(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003232 }
3233 return E1000_SUCCESS;
3234}
3235
3236/******************************************************************************
3237* Raises the Management Data Clock
3238*
3239* hw - Struct containing variables accessed by shared code
3240* ctrl - Device control register's current value
3241******************************************************************************/
3242static void
3243e1000_raise_mdi_clk(struct e1000_hw *hw,
3244 uint32_t *ctrl)
3245{
3246 /* Raise the clock input to the Management Data Clock (by setting the MDC
3247 * bit), and then delay 10 microseconds.
3248 */
3249 E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
3250 E1000_WRITE_FLUSH(hw);
3251 udelay(10);
3252}
3253
3254/******************************************************************************
3255* Lowers the Management Data Clock
3256*
3257* hw - Struct containing variables accessed by shared code
3258* ctrl - Device control register's current value
3259******************************************************************************/
3260static void
3261e1000_lower_mdi_clk(struct e1000_hw *hw,
3262 uint32_t *ctrl)
3263{
3264 /* Lower the clock input to the Management Data Clock (by clearing the MDC
3265 * bit), and then delay 10 microseconds.
3266 */
3267 E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
3268 E1000_WRITE_FLUSH(hw);
3269 udelay(10);
3270}
3271
3272/******************************************************************************
3273* Shifts data bits out to the PHY
3274*
3275* hw - Struct containing variables accessed by shared code
3276* data - Data to send out to the PHY
3277* count - Number of bits to shift out
3278*
3279* Bits are shifted out in MSB to LSB order.
3280******************************************************************************/
3281static void
3282e1000_shift_out_mdi_bits(struct e1000_hw *hw,
3283 uint32_t data,
3284 uint16_t count)
3285{
3286 uint32_t ctrl;
3287 uint32_t mask;
3288
3289 /* We need to shift "count" number of bits out to the PHY. So, the value
3290 * in the "data" parameter will be shifted out to the PHY one bit at a
3291 * time. In order to do this, "data" must be broken down into bits.
3292 */
3293 mask = 0x01;
3294 mask <<= (count - 1);
3295
3296 ctrl = E1000_READ_REG(hw, CTRL);
3297
3298 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
3299 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
3300
Auke Kok8fc897b2006-08-28 14:56:16 -07003301 while (mask) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003302 /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
3303 * then raising and lowering the Management Data Clock. A "0" is
3304 * shifted out to the PHY by setting the MDIO bit to "0" and then
3305 * raising and lowering the clock.
3306 */
Auke Kok8fc897b2006-08-28 14:56:16 -07003307 if (data & mask)
3308 ctrl |= E1000_CTRL_MDIO;
3309 else
3310 ctrl &= ~E1000_CTRL_MDIO;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003311
3312 E1000_WRITE_REG(hw, CTRL, ctrl);
3313 E1000_WRITE_FLUSH(hw);
3314
3315 udelay(10);
3316
3317 e1000_raise_mdi_clk(hw, &ctrl);
3318 e1000_lower_mdi_clk(hw, &ctrl);
3319
3320 mask = mask >> 1;
3321 }
3322}
3323
3324/******************************************************************************
3325* Shifts data bits in from the PHY
3326*
3327* hw - Struct containing variables accessed by shared code
3328*
3329* Bits are shifted in in MSB to LSB order.
3330******************************************************************************/
3331static uint16_t
3332e1000_shift_in_mdi_bits(struct e1000_hw *hw)
3333{
3334 uint32_t ctrl;
3335 uint16_t data = 0;
3336 uint8_t i;
3337
3338 /* In order to read a register from the PHY, we need to shift in a total
3339 * of 18 bits from the PHY. The first two bit (turnaround) times are used
3340 * to avoid contention on the MDIO pin when a read operation is performed.
3341 * These two bits are ignored by us and thrown away. Bits are "shifted in"
3342 * by raising the input to the Management Data Clock (setting the MDC bit),
3343 * and then reading the value of the MDIO bit.
3344 */
3345 ctrl = E1000_READ_REG(hw, CTRL);
3346
3347 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
3348 ctrl &= ~E1000_CTRL_MDIO_DIR;
3349 ctrl &= ~E1000_CTRL_MDIO;
3350
3351 E1000_WRITE_REG(hw, CTRL, ctrl);
3352 E1000_WRITE_FLUSH(hw);
3353
3354 /* Raise and Lower the clock before reading in the data. This accounts for
3355 * the turnaround bits. The first clock occurred when we clocked out the
3356 * last bit of the Register Address.
3357 */
3358 e1000_raise_mdi_clk(hw, &ctrl);
3359 e1000_lower_mdi_clk(hw, &ctrl);
3360
Auke Kok8fc897b2006-08-28 14:56:16 -07003361 for (data = 0, i = 0; i < 16; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003362 data = data << 1;
3363 e1000_raise_mdi_clk(hw, &ctrl);
3364 ctrl = E1000_READ_REG(hw, CTRL);
3365 /* Check to see if we shifted in a "1". */
Auke Kok8fc897b2006-08-28 14:56:16 -07003366 if (ctrl & E1000_CTRL_MDIO)
3367 data |= 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003368 e1000_lower_mdi_clk(hw, &ctrl);
3369 }
3370
3371 e1000_raise_mdi_clk(hw, &ctrl);
3372 e1000_lower_mdi_clk(hw, &ctrl);
3373
3374 return data;
3375}
3376
Adrian Bunke4c780b2006-08-14 23:00:10 -07003377static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003378e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
3379{
3380 uint32_t swfw_sync = 0;
3381 uint32_t swmask = mask;
3382 uint32_t fwmask = mask << 16;
3383 int32_t timeout = 200;
3384
3385 DEBUGFUNC("e1000_swfw_sync_acquire");
3386
Auke Kokcd94dd02006-06-27 09:08:22 -07003387 if (hw->swfwhw_semaphore_present)
3388 return e1000_get_software_flag(hw);
3389
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003390 if (!hw->swfw_sync_present)
3391 return e1000_get_hw_eeprom_semaphore(hw);
3392
Auke Kok8fc897b2006-08-28 14:56:16 -07003393 while (timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003394 if (e1000_get_hw_eeprom_semaphore(hw))
3395 return -E1000_ERR_SWFW_SYNC;
3396
3397 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3398 if (!(swfw_sync & (fwmask | swmask))) {
3399 break;
3400 }
3401
3402 /* firmware currently using resource (fwmask) */
3403 /* or other software thread currently using resource (swmask) */
3404 e1000_put_hw_eeprom_semaphore(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003405 mdelay(5);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003406 timeout--;
3407 }
3408
3409 if (!timeout) {
3410 DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
3411 return -E1000_ERR_SWFW_SYNC;
3412 }
3413
3414 swfw_sync |= swmask;
3415 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3416
3417 e1000_put_hw_eeprom_semaphore(hw);
3418 return E1000_SUCCESS;
3419}
3420
Adrian Bunke4c780b2006-08-14 23:00:10 -07003421static void
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003422e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
3423{
3424 uint32_t swfw_sync;
3425 uint32_t swmask = mask;
3426
3427 DEBUGFUNC("e1000_swfw_sync_release");
3428
Auke Kokcd94dd02006-06-27 09:08:22 -07003429 if (hw->swfwhw_semaphore_present) {
3430 e1000_release_software_flag(hw);
3431 return;
3432 }
3433
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003434 if (!hw->swfw_sync_present) {
3435 e1000_put_hw_eeprom_semaphore(hw);
3436 return;
3437 }
3438
3439 /* if (e1000_get_hw_eeprom_semaphore(hw))
3440 * return -E1000_ERR_SWFW_SYNC; */
3441 while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS);
3442 /* empty */
3443
3444 swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
3445 swfw_sync &= ~swmask;
3446 E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);
3447
3448 e1000_put_hw_eeprom_semaphore(hw);
3449}
3450
Linus Torvalds1da177e2005-04-16 15:20:36 -07003451/*****************************************************************************
3452* Reads the value from a PHY register, if the value is on a specific non zero
3453* page, sets the page first.
3454* hw - Struct containing variables accessed by shared code
3455* reg_addr - address of the PHY register to read
3456******************************************************************************/
3457int32_t
3458e1000_read_phy_reg(struct e1000_hw *hw,
3459 uint32_t reg_addr,
3460 uint16_t *phy_data)
3461{
3462 uint32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003463 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003464
3465 DEBUGFUNC("e1000_read_phy_reg");
3466
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003467 if ((hw->mac_type == e1000_80003es2lan) &&
3468 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3469 swfw = E1000_SWFW_PHY1_SM;
3470 } else {
3471 swfw = E1000_SWFW_PHY0_SM;
3472 }
3473 if (e1000_swfw_sync_acquire(hw, swfw))
3474 return -E1000_ERR_SWFW_SYNC;
3475
Auke Kokcd94dd02006-06-27 09:08:22 -07003476 if ((hw->phy_type == e1000_phy_igp ||
3477 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003478 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003479 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3480 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3481 (uint16_t)reg_addr);
Auke Kok8fc897b2006-08-28 14:56:16 -07003482 if (ret_val) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003483 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003484 return ret_val;
3485 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003486 } else if (hw->phy_type == e1000_phy_gg82563) {
3487 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3488 (hw->mac_type == e1000_80003es2lan)) {
3489 /* Select Configuration Page */
3490 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3491 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3492 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3493 } else {
3494 /* Use Alternative Page Select register to access
3495 * registers 30 and 31
3496 */
3497 ret_val = e1000_write_phy_reg_ex(hw,
3498 GG82563_PHY_PAGE_SELECT_ALT,
3499 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3500 }
3501
3502 if (ret_val) {
3503 e1000_swfw_sync_release(hw, swfw);
3504 return ret_val;
3505 }
3506 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003507 }
3508
3509 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3510 phy_data);
3511
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003512 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003513 return ret_val;
3514}
3515
Nicholas Nunley35574762006-09-27 12:53:34 -07003516static int32_t
3517e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003518 uint16_t *phy_data)
3519{
3520 uint32_t i;
3521 uint32_t mdic = 0;
3522 const uint32_t phy_addr = 1;
3523
3524 DEBUGFUNC("e1000_read_phy_reg_ex");
3525
Auke Kok8fc897b2006-08-28 14:56:16 -07003526 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003527 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3528 return -E1000_ERR_PARAM;
3529 }
3530
Auke Kok8fc897b2006-08-28 14:56:16 -07003531 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003532 /* Set up Op-code, Phy Address, and register address in the MDI
3533 * Control register. The MAC will take care of interfacing with the
3534 * PHY to retrieve the desired data.
3535 */
3536 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
3537 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3538 (E1000_MDIC_OP_READ));
3539
3540 E1000_WRITE_REG(hw, MDIC, mdic);
3541
3542 /* Poll the ready bit to see if the MDI read completed */
Auke Kok8fc897b2006-08-28 14:56:16 -07003543 for (i = 0; i < 64; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003544 udelay(50);
3545 mdic = E1000_READ_REG(hw, MDIC);
Auke Kok8fc897b2006-08-28 14:56:16 -07003546 if (mdic & E1000_MDIC_READY) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003547 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003548 if (!(mdic & E1000_MDIC_READY)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003549 DEBUGOUT("MDI Read did not complete\n");
3550 return -E1000_ERR_PHY;
3551 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003552 if (mdic & E1000_MDIC_ERROR) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003553 DEBUGOUT("MDI Error\n");
3554 return -E1000_ERR_PHY;
3555 }
3556 *phy_data = (uint16_t) mdic;
3557 } else {
3558 /* We must first send a preamble through the MDIO pin to signal the
3559 * beginning of an MII instruction. This is done by sending 32
3560 * consecutive "1" bits.
3561 */
3562 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3563
3564 /* Now combine the next few fields that are required for a read
3565 * operation. We use this method instead of calling the
3566 * e1000_shift_out_mdi_bits routine five different times. The format of
3567 * a MII read instruction consists of a shift out of 14 bits and is
3568 * defined as follows:
3569 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
3570 * followed by a shift in of 18 bits. This first two bits shifted in
3571 * are TurnAround bits used to avoid contention on the MDIO pin when a
3572 * READ operation is performed. These two bits are thrown away
3573 * followed by a shift in of 16 bits which contains the desired data.
3574 */
3575 mdic = ((reg_addr) | (phy_addr << 5) |
3576 (PHY_OP_READ << 10) | (PHY_SOF << 12));
3577
3578 e1000_shift_out_mdi_bits(hw, mdic, 14);
3579
3580 /* Now that we've shifted out the read command to the MII, we need to
3581 * "shift in" the 16-bit value (18 total bits) of the requested PHY
3582 * register address.
3583 */
3584 *phy_data = e1000_shift_in_mdi_bits(hw);
3585 }
3586 return E1000_SUCCESS;
3587}
3588
3589/******************************************************************************
3590* Writes a value to a PHY register
3591*
3592* hw - Struct containing variables accessed by shared code
3593* reg_addr - address of the PHY register to write
3594* data - data to write to the PHY
3595******************************************************************************/
3596int32_t
Nicholas Nunley35574762006-09-27 12:53:34 -07003597e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
Linus Torvalds1da177e2005-04-16 15:20:36 -07003598 uint16_t phy_data)
3599{
3600 uint32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003601 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003602
3603 DEBUGFUNC("e1000_write_phy_reg");
3604
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003605 if ((hw->mac_type == e1000_80003es2lan) &&
3606 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3607 swfw = E1000_SWFW_PHY1_SM;
3608 } else {
3609 swfw = E1000_SWFW_PHY0_SM;
3610 }
3611 if (e1000_swfw_sync_acquire(hw, swfw))
3612 return -E1000_ERR_SWFW_SYNC;
3613
Auke Kokcd94dd02006-06-27 09:08:22 -07003614 if ((hw->phy_type == e1000_phy_igp ||
3615 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003616 hw->phy_type == e1000_phy_igp_2) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07003617 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3618 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3619 (uint16_t)reg_addr);
Auke Kok8fc897b2006-08-28 14:56:16 -07003620 if (ret_val) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003621 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003622 return ret_val;
3623 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003624 } else if (hw->phy_type == e1000_phy_gg82563) {
3625 if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) ||
3626 (hw->mac_type == e1000_80003es2lan)) {
3627 /* Select Configuration Page */
3628 if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
3629 ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT,
3630 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3631 } else {
3632 /* Use Alternative Page Select register to access
3633 * registers 30 and 31
3634 */
3635 ret_val = e1000_write_phy_reg_ex(hw,
3636 GG82563_PHY_PAGE_SELECT_ALT,
3637 (uint16_t)((uint16_t)reg_addr >> GG82563_PAGE_SHIFT));
3638 }
3639
3640 if (ret_val) {
3641 e1000_swfw_sync_release(hw, swfw);
3642 return ret_val;
3643 }
3644 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003645 }
3646
3647 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3648 phy_data);
3649
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003650 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003651 return ret_val;
3652}
3653
Nicholas Nunley35574762006-09-27 12:53:34 -07003654static int32_t
3655e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr,
3656 uint16_t phy_data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003657{
3658 uint32_t i;
3659 uint32_t mdic = 0;
3660 const uint32_t phy_addr = 1;
3661
3662 DEBUGFUNC("e1000_write_phy_reg_ex");
3663
Auke Kok8fc897b2006-08-28 14:56:16 -07003664 if (reg_addr > MAX_PHY_REG_ADDRESS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003665 DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
3666 return -E1000_ERR_PARAM;
3667 }
3668
Auke Kok8fc897b2006-08-28 14:56:16 -07003669 if (hw->mac_type > e1000_82543) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003670 /* Set up Op-code, Phy Address, register address, and data intended
3671 * for the PHY register in the MDI Control register. The MAC will take
3672 * care of interfacing with the PHY to send the desired data.
3673 */
3674 mdic = (((uint32_t) phy_data) |
3675 (reg_addr << E1000_MDIC_REG_SHIFT) |
3676 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3677 (E1000_MDIC_OP_WRITE));
3678
3679 E1000_WRITE_REG(hw, MDIC, mdic);
3680
3681 /* Poll the ready bit to see if the MDI read completed */
Auke Kok8fc897b2006-08-28 14:56:16 -07003682 for (i = 0; i < 641; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003683 udelay(5);
3684 mdic = E1000_READ_REG(hw, MDIC);
Auke Kok8fc897b2006-08-28 14:56:16 -07003685 if (mdic & E1000_MDIC_READY) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003686 }
Auke Kok8fc897b2006-08-28 14:56:16 -07003687 if (!(mdic & E1000_MDIC_READY)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003688 DEBUGOUT("MDI Write did not complete\n");
3689 return -E1000_ERR_PHY;
3690 }
3691 } else {
3692 /* We'll need to use the SW defined pins to shift the write command
3693 * out to the PHY. We first send a preamble to the PHY to signal the
3694 * beginning of the MII instruction. This is done by sending 32
3695 * consecutive "1" bits.
3696 */
3697 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3698
3699 /* Now combine the remaining required fields that will indicate a
3700 * write operation. We use this method instead of calling the
3701 * e1000_shift_out_mdi_bits routine for each field in the command. The
3702 * format of a MII write instruction is as follows:
3703 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
3704 */
3705 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3706 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3707 mdic <<= 16;
3708 mdic |= (uint32_t) phy_data;
3709
3710 e1000_shift_out_mdi_bits(hw, mdic, 32);
3711 }
3712
3713 return E1000_SUCCESS;
3714}
3715
Adrian Bunke4c780b2006-08-14 23:00:10 -07003716static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003717e1000_read_kmrn_reg(struct e1000_hw *hw,
3718 uint32_t reg_addr,
3719 uint16_t *data)
3720{
3721 uint32_t reg_val;
3722 uint16_t swfw;
3723 DEBUGFUNC("e1000_read_kmrn_reg");
3724
3725 if ((hw->mac_type == e1000_80003es2lan) &&
3726 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3727 swfw = E1000_SWFW_PHY1_SM;
3728 } else {
3729 swfw = E1000_SWFW_PHY0_SM;
3730 }
3731 if (e1000_swfw_sync_acquire(hw, swfw))
3732 return -E1000_ERR_SWFW_SYNC;
3733
3734 /* Write register address */
3735 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3736 E1000_KUMCTRLSTA_OFFSET) |
3737 E1000_KUMCTRLSTA_REN;
3738 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3739 udelay(2);
3740
3741 /* Read the data returned */
3742 reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
3743 *data = (uint16_t)reg_val;
3744
3745 e1000_swfw_sync_release(hw, swfw);
3746 return E1000_SUCCESS;
3747}
3748
Adrian Bunke4c780b2006-08-14 23:00:10 -07003749static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003750e1000_write_kmrn_reg(struct e1000_hw *hw,
3751 uint32_t reg_addr,
3752 uint16_t data)
3753{
3754 uint32_t reg_val;
3755 uint16_t swfw;
3756 DEBUGFUNC("e1000_write_kmrn_reg");
3757
3758 if ((hw->mac_type == e1000_80003es2lan) &&
3759 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3760 swfw = E1000_SWFW_PHY1_SM;
3761 } else {
3762 swfw = E1000_SWFW_PHY0_SM;
3763 }
3764 if (e1000_swfw_sync_acquire(hw, swfw))
3765 return -E1000_ERR_SWFW_SYNC;
3766
3767 reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
3768 E1000_KUMCTRLSTA_OFFSET) | data;
3769 E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
3770 udelay(2);
3771
3772 e1000_swfw_sync_release(hw, swfw);
3773 return E1000_SUCCESS;
3774}
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003775
Linus Torvalds1da177e2005-04-16 15:20:36 -07003776/******************************************************************************
3777* Returns the PHY to the power-on reset state
3778*
3779* hw - Struct containing variables accessed by shared code
3780******************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003781int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07003782e1000_phy_hw_reset(struct e1000_hw *hw)
3783{
3784 uint32_t ctrl, ctrl_ext;
3785 uint32_t led_ctrl;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003786 int32_t ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003787 uint16_t swfw;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003788
3789 DEBUGFUNC("e1000_phy_hw_reset");
3790
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003791 /* In the case of the phy reset being blocked, it's not an error, we
3792 * simply return success without performing the reset. */
3793 ret_val = e1000_check_phy_reset_block(hw);
3794 if (ret_val)
3795 return E1000_SUCCESS;
3796
Linus Torvalds1da177e2005-04-16 15:20:36 -07003797 DEBUGOUT("Resetting Phy...\n");
3798
Auke Kok8fc897b2006-08-28 14:56:16 -07003799 if (hw->mac_type > e1000_82543) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003800 if ((hw->mac_type == e1000_80003es2lan) &&
3801 (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) {
3802 swfw = E1000_SWFW_PHY1_SM;
3803 } else {
3804 swfw = E1000_SWFW_PHY0_SM;
3805 }
3806 if (e1000_swfw_sync_acquire(hw, swfw)) {
Jeff Kirsher2a88c172006-09-27 12:54:05 -07003807 DEBUGOUT("Unable to acquire swfw sync\n");
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003808 return -E1000_ERR_SWFW_SYNC;
3809 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003810 /* Read the device control register and assert the E1000_CTRL_PHY_RST
3811 * bit. Then, take it out of reset.
Auke Kok76c224b2006-05-23 13:36:06 -07003812 * For pre-e1000_82571 hardware, we delay for 10ms between the assert
Jeff Kirsherfd803242005-12-13 00:06:22 -05003813 * and deassert. For e1000_82571 hardware and later, we instead delay
Jeff Kirsher0f15a8f2006-03-02 18:46:29 -08003814 * for 50us between and 10ms after the deassertion.
Linus Torvalds1da177e2005-04-16 15:20:36 -07003815 */
3816 ctrl = E1000_READ_REG(hw, CTRL);
3817 E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
3818 E1000_WRITE_FLUSH(hw);
Auke Kok76c224b2006-05-23 13:36:06 -07003819
3820 if (hw->mac_type < e1000_82571)
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003821 msleep(10);
Jeff Kirsherb55ccb32006-01-12 16:50:30 -08003822 else
3823 udelay(100);
Auke Kok76c224b2006-05-23 13:36:06 -07003824
Linus Torvalds1da177e2005-04-16 15:20:36 -07003825 E1000_WRITE_REG(hw, CTRL, ctrl);
3826 E1000_WRITE_FLUSH(hw);
Auke Kok76c224b2006-05-23 13:36:06 -07003827
Jeff Kirsherfd803242005-12-13 00:06:22 -05003828 if (hw->mac_type >= e1000_82571)
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003829 mdelay(10);
Nicholas Nunley35574762006-09-27 12:53:34 -07003830
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003831 e1000_swfw_sync_release(hw, swfw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003832 } else {
3833 /* Read the Extended Device Control Register, assert the PHY_RESET_DIR
3834 * bit to put the PHY into reset. Then, take it out of reset.
3835 */
3836 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
3837 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3838 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3839 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3840 E1000_WRITE_FLUSH(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04003841 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07003842 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3843 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
3844 E1000_WRITE_FLUSH(hw);
3845 }
3846 udelay(150);
3847
Auke Kok8fc897b2006-08-28 14:56:16 -07003848 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07003849 /* Configure activity LED after PHY reset */
3850 led_ctrl = E1000_READ_REG(hw, LEDCTL);
3851 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3852 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3853 E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
3854 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003855
3856 /* Wait for FW to finish PHY configuration. */
3857 ret_val = e1000_get_phy_cfg_done(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07003858 if (ret_val != E1000_SUCCESS)
3859 return ret_val;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08003860 e1000_release_software_semaphore(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003861
Auke Kok8fc897b2006-08-28 14:56:16 -07003862 if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3))
3863 ret_val = e1000_init_lcd_from_nvm(hw);
3864
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003865 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07003866}
3867
3868/******************************************************************************
3869* Resets the PHY
3870*
3871* hw - Struct containing variables accessed by shared code
3872*
Matt LaPlante0779bf22006-11-30 05:24:39 +01003873* Sets bit 15 of the MII Control register
Linus Torvalds1da177e2005-04-16 15:20:36 -07003874******************************************************************************/
3875int32_t
3876e1000_phy_reset(struct e1000_hw *hw)
3877{
3878 int32_t ret_val;
3879 uint16_t phy_data;
3880
3881 DEBUGFUNC("e1000_phy_reset");
3882
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003883 /* In the case of the phy reset being blocked, it's not an error, we
3884 * simply return success without performing the reset. */
3885 ret_val = e1000_check_phy_reset_block(hw);
3886 if (ret_val)
3887 return E1000_SUCCESS;
3888
Jeff Kirsher2a88c172006-09-27 12:54:05 -07003889 switch (hw->phy_type) {
3890 case e1000_phy_igp:
3891 case e1000_phy_igp_2:
3892 case e1000_phy_igp_3:
3893 case e1000_phy_ife:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003894 ret_val = e1000_phy_hw_reset(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07003895 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003896 return ret_val;
3897 break;
3898 default:
Linus Torvalds1da177e2005-04-16 15:20:36 -07003899 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003900 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003901 return ret_val;
3902
3903 phy_data |= MII_CR_RESET;
3904 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07003905 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003906 return ret_val;
3907
3908 udelay(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07003909 break;
3910 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07003911
Auke Kok8fc897b2006-08-28 14:56:16 -07003912 if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07003913 e1000_phy_init_script(hw);
3914
3915 return E1000_SUCCESS;
3916}
3917
3918/******************************************************************************
Auke Kokd37ea5d2006-06-27 09:08:17 -07003919* Work-around for 82566 power-down: on D3 entry-
3920* 1) disable gigabit link
3921* 2) write VR power-down enable
3922* 3) read it back
3923* if successful continue, else issue LCD reset and repeat
3924*
3925* hw - struct containing variables accessed by shared code
3926******************************************************************************/
3927void
3928e1000_phy_powerdown_workaround(struct e1000_hw *hw)
3929{
3930 int32_t reg;
3931 uint16_t phy_data;
3932 int32_t retry = 0;
3933
3934 DEBUGFUNC("e1000_phy_powerdown_workaround");
3935
3936 if (hw->phy_type != e1000_phy_igp_3)
3937 return;
3938
3939 do {
3940 /* Disable link */
3941 reg = E1000_READ_REG(hw, PHY_CTRL);
3942 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
3943 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3944
3945 /* Write VR power-down enable */
3946 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3947 e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data |
3948 IGP3_VR_CTRL_MODE_SHUT);
3949
3950 /* Read it back and test */
3951 e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data);
3952 if ((phy_data & IGP3_VR_CTRL_MODE_SHUT) || retry)
3953 break;
3954
3955 /* Issue PHY reset and repeat at most one more time */
3956 reg = E1000_READ_REG(hw, CTRL);
3957 E1000_WRITE_REG(hw, CTRL, reg | E1000_CTRL_PHY_RST);
3958 retry++;
3959 } while (retry);
3960
3961 return;
3962
3963}
3964
3965/******************************************************************************
3966* Work-around for 82566 Kumeran PCS lock loss:
3967* On link status change (i.e. PCI reset, speed change) and link is up and
3968* speed is gigabit-
3969* 0) if workaround is optionally disabled do nothing
3970* 1) wait 1ms for Kumeran link to come up
3971* 2) check Kumeran Diagnostic register PCS lock loss bit
3972* 3) if not set the link is locked (all is good), otherwise...
3973* 4) reset the PHY
3974* 5) repeat up to 10 times
3975* Note: this is only called for IGP3 copper when speed is 1gb.
3976*
3977* hw - struct containing variables accessed by shared code
3978******************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07003979static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07003980e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw)
3981{
3982 int32_t ret_val;
3983 int32_t reg;
3984 int32_t cnt;
3985 uint16_t phy_data;
3986
3987 if (hw->kmrn_lock_loss_workaround_disabled)
3988 return E1000_SUCCESS;
3989
Auke Kok8fc897b2006-08-28 14:56:16 -07003990 /* Make sure link is up before proceeding. If not just return.
3991 * Attempting this while link is negotiating fouled up link
Auke Kokd37ea5d2006-06-27 09:08:17 -07003992 * stability */
3993 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3994 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3995
3996 if (phy_data & MII_SR_LINK_STATUS) {
3997 for (cnt = 0; cnt < 10; cnt++) {
3998 /* read once to clear */
3999 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
4000 if (ret_val)
4001 return ret_val;
4002 /* and again to get new status */
4003 ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data);
4004 if (ret_val)
4005 return ret_val;
4006
4007 /* check for PCS lock */
4008 if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4009 return E1000_SUCCESS;
4010
4011 /* Issue PHY reset */
4012 e1000_phy_hw_reset(hw);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04004013 mdelay(5);
Auke Kokd37ea5d2006-06-27 09:08:17 -07004014 }
4015 /* Disable GigE link negotiation */
4016 reg = E1000_READ_REG(hw, PHY_CTRL);
4017 E1000_WRITE_REG(hw, PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE |
4018 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4019
4020 /* unable to acquire PCS lock */
4021 return E1000_ERR_PHY;
4022 }
4023
4024 return E1000_SUCCESS;
4025}
4026
4027/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07004028* Probes the expected PHY address for known PHY IDs
4029*
4030* hw - Struct containing variables accessed by shared code
4031******************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07004032static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004033e1000_detect_gig_phy(struct e1000_hw *hw)
4034{
4035 int32_t phy_init_status, ret_val;
4036 uint16_t phy_id_high, phy_id_low;
4037 boolean_t match = FALSE;
4038
4039 DEBUGFUNC("e1000_detect_gig_phy");
4040
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004041 if (hw->phy_id != 0)
4042 return E1000_SUCCESS;
4043
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004044 /* The 82571 firmware may still be configuring the PHY. In this
4045 * case, we cannot access the PHY until the configuration is done. So
4046 * we explicitly set the PHY values. */
Auke Kokcd94dd02006-06-27 09:08:22 -07004047 if (hw->mac_type == e1000_82571 ||
4048 hw->mac_type == e1000_82572) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004049 hw->phy_id = IGP01E1000_I_PHY_ID;
4050 hw->phy_type = e1000_phy_igp_2;
4051 return E1000_SUCCESS;
4052 }
4053
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004054 /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work-
4055 * around that forces PHY page 0 to be set or the reads fail. The rest of
4056 * the code in this routine uses e1000_read_phy_reg to read the PHY ID.
4057 * So for ESB-2 we need to have this set so our reads won't fail. If the
4058 * attached PHY is not a e1000_phy_gg82563, the routines below will figure
4059 * this out as well. */
4060 if (hw->mac_type == e1000_80003es2lan)
4061 hw->phy_type = e1000_phy_gg82563;
4062
Linus Torvalds1da177e2005-04-16 15:20:36 -07004063 /* Read the PHY ID Registers to identify which PHY is onboard. */
4064 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
Auke Kokcd94dd02006-06-27 09:08:22 -07004065 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004066 return ret_val;
4067
4068 hw->phy_id = (uint32_t) (phy_id_high << 16);
4069 udelay(20);
4070 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
Auke Kok8fc897b2006-08-28 14:56:16 -07004071 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004072 return ret_val;
4073
4074 hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
4075 hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
4076
Auke Kok8fc897b2006-08-28 14:56:16 -07004077 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004078 case e1000_82543:
Auke Kok8fc897b2006-08-28 14:56:16 -07004079 if (hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004080 break;
4081 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07004082 if (hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004083 break;
4084 case e1000_82540:
4085 case e1000_82545:
4086 case e1000_82545_rev_3:
4087 case e1000_82546:
4088 case e1000_82546_rev_3:
Auke Kok8fc897b2006-08-28 14:56:16 -07004089 if (hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004090 break;
4091 case e1000_82541:
4092 case e1000_82541_rev_2:
4093 case e1000_82547:
4094 case e1000_82547_rev_2:
Auke Kok8fc897b2006-08-28 14:56:16 -07004095 if (hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004096 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004097 case e1000_82573:
Auke Kok8fc897b2006-08-28 14:56:16 -07004098 if (hw->phy_id == M88E1111_I_PHY_ID) match = TRUE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004099 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004100 case e1000_80003es2lan:
4101 if (hw->phy_id == GG82563_E_PHY_ID) match = TRUE;
4102 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07004103 case e1000_ich8lan:
4104 if (hw->phy_id == IGP03E1000_E_PHY_ID) match = TRUE;
4105 if (hw->phy_id == IFE_E_PHY_ID) match = TRUE;
4106 if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = TRUE;
4107 if (hw->phy_id == IFE_C_E_PHY_ID) match = TRUE;
4108 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004109 default:
4110 DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
4111 return -E1000_ERR_CONFIG;
4112 }
4113 phy_init_status = e1000_set_phy_type(hw);
4114
4115 if ((match) && (phy_init_status == E1000_SUCCESS)) {
4116 DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
4117 return E1000_SUCCESS;
4118 }
4119 DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
4120 return -E1000_ERR_PHY;
4121}
4122
4123/******************************************************************************
4124* Resets the PHY's DSP
4125*
4126* hw - Struct containing variables accessed by shared code
4127******************************************************************************/
4128static int32_t
4129e1000_phy_reset_dsp(struct e1000_hw *hw)
4130{
4131 int32_t ret_val;
4132 DEBUGFUNC("e1000_phy_reset_dsp");
4133
4134 do {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004135 if (hw->phy_type != e1000_phy_gg82563) {
4136 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
Auke Kok8fc897b2006-08-28 14:56:16 -07004137 if (ret_val) break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004138 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004139 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
Auke Kok8fc897b2006-08-28 14:56:16 -07004140 if (ret_val) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004141 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07004142 if (ret_val) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004143 ret_val = E1000_SUCCESS;
Auke Kok8fc897b2006-08-28 14:56:16 -07004144 } while (0);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004145
4146 return ret_val;
4147}
4148
4149/******************************************************************************
4150* Get PHY information from various PHY registers for igp PHY only.
4151*
4152* hw - Struct containing variables accessed by shared code
4153* phy_info - PHY information structure
4154******************************************************************************/
Adrian Bunkcff93eb2006-09-04 13:41:14 +02004155static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004156e1000_phy_igp_get_info(struct e1000_hw *hw,
4157 struct e1000_phy_info *phy_info)
4158{
4159 int32_t ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004160 uint16_t phy_data, min_length, max_length, average;
4161 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004162
4163 DEBUGFUNC("e1000_phy_igp_get_info");
4164
4165 /* The downshift status is checked only once, after link is established,
4166 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004167 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004168
4169 /* IGP01E1000 does not need to support it. */
4170 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4171
4172 /* IGP01E1000 always correct polarity reversal */
4173 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
4174
4175 /* Check polarity status */
4176 ret_val = e1000_check_polarity(hw, &polarity);
Auke Kok8fc897b2006-08-28 14:56:16 -07004177 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004178 return ret_val;
4179
4180 phy_info->cable_polarity = polarity;
4181
4182 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004183 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004184 return ret_val;
4185
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004186 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >>
4187 IGP01E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004188
Auke Kok8fc897b2006-08-28 14:56:16 -07004189 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
Linus Torvalds1da177e2005-04-16 15:20:36 -07004190 IGP01E1000_PSSR_SPEED_1000MBPS) {
4191 /* Local/Remote Receiver Information are only valid at 1000 Mbps */
4192 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004193 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004194 return ret_val;
4195
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004196 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4197 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4198 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4199 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4200 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4201 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004202
4203 /* Get cable length */
4204 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
Auke Kok8fc897b2006-08-28 14:56:16 -07004205 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004206 return ret_val;
4207
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004208 /* Translate to old method */
Linus Torvalds1da177e2005-04-16 15:20:36 -07004209 average = (max_length + min_length) / 2;
4210
Auke Kok8fc897b2006-08-28 14:56:16 -07004211 if (average <= e1000_igp_cable_length_50)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004212 phy_info->cable_length = e1000_cable_length_50;
Auke Kok8fc897b2006-08-28 14:56:16 -07004213 else if (average <= e1000_igp_cable_length_80)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004214 phy_info->cable_length = e1000_cable_length_50_80;
Auke Kok8fc897b2006-08-28 14:56:16 -07004215 else if (average <= e1000_igp_cable_length_110)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004216 phy_info->cable_length = e1000_cable_length_80_110;
Auke Kok8fc897b2006-08-28 14:56:16 -07004217 else if (average <= e1000_igp_cable_length_140)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004218 phy_info->cable_length = e1000_cable_length_110_140;
4219 else
4220 phy_info->cable_length = e1000_cable_length_140;
4221 }
4222
4223 return E1000_SUCCESS;
4224}
4225
4226/******************************************************************************
Auke Kokd37ea5d2006-06-27 09:08:17 -07004227* Get PHY information from various PHY registers for ife PHY only.
4228*
4229* hw - Struct containing variables accessed by shared code
4230* phy_info - PHY information structure
4231******************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07004232static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07004233e1000_phy_ife_get_info(struct e1000_hw *hw,
4234 struct e1000_phy_info *phy_info)
4235{
4236 int32_t ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004237 uint16_t phy_data;
4238 e1000_rev_polarity polarity;
Auke Kokd37ea5d2006-06-27 09:08:17 -07004239
4240 DEBUGFUNC("e1000_phy_ife_get_info");
4241
4242 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
4243 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
4244
4245 ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data);
4246 if (ret_val)
4247 return ret_val;
4248 phy_info->polarity_correction =
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004249 ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >>
4250 IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ?
4251 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
Auke Kokd37ea5d2006-06-27 09:08:17 -07004252
4253 if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) {
4254 ret_val = e1000_check_polarity(hw, &polarity);
4255 if (ret_val)
4256 return ret_val;
4257 } else {
4258 /* Polarity is forced. */
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004259 polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >>
4260 IFE_PSC_FORCE_POLARITY_SHIFT) ?
4261 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Auke Kokd37ea5d2006-06-27 09:08:17 -07004262 }
4263 phy_info->cable_polarity = polarity;
4264
4265 ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data);
4266 if (ret_val)
4267 return ret_val;
4268
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004269 phy_info->mdix_mode = (e1000_auto_x_mode)
4270 ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >>
4271 IFE_PMC_MDIX_MODE_SHIFT);
Auke Kokd37ea5d2006-06-27 09:08:17 -07004272
4273 return E1000_SUCCESS;
4274}
4275
4276/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07004277* Get PHY information from various PHY registers fot m88 PHY only.
4278*
4279* hw - Struct containing variables accessed by shared code
4280* phy_info - PHY information structure
4281******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01004282static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004283e1000_phy_m88_get_info(struct e1000_hw *hw,
4284 struct e1000_phy_info *phy_info)
4285{
4286 int32_t ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004287 uint16_t phy_data;
4288 e1000_rev_polarity polarity;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004289
4290 DEBUGFUNC("e1000_phy_m88_get_info");
4291
4292 /* The downshift status is checked only once, after link is established,
4293 * and it stored in the hw->speed_downgraded parameter. */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004294 phy_info->downshift = (e1000_downshift)hw->speed_downgraded;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004295
4296 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004297 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004298 return ret_val;
4299
4300 phy_info->extended_10bt_distance =
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004301 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
4302 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
4303 e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal;
4304
Linus Torvalds1da177e2005-04-16 15:20:36 -07004305 phy_info->polarity_correction =
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004306 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
4307 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
4308 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004309
4310 /* Check polarity status */
4311 ret_val = e1000_check_polarity(hw, &polarity);
Auke Kok8fc897b2006-08-28 14:56:16 -07004312 if (ret_val)
Auke Kok76c224b2006-05-23 13:36:06 -07004313 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004314 phy_info->cable_polarity = polarity;
4315
4316 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004317 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004318 return ret_val;
4319
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004320 phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >>
4321 M88E1000_PSSR_MDIX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004322
4323 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
4324 /* Cable Length Estimation and Local/Remote Receiver Information
4325 * are only valid at 1000 Mbps.
4326 */
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004327 if (hw->phy_type != e1000_phy_gg82563) {
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004328 phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004329 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
4330 } else {
4331 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
4332 &phy_data);
4333 if (ret_val)
4334 return ret_val;
4335
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004336 phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004337 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004338
4339 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004340 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004341 return ret_val;
4342
Jeff Kirsher70c6f302006-09-27 12:53:31 -07004343 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
4344 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
4345 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
4346 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
4347 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
4348 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004349
Linus Torvalds1da177e2005-04-16 15:20:36 -07004350 }
4351
4352 return E1000_SUCCESS;
4353}
4354
4355/******************************************************************************
4356* Get PHY information from various PHY registers
4357*
4358* hw - Struct containing variables accessed by shared code
4359* phy_info - PHY information structure
4360******************************************************************************/
4361int32_t
4362e1000_phy_get_info(struct e1000_hw *hw,
4363 struct e1000_phy_info *phy_info)
4364{
4365 int32_t ret_val;
4366 uint16_t phy_data;
4367
4368 DEBUGFUNC("e1000_phy_get_info");
4369
4370 phy_info->cable_length = e1000_cable_length_undefined;
4371 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
4372 phy_info->cable_polarity = e1000_rev_polarity_undefined;
4373 phy_info->downshift = e1000_downshift_undefined;
4374 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
4375 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
4376 phy_info->local_rx = e1000_1000t_rx_status_undefined;
4377 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
4378
Auke Kok8fc897b2006-08-28 14:56:16 -07004379 if (hw->media_type != e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004380 DEBUGOUT("PHY info is only valid for copper media\n");
4381 return -E1000_ERR_CONFIG;
4382 }
4383
4384 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004385 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004386 return ret_val;
4387
4388 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07004389 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004390 return ret_val;
4391
Auke Kok8fc897b2006-08-28 14:56:16 -07004392 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004393 DEBUGOUT("PHY info is only valid if link is up\n");
4394 return -E1000_ERR_CONFIG;
4395 }
4396
Auke Kokcd94dd02006-06-27 09:08:22 -07004397 if (hw->phy_type == e1000_phy_igp ||
4398 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004399 hw->phy_type == e1000_phy_igp_2)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004400 return e1000_phy_igp_get_info(hw, phy_info);
Auke Kokcd94dd02006-06-27 09:08:22 -07004401 else if (hw->phy_type == e1000_phy_ife)
4402 return e1000_phy_ife_get_info(hw, phy_info);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004403 else
4404 return e1000_phy_m88_get_info(hw, phy_info);
4405}
4406
4407int32_t
4408e1000_validate_mdi_setting(struct e1000_hw *hw)
4409{
4410 DEBUGFUNC("e1000_validate_mdi_settings");
4411
Auke Kok8fc897b2006-08-28 14:56:16 -07004412 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004413 DEBUGOUT("Invalid MDI setting detected\n");
4414 hw->mdix = 1;
4415 return -E1000_ERR_CONFIG;
4416 }
4417 return E1000_SUCCESS;
4418}
4419
4420
4421/******************************************************************************
4422 * Sets up eeprom variables in the hw struct. Must be called after mac_type
Jeff Kirsher0f15a8f2006-03-02 18:46:29 -08004423 * is configured. Additionally, if this is ICH8, the flash controller GbE
4424 * registers must be mapped, or this will crash.
Linus Torvalds1da177e2005-04-16 15:20:36 -07004425 *
4426 * hw - Struct containing variables accessed by shared code
4427 *****************************************************************************/
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004428int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004429e1000_init_eeprom_params(struct e1000_hw *hw)
4430{
4431 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4432 uint32_t eecd = E1000_READ_REG(hw, EECD);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004433 int32_t ret_val = E1000_SUCCESS;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004434 uint16_t eeprom_size;
4435
4436 DEBUGFUNC("e1000_init_eeprom_params");
4437
4438 switch (hw->mac_type) {
4439 case e1000_82542_rev2_0:
4440 case e1000_82542_rev2_1:
4441 case e1000_82543:
4442 case e1000_82544:
4443 eeprom->type = e1000_eeprom_microwire;
4444 eeprom->word_size = 64;
4445 eeprom->opcode_bits = 3;
4446 eeprom->address_bits = 6;
4447 eeprom->delay_usec = 50;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004448 eeprom->use_eerd = FALSE;
4449 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004450 break;
4451 case e1000_82540:
4452 case e1000_82545:
4453 case e1000_82545_rev_3:
4454 case e1000_82546:
4455 case e1000_82546_rev_3:
4456 eeprom->type = e1000_eeprom_microwire;
4457 eeprom->opcode_bits = 3;
4458 eeprom->delay_usec = 50;
Auke Kok8fc897b2006-08-28 14:56:16 -07004459 if (eecd & E1000_EECD_SIZE) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004460 eeprom->word_size = 256;
4461 eeprom->address_bits = 8;
4462 } else {
4463 eeprom->word_size = 64;
4464 eeprom->address_bits = 6;
4465 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004466 eeprom->use_eerd = FALSE;
4467 eeprom->use_eewr = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004468 break;
4469 case e1000_82541:
4470 case e1000_82541_rev_2:
4471 case e1000_82547:
4472 case e1000_82547_rev_2:
4473 if (eecd & E1000_EECD_TYPE) {
4474 eeprom->type = e1000_eeprom_spi;
4475 eeprom->opcode_bits = 8;
4476 eeprom->delay_usec = 1;
4477 if (eecd & E1000_EECD_ADDR_BITS) {
4478 eeprom->page_size = 32;
4479 eeprom->address_bits = 16;
4480 } else {
4481 eeprom->page_size = 8;
4482 eeprom->address_bits = 8;
4483 }
4484 } else {
4485 eeprom->type = e1000_eeprom_microwire;
4486 eeprom->opcode_bits = 3;
4487 eeprom->delay_usec = 50;
4488 if (eecd & E1000_EECD_ADDR_BITS) {
4489 eeprom->word_size = 256;
4490 eeprom->address_bits = 8;
4491 } else {
4492 eeprom->word_size = 64;
4493 eeprom->address_bits = 6;
4494 }
4495 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004496 eeprom->use_eerd = FALSE;
4497 eeprom->use_eewr = FALSE;
4498 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004499 case e1000_82571:
4500 case e1000_82572:
4501 eeprom->type = e1000_eeprom_spi;
4502 eeprom->opcode_bits = 8;
4503 eeprom->delay_usec = 1;
4504 if (eecd & E1000_EECD_ADDR_BITS) {
4505 eeprom->page_size = 32;
4506 eeprom->address_bits = 16;
4507 } else {
4508 eeprom->page_size = 8;
4509 eeprom->address_bits = 8;
4510 }
4511 eeprom->use_eerd = FALSE;
4512 eeprom->use_eewr = FALSE;
4513 break;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004514 case e1000_82573:
4515 eeprom->type = e1000_eeprom_spi;
4516 eeprom->opcode_bits = 8;
4517 eeprom->delay_usec = 1;
4518 if (eecd & E1000_EECD_ADDR_BITS) {
4519 eeprom->page_size = 32;
4520 eeprom->address_bits = 16;
4521 } else {
4522 eeprom->page_size = 8;
4523 eeprom->address_bits = 8;
4524 }
4525 eeprom->use_eerd = TRUE;
4526 eeprom->use_eewr = TRUE;
Auke Kok8fc897b2006-08-28 14:56:16 -07004527 if (e1000_is_onboard_nvm_eeprom(hw) == FALSE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004528 eeprom->type = e1000_eeprom_flash;
4529 eeprom->word_size = 2048;
4530
4531 /* Ensure that the Autonomous FLASH update bit is cleared due to
4532 * Flash update issue on parts which use a FLASH for NVM. */
4533 eecd &= ~E1000_EECD_AUPDEN;
4534 E1000_WRITE_REG(hw, EECD, eecd);
4535 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004536 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004537 case e1000_80003es2lan:
4538 eeprom->type = e1000_eeprom_spi;
4539 eeprom->opcode_bits = 8;
4540 eeprom->delay_usec = 1;
4541 if (eecd & E1000_EECD_ADDR_BITS) {
4542 eeprom->page_size = 32;
4543 eeprom->address_bits = 16;
4544 } else {
4545 eeprom->page_size = 8;
4546 eeprom->address_bits = 8;
4547 }
4548 eeprom->use_eerd = TRUE;
4549 eeprom->use_eewr = FALSE;
4550 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07004551 case e1000_ich8lan:
Nicholas Nunley35574762006-09-27 12:53:34 -07004552 {
Auke Kokcd94dd02006-06-27 09:08:22 -07004553 int32_t i = 0;
4554 uint32_t flash_size = E1000_READ_ICH8_REG(hw, ICH8_FLASH_GFPREG);
4555
4556 eeprom->type = e1000_eeprom_ich8;
4557 eeprom->use_eerd = FALSE;
4558 eeprom->use_eewr = FALSE;
4559 eeprom->word_size = E1000_SHADOW_RAM_WORDS;
4560
4561 /* Zero the shadow RAM structure. But don't load it from NVM
4562 * so as to save time for driver init */
4563 if (hw->eeprom_shadow_ram != NULL) {
4564 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
4565 hw->eeprom_shadow_ram[i].modified = FALSE;
4566 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
4567 }
4568 }
4569
4570 hw->flash_base_addr = (flash_size & ICH8_GFPREG_BASE_MASK) *
4571 ICH8_FLASH_SECTOR_SIZE;
4572
4573 hw->flash_bank_size = ((flash_size >> 16) & ICH8_GFPREG_BASE_MASK) + 1;
4574 hw->flash_bank_size -= (flash_size & ICH8_GFPREG_BASE_MASK);
4575 hw->flash_bank_size *= ICH8_FLASH_SECTOR_SIZE;
4576 hw->flash_bank_size /= 2 * sizeof(uint16_t);
4577
4578 break;
Nicholas Nunley35574762006-09-27 12:53:34 -07004579 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004580 default:
4581 break;
4582 }
4583
4584 if (eeprom->type == e1000_eeprom_spi) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004585 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to
4586 * 32KB (incremented by powers of 2).
4587 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004588 if (hw->mac_type <= e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004589 /* Set to default value for initial eeprom read. */
4590 eeprom->word_size = 64;
4591 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
Auke Kok8fc897b2006-08-28 14:56:16 -07004592 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004593 return ret_val;
4594 eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
4595 /* 256B eeprom size was not supported in earlier hardware, so we
4596 * bump eeprom_size up one to ensure that "1" (which maps to 256B)
4597 * is never the result used in the shifting logic below. */
Auke Kok8fc897b2006-08-28 14:56:16 -07004598 if (eeprom_size)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004599 eeprom_size++;
4600 } else {
4601 eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >>
4602 E1000_EECD_SIZE_EX_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004603 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004604
4605 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004606 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004607 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004608}
4609
4610/******************************************************************************
4611 * Raises the EEPROM's clock input.
4612 *
4613 * hw - Struct containing variables accessed by shared code
4614 * eecd - EECD's current value
4615 *****************************************************************************/
4616static void
4617e1000_raise_ee_clk(struct e1000_hw *hw,
4618 uint32_t *eecd)
4619{
4620 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
4621 * wait <delay> microseconds.
4622 */
4623 *eecd = *eecd | E1000_EECD_SK;
4624 E1000_WRITE_REG(hw, EECD, *eecd);
4625 E1000_WRITE_FLUSH(hw);
4626 udelay(hw->eeprom.delay_usec);
4627}
4628
4629/******************************************************************************
4630 * Lowers the EEPROM's clock input.
4631 *
4632 * hw - Struct containing variables accessed by shared code
4633 * eecd - EECD's current value
4634 *****************************************************************************/
4635static void
4636e1000_lower_ee_clk(struct e1000_hw *hw,
4637 uint32_t *eecd)
4638{
4639 /* Lower the clock input to the EEPROM (by clearing the SK bit), and then
4640 * wait 50 microseconds.
4641 */
4642 *eecd = *eecd & ~E1000_EECD_SK;
4643 E1000_WRITE_REG(hw, EECD, *eecd);
4644 E1000_WRITE_FLUSH(hw);
4645 udelay(hw->eeprom.delay_usec);
4646}
4647
4648/******************************************************************************
4649 * Shift data bits out to the EEPROM.
4650 *
4651 * hw - Struct containing variables accessed by shared code
4652 * data - data to send to the EEPROM
4653 * count - number of bits to shift out
4654 *****************************************************************************/
4655static void
4656e1000_shift_out_ee_bits(struct e1000_hw *hw,
4657 uint16_t data,
4658 uint16_t count)
4659{
4660 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4661 uint32_t eecd;
4662 uint32_t mask;
4663
4664 /* We need to shift "count" bits out to the EEPROM. So, value in the
4665 * "data" parameter will be shifted out to the EEPROM one bit at a time.
4666 * In order to do this, "data" must be broken down into bits.
4667 */
4668 mask = 0x01 << (count - 1);
4669 eecd = E1000_READ_REG(hw, EECD);
4670 if (eeprom->type == e1000_eeprom_microwire) {
4671 eecd &= ~E1000_EECD_DO;
4672 } else if (eeprom->type == e1000_eeprom_spi) {
4673 eecd |= E1000_EECD_DO;
4674 }
4675 do {
4676 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
4677 * and then raising and then lowering the clock (the SK bit controls
4678 * the clock input to the EEPROM). A "0" is shifted out to the EEPROM
4679 * by setting "DI" to "0" and then raising and then lowering the clock.
4680 */
4681 eecd &= ~E1000_EECD_DI;
4682
Auke Kok8fc897b2006-08-28 14:56:16 -07004683 if (data & mask)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004684 eecd |= E1000_EECD_DI;
4685
4686 E1000_WRITE_REG(hw, EECD, eecd);
4687 E1000_WRITE_FLUSH(hw);
4688
4689 udelay(eeprom->delay_usec);
4690
4691 e1000_raise_ee_clk(hw, &eecd);
4692 e1000_lower_ee_clk(hw, &eecd);
4693
4694 mask = mask >> 1;
4695
Auke Kok8fc897b2006-08-28 14:56:16 -07004696 } while (mask);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004697
4698 /* We leave the "DI" bit set to "0" when we leave this routine. */
4699 eecd &= ~E1000_EECD_DI;
4700 E1000_WRITE_REG(hw, EECD, eecd);
4701}
4702
4703/******************************************************************************
4704 * Shift data bits in from the EEPROM
4705 *
4706 * hw - Struct containing variables accessed by shared code
4707 *****************************************************************************/
4708static uint16_t
4709e1000_shift_in_ee_bits(struct e1000_hw *hw,
4710 uint16_t count)
4711{
4712 uint32_t eecd;
4713 uint32_t i;
4714 uint16_t data;
4715
4716 /* In order to read a register from the EEPROM, we need to shift 'count'
4717 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
4718 * input to the EEPROM (setting the SK bit), and then reading the value of
4719 * the "DO" bit. During this "shifting in" process the "DI" bit should
4720 * always be clear.
4721 */
4722
4723 eecd = E1000_READ_REG(hw, EECD);
4724
4725 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
4726 data = 0;
4727
Auke Kok8fc897b2006-08-28 14:56:16 -07004728 for (i = 0; i < count; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004729 data = data << 1;
4730 e1000_raise_ee_clk(hw, &eecd);
4731
4732 eecd = E1000_READ_REG(hw, EECD);
4733
4734 eecd &= ~(E1000_EECD_DI);
Auke Kok8fc897b2006-08-28 14:56:16 -07004735 if (eecd & E1000_EECD_DO)
Linus Torvalds1da177e2005-04-16 15:20:36 -07004736 data |= 1;
4737
4738 e1000_lower_ee_clk(hw, &eecd);
4739 }
4740
4741 return data;
4742}
4743
4744/******************************************************************************
4745 * Prepares EEPROM for access
4746 *
4747 * hw - Struct containing variables accessed by shared code
4748 *
4749 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
4750 * function should be called before issuing a command to the EEPROM.
4751 *****************************************************************************/
4752static int32_t
4753e1000_acquire_eeprom(struct e1000_hw *hw)
4754{
4755 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4756 uint32_t eecd, i=0;
4757
4758 DEBUGFUNC("e1000_acquire_eeprom");
4759
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004760 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
4761 return -E1000_ERR_SWFW_SYNC;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004762 eecd = E1000_READ_REG(hw, EECD);
4763
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004764 if (hw->mac_type != e1000_82573) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004765 /* Request EEPROM Access */
Auke Kok8fc897b2006-08-28 14:56:16 -07004766 if (hw->mac_type > e1000_82544) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004767 eecd |= E1000_EECD_REQ;
Linus Torvalds1da177e2005-04-16 15:20:36 -07004768 E1000_WRITE_REG(hw, EECD, eecd);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004769 eecd = E1000_READ_REG(hw, EECD);
Auke Kok8fc897b2006-08-28 14:56:16 -07004770 while ((!(eecd & E1000_EECD_GNT)) &&
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004771 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
4772 i++;
4773 udelay(5);
4774 eecd = E1000_READ_REG(hw, EECD);
4775 }
Auke Kok8fc897b2006-08-28 14:56:16 -07004776 if (!(eecd & E1000_EECD_GNT)) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004777 eecd &= ~E1000_EECD_REQ;
4778 E1000_WRITE_REG(hw, EECD, eecd);
4779 DEBUGOUT("Could not acquire EEPROM grant\n");
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004780 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04004781 return -E1000_ERR_EEPROM;
4782 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07004783 }
4784 }
4785
4786 /* Setup EEPROM for Read/Write */
4787
4788 if (eeprom->type == e1000_eeprom_microwire) {
4789 /* Clear SK and DI */
4790 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
4791 E1000_WRITE_REG(hw, EECD, eecd);
4792
4793 /* Set CS */
4794 eecd |= E1000_EECD_CS;
4795 E1000_WRITE_REG(hw, EECD, eecd);
4796 } else if (eeprom->type == e1000_eeprom_spi) {
4797 /* Clear SK and CS */
4798 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4799 E1000_WRITE_REG(hw, EECD, eecd);
4800 udelay(1);
4801 }
4802
4803 return E1000_SUCCESS;
4804}
4805
4806/******************************************************************************
4807 * Returns EEPROM to a "standby" state
4808 *
4809 * hw - Struct containing variables accessed by shared code
4810 *****************************************************************************/
4811static void
4812e1000_standby_eeprom(struct e1000_hw *hw)
4813{
4814 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4815 uint32_t eecd;
4816
4817 eecd = E1000_READ_REG(hw, EECD);
4818
Auke Kok8fc897b2006-08-28 14:56:16 -07004819 if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004820 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
4821 E1000_WRITE_REG(hw, EECD, eecd);
4822 E1000_WRITE_FLUSH(hw);
4823 udelay(eeprom->delay_usec);
4824
4825 /* Clock high */
4826 eecd |= E1000_EECD_SK;
4827 E1000_WRITE_REG(hw, EECD, eecd);
4828 E1000_WRITE_FLUSH(hw);
4829 udelay(eeprom->delay_usec);
4830
4831 /* Select EEPROM */
4832 eecd |= E1000_EECD_CS;
4833 E1000_WRITE_REG(hw, EECD, eecd);
4834 E1000_WRITE_FLUSH(hw);
4835 udelay(eeprom->delay_usec);
4836
4837 /* Clock low */
4838 eecd &= ~E1000_EECD_SK;
4839 E1000_WRITE_REG(hw, EECD, eecd);
4840 E1000_WRITE_FLUSH(hw);
4841 udelay(eeprom->delay_usec);
Auke Kok8fc897b2006-08-28 14:56:16 -07004842 } else if (eeprom->type == e1000_eeprom_spi) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004843 /* Toggle CS to flush commands */
4844 eecd |= E1000_EECD_CS;
4845 E1000_WRITE_REG(hw, EECD, eecd);
4846 E1000_WRITE_FLUSH(hw);
4847 udelay(eeprom->delay_usec);
4848 eecd &= ~E1000_EECD_CS;
4849 E1000_WRITE_REG(hw, EECD, eecd);
4850 E1000_WRITE_FLUSH(hw);
4851 udelay(eeprom->delay_usec);
4852 }
4853}
4854
4855/******************************************************************************
4856 * Terminates a command by inverting the EEPROM's chip select pin
4857 *
4858 * hw - Struct containing variables accessed by shared code
4859 *****************************************************************************/
4860static void
4861e1000_release_eeprom(struct e1000_hw *hw)
4862{
4863 uint32_t eecd;
4864
4865 DEBUGFUNC("e1000_release_eeprom");
4866
4867 eecd = E1000_READ_REG(hw, EECD);
4868
4869 if (hw->eeprom.type == e1000_eeprom_spi) {
4870 eecd |= E1000_EECD_CS; /* Pull CS high */
4871 eecd &= ~E1000_EECD_SK; /* Lower SCK */
4872
4873 E1000_WRITE_REG(hw, EECD, eecd);
4874
4875 udelay(hw->eeprom.delay_usec);
Auke Kok8fc897b2006-08-28 14:56:16 -07004876 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004877 /* cleanup eeprom */
4878
4879 /* CS on Microwire is active-high */
4880 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
4881
4882 E1000_WRITE_REG(hw, EECD, eecd);
4883
4884 /* Rising edge of clock */
4885 eecd |= E1000_EECD_SK;
4886 E1000_WRITE_REG(hw, EECD, eecd);
4887 E1000_WRITE_FLUSH(hw);
4888 udelay(hw->eeprom.delay_usec);
4889
4890 /* Falling edge of clock */
4891 eecd &= ~E1000_EECD_SK;
4892 E1000_WRITE_REG(hw, EECD, eecd);
4893 E1000_WRITE_FLUSH(hw);
4894 udelay(hw->eeprom.delay_usec);
4895 }
4896
4897 /* Stop requesting EEPROM access */
Auke Kok8fc897b2006-08-28 14:56:16 -07004898 if (hw->mac_type > e1000_82544) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004899 eecd &= ~E1000_EECD_REQ;
4900 E1000_WRITE_REG(hw, EECD, eecd);
4901 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004902
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08004903 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004904}
4905
4906/******************************************************************************
4907 * Reads a 16 bit word from the EEPROM.
4908 *
4909 * hw - Struct containing variables accessed by shared code
4910 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07004911static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07004912e1000_spi_eeprom_ready(struct e1000_hw *hw)
4913{
4914 uint16_t retry_count = 0;
4915 uint8_t spi_stat_reg;
4916
4917 DEBUGFUNC("e1000_spi_eeprom_ready");
4918
4919 /* Read "Status Register" repeatedly until the LSB is cleared. The
4920 * EEPROM will signal that the command has been completed by clearing
4921 * bit 0 of the internal status register. If it's not cleared within
4922 * 5 milliseconds, then error out.
4923 */
4924 retry_count = 0;
4925 do {
4926 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
4927 hw->eeprom.opcode_bits);
4928 spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
4929 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
4930 break;
4931
4932 udelay(5);
4933 retry_count += 5;
4934
4935 e1000_standby_eeprom(hw);
Auke Kok8fc897b2006-08-28 14:56:16 -07004936 } while (retry_count < EEPROM_MAX_RETRY_SPI);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004937
4938 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
4939 * only 0-5mSec on 5V devices)
4940 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004941 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07004942 DEBUGOUT("SPI EEPROM Status error\n");
4943 return -E1000_ERR_EEPROM;
4944 }
4945
4946 return E1000_SUCCESS;
4947}
4948
4949/******************************************************************************
4950 * Reads a 16 bit word from the EEPROM.
4951 *
4952 * hw - Struct containing variables accessed by shared code
4953 * offset - offset of word in the EEPROM to read
4954 * data - word read from the EEPROM
4955 * words - number of words to read
4956 *****************************************************************************/
4957int32_t
4958e1000_read_eeprom(struct e1000_hw *hw,
4959 uint16_t offset,
4960 uint16_t words,
4961 uint16_t *data)
4962{
4963 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4964 uint32_t i = 0;
4965
4966 DEBUGFUNC("e1000_read_eeprom");
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004967
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004968 /* If eeprom is not yet detected, do so now */
4969 if (eeprom->word_size == 0)
4970 e1000_init_eeprom_params(hw);
4971
Linus Torvalds1da177e2005-04-16 15:20:36 -07004972 /* A check for invalid values: offset too large, too many words, and not
4973 * enough words.
4974 */
Auke Kok8fc897b2006-08-28 14:56:16 -07004975 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07004976 (words == 0)) {
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004977 DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004978 return -E1000_ERR_EEPROM;
4979 }
4980
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004981 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4982 * directly. In this case, we need to acquire the EEPROM so that
4983 * FW or other port software does not interrupt.
4984 */
Jeff Kirsher4d3518582006-01-12 16:50:48 -08004985 if (e1000_is_onboard_nvm_eeprom(hw) == TRUE &&
Auke Kok8fc897b2006-08-28 14:56:16 -07004986 hw->eeprom.use_eerd == FALSE) {
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004987 /* Prepare the EEPROM for bit-bang reading */
4988 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4989 return -E1000_ERR_EEPROM;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07004990 }
4991
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004992 /* Eerd register EEPROM access requires no eeprom aquire/release */
4993 if (eeprom->use_eerd == TRUE)
4994 return e1000_read_eeprom_eerd(hw, offset, words, data);
Linus Torvalds1da177e2005-04-16 15:20:36 -07004995
Jeff Kirsher2a88c172006-09-27 12:54:05 -07004996 /* ICH EEPROM access is done via the ICH flash controller */
Auke Kokcd94dd02006-06-27 09:08:22 -07004997 if (eeprom->type == e1000_eeprom_ich8)
4998 return e1000_read_eeprom_ich8(hw, offset, words, data);
4999
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005000 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
5001 * acquired the EEPROM at this point, so any returns should relase it */
Auke Kokcd94dd02006-06-27 09:08:22 -07005002 if (eeprom->type == e1000_eeprom_spi) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005003 uint16_t word_in;
5004 uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
5005
Auke Kok8fc897b2006-08-28 14:56:16 -07005006 if (e1000_spi_eeprom_ready(hw)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005007 e1000_release_eeprom(hw);
5008 return -E1000_ERR_EEPROM;
5009 }
5010
5011 e1000_standby_eeprom(hw);
5012
5013 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
Auke Kok8fc897b2006-08-28 14:56:16 -07005014 if ((eeprom->address_bits == 8) && (offset >= 128))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005015 read_opcode |= EEPROM_A8_OPCODE_SPI;
5016
5017 /* Send the READ command (opcode + addr) */
5018 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
5019 e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
5020
5021 /* Read the data. The address of the eeprom internally increments with
5022 * each byte (spi) being read, saving on the overhead of eeprom setup
5023 * and tear-down. The address counter will roll over if reading beyond
5024 * the size of the eeprom, thus allowing the entire memory to be read
5025 * starting from any offset. */
5026 for (i = 0; i < words; i++) {
5027 word_in = e1000_shift_in_ee_bits(hw, 16);
5028 data[i] = (word_in >> 8) | (word_in << 8);
5029 }
Auke Kok8fc897b2006-08-28 14:56:16 -07005030 } else if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005031 for (i = 0; i < words; i++) {
5032 /* Send the READ command (opcode + addr) */
5033 e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
5034 eeprom->opcode_bits);
5035 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
5036 eeprom->address_bits);
5037
5038 /* Read the data. For microwire, each word requires the overhead
5039 * of eeprom setup and tear-down. */
5040 data[i] = e1000_shift_in_ee_bits(hw, 16);
5041 e1000_standby_eeprom(hw);
5042 }
5043 }
5044
5045 /* End this read operation */
5046 e1000_release_eeprom(hw);
5047
5048 return E1000_SUCCESS;
5049}
5050
5051/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005052 * Reads a 16 bit word from the EEPROM using the EERD register.
5053 *
5054 * hw - Struct containing variables accessed by shared code
5055 * offset - offset of word in the EEPROM to read
5056 * data - word read from the EEPROM
5057 * words - number of words to read
5058 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005059static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005060e1000_read_eeprom_eerd(struct e1000_hw *hw,
5061 uint16_t offset,
5062 uint16_t words,
5063 uint16_t *data)
5064{
5065 uint32_t i, eerd = 0;
5066 int32_t error = 0;
5067
5068 for (i = 0; i < words; i++) {
5069 eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
5070 E1000_EEPROM_RW_REG_START;
5071
5072 E1000_WRITE_REG(hw, EERD, eerd);
5073 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);
Auke Kok76c224b2006-05-23 13:36:06 -07005074
Auke Kok8fc897b2006-08-28 14:56:16 -07005075 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005076 break;
5077 }
5078 data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA);
Auke Kok76c224b2006-05-23 13:36:06 -07005079
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005080 }
Auke Kok76c224b2006-05-23 13:36:06 -07005081
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005082 return error;
5083}
5084
5085/******************************************************************************
5086 * Writes a 16 bit word from the EEPROM using the EEWR register.
5087 *
5088 * hw - Struct containing variables accessed by shared code
5089 * offset - offset of word in the EEPROM to read
5090 * data - word read from the EEPROM
5091 * words - number of words to read
5092 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005093static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005094e1000_write_eeprom_eewr(struct e1000_hw *hw,
5095 uint16_t offset,
5096 uint16_t words,
5097 uint16_t *data)
5098{
5099 uint32_t register_value = 0;
5100 uint32_t i = 0;
5101 int32_t error = 0;
5102
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005103 if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
5104 return -E1000_ERR_SWFW_SYNC;
5105
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005106 for (i = 0; i < words; i++) {
Auke Kok76c224b2006-05-23 13:36:06 -07005107 register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) |
5108 ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) |
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005109 E1000_EEPROM_RW_REG_START;
5110
5111 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
Auke Kok8fc897b2006-08-28 14:56:16 -07005112 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005113 break;
Auke Kok76c224b2006-05-23 13:36:06 -07005114 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005115
5116 E1000_WRITE_REG(hw, EEWR, register_value);
Auke Kok76c224b2006-05-23 13:36:06 -07005117
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005118 error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE);
Auke Kok76c224b2006-05-23 13:36:06 -07005119
Auke Kok8fc897b2006-08-28 14:56:16 -07005120 if (error) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005121 break;
Auke Kok76c224b2006-05-23 13:36:06 -07005122 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005123 }
Auke Kok76c224b2006-05-23 13:36:06 -07005124
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005125 e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005126 return error;
5127}
5128
5129/******************************************************************************
5130 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
5131 *
5132 * hw - Struct containing variables accessed by shared code
5133 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005134static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005135e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
5136{
5137 uint32_t attempts = 100000;
5138 uint32_t i, reg = 0;
5139 int32_t done = E1000_ERR_EEPROM;
5140
Auke Kok8fc897b2006-08-28 14:56:16 -07005141 for (i = 0; i < attempts; i++) {
5142 if (eerd == E1000_EEPROM_POLL_READ)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005143 reg = E1000_READ_REG(hw, EERD);
Auke Kok76c224b2006-05-23 13:36:06 -07005144 else
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005145 reg = E1000_READ_REG(hw, EEWR);
5146
Auke Kok8fc897b2006-08-28 14:56:16 -07005147 if (reg & E1000_EEPROM_RW_REG_DONE) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005148 done = E1000_SUCCESS;
5149 break;
5150 }
5151 udelay(5);
5152 }
5153
5154 return done;
5155}
5156
5157/***************************************************************************
5158* Description: Determines if the onboard NVM is FLASH or EEPROM.
5159*
5160* hw - Struct containing variables accessed by shared code
5161****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005162static boolean_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005163e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
5164{
5165 uint32_t eecd = 0;
5166
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005167 DEBUGFUNC("e1000_is_onboard_nvm_eeprom");
5168
Auke Kokcd94dd02006-06-27 09:08:22 -07005169 if (hw->mac_type == e1000_ich8lan)
5170 return FALSE;
5171
5172 if (hw->mac_type == e1000_82573) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005173 eecd = E1000_READ_REG(hw, EECD);
5174
5175 /* Isolate bits 15 & 16 */
5176 eecd = ((eecd >> 15) & 0x03);
5177
5178 /* If both bits are set, device is Flash type */
Auke Kok8fc897b2006-08-28 14:56:16 -07005179 if (eecd == 0x03) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005180 return FALSE;
5181 }
5182 }
5183 return TRUE;
5184}
5185
5186/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005187 * Verifies that the EEPROM has a valid checksum
5188 *
5189 * hw - Struct containing variables accessed by shared code
5190 *
5191 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
5192 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
5193 * valid.
5194 *****************************************************************************/
5195int32_t
5196e1000_validate_eeprom_checksum(struct e1000_hw *hw)
5197{
5198 uint16_t checksum = 0;
5199 uint16_t i, eeprom_data;
5200
5201 DEBUGFUNC("e1000_validate_eeprom_checksum");
5202
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005203 if ((hw->mac_type == e1000_82573) &&
5204 (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) {
5205 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
5206 * 10h-12h. Checksum may need to be fixed. */
5207 e1000_read_eeprom(hw, 0x10, 1, &eeprom_data);
5208 if ((eeprom_data & 0x10) == 0) {
5209 /* Read 0x23 and check bit 15. This bit is a 1 when the checksum
5210 * has already been fixed. If the checksum is still wrong and this
5211 * bit is a 1, we need to return bad checksum. Otherwise, we need
5212 * to set this bit to a 1 and update the checksum. */
5213 e1000_read_eeprom(hw, 0x23, 1, &eeprom_data);
5214 if ((eeprom_data & 0x8000) == 0) {
5215 eeprom_data |= 0x8000;
5216 e1000_write_eeprom(hw, 0x23, 1, &eeprom_data);
5217 e1000_update_eeprom_checksum(hw);
5218 }
5219 }
5220 }
5221
Auke Kokcd94dd02006-06-27 09:08:22 -07005222 if (hw->mac_type == e1000_ich8lan) {
5223 /* Drivers must allocate the shadow ram structure for the
5224 * EEPROM checksum to be updated. Otherwise, this bit as well
5225 * as the checksum must both be set correctly for this
5226 * validation to pass.
5227 */
5228 e1000_read_eeprom(hw, 0x19, 1, &eeprom_data);
5229 if ((eeprom_data & 0x40) == 0) {
5230 eeprom_data |= 0x40;
5231 e1000_write_eeprom(hw, 0x19, 1, &eeprom_data);
5232 e1000_update_eeprom_checksum(hw);
5233 }
5234 }
5235
5236 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
5237 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005238 DEBUGOUT("EEPROM Read Error\n");
5239 return -E1000_ERR_EEPROM;
5240 }
5241 checksum += eeprom_data;
5242 }
5243
Auke Kok8fc897b2006-08-28 14:56:16 -07005244 if (checksum == (uint16_t) EEPROM_SUM)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005245 return E1000_SUCCESS;
5246 else {
5247 DEBUGOUT("EEPROM Checksum Invalid\n");
5248 return -E1000_ERR_EEPROM;
5249 }
5250}
5251
5252/******************************************************************************
5253 * Calculates the EEPROM checksum and writes it to the EEPROM
5254 *
5255 * hw - Struct containing variables accessed by shared code
5256 *
5257 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
5258 * Writes the difference to word offset 63 of the EEPROM.
5259 *****************************************************************************/
5260int32_t
5261e1000_update_eeprom_checksum(struct e1000_hw *hw)
5262{
Auke Kokcd94dd02006-06-27 09:08:22 -07005263 uint32_t ctrl_ext;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005264 uint16_t checksum = 0;
5265 uint16_t i, eeprom_data;
5266
5267 DEBUGFUNC("e1000_update_eeprom_checksum");
5268
Auke Kok8fc897b2006-08-28 14:56:16 -07005269 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
5270 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005271 DEBUGOUT("EEPROM Read Error\n");
5272 return -E1000_ERR_EEPROM;
5273 }
5274 checksum += eeprom_data;
5275 }
5276 checksum = (uint16_t) EEPROM_SUM - checksum;
Auke Kok8fc897b2006-08-28 14:56:16 -07005277 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005278 DEBUGOUT("EEPROM Write Error\n");
5279 return -E1000_ERR_EEPROM;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005280 } else if (hw->eeprom.type == e1000_eeprom_flash) {
5281 e1000_commit_shadow_ram(hw);
Auke Kokcd94dd02006-06-27 09:08:22 -07005282 } else if (hw->eeprom.type == e1000_eeprom_ich8) {
5283 e1000_commit_shadow_ram(hw);
5284 /* Reload the EEPROM, or else modifications will not appear
5285 * until after next adapter reset. */
5286 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
5287 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
5288 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04005289 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005290 }
5291 return E1000_SUCCESS;
5292}
5293
5294/******************************************************************************
5295 * Parent function for writing words to the different EEPROM types.
5296 *
5297 * hw - Struct containing variables accessed by shared code
5298 * offset - offset within the EEPROM to be written to
5299 * words - number of words to write
5300 * data - 16 bit word to be written to the EEPROM
5301 *
5302 * If e1000_update_eeprom_checksum is not called after this function, the
5303 * EEPROM will most likely contain an invalid checksum.
5304 *****************************************************************************/
5305int32_t
5306e1000_write_eeprom(struct e1000_hw *hw,
5307 uint16_t offset,
5308 uint16_t words,
5309 uint16_t *data)
5310{
5311 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5312 int32_t status = 0;
5313
5314 DEBUGFUNC("e1000_write_eeprom");
5315
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005316 /* If eeprom is not yet detected, do so now */
5317 if (eeprom->word_size == 0)
5318 e1000_init_eeprom_params(hw);
5319
Linus Torvalds1da177e2005-04-16 15:20:36 -07005320 /* A check for invalid values: offset too large, too many words, and not
5321 * enough words.
5322 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005323 if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) ||
Linus Torvalds1da177e2005-04-16 15:20:36 -07005324 (words == 0)) {
5325 DEBUGOUT("\"words\" parameter out of bounds\n");
5326 return -E1000_ERR_EEPROM;
5327 }
5328
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005329 /* 82573 writes only through eewr */
Auke Kok8fc897b2006-08-28 14:56:16 -07005330 if (eeprom->use_eewr == TRUE)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005331 return e1000_write_eeprom_eewr(hw, offset, words, data);
5332
Auke Kokcd94dd02006-06-27 09:08:22 -07005333 if (eeprom->type == e1000_eeprom_ich8)
5334 return e1000_write_eeprom_ich8(hw, offset, words, data);
5335
Linus Torvalds1da177e2005-04-16 15:20:36 -07005336 /* Prepare the EEPROM for writing */
5337 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
5338 return -E1000_ERR_EEPROM;
5339
Auke Kok8fc897b2006-08-28 14:56:16 -07005340 if (eeprom->type == e1000_eeprom_microwire) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005341 status = e1000_write_eeprom_microwire(hw, offset, words, data);
5342 } else {
5343 status = e1000_write_eeprom_spi(hw, offset, words, data);
Jeff Garzikf8ec4732006-09-19 15:27:07 -04005344 msleep(10);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005345 }
5346
5347 /* Done with writing */
5348 e1000_release_eeprom(hw);
5349
5350 return status;
5351}
5352
5353/******************************************************************************
5354 * Writes a 16 bit word to a given offset in an SPI EEPROM.
5355 *
5356 * hw - Struct containing variables accessed by shared code
5357 * offset - offset within the EEPROM to be written to
5358 * words - number of words to write
5359 * data - pointer to array of 8 bit words to be written to the EEPROM
5360 *
5361 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07005362static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005363e1000_write_eeprom_spi(struct e1000_hw *hw,
5364 uint16_t offset,
5365 uint16_t words,
5366 uint16_t *data)
5367{
5368 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5369 uint16_t widx = 0;
5370
5371 DEBUGFUNC("e1000_write_eeprom_spi");
5372
5373 while (widx < words) {
5374 uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI;
5375
Auke Kok8fc897b2006-08-28 14:56:16 -07005376 if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005377
5378 e1000_standby_eeprom(hw);
5379
5380 /* Send the WRITE ENABLE command (8 bit opcode ) */
5381 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
5382 eeprom->opcode_bits);
5383
5384 e1000_standby_eeprom(hw);
5385
5386 /* Some SPI eeproms use the 8th address bit embedded in the opcode */
Auke Kok8fc897b2006-08-28 14:56:16 -07005387 if ((eeprom->address_bits == 8) && (offset >= 128))
Linus Torvalds1da177e2005-04-16 15:20:36 -07005388 write_opcode |= EEPROM_A8_OPCODE_SPI;
5389
5390 /* Send the Write command (8-bit opcode + addr) */
5391 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
5392
5393 e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2),
5394 eeprom->address_bits);
5395
5396 /* Send the data */
5397
5398 /* Loop to allow for up to whole page write (32 bytes) of eeprom */
5399 while (widx < words) {
5400 uint16_t word_out = data[widx];
5401 word_out = (word_out >> 8) | (word_out << 8);
5402 e1000_shift_out_ee_bits(hw, word_out, 16);
5403 widx++;
5404
5405 /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE
5406 * operation, while the smaller eeproms are capable of an 8-byte
5407 * PAGE WRITE operation. Break the inner loop to pass new address
5408 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005409 if ((((offset + widx)*2) % eeprom->page_size) == 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005410 e1000_standby_eeprom(hw);
5411 break;
5412 }
5413 }
5414 }
5415
5416 return E1000_SUCCESS;
5417}
5418
5419/******************************************************************************
5420 * Writes a 16 bit word to a given offset in a Microwire EEPROM.
5421 *
5422 * hw - Struct containing variables accessed by shared code
5423 * offset - offset within the EEPROM to be written to
5424 * words - number of words to write
5425 * data - pointer to array of 16 bit words to be written to the EEPROM
5426 *
5427 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07005428static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005429e1000_write_eeprom_microwire(struct e1000_hw *hw,
5430 uint16_t offset,
5431 uint16_t words,
5432 uint16_t *data)
5433{
5434 struct e1000_eeprom_info *eeprom = &hw->eeprom;
5435 uint32_t eecd;
5436 uint16_t words_written = 0;
5437 uint16_t i = 0;
5438
5439 DEBUGFUNC("e1000_write_eeprom_microwire");
5440
5441 /* Send the write enable command to the EEPROM (3-bit opcode plus
5442 * 6/8-bit dummy address beginning with 11). It's less work to include
5443 * the 11 of the dummy address as part of the opcode than it is to shift
5444 * it over the correct number of bits for the address. This puts the
5445 * EEPROM into write/erase mode.
5446 */
5447 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
5448 (uint16_t)(eeprom->opcode_bits + 2));
5449
5450 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5451
5452 /* Prepare the EEPROM */
5453 e1000_standby_eeprom(hw);
5454
5455 while (words_written < words) {
5456 /* Send the Write command (3-bit opcode + addr) */
5457 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
5458 eeprom->opcode_bits);
5459
5460 e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written),
5461 eeprom->address_bits);
5462
5463 /* Send the data */
5464 e1000_shift_out_ee_bits(hw, data[words_written], 16);
5465
5466 /* Toggle the CS line. This in effect tells the EEPROM to execute
5467 * the previous command.
5468 */
5469 e1000_standby_eeprom(hw);
5470
5471 /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will
5472 * signal that the command has been completed by raising the DO signal.
5473 * If DO does not go high in 10 milliseconds, then error out.
5474 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005475 for (i = 0; i < 200; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005476 eecd = E1000_READ_REG(hw, EECD);
Auke Kok8fc897b2006-08-28 14:56:16 -07005477 if (eecd & E1000_EECD_DO) break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005478 udelay(50);
5479 }
Auke Kok8fc897b2006-08-28 14:56:16 -07005480 if (i == 200) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005481 DEBUGOUT("EEPROM Write did not complete\n");
5482 return -E1000_ERR_EEPROM;
5483 }
5484
5485 /* Recover from write */
5486 e1000_standby_eeprom(hw);
5487
5488 words_written++;
5489 }
5490
5491 /* Send the write disable command to the EEPROM (3-bit opcode plus
5492 * 6/8-bit dummy address beginning with 10). It's less work to include
5493 * the 10 of the dummy address as part of the opcode than it is to shift
5494 * it over the correct number of bits for the address. This takes the
5495 * EEPROM out of write/erase mode.
5496 */
5497 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
5498 (uint16_t)(eeprom->opcode_bits + 2));
5499
5500 e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2));
5501
5502 return E1000_SUCCESS;
5503}
5504
5505/******************************************************************************
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005506 * Flushes the cached eeprom to NVM. This is done by saving the modified values
5507 * in the eeprom cache and the non modified values in the currently active bank
5508 * to the new bank.
5509 *
5510 * hw - Struct containing variables accessed by shared code
5511 * offset - offset of word in the EEPROM to read
5512 * data - word read from the EEPROM
5513 * words - number of words to read
5514 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005515static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005516e1000_commit_shadow_ram(struct e1000_hw *hw)
5517{
5518 uint32_t attempts = 100000;
5519 uint32_t eecd = 0;
5520 uint32_t flop = 0;
5521 uint32_t i = 0;
5522 int32_t error = E1000_SUCCESS;
Auke Kokcd94dd02006-06-27 09:08:22 -07005523 uint32_t old_bank_offset = 0;
5524 uint32_t new_bank_offset = 0;
Auke Kokcd94dd02006-06-27 09:08:22 -07005525 uint8_t low_byte = 0;
5526 uint8_t high_byte = 0;
Auke Kokcd94dd02006-06-27 09:08:22 -07005527 boolean_t sector_write_failed = FALSE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005528
5529 if (hw->mac_type == e1000_82573) {
Auke Kokcd94dd02006-06-27 09:08:22 -07005530 /* The flop register will be used to determine if flash type is STM */
5531 flop = E1000_READ_REG(hw, FLOP);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005532 for (i=0; i < attempts; i++) {
5533 eecd = E1000_READ_REG(hw, EECD);
5534 if ((eecd & E1000_EECD_FLUPD) == 0) {
5535 break;
5536 }
5537 udelay(5);
5538 }
5539
5540 if (i == attempts) {
5541 return -E1000_ERR_EEPROM;
5542 }
5543
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005544 /* If STM opcode located in bits 15:8 of flop, reset firmware */
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005545 if ((flop & 0xFF00) == E1000_STM_OPCODE) {
5546 E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET);
5547 }
5548
5549 /* Perform the flash update */
5550 E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD);
5551
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005552 for (i=0; i < attempts; i++) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005553 eecd = E1000_READ_REG(hw, EECD);
5554 if ((eecd & E1000_EECD_FLUPD) == 0) {
5555 break;
5556 }
5557 udelay(5);
5558 }
5559
5560 if (i == attempts) {
5561 return -E1000_ERR_EEPROM;
5562 }
5563 }
5564
Auke Kokcd94dd02006-06-27 09:08:22 -07005565 if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) {
5566 /* We're writing to the opposite bank so if we're on bank 1,
5567 * write to bank 0 etc. We also need to erase the segment that
5568 * is going to be written */
5569 if (!(E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL)) {
5570 new_bank_offset = hw->flash_bank_size * 2;
5571 old_bank_offset = 0;
5572 e1000_erase_ich8_4k_segment(hw, 1);
5573 } else {
5574 old_bank_offset = hw->flash_bank_size * 2;
5575 new_bank_offset = 0;
5576 e1000_erase_ich8_4k_segment(hw, 0);
5577 }
5578
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005579 sector_write_failed = FALSE;
5580 /* Loop for every byte in the shadow RAM,
5581 * which is in units of words. */
5582 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5583 /* Determine whether to write the value stored
5584 * in the other NVM bank or a modified value stored
5585 * in the shadow RAM */
5586 if (hw->eeprom_shadow_ram[i].modified == TRUE) {
5587 low_byte = (uint8_t)hw->eeprom_shadow_ram[i].eeprom_word;
5588 udelay(100);
5589 error = e1000_verify_write_ich8_byte(hw,
5590 (i << 1) + new_bank_offset, low_byte);
5591
5592 if (error != E1000_SUCCESS)
5593 sector_write_failed = TRUE;
5594 else {
Auke Kokcd94dd02006-06-27 09:08:22 -07005595 high_byte =
5596 (uint8_t)(hw->eeprom_shadow_ram[i].eeprom_word >> 8);
Auke Kokcd94dd02006-06-27 09:08:22 -07005597 udelay(100);
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005598 }
5599 } else {
5600 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset,
5601 &low_byte);
5602 udelay(100);
5603 error = e1000_verify_write_ich8_byte(hw,
5604 (i << 1) + new_bank_offset, low_byte);
5605
5606 if (error != E1000_SUCCESS)
5607 sector_write_failed = TRUE;
5608 else {
Auke Kokcd94dd02006-06-27 09:08:22 -07005609 e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1,
5610 &high_byte);
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005611 udelay(100);
Auke Kokcd94dd02006-06-27 09:08:22 -07005612 }
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005613 }
Auke Kokcd94dd02006-06-27 09:08:22 -07005614
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005615 /* If the write of the low byte was successful, go ahread and
5616 * write the high byte while checking to make sure that if it
5617 * is the signature byte, then it is handled properly */
5618 if (sector_write_failed == FALSE) {
Auke Kokcd94dd02006-06-27 09:08:22 -07005619 /* If the word is 0x13, then make sure the signature bits
5620 * (15:14) are 11b until the commit has completed.
5621 * This will allow us to write 10b which indicates the
5622 * signature is valid. We want to do this after the write
5623 * has completed so that we don't mark the segment valid
5624 * while the write is still in progress */
5625 if (i == E1000_ICH8_NVM_SIG_WORD)
5626 high_byte = E1000_ICH8_NVM_SIG_MASK | high_byte;
5627
5628 error = e1000_verify_write_ich8_byte(hw,
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005629 (i << 1) + new_bank_offset + 1, high_byte);
Auke Kokcd94dd02006-06-27 09:08:22 -07005630 if (error != E1000_SUCCESS)
5631 sector_write_failed = TRUE;
5632
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005633 } else {
5634 /* If the write failed then break from the loop and
5635 * return an error */
5636 break;
5637 }
5638 }
5639
5640 /* Don't bother writing the segment valid bits if sector
5641 * programming failed. */
5642 if (sector_write_failed == FALSE) {
5643 /* Finally validate the new segment by setting bit 15:14
5644 * to 10b in word 0x13 , this can be done without an
5645 * erase as well since these bits are 11 to start with
5646 * and we need to change bit 14 to 0b */
5647 e1000_read_ich8_byte(hw,
5648 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset,
5649 &high_byte);
5650 high_byte &= 0xBF;
5651 error = e1000_verify_write_ich8_byte(hw,
5652 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte);
5653 /* And invalidate the previously valid segment by setting
5654 * its signature word (0x13) high_byte to 0b. This can be
5655 * done without an erase because flash erase sets all bits
5656 * to 1's. We can write 1's to 0's without an erase */
5657 if (error == E1000_SUCCESS) {
5658 error = e1000_verify_write_ich8_byte(hw,
5659 E1000_ICH8_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0);
Auke Kokcd94dd02006-06-27 09:08:22 -07005660 }
5661
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005662 /* Clear the now not used entry in the cache */
5663 for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) {
5664 hw->eeprom_shadow_ram[i].modified = FALSE;
5665 hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF;
Auke Kokcd94dd02006-06-27 09:08:22 -07005666 }
Jeff Kirsher2a88c172006-09-27 12:54:05 -07005667 }
Auke Kokcd94dd02006-06-27 09:08:22 -07005668 }
5669
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005670 return error;
5671}
5672
5673/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005674 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
5675 * second function of dual function devices
5676 *
5677 * hw - Struct containing variables accessed by shared code
5678 *****************************************************************************/
5679int32_t
5680e1000_read_mac_addr(struct e1000_hw * hw)
5681{
5682 uint16_t offset;
5683 uint16_t eeprom_data, i;
5684
5685 DEBUGFUNC("e1000_read_mac_addr");
5686
Auke Kok8fc897b2006-08-28 14:56:16 -07005687 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005688 offset = i >> 1;
Auke Kok8fc897b2006-08-28 14:56:16 -07005689 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005690 DEBUGOUT("EEPROM Read Error\n");
5691 return -E1000_ERR_EEPROM;
5692 }
5693 hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF);
5694 hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8);
5695 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08005696
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005697 switch (hw->mac_type) {
5698 default:
5699 break;
5700 case e1000_82546:
5701 case e1000_82546_rev_3:
5702 case e1000_82571:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005703 case e1000_80003es2lan:
Auke Kok8fc897b2006-08-28 14:56:16 -07005704 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005705 hw->perm_mac_addr[5] ^= 0x01;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005706 break;
5707 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005708
Auke Kok8fc897b2006-08-28 14:56:16 -07005709 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
Linus Torvalds1da177e2005-04-16 15:20:36 -07005710 hw->mac_addr[i] = hw->perm_mac_addr[i];
5711 return E1000_SUCCESS;
5712}
5713
5714/******************************************************************************
5715 * Initializes receive address filters.
5716 *
5717 * hw - Struct containing variables accessed by shared code
5718 *
5719 * Places the MAC address in receive address register 0 and clears the rest
5720 * of the receive addresss registers. Clears the multicast table. Assumes
5721 * the receiver is in reset when the routine is called.
5722 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005723static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005724e1000_init_rx_addrs(struct e1000_hw *hw)
5725{
5726 uint32_t i;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005727 uint32_t rar_num;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005728
5729 DEBUGFUNC("e1000_init_rx_addrs");
5730
5731 /* Setup the receive address. */
5732 DEBUGOUT("Programming MAC Address into RAR[0]\n");
5733
5734 e1000_rar_set(hw, hw->mac_addr, 0);
5735
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005736 rar_num = E1000_RAR_ENTRIES;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04005737
5738 /* Reserve a spot for the Locally Administered Address to work around
5739 * an 82571 issue in which a reset on one port will reload the MAC on
5740 * the other port. */
5741 if ((hw->mac_type == e1000_82571) && (hw->laa_is_present == TRUE))
5742 rar_num -= 1;
Auke Kokcd94dd02006-06-27 09:08:22 -07005743 if (hw->mac_type == e1000_ich8lan)
5744 rar_num = E1000_RAR_ENTRIES_ICH8LAN;
5745
Linus Torvalds1da177e2005-04-16 15:20:36 -07005746 /* Zero out the other 15 receive addresses. */
5747 DEBUGOUT("Clearing RAR[1-15]\n");
Auke Kok8fc897b2006-08-28 14:56:16 -07005748 for (i = 1; i < rar_num; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005749 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005750 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005751 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
Auke Kok4ca213a2006-06-27 09:07:08 -07005752 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005753 }
5754}
5755
5756/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07005757 * Hashes an address to determine its location in the multicast table
5758 *
5759 * hw - Struct containing variables accessed by shared code
5760 * mc_addr - the multicast address to hash
5761 *****************************************************************************/
5762uint32_t
5763e1000_hash_mc_addr(struct e1000_hw *hw,
5764 uint8_t *mc_addr)
5765{
5766 uint32_t hash_value = 0;
5767
5768 /* The portion of the address that is used for the hash table is
5769 * determined by the mc_filter_type setting.
5770 */
5771 switch (hw->mc_filter_type) {
5772 /* [0] [1] [2] [3] [4] [5]
5773 * 01 AA 00 12 34 56
5774 * LSB MSB
5775 */
5776 case 0:
Auke Kokcd94dd02006-06-27 09:08:22 -07005777 if (hw->mac_type == e1000_ich8lan) {
5778 /* [47:38] i.e. 0x158 for above example address */
5779 hash_value = ((mc_addr[4] >> 6) | (((uint16_t) mc_addr[5]) << 2));
5780 } else {
5781 /* [47:36] i.e. 0x563 for above example address */
5782 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5783 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005784 break;
5785 case 1:
Auke Kokcd94dd02006-06-27 09:08:22 -07005786 if (hw->mac_type == e1000_ich8lan) {
5787 /* [46:37] i.e. 0x2B1 for above example address */
5788 hash_value = ((mc_addr[4] >> 5) | (((uint16_t) mc_addr[5]) << 3));
5789 } else {
5790 /* [46:35] i.e. 0xAC6 for above example address */
5791 hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5));
5792 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005793 break;
5794 case 2:
Auke Kokcd94dd02006-06-27 09:08:22 -07005795 if (hw->mac_type == e1000_ich8lan) {
5796 /*[45:36] i.e. 0x163 for above example address */
5797 hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4));
5798 } else {
5799 /* [45:34] i.e. 0x5D8 for above example address */
5800 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5801 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005802 break;
5803 case 3:
Auke Kokcd94dd02006-06-27 09:08:22 -07005804 if (hw->mac_type == e1000_ich8lan) {
5805 /* [43:34] i.e. 0x18D for above example address */
5806 hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6));
5807 } else {
5808 /* [43:32] i.e. 0x634 for above example address */
5809 hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8));
5810 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005811 break;
5812 }
5813
5814 hash_value &= 0xFFF;
Auke Kokcd94dd02006-06-27 09:08:22 -07005815 if (hw->mac_type == e1000_ich8lan)
5816 hash_value &= 0x3FF;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005817
Linus Torvalds1da177e2005-04-16 15:20:36 -07005818 return hash_value;
5819}
5820
5821/******************************************************************************
5822 * Sets the bit in the multicast table corresponding to the hash value.
5823 *
5824 * hw - Struct containing variables accessed by shared code
5825 * hash_value - Multicast address hash value
5826 *****************************************************************************/
5827void
5828e1000_mta_set(struct e1000_hw *hw,
5829 uint32_t hash_value)
5830{
5831 uint32_t hash_bit, hash_reg;
5832 uint32_t mta;
5833 uint32_t temp;
5834
5835 /* The MTA is a register array of 128 32-bit registers.
5836 * It is treated like an array of 4096 bits. We want to set
5837 * bit BitArray[hash_value]. So we figure out what register
5838 * the bit is in, read it, OR in the new bit, then write
5839 * back the new value. The register is determined by the
5840 * upper 7 bits of the hash value and the bit within that
5841 * register are determined by the lower 5 bits of the value.
5842 */
5843 hash_reg = (hash_value >> 5) & 0x7F;
Auke Kokcd94dd02006-06-27 09:08:22 -07005844 if (hw->mac_type == e1000_ich8lan)
5845 hash_reg &= 0x1F;
Auke Kok90fb5132006-11-01 08:47:30 -08005846
Linus Torvalds1da177e2005-04-16 15:20:36 -07005847 hash_bit = hash_value & 0x1F;
5848
5849 mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg);
5850
5851 mta |= (1 << hash_bit);
5852
5853 /* If we are on an 82544 and we are trying to write an odd offset
5854 * in the MTA, save off the previous entry before writing and
5855 * restore the old value after writing.
5856 */
Auke Kok8fc897b2006-08-28 14:56:16 -07005857 if ((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005858 temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1));
5859 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
Auke Kok4ca213a2006-06-27 09:07:08 -07005860 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005861 E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp);
Auke Kok4ca213a2006-06-27 09:07:08 -07005862 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005863 } else {
5864 E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta);
Auke Kok4ca213a2006-06-27 09:07:08 -07005865 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005866 }
5867}
5868
5869/******************************************************************************
5870 * Puts an ethernet address into a receive address register.
5871 *
5872 * hw - Struct containing variables accessed by shared code
5873 * addr - Address to put into receive address register
5874 * index - Receive address register to write
5875 *****************************************************************************/
5876void
5877e1000_rar_set(struct e1000_hw *hw,
5878 uint8_t *addr,
5879 uint32_t index)
5880{
5881 uint32_t rar_low, rar_high;
5882
5883 /* HW expects these in little endian so we reverse the byte order
5884 * from network order (big endian) to little endian
5885 */
5886 rar_low = ((uint32_t) addr[0] |
5887 ((uint32_t) addr[1] << 8) |
5888 ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24));
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005889 rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8));
Linus Torvalds1da177e2005-04-16 15:20:36 -07005890
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005891 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
5892 * unit hang.
5893 *
5894 * Description:
5895 * If there are any Rx frames queued up or otherwise present in the HW
5896 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
5897 * hang. To work around this issue, we have to disable receives and
5898 * flush out all Rx frames before we enable RSS. To do so, we modify we
5899 * redirect all Rx traffic to manageability and then reset the HW.
5900 * This flushes away Rx frames, and (since the redirections to
5901 * manageability persists across resets) keeps new ones from coming in
5902 * while we work. Then, we clear the Address Valid AV bit for all MAC
5903 * addresses and undo the re-direction to manageability.
5904 * Now, frames are coming in again, but the MAC won't accept them, so
5905 * far so good. We now proceed to initialize RSS (if necessary) and
5906 * configure the Rx unit. Last, we re-enable the AV bits and continue
5907 * on our merry way.
5908 */
5909 switch (hw->mac_type) {
5910 case e1000_82571:
5911 case e1000_82572:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08005912 case e1000_80003es2lan:
Jeff Kirsher8df06e52006-03-02 18:18:32 -08005913 if (hw->leave_av_bit_off == TRUE)
5914 break;
5915 default:
5916 /* Indicate to hardware the Address is Valid. */
5917 rar_high |= E1000_RAH_AV;
5918 break;
5919 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005920
5921 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
Auke Kok4ca213a2006-06-27 09:07:08 -07005922 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005923 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
Auke Kok4ca213a2006-06-27 09:07:08 -07005924 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005925}
5926
5927/******************************************************************************
5928 * Writes a value to the specified offset in the VLAN filter table.
5929 *
5930 * hw - Struct containing variables accessed by shared code
5931 * offset - Offset in VLAN filer table to write
5932 * value - Value to write into VLAN filter table
5933 *****************************************************************************/
5934void
5935e1000_write_vfta(struct e1000_hw *hw,
5936 uint32_t offset,
5937 uint32_t value)
5938{
5939 uint32_t temp;
5940
Auke Kokcd94dd02006-06-27 09:08:22 -07005941 if (hw->mac_type == e1000_ich8lan)
5942 return;
5943
5944 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07005945 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
5946 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005947 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005948 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
Auke Kok4ca213a2006-06-27 09:07:08 -07005949 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005950 } else {
5951 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005952 E1000_WRITE_FLUSH(hw);
Linus Torvalds1da177e2005-04-16 15:20:36 -07005953 }
5954}
5955
5956/******************************************************************************
5957 * Clears the VLAN filer table
5958 *
5959 * hw - Struct containing variables accessed by shared code
5960 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005961static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07005962e1000_clear_vfta(struct e1000_hw *hw)
5963{
5964 uint32_t offset;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005965 uint32_t vfta_value = 0;
5966 uint32_t vfta_offset = 0;
5967 uint32_t vfta_bit_in_reg = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07005968
Auke Kokcd94dd02006-06-27 09:08:22 -07005969 if (hw->mac_type == e1000_ich8lan)
5970 return;
5971
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005972 if (hw->mac_type == e1000_82573) {
5973 if (hw->mng_cookie.vlan_id != 0) {
5974 /* The VFTA is a 4096b bit-field, each identifying a single VLAN
5975 * ID. The following operations determine which 32b entry
5976 * (i.e. offset) into the array we want to set the VLAN ID
5977 * (i.e. bit) of the manageability unit. */
5978 vfta_offset = (hw->mng_cookie.vlan_id >>
5979 E1000_VFTA_ENTRY_SHIFT) &
5980 E1000_VFTA_ENTRY_MASK;
5981 vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id &
5982 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
5983 }
5984 }
5985 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
5986 /* If the offset we want to clear is the same offset of the
5987 * manageability VLAN ID, then clear all bits except that of the
5988 * manageability unit */
5989 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
5990 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
Auke Kok4ca213a2006-06-27 09:07:08 -07005991 E1000_WRITE_FLUSH(hw);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07005992 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07005993}
5994
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01005995static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07005996e1000_id_led_init(struct e1000_hw * hw)
5997{
5998 uint32_t ledctl;
5999 const uint32_t ledctl_mask = 0x000000FF;
6000 const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON;
6001 const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
6002 uint16_t eeprom_data, i, temp;
6003 const uint16_t led_mask = 0x0F;
6004
6005 DEBUGFUNC("e1000_id_led_init");
6006
Auke Kok8fc897b2006-08-28 14:56:16 -07006007 if (hw->mac_type < e1000_82540) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006008 /* Nothing to do */
6009 return E1000_SUCCESS;
6010 }
6011
6012 ledctl = E1000_READ_REG(hw, LEDCTL);
6013 hw->ledctl_default = ledctl;
6014 hw->ledctl_mode1 = hw->ledctl_default;
6015 hw->ledctl_mode2 = hw->ledctl_default;
6016
Auke Kok8fc897b2006-08-28 14:56:16 -07006017 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006018 DEBUGOUT("EEPROM Read Error\n");
6019 return -E1000_ERR_EEPROM;
6020 }
Auke Kokcd94dd02006-06-27 09:08:22 -07006021
6022 if ((hw->mac_type == e1000_82573) &&
6023 (eeprom_data == ID_LED_RESERVED_82573))
6024 eeprom_data = ID_LED_DEFAULT_82573;
6025 else if ((eeprom_data == ID_LED_RESERVED_0000) ||
6026 (eeprom_data == ID_LED_RESERVED_FFFF)) {
6027 if (hw->mac_type == e1000_ich8lan)
6028 eeprom_data = ID_LED_DEFAULT_ICH8LAN;
6029 else
6030 eeprom_data = ID_LED_DEFAULT;
6031 }
Auke Kok90fb5132006-11-01 08:47:30 -08006032
Auke Kokcd94dd02006-06-27 09:08:22 -07006033 for (i = 0; i < 4; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006034 temp = (eeprom_data >> (i << 2)) & led_mask;
Auke Kok8fc897b2006-08-28 14:56:16 -07006035 switch (temp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006036 case ID_LED_ON1_DEF2:
6037 case ID_LED_ON1_ON2:
6038 case ID_LED_ON1_OFF2:
6039 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6040 hw->ledctl_mode1 |= ledctl_on << (i << 3);
6041 break;
6042 case ID_LED_OFF1_DEF2:
6043 case ID_LED_OFF1_ON2:
6044 case ID_LED_OFF1_OFF2:
6045 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
6046 hw->ledctl_mode1 |= ledctl_off << (i << 3);
6047 break;
6048 default:
6049 /* Do nothing */
6050 break;
6051 }
Auke Kok8fc897b2006-08-28 14:56:16 -07006052 switch (temp) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006053 case ID_LED_DEF1_ON2:
6054 case ID_LED_ON1_ON2:
6055 case ID_LED_OFF1_ON2:
6056 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6057 hw->ledctl_mode2 |= ledctl_on << (i << 3);
6058 break;
6059 case ID_LED_DEF1_OFF2:
6060 case ID_LED_ON1_OFF2:
6061 case ID_LED_OFF1_OFF2:
6062 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
6063 hw->ledctl_mode2 |= ledctl_off << (i << 3);
6064 break;
6065 default:
6066 /* Do nothing */
6067 break;
6068 }
6069 }
6070 return E1000_SUCCESS;
6071}
6072
6073/******************************************************************************
6074 * Prepares SW controlable LED for use and saves the current state of the LED.
6075 *
6076 * hw - Struct containing variables accessed by shared code
6077 *****************************************************************************/
6078int32_t
6079e1000_setup_led(struct e1000_hw *hw)
6080{
6081 uint32_t ledctl;
6082 int32_t ret_val = E1000_SUCCESS;
6083
6084 DEBUGFUNC("e1000_setup_led");
6085
Auke Kok8fc897b2006-08-28 14:56:16 -07006086 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006087 case e1000_82542_rev2_0:
6088 case e1000_82542_rev2_1:
6089 case e1000_82543:
6090 case e1000_82544:
6091 /* No setup necessary */
6092 break;
6093 case e1000_82541:
6094 case e1000_82547:
6095 case e1000_82541_rev_2:
6096 case e1000_82547_rev_2:
6097 /* Turn off PHY Smart Power Down (if enabled) */
6098 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
6099 &hw->phy_spd_default);
Auke Kok8fc897b2006-08-28 14:56:16 -07006100 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006101 return ret_val;
6102 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6103 (uint16_t)(hw->phy_spd_default &
6104 ~IGP01E1000_GMII_SPD));
Auke Kok8fc897b2006-08-28 14:56:16 -07006105 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006106 return ret_val;
6107 /* Fall Through */
6108 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07006109 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006110 ledctl = E1000_READ_REG(hw, LEDCTL);
6111 /* Save current LEDCTL settings */
6112 hw->ledctl_default = ledctl;
6113 /* Turn off LED0 */
6114 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
6115 E1000_LEDCTL_LED0_BLINK |
6116 E1000_LEDCTL_LED0_MODE_MASK);
6117 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
6118 E1000_LEDCTL_LED0_MODE_SHIFT);
6119 E1000_WRITE_REG(hw, LEDCTL, ledctl);
Auke Kok8fc897b2006-08-28 14:56:16 -07006120 } else if (hw->media_type == e1000_media_type_copper)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006121 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6122 break;
6123 }
6124
6125 return E1000_SUCCESS;
6126}
6127
Auke Kok8fc897b2006-08-28 14:56:16 -07006128
Linus Torvalds1da177e2005-04-16 15:20:36 -07006129/******************************************************************************
Auke Kokf1b3a852006-06-27 09:07:56 -07006130 * Used on 82571 and later Si that has LED blink bits.
6131 * Callers must use their own timer and should have already called
6132 * e1000_id_led_init()
6133 * Call e1000_cleanup led() to stop blinking
6134 *
6135 * hw - Struct containing variables accessed by shared code
6136 *****************************************************************************/
6137int32_t
6138e1000_blink_led_start(struct e1000_hw *hw)
6139{
6140 int16_t i;
6141 uint32_t ledctl_blink = 0;
6142
6143 DEBUGFUNC("e1000_id_led_blink_on");
6144
6145 if (hw->mac_type < e1000_82571) {
6146 /* Nothing to do */
6147 return E1000_SUCCESS;
6148 }
6149 if (hw->media_type == e1000_media_type_fiber) {
6150 /* always blink LED0 for PCI-E fiber */
6151 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
6152 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
6153 } else {
6154 /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */
6155 ledctl_blink = hw->ledctl_mode2;
6156 for (i=0; i < 4; i++)
6157 if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) ==
6158 E1000_LEDCTL_MODE_LED_ON)
6159 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8));
6160 }
6161
6162 E1000_WRITE_REG(hw, LEDCTL, ledctl_blink);
6163
6164 return E1000_SUCCESS;
6165}
6166
6167/******************************************************************************
Linus Torvalds1da177e2005-04-16 15:20:36 -07006168 * Restores the saved state of the SW controlable LED.
6169 *
6170 * hw - Struct containing variables accessed by shared code
6171 *****************************************************************************/
6172int32_t
6173e1000_cleanup_led(struct e1000_hw *hw)
6174{
6175 int32_t ret_val = E1000_SUCCESS;
6176
6177 DEBUGFUNC("e1000_cleanup_led");
6178
Auke Kok8fc897b2006-08-28 14:56:16 -07006179 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006180 case e1000_82542_rev2_0:
6181 case e1000_82542_rev2_1:
6182 case e1000_82543:
6183 case e1000_82544:
6184 /* No cleanup necessary */
6185 break;
6186 case e1000_82541:
6187 case e1000_82547:
6188 case e1000_82541_rev_2:
6189 case e1000_82547_rev_2:
6190 /* Turn on PHY Smart Power Down (if previously enabled) */
6191 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
6192 hw->phy_spd_default);
Auke Kok8fc897b2006-08-28 14:56:16 -07006193 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006194 return ret_val;
6195 /* Fall Through */
6196 default:
Auke Kokcd94dd02006-06-27 09:08:22 -07006197 if (hw->phy_type == e1000_phy_ife) {
6198 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
6199 break;
6200 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07006201 /* Restore LEDCTL settings */
6202 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default);
6203 break;
6204 }
6205
6206 return E1000_SUCCESS;
6207}
6208
6209/******************************************************************************
6210 * Turns on the software controllable LED
6211 *
6212 * hw - Struct containing variables accessed by shared code
6213 *****************************************************************************/
6214int32_t
6215e1000_led_on(struct e1000_hw *hw)
6216{
6217 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6218
6219 DEBUGFUNC("e1000_led_on");
6220
Auke Kok8fc897b2006-08-28 14:56:16 -07006221 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006222 case e1000_82542_rev2_0:
6223 case e1000_82542_rev2_1:
6224 case e1000_82543:
6225 /* Set SW Defineable Pin 0 to turn on the LED */
6226 ctrl |= E1000_CTRL_SWDPIN0;
6227 ctrl |= E1000_CTRL_SWDPIO0;
6228 break;
6229 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07006230 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006231 /* Set SW Defineable Pin 0 to turn on the LED */
6232 ctrl |= E1000_CTRL_SWDPIN0;
6233 ctrl |= E1000_CTRL_SWDPIO0;
6234 } else {
6235 /* Clear SW Defineable Pin 0 to turn on the LED */
6236 ctrl &= ~E1000_CTRL_SWDPIN0;
6237 ctrl |= E1000_CTRL_SWDPIO0;
6238 }
6239 break;
6240 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07006241 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006242 /* Clear SW Defineable Pin 0 to turn on the LED */
6243 ctrl &= ~E1000_CTRL_SWDPIN0;
6244 ctrl |= E1000_CTRL_SWDPIO0;
Auke Kokcd94dd02006-06-27 09:08:22 -07006245 } else if (hw->phy_type == e1000_phy_ife) {
6246 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6247 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
6248 } else if (hw->media_type == e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006249 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2);
6250 return E1000_SUCCESS;
6251 }
6252 break;
6253 }
6254
6255 E1000_WRITE_REG(hw, CTRL, ctrl);
6256
6257 return E1000_SUCCESS;
6258}
6259
6260/******************************************************************************
6261 * Turns off the software controllable LED
6262 *
6263 * hw - Struct containing variables accessed by shared code
6264 *****************************************************************************/
6265int32_t
6266e1000_led_off(struct e1000_hw *hw)
6267{
6268 uint32_t ctrl = E1000_READ_REG(hw, CTRL);
6269
6270 DEBUGFUNC("e1000_led_off");
6271
Auke Kok8fc897b2006-08-28 14:56:16 -07006272 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006273 case e1000_82542_rev2_0:
6274 case e1000_82542_rev2_1:
6275 case e1000_82543:
6276 /* Clear SW Defineable Pin 0 to turn off the LED */
6277 ctrl &= ~E1000_CTRL_SWDPIN0;
6278 ctrl |= E1000_CTRL_SWDPIO0;
6279 break;
6280 case e1000_82544:
Auke Kok8fc897b2006-08-28 14:56:16 -07006281 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006282 /* Clear SW Defineable Pin 0 to turn off the LED */
6283 ctrl &= ~E1000_CTRL_SWDPIN0;
6284 ctrl |= E1000_CTRL_SWDPIO0;
6285 } else {
6286 /* Set SW Defineable Pin 0 to turn off the LED */
6287 ctrl |= E1000_CTRL_SWDPIN0;
6288 ctrl |= E1000_CTRL_SWDPIO0;
6289 }
6290 break;
6291 default:
Auke Kok8fc897b2006-08-28 14:56:16 -07006292 if (hw->media_type == e1000_media_type_fiber) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006293 /* Set SW Defineable Pin 0 to turn off the LED */
6294 ctrl |= E1000_CTRL_SWDPIN0;
6295 ctrl |= E1000_CTRL_SWDPIO0;
Auke Kokcd94dd02006-06-27 09:08:22 -07006296 } else if (hw->phy_type == e1000_phy_ife) {
6297 e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED,
6298 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
6299 } else if (hw->media_type == e1000_media_type_copper) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006300 E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1);
6301 return E1000_SUCCESS;
6302 }
6303 break;
6304 }
6305
6306 E1000_WRITE_REG(hw, CTRL, ctrl);
6307
6308 return E1000_SUCCESS;
6309}
6310
6311/******************************************************************************
6312 * Clears all hardware statistics counters.
6313 *
6314 * hw - Struct containing variables accessed by shared code
6315 *****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07006316static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07006317e1000_clear_hw_cntrs(struct e1000_hw *hw)
6318{
6319 volatile uint32_t temp;
6320
6321 temp = E1000_READ_REG(hw, CRCERRS);
6322 temp = E1000_READ_REG(hw, SYMERRS);
6323 temp = E1000_READ_REG(hw, MPC);
6324 temp = E1000_READ_REG(hw, SCC);
6325 temp = E1000_READ_REG(hw, ECOL);
6326 temp = E1000_READ_REG(hw, MCC);
6327 temp = E1000_READ_REG(hw, LATECOL);
6328 temp = E1000_READ_REG(hw, COLC);
6329 temp = E1000_READ_REG(hw, DC);
6330 temp = E1000_READ_REG(hw, SEC);
6331 temp = E1000_READ_REG(hw, RLEC);
6332 temp = E1000_READ_REG(hw, XONRXC);
6333 temp = E1000_READ_REG(hw, XONTXC);
6334 temp = E1000_READ_REG(hw, XOFFRXC);
6335 temp = E1000_READ_REG(hw, XOFFTXC);
6336 temp = E1000_READ_REG(hw, FCRUC);
Auke Kokcd94dd02006-06-27 09:08:22 -07006337
6338 if (hw->mac_type != e1000_ich8lan) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006339 temp = E1000_READ_REG(hw, PRC64);
6340 temp = E1000_READ_REG(hw, PRC127);
6341 temp = E1000_READ_REG(hw, PRC255);
6342 temp = E1000_READ_REG(hw, PRC511);
6343 temp = E1000_READ_REG(hw, PRC1023);
6344 temp = E1000_READ_REG(hw, PRC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07006345 }
6346
Linus Torvalds1da177e2005-04-16 15:20:36 -07006347 temp = E1000_READ_REG(hw, GPRC);
6348 temp = E1000_READ_REG(hw, BPRC);
6349 temp = E1000_READ_REG(hw, MPRC);
6350 temp = E1000_READ_REG(hw, GPTC);
6351 temp = E1000_READ_REG(hw, GORCL);
6352 temp = E1000_READ_REG(hw, GORCH);
6353 temp = E1000_READ_REG(hw, GOTCL);
6354 temp = E1000_READ_REG(hw, GOTCH);
6355 temp = E1000_READ_REG(hw, RNBC);
6356 temp = E1000_READ_REG(hw, RUC);
6357 temp = E1000_READ_REG(hw, RFC);
6358 temp = E1000_READ_REG(hw, ROC);
6359 temp = E1000_READ_REG(hw, RJC);
6360 temp = E1000_READ_REG(hw, TORL);
6361 temp = E1000_READ_REG(hw, TORH);
6362 temp = E1000_READ_REG(hw, TOTL);
6363 temp = E1000_READ_REG(hw, TOTH);
6364 temp = E1000_READ_REG(hw, TPR);
6365 temp = E1000_READ_REG(hw, TPT);
Auke Kokcd94dd02006-06-27 09:08:22 -07006366
6367 if (hw->mac_type != e1000_ich8lan) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006368 temp = E1000_READ_REG(hw, PTC64);
6369 temp = E1000_READ_REG(hw, PTC127);
6370 temp = E1000_READ_REG(hw, PTC255);
6371 temp = E1000_READ_REG(hw, PTC511);
6372 temp = E1000_READ_REG(hw, PTC1023);
6373 temp = E1000_READ_REG(hw, PTC1522);
Auke Kokcd94dd02006-06-27 09:08:22 -07006374 }
6375
Linus Torvalds1da177e2005-04-16 15:20:36 -07006376 temp = E1000_READ_REG(hw, MPTC);
6377 temp = E1000_READ_REG(hw, BPTC);
6378
Auke Kok8fc897b2006-08-28 14:56:16 -07006379 if (hw->mac_type < e1000_82543) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006380
6381 temp = E1000_READ_REG(hw, ALGNERRC);
6382 temp = E1000_READ_REG(hw, RXERRC);
6383 temp = E1000_READ_REG(hw, TNCRS);
6384 temp = E1000_READ_REG(hw, CEXTERR);
6385 temp = E1000_READ_REG(hw, TSCTC);
6386 temp = E1000_READ_REG(hw, TSCTFC);
6387
Auke Kok8fc897b2006-08-28 14:56:16 -07006388 if (hw->mac_type <= e1000_82544) return;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006389
6390 temp = E1000_READ_REG(hw, MGTPRC);
6391 temp = E1000_READ_REG(hw, MGTPDC);
6392 temp = E1000_READ_REG(hw, MGTPTC);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006393
Auke Kok8fc897b2006-08-28 14:56:16 -07006394 if (hw->mac_type <= e1000_82547_rev_2) return;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006395
6396 temp = E1000_READ_REG(hw, IAC);
6397 temp = E1000_READ_REG(hw, ICRXOC);
Auke Kokcd94dd02006-06-27 09:08:22 -07006398
6399 if (hw->mac_type == e1000_ich8lan) return;
6400
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006401 temp = E1000_READ_REG(hw, ICRXPTC);
6402 temp = E1000_READ_REG(hw, ICRXATC);
6403 temp = E1000_READ_REG(hw, ICTXPTC);
6404 temp = E1000_READ_REG(hw, ICTXATC);
6405 temp = E1000_READ_REG(hw, ICTXQEC);
6406 temp = E1000_READ_REG(hw, ICTXQMTC);
6407 temp = E1000_READ_REG(hw, ICRXDMTC);
Linus Torvalds1da177e2005-04-16 15:20:36 -07006408}
6409
6410/******************************************************************************
6411 * Resets Adaptive IFS to its default state.
6412 *
6413 * hw - Struct containing variables accessed by shared code
6414 *
6415 * Call this after e1000_init_hw. You may override the IFS defaults by setting
6416 * hw->ifs_params_forced to TRUE. However, you must initialize hw->
6417 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
6418 * before calling this function.
6419 *****************************************************************************/
6420void
6421e1000_reset_adaptive(struct e1000_hw *hw)
6422{
6423 DEBUGFUNC("e1000_reset_adaptive");
6424
Auke Kok8fc897b2006-08-28 14:56:16 -07006425 if (hw->adaptive_ifs) {
6426 if (!hw->ifs_params_forced) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006427 hw->current_ifs_val = 0;
6428 hw->ifs_min_val = IFS_MIN;
6429 hw->ifs_max_val = IFS_MAX;
6430 hw->ifs_step_size = IFS_STEP;
6431 hw->ifs_ratio = IFS_RATIO;
6432 }
6433 hw->in_ifs_mode = FALSE;
6434 E1000_WRITE_REG(hw, AIT, 0);
6435 } else {
6436 DEBUGOUT("Not in Adaptive IFS mode!\n");
6437 }
6438}
6439
6440/******************************************************************************
6441 * Called during the callback/watchdog routine to update IFS value based on
6442 * the ratio of transmits to collisions.
6443 *
6444 * hw - Struct containing variables accessed by shared code
6445 * tx_packets - Number of transmits since last callback
6446 * total_collisions - Number of collisions since last callback
6447 *****************************************************************************/
6448void
6449e1000_update_adaptive(struct e1000_hw *hw)
6450{
6451 DEBUGFUNC("e1000_update_adaptive");
6452
Auke Kok8fc897b2006-08-28 14:56:16 -07006453 if (hw->adaptive_ifs) {
6454 if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) {
6455 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006456 hw->in_ifs_mode = TRUE;
Auke Kok8fc897b2006-08-28 14:56:16 -07006457 if (hw->current_ifs_val < hw->ifs_max_val) {
6458 if (hw->current_ifs_val == 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006459 hw->current_ifs_val = hw->ifs_min_val;
6460 else
6461 hw->current_ifs_val += hw->ifs_step_size;
6462 E1000_WRITE_REG(hw, AIT, hw->current_ifs_val);
6463 }
6464 }
6465 } else {
Auke Kok8fc897b2006-08-28 14:56:16 -07006466 if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006467 hw->current_ifs_val = 0;
6468 hw->in_ifs_mode = FALSE;
6469 E1000_WRITE_REG(hw, AIT, 0);
6470 }
6471 }
6472 } else {
6473 DEBUGOUT("Not in Adaptive IFS mode!\n");
6474 }
6475}
6476
6477/******************************************************************************
6478 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
6479 *
6480 * hw - Struct containing variables accessed by shared code
6481 * frame_len - The length of the frame in question
6482 * mac_addr - The Ethernet destination address of the frame in question
6483 *****************************************************************************/
6484void
6485e1000_tbi_adjust_stats(struct e1000_hw *hw,
6486 struct e1000_hw_stats *stats,
6487 uint32_t frame_len,
6488 uint8_t *mac_addr)
6489{
6490 uint64_t carry_bit;
6491
6492 /* First adjust the frame length. */
6493 frame_len--;
6494 /* We need to adjust the statistics counters, since the hardware
6495 * counters overcount this packet as a CRC error and undercount
6496 * the packet as a good packet
6497 */
6498 /* This packet should not be counted as a CRC error. */
6499 stats->crcerrs--;
6500 /* This packet does count as a Good Packet Received. */
6501 stats->gprc++;
6502
6503 /* Adjust the Good Octets received counters */
6504 carry_bit = 0x80000000 & stats->gorcl;
6505 stats->gorcl += frame_len;
6506 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
6507 * Received Count) was one before the addition,
6508 * AND it is zero after, then we lost the carry out,
6509 * need to add one to Gorch (Good Octets Received Count High).
6510 * This could be simplified if all environments supported
6511 * 64-bit integers.
6512 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006513 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006514 stats->gorch++;
6515 /* Is this a broadcast or multicast? Check broadcast first,
6516 * since the test for a multicast frame will test positive on
6517 * a broadcast frame.
6518 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006519 if ((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006520 /* Broadcast packet */
6521 stats->bprc++;
Auke Kok8fc897b2006-08-28 14:56:16 -07006522 else if (*mac_addr & 0x01)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006523 /* Multicast packet */
6524 stats->mprc++;
6525
Auke Kok8fc897b2006-08-28 14:56:16 -07006526 if (frame_len == hw->max_frame_size) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006527 /* In this case, the hardware has overcounted the number of
6528 * oversize frames.
6529 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006530 if (stats->roc > 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006531 stats->roc--;
6532 }
6533
6534 /* Adjust the bin counters when the extra byte put the frame in the
6535 * wrong bin. Remember that the frame_len was adjusted above.
6536 */
Auke Kok8fc897b2006-08-28 14:56:16 -07006537 if (frame_len == 64) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006538 stats->prc64++;
6539 stats->prc127--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006540 } else if (frame_len == 127) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006541 stats->prc127++;
6542 stats->prc255--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006543 } else if (frame_len == 255) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006544 stats->prc255++;
6545 stats->prc511--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006546 } else if (frame_len == 511) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006547 stats->prc511++;
6548 stats->prc1023--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006549 } else if (frame_len == 1023) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006550 stats->prc1023++;
6551 stats->prc1522--;
Auke Kok8fc897b2006-08-28 14:56:16 -07006552 } else if (frame_len == 1522) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006553 stats->prc1522++;
6554 }
6555}
6556
6557/******************************************************************************
6558 * Gets the current PCI bus type, speed, and width of the hardware
6559 *
6560 * hw - Struct containing variables accessed by shared code
6561 *****************************************************************************/
6562void
6563e1000_get_bus_info(struct e1000_hw *hw)
6564{
Jeff Kirshercaeccb62006-09-27 12:53:57 -07006565 int32_t ret_val;
6566 uint16_t pci_ex_link_status;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006567 uint32_t status;
6568
6569 switch (hw->mac_type) {
6570 case e1000_82542_rev2_0:
6571 case e1000_82542_rev2_1:
6572 hw->bus_type = e1000_bus_type_unknown;
6573 hw->bus_speed = e1000_bus_speed_unknown;
6574 hw->bus_width = e1000_bus_width_unknown;
6575 break;
Jeff Kirshercaeccb62006-09-27 12:53:57 -07006576 case e1000_82571:
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006577 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006578 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006579 case e1000_80003es2lan:
Jeff Kirsherfd803242005-12-13 00:06:22 -05006580 hw->bus_type = e1000_bus_type_pci_express;
6581 hw->bus_speed = e1000_bus_speed_2500;
Jeff Kirshercaeccb62006-09-27 12:53:57 -07006582 ret_val = e1000_read_pcie_cap_reg(hw,
6583 PCI_EX_LINK_STATUS,
6584 &pci_ex_link_status);
6585 if (ret_val)
6586 hw->bus_width = e1000_bus_width_unknown;
6587 else
6588 hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >>
6589 PCI_EX_LINK_WIDTH_SHIFT;
6590 break;
6591 case e1000_ich8lan:
6592 hw->bus_type = e1000_bus_type_pci_express;
6593 hw->bus_speed = e1000_bus_speed_2500;
6594 hw->bus_width = e1000_bus_width_pciex_1;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006595 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006596 default:
6597 status = E1000_READ_REG(hw, STATUS);
6598 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
6599 e1000_bus_type_pcix : e1000_bus_type_pci;
6600
Auke Kok8fc897b2006-08-28 14:56:16 -07006601 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006602 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
6603 e1000_bus_speed_66 : e1000_bus_speed_120;
Auke Kok8fc897b2006-08-28 14:56:16 -07006604 } else if (hw->bus_type == e1000_bus_type_pci) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006605 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
6606 e1000_bus_speed_66 : e1000_bus_speed_33;
6607 } else {
6608 switch (status & E1000_STATUS_PCIX_SPEED) {
6609 case E1000_STATUS_PCIX_SPEED_66:
6610 hw->bus_speed = e1000_bus_speed_66;
6611 break;
6612 case E1000_STATUS_PCIX_SPEED_100:
6613 hw->bus_speed = e1000_bus_speed_100;
6614 break;
6615 case E1000_STATUS_PCIX_SPEED_133:
6616 hw->bus_speed = e1000_bus_speed_133;
6617 break;
6618 default:
6619 hw->bus_speed = e1000_bus_speed_reserved;
6620 break;
6621 }
6622 }
6623 hw->bus_width = (status & E1000_STATUS_BUS64) ?
6624 e1000_bus_width_64 : e1000_bus_width_32;
6625 break;
6626 }
6627}
Linus Torvalds1da177e2005-04-16 15:20:36 -07006628
6629/******************************************************************************
6630 * Writes a value to one of the devices registers using port I/O (as opposed to
6631 * memory mapped I/O). Only 82544 and newer devices support port I/O.
6632 *
6633 * hw - Struct containing variables accessed by shared code
6634 * offset - offset to write to
6635 * value - value to write
6636 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006637static void
Linus Torvalds1da177e2005-04-16 15:20:36 -07006638e1000_write_reg_io(struct e1000_hw *hw,
6639 uint32_t offset,
6640 uint32_t value)
6641{
6642 unsigned long io_addr = hw->io_base;
6643 unsigned long io_data = hw->io_base + 4;
6644
6645 e1000_io_write(hw, io_addr, offset);
6646 e1000_io_write(hw, io_data, value);
6647}
6648
Linus Torvalds1da177e2005-04-16 15:20:36 -07006649/******************************************************************************
6650 * Estimates the cable length.
6651 *
6652 * hw - Struct containing variables accessed by shared code
6653 * min_length - The estimated minimum length
6654 * max_length - The estimated maximum length
6655 *
6656 * returns: - E1000_ERR_XXX
6657 * E1000_SUCCESS
6658 *
6659 * This function always returns a ranged length (minimum & maximum).
6660 * So for M88 phy's, this function interprets the one value returned from the
6661 * register to the minimum and maximum range.
6662 * For IGP phy's, the function calculates the range by the AGC registers.
6663 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006664static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006665e1000_get_cable_length(struct e1000_hw *hw,
6666 uint16_t *min_length,
6667 uint16_t *max_length)
6668{
6669 int32_t ret_val;
6670 uint16_t agc_value = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006671 uint16_t i, phy_data;
6672 uint16_t cable_length;
6673
6674 DEBUGFUNC("e1000_get_cable_length");
6675
6676 *min_length = *max_length = 0;
6677
6678 /* Use old method for Phy older than IGP */
Auke Kok8fc897b2006-08-28 14:56:16 -07006679 if (hw->phy_type == e1000_phy_m88) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006680
Linus Torvalds1da177e2005-04-16 15:20:36 -07006681 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6682 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006683 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006684 return ret_val;
6685 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
6686 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
6687
6688 /* Convert the enum value to ranged values */
6689 switch (cable_length) {
6690 case e1000_cable_length_50:
6691 *min_length = 0;
6692 *max_length = e1000_igp_cable_length_50;
6693 break;
6694 case e1000_cable_length_50_80:
6695 *min_length = e1000_igp_cable_length_50;
6696 *max_length = e1000_igp_cable_length_80;
6697 break;
6698 case e1000_cable_length_80_110:
6699 *min_length = e1000_igp_cable_length_80;
6700 *max_length = e1000_igp_cable_length_110;
6701 break;
6702 case e1000_cable_length_110_140:
6703 *min_length = e1000_igp_cable_length_110;
6704 *max_length = e1000_igp_cable_length_140;
6705 break;
6706 case e1000_cable_length_140:
6707 *min_length = e1000_igp_cable_length_140;
6708 *max_length = e1000_igp_cable_length_170;
6709 break;
6710 default:
6711 return -E1000_ERR_PHY;
6712 break;
6713 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006714 } else if (hw->phy_type == e1000_phy_gg82563) {
6715 ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE,
6716 &phy_data);
6717 if (ret_val)
6718 return ret_val;
6719 cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH;
6720
6721 switch (cable_length) {
6722 case e1000_gg_cable_length_60:
6723 *min_length = 0;
6724 *max_length = e1000_igp_cable_length_60;
6725 break;
6726 case e1000_gg_cable_length_60_115:
6727 *min_length = e1000_igp_cable_length_60;
6728 *max_length = e1000_igp_cable_length_115;
6729 break;
6730 case e1000_gg_cable_length_115_150:
6731 *min_length = e1000_igp_cable_length_115;
6732 *max_length = e1000_igp_cable_length_150;
6733 break;
6734 case e1000_gg_cable_length_150:
6735 *min_length = e1000_igp_cable_length_150;
6736 *max_length = e1000_igp_cable_length_180;
6737 break;
6738 default:
6739 return -E1000_ERR_PHY;
6740 break;
6741 }
Auke Kok8fc897b2006-08-28 14:56:16 -07006742 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
Auke Kokcd94dd02006-06-27 09:08:22 -07006743 uint16_t cur_agc_value;
6744 uint16_t min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006745 uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6746 {IGP01E1000_PHY_AGC_A,
6747 IGP01E1000_PHY_AGC_B,
6748 IGP01E1000_PHY_AGC_C,
6749 IGP01E1000_PHY_AGC_D};
6750 /* Read the AGC registers for all channels */
Auke Kok8fc897b2006-08-28 14:56:16 -07006751 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006752
6753 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006754 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006755 return ret_val;
6756
Auke Kokcd94dd02006-06-27 09:08:22 -07006757 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006758
Auke Kokcd94dd02006-06-27 09:08:22 -07006759 /* Value bound check. */
6760 if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) ||
6761 (cur_agc_value == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07006762 return -E1000_ERR_PHY;
6763
Auke Kokcd94dd02006-06-27 09:08:22 -07006764 agc_value += cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006765
6766 /* Update minimal AGC value. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006767 if (min_agc_value > cur_agc_value)
6768 min_agc_value = cur_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006769 }
6770
6771 /* Remove the minimal AGC result for length < 50m */
Auke Kokcd94dd02006-06-27 09:08:22 -07006772 if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
6773 agc_value -= min_agc_value;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006774
6775 /* Get the average length of the remaining 3 channels */
6776 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
6777 } else {
6778 /* Get the average length of all the 4 channels. */
6779 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
6780 }
6781
6782 /* Set the range of the calculated length. */
6783 *min_length = ((e1000_igp_cable_length_table[agc_value] -
6784 IGP01E1000_AGC_RANGE) > 0) ?
6785 (e1000_igp_cable_length_table[agc_value] -
6786 IGP01E1000_AGC_RANGE) : 0;
6787 *max_length = e1000_igp_cable_length_table[agc_value] +
6788 IGP01E1000_AGC_RANGE;
Auke Kokcd94dd02006-06-27 09:08:22 -07006789 } else if (hw->phy_type == e1000_phy_igp_2 ||
6790 hw->phy_type == e1000_phy_igp_3) {
6791 uint16_t cur_agc_index, max_agc_index = 0;
6792 uint16_t min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006793 uint16_t agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] =
6794 {IGP02E1000_PHY_AGC_A,
6795 IGP02E1000_PHY_AGC_B,
6796 IGP02E1000_PHY_AGC_C,
6797 IGP02E1000_PHY_AGC_D};
6798 /* Read the AGC registers for all channels */
6799 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
6800 ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
6801 if (ret_val)
6802 return ret_val;
6803
Auke Kok8fc897b2006-08-28 14:56:16 -07006804 /* Getting bits 15:9, which represent the combination of course and
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006805 * fine gain values. The result is a number that can be put into
6806 * the lookup table to obtain the approximate cable length. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006807 cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
6808 IGP02E1000_AGC_LENGTH_MASK;
6809
6810 /* Array index bound check. */
6811 if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) ||
6812 (cur_agc_index == 0))
6813 return -E1000_ERR_PHY;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006814
6815 /* Remove min & max AGC values from calculation. */
Auke Kokcd94dd02006-06-27 09:08:22 -07006816 if (e1000_igp_2_cable_length_table[min_agc_index] >
6817 e1000_igp_2_cable_length_table[cur_agc_index])
6818 min_agc_index = cur_agc_index;
6819 if (e1000_igp_2_cable_length_table[max_agc_index] <
6820 e1000_igp_2_cable_length_table[cur_agc_index])
6821 max_agc_index = cur_agc_index;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006822
Auke Kokcd94dd02006-06-27 09:08:22 -07006823 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006824 }
6825
Auke Kokcd94dd02006-06-27 09:08:22 -07006826 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
6827 e1000_igp_2_cable_length_table[max_agc_index]);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04006828 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
6829
6830 /* Calculate cable length with the error range of +/- 10 meters. */
6831 *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
6832 (agc_value - IGP02E1000_AGC_RANGE) : 0;
6833 *max_length = agc_value + IGP02E1000_AGC_RANGE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006834 }
6835
6836 return E1000_SUCCESS;
6837}
6838
6839/******************************************************************************
6840 * Check the cable polarity
6841 *
6842 * hw - Struct containing variables accessed by shared code
6843 * polarity - output parameter : 0 - Polarity is not reversed
6844 * 1 - Polarity is reversed.
6845 *
6846 * returns: - E1000_ERR_XXX
6847 * E1000_SUCCESS
6848 *
6849 * For phy's older then IGP, this function simply reads the polarity bit in the
6850 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
6851 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
6852 * return 0. If the link speed is 1000 Mbps the polarity status is in the
6853 * IGP01E1000_PHY_PCS_INIT_REG.
6854 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006855static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006856e1000_check_polarity(struct e1000_hw *hw,
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006857 e1000_rev_polarity *polarity)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006858{
6859 int32_t ret_val;
6860 uint16_t phy_data;
6861
6862 DEBUGFUNC("e1000_check_polarity");
6863
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006864 if ((hw->phy_type == e1000_phy_m88) ||
6865 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006866 /* return the Polarity bit in the Status register. */
6867 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6868 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006869 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006870 return ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006871 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
6872 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
6873 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
6874
Auke Kokcd94dd02006-06-27 09:08:22 -07006875 } else if (hw->phy_type == e1000_phy_igp ||
6876 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006877 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006878 /* Read the Status register to check the speed */
6879 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
6880 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006881 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006882 return ret_val;
6883
6884 /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to
6885 * find the polarity status */
Auke Kok8fc897b2006-08-28 14:56:16 -07006886 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
Linus Torvalds1da177e2005-04-16 15:20:36 -07006887 IGP01E1000_PSSR_SPEED_1000MBPS) {
6888
6889 /* Read the GIG initialization PCS register (0x00B4) */
6890 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
6891 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006892 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006893 return ret_val;
6894
6895 /* Check the polarity bits */
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006896 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
6897 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006898 } else {
6899 /* For 10 Mbps, read the polarity bit in the status register. (for
6900 * 100 Mbps this bit is always 0) */
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006901 *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
6902 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006903 }
Auke Kokcd94dd02006-06-27 09:08:22 -07006904 } else if (hw->phy_type == e1000_phy_ife) {
6905 ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL,
6906 &phy_data);
6907 if (ret_val)
6908 return ret_val;
Jeff Kirsher70c6f302006-09-27 12:53:31 -07006909 *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >>
6910 IFE_PESC_POLARITY_REVERSED_SHIFT) ?
6911 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006912 }
6913 return E1000_SUCCESS;
6914}
6915
6916/******************************************************************************
6917 * Check if Downshift occured
6918 *
6919 * hw - Struct containing variables accessed by shared code
6920 * downshift - output parameter : 0 - No Downshift ocured.
6921 * 1 - Downshift ocured.
6922 *
6923 * returns: - E1000_ERR_XXX
Auke Kok76c224b2006-05-23 13:36:06 -07006924 * E1000_SUCCESS
Linus Torvalds1da177e2005-04-16 15:20:36 -07006925 *
6926 * For phy's older then IGP, this function reads the Downshift bit in the Phy
6927 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
6928 * Link Health register. In IGP this bit is latched high, so the driver must
6929 * read it immediately after link is established.
6930 *****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006931static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006932e1000_check_downshift(struct e1000_hw *hw)
6933{
6934 int32_t ret_val;
6935 uint16_t phy_data;
6936
6937 DEBUGFUNC("e1000_check_downshift");
6938
Auke Kokcd94dd02006-06-27 09:08:22 -07006939 if (hw->phy_type == e1000_phy_igp ||
6940 hw->phy_type == e1000_phy_igp_3 ||
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006941 hw->phy_type == e1000_phy_igp_2) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006942 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
6943 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006944 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006945 return ret_val;
6946
6947 hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08006948 } else if ((hw->phy_type == e1000_phy_m88) ||
6949 (hw->phy_type == e1000_phy_gg82563)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006950 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
6951 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07006952 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006953 return ret_val;
6954
6955 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
6956 M88E1000_PSSR_DOWNSHIFT_SHIFT;
Auke Kokcd94dd02006-06-27 09:08:22 -07006957 } else if (hw->phy_type == e1000_phy_ife) {
6958 /* e1000_phy_ife supports 10/100 speed only */
6959 hw->speed_downgraded = FALSE;
Linus Torvalds1da177e2005-04-16 15:20:36 -07006960 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07006961
Linus Torvalds1da177e2005-04-16 15:20:36 -07006962 return E1000_SUCCESS;
6963}
6964
6965/*****************************************************************************
6966 *
6967 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
6968 * gigabit link is achieved to improve link quality.
6969 *
6970 * hw: Struct containing variables accessed by shared code
6971 *
6972 * returns: - E1000_ERR_PHY if fail to read/write the PHY
6973 * E1000_SUCCESS at any other case.
6974 *
6975 ****************************************************************************/
6976
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01006977static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07006978e1000_config_dsp_after_link_change(struct e1000_hw *hw,
6979 boolean_t link_up)
6980{
6981 int32_t ret_val;
6982 uint16_t phy_data, phy_saved_data, speed, duplex, i;
6983 uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] =
6984 {IGP01E1000_PHY_AGC_PARAM_A,
6985 IGP01E1000_PHY_AGC_PARAM_B,
6986 IGP01E1000_PHY_AGC_PARAM_C,
6987 IGP01E1000_PHY_AGC_PARAM_D};
6988 uint16_t min_length, max_length;
6989
6990 DEBUGFUNC("e1000_config_dsp_after_link_change");
6991
Auke Kok8fc897b2006-08-28 14:56:16 -07006992 if (hw->phy_type != e1000_phy_igp)
Linus Torvalds1da177e2005-04-16 15:20:36 -07006993 return E1000_SUCCESS;
6994
Auke Kok8fc897b2006-08-28 14:56:16 -07006995 if (link_up) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006996 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
Auke Kok8fc897b2006-08-28 14:56:16 -07006997 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07006998 DEBUGOUT("Error getting link speed and duplex\n");
6999 return ret_val;
7000 }
7001
Auke Kok8fc897b2006-08-28 14:56:16 -07007002 if (speed == SPEED_1000) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007003
Auke Kokcd94dd02006-06-27 09:08:22 -07007004 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
7005 if (ret_val)
7006 return ret_val;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007007
Auke Kok8fc897b2006-08-28 14:56:16 -07007008 if ((hw->dsp_config_state == e1000_dsp_config_enabled) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07007009 min_length >= e1000_igp_cable_length_50) {
7010
Auke Kok8fc897b2006-08-28 14:56:16 -07007011 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007012 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
7013 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007014 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007015 return ret_val;
7016
7017 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7018
7019 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
7020 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007021 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007022 return ret_val;
7023 }
7024 hw->dsp_config_state = e1000_dsp_config_activated;
7025 }
7026
Auke Kok8fc897b2006-08-28 14:56:16 -07007027 if ((hw->ffe_config_state == e1000_ffe_config_enabled) &&
Linus Torvalds1da177e2005-04-16 15:20:36 -07007028 (min_length < e1000_igp_cable_length_50)) {
7029
7030 uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
7031 uint32_t idle_errs = 0;
7032
7033 /* clear previous idle error counts */
7034 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7035 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007036 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007037 return ret_val;
7038
Auke Kok8fc897b2006-08-28 14:56:16 -07007039 for (i = 0; i < ffe_idle_err_timeout; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007040 udelay(1000);
7041 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
7042 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007043 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007044 return ret_val;
7045
7046 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
Auke Kok8fc897b2006-08-28 14:56:16 -07007047 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007048 hw->ffe_config_state = e1000_ffe_config_active;
7049
7050 ret_val = e1000_write_phy_reg(hw,
7051 IGP01E1000_PHY_DSP_FFE,
7052 IGP01E1000_PHY_DSP_FFE_CM_CP);
Auke Kok8fc897b2006-08-28 14:56:16 -07007053 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007054 return ret_val;
7055 break;
7056 }
7057
Auke Kok8fc897b2006-08-28 14:56:16 -07007058 if (idle_errs)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007059 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100;
7060 }
7061 }
7062 }
7063 } else {
Auke Kok8fc897b2006-08-28 14:56:16 -07007064 if (hw->dsp_config_state == e1000_dsp_config_activated) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007065 /* Save off the current value of register 0x2F5B to be restored at
7066 * the end of the routines. */
7067 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7068
Auke Kok8fc897b2006-08-28 14:56:16 -07007069 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007070 return ret_val;
7071
7072 /* Disable the PHY transmitter */
7073 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7074
Auke Kok8fc897b2006-08-28 14:56:16 -07007075 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007076 return ret_val;
7077
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007078 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007079
7080 ret_val = e1000_write_phy_reg(hw, 0x0000,
7081 IGP01E1000_IEEE_FORCE_GIGA);
Auke Kok8fc897b2006-08-28 14:56:16 -07007082 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007083 return ret_val;
Auke Kok8fc897b2006-08-28 14:56:16 -07007084 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007085 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007086 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007087 return ret_val;
7088
7089 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
7090 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
7091
7092 ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007093 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007094 return ret_val;
7095 }
7096
7097 ret_val = e1000_write_phy_reg(hw, 0x0000,
7098 IGP01E1000_IEEE_RESTART_AUTONEG);
Auke Kok8fc897b2006-08-28 14:56:16 -07007099 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007100 return ret_val;
7101
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007102 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007103
7104 /* Now enable the transmitter */
7105 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7106
Auke Kok8fc897b2006-08-28 14:56:16 -07007107 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007108 return ret_val;
7109
7110 hw->dsp_config_state = e1000_dsp_config_enabled;
7111 }
7112
Auke Kok8fc897b2006-08-28 14:56:16 -07007113 if (hw->ffe_config_state == e1000_ffe_config_active) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007114 /* Save off the current value of register 0x2F5B to be restored at
7115 * the end of the routines. */
7116 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
7117
Auke Kok8fc897b2006-08-28 14:56:16 -07007118 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007119 return ret_val;
7120
7121 /* Disable the PHY transmitter */
7122 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
7123
Auke Kok8fc897b2006-08-28 14:56:16 -07007124 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007125 return ret_val;
7126
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007127 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007128
7129 ret_val = e1000_write_phy_reg(hw, 0x0000,
7130 IGP01E1000_IEEE_FORCE_GIGA);
Auke Kok8fc897b2006-08-28 14:56:16 -07007131 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007132 return ret_val;
7133 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
7134 IGP01E1000_PHY_DSP_FFE_DEFAULT);
Auke Kok8fc897b2006-08-28 14:56:16 -07007135 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007136 return ret_val;
7137
7138 ret_val = e1000_write_phy_reg(hw, 0x0000,
7139 IGP01E1000_IEEE_RESTART_AUTONEG);
Auke Kok8fc897b2006-08-28 14:56:16 -07007140 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007141 return ret_val;
7142
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007143 mdelay(20);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007144
7145 /* Now enable the transmitter */
7146 ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
7147
Auke Kok8fc897b2006-08-28 14:56:16 -07007148 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007149 return ret_val;
7150
7151 hw->ffe_config_state = e1000_ffe_config_enabled;
7152 }
7153 }
7154 return E1000_SUCCESS;
7155}
7156
7157/*****************************************************************************
7158 * Set PHY to class A mode
7159 * Assumes the following operations will follow to enable the new class mode.
7160 * 1. Do a PHY soft reset
7161 * 2. Restart auto-negotiation or force link.
7162 *
7163 * hw - Struct containing variables accessed by shared code
7164 ****************************************************************************/
7165static int32_t
7166e1000_set_phy_mode(struct e1000_hw *hw)
7167{
7168 int32_t ret_val;
7169 uint16_t eeprom_data;
7170
7171 DEBUGFUNC("e1000_set_phy_mode");
7172
Auke Kok8fc897b2006-08-28 14:56:16 -07007173 if ((hw->mac_type == e1000_82545_rev_3) &&
7174 (hw->media_type == e1000_media_type_copper)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007175 ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007176 if (ret_val) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007177 return ret_val;
7178 }
7179
Auke Kok8fc897b2006-08-28 14:56:16 -07007180 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
7181 (eeprom_data & EEPROM_PHY_CLASS_A)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007182 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B);
Auke Kok8fc897b2006-08-28 14:56:16 -07007183 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007184 return ret_val;
7185 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104);
Auke Kok8fc897b2006-08-28 14:56:16 -07007186 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007187 return ret_val;
7188
7189 hw->phy_reset_disable = FALSE;
7190 }
7191 }
7192
7193 return E1000_SUCCESS;
7194}
7195
7196/*****************************************************************************
7197 *
7198 * This function sets the lplu state according to the active flag. When
7199 * activating lplu this function also disables smart speed and vise versa.
7200 * lplu will not be activated unless the device autonegotiation advertisment
7201 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7202 * hw: Struct containing variables accessed by shared code
7203 * active - true to enable lplu false to disable lplu.
7204 *
7205 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7206 * E1000_SUCCESS at any other case.
7207 *
7208 ****************************************************************************/
7209
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007210static int32_t
Linus Torvalds1da177e2005-04-16 15:20:36 -07007211e1000_set_d3_lplu_state(struct e1000_hw *hw,
7212 boolean_t active)
7213{
Auke Kokcd94dd02006-06-27 09:08:22 -07007214 uint32_t phy_ctrl = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -07007215 int32_t ret_val;
7216 uint16_t phy_data;
7217 DEBUGFUNC("e1000_set_d3_lplu_state");
7218
Auke Kokcd94dd02006-06-27 09:08:22 -07007219 if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
7220 && hw->phy_type != e1000_phy_igp_3)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007221 return E1000_SUCCESS;
7222
7223 /* During driver activity LPLU should not be used or it will attain link
7224 * from the lowest speeds starting from 10Mbps. The capability is used for
7225 * Dx transitions and states */
Auke Kokcd94dd02006-06-27 09:08:22 -07007226 if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007227 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
Auke Kokcd94dd02006-06-27 09:08:22 -07007228 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007229 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007230 } else if (hw->mac_type == e1000_ich8lan) {
7231 /* MAC writes into PHY register based on the state transition
7232 * and start auto-negotiation. SW driver can overwrite the settings
7233 * in CSR PHY power control E1000_PHY_CTRL register. */
7234 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007235 } else {
7236 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007237 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007238 return ret_val;
7239 }
7240
Auke Kok8fc897b2006-08-28 14:56:16 -07007241 if (!active) {
7242 if (hw->mac_type == e1000_82541_rev_2 ||
7243 hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007244 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
7245 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007246 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007247 return ret_val;
7248 } else {
Auke Kokcd94dd02006-06-27 09:08:22 -07007249 if (hw->mac_type == e1000_ich8lan) {
7250 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
7251 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7252 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007253 phy_data &= ~IGP02E1000_PM_D3_LPLU;
7254 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7255 phy_data);
7256 if (ret_val)
7257 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007258 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007259 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07007260
7261 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7262 * Dx states where the power conservation is most important. During
7263 * driver activity we should enable SmartSpeed, so performance is
7264 * maintained. */
7265 if (hw->smart_speed == e1000_smart_speed_on) {
7266 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7267 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007268 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007269 return ret_val;
7270
7271 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7272 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7273 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007274 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007275 return ret_val;
7276 } else if (hw->smart_speed == e1000_smart_speed_off) {
7277 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7278 &phy_data);
Nicholas Nunley35574762006-09-27 12:53:34 -07007279 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007280 return ret_val;
7281
7282 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7283 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7284 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007285 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007286 return ret_val;
7287 }
7288
Auke Kok8fc897b2006-08-28 14:56:16 -07007289 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) ||
7290 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) ||
7291 (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007292
Auke Kok8fc897b2006-08-28 14:56:16 -07007293 if (hw->mac_type == e1000_82541_rev_2 ||
Auke Kokcd94dd02006-06-27 09:08:22 -07007294 hw->mac_type == e1000_82547_rev_2) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007295 phy_data |= IGP01E1000_GMII_FLEX_SPD;
7296 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007297 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007298 return ret_val;
7299 } else {
Auke Kokcd94dd02006-06-27 09:08:22 -07007300 if (hw->mac_type == e1000_ich8lan) {
7301 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
7302 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7303 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007304 phy_data |= IGP02E1000_PM_D3_LPLU;
7305 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
7306 phy_data);
7307 if (ret_val)
7308 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007309 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007310 }
7311
7312 /* When LPLU is enabled we should disable SmartSpeed */
7313 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007314 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007315 return ret_val;
7316
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007317 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7318 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007319 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007320 return ret_val;
7321
7322 }
7323 return E1000_SUCCESS;
7324}
7325
7326/*****************************************************************************
7327 *
7328 * This function sets the lplu d0 state according to the active flag. When
7329 * activating lplu this function also disables smart speed and vise versa.
7330 * lplu will not be activated unless the device autonegotiation advertisment
7331 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
7332 * hw: Struct containing variables accessed by shared code
7333 * active - true to enable lplu false to disable lplu.
7334 *
7335 * returns: - E1000_ERR_PHY if fail to read/write the PHY
7336 * E1000_SUCCESS at any other case.
7337 *
7338 ****************************************************************************/
7339
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007340static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007341e1000_set_d0_lplu_state(struct e1000_hw *hw,
7342 boolean_t active)
7343{
Auke Kokcd94dd02006-06-27 09:08:22 -07007344 uint32_t phy_ctrl = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007345 int32_t ret_val;
7346 uint16_t phy_data;
7347 DEBUGFUNC("e1000_set_d0_lplu_state");
7348
Auke Kok8fc897b2006-08-28 14:56:16 -07007349 if (hw->mac_type <= e1000_82547_rev_2)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007350 return E1000_SUCCESS;
7351
Auke Kokcd94dd02006-06-27 09:08:22 -07007352 if (hw->mac_type == e1000_ich8lan) {
7353 phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
7354 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007355 ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007356 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007357 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007358 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007359
7360 if (!active) {
Auke Kokcd94dd02006-06-27 09:08:22 -07007361 if (hw->mac_type == e1000_ich8lan) {
7362 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
7363 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7364 } else {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007365 phy_data &= ~IGP02E1000_PM_D0_LPLU;
7366 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7367 if (ret_val)
7368 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007369 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007370
7371 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during
7372 * Dx states where the power conservation is most important. During
7373 * driver activity we should enable SmartSpeed, so performance is
7374 * maintained. */
7375 if (hw->smart_speed == e1000_smart_speed_on) {
7376 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7377 &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007378 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007379 return ret_val;
7380
7381 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
7382 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7383 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007384 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007385 return ret_val;
7386 } else if (hw->smart_speed == e1000_smart_speed_off) {
7387 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7388 &phy_data);
Nicholas Nunley35574762006-09-27 12:53:34 -07007389 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007390 return ret_val;
7391
7392 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7393 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
7394 phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007395 if (ret_val)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007396 return ret_val;
7397 }
7398
7399
7400 } else {
Auke Kok76c224b2006-05-23 13:36:06 -07007401
Auke Kokcd94dd02006-06-27 09:08:22 -07007402 if (hw->mac_type == e1000_ich8lan) {
7403 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
7404 E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
7405 } else {
Auke Kok76c224b2006-05-23 13:36:06 -07007406 phy_data |= IGP02E1000_PM_D0_LPLU;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007407 ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
7408 if (ret_val)
7409 return ret_val;
Auke Kokcd94dd02006-06-27 09:08:22 -07007410 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007411
Linus Torvalds1da177e2005-04-16 15:20:36 -07007412 /* When LPLU is enabled we should disable SmartSpeed */
7413 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007414 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007415 return ret_val;
7416
7417 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
7418 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007419 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007420 return ret_val;
7421
7422 }
7423 return E1000_SUCCESS;
7424}
7425
7426/******************************************************************************
7427 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
7428 *
7429 * hw - Struct containing variables accessed by shared code
7430 *****************************************************************************/
7431static int32_t
7432e1000_set_vco_speed(struct e1000_hw *hw)
7433{
7434 int32_t ret_val;
7435 uint16_t default_page = 0;
7436 uint16_t phy_data;
7437
7438 DEBUGFUNC("e1000_set_vco_speed");
7439
Auke Kok8fc897b2006-08-28 14:56:16 -07007440 switch (hw->mac_type) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007441 case e1000_82545_rev_3:
7442 case e1000_82546_rev_3:
7443 break;
7444 default:
7445 return E1000_SUCCESS;
7446 }
7447
7448 /* Set PHY register 30, page 5, bit 8 to 0 */
7449
7450 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
Auke Kok8fc897b2006-08-28 14:56:16 -07007451 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007452 return ret_val;
7453
7454 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
Auke Kok8fc897b2006-08-28 14:56:16 -07007455 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007456 return ret_val;
7457
7458 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007459 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007460 return ret_val;
7461
7462 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
7463 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007464 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007465 return ret_val;
7466
7467 /* Set PHY register 30, page 4, bit 11 to 1 */
7468
7469 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
Auke Kok8fc897b2006-08-28 14:56:16 -07007470 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007471 return ret_val;
7472
7473 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007474 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007475 return ret_val;
7476
7477 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
7478 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
Auke Kok8fc897b2006-08-28 14:56:16 -07007479 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007480 return ret_val;
7481
7482 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
Auke Kok8fc897b2006-08-28 14:56:16 -07007483 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007484 return ret_val;
7485
7486 return E1000_SUCCESS;
7487}
7488
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007489
7490/*****************************************************************************
7491 * This function reads the cookie from ARC ram.
7492 *
7493 * returns: - E1000_SUCCESS .
7494 ****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07007495static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007496e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer)
7497{
7498 uint8_t i;
Auke Kok76c224b2006-05-23 13:36:06 -07007499 uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007500 uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH;
7501
7502 length = (length >> 2);
7503 offset = (offset >> 2);
7504
7505 for (i = 0; i < length; i++) {
7506 *((uint32_t *) buffer + i) =
7507 E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i);
7508 }
7509 return E1000_SUCCESS;
7510}
7511
7512
7513/*****************************************************************************
7514 * This function checks whether the HOST IF is enabled for command operaton
7515 * and also checks whether the previous command is completed.
7516 * It busy waits in case of previous command is not completed.
7517 *
Auke Kok76c224b2006-05-23 13:36:06 -07007518 * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007519 * timeout
7520 * - E1000_SUCCESS for success.
7521 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007522static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007523e1000_mng_enable_host_if(struct e1000_hw * hw)
7524{
7525 uint32_t hicr;
7526 uint8_t i;
7527
7528 /* Check that the host interface is enabled. */
7529 hicr = E1000_READ_REG(hw, HICR);
7530 if ((hicr & E1000_HICR_EN) == 0) {
7531 DEBUGOUT("E1000_HOST_EN bit disabled.\n");
7532 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7533 }
7534 /* check the previous command is completed */
7535 for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) {
7536 hicr = E1000_READ_REG(hw, HICR);
7537 if (!(hicr & E1000_HICR_C))
7538 break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007539 mdelay(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007540 }
7541
Auke Kok76c224b2006-05-23 13:36:06 -07007542 if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007543 DEBUGOUT("Previous command timeout failed .\n");
7544 return -E1000_ERR_HOST_INTERFACE_COMMAND;
7545 }
7546 return E1000_SUCCESS;
7547}
7548
7549/*****************************************************************************
7550 * This function writes the buffer content at the offset given on the host if.
7551 * It also does alignment considerations to do the writes in most efficient way.
7552 * Also fills up the sum of the buffer in *buffer parameter.
7553 *
7554 * returns - E1000_SUCCESS for success.
7555 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007556static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007557e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer,
7558 uint16_t length, uint16_t offset, uint8_t *sum)
7559{
7560 uint8_t *tmp;
7561 uint8_t *bufptr = buffer;
Auke Kok8fc897b2006-08-28 14:56:16 -07007562 uint32_t data = 0;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007563 uint16_t remaining, i, j, prev_bytes;
7564
7565 /* sum = only sum of the data and it is not checksum */
7566
7567 if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) {
7568 return -E1000_ERR_PARAM;
7569 }
7570
7571 tmp = (uint8_t *)&data;
7572 prev_bytes = offset & 0x3;
7573 offset &= 0xFFFC;
7574 offset >>= 2;
7575
7576 if (prev_bytes) {
7577 data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset);
7578 for (j = prev_bytes; j < sizeof(uint32_t); j++) {
7579 *(tmp + j) = *bufptr++;
7580 *sum += *(tmp + j);
7581 }
7582 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data);
7583 length -= j - prev_bytes;
7584 offset++;
7585 }
7586
7587 remaining = length & 0x3;
7588 length -= remaining;
7589
7590 /* Calculate length in DWORDs */
7591 length >>= 2;
7592
7593 /* The device driver writes the relevant command block into the
7594 * ram area. */
7595 for (i = 0; i < length; i++) {
7596 for (j = 0; j < sizeof(uint32_t); j++) {
7597 *(tmp + j) = *bufptr++;
7598 *sum += *(tmp + j);
7599 }
7600
7601 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7602 }
7603 if (remaining) {
7604 for (j = 0; j < sizeof(uint32_t); j++) {
7605 if (j < remaining)
7606 *(tmp + j) = *bufptr++;
7607 else
7608 *(tmp + j) = 0;
7609
7610 *sum += *(tmp + j);
7611 }
7612 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data);
7613 }
7614
7615 return E1000_SUCCESS;
7616}
7617
7618
7619/*****************************************************************************
7620 * This function writes the command header after does the checksum calculation.
7621 *
7622 * returns - E1000_SUCCESS for success.
7623 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007624static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007625e1000_mng_write_cmd_header(struct e1000_hw * hw,
7626 struct e1000_host_mng_command_header * hdr)
7627{
7628 uint16_t i;
7629 uint8_t sum;
7630 uint8_t *buffer;
7631
7632 /* Write the whole command header structure which includes sum of
7633 * the buffer */
7634
7635 uint16_t length = sizeof(struct e1000_host_mng_command_header);
7636
7637 sum = hdr->checksum;
7638 hdr->checksum = 0;
7639
7640 buffer = (uint8_t *) hdr;
7641 i = length;
Auke Kok8fc897b2006-08-28 14:56:16 -07007642 while (i--)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007643 sum += buffer[i];
7644
7645 hdr->checksum = 0 - sum;
7646
7647 length >>= 2;
7648 /* The device driver writes the relevant command block into the ram area. */
Auke Kok4ca213a2006-06-27 09:07:08 -07007649 for (i = 0; i < length; i++) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007650 E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i));
Auke Kok4ca213a2006-06-27 09:07:08 -07007651 E1000_WRITE_FLUSH(hw);
7652 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007653
7654 return E1000_SUCCESS;
7655}
7656
7657
7658/*****************************************************************************
7659 * This function indicates to ARC that a new command is pending which completes
7660 * one write operation by the driver.
7661 *
7662 * returns - E1000_SUCCESS for success.
7663 ****************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007664static int32_t
Auke Kok8fc897b2006-08-28 14:56:16 -07007665e1000_mng_write_commit(struct e1000_hw * hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007666{
7667 uint32_t hicr;
7668
7669 hicr = E1000_READ_REG(hw, HICR);
7670 /* Setting this bit tells the ARC that a new command is pending. */
7671 E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C);
7672
7673 return E1000_SUCCESS;
7674}
7675
7676
7677/*****************************************************************************
7678 * This function checks the mode of the firmware.
7679 *
7680 * returns - TRUE when the mode is IAMT or FALSE.
7681 ****************************************************************************/
7682boolean_t
Auke Kokcd94dd02006-06-27 09:08:22 -07007683e1000_check_mng_mode(struct e1000_hw *hw)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007684{
7685 uint32_t fwsm;
7686
7687 fwsm = E1000_READ_REG(hw, FWSM);
7688
Auke Kokcd94dd02006-06-27 09:08:22 -07007689 if (hw->mac_type == e1000_ich8lan) {
7690 if ((fwsm & E1000_FWSM_MODE_MASK) ==
7691 (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
7692 return TRUE;
7693 } else if ((fwsm & E1000_FWSM_MODE_MASK) ==
7694 (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007695 return TRUE;
7696
7697 return FALSE;
7698}
7699
7700
7701/*****************************************************************************
7702 * This function writes the dhcp info .
7703 ****************************************************************************/
7704int32_t
7705e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer,
Nicholas Nunley35574762006-09-27 12:53:34 -07007706 uint16_t length)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007707{
7708 int32_t ret_val;
7709 struct e1000_host_mng_command_header hdr;
7710
7711 hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD;
7712 hdr.command_length = length;
7713 hdr.reserved1 = 0;
7714 hdr.reserved2 = 0;
7715 hdr.checksum = 0;
7716
7717 ret_val = e1000_mng_enable_host_if(hw);
7718 if (ret_val == E1000_SUCCESS) {
7719 ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr),
7720 &(hdr.checksum));
7721 if (ret_val == E1000_SUCCESS) {
7722 ret_val = e1000_mng_write_cmd_header(hw, &hdr);
7723 if (ret_val == E1000_SUCCESS)
7724 ret_val = e1000_mng_write_commit(hw);
7725 }
7726 }
7727 return ret_val;
7728}
7729
7730
7731/*****************************************************************************
7732 * This function calculates the checksum.
7733 *
7734 * returns - checksum of buffer contents.
7735 ****************************************************************************/
Nicholas Nunley35574762006-09-27 12:53:34 -07007736static uint8_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007737e1000_calculate_mng_checksum(char *buffer, uint32_t length)
7738{
7739 uint8_t sum = 0;
7740 uint32_t i;
7741
7742 if (!buffer)
7743 return 0;
7744
7745 for (i=0; i < length; i++)
7746 sum += buffer[i];
7747
7748 return (uint8_t) (0 - sum);
7749}
7750
7751/*****************************************************************************
7752 * This function checks whether tx pkt filtering needs to be enabled or not.
7753 *
7754 * returns - TRUE for packet filtering or FALSE.
7755 ****************************************************************************/
7756boolean_t
7757e1000_enable_tx_pkt_filtering(struct e1000_hw *hw)
7758{
7759 /* called in init as well as watchdog timer functions */
7760
7761 int32_t ret_val, checksum;
7762 boolean_t tx_filter = FALSE;
7763 struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie);
7764 uint8_t *buffer = (uint8_t *) &(hw->mng_cookie);
7765
7766 if (e1000_check_mng_mode(hw)) {
7767 ret_val = e1000_mng_enable_host_if(hw);
7768 if (ret_val == E1000_SUCCESS) {
7769 ret_val = e1000_host_if_read_cookie(hw, buffer);
7770 if (ret_val == E1000_SUCCESS) {
7771 checksum = hdr->checksum;
7772 hdr->checksum = 0;
7773 if ((hdr->signature == E1000_IAMT_SIGNATURE) &&
7774 checksum == e1000_calculate_mng_checksum((char *)buffer,
7775 E1000_MNG_DHCP_COOKIE_LENGTH)) {
7776 if (hdr->status &
7777 E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT)
7778 tx_filter = TRUE;
7779 } else
7780 tx_filter = TRUE;
7781 } else
7782 tx_filter = TRUE;
7783 }
7784 }
7785
7786 hw->tx_pkt_filtering = tx_filter;
7787 return tx_filter;
7788}
7789
7790/******************************************************************************
7791 * Verifies the hardware needs to allow ARPs to be processed by the host
7792 *
7793 * hw - Struct containing variables accessed by shared code
7794 *
7795 * returns: - TRUE/FALSE
7796 *
7797 *****************************************************************************/
7798uint32_t
7799e1000_enable_mng_pass_thru(struct e1000_hw *hw)
7800{
7801 uint32_t manc;
7802 uint32_t fwsm, factps;
7803
7804 if (hw->asf_firmware_present) {
7805 manc = E1000_READ_REG(hw, MANC);
7806
7807 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
7808 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
7809 return FALSE;
7810 if (e1000_arc_subsystem_valid(hw) == TRUE) {
7811 fwsm = E1000_READ_REG(hw, FWSM);
7812 factps = E1000_READ_REG(hw, FACTPS);
7813
7814 if (((fwsm & E1000_FWSM_MODE_MASK) ==
7815 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) &&
7816 (factps & E1000_FACTPS_MNGCG))
7817 return TRUE;
7818 } else
7819 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
7820 return TRUE;
7821 }
7822 return FALSE;
7823}
7824
Linus Torvalds1da177e2005-04-16 15:20:36 -07007825static int32_t
7826e1000_polarity_reversal_workaround(struct e1000_hw *hw)
7827{
7828 int32_t ret_val;
7829 uint16_t mii_status_reg;
7830 uint16_t i;
7831
7832 /* Polarity reversal workaround for forced 10F/10H links. */
7833
7834 /* Disable the transmitter on the PHY */
7835
7836 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
Auke Kok8fc897b2006-08-28 14:56:16 -07007837 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007838 return ret_val;
7839 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
Auke Kok8fc897b2006-08-28 14:56:16 -07007840 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007841 return ret_val;
7842
7843 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007844 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007845 return ret_val;
7846
7847 /* This loop will early-out if the NO link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07007848 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007849 /* Read the MII Status Register and wait for Link Status bit
7850 * to be clear.
7851 */
7852
7853 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007854 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007855 return ret_val;
7856
7857 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007858 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007859 return ret_val;
7860
Auke Kok8fc897b2006-08-28 14:56:16 -07007861 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007862 mdelay(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007863 }
7864
7865 /* Recommended delay time after link has been lost */
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007866 mdelay(1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007867
7868 /* Now we will re-enable th transmitter on the PHY */
7869
7870 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
Auke Kok8fc897b2006-08-28 14:56:16 -07007871 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007872 return ret_val;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007873 mdelay(50);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007874 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
Auke Kok8fc897b2006-08-28 14:56:16 -07007875 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007876 return ret_val;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007877 mdelay(50);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007878 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
Auke Kok8fc897b2006-08-28 14:56:16 -07007879 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007880 return ret_val;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007881 mdelay(50);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007882 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007883 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007884 return ret_val;
7885
7886 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
Auke Kok8fc897b2006-08-28 14:56:16 -07007887 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007888 return ret_val;
7889
7890 /* This loop will early-out if the link condition has been met. */
Auke Kok8fc897b2006-08-28 14:56:16 -07007891 for (i = PHY_FORCE_TIME; i > 0; i--) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07007892 /* Read the MII Status Register and wait for Link Status bit
7893 * to be set.
7894 */
7895
7896 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007897 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007898 return ret_val;
7899
7900 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
Auke Kok8fc897b2006-08-28 14:56:16 -07007901 if (ret_val)
Linus Torvalds1da177e2005-04-16 15:20:36 -07007902 return ret_val;
7903
Auke Kok8fc897b2006-08-28 14:56:16 -07007904 if (mii_status_reg & MII_SR_LINK_STATUS) break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007905 mdelay(100);
Linus Torvalds1da177e2005-04-16 15:20:36 -07007906 }
7907 return E1000_SUCCESS;
7908}
7909
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007910/***************************************************************************
7911 *
7912 * Disables PCI-Express master access.
7913 *
7914 * hw: Struct containing variables accessed by shared code
7915 *
7916 * returns: - none.
7917 *
7918 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007919static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007920e1000_set_pci_express_master_disable(struct e1000_hw *hw)
7921{
7922 uint32_t ctrl;
7923
7924 DEBUGFUNC("e1000_set_pci_express_master_disable");
7925
7926 if (hw->bus_type != e1000_bus_type_pci_express)
7927 return;
7928
7929 ctrl = E1000_READ_REG(hw, CTRL);
7930 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
7931 E1000_WRITE_REG(hw, CTRL, ctrl);
7932}
7933
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007934/*******************************************************************************
7935 *
7936 * Disables PCI-Express master access and verifies there are no pending requests
7937 *
7938 * hw: Struct containing variables accessed by shared code
7939 *
7940 * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't
7941 * caused the master requests to be disabled.
7942 * E1000_SUCCESS master requests disabled.
7943 *
7944 ******************************************************************************/
7945int32_t
7946e1000_disable_pciex_master(struct e1000_hw *hw)
7947{
7948 int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */
7949
7950 DEBUGFUNC("e1000_disable_pciex_master");
7951
7952 if (hw->bus_type != e1000_bus_type_pci_express)
7953 return E1000_SUCCESS;
7954
7955 e1000_set_pci_express_master_disable(hw);
7956
Auke Kok8fc897b2006-08-28 14:56:16 -07007957 while (timeout) {
7958 if (!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007959 break;
7960 else
7961 udelay(100);
7962 timeout--;
7963 }
7964
Auke Kok8fc897b2006-08-28 14:56:16 -07007965 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007966 DEBUGOUT("Master requests are pending.\n");
7967 return -E1000_ERR_MASTER_REQUESTS_PENDING;
7968 }
7969
7970 return E1000_SUCCESS;
7971}
7972
7973/*******************************************************************************
7974 *
7975 * Check for EEPROM Auto Read bit done.
7976 *
7977 * hw: Struct containing variables accessed by shared code
7978 *
7979 * returns: - E1000_ERR_RESET if fail to reset MAC
7980 * E1000_SUCCESS at any other case.
7981 *
7982 ******************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01007983static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007984e1000_get_auto_rd_done(struct e1000_hw *hw)
7985{
7986 int32_t timeout = AUTO_READ_DONE_TIMEOUT;
7987
7988 DEBUGFUNC("e1000_get_auto_rd_done");
7989
7990 switch (hw->mac_type) {
7991 default:
Jeff Garzikf8ec4732006-09-19 15:27:07 -04007992 msleep(5);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007993 break;
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04007994 case e1000_82571:
7995 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07007996 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08007997 case e1000_80003es2lan:
Auke Kokcd94dd02006-06-27 09:08:22 -07007998 case e1000_ich8lan:
7999 while (timeout) {
8000 if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD)
8001 break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04008002 else msleep(1);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008003 timeout--;
8004 }
8005
Auke Kok8fc897b2006-08-28 14:56:16 -07008006 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008007 DEBUGOUT("Auto read by HW from EEPROM has not completed.\n");
8008 return -E1000_ERR_RESET;
8009 }
8010 break;
8011 }
8012
Jeff Kirsherfd803242005-12-13 00:06:22 -05008013 /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high.
8014 * Need to wait for PHY configuration completion before accessing NVM
8015 * and PHY. */
8016 if (hw->mac_type == e1000_82573)
Jeff Garzikf8ec4732006-09-19 15:27:07 -04008017 msleep(25);
Jeff Kirsherfd803242005-12-13 00:06:22 -05008018
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008019 return E1000_SUCCESS;
8020}
8021
8022/***************************************************************************
8023 * Checks if the PHY configuration is done
8024 *
8025 * hw: Struct containing variables accessed by shared code
8026 *
8027 * returns: - E1000_ERR_RESET if fail to reset MAC
8028 * E1000_SUCCESS at any other case.
8029 *
8030 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008031static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008032e1000_get_phy_cfg_done(struct e1000_hw *hw)
8033{
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008034 int32_t timeout = PHY_CFG_TIMEOUT;
8035 uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;
8036
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008037 DEBUGFUNC("e1000_get_phy_cfg_done");
8038
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008039 switch (hw->mac_type) {
8040 default:
Jeff Garzikf8ec4732006-09-19 15:27:07 -04008041 mdelay(10);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008042 break;
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008043 case e1000_80003es2lan:
8044 /* Separate *_CFG_DONE_* bit for each port */
8045 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
8046 cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
8047 /* Fall Through */
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008048 case e1000_82571:
8049 case e1000_82572:
8050 while (timeout) {
8051 if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
8052 break;
8053 else
Jeff Garzikf8ec4732006-09-19 15:27:07 -04008054 msleep(1);
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008055 timeout--;
8056 }
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008057 if (!timeout) {
8058 DEBUGOUT("MNG configuration cycle has not completed.\n");
8059 return -E1000_ERR_RESET;
8060 }
8061 break;
8062 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008063
8064 return E1000_SUCCESS;
8065}
8066
8067/***************************************************************************
8068 *
8069 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
8070 * adapter or Eeprom access.
8071 *
8072 * hw: Struct containing variables accessed by shared code
8073 *
8074 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
8075 * E1000_SUCCESS at any other case.
8076 *
8077 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008078static int32_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008079e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
8080{
8081 int32_t timeout;
8082 uint32_t swsm;
8083
8084 DEBUGFUNC("e1000_get_hw_eeprom_semaphore");
8085
Auke Kok8fc897b2006-08-28 14:56:16 -07008086 if (!hw->eeprom_semaphore_present)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008087 return E1000_SUCCESS;
8088
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008089 if (hw->mac_type == e1000_80003es2lan) {
8090 /* Get the SW semaphore. */
8091 if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
8092 return -E1000_ERR_EEPROM;
8093 }
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008094
8095 /* Get the FW semaphore. */
8096 timeout = hw->eeprom.word_size + 1;
Auke Kok8fc897b2006-08-28 14:56:16 -07008097 while (timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008098 swsm = E1000_READ_REG(hw, SWSM);
8099 swsm |= E1000_SWSM_SWESMBI;
8100 E1000_WRITE_REG(hw, SWSM, swsm);
8101 /* if we managed to set the bit we got the semaphore. */
8102 swsm = E1000_READ_REG(hw, SWSM);
Auke Kok8fc897b2006-08-28 14:56:16 -07008103 if (swsm & E1000_SWSM_SWESMBI)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008104 break;
8105
8106 udelay(50);
8107 timeout--;
8108 }
8109
Auke Kok8fc897b2006-08-28 14:56:16 -07008110 if (!timeout) {
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008111 /* Release semaphores */
8112 e1000_put_hw_eeprom_semaphore(hw);
8113 DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n");
8114 return -E1000_ERR_EEPROM;
8115 }
8116
8117 return E1000_SUCCESS;
8118}
8119
8120/***************************************************************************
8121 * This function clears HW semaphore bits.
8122 *
8123 * hw: Struct containing variables accessed by shared code
8124 *
8125 * returns: - None.
8126 *
8127 ***************************************************************************/
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008128static void
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008129e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
8130{
8131 uint32_t swsm;
8132
8133 DEBUGFUNC("e1000_put_hw_eeprom_semaphore");
8134
Auke Kok8fc897b2006-08-28 14:56:16 -07008135 if (!hw->eeprom_semaphore_present)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008136 return;
8137
8138 swsm = E1000_READ_REG(hw, SWSM);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008139 if (hw->mac_type == e1000_80003es2lan) {
8140 /* Release both semaphores. */
8141 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
8142 } else
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008143 swsm &= ~(E1000_SWSM_SWESMBI);
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008144 E1000_WRITE_REG(hw, SWSM, swsm);
8145}
8146
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008147/***************************************************************************
8148 *
8149 * Obtaining software semaphore bit (SMBI) before resetting PHY.
8150 *
8151 * hw: Struct containing variables accessed by shared code
8152 *
8153 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
8154 * E1000_SUCCESS at any other case.
8155 *
8156 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008157static int32_t
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008158e1000_get_software_semaphore(struct e1000_hw *hw)
8159{
8160 int32_t timeout = hw->eeprom.word_size + 1;
8161 uint32_t swsm;
8162
8163 DEBUGFUNC("e1000_get_software_semaphore");
8164
Nicholas Nunley35574762006-09-27 12:53:34 -07008165 if (hw->mac_type != e1000_80003es2lan) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008166 return E1000_SUCCESS;
Nicholas Nunley35574762006-09-27 12:53:34 -07008167 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008168
Auke Kok8fc897b2006-08-28 14:56:16 -07008169 while (timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008170 swsm = E1000_READ_REG(hw, SWSM);
8171 /* If SMBI bit cleared, it is now set and we hold the semaphore */
Auke Kok8fc897b2006-08-28 14:56:16 -07008172 if (!(swsm & E1000_SWSM_SMBI))
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008173 break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04008174 mdelay(1);
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008175 timeout--;
8176 }
8177
Auke Kok8fc897b2006-08-28 14:56:16 -07008178 if (!timeout) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008179 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
8180 return -E1000_ERR_RESET;
8181 }
8182
8183 return E1000_SUCCESS;
8184}
8185
8186/***************************************************************************
8187 *
8188 * Release semaphore bit (SMBI).
8189 *
8190 * hw: Struct containing variables accessed by shared code
8191 *
8192 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008193static void
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008194e1000_release_software_semaphore(struct e1000_hw *hw)
8195{
8196 uint32_t swsm;
8197
8198 DEBUGFUNC("e1000_release_software_semaphore");
8199
Nicholas Nunley35574762006-09-27 12:53:34 -07008200 if (hw->mac_type != e1000_80003es2lan) {
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008201 return;
Nicholas Nunley35574762006-09-27 12:53:34 -07008202 }
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008203
8204 swsm = E1000_READ_REG(hw, SWSM);
8205 /* Release the SW semaphores.*/
8206 swsm &= ~E1000_SWSM_SMBI;
8207 E1000_WRITE_REG(hw, SWSM, swsm);
8208}
8209
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008210/******************************************************************************
8211 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
8212 * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to
8213 * the caller to figure out how to deal with it.
8214 *
8215 * hw - Struct containing variables accessed by shared code
8216 *
8217 * returns: - E1000_BLK_PHY_RESET
8218 * E1000_SUCCESS
8219 *
8220 *****************************************************************************/
8221int32_t
8222e1000_check_phy_reset_block(struct e1000_hw *hw)
8223{
8224 uint32_t manc = 0;
Auke Kokcd94dd02006-06-27 09:08:22 -07008225 uint32_t fwsm = 0;
8226
8227 if (hw->mac_type == e1000_ich8lan) {
8228 fwsm = E1000_READ_REG(hw, FWSM);
8229 return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
8230 : E1000_BLK_PHY_RESET;
8231 }
Jesse Brandeburg96838a42006-01-18 13:01:39 -08008232
8233 if (hw->mac_type > e1000_82547_rev_2)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008234 manc = E1000_READ_REG(hw, MANC);
8235 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
Nicholas Nunley35574762006-09-27 12:53:34 -07008236 E1000_BLK_PHY_RESET : E1000_SUCCESS;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008237}
8238
Adrian Bunk3ad2cc62005-10-30 16:53:34 +01008239static uint8_t
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008240e1000_arc_subsystem_valid(struct e1000_hw *hw)
8241{
8242 uint32_t fwsm;
8243
8244 /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC
8245 * may not be provided a DMA clock when no manageability features are
8246 * enabled. We do not want to perform any reads/writes to these registers
8247 * if this is the case. We read FWSM to determine the manageability mode.
8248 */
8249 switch (hw->mac_type) {
Mallikarjuna R Chilakala868d5302005-10-04 06:58:59 -04008250 case e1000_82571:
8251 case e1000_82572:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008252 case e1000_82573:
Jeff Kirsher6418ecc2006-03-02 18:21:10 -08008253 case e1000_80003es2lan:
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008254 fwsm = E1000_READ_REG(hw, FWSM);
Auke Kok8fc897b2006-08-28 14:56:16 -07008255 if ((fwsm & E1000_FWSM_MODE_MASK) != 0)
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008256 return TRUE;
8257 break;
Auke Kokcd94dd02006-06-27 09:08:22 -07008258 case e1000_ich8lan:
8259 return TRUE;
Malli Chilakala2d7edb92005-04-28 19:43:52 -07008260 default:
8261 break;
8262 }
8263 return FALSE;
8264}
8265
8266
Auke Kokd37ea5d2006-06-27 09:08:17 -07008267/******************************************************************************
8268 * Configure PCI-Ex no-snoop
8269 *
8270 * hw - Struct containing variables accessed by shared code.
8271 * no_snoop - Bitmap of no-snoop events.
8272 *
8273 * returns: E1000_SUCCESS
8274 *
8275 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008276static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008277e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, uint32_t no_snoop)
8278{
8279 uint32_t gcr_reg = 0;
8280
8281 DEBUGFUNC("e1000_set_pci_ex_no_snoop");
8282
8283 if (hw->bus_type == e1000_bus_type_unknown)
8284 e1000_get_bus_info(hw);
8285
8286 if (hw->bus_type != e1000_bus_type_pci_express)
8287 return E1000_SUCCESS;
8288
8289 if (no_snoop) {
8290 gcr_reg = E1000_READ_REG(hw, GCR);
8291 gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL);
8292 gcr_reg |= no_snoop;
8293 E1000_WRITE_REG(hw, GCR, gcr_reg);
8294 }
8295 if (hw->mac_type == e1000_ich8lan) {
8296 uint32_t ctrl_ext;
8297
8298 E1000_WRITE_REG(hw, GCR, PCI_EX_82566_SNOOP_ALL);
8299
8300 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
8301 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
8302 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
8303 }
8304
8305 return E1000_SUCCESS;
8306}
8307
8308/***************************************************************************
8309 *
8310 * Get software semaphore FLAG bit (SWFLAG).
8311 * SWFLAG is used to synchronize the access to all shared resource between
8312 * SW, FW and HW.
8313 *
8314 * hw: Struct containing variables accessed by shared code
8315 *
8316 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008317static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008318e1000_get_software_flag(struct e1000_hw *hw)
8319{
8320 int32_t timeout = PHY_CFG_TIMEOUT;
8321 uint32_t extcnf_ctrl;
8322
8323 DEBUGFUNC("e1000_get_software_flag");
8324
8325 if (hw->mac_type == e1000_ich8lan) {
8326 while (timeout) {
8327 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8328 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
8329 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8330
8331 extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL);
8332 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
8333 break;
Jeff Garzikf8ec4732006-09-19 15:27:07 -04008334 mdelay(1);
Auke Kokd37ea5d2006-06-27 09:08:17 -07008335 timeout--;
8336 }
8337
8338 if (!timeout) {
8339 DEBUGOUT("FW or HW locks the resource too long.\n");
8340 return -E1000_ERR_CONFIG;
8341 }
8342 }
8343
8344 return E1000_SUCCESS;
8345}
8346
8347/***************************************************************************
8348 *
8349 * Release software semaphore FLAG bit (SWFLAG).
8350 * SWFLAG is used to synchronize the access to all shared resource between
8351 * SW, FW and HW.
8352 *
8353 * hw: Struct containing variables accessed by shared code
8354 *
8355 ***************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008356static void
Auke Kokd37ea5d2006-06-27 09:08:17 -07008357e1000_release_software_flag(struct e1000_hw *hw)
8358{
8359 uint32_t extcnf_ctrl;
8360
8361 DEBUGFUNC("e1000_release_software_flag");
8362
8363 if (hw->mac_type == e1000_ich8lan) {
8364 extcnf_ctrl= E1000_READ_REG(hw, EXTCNF_CTRL);
8365 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
8366 E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl);
8367 }
8368
8369 return;
8370}
8371
Auke Kokd37ea5d2006-06-27 09:08:17 -07008372/******************************************************************************
8373 * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access
8374 * register.
8375 *
8376 * hw - Struct containing variables accessed by shared code
8377 * offset - offset of word in the EEPROM to read
8378 * data - word read from the EEPROM
8379 * words - number of words to read
8380 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008381static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008382e1000_read_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8383 uint16_t *data)
8384{
8385 int32_t error = E1000_SUCCESS;
8386 uint32_t flash_bank = 0;
8387 uint32_t act_offset = 0;
8388 uint32_t bank_offset = 0;
8389 uint16_t word = 0;
8390 uint16_t i = 0;
8391
8392 /* We need to know which is the valid flash bank. In the event
8393 * that we didn't allocate eeprom_shadow_ram, we may not be
8394 * managing flash_bank. So it cannot be trusted and needs
8395 * to be updated with each read.
8396 */
8397 /* Value of bit 22 corresponds to the flash bank we're on. */
8398 flash_bank = (E1000_READ_REG(hw, EECD) & E1000_EECD_SEC1VAL) ? 1 : 0;
8399
8400 /* Adjust offset appropriately if we're on bank 1 - adjust for word size */
8401 bank_offset = flash_bank * (hw->flash_bank_size * 2);
8402
8403 error = e1000_get_software_flag(hw);
8404 if (error != E1000_SUCCESS)
8405 return error;
8406
8407 for (i = 0; i < words; i++) {
8408 if (hw->eeprom_shadow_ram != NULL &&
8409 hw->eeprom_shadow_ram[offset+i].modified == TRUE) {
8410 data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word;
8411 } else {
8412 /* The NVM part needs a byte offset, hence * 2 */
8413 act_offset = bank_offset + ((offset + i) * 2);
8414 error = e1000_read_ich8_word(hw, act_offset, &word);
8415 if (error != E1000_SUCCESS)
8416 break;
8417 data[i] = word;
8418 }
8419 }
8420
8421 e1000_release_software_flag(hw);
8422
8423 return error;
8424}
8425
8426/******************************************************************************
8427 * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access
8428 * register. Actually, writes are written to the shadow ram cache in the hw
8429 * structure hw->e1000_shadow_ram. e1000_commit_shadow_ram flushes this to
8430 * the NVM, which occurs when the NVM checksum is updated.
8431 *
8432 * hw - Struct containing variables accessed by shared code
8433 * offset - offset of word in the EEPROM to write
8434 * words - number of words to write
8435 * data - words to write to the EEPROM
8436 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008437static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008438e1000_write_eeprom_ich8(struct e1000_hw *hw, uint16_t offset, uint16_t words,
8439 uint16_t *data)
8440{
8441 uint32_t i = 0;
8442 int32_t error = E1000_SUCCESS;
8443
8444 error = e1000_get_software_flag(hw);
8445 if (error != E1000_SUCCESS)
8446 return error;
8447
8448 /* A driver can write to the NVM only if it has eeprom_shadow_ram
8449 * allocated. Subsequent reads to the modified words are read from
8450 * this cached structure as well. Writes will only go into this
8451 * cached structure unless it's followed by a call to
8452 * e1000_update_eeprom_checksum() where it will commit the changes
8453 * and clear the "modified" field.
8454 */
8455 if (hw->eeprom_shadow_ram != NULL) {
8456 for (i = 0; i < words; i++) {
8457 if ((offset + i) < E1000_SHADOW_RAM_WORDS) {
8458 hw->eeprom_shadow_ram[offset+i].modified = TRUE;
8459 hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i];
8460 } else {
8461 error = -E1000_ERR_EEPROM;
8462 break;
8463 }
8464 }
8465 } else {
8466 /* Drivers have the option to not allocate eeprom_shadow_ram as long
8467 * as they don't perform any NVM writes. An attempt in doing so
8468 * will result in this error.
8469 */
8470 error = -E1000_ERR_EEPROM;
8471 }
8472
8473 e1000_release_software_flag(hw);
8474
8475 return error;
8476}
8477
8478/******************************************************************************
8479 * This function does initial flash setup so that a new read/write/erase cycle
8480 * can be started.
8481 *
8482 * hw - The pointer to the hw structure
8483 ****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008484static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008485e1000_ich8_cycle_init(struct e1000_hw *hw)
8486{
8487 union ich8_hws_flash_status hsfsts;
8488 int32_t error = E1000_ERR_EEPROM;
8489 int32_t i = 0;
8490
8491 DEBUGFUNC("e1000_ich8_cycle_init");
8492
8493 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8494
8495 /* May be check the Flash Des Valid bit in Hw status */
8496 if (hsfsts.hsf_status.fldesvalid == 0) {
8497 DEBUGOUT("Flash descriptor invalid. SW Sequencing must be used.");
8498 return error;
8499 }
8500
8501 /* Clear FCERR in Hw status by writing 1 */
8502 /* Clear DAEL in Hw status by writing a 1 */
8503 hsfsts.hsf_status.flcerr = 1;
8504 hsfsts.hsf_status.dael = 1;
8505
8506 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8507
8508 /* Either we should have a hardware SPI cycle in progress bit to check
8509 * against, in order to start a new cycle or FDONE bit should be changed
8510 * in the hardware so that it is 1 after harware reset, which can then be
8511 * used as an indication whether a cycle is in progress or has been
8512 * completed .. we should also have some software semaphore mechanism to
8513 * guard FDONE or the cycle in progress bit so that two threads access to
8514 * those bits can be sequentiallized or a way so that 2 threads dont
8515 * start the cycle at the same time */
8516
8517 if (hsfsts.hsf_status.flcinprog == 0) {
8518 /* There is no cycle running at present, so we can start a cycle */
8519 /* Begin by setting Flash Cycle Done. */
8520 hsfsts.hsf_status.flcdone = 1;
8521 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8522 error = E1000_SUCCESS;
8523 } else {
8524 /* otherwise poll for sometime so the current cycle has a chance
8525 * to end before giving up. */
8526 for (i = 0; i < ICH8_FLASH_COMMAND_TIMEOUT; i++) {
8527 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8528 if (hsfsts.hsf_status.flcinprog == 0) {
8529 error = E1000_SUCCESS;
8530 break;
8531 }
8532 udelay(1);
8533 }
8534 if (error == E1000_SUCCESS) {
8535 /* Successful in waiting for previous cycle to timeout,
8536 * now set the Flash Cycle Done. */
8537 hsfsts.hsf_status.flcdone = 1;
8538 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFSTS, hsfsts.regval);
8539 } else {
8540 DEBUGOUT("Flash controller busy, cannot get access");
8541 }
8542 }
8543 return error;
8544}
8545
8546/******************************************************************************
8547 * This function starts a flash cycle and waits for its completion
8548 *
8549 * hw - The pointer to the hw structure
8550 ****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008551static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008552e1000_ich8_flash_cycle(struct e1000_hw *hw, uint32_t timeout)
8553{
8554 union ich8_hws_flash_ctrl hsflctl;
8555 union ich8_hws_flash_status hsfsts;
8556 int32_t error = E1000_ERR_EEPROM;
8557 uint32_t i = 0;
8558
8559 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
8560 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8561 hsflctl.hsf_ctrl.flcgo = 1;
8562 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8563
8564 /* wait till FDONE bit is set to 1 */
8565 do {
8566 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8567 if (hsfsts.hsf_status.flcdone == 1)
8568 break;
8569 udelay(1);
8570 i++;
8571 } while (i < timeout);
8572 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) {
8573 error = E1000_SUCCESS;
8574 }
8575 return error;
8576}
8577
8578/******************************************************************************
8579 * Reads a byte or word from the NVM using the ICH8 flash access registers.
8580 *
8581 * hw - The pointer to the hw structure
8582 * index - The index of the byte or word to read.
8583 * size - Size of data to read, 1=byte 2=word
8584 * data - Pointer to the word to store the value read.
8585 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008586static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008587e1000_read_ich8_data(struct e1000_hw *hw, uint32_t index,
8588 uint32_t size, uint16_t* data)
8589{
8590 union ich8_hws_flash_status hsfsts;
8591 union ich8_hws_flash_ctrl hsflctl;
8592 uint32_t flash_linear_address;
8593 uint32_t flash_data = 0;
8594 int32_t error = -E1000_ERR_EEPROM;
8595 int32_t count = 0;
8596
8597 DEBUGFUNC("e1000_read_ich8_data");
8598
8599 if (size < 1 || size > 2 || data == 0x0 ||
8600 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8601 return error;
8602
8603 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8604 hw->flash_base_addr;
8605
8606 do {
8607 udelay(1);
8608 /* Steps */
8609 error = e1000_ich8_cycle_init(hw);
8610 if (error != E1000_SUCCESS)
8611 break;
8612
8613 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8614 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8615 hsflctl.hsf_ctrl.fldbcount = size - 1;
8616 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_READ;
8617 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8618
8619 /* Write the last 24 bits of index into Flash Linear address field in
8620 * Flash Address */
8621 /* TODO: TBD maybe check the index against the size of flash */
8622
8623 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8624
8625 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8626
8627 /* Check if FCERR is set to 1, if set to 1, clear it and try the whole
8628 * sequence a few more times, else read in (shift in) the Flash Data0,
8629 * the order is least significant byte first msb to lsb */
8630 if (error == E1000_SUCCESS) {
8631 flash_data = E1000_READ_ICH8_REG(hw, ICH8_FLASH_FDATA0);
8632 if (size == 1) {
8633 *data = (uint8_t)(flash_data & 0x000000FF);
8634 } else if (size == 2) {
8635 *data = (uint16_t)(flash_data & 0x0000FFFF);
8636 }
8637 break;
8638 } else {
8639 /* If we've gotten here, then things are probably completely hosed,
8640 * but if the error condition is detected, it won't hurt to give
8641 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8642 */
8643 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8644 if (hsfsts.hsf_status.flcerr == 1) {
8645 /* Repeat for some time before giving up. */
8646 continue;
8647 } else if (hsfsts.hsf_status.flcdone == 0) {
8648 DEBUGOUT("Timeout error - flash cycle did not complete.");
8649 break;
8650 }
8651 }
8652 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8653
8654 return error;
8655}
8656
8657/******************************************************************************
8658 * Writes One /two bytes to the NVM using the ICH8 flash access registers.
8659 *
8660 * hw - The pointer to the hw structure
8661 * index - The index of the byte/word to read.
8662 * size - Size of data to read, 1=byte 2=word
8663 * data - The byte(s) to write to the NVM.
8664 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008665static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008666e1000_write_ich8_data(struct e1000_hw *hw, uint32_t index, uint32_t size,
8667 uint16_t data)
8668{
8669 union ich8_hws_flash_status hsfsts;
8670 union ich8_hws_flash_ctrl hsflctl;
8671 uint32_t flash_linear_address;
8672 uint32_t flash_data = 0;
8673 int32_t error = -E1000_ERR_EEPROM;
8674 int32_t count = 0;
8675
8676 DEBUGFUNC("e1000_write_ich8_data");
8677
8678 if (size < 1 || size > 2 || data > size * 0xff ||
8679 index > ICH8_FLASH_LINEAR_ADDR_MASK)
8680 return error;
8681
8682 flash_linear_address = (ICH8_FLASH_LINEAR_ADDR_MASK & index) +
8683 hw->flash_base_addr;
8684
8685 do {
8686 udelay(1);
8687 /* Steps */
8688 error = e1000_ich8_cycle_init(hw);
8689 if (error != E1000_SUCCESS)
8690 break;
8691
8692 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8693 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
8694 hsflctl.hsf_ctrl.fldbcount = size -1;
8695 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_WRITE;
8696 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8697
8698 /* Write the last 24 bits of index into Flash Linear address field in
8699 * Flash Address */
8700 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8701
8702 if (size == 1)
8703 flash_data = (uint32_t)data & 0x00FF;
8704 else
8705 flash_data = (uint32_t)data;
8706
8707 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FDATA0, flash_data);
8708
8709 /* check if FCERR is set to 1 , if set to 1, clear it and try the whole
8710 * sequence a few more times else done */
8711 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_COMMAND_TIMEOUT);
8712 if (error == E1000_SUCCESS) {
8713 break;
8714 } else {
8715 /* If we're here, then things are most likely completely hosed,
8716 * but if the error condition is detected, it won't hurt to give
8717 * it another try...ICH8_FLASH_CYCLE_REPEAT_COUNT times.
8718 */
8719 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8720 if (hsfsts.hsf_status.flcerr == 1) {
8721 /* Repeat for some time before giving up. */
8722 continue;
8723 } else if (hsfsts.hsf_status.flcdone == 0) {
8724 DEBUGOUT("Timeout error - flash cycle did not complete.");
8725 break;
8726 }
8727 }
8728 } while (count++ < ICH8_FLASH_CYCLE_REPEAT_COUNT);
8729
8730 return error;
8731}
8732
8733/******************************************************************************
8734 * Reads a single byte from the NVM using the ICH8 flash access registers.
8735 *
8736 * hw - pointer to e1000_hw structure
8737 * index - The index of the byte to read.
8738 * data - Pointer to a byte to store the value read.
8739 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008740static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008741e1000_read_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t* data)
8742{
8743 int32_t status = E1000_SUCCESS;
8744 uint16_t word = 0;
8745
8746 status = e1000_read_ich8_data(hw, index, 1, &word);
8747 if (status == E1000_SUCCESS) {
8748 *data = (uint8_t)word;
8749 }
8750
8751 return status;
8752}
8753
8754/******************************************************************************
8755 * Writes a single byte to the NVM using the ICH8 flash access registers.
8756 * Performs verification by reading back the value and then going through
8757 * a retry algorithm before giving up.
8758 *
8759 * hw - pointer to e1000_hw structure
8760 * index - The index of the byte to write.
8761 * byte - The byte to write to the NVM.
8762 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008763static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008764e1000_verify_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t byte)
8765{
8766 int32_t error = E1000_SUCCESS;
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008767 int32_t program_retries = 0;
Auke Kokd37ea5d2006-06-27 09:08:17 -07008768
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008769 DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index);
Auke Kokd37ea5d2006-06-27 09:08:17 -07008770
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008771 error = e1000_write_ich8_byte(hw, index, byte);
8772
8773 if (error != E1000_SUCCESS) {
8774 for (program_retries = 0; program_retries < 100; program_retries++) {
8775 DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index);
8776 error = e1000_write_ich8_byte(hw, index, byte);
8777 udelay(100);
8778 if (error == E1000_SUCCESS)
8779 break;
8780 }
Auke Kokd37ea5d2006-06-27 09:08:17 -07008781 }
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008782
Auke Kokd37ea5d2006-06-27 09:08:17 -07008783 if (program_retries == 100)
8784 error = E1000_ERR_EEPROM;
8785
8786 return error;
8787}
8788
8789/******************************************************************************
8790 * Writes a single byte to the NVM using the ICH8 flash access registers.
8791 *
8792 * hw - pointer to e1000_hw structure
8793 * index - The index of the byte to read.
8794 * data - The byte to write to the NVM.
8795 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008796static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008797e1000_write_ich8_byte(struct e1000_hw *hw, uint32_t index, uint8_t data)
8798{
8799 int32_t status = E1000_SUCCESS;
8800 uint16_t word = (uint16_t)data;
8801
8802 status = e1000_write_ich8_data(hw, index, 1, word);
8803
8804 return status;
8805}
8806
8807/******************************************************************************
8808 * Reads a word from the NVM using the ICH8 flash access registers.
8809 *
8810 * hw - pointer to e1000_hw structure
8811 * index - The starting byte index of the word to read.
8812 * data - Pointer to a word to store the value read.
8813 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008814static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008815e1000_read_ich8_word(struct e1000_hw *hw, uint32_t index, uint16_t *data)
8816{
8817 int32_t status = E1000_SUCCESS;
8818 status = e1000_read_ich8_data(hw, index, 2, data);
8819 return status;
8820}
8821
8822/******************************************************************************
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008823 * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0
8824 * based.
Auke Kokd37ea5d2006-06-27 09:08:17 -07008825 *
8826 * hw - pointer to e1000_hw structure
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008827 * bank - 0 for first bank, 1 for second bank
8828 *
8829 * Note that this function may actually erase as much as 8 or 64 KBytes. The
8830 * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the
8831 * bank size may be 4, 8 or 64 KBytes
Auke Kokd37ea5d2006-06-27 09:08:17 -07008832 *****************************************************************************/
8833int32_t
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008834e1000_erase_ich8_4k_segment(struct e1000_hw *hw, uint32_t bank)
Auke Kokd37ea5d2006-06-27 09:08:17 -07008835{
8836 union ich8_hws_flash_status hsfsts;
8837 union ich8_hws_flash_ctrl hsflctl;
8838 uint32_t flash_linear_address;
8839 int32_t count = 0;
8840 int32_t error = E1000_ERR_EEPROM;
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008841 int32_t iteration;
8842 int32_t sub_sector_size = 0;
8843 int32_t bank_size;
Auke Kokd37ea5d2006-06-27 09:08:17 -07008844 int32_t j = 0;
8845 int32_t error_flag = 0;
8846
8847 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8848
8849 /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */
8850 /* 00: The Hw sector is 256 bytes, hence we need to erase 16
8851 * consecutive sectors. The start index for the nth Hw sector can be
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008852 * calculated as bank * 4096 + n * 256
Auke Kokd37ea5d2006-06-27 09:08:17 -07008853 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
8854 * The start index for the nth Hw sector can be calculated
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008855 * as bank * 4096
8856 * 10: The HW sector is 8K bytes
8857 * 11: The Hw sector size is 64K bytes */
Auke Kokd37ea5d2006-06-27 09:08:17 -07008858 if (hsfsts.hsf_status.berasesz == 0x0) {
8859 /* Hw sector size 256 */
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008860 sub_sector_size = ICH8_FLASH_SEG_SIZE_256;
8861 bank_size = ICH8_FLASH_SECTOR_SIZE;
Auke Kokd37ea5d2006-06-27 09:08:17 -07008862 iteration = ICH8_FLASH_SECTOR_SIZE / ICH8_FLASH_SEG_SIZE_256;
8863 } else if (hsfsts.hsf_status.berasesz == 0x1) {
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008864 bank_size = ICH8_FLASH_SEG_SIZE_4K;
8865 iteration = 1;
8866 } else if (hw->mac_type != e1000_ich8lan &&
8867 hsfsts.hsf_status.berasesz == 0x2) {
8868 /* 8K erase size invalid for ICH8 - added in for ICH9 */
8869 bank_size = ICH9_FLASH_SEG_SIZE_8K;
Auke Kokd37ea5d2006-06-27 09:08:17 -07008870 iteration = 1;
8871 } else if (hsfsts.hsf_status.berasesz == 0x3) {
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008872 bank_size = ICH8_FLASH_SEG_SIZE_64K;
Auke Kokd37ea5d2006-06-27 09:08:17 -07008873 iteration = 1;
8874 } else {
8875 return error;
8876 }
8877
8878 for (j = 0; j < iteration ; j++) {
8879 do {
8880 count++;
8881 /* Steps */
8882 error = e1000_ich8_cycle_init(hw);
8883 if (error != E1000_SUCCESS) {
8884 error_flag = 1;
8885 break;
8886 }
8887
8888 /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash
8889 * Control */
8890 hsflctl.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFCTL);
8891 hsflctl.hsf_ctrl.flcycle = ICH8_CYCLE_ERASE;
8892 E1000_WRITE_ICH8_REG16(hw, ICH8_FLASH_HSFCTL, hsflctl.regval);
8893
8894 /* Write the last 24 bits of an index within the block into Flash
8895 * Linear address field in Flash Address. This probably needs to
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008896 * be calculated here based off the on-chip erase sector size and
8897 * the software bank size (4, 8 or 64 KBytes) */
8898 flash_linear_address = bank * bank_size + j * sub_sector_size;
Auke Kokd37ea5d2006-06-27 09:08:17 -07008899 flash_linear_address += hw->flash_base_addr;
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008900 flash_linear_address &= ICH8_FLASH_LINEAR_ADDR_MASK;
Auke Kokd37ea5d2006-06-27 09:08:17 -07008901
8902 E1000_WRITE_ICH8_REG(hw, ICH8_FLASH_FADDR, flash_linear_address);
8903
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008904 error = e1000_ich8_flash_cycle(hw, ICH8_FLASH_ERASE_TIMEOUT);
Auke Kokd37ea5d2006-06-27 09:08:17 -07008905 /* Check if FCERR is set to 1. If 1, clear it and try the whole
8906 * sequence a few more times else Done */
8907 if (error == E1000_SUCCESS) {
8908 break;
8909 } else {
8910 hsfsts.regval = E1000_READ_ICH8_REG16(hw, ICH8_FLASH_HSFSTS);
8911 if (hsfsts.hsf_status.flcerr == 1) {
8912 /* repeat for some time before giving up */
8913 continue;
8914 } else if (hsfsts.hsf_status.flcdone == 0) {
8915 error_flag = 1;
8916 break;
8917 }
8918 }
8919 } while ((count < ICH8_FLASH_CYCLE_REPEAT_COUNT) && !error_flag);
8920 if (error_flag == 1)
8921 break;
8922 }
8923 if (error_flag != 1)
8924 error = E1000_SUCCESS;
8925 return error;
8926}
8927
Adrian Bunke4c780b2006-08-14 23:00:10 -07008928static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008929e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw,
8930 uint32_t cnf_base_addr, uint32_t cnf_size)
8931{
8932 uint32_t ret_val = E1000_SUCCESS;
8933 uint16_t word_addr, reg_data, reg_addr;
8934 uint16_t i;
8935
8936 /* cnf_base_addr is in DWORD */
8937 word_addr = (uint16_t)(cnf_base_addr << 1);
8938
8939 /* cnf_size is returned in size of dwords */
8940 for (i = 0; i < cnf_size; i++) {
8941 ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, &reg_data);
8942 if (ret_val)
8943 return ret_val;
8944
8945 ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, &reg_addr);
8946 if (ret_val)
8947 return ret_val;
8948
8949 ret_val = e1000_get_software_flag(hw);
8950 if (ret_val != E1000_SUCCESS)
8951 return ret_val;
8952
8953 ret_val = e1000_write_phy_reg_ex(hw, (uint32_t)reg_addr, reg_data);
8954
8955 e1000_release_software_flag(hw);
8956 }
8957
8958 return ret_val;
8959}
8960
8961
Jeff Kirsher2a88c172006-09-27 12:54:05 -07008962/******************************************************************************
8963 * This function initializes the PHY from the NVM on ICH8 platforms. This
8964 * is needed due to an issue where the NVM configuration is not properly
8965 * autoloaded after power transitions. Therefore, after each PHY reset, we
8966 * will load the configuration data out of the NVM manually.
8967 *
8968 * hw: Struct containing variables accessed by shared code
8969 *****************************************************************************/
Adrian Bunke4c780b2006-08-14 23:00:10 -07008970static int32_t
Auke Kokd37ea5d2006-06-27 09:08:17 -07008971e1000_init_lcd_from_nvm(struct e1000_hw *hw)
8972{
8973 uint32_t reg_data, cnf_base_addr, cnf_size, ret_val, loop;
8974
8975 if (hw->phy_type != e1000_phy_igp_3)
8976 return E1000_SUCCESS;
8977
8978 /* Check if SW needs configure the PHY */
8979 reg_data = E1000_READ_REG(hw, FEXTNVM);
8980 if (!(reg_data & FEXTNVM_SW_CONFIG))
8981 return E1000_SUCCESS;
8982
8983 /* Wait for basic configuration completes before proceeding*/
8984 loop = 0;
8985 do {
8986 reg_data = E1000_READ_REG(hw, STATUS) & E1000_STATUS_LAN_INIT_DONE;
8987 udelay(100);
8988 loop++;
8989 } while ((!reg_data) && (loop < 50));
8990
8991 /* Clear the Init Done bit for the next init event */
8992 reg_data = E1000_READ_REG(hw, STATUS);
8993 reg_data &= ~E1000_STATUS_LAN_INIT_DONE;
8994 E1000_WRITE_REG(hw, STATUS, reg_data);
8995
8996 /* Make sure HW does not configure LCD from PHY extended configuration
8997 before SW configuration */
8998 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
8999 if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) {
9000 reg_data = E1000_READ_REG(hw, EXTCNF_SIZE);
9001 cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH;
9002 cnf_size >>= 16;
9003 if (cnf_size) {
9004 reg_data = E1000_READ_REG(hw, EXTCNF_CTRL);
9005 cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER;
9006 /* cnf_base_addr is in DWORD */
9007 cnf_base_addr >>= 16;
9008
9009 /* Configure LCD from extended configuration region. */
9010 ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr,
9011 cnf_size);
9012 if (ret_val)
9013 return ret_val;
9014 }
9015 }
9016
9017 return E1000_SUCCESS;
9018}
9019