blob: 0adc6a8e93e0941940daed46f080ffabbee67dc4 [file] [log] [blame]
Kaizenbf8b01d2017-10-12 14:26:51 +01001/*
Jenkins36ccc902020-02-21 11:10:48 +00002 * Copyright (c) 2017-2020 ARM Limited.
Kaizenbf8b01d2017-10-12 14:26:51 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
Jenkinsb3a371b2018-05-23 11:36:53 +010024#include "arm_compute/graph.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010025#include "support/ToolchainSupport.h"
Jenkins52ba29e2018-08-29 15:32:11 +000026#include "utils/CommonGraphOptions.h"
Kaizenbf8b01d2017-10-12 14:26:51 +010027#include "utils/GraphUtils.h"
28#include "utils/Utils.h"
29
Anthony Barbierf45d5a92018-01-24 16:23:15 +000030using namespace arm_compute::utils;
Jenkinsb3a371b2018-05-23 11:36:53 +010031using namespace arm_compute::graph::frontend;
Kaizenbf8b01d2017-10-12 14:26:51 +010032using namespace arm_compute::graph_utils;
33
Jenkinsb9abeae2018-11-22 11:58:08 +000034/** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API */
Anthony Barbierf45d5a92018-01-24 16:23:15 +000035class GraphAlexnetExample : public Example
Kaizenbf8b01d2017-10-12 14:26:51 +010036{
Anthony Barbierf45d5a92018-01-24 16:23:15 +000037public:
Jenkins52ba29e2018-08-29 15:32:11 +000038 GraphAlexnetExample()
39 : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "AlexNet")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000040 {
Jenkins52ba29e2018-08-29 15:32:11 +000041 }
42 bool do_setup(int argc, char **argv) override
43 {
44 // Parse arguments
45 cmd_parser.parse(argc, argv);
Jenkins0e205f72019-11-28 16:53:35 +000046 cmd_parser.validate();
Jenkins52ba29e2018-08-29 15:32:11 +000047
48 // Consume common parameters
49 common_params = consume_common_graph_parameters(common_opts);
50
51 // Return when help menu is requested
52 if(common_params.help)
53 {
54 cmd_parser.print_help(argv[0]);
55 return false;
56 }
57
Jenkins52ba29e2018-08-29 15:32:11 +000058 // Checks
59 ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
60
61 // Print parameter values
62 std::cout << common_params << std::endl;
63
64 // Get trainable parameters data path
65 std::string data_path = common_params.data_path;
Anthony Barbier8a3da6f2017-10-23 18:55:17 +010066
Anthony Barbier06ea0482018-02-22 15:45:35 +000067 // Create a preprocessor object
68 const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
69 std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
Kaizenbf8b01d2017-10-12 14:26:51 +010070
Jenkins52ba29e2018-08-29 15:32:11 +000071 // Create input descriptor
Jenkins36ccc902020-02-21 11:10:48 +000072 const auto operation_layout = common_params.data_layout;
73 const TensorShape tensor_shape = permute_shape(TensorShape(227U, 227U, 3U, 1U), DataLayout::NCHW, operation_layout);
74 TensorDescriptor input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
Anthony Barbier06ea0482018-02-22 15:45:35 +000075
Jenkins52ba29e2018-08-29 15:32:11 +000076 // Set weights trained layout
77 const DataLayout weights_layout = DataLayout::NCHW;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000078
Jenkins52ba29e2018-08-29 15:32:11 +000079 graph << common_params.target
80 << common_params.fast_math_hint
81 << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
Anthony Barbierf45d5a92018-01-24 16:23:15 +000082 // Layer 1
83 << ConvolutionLayer(
84 11U, 11U, 96U,
Jenkins52ba29e2018-08-29 15:32:11 +000085 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000086 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
87 PadStrideInfo(4, 4, 0, 0))
Jenkinsb3a371b2018-05-23 11:36:53 +010088 .set_name("conv1")
89 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu1")
90 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm1")
Jenkins36ccc902020-02-21 11:10:48 +000091 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
Anthony Barbierf45d5a92018-01-24 16:23:15 +000092 // Layer 2
Anthony Barbierf45d5a92018-01-24 16:23:15 +000093 << ConvolutionLayer(
94 5U, 5U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +000095 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +000096 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
97 PadStrideInfo(1, 1, 2, 2), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +010098 .set_name("conv2")
99 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu2")
100 << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm2")
Jenkins36ccc902020-02-21 11:10:48 +0000101 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000102 // Layer 3
103 << ConvolutionLayer(
104 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000105 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000106 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
107 PadStrideInfo(1, 1, 1, 1))
Jenkinsb3a371b2018-05-23 11:36:53 +0100108 .set_name("conv3")
109 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu3")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000110 // Layer 4
111 << ConvolutionLayer(
112 3U, 3U, 384U,
Jenkins52ba29e2018-08-29 15:32:11 +0000113 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000114 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
115 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100116 .set_name("conv4")
117 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu4")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000118 // Layer 5
119 << ConvolutionLayer(
120 3U, 3U, 256U,
Jenkins52ba29e2018-08-29 15:32:11 +0000121 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000122 get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
123 PadStrideInfo(1, 1, 1, 1), 2)
Jenkinsb3a371b2018-05-23 11:36:53 +0100124 .set_name("conv5")
125 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu5")
Jenkins36ccc902020-02-21 11:10:48 +0000126 << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000127 // Layer 6
128 << FullyConnectedLayer(
129 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000130 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000131 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100132 .set_name("fc6")
133 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu6")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000134 // Layer 7
135 << FullyConnectedLayer(
136 4096U,
Jenkins52ba29e2018-08-29 15:32:11 +0000137 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000138 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100139 .set_name("fc7")
140 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu7")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000141 // Layer 8
142 << FullyConnectedLayer(
143 1000U,
Jenkins52ba29e2018-08-29 15:32:11 +0000144 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy", weights_layout),
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000145 get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
Jenkinsb3a371b2018-05-23 11:36:53 +0100146 .set_name("fc8")
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000147 // Softmax
Jenkinsb3a371b2018-05-23 11:36:53 +0100148 << SoftmaxLayer().set_name("prob")
Jenkins52ba29e2018-08-29 15:32:11 +0000149 << OutputLayer(get_output_accessor(common_params, 5));
Anthony Barbier06ea0482018-02-22 15:45:35 +0000150
Jenkinsb3a371b2018-05-23 11:36:53 +0100151 // Finalize graph
152 GraphConfig config;
Jenkins975dfe12019-09-02 11:47:54 +0100153
Jenkins52ba29e2018-08-29 15:32:11 +0000154 config.num_threads = common_params.threads;
155 config.use_tuner = common_params.enable_tuner;
Jenkins4ba87db2019-05-23 17:11:51 +0100156 config.tuner_mode = common_params.tuner_mode;
Jenkins52ba29e2018-08-29 15:32:11 +0000157 config.tuner_file = common_params.tuner_file;
158
Jenkins975dfe12019-09-02 11:47:54 +0100159 // Load the precompiled kernels from a file into the kernel library, in this way the next time they are needed
160 // compilation won't be required.
161 if(common_params.enable_cl_cache)
162 {
163 restore_program_cache_from_file();
164 }
165
Jenkins52ba29e2018-08-29 15:32:11 +0000166 graph.finalize(common_params.target, config);
167
Jenkins975dfe12019-09-02 11:47:54 +0100168 // Save the opencl kernels to a file
169 if(common_opts.enable_cl_cache)
170 {
171 save_program_cache_to_file();
172 }
173
Jenkins52ba29e2018-08-29 15:32:11 +0000174 return true;
Kaizenbf8b01d2017-10-12 14:26:51 +0100175 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000176 void do_run() override
Kaizenbf8b01d2017-10-12 14:26:51 +0100177 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000178 // Run graph
179 graph.run();
Kaizenbf8b01d2017-10-12 14:26:51 +0100180 }
181
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000182private:
Jenkins52ba29e2018-08-29 15:32:11 +0000183 CommandLineParser cmd_parser;
184 CommonGraphOptions common_opts;
185 CommonGraphParams common_params;
186 Stream graph;
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000187};
Kaizenbf8b01d2017-10-12 14:26:51 +0100188
189/** Main program for AlexNet
190 *
Jenkinsb9abeae2018-11-22 11:58:08 +0000191 * Model is based on:
192 * https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
193 * "ImageNet Classification with Deep Convolutional Neural Networks"
194 * Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E
195 *
Jenkins514be652019-02-28 12:25:18 +0000196 * Provenance: https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet
197 *
Jenkins52ba29e2018-08-29 15:32:11 +0000198 * @note To list all the possible arguments execute the binary appended with the --help option
199 *
Kaizenbf8b01d2017-10-12 14:26:51 +0100200 * @param[in] argc Number of arguments
Jenkins52ba29e2018-08-29 15:32:11 +0000201 * @param[in] argv Arguments
202 *
203 * @return Return code
Kaizenbf8b01d2017-10-12 14:26:51 +0100204 */
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000205int main(int argc, char **argv)
Kaizenbf8b01d2017-10-12 14:26:51 +0100206{
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000207 return arm_compute::utils::run_example<GraphAlexnetExample>(argc, argv);
Kaizenbf8b01d2017-10-12 14:26:51 +0100208}