blob: 79d02f6ba58b73f7b2446bcf88b1285f68f1304d [file] [log] [blame]
Kaizenbf8b01d2017-10-12 14:26:51 +01001/*
Jenkins4ba87db2019-05-23 17:11:51 +01002 * Copyright (c) 2017-2019 ARM Limited.
Kaizenbf8b01d2017-10-12 14:26:51 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Kaizenbf8b01d2017-10-12 14:26:51 +010032using namespace arm_compute::graph_utils;
33
Jenkinsb9abeae2018-11-22 11:58:08 +000034/** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000035class GraphAlexnetExample : public Example
Kaizenbf8b01d2017-10-12 14:26:51 +010036{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000037public:
Jenkins52ba29e2018-08-29 15:32:11 +000038 GraphAlexnetExample()
39 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "AlexNet")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000040 {
Jenkins52ba29e2018-08-29 15:32:11 +000041 }
42 bool do_setup(int argc, char **argv) override
43 {
44 // Parse arguments
45 cmd_parser.parse(argc, argv);
Jenkins0e205f72019-11-28 16:53:35 +000046 cmd_parser.validate();
Jenkins52ba29e2018-08-29 15:32:11 +000047
48 // Consume common parameters
49 common_params = consume_common_graph_parameters(common_opts);
50
51 // Return when help menu is requested
52 if(common_params.help)
53 {
54 cmd_parser.print_help(argv[0]);
55 return false;
56 }
57
Jenkins52ba29e2018-08-29 15:32:11 +000058 // Checks
59 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
60
61 // Print parameter values
62 std::cout << common_params << std::endl;
63
64 // Get trainable parameters data path
65 std::string data_path = common_params.data_path;
Anthony Barbier8a3da6f2017-10-23 18:55:17 +010066
Anthony Barbier06ea0482018-02-22 15:45:35 +000067 // Create a preprocessor object
68 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
69 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Kaizenbf8b01d2017-10-12 14:26:51 +010070
Jenkins52ba29e2018-08-29 15:32:11 +000071 // Create input descriptor
72 const TensorShape tensor_shape = permute_shape(TensorShape(227U, 227U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
73 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
Anthony Barbier06ea0482018-02-22 15:45:35 +000074
Jenkins52ba29e2018-08-29 15:32:11 +000075 // Set weights trained layout
76 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000077
Jenkins52ba29e2018-08-29 15:32:11 +000078 graph << common_params.target
79 << common_params.fast_math_hint
80 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000081 // Layer 1
82 << ConvolutionLayer(
83 11U, 11U, 96U,
Jenkins52ba29e2018-08-29 15:32:11 +000084 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000085 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
86 PadStrideInfo(4, 4, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +010087 .set_name("conv1")
88 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu1")
89 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm1")
90 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000091 // Layer 2
Anthony Barbierf45d5a92018-01-24 16:23:15 +000092 << ConvolutionLayer(
93 5U, 5U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +000094 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000095 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
96 PadStrideInfo(1, 1, 2, 2), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +010097 .set_name("conv2")
98 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu2")
99 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm2")
100 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000101 // Layer 3
102 << ConvolutionLayer(
103 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000104 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000105 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
106 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100107 .set_name("conv3")
108 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu3")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000109 // Layer 4
110 << ConvolutionLayer(
111 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000112 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000113 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
114 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100115 .set_name("conv4")
116 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu4")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000117 // Layer 5
118 << ConvolutionLayer(
119 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000120 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000121 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
122 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100123 .set_name("conv5")
124 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu5")
125 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000126 // Layer 6
127 << FullyConnectedLayer(
128 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000129 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000130 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100131 .set_name("fc6")
132 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu6")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000133 // Layer 7
134 << FullyConnectedLayer(
135 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000136 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000137 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100138 .set_name("fc7")
139 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu7")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000140 // Layer 8
141 << FullyConnectedLayer(
142 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000143 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000144 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100145 .set_name("fc8")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000146 // Softmax
Jenkinsb3a371b2018-05-23 11:36:53 +0100147 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000148 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000149
Jenkinsb3a371b2018-05-23 11:36:53 +0100150 // Finalize graph
151 GraphConfig config;
Jenkins975dfe12019-09-02 11:47:54 +0100152
Jenkins52ba29e2018-08-29 15:32:11 +0000153 config.num_threads = common_params.threads;
154 config.use_tuner = common_params.enable_tuner;
Jenkins4ba87db2019-05-23 17:11:51 +0100155 config.tuner_mode = common_params.tuner_mode;
Jenkins52ba29e2018-08-29 15:32:11 +0000156 config.tuner_file = common_params.tuner_file;
157
Jenkins975dfe12019-09-02 11:47:54 +0100158 // Load the precompiled kernels from a file into the kernel library, in this way the next time they are needed
159 // compilation won't be required.
160 if(common_params.enable_cl_cache)
161 {
162 restore_program_cache_from_file();
163 }
164
Jenkins52ba29e2018-08-29 15:32:11 +0000165 graph.finalize(common_params.target, config);
166
Jenkins975dfe12019-09-02 11:47:54 +0100167 // Save the opencl kernels to a file
168 if(common_opts.enable_cl_cache)
169 {
170 save_program_cache_to_file();
171 }
172
Jenkins52ba29e2018-08-29 15:32:11 +0000173 return true;
Kaizenbf8b01d2017-10-12 14:26:51 +0100174 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000175 void do_run() override
Kaizenbf8b01d2017-10-12 14:26:51 +0100176 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000177 // Run graph
178 graph.run();
Kaizenbf8b01d2017-10-12 14:26:51 +0100179 }
180
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000181private:
Jenkins52ba29e2018-08-29 15:32:11 +0000182 CommandLineParser cmd_parser;
183 CommonGraphOptions common_opts;
184 CommonGraphParams common_params;
185 Stream graph;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000186};
Kaizenbf8b01d2017-10-12 14:26:51 +0100187
188/** Main program for AlexNet
189 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000190 * Model is based on:
191 * https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
192 * "ImageNet Classification with Deep Convolutional Neural Networks"
193 * Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E
194 *
Jenkins514be652019-02-28 12:25:18 +0000195 * Provenance: https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
196 *
Jenkins52ba29e2018-08-29 15:32:11 +0000197 * @note To list all the possible arguments execute the binary appended with the --help option
198 *
Kaizenbf8b01d2017-10-12 14:26:51 +0100199 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000200 * @param[in] argv Arguments
201 *
202 * @return Return code
Kaizenbf8b01d2017-10-12 14:26:51 +0100203 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000204int main(int argc, char **argv)
Kaizenbf8b01d2017-10-12 14:26:51 +0100205{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000206 return arm_compute::utils::run_example<GraphAlexnetExample>(argc, argv);
Kaizenbf8b01d2017-10-12 14:26:51 +0100207}